WO2024018993A1 - Mold release film with antistatic layer - Google Patents

Mold release film with antistatic layer Download PDF

Info

Publication number
WO2024018993A1
WO2024018993A1 PCT/JP2023/025924 JP2023025924W WO2024018993A1 WO 2024018993 A1 WO2024018993 A1 WO 2024018993A1 JP 2023025924 W JP2023025924 W JP 2023025924W WO 2024018993 A1 WO2024018993 A1 WO 2024018993A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
antistatic
antistatic layer
mass
less
Prior art date
Application number
PCT/JP2023/025924
Other languages
French (fr)
Japanese (ja)
Inventor
良太 粂井
由佳 天野
悠介 柴田
充晴 中谷
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2024018993A1 publication Critical patent/WO2024018993A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00

Definitions

  • the present invention relates to a release film for producing ceramic green sheets. More specifically, even when a resin sheet such as a ceramic green sheet is thinned, an antistatic layer can suppress the generation of pinholes, prevent local thickness variations, and reduce unwinding static electricity. Regarding a mold release film. In particular, it relates to a release film used in the production of ceramic green sheets.
  • a ceramic slurry or the like is molded onto a release film, once it is rolled, and then the process proceeds to the next step.
  • ceramic green sheets have become thinner, not only the smoothness of the surface of the release layer, but also the back surface of the release film (the side opposite to the release layer), which comes into contact with the ceramic green sheet in a rolled state, has improved.
  • the smoothness of the back surface of the film is also attracting attention.
  • a release film with a high surface smoothness tends to cause blocking when wound up into a roll, which tends to cause problems such as charging when the roll is unrolled.
  • an antistatic function it is known to add an antistatic function to the release film by containing an antistatic agent or the like.
  • Patent Documents 1 and 2 disclose a technique in which an antistatic layer is provided on the release layer side to provide an antistatic function.
  • Patent Document 3 discloses a technique for imparting an antistatic function to the back surface of the film.
  • Japanese Patent Application Publication No. 2012-224011 Japanese Patent Application Publication No. 2003-251756 Japanese Patent Application Publication No. 02-073833 (Japanese Patent Publication No. 7-68388)
  • the components contained in the antistatic layer may aggregate, resulting in deterioration of the surface smoothness of the release layer, and the effect of the antistatic layer may inhibit curing. This may lead to deterioration of mold performance.
  • an antistatic agent is added to the release layer, which may lead to deterioration of the release performance.
  • an alkyl ammonium salt or the like is applied to the base material of the release film by inline coating during base material film formation.
  • Those with an antistatic layer have been used.
  • an antistatic layer By providing an antistatic layer on the back side, there is no negative effect on the surface of the mold release layer, but since the surface of the antistatic layer is difficult to slip, the antistatic layer may fall off due to contact with guide rolls, etc. during ceramic green sheet molding. This could easily cause foreign matter to be generated.
  • the present invention has been made against the background of the problems of the prior art. That is, the object of the present invention is to provide a highly smooth mold release surface and back surface, to have good releasability, antistatic properties, easy sliding properties, and adhesion, and to have excellent antistatic properties and easy slipping properties even after long-term storage. An object of the present invention is to provide a release film having an antistatic layer that does not easily fall off even when rubbed.
  • the present invention can exhibit the following aspects.
  • the antistatic layer is a layer formed from an antistatic layer forming composition containing an antistatic agent and a thermosetting binder resin,
  • the antistatic agent includes a conductive polymer,
  • the base material does not substantially contain inorganic particles
  • the first functional layer is a slip coating layer
  • the slip coating layer includes particles
  • thermosetting binder resin contains at least one selected from acrylamide resin, melamine resin, polycarbodiimide resin, and oxazoline resin. film.
  • thermosetting binder resin when the total solid content of the conductive polymer and thermosetting binder resin is 100% by mass, the content of the thermosetting binder resin is 40% by weight or more and 95% by weight.
  • the release film with an antistatic layer according to any one of [1] to [4] below.
  • the antistatic layer has a surface roughness Sa of 1 nm or more and 25 nm or less, and a maximum peak height P of 60 nm or more and 500 nm or less [1] to [5]
  • the release film with an antistatic layer according to any one of the above.
  • the surface roughness Sa of the surface opposite to the base material is 0.1 nm or more and 5 nm or less, and the maximum peak height P is 1 nm or more and 50 nm or less [1] to [6] ]
  • the release film with an antistatic layer according to any one of the above.
  • the amount of charge when rewinding at 100 m/min is more than -2 kV and less than +2 kV [1] to [7]
  • the release film with an antistatic layer according to any one of the above.
  • a release film with an antistatic layer suitable for manufacturing green sheets is provided.
  • the release film with an antistatic layer of the present invention comprises a base material, an antistatic layer provided on one surface of the base material via a first functional layer, and a release film provided on the other surface of the base material. and a release layer,
  • the antistatic layer is a layer formed from an antistatic layer forming composition containing an antistatic agent and a thermosetting binder resin,
  • the antistatic agent contains a conductive polymer,
  • This is a release film with an antistatic layer that has a surface resistivity (log ⁇ / ⁇ ) of 3 or more and 10 or less on the side where the antistatic layer is provided.
  • the release film with an antistatic layer of the present invention is a release film with an antistatic layer for producing a ceramic green sheet. (Hereinafter, it may simply be referred to as a release film with an antistatic layer).
  • the present invention can exhibit excellent mold release performance while having antistatic properties.
  • the mold release layer of the present invention does not contain an antistatic agent, the mold release layer can exhibit high smoothness, hardness, and mold release properties without deteriorating mold release performance.
  • the surface of the antistatic layer can exhibit slipperiness. Furthermore, the present invention can prevent the antistatic layer from falling off, which may occur due to contact with guide rolls or the like during ceramic green sheet molding. Therefore, the generation of foreign matter during molding of the ceramic green sheet can also be suppressed.
  • the present invention is suitable for long-term storage and transportation in a roll state, for example, when transporting a release film from Japan to overseas, and for example, suppresses the antistatic layer from falling off from the film during transport. can.
  • the film preferably used as a base material in the present invention is a film composed of a polyester resin, and a polyester film mainly containing at least one selected from polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate is preferable. .
  • the film may be made of a polyester in which a third component monomer is copolymerized as part of the dicarboxylic acid component or diol component of the polyester as described above.
  • polyethylene terephthalate film is most preferred from the viewpoint of balance between physical properties and cost.
  • polyester film described above may be a single layer or a multilayer. Further, each of these layers may contain various additives in the polyester resin as needed, as long as the desired effects of the present invention are achieved.
  • additives include antioxidants, light stabilizers, antigelation agents, organic wetting agents, antistatic agents, and ultraviolet absorbers.
  • the polyethylene terephthalate film that is the base material in the present invention does not substantially contain particles with a particle size of 1.0 ⁇ m or more.
  • the layer forming the surface in contact with the release layer does not substantially contain particles with a particle size of 1.0 ⁇ m or more.
  • particles having a particle size of less than 1.0 ⁇ m and 1 nm or more may be present in the base material. Because the base material does not substantially contain particles with a particle size of 1.0 ⁇ m or more, such as inorganic particles, the mold release layer can exhibit high smoothness and mold release properties, and can be applied to resin sheets such as green sheets in the base material. It is possible to reduce the occurrence of defects caused by transfer of the particle shape.
  • the base material does not contain particles with a particle size of less than 1.0 ⁇ m, so that it is possible to more effectively suppress problems caused by transfer of the particle shape in the base material to the resin sheet.
  • the base material of the present invention for example, a polyethylene terephthalate film, is preferably a film that does not substantially contain inorganic particles. Thereby, it is possible to more effectively suppress the transfer of the particle shape in the base material to the resin sheet and the occurrence of defects.
  • a base material that does not substantially contain particles with a particle size of less than 1.0 ⁇ m is preferably also substantially free of particles with a particle size of 1.0 ⁇ m or more.
  • substantially no particles means, for example, in the case of inorganic particles less than 1.0 ⁇ m, the amount of inorganic elements determined by fluorescent X-ray analysis is 50 ppm or less, preferably 10 ppm. Hereinafter, it most preferably means a content that is below the detection limit. Even if particles are not actively added to the film, contaminants derived from foreign substances or dirt attached to the raw resin or the line or equipment in the film manufacturing process are peeled off and mixed into the film. This is because there is. Further, “substantially not containing particles with a particle size of 1.0 ⁇ m or more” means that particles with a particle size of 1.0 ⁇ m or more are not included.
  • the release film with an antistatic layer of the present invention has an antistatic layer provided on one surface of a base material via a first functional layer.
  • a first functional layer By laminating the antistatic layer, it is possible to suppress the adhesion of foreign matter, and furthermore, it is possible to suppress peeling defects due to electrostatic force.
  • the antistatic layer of the present invention also has slipperiness.
  • the antistatic layer is a layer formed from an antistatic layer forming composition containing an antistatic agent and a thermosetting binder resin.
  • the composition for forming an antistatic layer is a layer obtained by curing a composition containing a conductive polymer and a thermosetting binder resin. Such a composition may simply be referred to as an antistatic layer forming composition.
  • the means for laminating the antistatic layer is not particularly limited, and known methods such as coating, vacuum deposition, and bonding can be used.
  • a coating liquid containing an antistatic agent from the viewpoint of shortening the manufacturing process and stable film formation.
  • the antistatic layer of the present invention is a layer formed from an antistatic layer forming composition containing an antistatic agent and a thermosetting binder resin, and the antistatic agent contains a conductive polymer.
  • the conductive polymer in the present invention is a polymer capable of imparting antistatic properties, and may be a polymer utilizing ionic conduction such as a cationic compound, a ⁇ -electron conjugated conductive polymer, or the like. From the viewpoint of antistatic properties under low humidity, it is preferable to use a ⁇ -electron conjugated conductive polymer. In addition, ⁇ -electron conjugated conductive polymers can maintain a high level of antistatic performance without depending on moisture in the air, so they have good antistatic performance in various environments where the film is used. preferable.
  • an antistatic agent can be used in combination as long as the effects of the conductive polymer according to the present invention are not impaired.
  • the antistatic agent may be a polymer using ionic conduction such as a cationic compound, a ⁇ -electron conjugated conductive polymer, other than the conductive polymer in the present invention, a surfactant, a silicon oxide compound, etc. , a conductive metal compound, etc. can be used.
  • Examples of ⁇ -electron conjugated conductive polymers include aniline polymers containing aniline or its derivatives as a constitutional unit, pyrrole polymers containing pyrrole or its derivatives as a constitutional unit, and acetylene polymers containing acetylene or its derivatives as a constitutional unit.
  • Examples include polymers, thiophene-based polymers containing thiophene or its derivatives as a constitutional unit, and the like.
  • the ⁇ -electron conjugated conductive polymer does not have a nitrogen atom, and in particular, thiophene-based polymers containing thiophene or its derivatives as a constituent unit have a disadvantage in terms of transparency.
  • the conductive polymer is a polythiophene-based conductive polymer, and polyalkylenedioxythiophene is particularly suitable.
  • polyalkylene dioxythiophene include polyethylene dioxythiophene, polypropylene dioxythiophene, poly(ethylene/propylene) dioxythiophene, and the like.
  • a doping agent may be added, for example, per 100 parts by mass of the polymer containing thiophene or its derivatives as a constituent unit. It can be blended from 0.1 parts by mass to 500 parts by mass. When the amount is too large, electron transfer becomes difficult, resulting in a problem of deterioration of antistatic performance.On the other hand, when it is small, there is a problem of deterioration of dispersibility in solvents.
  • Examples of the doping agent include LiCl, R 1-30 COOLi (R 1-30 : saturated hydrocarbon group having 1 to 30 carbon atoms), R 1-30 SO 3 Li, R 1-30 COONa, R 1-30 SO3Na , R1-30COOK , R1-30SO3K , tetraethylammonium , I2 , BF3Na , BF4Na , HClO4 , CF3SO3H , FeCl3 , tetracyanoquinoline (TCNQ) , Na 2 B 10 Cl 10 , phthalocyanine, porphyrin, glutamic acid, alkyl sulfonate, polystyrene sulfonate Na (K, Li) salt, styrene/styrene sulfonate Na (K, Li) salt copolymer, polystyrene sulfonate anion , styrene sulfonic acid/
  • the antistatic agent may include a conductive polymer, and the antistatic agent may be a conductive polymer.
  • the antistatic agent contained in the antistatic layer such as a conductive polymer, is contained in an amount of 5% by mass or more when the total solid content of the antistatic agent and thermosetting binder resin is 100% by mass. It is preferably contained in an amount of 10% by mass or more, and more preferably in an amount of 10% by mass or more.
  • the content of the ⁇ -electron conjugated conductive polymer specified in the present application in the antistatic layer includes: This refers to the total amount of the conductive polymer and the doping agent.
  • the antistatic agent in such an amount, good antistatic properties can be imparted. Further, by adding such an amount, a large number of minute irregularities derived from the antistatic agent are formed, the pressure applied to the particles derived from the antistatic agent is dispersed, and the dropping of the antistatic agent can be suppressed, which is preferable.
  • the antistatic agent such as a conductive polymer
  • the antistatic layer is preferably 60% by mass or less, more preferably 50% by mass, based on 100% by mass of the total solid content in the antistatic layer. It is as follows.
  • the content of the ⁇ -electron conjugated conductive polymer specified in the present application in the antistatic layer includes: This refers to the total amount of the conductive polymer and the doping agent.
  • Containing the antistatic agent in such an amount is preferable because it does not cause interaction with the thermosetting binder resin, makes coarse aggregation of particles derived from the antistatic agent less likely to occur, and prevents the antistatic layer from falling off.
  • the antistatic agent when the total solid content of the antistatic agent and thermosetting binder resin is 100% by mass, the antistatic agent is contained in an amount of 5% by mass or more and 60% by mass or less, and 10% by mass or more and 50% by mass or less. It may be.
  • the antistatic agent is contained in an amount of 10% by mass or more and less than 50% by mass, and is contained in an amount of 10% by mass or more and less than 45% by mass.
  • the maximum protrusion height P also referred to as maximum peak height P
  • the powder falling off of the antistatic layer can be suppressed.
  • an antistatic layer is provided on one surface of a base material via a first functional layer. Improving the adhesion between the base material, the first functional layer, and the antistatic layer results in improved adhesion between the antistatic layer and the base material. By improving the adhesion, it is possible to prevent the antistatic layer from falling off, which may occur due to contact with a guide roll or the like during ceramic green sheet molding, for example. Therefore, the generation of foreign matter during molding of the ceramic green sheet can also be suppressed.
  • the present invention can provide a release film having an antistatic layer that does not easily fall off even in response to external factors such as rubbing.
  • the antistatic layer in order to bring the antistatic layer into close contact with the base material, is preferably formed from a composition containing a thermosetting binder resin. Containing a thermosetting binder resin is preferable because durability is improved and deterioration in antistatic performance is suppressed even when processed under high temperature and high humidity conditions.
  • Specific thermosetting binder resins include acrylamide, melamine, carbodiimide, and oxazoline binders.
  • thermosetting binder resin includes at least one selected from acrylamide resin, melamine resin, polycarbodiimide resin, and oxazoline resin.
  • thermosetting binder resins described above urea-based, epoxy-based, isocyanate-based, polycarbodiimide-based, and aziridine-based resins may be used in combination without any particular problem. Further, in order to promote the crosslinking reaction, a catalyst or the like may be used as appropriate.
  • the first functional layer contains the components described below.
  • the functions of each layer can be fully exhibited by selecting the components described in this specification according to the function of each layer.
  • to provide a release film having antistatic properties, slipperiness, and adhesion, and having an antistatic layer that has excellent antistatic properties and slipperiness even after long-term storage, and does not easily fall off even when rubbed. Can be done.
  • thermosetting binder resin examples include full ether type melamine resin, methylol type melamine resin, imino type melamine resin, and imino-methylol type melamine resin.
  • full ether type melamine resins are most preferred from the viewpoint of curability of the coating film.
  • thermosetting binder resin contained in the antistatic layer of the present invention has a content of 40% by mass when the total solid content of the conductive polymer and the thermosetting binder resin is 100% by mass. It is at least 95% by weight.
  • thermosetting binder resin preferably accounts for 50% by mass or more based on 100% by mass of the total solid content in the antistatic layer. If it is 40% by mass or more, a strong coating film with a higher crosslinking density can be obtained, and the adhesion with the easy-to-slip coating layer and solvent resistance are favorