WO2023282232A1 - Antistatic film and protective film - Google Patents

Antistatic film and protective film Download PDF

Info

Publication number
WO2023282232A1
WO2023282232A1 PCT/JP2022/026615 JP2022026615W WO2023282232A1 WO 2023282232 A1 WO2023282232 A1 WO 2023282232A1 JP 2022026615 W JP2022026615 W JP 2022026615W WO 2023282232 A1 WO2023282232 A1 WO 2023282232A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
polyester film
mass
antistatic layer
film
Prior art date
Application number
PCT/JP2022/026615
Other languages
French (fr)
Japanese (ja)
Inventor
由佳 杉本
充晴 中谷
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to CN202280044847.2A priority Critical patent/CN117545629A/en
Priority to JP2023533122A priority patent/JPWO2023282232A1/ja
Priority to KR1020237043629A priority patent/KR20240009487A/en
Publication of WO2023282232A1 publication Critical patent/WO2023282232A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/16Anti-static materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/21Anti-static
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/306Applications of adhesives in processes or use of adhesives in the form of films or foils for protecting painted surfaces, e.g. of cars

Definitions

  • the present invention relates to a laminated polyester film and a protective film obtained by laminating an adhesive layer on a laminated polyester film, and particularly to a protective film for optical members (for example, constituent members of organic EL and liquid crystal displays).
  • a film in which an adhesive layer is laminated on a base film is used as a protective film for each component in the manufacturing process of optical components.
  • the protective film is attached to each member, which is an adherend, via an adhesive layer, and functions to suppress scratches and adhesion of dirt during processing and transportation of each member.
  • An antistatic film having an antistatic layer laminated on at least one side thereof is used as the base film used for these protective films.
  • the purpose of laminating the antistatic layer is to prevent foreign matter such as dirt and dust from adhering to the protective film and to suppress static electricity generated when the protective film is peeled off from the adherend.
  • a protective film with an antistatic layer is used as a protective film for optical members and the like, and is particularly used in the process of processing constituent members of displays. In recent years, it has been increasingly used in the process of processing members for organic EL displays (especially OLED displays).
  • the adhesive layer surface of the protective film is placed in contact with the optical member, and the surface opposite to the adhesive layer laminated surface of the protective film is crimped using a laminating roll or the like. A protective film is attached.
  • the lamination roll When the lamination roll is used when laminating the protective film in this way, the interaction between the surface opposite to the adhesive layer lamination surface of the protective film and the lamination roll becomes stronger, and the separation from the protective film of the lamination roll increases. was lowered, and the protective film could not be laminated uniformly. Especially in recent years, there are cases where the adhesiveness of the adhesive is lowered to suppress the deformation of the precision parts that are fragile and easily scratched, so that the parts can be peeled off. was a particular problem.
  • the present invention provides an antistatic film and a protective film in which the antistatic layer laminated on the opposite side of the adhesive layer of the protective film and the lamination roll are easily separated from each other, in order to solve the above problems of the protective film.
  • the present invention consists of the following configurations.
  • a laminated polyester film having an antistatic layer on at least one side of a substrate The antistatic layer is a layer obtained by curing a composition containing a conductive polymer, a cross-linking agent (A), and a binder resin (B), The binder resin (B) is a long-chain alkyl-containing compound having at least one reactive group,
  • the antistatic layer is a laminated polyester film that satisfies the following (1)-(3): (1) Surface resistivity: 3 [log ⁇ / ⁇ ] or more and 9 [log ⁇ / ⁇ ] or less (2) Water contact angle: 70° or more and 95° or less (3) Water adhesion energy: 3.5 mJ/m 2 or less [2]
  • the laminated polyester film has a total light transmittance of 80% or more and a haze of 3.0% or less.
  • the haze of the laminated polyester film after heating at 140° C. for 10 minutes is 1.5 times or less the haze before heating.
  • the antistatic layer has a change in surface resistivity after a wiping test with alcohol that is 1.3 times or less the surface resistivity before the test.
  • the conductive polymer is contained in an amount of 5% by mass or more and 50% by mass or less with respect to 100% by mass of the total solid content in the antistatic layer.
  • the cross-linking agent (A) and the binder resin (B) are contained in the following range with respect to 100% by mass of the total solid content in the antistatic layer, according to any one of claims 1 to 5. Laminated polyester film.
  • the binder resin (B) has a hydroxyl value of 20 mgKOH/g or more and 300 mgKOH/g or less.
  • the binder resin (B) contains a carboxyl group.
  • the cross-linking agent contains at least one selected from acrylamide, melamine resin, carbodiimide, oxazoline, isocyanate and aziridine.
  • the laminated polyester film does not substantially contain a silicone compound.
  • a protective film in which an adhesive layer is laminated on at least one surface of the laminated polyester film.
  • the total solid content of 100 mass % is the total mass % of the conductive polymer, the cross-linking agent (A) and the binder resin (B).
  • an antistatic film in which an antistatic layer with low adhesion energy is laminated on at least one side of a polyester film, when an adhesive layer is laminated on the laminated polyester film of the present invention and used as a protective film
  • a protective film that is easy to separate from the laminating roll when laminating the protective film, and that suppresses separation electrification and adhesion of foreign matter during peeling.
  • the laminated polyester film of the present invention (sometimes simply referred to as an antistatic film) is a polyester film having an antistatic layer laminated on at least one side thereof.
  • an adhesive layer can be laminated on one side of the antistatic film and used as a protective film.
  • the laminated polyester film of the present invention can suppress the interaction between the surface opposite to the adhesive layer laminated surface of the protective film and the bonding roll from becoming strong when using a bonding roll when bonding the protective film. It is possible to avoid a decrease in the ability of the joint roll to separate from the protective film. Furthermore, it is possible to uniformly bond the protective film.
  • polyester film used as a substrate in the present invention is a film mainly composed of a polyester resin.
  • a film mainly composed of a polyester resin is a film formed from a resin composition containing 50% by mass or more of a polyester resin, and when blended with another polymer, the polyester resin is 50% by mass. % or more, and when other monomers are copolymerized, it means that 50 mol % or more of repeating structural units of polyester are contained.
  • the polyester film contains 90% by mass or more, more preferably 95% by mass or more, and still more preferably 100% by mass of the polyester resin in the resin composition constituting the film.
  • the material is not particularly limited, but a copolymer formed by polycondensation of a dicarboxylic acid component and a diol component, or a blend resin thereof can be used.
  • dicarboxylic acid components include terephthalic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, diphenyl Carboxylic acid, diphenoxyethanedicarboxylic acid, diphenylsulfonecarboxylic acid, anthracenedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, hexahydro isophthalic acid
  • diol component constituting the polyester resin examples include ethylene glycol, propylene glycol, hexamethylene glycol, neopentyl glycol, 1,2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, decamethylene glycol, 1,3- propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexadiol, 2,2-bis(4-hydroxyphenyl)propane, bis(4-hydroxyphenyl)sulfone and the like.
  • the dicarboxylic acid component and the diol component that constitute the polyester resin may be used alone or in combination of two or more. Further, other acid components such as trimellitic acid and other hydroxyl group components such as trimethylolpropane may be appropriately added.
  • polyester resins include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate.
  • polyethylene terephthalate is preferred from the viewpoint of the balance between physical properties and cost.
  • the film may contain inert particles. preferably not included.
  • the polyester film does not contain particles, it is preferable to contain particles in the coating layer provided by in-line coating. It is preferable that the polyester film does not contain particles and the coating layer contains particles, because the transparency is improved and the appearance inspection and the like are facilitated.
  • the polyester film used in the present invention preferably has a haze of 3% or less. It is more preferably 2.5% or less, and may be 2.0% or less. It may be 1.5% or less, more preferably 1.0% or less, or 0.8% or less. If it is 3% or less, it is preferable because the appearance inspection can be performed in a state where the protective film is adhered to the adherend, and it is particularly preferable when the adherend is a member for optical use.
  • the area average surface roughness (Sa) of the surface of the polyester film used in the present invention is preferably in the range of 1 to 40 nm, more preferably 1 to 30 nm. More preferably, it is 1 to 10 nm.
  • the maximum protrusion height (P) on the surface of the polyester film used in the present invention is preferably 2 ⁇ m or less, more preferably 1.5 ⁇ m or less. More preferably, it is 0.8 ⁇ m or less. If Sa is 40 nm or less and P is 2 ⁇ m or less, it is preferable because there is no risk of roughening the adhesive surface when the adhesive layer is laminated and wound into a roll.
  • the thickness of the polyester film is not particularly limited in the present invention, it is preferably in the range of 12 to 188 ⁇ m. 18 to 125 ⁇ m is more preferable, and 25 to 100 ⁇ m is even more preferable. When the thickness is 12 ⁇ m or more, wrinkles are less likely to occur when the protective film is attached to an adherend, and when the thickness is 188 ⁇ m or less, it is advantageous in terms of cost.
  • the polyester film that serves as the base material may be a single layer or a laminate of two or more layers.
  • various additives can be incorporated into the film as long as the effects of the present invention are achieved.
  • additives include antioxidants, light stabilizers, anti-gelling agents, organic wetting agents, antistatic agents, ultraviolet absorbers, and surfactants.
  • the film has a laminated structure, it is also preferable to contain additives depending on the function of each layer, if necessary.
  • a polyester film can be obtained, for example, by melt-extruding the above-mentioned polyester resin into a film, and cooling and solidifying it with a casting drum to form a film.
  • the polyester film of the present invention both a non-stretched film and a stretched film can be used, but a stretched film is preferable from the viewpoint of durability such as mechanical strength and chemical resistance.
  • the stretching method is not particularly limited, and a vertical uniaxial stretching method, a horizontal uniaxial stretching method, a vertical and horizontal successive biaxial stretching method, a vertical and horizontal simultaneous biaxial stretching method, etc. can be employed.
  • the surface layer of the polyester film can be subjected to surface treatments such as an anchor coat layer, corona treatment, plasma treatment, and flame treatment in order to improve adhesion with the adhesion improving layer.
  • surface treatments such as an anchor coat layer, corona treatment, plasma treatment, and flame treatment in order to improve adhesion with the adhesion improving layer.
  • an anchor coat layer corona treatment, plasma treatment, and flame treatment in order to improve adhesion with the adhesion improving layer.
  • in-line coating is preferable from the viewpoint of cost.
  • Antistatic layer In the laminated polyester film (antistatic film) of the present invention, it is necessary to laminate an antistatic layer on at least one side of the polyester film.
  • the antistatic layer may be on one side only or may be laminated on both sides.
  • the antistatic layer is a layer obtained by curing a composition containing a conductive polymer, a cross-linking agent (A), and a binder resin (B). Such a composition may be referred to as an antistatic layer-forming composition.
  • the means for laminating the antistatic layer is not particularly limited, and known methods such as a coating method, a vacuum deposition method, and lamination can be used. is preferable from the viewpoint of
  • the conductive polymer in the present invention is a polymer capable of imparting antistatic properties, and may be a polymer utilizing ion conduction such as a cationic compound, a ⁇ -electron conjugated conductive polymer, or the like. It is preferable to use a ⁇ -electron conjugated conductive polymer from the viewpoint of antistatic properties under low humidity. In addition, since the ⁇ -electron conjugated conductive polymer can maintain a high level of antistatic performance without depending on the moisture in the air, it has good antistatic performance in various usage environments of the protective film. Therefore, it is preferable.
  • an antistatic agent can be used in combination within a range that does not impair the effects of the conductive polymer according to the present invention.
  • the antistatic agent may be, other than the conductive polymer in the present invention, a polymer utilizing ion conduction such as a cationic compound, a ⁇ -electron conjugated conductive polymer, a surfactant, a silicon oxide compound. , a conductive metal compound, or the like can be used.
  • Examples of ⁇ -electron conjugated conductive polymers include aniline polymers containing aniline or its derivatives as structural units, pyrrole polymers containing pyrrole or its derivatives as structural units, and acetylene polymers containing acetylene or its derivatives as structural units. Polymers, thiophene-based polymers containing thiophene or a derivative thereof as a structural unit, and the like can be mentioned. In order to obtain high transparency, the ⁇ -electron conjugated conductive polymer preferably does not have a nitrogen atom. Among them, a thiophene-based polymer containing thiophene or its derivative as a structural unit is excellent in terms of transparency.
  • Polyalkylenedioxythiophenes include polyethylenedioxythiophene, polypropylenedioxythiophene, poly(ethylene/propylene)dioxythiophene, and the like.
  • a doping agent is added, for example, to 100 parts by mass of the polymer containing thiophene or a derivative thereof as a structural unit. 0.1 parts by mass or more and 500 parts by mass or less can be blended. If the amount is too large, the electron transfer becomes difficult, resulting in a problem of deterioration in antistatic performance.
  • Examples of the doping agent include LiCl, R 1-30 COOLi (R 1-30 : a saturated hydrocarbon group having 1 to 30 carbon atoms), R 1-30 SO 3 Li, R 1-30 COONa, R 1-30 SO3Na , R1-30COOK , R1-30SO3K , Tetraethylammonium, I2 , BF3Na , BF4Na , HClO4, CF3SO3H , FeCl3 , Tetracyanoquinoline (TCNQ) , Na 2 B 10 Cl 10 , phthalocyanine, porphyrin, glutamic acid, alkyl sulfonate, polystyrene sulfonate Na (K, Li) salt, styrene/styrene sulfonate Na (K, Li) salt copolymer, polystyrene sulfonate anion , styrenesulfonic acid/styrenesulf
  • the conductive polymer contained in the antistatic layer is preferably contained in an amount of 5% by mass or more, more preferably 10% by mass or more, based on 100% by mass of the total solid content in the antistatic layer.
  • the content of the ⁇ -electron conjugated conductive polymer in the antistatic layer specified in the present application is It is the total amount of the conductive polymer and the doping agent.
  • the conductive polymer contained in the antistatic layer is preferably 50% by mass or less, more preferably 30% by mass or less, based on 100% by mass of the total solid content in the antistatic layer.
  • the content of the ⁇ -electron conjugated conductive polymer in the antistatic layer specified in the present application is It is the total amount of the conductive polymer and the doping agent.
  • the antistatic layer of the present invention contains a binder resin (B).
  • the binder resin is not particularly limited, but specific examples include polyester resin, acrylic resin, urethane resin, polyolefin resin, polyvinyl resin (polyvinyl alcohol, etc.), polyalkylene glycol, polyalkyleneimine, methylcellulose, hydroxycellulose, starch. and the like.
  • polyester resins, acrylic resins, and urethane resins are preferably used from the viewpoint of adhesion to the polyester film. It is more preferable to use an acrylic resin because of the ease of molecular design and molecular weight design.
  • the binder resin (B) preferably contains a component that lowers the adhesion energy of the antistatic layer surface in order to improve the separation property between the antistatic layer surface and the lamination roll. It is preferable to have a silicone component, a long-chain alkyl component, a fluorine component, etc. as this component. A long-chain alkyl component is more preferable in consideration of transfer to an adherend, and the binder resin (B) is a long-chain alkyl-containing compound.
  • binder resin (B) is a long-chain alkyl-containing compound having at least one reactive group, as described below.
  • the laminated polyester film of the present invention uses a laminating roll when laminating the protective film
  • the surface opposite to the adhesive layer laminated surface of the protective film and the laminating roll It is possible to suppress the action from becoming strong, and to avoid the deterioration of the separation property of the bonding roll from the protective film. Furthermore, it is possible to uniformly bond the protective film.
  • the adhesiveness of the adhesive is lowered so that the deformation of the precision member that is fragile and easily scratched can be suppressed so that the member can be peeled off. It is possible to maintain good separation between the mating roll and the protective film.
  • the binder resin (B) preferably has at least one reactive group.
  • the binder resin (B) preferably has a hydroxyl group, a carboxyl group, an amino group, an acrylate group, an epoxy group, or the like, and more preferably has a hydroxyl group or a carboxyl group.
  • an acrylic resin is preferred.
  • acrylic resins containing long-chain alkyls and having at least one reactive functional group are preferred.
  • the acrylic resin is preferably an acrylic resin having a hydroxyl group and a carboxyl group in the molecule. It is more preferable that the structural unit having a hydroxyl group is contained in an amount of 15 to 90 mol % in 100 mol % of all structural units. It is preferable that the structural unit having a hydroxyl group is 20 mol % or more because the water solubility of the acrylic resin can be appropriately maintained. On the other hand, when it is 90 mol % or less, it is preferable because the ratio of the low adhesion energy component can be appropriately maintained.
  • a monomer having a hydroxyl group such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, or 2-hydroxyethyl ( A ring-opening adduct of ⁇ -butyrolactone or ⁇ -caprolactone to meth)acrylate may be used as a copolymerization component.
  • 2-hydroxyethyl (meth)acrylate is preferable because it does not inhibit water solubility.
  • the hydroxyl value of the binder resin (B), for example, the hydroxyl value of the acrylic resin is preferably 20 mgKOH/g or more, more preferably 40 mgKOH/g or more, still more preferably 70 mgKOH/g or more, for example 120 mgKOH/g. That's it. If the hydroxyl value of the binder resin (B), for example, the hydroxyl value of the acrylic resin is 20 mgKOH/g or more, the water solubility of the acrylic resin will be good, which is preferable. Regarding this hydroxyl value, an acrylic resin is exemplified, but the resin that can be used for the binder resin (B) of the present invention described above also has a hydroxyl value within the above range, so that the It can be effective.
  • the hydroxyl value of the binder resin (B), for example, the hydroxyl value of the acrylic resin is preferably 300 mgKOH/g or less, more preferably 250 mgKOH/g or less, still more preferably 200 mgKOH/g or less. If the hydroxyl value of the binder resin (B), for example, the hydroxyl value of the acrylic resin is 300 mgKOH/g or less, the hydroxyl group of the acrylic resin and the antistatic component such as polythiophene do not cause extreme interaction, and the coating liquid is less likely to aggregate. preferable.
  • the acrylic resin used in the present invention is preferably a resin having a carboxyl group.
  • a carboxyl group By having a carboxyl group, it becomes possible to form a crosslinked structure with a crosslinking agent and to easily impart water solubility.
  • examples include monomers containing a carboxy group such as (meth)acrylic acid, crotonic acid, itaconic acid, maleic acid and fumaric acid, and monomers containing an acid anhydride group such as maleic anhydride and itaconic anhydride.
  • the binder resin (B) may have a carboxyl group alone, or may have a carboxyl group together with the hydroxyl group.
  • the monomer having a carboxyl group is preferably 2 mol % or more, more preferably 5 mol % or more, in 100 mol % of all structural units of the acrylic resin. When it is 4 mol % or more, it becomes easy to form a crosslinked structure in the antistatic layer and to impart water solubility, which is preferable.
  • the monomer having a carboxyl group is preferably 65 mol % or less, more preferably 50 mol % or less. When it is 65 mol % or less, the Tg of the resulting coating film does not become too high relative to the preferable range described later, and the film-forming property is favorable, which is preferable.
  • Basic neutralizers include amine compounds such as ammonia, trimethylamine, triethylamine and dimethylaminoethanol, and inorganic basic substances such as potassium hydroxide and sodium hydroxide. It is preferable to use an amine compound as a neutralizing agent for ease of application and ease of formation of a crosslinked structure.
  • the neutralization rate is preferably 30 mol % to 95 mol %, more preferably 40 mol % to 90 mol %.
  • the acrylic resin When the neutralization rate is 30 mol% or more, the acrylic resin has sufficient water solubility, the acrylic resin can be easily dissolved during preparation of the coating solution, and there is no risk of whitening of the coated film surface after drying. preferable. On the other hand, when the neutralization rate is 95 mol % or less, the water solubility is not too high, and alcohol or the like can be easily mixed in preparation of the coating liquid, which is preferable.
  • the acid value of the binder resin (B), for example, the acid value of the acrylic resin is preferably 40 mgKOH/g or more, more preferably 50 mgKOH/g or more, still more preferably 60 mgKOH/g or more.
  • the acid value of the acrylic resin is 40 mgKOH/g or more, the number of cross-linking points with the cross-linking agent is increased, so that a strong coating film having a higher cross-linking density can be obtained, which is preferable.
  • an acrylic resin is exemplified, but the resin that can be used for the binder resin (B) of the present invention described above also has an acid value within the above range, so that the effect of the present specification can be obtained. can play.
  • the acid value of the binder resin (B), for example, the acid value of the acrylic resin is preferably 400 mgKOH/g or less, more preferably 350 mgKOH/g or less, still more preferably 300 mgKOH/g or less. If the acid value of the acrylic resin is 400 mgKOH/g or less, the carboxyl group of the acrylic resin and the antistatic agent such as polythiophene do not cause excessive interaction, which is preferable because condensation hardly occurs. If aggregation occurs in the coating liquid, the homogeneity of the antistatic layer is deteriorated, and the antistatic property and transparency are degraded.
  • the long-chain alkyl group in the binder resin (B) preferably has an alkyl group with 8 to 25 carbon atoms in the side chain of the resin.
  • the acrylic resin into which a long-chain alkyl group is introduced preferably has an alkyl group having 8 to 25 carbon atoms in the side chain of the acrylic resin, more preferably an alkyl group having 12 to 22 carbon atoms, and still more preferably. It is an alkyl group of 16-20.
  • a copolymer having a (meth)acrylic acid ester as a main repeating unit and containing a long-chain alkyl group having 8 to 20 carbon atoms in the transesterified portion can also be preferably used. Examples include lauryl (meth)acrylate, stearyl (meth)acrylate, and the like. Among them, stearyl methacrylate is preferably used in terms of availability, cost, and low adhesion energy.
  • the monomer having a long-chain alkyl group in the monomers to be copolymerized is preferably 50 mol% or less, more preferably 40 mol% or less, in 100 mol% of all structural units of the binder resin (B), for example, an acrylic resin.
  • the binder resin (B) for example, an acrylic resin.
  • the monomer having a long-chain alkyl group preferably accounts for 5% or more in 100 mol% of all structural units of the acrylic resin. When it is 5% or more, the adhesion energy of the coating surface of the antistatic layer can be reduced, which is preferable.
  • the glass transition temperature (Tg) of the binder resin (B), for example, an acrylic resin is preferably 50°C or higher, more preferably 55°C or higher, and even more preferably 60°C or higher. It is preferable that the glass transition temperature of the acrylic resin is 50° C. or higher, since the change over time of the antistatic layer is suppressed.
  • the glass transition temperature (Tg) of the binder resin (B), for example, an acrylic resin is preferably 110°C or lower, more preferably 105°C or lower, and even more preferably 100°C or lower.
  • Tg glass transition temperature of the acrylic resin
  • the coating film becomes too brittle and the antistatic layer is less likely to crack, which is preferable.
  • a (meth)acrylic monomer or a non-acrylic vinyl monomer can be used as the Tg adjusting monomer that is copolymerized to adjust the Tg to the above range.
  • Specific examples of (meth) acrylic monomers include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, n-amyl (meth) acrylates, n-hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, (meth)acrylic acid alkyl esters such as stearyl (meth)acryl
  • non-acrylic vinyl monomers examples include styrene, ⁇ -methylstyrene, vinyltoluene (a mixture of m-methylstyrene and p-methylstyrene), styrene-based monomers such as chlorostyrene; vinyl acetate, vinyl propionate, and vinyl butyrate.
  • vinyl caproate vinyl caprylate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, vinyl pivalate, vinyl octylate, vinyl monochloroacetate, divinyl adipate, Vinyl esters such as vinyl crotonate, vinyl sorbate, vinyl benzoate and vinyl cinnamate; vinyl halide monomers such as vinyl chloride and vinylidene chloride;
  • the monomers for adjusting Tg are preferably the balance after determining the appropriate amounts of the hydroxyl group-containing monomer and the carboxyl group-containing monomer.
  • the Tg of the copolymer is determined by the following Fox formula.
  • the acrylic resin used in the present invention can be obtained by known radical polymerization. Emulsion polymerization, suspension polymerization, solution polymerization, bulk polymerization, and the like can all be adopted. From the point of handleability, solution polymerization is preferred.
  • Water-soluble organic solvents that can be used for solution polymerization include ethylene glycol n-butyl ether, isopropanol, ethanol, n-methylpyrrolidone, tetrahydrofuran, 1,4-dioxane, 1,3-oxolane, methyl solosolve, and ethyl solosolve. , ethyl carbitol, butyl carbitol, propylene glycol monopropyl ether, propylene glycol monobutyl ether and the like. These may be used by mixing with water.
  • the polymerization initiator may be any known compound that generates radicals, but water-soluble azo polymerization initiators such as 2,2-azobis-2-methyl-N-2-hydroxyethylpropionamide are preferred. The temperature, time, etc. of the polymerization are appropriately selected.
  • the weight average molecular weight (Mw) of the binder resin (B) is preferably about 10,000 to 200,000. A more preferred range is from 20,000 to 150,000. When Mw is 10,000 or more, the toughness of the coating film is improved and the strength of the coating film is increased, which is preferable. When the Mw is 200,000 or less, the viscosity of the coating liquid does not significantly increase and the coatability is good, which is preferable.
  • the antistatic layer of the present invention preferably contains 10% by mass or more, more preferably 40% by mass or more, of the binder resin (B) based on 100% by mass of the total solid content in the antistatic layer.
  • a content of 10% by mass or more is preferable because the static water contact angle increases.
  • the antistatic layer of the present invention preferably contains the binder resin (B) in an amount of 70% by mass or less, more preferably 60% by mass or less, based on 100% by mass of the total solid content in the antistatic layer. If the binder resin (B) is 70% by mass or less, it is preferable because it does not cause interaction with an antistatic agent such as polythiophene and is less likely to condense. In addition, it is possible to suppress the occurrence of aggregation in the antistatic layer-forming composition that forms the antistatic layer, and it is possible to avoid deterioration of the uniformity of the antistatic layer. can bring about improvement.
  • the antistatic layer is formed from a composition containing a cross-linking agent (A) in order to form a crosslinked structure in the antistatic layer. Containing the cross-linking agent (A) is preferable because the durability is improved and deterioration of the antistatic performance is suppressed even when treated under high temperature and high humidity conditions.
  • Specific cross-linking agents include urea-based, epoxy-based, melamine-based, isocyanate-based, oxazoline-based, carbodiimide-based, and aziridine-based agents.
  • the cross-linking agent (A) comprises at least one selected from acrylamides, melamine resins, carbodiimides, oxazolines, isocyanates and aziridines.
  • the cross-linking agent (A) is particularly preferably melamine-based, oxazoline-based, carbodiimide-based, or aziridine-based.
  • a catalyst or the like can be appropriately used as necessary in order to accelerate the cross-linking reaction.
  • the cross-linking agent (A) contained in the antistatic layer of the present invention is preferably contained in an amount of 15% by mass or more, more preferably 20% by mass or more, and still more preferably 100% by mass of the total solid content in the antistatic layer. is 25% by mass. If it is 15% by mass or more, the number of cross-linking points with the binder increases, so that a strong coating film with a higher cross-linking density can be obtained, and heat resistance and alcohol resistance are good, which is preferable.
  • the cross-linking agent (A) is preferably contained in an amount of 75% by mass or less, for example 65% by mass or less, and may be 55% by mass or less, based on 100% by mass of the total solid content in the antistatic layer. When it is 75% by mass or less, heat resistance and alcohol resistance can be maintained while maintaining the static contact angle within the target range.
  • a surfactant may be used in the antistatic layer in the present invention to improve the appearance.
  • surfactants include nonionic surfactants such as polyoxyethylene octylphenyl ether, polyoxyethylene alkyl ether, polyoxyethylene sorbitan fatty acid ester, and fluoroalkylcarboxylic acids, perfluoroalkylcarboxylic acids, perfluoroalkylbenzenesulfones. Acids, fluorine-based surfactants such as perfluoroalkyl quaternary ammonium and perfluoroalkylpolyoxyethylene ethanol, and silicone-based surfactants can be used.
  • the antistatic layer may contain lubricants, pigments, ultraviolet absorbers, silane coupling agents, etc., if necessary, as long as the objects of the present invention are not hindered.
  • the laminated polyester film is substantially free of silicone compounds.
  • the antistatic layer is substantially free of silicone compounds.
  • “substantially free of silicone compounds” is defined as being 50 ppm or less, preferably 10 ppm or less, most preferably detection limit or less when Si element is quantified by fluorescence X-ray analysis. content. “Even if silicone components are not actively added to the film, contaminants derived from foreign substances and dirt adhering to the raw material resin or the lines and equipment in the film manufacturing process will peel off and enter the film. This is because there are cases where Since the laminated polyester film contains substantially no silicone compound, even when this antistatic film is used as a protective film, it is possible to avoid the transfer of silicone to the protected product, and there is no adverse effect on the final product. can be reduced.
  • the film thickness of the antistatic layer of the present invention is preferably 0.005 ⁇ m or more and 1 ⁇ m or less. It is more preferably 0.01 ⁇ m or more and 0.5 ⁇ m or less, and still more preferably 0.01 ⁇ m or more and 0.2 ⁇ m or less.
  • the film thickness of the antistatic layer is 0.005 ⁇ m or more, an antistatic effect can be obtained, which is preferable.
  • the thickness is 1 ⁇ m or less, coloring is less and transparency is improved, which is preferable.
  • the surface resistivity of the antistatic layer of the present invention is 9 [log ⁇ / ⁇ ] or less. More preferably, it is 8 [log ⁇ / ⁇ ] or less, and still more preferably 7 [log ⁇ / ⁇ ] or less.
  • the lower limit of the surface resistivity of the antistatic film does not have to be specified, it is preferably 3 [log ⁇ / ⁇ ] or more. If the surface resistivity of the antistatic film is less than 3 [log ⁇ / ⁇ ], the processing cost of the antistatic layer increases, which is not preferable.
  • the adhesion energy of water on the surface of the antistatic layer of the antistatic film of the present invention is 3.5 mJ/m 2 or less. More preferably, it is 3.2 mJ/m 2 or less, for example, 2.9 mJ/m 2 or less. If the adhesion energy of water is 3.5 mJ/m 2 or less, it is preferable because when the protective film is used as a protective film and the protective film is used as a protective film, the protective film can be separated from the protective film when the film is laminated to an adherend with the protective film. .
  • the adhesion energy of water of 3.5 mJ/m 2 or less can be achieved by adding an appropriate amount of a low surface free energy component to the antistatic layer.
  • the polymer containing a low surface free energy component may be a conductive polymer or the binder resin (B), both of which are polymers containing a low surface free energy component.
  • the adhesion energy of water on the surface of the antistatic layer of the antistatic film of the present invention is preferably 1.1 mJ/m 2 or more, more preferably 1.3 mJ/m 2 or more.
  • the adhesion energy of water is within such a range, wettability is good and defects such as repelling are less likely to occur even when an adhesive layer or the like is processed on the antistatic layer.
  • the static contact angle of water on the surface of the antistatic layer of the antistatic film of the present invention is 70° or more and 95° or less, for example, 75° or more and 95° or less, and 80° or more and 95° or less. may When the static contact angle of water is within such a range, it is possible to suppress an increase in the interaction between the surface of the protective film opposite to the surface on which the adhesive layer is laminated and the bonding roll.
  • the static contact angle and adhesion energy of water it is important to set the static contact angle and adhesion energy of water within the above ranges. For example, even if the adhesion energy of water is 3.5 mJ/m 2 or less, if a film having a static contact angle of water of 95° or more is used, the lamination roll separation property is good, but charging When the adhesive layer is processed onto the protective layer, the coatability tends to deteriorate, resulting in a protective film with many defects. Especially when the static contact angle of water greatly exceeds 95°, this tendency becomes stronger.
  • the laminated polyester film of the present invention is (1) Surface resistivity: 3 [log ⁇ / ⁇ ] or more and 9 [log ⁇ / ⁇ ] or less (2) Static contact angle of water: 70° or more and 95° or less (3) Adhesion energy of water: 3.5 mJ/ It is characterized by being m 2 or less.
  • the workability of the adhesive layer to the antistatic layer is good (for example, the wettability is good, and the drawback is It is possible to provide a protective film that suppresses electrification of the protective film, has good separation from the laminating roll, and is excellent in lamination.
  • the haze of the laminated polyester film of the present invention is preferably 3.0% or less. It is more preferably 2.5% or less, still more preferably 2.0% or less, for example, 1.5% or less. It is more preferable if it is 1.0% or less. If it is 3.0% or less, it is preferable because the appearance inspection can be performed in a state where the protective film is adhered to the adherend, and it is particularly preferable when the adherend is a member for optical use.
  • the haze may be 0, and may be 0.1% or more, for example.
  • the haze of the laminated polyester film of the present invention after heating at 140°C for 10 minutes is preferably 1.5 times or less the haze before heating. It is more preferably 1.3 times or less, still more preferably 1.2 times or less. If it is 1.5 times or less, it is preferable because the appearance inspection can be performed in a state where the protective film is adhered to the adherend, and it is particularly preferable when the adherend is a member for optical use.
  • the total light transmittance of the laminated polyester film (antistatic film) used in the present invention is preferably 80% or more. It is more preferably 85% or more, still more preferably 88% or more. 90% or more is highly preferred. If it is 80% or more, it is preferable because the appearance inspection can be performed in a state where the protective film is attached to the adherend, and it is particularly preferable when the adherend is a member for optical use.
  • the antistatic layer preferably has a change in surface resistivity after a wiping test with alcohol that is 1.3 times or less the surface resistivity before the test. It is more preferably 1.2 times or less, still more preferably 1.1 times or less. If it is 1.3 times or less, it is preferable because the initial surface resistivity is maintained when the protective film is formed even if alcohol is used in the process of adhesion processing.
  • the area average surface roughness (Sa) of the surface of the antistatic layer is preferably in the range of 1 to 40 nm, more preferably 1 to 30 nm. More preferably, it is 1 to 10 nm.
  • the maximum projection height (P) on the surface of the antistatic film used in the present invention is preferably 2 ⁇ m or less, more preferably 1.5 ⁇ m or less. More preferably, it is 0.8 ⁇ m or less. If Sa is 40 nm or less and P is 2 ⁇ m or less, it is preferable because there is no risk of roughening the adhesive surface when the adhesive layer is laminated and wound into a roll.
  • a coating liquid in which the above-mentioned antistatic agent or binder resin is dispersed or dissolved in a solvent is applied by a gravure roll coating method, a reverse roll coating method, a knife coater method,
  • a gravure roll coating method a reverse roll coating method
  • a knife coater method a coating method suitable for the conductive composition is not particularly limited.
  • it can be provided by an in-line coating method in which a coating layer is provided in the film production process, or an off-line coating method in which a coating layer is provided after film production.
  • the drying temperature for forming the antistatic layer by the above method is usually 60°C or higher and 150°C or lower, preferably 90°C or higher and 140°C or lower.
  • this temperature is 60° C. or higher, the treatment can be performed in a short period of time, which is preferable from the viewpoint of improving productivity.
  • a crosslinking reaction progresses sufficiently when a crosslinking agent is included, it is preferable.
  • this temperature is 150° C. or lower, the flatness of the film is maintained, which is preferable.
  • An adhesive layer can be laminated on the laminated polyester film of the present invention by applying and curing an adhesive.
  • the adhesive is not particularly limited and can be used, and the laminated film obtained is used as a protective film.
  • Either side of the antistatic film may be the surface on which the adhesive layer is laminated.
  • the antistatic layer is provided on the side opposite to the side on which the adhesive layer is laminated.
  • a ceramic green sheet, a resin film, or the like may be laminated on the antistatic layer in the laminated polyester film of the present invention.
  • Tg of each long-chain alkyl-containing compound was determined from the composition ratio of the copolymer components determined by the NMR measurement and the above-described Fox equation.
  • the surface resistivity of the surface of the antistatic film of the present invention was determined by measuring the surface resistivity of the antistatic layer surface after adjusting the humidity for 24 hours under conditions of a temperature of 23° C. and a humidity of 55% using a surface resistance measuring instrument (manufactured by Simco Japan Co., Ltd.). , Work Surface Tester ST-3), and evaluated according to the following criteria.
  • Surface resistivity is 3 or more and 6 or less [log ⁇ / ⁇ ]
  • Surface resistivity is more than 6 and 9 or less [log ⁇ / ⁇ ]
  • Surface resistivity is over 9 and 12 or less [log ⁇ / ⁇ ]
  • Surface resistivity is over 12 [log ⁇ / ⁇ ] or more
  • total light transmittance, haze The total light transmittance and haze of the film of the present invention were measured in accordance with JIS K 7136 using a turbidity meter (NDH7000II, manufactured by Nippon Denshoku Co., Ltd.) before and after heat treatment at 140°C for 10 minutes.
  • Glass-transition temperature Compliant with JIS K7121, using a differential scanning calorimeter (manufactured by Seiko Instruments, DSC6200), 10 mg of resin sample was heated at 20 ° C./min over a temperature range of 25 to 350 ° C., and the compensation obtained from the DSC curve was obtained.
  • the outer glass transition start temperature was taken as the glass transition temperature.
  • MMA methyl methacrylate
  • SMA stearyl methacrylate
  • HEMA hydroxyethyl methacrylate
  • Table 1 also shows the composition ratio, Tg, and acid value of the long-chain alkyl-containing compound (b-1) having at least one reactive group, determined by NMR measurement.
  • Example 1 An antistatic layer coating solution was obtained with the blending amounts shown in Table 2.
  • (Antistatic layer coating solution) Water 32.96 parts by mass Isopropyl alcohol 49.45 parts by mass Conductive polymer 8.33 parts by mass Crosslinking agent a-1_1 (manufactured by Nippon Carbide Co., Ltd., melamine resin, imino-methylol type, solid content concentration 70% by mass) 0.86 parts by mass of long-chain alkyl-containing compound b-1 having at least one reactive group (solid concentration: 20% by mass) 6.5 parts by mass Conductive agent 1.8 parts by mass Surfactant (manufactured by Nissin Chemical Co., Ltd., Dynol 604, solid content concentration 100% by mass) 0. part by mass
  • the obtained antistatic layer coating solution was coated on one side of A4360 (Cosmoshine (registered trademark), manufactured by Toyobo Co., Ltd.) having a thickness of 75 ⁇ m using a gravure coater so that the wet film thickness was 4.5 ⁇ m. It was dried and cured in a hot air drying oven at 140° C. for 30 seconds to obtain a polyester film with an antistatic layer.
  • A4360 Cosmoshine (registered trademark), manufactured by Toyobo Co., Ltd.) having a thickness of 75 ⁇ m using a gravure coater so that the wet film thickness was 4.5 ⁇ m. It was dried and cured in a hot air drying oven at 140° C. for 30 seconds to obtain a polyester film with an antistatic layer.
  • Example 2 An antistatic layer was formed in the same procedure as in Example 1, except that the composition was changed to that shown in Table 2.
  • Example 3 An antistatic layer was formed in the same manner as in Example 1, except that the composition shown in Table 2 was changed to the cross-linking agent a-2 (Baxenden, blocked isocyanate, solid content concentration: 40% by mass).
  • Example 4 An antistatic layer was formed in the same manner as in Example 1, except that the cross-linking agent a-3_1 (manufactured by Nisshinbo Chemical Co., Ltd., carbodiimide, solid content concentration 40% by mass) was used with the composition shown in Table 2.
  • the cross-linking agent a-3_1 manufactured by Nisshinbo Chemical Co., Ltd., carbodiimide, solid content concentration 40% by mass
  • Example 5 An antistatic layer was formed in the same manner as in Example 1, except that the composition shown in Table 2 was used as a cross-linking agent a-3_2 (carbodiimide manufactured by Nisshinbo Chemical Co., Ltd., solid content concentration 41% by mass).
  • Example 6-7 An antistatic layer was formed in the same manner as in Example 1, except that the cross-linking agent a-1_2 (manufactured by Nippon Carbide Co., Ltd., melamine resin, imino type, solid content concentration 80% by mass) was used with the composition shown in Table 2. .
  • the cross-linking agent a-1_2 manufactured by Nippon Carbide Co., Ltd., melamine resin, imino type, solid content concentration 80% by mass
  • Example 8 An antistatic layer was formed in the same manner as in Example 1 except that the cross-linking agent a-1_3 (manufactured by Nippon Carbide Co., Ltd., melamine resin, imino type, solid content concentration 70% by mass) was used with the composition shown in Table 2. .
  • the cross-linking agent a-1_3 manufactured by Nippon Carbide Co., Ltd., melamine resin, imino type, solid content concentration 70% by mass
  • Example 9 An antistatic layer was formed in the same manner as in Example 1 except that the cross-linking agent a-1_4 (manufactured by Nippon Carbide Co., Ltd., melamine resin, imino-methylol type, solid content concentration 70% by mass) was used with the composition shown in Table 2. formed.
  • the cross-linking agent a-1_4 manufactured by Nippon Carbide Co., Ltd., melamine resin, imino-methylol type, solid content concentration 70% by mass
  • Example 10 An antistatic layer was formed in the same manner as in Example 1 except that the cross-linking agent a-1_5 (manufactured by Nippon Carbide Co., Ltd., melamine resin, imino-methylol type, solid content concentration 70% by mass) was used with the composition shown in Table 2. formed.
  • the cross-linking agent a-1_5 manufactured by Nippon Carbide Co., Ltd., melamine resin, imino-methylol type, solid content concentration 70% by mass
  • Example 11 An antistatic layer was formed in the same manner as in Example 1, except that the cross-linking agent a-1_6 (manufactured by Nippon Carbide Co., Ltd., melamine resin, full ether type, solid content concentration 70% by mass) was used with the composition shown in Table 2. bottom.
  • the cross-linking agent a-1_6 manufactured by Nippon Carbide Co., Ltd., melamine resin, full ether type, solid content concentration 70% by mass
  • Example 12 An antistatic layer was formed in the same procedure as in Example 1, except that the cross-linking agent a-1_7 (manufactured by Nippon Carbide Co., Ltd., melamine resin, methylol type, solid content concentration 70% by mass) was used with the composition shown in Table 2. .
  • the cross-linking agent a-1_7 manufactured by Nippon Carbide Co., Ltd., melamine resin, methylol type, solid content concentration 70% by mass
  • Example 16 The same as in Example 1 except that the long-chain alkyl-containing compound b-2 (solid content concentration: 20% by mass) having a composition as shown in Table 2 and having a different amount of stearyl methacrylate from the cross-linking agents a-1_1 and b-1 was used. An antistatic layer was formed by the procedure of.
  • Example 17 The same procedure as in Example 1 except that the long-chain alkyl-containing compound b-3 (solid content concentration 20% by mass) having a composition as shown in Table 2 and having a hydroxyl value different from that of the cross-linking agents a-1_1 and b-1 was used. to form an antistatic layer.
  • Example 18 The same procedure as in Example 1 except that the long-chain alkyl-containing compound b-4 (solid content concentration 20% by mass) having a composition as shown in Table 2 and having a hydroxyl value different from that of the cross-linking agents a-1_1 and b-1 was used. to form an antistatic layer.
  • Example 3 An antistatic layer was formed in the same manner as in Example 1 except that the cross-linking agent a-1_1 was used with the composition shown in Table 2 and no long-chain alkyl-containing acrylic resin was included.
  • Tables 2A to 3D below show various compositions and measured values.
  • the laminated polyester film of the present invention obtained in Examples provides an antistatic film in which an antistatic layer with low adhesion energy is laminated on at least one side of a polyester film, and an adhesive layer is laminated on the antistatic film for protection. Even when it is used as a film, it is possible to provide a protective film that is easy to separate from the laminating roll when laminating the protective film, and that suppresses separation electrification and adhesion of foreign matter during peeling.
  • Comparative Example 1 does not contain a long-chain alkyl-containing compound having at least one reactive group, which is the binder resin (B). A film with many defects was obtained because the coatability deteriorated when the adhesive layer was processed. Since Comparative Example 2 does not contain a long-chain alkyl-containing compound having at least one reactive group, which is the binder resin (B), the coating properties deteriorated when the adhesive layer was processed onto the antistatic layer. A film with many defects was obtained. Comparative Example 3 does not contain a long-chain alkyl-containing compound having at least one reactive group, which is the binder resin (B). A film with many defects was obtained because the coatability deteriorated during processing.
  • the present invention relates to an antistatic film and an adhesive film obtained by laminating an adhesive layer on an antistatic film, and more particularly to a protective film for optical members (for example, constituent members of organic EL and liquid crystal displays).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide an antistatic film and a protective film in which an antistatic layer laminated on an opposite surface from an adhesive layer of the protective film exhibits good separation properties with respect to a laminating roll. [Solution] The present invention provides a laminated polyester film having an antistatic layer on at least one side of a substrate, wherein: the antistatic layer is a layer formed by curing a composition containing a conductive polymer, a cross-linking agent (A), and a binder resin (B); the binder resin (B) is a long-chain alkyl-containing compound having at least one reactive group; and the antistatic layer satisfies (1)-(3) below: (1) the surface resistivity is 3-9 [log Ω/□]; (2) the static contact angle of water is 70-95°; and (3) the adhesion energy of water is 3.5 mJ/m2 or less.

Description

帯電防止フィルムおよび保護フィルムAntistatic film and protective film
 本発明は、積層ポリエステルフィルムおよび積層ポリエステルフィルムに粘着層を積層した保護フィルムに関するものであり、特に光学部材(例えば、有機ELや液晶ディスプレイの構成部材)などの保護フィルムに関するものである。 The present invention relates to a laminated polyester film and a protective film obtained by laminating an adhesive layer on a laminated polyester film, and particularly to a protective film for optical members (for example, constituent members of organic EL and liquid crystal displays).
 基材フィルムに粘着層を積層したフィルムは光学部材などの製造工程で各部材の保護フィルムとして使用されている。保護フィルムは、粘着層と介して被着体である各部材と貼り合わされ各部材の加工や搬送時にキズや汚れの付着を抑制する働きをしている。これら保護フィルムに用いられる基材フィルムには、少なくとも片面に帯電防止層を積層した帯電防止フィルムが用いられる。帯電防止層を積層する目的は、保護フィルムにゴミや埃などの異物の付着を防止することや保護フィルムを被着体から剥離するときに発生する静電気を抑制することにある。(特許文献1参照) A film in which an adhesive layer is laminated on a base film is used as a protective film for each component in the manufacturing process of optical components. The protective film is attached to each member, which is an adherend, via an adhesive layer, and functions to suppress scratches and adhesion of dirt during processing and transportation of each member. An antistatic film having an antistatic layer laminated on at least one side thereof is used as the base film used for these protective films. The purpose of laminating the antistatic layer is to prevent foreign matter such as dirt and dust from adhering to the protective film and to suppress static electricity generated when the protective film is peeled off from the adherend. (See Patent Document 1)
 帯電防止フィルムとしては、帯電防止剤としてPEDOT:PSSを含む帯電防止フィルムが提案されている。(特許文献2参照) As an antistatic film, an antistatic film containing PEDOT:PSS as an antistatic agent has been proposed. (See Patent Document 2)
国際公開2018/012545WO2018/012545 特開2018-172473号公報JP 2018-172473 A
 帯電防止層を有する保護フィルムは、光学部材などの保護フィルムとして使用されるが、特にディスプレイの構成部材の加工工程で使用されている。近年は、有機ELディスプレイ(特にOLEDディスプレイ)の部材の加工工程でも使われることが多くなってきている。保護フィルムを光学部材に貼り合わせる工程では、保護フィルムの粘着層面を光学部材に接するように配置し、保護フィルムの粘着層積層面と反対側の面から貼合ロールなどを用いて圧着することで保護フィルムを貼り合わせている。 A protective film with an antistatic layer is used as a protective film for optical members and the like, and is particularly used in the process of processing constituent members of displays. In recent years, it has been increasingly used in the process of processing members for organic EL displays (especially OLED displays). In the process of laminating the protective film to the optical member, the adhesive layer surface of the protective film is placed in contact with the optical member, and the surface opposite to the adhesive layer laminated surface of the protective film is crimped using a laminating roll or the like. A protective film is attached.
 このように保護フィルムの貼合せ時に貼合ロールを用いる場合、保護フィルムの粘着層積層面の反対面と貼合ロールとの相互作用が強くなることで貼合ロールの保護フィルムからの身離れ性が低下し、保護フィルムの貼り合わせが均一にできない場合があった。特に近年、脆く、キズ付きやすい精密部材に対しても部材の変形を抑え剥離できるよう粘着剤の粘着性を低くする場合があり、このような用途では、貼合ロールと保護フィルムの身離れ性は特に課題となっていた。 When the lamination roll is used when laminating the protective film in this way, the interaction between the surface opposite to the adhesive layer lamination surface of the protective film and the lamination roll becomes stronger, and the separation from the protective film of the lamination roll increases. was lowered, and the protective film could not be laminated uniformly. Especially in recent years, there are cases where the adhesiveness of the adhesive is lowered to suppress the deformation of the precision parts that are fragile and easily scratched, so that the parts can be peeled off. was a particular problem.
 本発明では上記、保護フィルムの課題に対し、保護フィルムの粘着層とは反対面に積層する帯電防止層と貼合ロールとの身離れ性がよい帯電防止フィルムおよび保護フィルムを提供する。 The present invention provides an antistatic film and a protective film in which the antistatic layer laminated on the opposite side of the adhesive layer of the protective film and the lamination roll are easily separated from each other, in order to solve the above problems of the protective film.
 即ち、本発明は、以下の構成よりなる。
[1] 基材の少なくとも片面に帯電防止層を有する積層ポリエステルフィルムであって、
 前記帯電防止層は、導電性高分子、架橋剤(A)、バインダー樹脂(B)を含む組成物を硬化した層であり、
前記バインダー樹脂(B)は、少なくとも1つの反応性基を有する、長鎖アルキル含有化合物であり、
 前記帯電防止層は、以下の(1)-(3)を満たす積層ポリエステルフィルム:
(1)表面抵抗率:3[logΩ/□]以上9[logΩ/□]以下
(2)水の接触角:70°以上95°以下
(3)水の付着エネルギー:3.5mJ/m以下
[2]一態様において、積層ポリエステルフィルムの全光線透過率が80%以上であり、ヘイズが3.0%以下である。
[3]一態様において、積層ポリエステルフィルムを140℃で10分加熱後のヘイズが、加熱前のヘイズの1.5倍以下である。
[4]一態様において、帯電防止層は、アルコールによる拭取り試験後の表面抵抗率変化が、前記試験前の表面抵抗率の1.3倍以下である。
[5] 一態様において、導電性高分子が、前記帯電防止層における全固形分100質量%に対し、5質量%以上50質量%以下で含まれる。
[6]一態様において、架橋剤(A)と、バインダー樹脂(B)が帯電防止層における全固形分100質量%に対し以下の範囲で含まれる、請求項1~5のいずれかに記載の積層ポリエステルフィルム。
(A)15質量%以上75質量%以下
(B)10質量%以上70質量%以下
[7]一態様において、バインダー樹脂(B)は、水酸基価が20mgKOH/g以上300mgKOH/g以下である。
[8]一態様において、バインダー樹脂(B)は、カルボキシル基を含む。
[9]一態様において、架橋剤がアクリルアミド、メラミン樹脂、カルボジイミド、オキサゾリン、イソシアネート及びアジリジンから選択される少なくとも1種を含む。
[10]一態様において、積層ポリエステルフィルムは、実質的にシリコーン化合物を含まない。
[11]一態様において、上記積層ポリエステルフィルムの少なくとも片面に粘着層を積層した保護フィルムが提供される。
ここで、全固形分100質量%とは、導電性高分子、架橋剤(A)及びバインダー樹脂(B)の合計質量%とする。
That is, the present invention consists of the following configurations.
[1] A laminated polyester film having an antistatic layer on at least one side of a substrate,
The antistatic layer is a layer obtained by curing a composition containing a conductive polymer, a cross-linking agent (A), and a binder resin (B),
The binder resin (B) is a long-chain alkyl-containing compound having at least one reactive group,
The antistatic layer is a laminated polyester film that satisfies the following (1)-(3):
(1) Surface resistivity: 3 [logΩ/□] or more and 9 [logΩ/□] or less (2) Water contact angle: 70° or more and 95° or less (3) Water adhesion energy: 3.5 mJ/m 2 or less
[2] In one aspect, the laminated polyester film has a total light transmittance of 80% or more and a haze of 3.0% or less.
[3] In one aspect, the haze of the laminated polyester film after heating at 140° C. for 10 minutes is 1.5 times or less the haze before heating.
[4] In one aspect, the antistatic layer has a change in surface resistivity after a wiping test with alcohol that is 1.3 times or less the surface resistivity before the test.
[5] In one aspect, the conductive polymer is contained in an amount of 5% by mass or more and 50% by mass or less with respect to 100% by mass of the total solid content in the antistatic layer.
[6] In one aspect, the cross-linking agent (A) and the binder resin (B) are contained in the following range with respect to 100% by mass of the total solid content in the antistatic layer, according to any one of claims 1 to 5. Laminated polyester film.
(A) 15% by mass or more and 75% by mass or less (B) 10% by mass or more and 70% by mass or less
[7] In one aspect, the binder resin (B) has a hydroxyl value of 20 mgKOH/g or more and 300 mgKOH/g or less.
[8] In one aspect, the binder resin (B) contains a carboxyl group.
[9] In one aspect, the cross-linking agent contains at least one selected from acrylamide, melamine resin, carbodiimide, oxazoline, isocyanate and aziridine.
[10] In one aspect, the laminated polyester film does not substantially contain a silicone compound.
[11] In one aspect, there is provided a protective film in which an adhesive layer is laminated on at least one surface of the laminated polyester film.
Here, the total solid content of 100 mass % is the total mass % of the conductive polymer, the cross-linking agent (A) and the binder resin (B).
 本発明によれば、ポリエステルフィルムの少なくとも片面に付着エネルギーの低い帯電防止層を積層した帯電防止フィルムを提供することで、本発明の積層ポリエステルフィルムに粘着層を積層し保護フィルムとして用いた場合にも、保護フィルムの貼合せ時の貼合ロールとの身離れ性が良く、剥離時に剥離帯電や異物付着を抑制した保護フィルムを提供することができる。 According to the present invention, by providing an antistatic film in which an antistatic layer with low adhesion energy is laminated on at least one side of a polyester film, when an adhesive layer is laminated on the laminated polyester film of the present invention and used as a protective film Also, it is possible to provide a protective film that is easy to separate from the laminating roll when laminating the protective film, and that suppresses separation electrification and adhesion of foreign matter during peeling.
 本発明の積層ポリエステルフィルム(単に、帯電防止フィルムと称する場合もある)は、ポリエステルフィルムの少なくとも片面に帯電防止層が積層されたものである。また、帯電防止フィルムの片面に粘着層を積層することもでき保護フィルムとして使用することができる。
 例えば、本発明の積層ポリエステルフィルムは、保護フィルムの貼合せ時に貼合ロールを用いる場合、保護フィルムの粘着層積層面の反対面と貼合ロールとの相互作用が強くなることを抑制でき、貼合ロールの保護フィルムからの身離れ性が低下することを回避できる。更に、保護フィルムの貼り合わせを均一に行うことを可能にした。
 特に近年、脆く、キズ付きやすい精密部材に対しても部材の変形を抑え剥離できるよう粘着剤の粘着性を低くする場合があり、このような用途であっても、本発明であれば、貼合ロールと保護フィルムの身離れ性を良好に保持できる。
The laminated polyester film of the present invention (sometimes simply referred to as an antistatic film) is a polyester film having an antistatic layer laminated on at least one side thereof. Also, an adhesive layer can be laminated on one side of the antistatic film and used as a protective film.
For example, the laminated polyester film of the present invention can suppress the interaction between the surface opposite to the adhesive layer laminated surface of the protective film and the bonding roll from becoming strong when using a bonding roll when bonding the protective film. It is possible to avoid a decrease in the ability of the joint roll to separate from the protective film. Furthermore, it is possible to uniformly bond the protective film.
Especially in recent years, there are cases where the adhesiveness of the adhesive is lowered so that the deformation of the precision member that is fragile and easily scratched can be suppressed so that the member can be peeled off. It is possible to maintain good separation between the mating roll and the protective film.
 以下、本発明について詳細に説明する。 The present invention will be described in detail below.
(ポリエステルフィルム)
 本発明で基材として用いるポリエステルフィルムは、主としてポリエステル樹脂より構成されるフィルムである。ここで、「主としてポリエステル樹脂より構成されるフィルム」とは、ポリエステル樹脂を50質量%以上含有する樹脂組成物から形成されるフィルムであり、他のポリマーとブレンドする場合は、ポリエステル樹脂が50質量%以上含有していることを意味し、他のモノマーが共重合されている場合は、ポリエステルの繰り返し構造単位を50モル%以上含有することを意味する。好ましくは、ポリエステルフィルムは、フィルムを構成する樹脂組成物中において、ポリエステル樹脂を90質量%以上、より好ましくは95質量%以上、更に好ましくは100質量%含有する。
(polyester film)
The polyester film used as a substrate in the present invention is a film mainly composed of a polyester resin. Here, "a film mainly composed of a polyester resin" is a film formed from a resin composition containing 50% by mass or more of a polyester resin, and when blended with another polymer, the polyester resin is 50% by mass. % or more, and when other monomers are copolymerized, it means that 50 mol % or more of repeating structural units of polyester are contained. Preferably, the polyester film contains 90% by mass or more, more preferably 95% by mass or more, and still more preferably 100% by mass of the polyester resin in the resin composition constituting the film.
 ポリエステル樹脂としては、材料は特に限定されないが、ジカルボン酸成分とジオール成分とが重縮合して形成される共重合体、又は、そのブレンド樹脂を用いることができる。ジカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸、オルトフタル酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、ジフェニルカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルスルホンカルボン酸、アントラセンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、マロン酸、ジメチルマロン酸、コハク酸、3,3-ジエチルコハク酸、グルタル酸、2,2-ジメチルグルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、アゼライン酸、ダイマー酸、セバシン酸、スベリン酸、ドデカジカルボン酸等が挙げられる。 As the polyester resin, the material is not particularly limited, but a copolymer formed by polycondensation of a dicarboxylic acid component and a diol component, or a blend resin thereof can be used. Examples of dicarboxylic acid components include terephthalic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, diphenyl Carboxylic acid, diphenoxyethanedicarboxylic acid, diphenylsulfonecarboxylic acid, anthracenedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, hexahydro isophthalic acid, malonic acid, dimethylmalonic acid, succinic acid, 3,3-diethylsuccinic acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, azelaic acid , dimer acid, sebacic acid, suberic acid, dodecadicarboxylic acid and the like.
 ポリエステル樹脂を構成するジオール成分としては、例えば、エチレングリコール、プロピレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,2-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、デカメチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサジオール、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン等が挙げられる。 Examples of the diol component constituting the polyester resin include ethylene glycol, propylene glycol, hexamethylene glycol, neopentyl glycol, 1,2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, decamethylene glycol, 1,3- propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexadiol, 2,2-bis(4-hydroxyphenyl)propane, bis(4-hydroxyphenyl)sulfone and the like.
 ポリエステル樹脂を構成するジカルボン酸成分とジオール成分はそれぞれ1種又は2種以上を用いても良い。また、トリメリット酸などのその他の酸成分やトリメチロールプロパンなどのその他の水酸基成分を適宜添加しても良い。  The dicarboxylic acid component and the diol component that constitute the polyester resin may be used alone or in combination of two or more. Further, other acid components such as trimellitic acid and other hydroxyl group components such as trimethylolpropane may be appropriately added.
 ポリエステル樹脂としては、具体的には、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどが挙げられ、これらの中でも物性とコストのバランスからポリエチレンテレフタレートが好ましい。 Specific examples of polyester resins include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate. Among these, polyethylene terephthalate is preferred from the viewpoint of the balance between physical properties and cost.
 ポリエステルフィルムの滑り性、巻き性などのハンドリング性を改善するために、フィルム中に不活性粒子を含有させてもよいが、光学用途などに用いる場合、ポリエステルフィルム中には、実質的に粒子を含まないことが好ましい。ポリエステルフィルムに粒子を含まない場合は、インラインコートで設けるコート層中に粒子を含有することが好ましい。ポリエステルフィルムに粒子を含まず、コート層に粒子を含むことで透明性が向上し外観検査などを行いやすくなるため好ましい。 In order to improve handling properties such as slipperiness and winding properties of the polyester film, the film may contain inert particles. preferably not included. When the polyester film does not contain particles, it is preferable to contain particles in the coating layer provided by in-line coating. It is preferable that the polyester film does not contain particles and the coating layer contains particles, because the transparency is improved and the appearance inspection and the like are facilitated.
 本発明に用いるポリエステルフィルムのヘイズは、3%以下であることが好ましい。より好ましくは2.5%以下であり、2.0%以下であってもよい。1.5%以下でもよく、さらに好ましくは1.0%以下であってよく、0.8%以下であってもよい。
3%以下であれば、保護フィルムを被着体と貼り合わせた状態で外観検査などが可能なため好ましく、光学用途の部材が被着体の場合に特に好ましい。
The polyester film used in the present invention preferably has a haze of 3% or less. It is more preferably 2.5% or less, and may be 2.0% or less. It may be 1.5% or less, more preferably 1.0% or less, or 0.8% or less.
If it is 3% or less, it is preferable because the appearance inspection can be performed in a state where the protective film is adhered to the adherend, and it is particularly preferable when the adherend is a member for optical use.
 本発明に用いるポリエステルフィルムの表面の領域表面平均粗さ(Sa)は、1~40nmの範囲にあることが好ましく、より好ましくは1~30nmである。さらに好ましくは1~10nmである。本発明に用いるポリエステルフィルムの表面の最大突起高さ(P)は、2μm以下であることが好ましく、より好ましくは1.5μm以下である。さらに好ましくは0.8μm以下である。Saが40nm以下であり、Pが2μm以下であれば、粘着層を積層しロール状に巻き取った際に粘着性の表面を荒らす恐れがなく好ましい。 The area average surface roughness (Sa) of the surface of the polyester film used in the present invention is preferably in the range of 1 to 40 nm, more preferably 1 to 30 nm. More preferably, it is 1 to 10 nm. The maximum protrusion height (P) on the surface of the polyester film used in the present invention is preferably 2 μm or less, more preferably 1.5 μm or less. More preferably, it is 0.8 μm or less. If Sa is 40 nm or less and P is 2 μm or less, it is preferable because there is no risk of roughening the adhesive surface when the adhesive layer is laminated and wound into a roll.
 本発明においてポリエステルフィルムの厚みは特に限定されないが、12~188μmの範囲であることが好ましい。18~125μmがより好ましく、25~100μmがさらに好ましい。12μm以上であると保護フィルムとして被着体と貼り合わせる際にシワが入るおそれが少なく、188μm以下であるとコスト的に有利である。 Although the thickness of the polyester film is not particularly limited in the present invention, it is preferably in the range of 12 to 188 μm. 18 to 125 μm is more preferable, and 25 to 100 μm is even more preferable. When the thickness is 12 μm or more, wrinkles are less likely to occur when the protective film is attached to an adherend, and when the thickness is 188 μm or less, it is advantageous in terms of cost.
 基材となるポリエステルフィルムは、単層であっても、2種以上の層が積層されたものであってもよい。また、本発明の効果を奏する範囲内であれば、必要に応じて、フィルム中に各種添加剤を含有させることができる。添加剤としては、例えば、酸化防止剤、耐光剤、ゲル化防止剤、有機湿潤剤、帯電防止剤、紫外線吸収剤、界面活性剤などが挙げられる。フィルムが積層構成を有する場合は、必要に応じて各層の機能に応じて添加剤を含有させることも好ましい。 The polyester film that serves as the base material may be a single layer or a laminate of two or more layers. In addition, if necessary, various additives can be incorporated into the film as long as the effects of the present invention are achieved. Examples of additives include antioxidants, light stabilizers, anti-gelling agents, organic wetting agents, antistatic agents, ultraviolet absorbers, and surfactants. When the film has a laminated structure, it is also preferable to contain additives depending on the function of each layer, if necessary.
 ポリエステルフィルムは、例えば上記のポリエステル樹脂をフィルム状に溶融押出、キャスティングドラムで冷却固化させてフィルムを形成させる方法等によって得られる。本発明のポリエステルフィルムとしては、無延伸フィルム、延伸フィルムのいずれも用いることができるが、機械強度や耐薬品性といった耐久性の点からは延伸フィルムであることが好ましい。ポリエステルフィルムが延伸フィルムである場合、その延伸方法は特に限定されず、縦一軸延伸法、横一軸延伸法、縦横逐次二軸延伸法、縦横同時二軸延伸法等を採用することができる。 A polyester film can be obtained, for example, by melt-extruding the above-mentioned polyester resin into a film, and cooling and solidifying it with a casting drum to form a film. As the polyester film of the present invention, both a non-stretched film and a stretched film can be used, but a stretched film is preferable from the viewpoint of durability such as mechanical strength and chemical resistance. When the polyester film is a stretched film, the stretching method is not particularly limited, and a vertical uniaxial stretching method, a horizontal uniaxial stretching method, a vertical and horizontal successive biaxial stretching method, a vertical and horizontal simultaneous biaxial stretching method, etc. can be employed.
 ポリエステルフィルムの表層には、密着向上層との密着性を向上させるため、アンカーコート層、コロナ処理、プラズマ処理、火炎処理などの表面処理を行うこともできる。アンカーコート層を設ける場合は、コストなどの観点からインラインコーティングで行うことが好ましい。 The surface layer of the polyester film can be subjected to surface treatments such as an anchor coat layer, corona treatment, plasma treatment, and flame treatment in order to improve adhesion with the adhesion improving layer. When providing an anchor coat layer, in-line coating is preferable from the viewpoint of cost.
(帯電防止層)
 本発明の積層ポリエステルフィルム(帯電防止フィルム)は、ポリエステルフィルムの少なくとも片面に帯電防止層を積層することが必要である。帯電防止層は片面だけでもよいし両面に積層してもよい。帯電防止層を積層することで、粘着層を積層し保護フィルムとして用いた場合にも被着体との剥離帯電を抑えたり、異物の付着を抑えることができるため好ましい。
(Antistatic layer)
In the laminated polyester film (antistatic film) of the present invention, it is necessary to laminate an antistatic layer on at least one side of the polyester film. The antistatic layer may be on one side only or may be laminated on both sides. By laminating an antistatic layer, even when an adhesive layer is laminated and used as a protective film, it is possible to suppress separation electrification from the adherend and adhesion of foreign matter can be suppressed, which is preferable.
 帯電防止層は、導電性高分子、架橋剤(A)、バインダー樹脂(B)を含む組成物を硬化した層である。このような組成物を、帯電防止層形成用組成物と称する場合がある。 The antistatic layer is a layer obtained by curing a composition containing a conductive polymer, a cross-linking agent (A), and a binder resin (B). Such a composition may be referred to as an antistatic layer-forming composition.
 帯電防止層を積層する手段については特に限定されず、塗布法、真空蒸着法、貼り合せなど、既知の方法を使用することができるが、帯電防止剤を含む塗液を塗布により設けることがコストの観点より好ましい。 The means for laminating the antistatic layer is not particularly limited, and known methods such as a coating method, a vacuum deposition method, and lamination can be used. is preferable from the viewpoint of
(導電性高分子)
 本発明における導電性高分子は、帯電防止性を付与できる高分子であり、カチオン性化合物などのイオン伝導を利用した高分子、π電子共役系導電性高分子などを用いることができる。低湿度下での帯電防止性の点からπ電子共役系導電性高分子を用いることが好ましい。また、π電子共役系導電性高分子は、空気中の水分に依存することなく帯電防止性能を高水準で維持することができるため、保護フィルムの様々な使用環境で良好な帯電防止性能を有するため好ましい。
 また、本発明に係る導電性高分子の奏する効果を損なわない範囲で、帯電防止剤を併用できる。帯電防止剤としては、本発明における導電性高分子以外の、カチオン性化合物などのイオン伝導を利用した高分子、π電子共役系導電性高分子であってもよく、界面活性剤、酸化ケイ素化合物、導電性の金属化合物などを用いることができる。
(Conductive polymer)
The conductive polymer in the present invention is a polymer capable of imparting antistatic properties, and may be a polymer utilizing ion conduction such as a cationic compound, a π-electron conjugated conductive polymer, or the like. It is preferable to use a π-electron conjugated conductive polymer from the viewpoint of antistatic properties under low humidity. In addition, since the π-electron conjugated conductive polymer can maintain a high level of antistatic performance without depending on the moisture in the air, it has good antistatic performance in various usage environments of the protective film. Therefore, it is preferable.
Moreover, an antistatic agent can be used in combination within a range that does not impair the effects of the conductive polymer according to the present invention. The antistatic agent may be, other than the conductive polymer in the present invention, a polymer utilizing ion conduction such as a cationic compound, a π-electron conjugated conductive polymer, a surfactant, a silicon oxide compound. , a conductive metal compound, or the like can be used.
 π電子共役系導電性高分子としては、アニリンあるいはその誘導体を構成単位として含むアニリン系高分子、ピロールあるいはその誘導体を構成単位として含むピロール系高分子、アセチレンあるいはその誘導体を構成単位として含むアセチレン系高分子、チオフェンあるいはその誘導体を構成単位として含むチオフェン系高分子等が挙げられる。高い透明性を得ようとするならば、π電子共役系導電性高分子としては窒素原子を有さないものが好ましく、中でもチオフェンあるいはその誘導体を構成単位として含むチオフェン系高分子は透明性の点から好適であり、特にポリアルキレンジオキシチオフェンが好適である。ポリアルキレンジオキシチオフェンとしては、ポリエチレンジオキシチオフェン、ポリプロピレンジオキシチオフェン、ポリ(エチレン/プロピレン)ジオキシチオフェンなどが挙げられる。 Examples of π-electron conjugated conductive polymers include aniline polymers containing aniline or its derivatives as structural units, pyrrole polymers containing pyrrole or its derivatives as structural units, and acetylene polymers containing acetylene or its derivatives as structural units. Polymers, thiophene-based polymers containing thiophene or a derivative thereof as a structural unit, and the like can be mentioned. In order to obtain high transparency, the π-electron conjugated conductive polymer preferably does not have a nitrogen atom. Among them, a thiophene-based polymer containing thiophene or its derivative as a structural unit is excellent in terms of transparency. are preferred, and polyalkylenedioxythiophenes are particularly preferred. Polyalkylenedioxythiophenes include polyethylenedioxythiophene, polypropylenedioxythiophene, poly(ethylene/propylene)dioxythiophene, and the like.
 なお、チオフェンあるいはその誘導体を構成単位として含むチオフェン系高分子には、帯電防止性を更に良好なものとするためドーピング剤を、例えばチオフェンあるいはその誘導体を構成単位として含む高分子100質量部に対し0.1質量部以上500質量部以下配合することができる。多い場合には、電子移動が困難となるため帯電防止性能の低下の問題があり、逆に少ない場合には、溶媒に対する分散性低下の問題がある。このドーピング剤としては、LiCl、R1‐30COOLi(R1‐30:炭素数1以上30以下の飽和炭化水素基)、R1‐30SOLi、R1‐30COONa、R1‐30SONa、R1‐30COOK、R1‐30SOK、テトラエチルアンモニウム、I、BFNa、BFNa、HClO、CFSOH、FeCl、テトラシアノキノリン(TCNQ)、Na10Cl10、フタロシアニン、ポルフィリン、グルタミン酸、アルキルスルホン酸塩、ポリスチレンスルホン酸Na(K、Li)塩、スチレン・スチレンスルホン酸Na(K、Li)塩共重合体、ポリスチレンスルホン酸アニオン、スチレンスルホン酸・スチレンスルホン酸アニオン共重合体等を挙げることができる。 In order to further improve the antistatic properties of the thiophene-based polymer containing thiophene or a derivative thereof as a structural unit, a doping agent is added, for example, to 100 parts by mass of the polymer containing thiophene or a derivative thereof as a structural unit. 0.1 parts by mass or more and 500 parts by mass or less can be blended. If the amount is too large, the electron transfer becomes difficult, resulting in a problem of deterioration in antistatic performance. Examples of the doping agent include LiCl, R 1-30 COOLi (R 1-30 : a saturated hydrocarbon group having 1 to 30 carbon atoms), R 1-30 SO 3 Li, R 1-30 COONa, R 1-30 SO3Na , R1-30COOK , R1-30SO3K , Tetraethylammonium, I2 , BF3Na , BF4Na , HClO4, CF3SO3H , FeCl3 , Tetracyanoquinoline (TCNQ) , Na 2 B 10 Cl 10 , phthalocyanine, porphyrin, glutamic acid, alkyl sulfonate, polystyrene sulfonate Na (K, Li) salt, styrene/styrene sulfonate Na (K, Li) salt copolymer, polystyrene sulfonate anion , styrenesulfonic acid/styrenesulfonic acid anion copolymer, and the like.
 本発明において帯電防止層中に含まれる導電性高分子は、帯電防止層における全固形分100質量%に対し、5質量%以上含まれることが好ましく、より好ましくは10質量%以上である。なお、帯電防止剤としてπ電子共役系導電性高分子を用いる場合において、前記ドーピング剤を用いる場合は、本願に規定するπ電子共役系導電性高分子の帯電防止層中の含有量には、導電性高分子と前記ドーピング剤の合計量のことである。
このような量で帯電防止剤を含むことで、良好な帯電防止性を付与できる。
In the present invention, the conductive polymer contained in the antistatic layer is preferably contained in an amount of 5% by mass or more, more preferably 10% by mass or more, based on 100% by mass of the total solid content in the antistatic layer. In the case of using a π-electron conjugated conductive polymer as an antistatic agent, when using the doping agent, the content of the π-electron conjugated conductive polymer in the antistatic layer specified in the present application is It is the total amount of the conductive polymer and the doping agent.
By including the antistatic agent in such an amount, good antistatic properties can be imparted.
 本発明において帯電防止層中に含まれる導電性高分子は、帯電防止層における全固形分100質量%に対し、50質量%以下であることが好ましく、より好ましくは30質量%以下である。なお、帯電防止剤としてπ電子共役系導電性高分子を用いる場合において、前記ドーピング剤を用いる場合は、本願に規定するπ電子共役系導電性高分子の帯電防止層中の含有量には、導電性高分子と前記ドーピング剤の合計量のことである。
このような量で帯電防止剤を含むことで、バインダー樹脂(B)などと相互作用を引き起こさず、塗液が凝集しにくく、帯電防止層の欠点が少なく高い透明性を保持できる。
In the present invention, the conductive polymer contained in the antistatic layer is preferably 50% by mass or less, more preferably 30% by mass or less, based on 100% by mass of the total solid content in the antistatic layer. In the case of using a π-electron conjugated conductive polymer as an antistatic agent, when using the doping agent, the content of the π-electron conjugated conductive polymer in the antistatic layer specified in the present application is It is the total amount of the conductive polymer and the doping agent.
By containing the antistatic agent in such an amount, it does not interact with the binder resin (B) and the like, the coating liquid is less likely to aggregate, and the antistatic layer has few defects and can maintain high transparency.
[バインダー樹脂(B)]
 本発明の帯電防止層には、バインダー樹脂(B)を含む。バインダー樹脂としては特に限定されないが、具体例としては、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリオレフィン系樹脂、ポリビニル系樹脂(ポリビニルアルコール等)、ポリアルキレングリコール、ポリアルキレンイミン、メチルセルロース、ヒドロキシセルロース、でんぷん類等が挙げられる。これらの中でもポリエステルフィルムとの密着性の観点から、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂を使用することが好ましい。分子設計や分子量設計の容易差からアクリル樹脂を用いることがさらに好ましい。
[Binder resin (B)]
The antistatic layer of the present invention contains a binder resin (B). The binder resin is not particularly limited, but specific examples include polyester resin, acrylic resin, urethane resin, polyolefin resin, polyvinyl resin (polyvinyl alcohol, etc.), polyalkylene glycol, polyalkyleneimine, methylcellulose, hydroxycellulose, starch. and the like. Among these resins, polyester resins, acrylic resins, and urethane resins are preferably used from the viewpoint of adhesion to the polyester film. It is more preferable to use an acrylic resin because of the ease of molecular design and molecular weight design.
バインダー樹脂(B)には、帯電防止層表面と貼合ロールとの身離れ性を良くするため、帯電防止層表面の付着エネルギーを低くする成分を有することが好ましい。本成分としてシリコーン成分や長鎖アルキル成分、フッ素成分などを有することが好ましい。被着体への移行などを考慮すると、長鎖アルキル成分がより好ましく、バインダー樹脂(B)は、長鎖アルキル含有化合物である。好ましくは、後述するように、バインダー樹脂(B)は、少なくとも1つの反応性基を有する、長鎖アルキル含有化合物である。 The binder resin (B) preferably contains a component that lowers the adhesion energy of the antistatic layer surface in order to improve the separation property between the antistatic layer surface and the lamination roll. It is preferable to have a silicone component, a long-chain alkyl component, a fluorine component, etc. as this component. A long-chain alkyl component is more preferable in consideration of transfer to an adherend, and the binder resin (B) is a long-chain alkyl-containing compound. Preferably, binder resin (B) is a long-chain alkyl-containing compound having at least one reactive group, as described below.
長鎖アルキル含有化合物を含むことで、例えば、本発明の積層ポリエステルフィルムは、保護フィルムの貼合せ時に貼合ロールを用いる場合、保護フィルムの粘着層積層面の反対面と貼合ロールとの相互作用が強くなることを抑制でき、貼合ロールの保護フィルムからの身離れ性が低下することを回避できる。更に、保護フィルムの貼り合わせを均一に行うことを可能にした。
 特に近年、脆く、キズ付きやすい精密部材に対しても部材の変形を抑え剥離できるよう粘着剤の粘着性を低くする場合があり、このような用途であっても、本発明であれば、貼合ロールと保護フィルムの身離れ性を良好に保持できる。
By including a long-chain alkyl-containing compound, for example, when the laminated polyester film of the present invention uses a laminating roll when laminating the protective film, the surface opposite to the adhesive layer laminated surface of the protective film and the laminating roll It is possible to suppress the action from becoming strong, and to avoid the deterioration of the separation property of the bonding roll from the protective film. Furthermore, it is possible to uniformly bond the protective film.
Especially in recent years, there are cases where the adhesiveness of the adhesive is lowered so that the deformation of the precision member that is fragile and easily scratched can be suppressed so that the member can be peeled off. It is possible to maintain good separation between the mating roll and the protective film.
バインダー樹脂(B)は、少なくとも1つの反応性基を有することが好ましい。特に限定されないが、バインダー樹脂(B)は、水酸基、カルボキシル基、アミノ基、アクリレート基、エポキシ基などが好ましく、水酸基、カルボキシル基を有することがより好ましい。 The binder resin (B) preferably has at least one reactive group. Although not particularly limited, the binder resin (B) preferably has a hydroxyl group, a carboxyl group, an amino group, an acrylate group, an epoxy group, or the like, and more preferably has a hydroxyl group or a carboxyl group.
本発明のバインダー樹脂(B)としては、アクリル樹脂が好ましい。特に、長鎖アルキルを含み、さらに少なくとも1つの反応性の官能基を有しているアクリル樹脂が好ましい。 As the binder resin (B) of the present invention, an acrylic resin is preferred. In particular, acrylic resins containing long-chain alkyls and having at least one reactive functional group are preferred.
アクリル樹脂としては、分子中に水酸基、及びカルボキシル基を有するアクリル樹脂であることが好ましい。水酸基を有する構成ユニットは、全構成ユニット100モル%中、15~90モル%含まれていることが更に好ましい。水酸基を有する構成ユニットが20モル%以上であると、アクリル樹脂の水溶性を適度に保つことができ好ましい。一方、90モル%以下であると、低付着エネルギー成分の割合を適度に保つことができるため好ましい。 The acrylic resin is preferably an acrylic resin having a hydroxyl group and a carboxyl group in the molecule. It is more preferable that the structural unit having a hydroxyl group is contained in an amount of 15 to 90 mol % in 100 mol % of all structural units. It is preferable that the structural unit having a hydroxyl group is 20 mol % or more because the water solubility of the acrylic resin can be appropriately maintained. On the other hand, when it is 90 mol % or less, it is preferable because the ratio of the low adhesion energy component can be appropriately maintained.
 水酸基をアクリル樹脂に導入するには、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシ基を有するモノマーや、2-ヒドロキシエチル(メタ)アクリレートへのγ-ブチロラクトンやε-カプロラクトンの開環付加物等を共重合成分として用いるとよい。中でも、水溶性を阻害しない点で、2-ヒドロキシエチル(メタ)アクリレートが好ましい。なお、これらは2種以上併用してもよい。 In order to introduce a hydroxyl group into an acrylic resin, a monomer having a hydroxyl group such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, or 2-hydroxyethyl ( A ring-opening adduct of γ-butyrolactone or ε-caprolactone to meth)acrylate may be used as a copolymerization component. Among them, 2-hydroxyethyl (meth)acrylate is preferable because it does not inhibit water solubility. In addition, you may use together 2 or more types of these.
 バインダー樹脂(B)の水酸基価、例えば、アクリル樹脂の水酸基価は20mgKOH/g以上であることが好ましく、より好ましくは40mgKOH/g以上、更に好ましくは70mgKOH/g以上であり、例えば、120mgKOH/g以上である。バインダー樹脂(B)の水酸基価、例えば、アクリル樹脂の水酸基価が20mgKOH/g以上であれば、アクリル樹脂の水溶性が良好となり好ましい。なお、この水酸基価について、アクリル樹脂を例示しているが、上述した本発明のバインダー樹脂(B)に使用できる樹脂についても、上記範囲内の水酸基価を有することで、本明細書に記載の効果を奏することができる。 The hydroxyl value of the binder resin (B), for example, the hydroxyl value of the acrylic resin is preferably 20 mgKOH/g or more, more preferably 40 mgKOH/g or more, still more preferably 70 mgKOH/g or more, for example 120 mgKOH/g. That's it. If the hydroxyl value of the binder resin (B), for example, the hydroxyl value of the acrylic resin is 20 mgKOH/g or more, the water solubility of the acrylic resin will be good, which is preferable. Regarding this hydroxyl value, an acrylic resin is exemplified, but the resin that can be used for the binder resin (B) of the present invention described above also has a hydroxyl value within the above range, so that the It can be effective.
 バインダー樹脂(B)の水酸基価、例えば、アクリル樹脂の水酸基価は300mgKOH/g以下であることが好ましく、より好ましくは250mgKOH/g以下、更に好ましくは200mgKOH/g以下である。バインダー樹脂(B)の水酸基価、例えば、アクリル樹脂の水酸基価が300mgKOH/g以下であれば、アクリル樹脂の水酸基とポリチオフェンなどの帯電防止成分が極端に相互作用を引き起こさず塗液が凝集しにくく好ましい。 The hydroxyl value of the binder resin (B), for example, the hydroxyl value of the acrylic resin is preferably 300 mgKOH/g or less, more preferably 250 mgKOH/g or less, still more preferably 200 mgKOH/g or less. If the hydroxyl value of the binder resin (B), for example, the hydroxyl value of the acrylic resin is 300 mgKOH/g or less, the hydroxyl group of the acrylic resin and the antistatic component such as polythiophene do not cause extreme interaction, and the coating liquid is less likely to aggregate. preferable.
 本発明で用いるアクリル樹脂はカルボキシル基を有する樹脂であることが好ましい。カルボキシル基を有することで、架橋剤との架橋構造を形成することと、水溶性を容易に付与することが可能となる。例として(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマール酸等のカルボキシ基を含有するモノマー、無水マレイン酸、無水イタコン酸等の酸無水物基を含有するモノマーが挙げられる。
 例えば、バインダー樹脂(B)は、カルボキシル基を単独で有してもよく、上記水酸基と共にカルボキシル基を有してもよい。
The acrylic resin used in the present invention is preferably a resin having a carboxyl group. By having a carboxyl group, it becomes possible to form a crosslinked structure with a crosslinking agent and to easily impart water solubility. Examples include monomers containing a carboxy group such as (meth)acrylic acid, crotonic acid, itaconic acid, maleic acid and fumaric acid, and monomers containing an acid anhydride group such as maleic anhydride and itaconic anhydride.
For example, the binder resin (B) may have a carboxyl group alone, or may have a carboxyl group together with the hydroxyl group.
カルボキシル基を有するモノマーは、アクリル樹脂の全構成ユニット100モル%中、2モル%以上が好ましく、5モル%以上がより好ましい。4モル%以上であると、帯電防止層に架橋構造を形成すること、及び水溶性を付与することが容易となり好ましい。カルボキシル基を有するモノマーは、65モル%以下が好ましく、50モル%以下がより好ましい。65モル%以下であると、得られる塗膜のTgが後述する好適範囲に対して高くなりすぎず、造膜性が良好であり好ましい。 The monomer having a carboxyl group is preferably 2 mol % or more, more preferably 5 mol % or more, in 100 mol % of all structural units of the acrylic resin. When it is 4 mol % or more, it becomes easy to form a crosslinked structure in the antistatic layer and to impart water solubility, which is preferable. The monomer having a carboxyl group is preferably 65 mol % or less, more preferably 50 mol % or less. When it is 65 mol % or less, the Tg of the resulting coating film does not become too high relative to the preferable range described later, and the film-forming property is favorable, which is preferable.
良好な水溶性を発現させるためには、アクリル酸やメタクリル酸の共重合によってアクリル樹脂中に導入されたカルボキシル基を中和することが好ましい。塩基性の中和剤としては、アンモニア、トリメチルアミン、トリエチルアミン、ジメチルアミノエタノール等のアミン化合物や、水酸化カリウム、水酸化ナトリウム等の無機系塩基性物質等があり、このうち、中和剤の揮発のしやすさ、架橋構造の形成のしやすさのためには、中和剤としてアミン化合物を使用することが好ましい。また中和率としては、30モル%~95モル%であることが好ましく、より好ましくは40モル%~90モル%である。中和率が30モル%以上の場合、アクリル樹脂の水溶性が十分であり、塗布液調製の際にアクリル樹脂の溶解が容易であり、乾燥後の塗膜面が白化したりするおそれがなく好ましい。一方、中和率が95モル%以下であると、水溶性が高すぎず、塗布液調製においてアルコール等の混合が容易となり好ましい。 In order to develop good water solubility, it is preferable to neutralize the carboxyl groups introduced into the acrylic resin by copolymerization of acrylic acid or methacrylic acid. Basic neutralizers include amine compounds such as ammonia, trimethylamine, triethylamine and dimethylaminoethanol, and inorganic basic substances such as potassium hydroxide and sodium hydroxide. It is preferable to use an amine compound as a neutralizing agent for ease of application and ease of formation of a crosslinked structure. The neutralization rate is preferably 30 mol % to 95 mol %, more preferably 40 mol % to 90 mol %. When the neutralization rate is 30 mol% or more, the acrylic resin has sufficient water solubility, the acrylic resin can be easily dissolved during preparation of the coating solution, and there is no risk of whitening of the coated film surface after drying. preferable. On the other hand, when the neutralization rate is 95 mol % or less, the water solubility is not too high, and alcohol or the like can be easily mixed in preparation of the coating liquid, which is preferable.
バインダー樹脂(B)の酸価、例えば、アクリル樹脂の酸価は40mgKOH/g以上であることが好ましく、より好ましくは50mgKOH/g以上、更に好ましくは60mgKOH/g以上である。アクリル樹脂の酸価が40mgKOH/g以上であれば、架橋剤との架橋点が増加するので、より架橋密度の高い強固な塗膜が得られるため好ましい。
 なお、この酸価について、アクリル樹脂を例示しているが、上述した本発明のバインダー樹脂(B)に使用できる樹脂についても、上記範囲内の酸価を有することで、本明細書の効果を奏することができる。
The acid value of the binder resin (B), for example, the acid value of the acrylic resin is preferably 40 mgKOH/g or more, more preferably 50 mgKOH/g or more, still more preferably 60 mgKOH/g or more. When the acid value of the acrylic resin is 40 mgKOH/g or more, the number of cross-linking points with the cross-linking agent is increased, so that a strong coating film having a higher cross-linking density can be obtained, which is preferable.
As for the acid value, an acrylic resin is exemplified, but the resin that can be used for the binder resin (B) of the present invention described above also has an acid value within the above range, so that the effect of the present specification can be obtained. can play.
 バインダー樹脂(B)の酸価、例えば、アクリル樹脂の酸価は400mgKOH/g以下であることが好ましく、より好ましくは350mgKOH/g以下、更に好ましくは300mgKOH/g以下である。アクリル樹脂の酸価が400mgKOH/g以下であれば、アクリル樹脂のカルボキシル基とポリチオフェンなどの帯電防止剤と極端に相互作用を引き起こさず凝縮しにくく好ましい。塗液中で凝集が発生すると、帯電防止層の均一性が低下し帯電防止性や透明性が低下するため好ましく、本発明のバインダー樹脂(B)は、このような問題を回避できる。 The acid value of the binder resin (B), for example, the acid value of the acrylic resin is preferably 400 mgKOH/g or less, more preferably 350 mgKOH/g or less, still more preferably 300 mgKOH/g or less. If the acid value of the acrylic resin is 400 mgKOH/g or less, the carboxyl group of the acrylic resin and the antistatic agent such as polythiophene do not cause excessive interaction, which is preferable because condensation hardly occurs. If aggregation occurs in the coating liquid, the homogeneity of the antistatic layer is deteriorated, and the antistatic property and transparency are degraded.
バインダー樹脂(B)における長鎖アルキル基は、樹脂の側鎖に炭素数が8~25のアルキル基を有するものが好ましい。
 一態様において、長鎖アルキル基を導入したアクリル樹脂としては、アクリル樹脂の側鎖に炭素数が8~25のアルキル基を有するものが好ましく、より好ましくは12~22のアルキル基、さらに好ましくは16~20のアルキル基である。また、(メタ)アクリル酸エステルを主な繰り返し単位とする重合体であり、エステル交換された部分に炭素数8~20の長鎖アルキル基を含む共重合体も好適に使用することができる。例としてラウリル(メタ)アクリレート、ステアリル(メタ)アクリレートなどが挙げられる。中でも入手しやすさやコスト、低い付着エネルギーが得られる点で、ステアリルメタクリレートが好適に使用される。
The long-chain alkyl group in the binder resin (B) preferably has an alkyl group with 8 to 25 carbon atoms in the side chain of the resin.
In one aspect, the acrylic resin into which a long-chain alkyl group is introduced preferably has an alkyl group having 8 to 25 carbon atoms in the side chain of the acrylic resin, more preferably an alkyl group having 12 to 22 carbon atoms, and still more preferably. It is an alkyl group of 16-20. Further, a copolymer having a (meth)acrylic acid ester as a main repeating unit and containing a long-chain alkyl group having 8 to 20 carbon atoms in the transesterified portion can also be preferably used. Examples include lauryl (meth)acrylate, stearyl (meth)acrylate, and the like. Among them, stearyl methacrylate is preferably used in terms of availability, cost, and low adhesion energy.
 共重合されるモノマー中の長鎖アルキル基を有するモノマーは、バインダー樹脂(B)、例えば、アクリル樹脂の全構成ユニット100モル%中、50モル%以下が好ましく、40モル%以下がより好ましい。50モル%以下であると、帯電防止層の塗膜表面の付着エネルギーを効率的に低下させ、かつ得られる塗膜のTgが好適範囲に対して低くなりすぎず、塗膜の硬度が高く維持できるため好ましい。本発明においては、長鎖アルキル基を有するモノマーは、アクリル樹脂の全構成ユニット100モル%中、5%以上であることが好ましい。5%以上であると帯電防止層の塗膜表面の付着エネルギーを低下させることができるため好ましい。 The monomer having a long-chain alkyl group in the monomers to be copolymerized is preferably 50 mol% or less, more preferably 40 mol% or less, in 100 mol% of all structural units of the binder resin (B), for example, an acrylic resin. When it is 50 mol% or less, the adhesion energy of the antistatic layer on the coating surface is efficiently reduced, and the Tg of the resulting coating does not become too low relative to the preferred range, and the hardness of the coating is maintained high. It is preferable because it can be done. In the present invention, the monomer having a long-chain alkyl group preferably accounts for 5% or more in 100 mol% of all structural units of the acrylic resin. When it is 5% or more, the adhesion energy of the coating surface of the antistatic layer can be reduced, which is preferable.
 バインダー樹脂(B)、例えば、アクリル樹脂のガラス転移温度(Tg)は50℃以上であることが好ましく、より好ましくは55℃以上、更に好ましくは60℃以上である。アクリル樹脂のガラス転移温度が50℃以上であると、帯電防止層の経時変化が抑制されるため好ましい。 The glass transition temperature (Tg) of the binder resin (B), for example, an acrylic resin is preferably 50°C or higher, more preferably 55°C or higher, and even more preferably 60°C or higher. It is preferable that the glass transition temperature of the acrylic resin is 50° C. or higher, since the change over time of the antistatic layer is suppressed.
 バインダー樹脂(B)、例えば、アクリル樹脂のガラス転移温度(Tg)は110℃以下であることが好ましく、より好ましくは105℃以下、更に好ましくは100℃以下である。アクリル樹脂のガラス転移温度が110℃以下であると、塗膜の脆くなり過ぎず帯電防止層にクラックなどが発生しにくくなるため好ましい。 The glass transition temperature (Tg) of the binder resin (B), for example, an acrylic resin is preferably 110°C or lower, more preferably 105°C or lower, and even more preferably 100°C or lower. When the glass transition temperature of the acrylic resin is 110° C. or lower, the coating film becomes too brittle and the antistatic layer is less likely to crack, which is preferable.
 Tgを上記範囲にするために共重合されるTg調整用モノマーとしては、(メタ)アクリル系モノマーや、非アクリル系ビニルモノマーが利用できる。(メタ)アクリル系モノマーの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-アミル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ステアリル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル類;(メタ)アクリルアミド、ジアセトンアクリルアミド、n-メチロールアクリルアミド、(メタ)アクリロニトリル等の窒素含有アクリル系モノマー;メタクリル酸ビニル等が挙げられ、これらは1種または2種以上を用いることができる。 A (meth)acrylic monomer or a non-acrylic vinyl monomer can be used as the Tg adjusting monomer that is copolymerized to adjust the Tg to the above range. Specific examples of (meth) acrylic monomers include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, n-amyl (meth) acrylates, n-hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, (meth)acrylic acid alkyl esters such as stearyl (meth)acrylate; nitrogen-containing acrylic monomers such as (meth)acrylamide, diacetoneacrylamide, n-methylolacrylamide, and (meth)acrylonitrile; and vinyl methacrylate. These can be used alone or in combination of two or more.
 また、非アクリル系ビニルモノマーとしては、スチレン、α-メチルスチレン、ビニルトルエン(m-メチルスチレンとp-メチルスチレンの混合物)、クロロスチレン等のスチレン系モノマー;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、シクロヘキサンカルボン酸ビニル、ピバリン酸ビニル、オクチル酸ビニル、モノクロロ酢酸ビニル、アジピン酸ジビニル、クロトン酸ビニル、ソルビン酸ビニル、安息香酸ビニル、ケイ皮酸ビニル等のビニルエステル;塩化ビニル、塩化ビニリデン等のハロゲン化ビニルモノマー;が挙げられ、1種または2種以上を用いることができる。 Examples of non-acrylic vinyl monomers include styrene, α-methylstyrene, vinyltoluene (a mixture of m-methylstyrene and p-methylstyrene), styrene-based monomers such as chlorostyrene; vinyl acetate, vinyl propionate, and vinyl butyrate. , vinyl caproate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, vinyl pivalate, vinyl octylate, vinyl monochloroacetate, divinyl adipate, Vinyl esters such as vinyl crotonate, vinyl sorbate, vinyl benzoate and vinyl cinnamate; vinyl halide monomers such as vinyl chloride and vinylidene chloride;
 Tg調整用のモノマーは、水酸基含有モノマーとカルボキシル基含有モノマーの適正量を決めてから、その残部とすることが好ましい。共重合体のTgは、下記のFoxの式で求められる。 The monomers for adjusting Tg are preferably the balance after determining the appropriate amounts of the hydroxyl group-containing monomer and the carboxyl group-containing monomer. The Tg of the copolymer is determined by the following Fox formula.
Figure JPOXMLDOC01-appb-M000001
n:各モノマーの質量分率(質量%)
Tgn:各モノマーのホモポリマーのTg(K)
Figure JPOXMLDOC01-appb-M000001
W n : mass fraction of each monomer (% by mass)
Tg n : Tg (K) of homopolymer of each monomer
本発明で使用するアクリル樹脂は、公知のラジカル重合によって得ることができる。乳化重合、懸濁重合、溶液重合、塊状重合等、いずれも採用可能である。取り扱い性の点からは、溶液重合が好ましい。溶液重合に用いることのできる水溶性有機溶媒としては、エチレングリコールn-ブチルエーテル、イソプロパノール、エタノール、n-メチルピロリドン、テトラヒドロフラン、1,4-ジオキサン、1,3-オキソラン、メチルソロソルブ、エチルソロソルブ、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等が挙げられる。これらは水と混合して用いてもよい。 The acrylic resin used in the present invention can be obtained by known radical polymerization. Emulsion polymerization, suspension polymerization, solution polymerization, bulk polymerization, and the like can all be adopted. From the point of handleability, solution polymerization is preferred. Water-soluble organic solvents that can be used for solution polymerization include ethylene glycol n-butyl ether, isopropanol, ethanol, n-methylpyrrolidone, tetrahydrofuran, 1,4-dioxane, 1,3-oxolane, methyl solosolve, and ethyl solosolve. , ethyl carbitol, butyl carbitol, propylene glycol monopropyl ether, propylene glycol monobutyl ether and the like. These may be used by mixing with water.
重合開始剤としてはラジカルを発生する公知の化合物であればよいが、例えば、2,2-アゾビス-2-メチル-N-2-ヒドロキシエチルプロピオンアミド等の水溶性アゾ系重合開始剤が好ましい。重合の温度や時間等は適宜選択される。 The polymerization initiator may be any known compound that generates radicals, but water-soluble azo polymerization initiators such as 2,2-azobis-2-methyl-N-2-hydroxyethylpropionamide are preferred. The temperature, time, etc. of the polymerization are appropriately selected.
 バインダー樹脂(B)の質量平均分子量(Mw)は、10,000~200,000程度が好ましい。より好ましい範囲は、20,000~150,000である。Mwが10,000以上の場合、塗膜の靭性が向上し塗膜強度が上がるため好ましい。Mwが200,000以下であると、塗布液の粘度の著しい上昇がなく、塗工性が良好であり好ましい。 The weight average molecular weight (Mw) of the binder resin (B) is preferably about 10,000 to 200,000. A more preferred range is from 20,000 to 150,000. When Mw is 10,000 or more, the toughness of the coating film is improved and the strength of the coating film is increased, which is preferable. When the Mw is 200,000 or less, the viscosity of the coating liquid does not significantly increase and the coatability is good, which is preferable.
本発明の帯電防止層は、帯電防止層における全固形分100質量%に対し、バインダー樹脂(B)を、10質量%以上含むことが好ましく、より好ましくは40質量%以上である。10質量%以上であれば、静的な水接触角が高くなるため好ましい。 The antistatic layer of the present invention preferably contains 10% by mass or more, more preferably 40% by mass or more, of the binder resin (B) based on 100% by mass of the total solid content in the antistatic layer. A content of 10% by mass or more is preferable because the static water contact angle increases.
本発明の帯電防止層は、帯電防止層における全固形分100質量%に対し、バインダー樹脂(B)を、70質量%以下であることが好ましく、より好ましくは60質量%以下である。バインダー樹脂(B)が70質量%以下であれば、ポリチオフェンなどの帯電防止剤と相互作用を引き起こさず凝縮しにくく好ましい。また、帯電防止層を形成する帯電防止層形成組成物中で凝集が発生することを抑制でき、帯電防止層の均一性が低下することを回避でき、更に、帯電防止性の向上、透明性の向上をもたらすことができる。 The antistatic layer of the present invention preferably contains the binder resin (B) in an amount of 70% by mass or less, more preferably 60% by mass or less, based on 100% by mass of the total solid content in the antistatic layer. If the binder resin (B) is 70% by mass or less, it is preferable because it does not cause interaction with an antistatic agent such as polythiophene and is less likely to condense. In addition, it is possible to suppress the occurrence of aggregation in the antistatic layer-forming composition that forms the antistatic layer, and it is possible to avoid deterioration of the uniformity of the antistatic layer. can bring about improvement.
(架橋剤(A))
 本発明において、帯電防止層に架橋構造を形成させるために、帯電防止層は、架橋剤(A)を含む組成物から形成される。架橋剤(A)を含有させることにより、耐久性が向上し高温高湿度条件で処理した場合にも帯電防止性能の低下が抑制されるため好ましい。具体的な架橋剤としては、尿素系、エポキシ系、メラミン系、イソシアネート系、オキサゾリン系、カルボジイミド系、アジリジン系等が挙げられる。一態様において架橋剤(A)はアクリルアミド、メラミン樹脂、カルボジイミド、オキサゾリン、イソシアネート及びアジリジンから選択される少なくとも1種を含む。架橋剤(A)は、特に、メラミン系、オキサゾリン系、カルボジイミド系、アジリジン系が好ましい。また、架橋反応を促進させるため、触媒等を必要に応じて適宜使用することができる。
(Crosslinking agent (A))
In the present invention, the antistatic layer is formed from a composition containing a cross-linking agent (A) in order to form a crosslinked structure in the antistatic layer. Containing the cross-linking agent (A) is preferable because the durability is improved and deterioration of the antistatic performance is suppressed even when treated under high temperature and high humidity conditions. Specific cross-linking agents include urea-based, epoxy-based, melamine-based, isocyanate-based, oxazoline-based, carbodiimide-based, and aziridine-based agents. In one embodiment, the cross-linking agent (A) comprises at least one selected from acrylamides, melamine resins, carbodiimides, oxazolines, isocyanates and aziridines. The cross-linking agent (A) is particularly preferably melamine-based, oxazoline-based, carbodiimide-based, or aziridine-based. In addition, a catalyst or the like can be appropriately used as necessary in order to accelerate the cross-linking reaction.
本発明の帯電防止層に含まれる架橋剤(A)は、帯電防止層における全固形分100質量%に対し、15質量%以上含まれることが好ましく、より好ましくは20質量%以上で、さらに好ましくは25質量%である。15質量%以上であれば、バインダーとの架橋点が増加するので、より架橋密度の高い強固な塗膜が得られ、耐熱性や耐アルコール性が良好であり好ましい。 The cross-linking agent (A) contained in the antistatic layer of the present invention is preferably contained in an amount of 15% by mass or more, more preferably 20% by mass or more, and still more preferably 100% by mass of the total solid content in the antistatic layer. is 25% by mass. If it is 15% by mass or more, the number of cross-linking points with the binder increases, so that a strong coating film with a higher cross-linking density can be obtained, and heat resistance and alcohol resistance are good, which is preferable.
 架橋剤(A)は、帯電防止層における全固形分100質量%に対し、75質量%以下で含まることが好ましく、例えば65質量%以下であり、55質量%以下であってもよい。75質量%以下であると、静的な接触角を目的の範囲内に維持したまま、耐熱性および耐アルコール性を保持することができる。 The cross-linking agent (A) is preferably contained in an amount of 75% by mass or less, for example 65% by mass or less, and may be 55% by mass or less, based on 100% by mass of the total solid content in the antistatic layer. When it is 75% by mass or less, heat resistance and alcohol resistance can be maintained while maintaining the static contact angle within the target range.
 本発明における帯電防止層には、外観向上のために界面活性剤を用いてもかまわない。界面活性剤としては、例えば、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンソルビタン脂肪酸エステルなどの非イオン界面活性剤及びフルオロアルキルカルボン酸、パーフルオロアルキルカルボン酸、パーフルオロアルキルベンゼンスルホン酸、パーフルオロアルキル4級アンモニウム、パーフルオロアルキルポリオキシエチレンエタノールなどのフッ素系界面活性剤や、シリコーン系の界面活性剤を用いることができる。 A surfactant may be used in the antistatic layer in the present invention to improve the appearance. Examples of surfactants include nonionic surfactants such as polyoxyethylene octylphenyl ether, polyoxyethylene alkyl ether, polyoxyethylene sorbitan fatty acid ester, and fluoroalkylcarboxylic acids, perfluoroalkylcarboxylic acids, perfluoroalkylbenzenesulfones. Acids, fluorine-based surfactants such as perfluoroalkyl quaternary ammonium and perfluoroalkylpolyoxyethylene ethanol, and silicone-based surfactants can be used.
 帯電防止層には、前述のほか、本発明の目的を阻害しない範囲で必要に応じて、滑剤、色素、紫外線吸収剤、シランカップリング剤、等を混合しても良い。 In addition to the above, the antistatic layer may contain lubricants, pigments, ultraviolet absorbers, silane coupling agents, etc., if necessary, as long as the objects of the present invention are not hindered.
一態様において、積層ポリエステルフィルムは、実質的にシリコーン化合物を含まない。好ましくは、帯電防止層は実質的にシリコーン化合物を含まない。
 本発明において「シリコーン化合物を実質的に含有しない」とは、ケイ光X線分析でSi元素を定量した場合に50ppm以下であることにより定義され、好ましくは10ppm以下、最も好ましくは検出限界以下となる含有量である。「これは積極的にシリコーン成分をフィルム中に添加させなくても、外来異物由来のコンタミ成分や、原料樹脂あるいはフィルムの製造工程におけるラインや装置に付着した汚れが剥離して、フィルム中に混入する場合があるためである。
 積層ポリエステルフィルムは、実質的にシリコーン化合物を含まないことにより、本帯電防止フィルムを保護フィルムとして用いた場合でも、保護した製品へのシリコーンの移行を回避することができ、最終製品への悪影響を減らすことができる。
In one aspect, the laminated polyester film is substantially free of silicone compounds. Preferably, the antistatic layer is substantially free of silicone compounds.
In the present invention, "substantially free of silicone compounds" is defined as being 50 ppm or less, preferably 10 ppm or less, most preferably detection limit or less when Si element is quantified by fluorescence X-ray analysis. content. “Even if silicone components are not actively added to the film, contaminants derived from foreign substances and dirt adhering to the raw material resin or the lines and equipment in the film manufacturing process will peel off and enter the film. This is because there are cases where
Since the laminated polyester film contains substantially no silicone compound, even when this antistatic film is used as a protective film, it is possible to avoid the transfer of silicone to the protected product, and there is no adverse effect on the final product. can be reduced.
 本発明の帯電防止層の膜厚は、0.005μm以上1μm以下が好ましい。より好ましくは、0.01μm以上0.5μm以下であり、さらに好ましくは、0.01μm以上0.2μm以下である。帯電防止層の膜厚が0.005μm以上であると、帯電防止効果が得られ好ましい。一方、1μm以下であると、着色が少なく透明性が高くなるため好ましい。  The film thickness of the antistatic layer of the present invention is preferably 0.005 µm or more and 1 µm or less. It is more preferably 0.01 μm or more and 0.5 μm or less, and still more preferably 0.01 μm or more and 0.2 μm or less. When the film thickness of the antistatic layer is 0.005 μm or more, an antistatic effect can be obtained, which is preferable. On the other hand, when the thickness is 1 μm or less, coloring is less and transparency is improved, which is preferable. 
本発明の帯電防止層の表面抵抗率は、9[logΩ/□]以下である。さらに好ましくは、8[logΩ/□]以下であり、さらに好ましくは、7[logΩ/□]以下である。表面抵抗率を9[logΩ/□]以下にすることで保護フィルムへの帯電を抑制することができ、工程中の異物付着を防ぐことができ、さらには保護フィルムの帯電が保護した製品への電気的な悪影響を抑えることができる。 The surface resistivity of the antistatic layer of the present invention is 9 [logΩ/□] or less. More preferably, it is 8 [logΩ/□] or less, and still more preferably 7 [logΩ/□] or less. By setting the surface resistivity to 9 [logΩ/square] or less, it is possible to suppress the charging of the protective film and prevent the adhesion of foreign matter during the process. Electrical adverse effects can be suppressed.
 また、帯電防止フィルムの表面抵抗率の下限は特に定めなくてもよいが、3[logΩ/□]以上であることが好ましい。帯電防止フィルムの表面抵抗率が3[logΩ/□]未満であると、帯電防止層の加工コストが増大してしまうため好ましくない。 Although the lower limit of the surface resistivity of the antistatic film does not have to be specified, it is preferably 3 [logΩ/□] or more. If the surface resistivity of the antistatic film is less than 3 [logΩ/□], the processing cost of the antistatic layer increases, which is not preferable.
本発明の帯電防止フィルムの帯電防止層表面の水の付着エネルギーは、3.5mJ/m以下である。さらに好ましくは3.2mJ/m以下であり、例えば、2.9mJ/m以下である。
水の付着エネルギーが3.5mJ/m以下であれば、保護フィルムとして使用するときに貼合ロールで被着体に貼り合わせする場合の貼合ロールと保護フィルムの身離れ性がよくなるため好ましい。水の付着エネルギーを3.5mJ/m以下にするためには、帯電防止層中に低表面自由エネルギーの成分を適量添加することで達成できるが、前述のバインダー樹脂中に低表面自由エネルギー成分を含んだポリマーを採用することで、付着エネルギーを低下させ、かつ被着体への移行がない保護フィルムを提供できるため好ましい。
 例えば、本発明においては、低表面自由エネルギー成分を含んだポリマーは、導電性ポリマーであってもよく、バインダー樹脂(B)であってもよく、両者が共に低表面自由エネルギー成分を含んだポリマーであってもよい。
The adhesion energy of water on the surface of the antistatic layer of the antistatic film of the present invention is 3.5 mJ/m 2 or less. More preferably, it is 3.2 mJ/m 2 or less, for example, 2.9 mJ/m 2 or less.
If the adhesion energy of water is 3.5 mJ/m 2 or less, it is preferable because when the protective film is used as a protective film and the protective film is used as a protective film, the protective film can be separated from the protective film when the film is laminated to an adherend with the protective film. . The adhesion energy of water of 3.5 mJ/m 2 or less can be achieved by adding an appropriate amount of a low surface free energy component to the antistatic layer. By adopting a polymer containing, it is possible to reduce the adhesion energy and provide a protective film that does not transfer to the adherend, which is preferable.
For example, in the present invention, the polymer containing a low surface free energy component may be a conductive polymer or the binder resin (B), both of which are polymers containing a low surface free energy component. may be
本発明の帯電防止フィルムの帯電防止層表面における水の付着エネルギーは、1.1mJ/m以上が好ましく、さらに好ましくは1.3mJ/m以上である。水の付着エネルギーがこのような範囲内であることにより、帯電防止層上に粘着層などを加工する場合でも濡れ性が良くハジキなどの欠点が起こりにくい。 The adhesion energy of water on the surface of the antistatic layer of the antistatic film of the present invention is preferably 1.1 mJ/m 2 or more, more preferably 1.3 mJ/m 2 or more. When the adhesion energy of water is within such a range, wettability is good and defects such as repelling are less likely to occur even when an adhesive layer or the like is processed on the antistatic layer.
 本発明の帯電防止フィルムの帯電防止層表面における、水の静的な接触角は、70°以上95°以下であり、例えば、75°以上95°以下であり、80°以上95°以下であってもよい。
水の静的な接触角がこのような範囲内であることにより、保護フィルムの粘着層積層面の反対面と貼合ロールとの相互作用が強くなることを抑制できる。
The static contact angle of water on the surface of the antistatic layer of the antistatic film of the present invention is 70° or more and 95° or less, for example, 75° or more and 95° or less, and 80° or more and 95° or less. may
When the static contact angle of water is within such a range, it is possible to suppress an increase in the interaction between the surface of the protective film opposite to the surface on which the adhesive layer is laminated and the bonding roll.
 本発明では、水の静的接触角と付着エネルギーを上記範囲に設定することが重要である。
 例えば、水の付着エネルギーが3.5mJ/m以下であっても、水の静的接触角を95°よりも大きいフィルムを用いると、貼合ロールの身離れ性は良好であるが、帯電防止層上へ粘着層を加工するときの塗工性が悪化し欠点が多い保護フィルムとなってしまう傾向がある。特に、水の静的接触角が95°を大きく超過すると、その傾向が強くなる。
In the present invention, it is important to set the static contact angle and adhesion energy of water within the above ranges.
For example, even if the adhesion energy of water is 3.5 mJ/m 2 or less, if a film having a static contact angle of water of 95° or more is used, the lamination roll separation property is good, but charging When the adhesive layer is processed onto the protective layer, the coatability tends to deteriorate, resulting in a protective film with many defects. Especially when the static contact angle of water greatly exceeds 95°, this tendency becomes stronger.
 ここで、本発明の積層ポリエステルフィルムは、
(1)表面抵抗率:3[logΩ/□]以上9[logΩ/□]以下
(2)水の静的な接触角:70°以上95°以下
(3)水の付着エネルギー:3.5mJ/m以下
であることを特徴とする。これら(1)~(3)を全て備えることにより、本帯電防止フィルムに粘着層を積層し保護フィルムとして用いた場合にも、保護フィルムの貼合せ時の貼合ロールとの身離れ性が良く、剥離時に剥離帯電や異物付着を抑制した保護フィルムを提供することができる。
上記、水の静的な接触角と付着エネルギーの範囲を満たす帯電防止フィルムを保護フィルムとして使用することで、帯電防止層への粘着層の加工性が良く(例えば、濡れ性がよく、欠点が少ない)、保護フィルムの帯電を抑制し、貼合ロールとの身離れ性が良く、貼り合わせに優れた保護フィルムを提供することができる。
Here, the laminated polyester film of the present invention is
(1) Surface resistivity: 3 [logΩ/□] or more and 9 [logΩ/□] or less (2) Static contact angle of water: 70° or more and 95° or less (3) Adhesion energy of water: 3.5 mJ/ It is characterized by being m 2 or less. By providing all of these (1) to (3), even when the present antistatic film is laminated with an adhesive layer and used as a protective film, it is easy to separate from the laminating roll when laminating the protective film. , it is possible to provide a protective film that suppresses separation electrification and adhesion of foreign matter at the time of separation.
By using the antistatic film that satisfies the range of the static contact angle and adhesion energy of water as a protective film, the workability of the adhesive layer to the antistatic layer is good (for example, the wettability is good, and the drawback is It is possible to provide a protective film that suppresses electrification of the protective film, has good separation from the laminating roll, and is excellent in lamination.
 本発明の積層ポリエステルフィルムのヘイズは、3.0%以下であることが好ましい。より好ましくは2.5%以下であり、さらに好ましくは2.0%以下であり、例えば、1.5%以下である。1.0%以下であれば、より好ましい。3.0%以下であれば、保護フィルムを被着体と貼り合わせた状態で外観検査などが可能なため好ましく、光学用途の部材が被着体の場合に特に好ましい。ヘイズは0であってもよく、例えば、0.1%以上であってもよい。 The haze of the laminated polyester film of the present invention is preferably 3.0% or less. It is more preferably 2.5% or less, still more preferably 2.0% or less, for example, 1.5% or less. It is more preferable if it is 1.0% or less. If it is 3.0% or less, it is preferable because the appearance inspection can be performed in a state where the protective film is adhered to the adherend, and it is particularly preferable when the adherend is a member for optical use. The haze may be 0, and may be 0.1% or more, for example.
 本発明の積層ポリエステルフィルムの140℃で10分加熱後のヘイズは、加熱前のヘイズの1.5倍以下であることが好ましい。より好ましくは1.3倍以下であり、さらに好ましくは1.2倍以下である。1.5倍以下であれば、保護フィルムを被着体と貼り合わせた状態で外観検査などが可能なため好ましく、光学用途の部材が被着体の場合に特に好ましい。 The haze of the laminated polyester film of the present invention after heating at 140°C for 10 minutes is preferably 1.5 times or less the haze before heating. It is more preferably 1.3 times or less, still more preferably 1.2 times or less. If it is 1.5 times or less, it is preferable because the appearance inspection can be performed in a state where the protective film is adhered to the adherend, and it is particularly preferable when the adherend is a member for optical use.
 本発明に用いる積層ポリエステルフィルム(帯電防止フィルム)の全光線透過率は、80%以上であることが好ましい。より好ましくは85%以上であり、さらに好ましくは88%以上である。90%以上であれば、極めて好ましい。80%以上であれば、保護フィルムを被着体と貼り合わせた状態で外観検査などが可能なため好ましく、光学用途の部材が被着体の場合に特に好ましい。 The total light transmittance of the laminated polyester film (antistatic film) used in the present invention is preferably 80% or more. It is more preferably 85% or more, still more preferably 88% or more. 90% or more is highly preferred. If it is 80% or more, it is preferable because the appearance inspection can be performed in a state where the protective film is attached to the adherend, and it is particularly preferable when the adherend is a member for optical use.
 帯電防止層は、アルコールによる拭取り試験後における表面抵抗率変化が、当該試験前の表面抵抗率の1.3倍以下であることが好ましい。より好ましくは1.2倍以下であり、さらに好ましくは1.1倍以下である。1.3倍以下であれば、粘着加工などの工程でアルコールを使用しても、保護フィルムになったときに初期の表面抵抗率を維持するため好ましい。 The antistatic layer preferably has a change in surface resistivity after a wiping test with alcohol that is 1.3 times or less the surface resistivity before the test. It is more preferably 1.2 times or less, still more preferably 1.1 times or less. If it is 1.3 times or less, it is preferable because the initial surface resistivity is maintained when the protective film is formed even if alcohol is used in the process of adhesion processing.
 帯電防止層の表面の領域表面平均粗さ(Sa)は、1~40nmの範囲にあることが好ましく、より好ましくは1~30nmである。さらに好ましくは1~10nmである。本発明に用いる帯電防止フィルムの表面の最大突起高さ(P)は、2μm以下であることが好ましく、より好ましくは1.5μm以下である。さらに好ましくは0.8μm以下である。Saが40nm以下であり、Pが2μm以下であれば、粘着層を積層しロール状に巻き取った際に粘着性の表面を荒らす恐れがなく好ましい。 The area average surface roughness (Sa) of the surface of the antistatic layer is preferably in the range of 1 to 40 nm, more preferably 1 to 30 nm. More preferably, it is 1 to 10 nm. The maximum projection height (P) on the surface of the antistatic film used in the present invention is preferably 2 μm or less, more preferably 1.5 μm or less. More preferably, it is 0.8 μm or less. If Sa is 40 nm or less and P is 2 μm or less, it is preferable because there is no risk of roughening the adhesive surface when the adhesive layer is laminated and wound into a roll.
 基材フィルム表面に帯電防止層を塗布積層する方法としては、前述の帯電防止剤やバインダー樹脂などを、溶媒に分散・溶解させた塗液をグラビアロールコーティング法、リバースロールコーティング法、ナイフコータ法、ディップコート法、バーコート法、スピンコート法などで塗布する方法があるが、導電性組成物に適したコート法は特に制限はない。また、フィルムの製造工程で塗布層を設けるインラインコート方式、フィルム製造後に塗布層を設けるオフラインコート方式により設けることができる。 As a method for coating and laminating an antistatic layer on the substrate film surface, a coating liquid in which the above-mentioned antistatic agent or binder resin is dispersed or dissolved in a solvent is applied by a gravure roll coating method, a reverse roll coating method, a knife coater method, There are coating methods such as dip coating, bar coating, and spin coating, but the coating method suitable for the conductive composition is not particularly limited. Moreover, it can be provided by an in-line coating method in which a coating layer is provided in the film production process, or an off-line coating method in which a coating layer is provided after film production.
 帯電防止層は、前記方法で帯電防止層を形成する乾燥温度としては、通常60℃以上150℃以下であり、好ましくは90℃以上140℃以下である。この温度が60℃以上であると、短時間の処理でよく、生産性向上の観点から好ましい。また、架橋剤を含む場合は架橋反応が十分進行するため好ましい。一方、この温度が150℃以下であると、フィルムの平面性が保たれるため好ましい。 The drying temperature for forming the antistatic layer by the above method is usually 60°C or higher and 150°C or lower, preferably 90°C or higher and 140°C or lower. When this temperature is 60° C. or higher, the treatment can be performed in a short period of time, which is preferable from the viewpoint of improving productivity. Moreover, since a crosslinking reaction progresses sufficiently when a crosslinking agent is included, it is preferable. On the other hand, when this temperature is 150° C. or lower, the flatness of the film is maintained, which is preferable.
本発明の積層ポリエステルフィルムには、粘着剤を塗布し硬化させることで粘着層を積層することができる。粘着剤は、特に限定されず、使用することができ、得られた積層フィルムは、保護フィルムとして使用される。粘着層を積層する面は、帯電防止フィルムのどちらの側でも構わない。片面のみに帯電防止層を有する帯電防止フィルムを用いる場合は、帯電防止フィルムの粘着層を積層した面とは反対面には、帯電防止層がある方が好ましい。
 また、本発明の積層ポリエステルフィルムにおける帯電防止層に、セラミックグリーンンシート、樹脂フィルム等を積層してもよい。
An adhesive layer can be laminated on the laminated polyester film of the present invention by applying and curing an adhesive. The adhesive is not particularly limited and can be used, and the laminated film obtained is used as a protective film. Either side of the antistatic film may be the surface on which the adhesive layer is laminated. When using an antistatic film having an antistatic layer only on one side, it is preferable that the antistatic layer is provided on the side opposite to the side on which the adhesive layer is laminated.
Moreover, a ceramic green sheet, a resin film, or the like may be laminated on the antistatic layer in the laminated polyester film of the present invention.
 本発明を詳細に説明するために、以下に実施例を挙げて説明するが、もちろん本発明はこれらの実施例に限定されるものではない。なお、本発明に用いた評価方法は以下の通りである。 In order to describe the present invention in detail, examples will be given below, but of course the present invention is not limited to these examples. The evaluation methods used in the present invention are as follows.
 (NMR測定)
 少なくとも1つの反応性基を有する長鎖アルキル含有化合物中に導入された共重合成分の比率は、核磁気共鳴分光法(1H-NMR、13C-NMR:Varian Unity 400、Agilent社製)を用いて確認した。測定は、合成したアクリル樹脂中の溶媒を真空乾燥機にて除去した後、乾固物を重クロロフォルムに溶解させて行った。得られたNMRスペクトルから、各基の部位に帰属される化学シフトδ(ppm)のピークを同定した。得られた各ピークの積分強度を求め、各基の部位の水素数と積分強度から、アクリル樹脂に導入された共重合成分の組成比率(mol%)を確認した。
(NMR measurement)
The ratio of the copolymer components introduced into the long-chain alkyl-containing compound having at least one reactive group was determined using nuclear magnetic resonance spectroscopy (1H-NMR, 13C-NMR: Varian Unity 400, manufactured by Agilent). confirmed. The measurement was carried out by removing the solvent in the synthesized acrylic resin with a vacuum dryer, and then dissolving the dried product in heavy chloroform. From the obtained NMR spectrum, peaks with chemical shifts δ (ppm) assigned to the sites of each group were identified. The integrated intensity of each peak obtained was determined, and the composition ratio (mol%) of the copolymer component introduced into the acrylic resin was confirmed from the number of hydrogen atoms at the site of each group and the integrated intensity.
 (Tgの確認)
 上記NMR測定で求めた共重合成分の組成比率と、前記したFoxの式から各長鎖アルキル含有化合物のTgを求めた。
(Confirmation of Tg)
The Tg of each long-chain alkyl-containing compound was determined from the composition ratio of the copolymer components determined by the NMR measurement and the above-described Fox equation.
(表面抵抗率)
本発明の帯電防止フィルム表面の表面抵抗率は、温度23℃、湿度55%の条件下で24時間調湿後、帯電防止層表面の表面抵抗率を表面抵抗測定器(シムコジャパン(株)製、ワークサーフェイステスター ST-3)を用いて測定し、下記の判定基準で評価した。
 ◎:表面抵抗率が3以上6以下[logΩ/□]
 ○:表面抵抗率が6超9以下[logΩ/□]
 △:表面抵抗率が9超12以下[logΩ/□]
 ×:表面抵抗率が12超[logΩ/□]以上
(Surface resistivity)
The surface resistivity of the surface of the antistatic film of the present invention was determined by measuring the surface resistivity of the antistatic layer surface after adjusting the humidity for 24 hours under conditions of a temperature of 23° C. and a humidity of 55% using a surface resistance measuring instrument (manufactured by Simco Japan Co., Ltd.). , Work Surface Tester ST-3), and evaluated according to the following criteria.
◎: Surface resistivity is 3 or more and 6 or less [logΩ/□]
○: Surface resistivity is more than 6 and 9 or less [logΩ/□]
△: Surface resistivity is over 9 and 12 or less [logΩ/□]
×: Surface resistivity is over 12 [logΩ/□] or more
(水の静的接触角)
 25℃、50%RHの条件下で接触角計(協和界面科学株式会社製: 全自動接触角計 DM-701)を用いて帯電防止フィルムの帯電防止層面に水(液滴量1.8μL)を滴下し、30秒後の接触角を測定した。5点測定し、平均値を採用した。
(Static contact angle of water)
Water (drop volume 1.8 μL) on the antistatic layer surface of the antistatic film using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd.: fully automatic contact angle meter DM-701) at 25 ° C. and 50% RH. was dropped and the contact angle was measured after 30 seconds. Five points were measured and the average value was adopted.
(水の付着エネルギー)
 25℃、50%RHの条件下で接触角計(協和界面科学株式会社製: 全自動接触角計 DM-701)を用いて帯電防止フィルムの帯電防止層面に水(液滴量15μL)を滴下し、滴下後2秒後から連続的にステージを傾け1°ごとの接触角を測定した。また、0°の液滴位置から、5dot移動したときの傾斜角を滑落角と判定し、そこから付着エネルギーを算出した。本計算には、本接触角計ソフトウェア(FAMES)内の解析ソフトを用いて行った。5点測定し、平均値を採用した。
(Adhesion energy of water)
Water (drop volume 15 μL) is dropped on the antistatic layer surface of the antistatic film using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd.: fully automatic contact angle meter DM-701) under the conditions of 25 ° C. and 50% RH. Two seconds after dropping, the stage was continuously tilted and the contact angle was measured every 1°. Also, the tilt angle when the droplet moved 5 dots from the position of the droplet at 0° was determined as the sliding angle, and the adhesion energy was calculated therefrom. This calculation was performed using analysis software in this contact angle measurement software (FAMES). Five points were measured and the average value was adopted.
(全光線透過率、ヘイズ)
 本発明のフィルムの全光線透過率およびヘイズはJIS K 7136に準拠し、濁度計(日本電色製、NDH7000II)を用いて、140℃、10分加熱処理前後のフィルムを測定した。
(total light transmittance, haze)
The total light transmittance and haze of the film of the present invention were measured in accordance with JIS K 7136 using a turbidity meter (NDH7000II, manufactured by Nippon Denshoku Co., Ltd.) before and after heat treatment at 140°C for 10 minutes.
(ガラス転移温度)
 JIS K7121に準拠し、示差走査熱量計(セイコーインスツルメンツ製、DSC6200)を使用して、樹脂サンプル10mgを25~350℃の温度範囲にわたって20℃/minで昇温させ、DSC曲線から得られた補外ガラス転移開始温度をガラス転移温度とした。
(Glass-transition temperature)
Compliant with JIS K7121, using a differential scanning calorimeter (manufactured by Seiko Instruments, DSC6200), 10 mg of resin sample was heated at 20 ° C./min over a temperature range of 25 to 350 ° C., and the compensation obtained from the DSC curve was obtained. The outer glass transition start temperature was taken as the glass transition temperature.
(耐アルコール性)
 エタノールを染み込ませたキムワイプを用いて、本発明のフィルムを10往復拭き取る処理前後の表面抵抗率を測定した。また、上記処理後の外観変化を下記の判定基準で評価した。
 ◎:ほとんど変化なし
〇:少し変化有り
 △:変化有り
 ×:帯電防止層が染み落ちるほど変化あり
(Alcohol resistance)
A Kimwipe soaked with ethanol was used to measure the surface resistivity before and after the film of the present invention was wiped back and forth 10 times. In addition, changes in appearance after the above treatment were evaluated according to the following criteria.
◎: Almost no change 〇: Slight change △: Change ×: Change to the extent that the antistatic layer permeates
(少なくとも1つの反応性基を有する長鎖アルキル含有化合物b-1の製造)
 撹拌機、還流式冷却器、温度計および窒素吹き込み管を備えた4つ口フラスコに、メチルメタクリレート(MMA)231質量部、ステアリルメタクリレート(SMA)130質量部、ヒドロキシエチルメタクリレート(HEMA)100質量部、メタクリル酸(MAA)33質量部およびイソプロピルアルコール(IPA)1153質量部を仕込み、撹拌を行いながら80℃までフラスコ内を昇温した。フラスコ内を80℃に維持したまま3時間の撹拌を行い、その後、2,2-アゾビス-2―メチル-N-2-ヒドロキシエチルプロピオンアミドを0.5質量部フラスコに添加した。フラスコ内を120℃に昇温しながら窒素置換を行った後、120℃で混合物を2時間撹拌した。
 次いで、120℃で1.5kPaの減圧操作を行い、未反応の原材料と溶媒を除去し、長鎖アルキル基含有アクリル樹脂を得た。フラスコ内を大気圧に戻して室温まで冷却し、IPA水溶液(水含量50質量%)1592質量部を添加混合した。その後、撹拌しながら滴下ロートを用いて、アンモニアを加え、溶液のpHが5.5~7.5の範囲になるまで長鎖アルキル基含有アクリル樹脂の中和処理を行い、固形分濃度が20質量%の長鎖アルキル基含有アクリル樹脂(b-1)を得た。少なくとも1つの反応性基を有する長鎖アルキル含有化合物(b-1)のNMR測定による組成比率、Tg、酸価を表1に併記した。
(Production of long-chain alkyl-containing compound b-1 having at least one reactive group)
231 parts by mass of methyl methacrylate (MMA), 130 parts by mass of stearyl methacrylate (SMA), and 100 parts by mass of hydroxyethyl methacrylate (HEMA) were added to a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen blowing tube. , 33 parts by mass of methacrylic acid (MAA) and 1153 parts by mass of isopropyl alcohol (IPA) were charged, and the temperature in the flask was raised to 80° C. while stirring. Stirring was performed for 3 hours while maintaining the inside of the flask at 80° C., and then 0.5 parts by mass of 2,2-azobis-2-methyl-N-2-hydroxyethylpropionamide was added to the flask. After purging with nitrogen while raising the temperature in the flask to 120° C., the mixture was stirred at 120° C. for 2 hours.
Subsequently, a pressure reduction operation of 1.5 kPa was performed at 120° C. to remove unreacted raw materials and solvent to obtain a long-chain alkyl group-containing acrylic resin. The inside of the flask was returned to atmospheric pressure and cooled to room temperature, and 1592 parts by mass of an IPA aqueous solution (water content: 50% by mass) was added and mixed. Then, using a dropping funnel while stirring, ammonia is added to neutralize the long-chain alkyl group-containing acrylic resin until the pH of the solution is in the range of 5.5 to 7.5, and the solid content concentration is 20. % by mass of long-chain alkyl group-containing acrylic resin (b-1) was obtained. Table 1 also shows the composition ratio, Tg, and acid value of the long-chain alkyl-containing compound (b-1) having at least one reactive group, determined by NMR measurement.
(実施例1)
 表2に記載の配合量で帯電防止層塗工液を得た。
(帯電防止層塗工液)
水                        32.96質量部
イソプロピルアルコール              49.45質量部
導電性ポリマー                   8.33質量部
架橋剤a-1_1(日本カーバイド社製、メラミン樹脂、イミノ・メチロールタイプ、固形分濃度70質量%)                  
0.86質量部
少なくとも1つの反応性基を有する長鎖アルキル含有化合物b-1(固形分濃度20質量%)                                                 
6.5質量部
導電助剤                     1.8質量部
界面活性剤(日信化学社製、ダイノール604、固形分濃度100質量%)
0.l質量部
(Example 1)
An antistatic layer coating solution was obtained with the blending amounts shown in Table 2.
(Antistatic layer coating solution)
Water 32.96 parts by mass Isopropyl alcohol 49.45 parts by mass Conductive polymer 8.33 parts by mass Crosslinking agent a-1_1 (manufactured by Nippon Carbide Co., Ltd., melamine resin, imino-methylol type, solid content concentration 70% by mass)
0.86 parts by mass of long-chain alkyl-containing compound b-1 having at least one reactive group (solid concentration: 20% by mass)
6.5 parts by mass Conductive agent 1.8 parts by mass Surfactant (manufactured by Nissin Chemical Co., Ltd., Dynol 604, solid content concentration 100% by mass)
0. part by mass
(帯電防止層の形成)
得られた帯電防止層塗工液を厚み75μmのA4360(コスモシャイン(登録商標)、東洋紡社製)の片面に、wet膜厚が4.5μmになるようにグラビアコーターを用いて塗工し、熱風乾燥炉で140℃30秒乾燥・硬化させて帯電防止層付きのポリエステルフィルムを得た。
(Formation of antistatic layer)
The obtained antistatic layer coating solution was coated on one side of A4360 (Cosmoshine (registered trademark), manufactured by Toyobo Co., Ltd.) having a thickness of 75 μm using a gravure coater so that the wet film thickness was 4.5 μm. It was dried and cured in a hot air drying oven at 140° C. for 30 seconds to obtain a polyester film with an antistatic layer.
(実施例2、14、15)
 組成を表2のものに変更した以外は、実施例1と同様の手順で帯電防止層を形成した。
(Examples 2, 14, 15)
An antistatic layer was formed in the same procedure as in Example 1, except that the composition was changed to that shown in Table 2.
(実施例3)
 表2のような組成で架橋剤a-2(Baxenden社製、ブロックイソシアネート、固形分濃度40質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Example 3)
An antistatic layer was formed in the same manner as in Example 1, except that the composition shown in Table 2 was changed to the cross-linking agent a-2 (Baxenden, blocked isocyanate, solid content concentration: 40% by mass).
(実施例4、13)
 表2のような組成で架橋剤a-3_1(日清紡ケミカル社製、カルボジイミド、固形分濃度40質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Examples 4 and 13)
An antistatic layer was formed in the same manner as in Example 1, except that the cross-linking agent a-3_1 (manufactured by Nisshinbo Chemical Co., Ltd., carbodiimide, solid content concentration 40% by mass) was used with the composition shown in Table 2.
(実施例5)
 表2のような組成で架橋剤a-3_2(日清紡ケミカル社製、カルボジイミド、固形分濃度41質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Example 5)
An antistatic layer was formed in the same manner as in Example 1, except that the composition shown in Table 2 was used as a cross-linking agent a-3_2 (carbodiimide manufactured by Nisshinbo Chemical Co., Ltd., solid content concentration 41% by mass).
(実施例6~7)
 表2のような組成で架橋剤a-1_2(日本カーバイド社製、メラミン樹脂、イミノタイプ、固形分濃度80質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Examples 6-7)
An antistatic layer was formed in the same manner as in Example 1, except that the cross-linking agent a-1_2 (manufactured by Nippon Carbide Co., Ltd., melamine resin, imino type, solid content concentration 80% by mass) was used with the composition shown in Table 2. .
(実施例8)
 表2のような組成で架橋剤a-1_3(日本カーバイド社製、メラミン樹脂、イミノタイプ、固形分濃度70質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Example 8)
An antistatic layer was formed in the same manner as in Example 1 except that the cross-linking agent a-1_3 (manufactured by Nippon Carbide Co., Ltd., melamine resin, imino type, solid content concentration 70% by mass) was used with the composition shown in Table 2. .
(実施例9)
 表2のような組成で架橋剤a-1_4(日本カーバイド社製、メラミン樹脂、イミノ・メチロールタイプ、固形分濃度70質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Example 9)
An antistatic layer was formed in the same manner as in Example 1 except that the cross-linking agent a-1_4 (manufactured by Nippon Carbide Co., Ltd., melamine resin, imino-methylol type, solid content concentration 70% by mass) was used with the composition shown in Table 2. formed.
(実施例10)
 表2のような組成で架橋剤a-1_5(日本カーバイド社製、メラミン樹脂、イミノ・メチロールタイプ、固形分濃度70質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Example 10)
An antistatic layer was formed in the same manner as in Example 1 except that the cross-linking agent a-1_5 (manufactured by Nippon Carbide Co., Ltd., melamine resin, imino-methylol type, solid content concentration 70% by mass) was used with the composition shown in Table 2. formed.
(実施例11)
 表2のような組成で架橋剤a-1_6(日本カーバイド社製、メラミン樹脂、フルエーテルタイプ、固形分濃度70質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Example 11)
An antistatic layer was formed in the same manner as in Example 1, except that the cross-linking agent a-1_6 (manufactured by Nippon Carbide Co., Ltd., melamine resin, full ether type, solid content concentration 70% by mass) was used with the composition shown in Table 2. bottom.
(実施例12)
 表2のような組成で架橋剤a-1_7(日本カーバイド社製、メラミン樹脂、メチロールタイプ、固形分濃度70質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Example 12)
An antistatic layer was formed in the same procedure as in Example 1, except that the cross-linking agent a-1_7 (manufactured by Nippon Carbide Co., Ltd., melamine resin, methylol type, solid content concentration 70% by mass) was used with the composition shown in Table 2. .
(実施例16)
 表2のような組成で架橋剤a-1_1、b-1とはステアリルメタクリレートの量が異なる長鎖アルキル含有化合物b-2(固形分濃度20質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Example 16)
The same as in Example 1 except that the long-chain alkyl-containing compound b-2 (solid content concentration: 20% by mass) having a composition as shown in Table 2 and having a different amount of stearyl methacrylate from the cross-linking agents a-1_1 and b-1 was used. An antistatic layer was formed by the procedure of.
(実施例17)
 表2のような組成で架橋剤a-1_1、b-1とは水酸基価が異なる長鎖アルキル含有化合物b-3(固形分濃度20質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Example 17)
The same procedure as in Example 1 except that the long-chain alkyl-containing compound b-3 (solid content concentration 20% by mass) having a composition as shown in Table 2 and having a hydroxyl value different from that of the cross-linking agents a-1_1 and b-1 was used. to form an antistatic layer.
(実施例18)
 表2のような組成で架橋剤a-1_1、b-1とは水酸基価が異なる長鎖アルキル含有化合物b-4(固形分濃度20質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Example 18)
The same procedure as in Example 1 except that the long-chain alkyl-containing compound b-4 (solid content concentration 20% by mass) having a composition as shown in Table 2 and having a hydroxyl value different from that of the cross-linking agents a-1_1 and b-1 was used. to form an antistatic layer.
(比較例1)
 表2のような組成で架橋剤a-1_1、反応基を有さない長鎖アルキル含有化合物b-5(中京油脂社製、レゼムT―738、固形分濃度20質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Comparative example 1)
Except for using a cross-linking agent a-1_1 and a long-chain alkyl-containing compound b-5 (manufactured by Chukyo Yushi Co., Ltd., Resem T-738, solid content concentration 20% by mass) with the composition shown in Table 2, An antistatic layer was formed in the same procedure as in Example 1.
(比較例2)
 表2のような組成で架橋剤a-1_1、反応基を有さない長鎖アルキル含有化合物b-6(ライオン・スペシャリティ・ケミカルズ製、ピーロイル406、固形分15質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Comparative example 2)
Except for using a cross-linking agent a-1_1 and a long-chain alkyl-containing compound b-6 (Lion Specialty Chemicals, Pyroyl 406, solid content 15% by mass) having a composition as shown in Table 2, An antistatic layer was formed in the same procedure as in Example 1.
(比較例3)
 表2のような組成で架橋剤a-1_1を使用し、長鎖アルキル含有アクリル樹脂を含まない点以外は、実施例1と同様の手順で帯電防止層を形成した。
(Comparative Example 3)
An antistatic layer was formed in the same manner as in Example 1 except that the cross-linking agent a-1_1 was used with the composition shown in Table 2 and no long-chain alkyl-containing acrylic resin was included.
 以下、表2Aから表3Dに、各種組成及び測定値などを示す。 Tables 2A to 3D below show various compositions and measured values.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed this time are illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above-described embodiments, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.
 実施例で得られた本発明の積層ポリエステルフィルムは、ポリエステルフィルムの少なくとも片面に付着エネルギーの低い帯電防止層を積層した帯電防止フィルムを提供することで、本帯電防止フィルムに粘着層を積層し保護フィルムとして用いた場合にも、保護フィルムの貼合せ時の貼合ロールとの身離れ性が良く、剥離時に剥離帯電や異物付着を抑制した保護フィルムを提供することができる。 The laminated polyester film of the present invention obtained in Examples provides an antistatic film in which an antistatic layer with low adhesion energy is laminated on at least one side of a polyester film, and an adhesive layer is laminated on the antistatic film for protection. Even when it is used as a film, it is possible to provide a protective film that is easy to separate from the laminating roll when laminating the protective film, and that suppresses separation electrification and adhesion of foreign matter during peeling.
 一方、比較例1は、バインダー樹脂(B)である、少なくとも1つの反応性基を有する、長鎖アルキル含有化合物を含まないため、水接触角が本発明の範囲から外れ、帯電防止層上へ粘着層を加工するときの塗工性が悪化し欠点が多いフィルムが得られた。
 比較例2は、バインダー樹脂(B)である、少なくとも1つの反応性基を有する、長鎖アルキル含有化合物を含まないため、帯電防止層上へ粘着層を加工するときの塗工性が悪化し欠点が多いフィルムが得られた。
 比較例3は、バインダー樹脂(B)である、少なくとも1つの反応性基を有する、長鎖アルキル含有化合物を含まないため、水接触角が本発明の範囲から外れ、帯電防止層上へ粘着層を加工するときの塗工性が悪化し欠点が多いフィルムが得られた。
On the other hand, Comparative Example 1 does not contain a long-chain alkyl-containing compound having at least one reactive group, which is the binder resin (B). A film with many defects was obtained because the coatability deteriorated when the adhesive layer was processed.
Since Comparative Example 2 does not contain a long-chain alkyl-containing compound having at least one reactive group, which is the binder resin (B), the coating properties deteriorated when the adhesive layer was processed onto the antistatic layer. A film with many defects was obtained.
Comparative Example 3 does not contain a long-chain alkyl-containing compound having at least one reactive group, which is the binder resin (B). A film with many defects was obtained because the coatability deteriorated during processing.
 本発明は、帯電防止フィルムおよび帯電防止フィルムに粘着層を積層した粘着フィルムに関するものであり、特に光学部材(例えば、有機ELや液晶ディスプレイの構成部材)などの保護フィルム関する。
 
 
 
TECHNICAL FIELD The present invention relates to an antistatic film and an adhesive film obtained by laminating an adhesive layer on an antistatic film, and more particularly to a protective film for optical members (for example, constituent members of organic EL and liquid crystal displays).


Claims (11)

  1.  基材の少なくとも片面に帯電防止層を有する積層ポリエステルフィルムであって、
     前記帯電防止層は、導電性高分子、架橋剤(A)、バインダー樹脂(B)を含む組成物を硬化した層であり、
    前記バインダー樹脂(B)は、少なくとも1つの反応性基を有する、長鎖アルキル含有化合物であり、
     前記帯電防止層は、以下の(1)-(3)を満たす積層ポリエステルフィルム:
    (1)表面抵抗率:3[logΩ/□]以上9[logΩ/□]以下
    (2)水の静的な接触角:70°以上95°以下
    (3)水の付着エネルギー:3.5mJ/m以下。
    A laminated polyester film having an antistatic layer on at least one side of the substrate,
    The antistatic layer is a layer obtained by curing a composition containing a conductive polymer, a cross-linking agent (A), and a binder resin (B),
    The binder resin (B) is a long-chain alkyl-containing compound having at least one reactive group,
    The antistatic layer is a laminated polyester film that satisfies the following (1)-(3):
    (1) Surface resistivity: 3 [logΩ/□] or more and 9 [logΩ/□] or less (2) Static contact angle of water: 70° or more and 95° or less (3) Adhesion energy of water: 3.5 mJ/ m2 or less.
  2.  積層ポリエステルフィルムの全光線透過率が80%以上であり、ヘイズが3.0%以下である請求項1記載の積層ポリエステルフィルム。 The laminated polyester film according to claim 1, wherein the laminated polyester film has a total light transmittance of 80% or more and a haze of 3.0% or less.
  3.  積層ポリエステルフィルムを140℃で10分加熱後のヘイズが、加熱前のヘイズの1.5倍以下である請求項1または2記載の積層ポリエステルフィルム。 The laminated polyester film according to claim 1 or 2, wherein the haze after heating the laminated polyester film at 140°C for 10 minutes is 1.5 times or less the haze before heating.
  4.  前記帯電防止層は、アルコールによる拭取り試験後の表面抵抗率変化が、前記試験前の表面抵抗率の1.3倍以下である請求項1~3の何れかに記載の積層ポリエステルフィルム。 The laminated polyester film according to any one of claims 1 to 3, wherein the antistatic layer has a surface resistivity change after a wiping test with alcohol that is 1.3 times or less the surface resistivity before the test.
  5.  前記導電性高分子が、前記帯電防止層における全固形分100質量%に対し、5質量%以上50質量%以下で含まれる、請求項1~4の何れかに記載の積層ポリエステルフィルム。 The laminated polyester film according to any one of claims 1 to 4, wherein the conductive polymer is contained in an amount of 5% by mass or more and 50% by mass or less with respect to 100% by mass of the total solid content in the antistatic layer.
  6.  架橋剤(A)と、バインダー樹脂(B)が帯電防止層における全固形分100質量%に対し以下の範囲で含まれる、請求項1~5のいずれかに記載の積層ポリエステルフィルム。
    (A)15質量%以上75質量%以下
    (B)10質量%以上70質量%以下
    The laminated polyester film according to any one of claims 1 to 5, wherein the cross-linking agent (A) and the binder resin (B) are contained in the following ranges with respect to 100% by mass of the total solid content in the antistatic layer.
    (A) 15% by mass or more and 75% by mass or less (B) 10% by mass or more and 70% by mass or less
  7.  バインダー樹脂(B)は、水酸基価が20mgKOH/g以上300mgKOH/g以下である請求項1~6のいずれかに記載の積層ポリエステルフィルム。 The laminated polyester film according to any one of claims 1 to 6, wherein the binder resin (B) has a hydroxyl value of 20 mgKOH/g or more and 300 mgKOH/g or less.
  8.  バインダー樹脂(B)は、カルボキシル基を含む請求項1~7のいずれかに記載の積層ポリエステルフィルム。 The laminated polyester film according to any one of claims 1 to 7, wherein the binder resin (B) contains a carboxyl group.
  9.  架橋剤(A)がアクリルアミド、メラミン樹脂、カルボジイミド、オキサゾリン、イソシアネート及びアジリジンから選択される少なくとも1種を含む請求項1~8記載のいずれかに記載の積層ポリエステルフィルム。 The laminated polyester film according to any one of claims 1 to 8, wherein the cross-linking agent (A) contains at least one selected from acrylamide, melamine resin, carbodiimide, oxazoline, isocyanate and aziridine.
  10.  積層ポリエステルフィルムは、実質的にシリコーン化合物を含まない、請求項1~9のいずれかに記載の積層ポリエステルフィルム。 The laminated polyester film according to any one of claims 1 to 9, wherein the laminated polyester film does not substantially contain a silicone compound.
  11.  請求項1~11記載の積層ポリエステルフィルムの少なくとも片面に粘着層を積層した、保護フィルム。
     
     
    A protective film obtained by laminating an adhesive layer on at least one side of the laminated polyester film according to any one of claims 1 to 11.

PCT/JP2022/026615 2021-07-05 2022-07-04 Antistatic film and protective film WO2023282232A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280044847.2A CN117545629A (en) 2021-07-05 2022-07-04 Antistatic film and protective film
JP2023533122A JPWO2023282232A1 (en) 2021-07-05 2022-07-04
KR1020237043629A KR20240009487A (en) 2021-07-05 2022-07-04 Anti-static film and protective film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021111306 2021-07-05
JP2021-111306 2021-07-05

Publications (1)

Publication Number Publication Date
WO2023282232A1 true WO2023282232A1 (en) 2023-01-12

Family

ID=84800619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026615 WO2023282232A1 (en) 2021-07-05 2022-07-04 Antistatic film and protective film

Country Status (4)

Country Link
JP (1) JPWO2023282232A1 (en)
KR (1) KR20240009487A (en)
CN (1) CN117545629A (en)
WO (1) WO2023282232A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039264A1 (en) * 2017-08-24 2019-02-28 東洋紡株式会社 Mold release film for production of ceramic green sheet
WO2020129962A1 (en) * 2018-12-20 2020-06-25 東洋紡株式会社 Release film
JP2020185762A (en) * 2019-05-17 2020-11-19 東洋紡株式会社 Release film for manufacturing ceramic green sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101992304B1 (en) 2016-07-27 2019-06-25 두산중공업 주식회사 Recovery apparatus and recovery method of diluted draw solution for saving energy expenditure
JP2018172473A (en) 2017-03-31 2018-11-08 リンテック株式会社 Adhesive film for display protection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039264A1 (en) * 2017-08-24 2019-02-28 東洋紡株式会社 Mold release film for production of ceramic green sheet
WO2020129962A1 (en) * 2018-12-20 2020-06-25 東洋紡株式会社 Release film
JP2020185762A (en) * 2019-05-17 2020-11-19 東洋紡株式会社 Release film for manufacturing ceramic green sheet

Also Published As

Publication number Publication date
JPWO2023282232A1 (en) 2023-01-12
CN117545629A (en) 2024-02-09
KR20240009487A (en) 2024-01-22

Similar Documents

Publication Publication Date Title
TWI445622B (en) Laminated polyester film and anti-reflectance film
JP6593506B2 (en) Release film for manufacturing ceramic green sheets
KR101805522B1 (en) Laminated film
WO2013146155A1 (en) Coated film
JP5385502B2 (en) Polyester film having antistatic coating layer
JP6500821B2 (en) Laminated film
CN107405909B (en) Mold release film
JP5370124B2 (en) Polyester film for molding and hard coat film for molding
JP5402607B2 (en) Hard coat film for molding and molded body
TWI573688B (en) Laminated polyester film
JP2012000993A (en) Polyester film having antistatic coated layer
JP5625556B2 (en) Antistatic film
TWI398498B (en) Anti-static polyester film containing acetylene diol surfactant and manufacturing method thereof
WO2023282232A1 (en) Antistatic film and protective film
JP6194617B2 (en) Laminated film and method for producing the same
JP5544861B2 (en) Easy-adhesive thermoplastic film
JP4003258B2 (en) Antistatic polyester film
KR101693792B1 (en) Anti-static polyester film having excellent oligomer blocking property
WO2023153180A1 (en) Antistatic film
WO2023153181A1 (en) Antistatic film
JP2022055221A (en) Release film
WO2024018993A1 (en) Mold release film with antistatic layer
JP2011230516A (en) Polyester film with antistatic coating layer
KR20230155885A (en) Optical polyester film and laminated film including the same
WO2022220043A1 (en) Antistatic polyester film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023533122

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237043629

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237043629

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280044847.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE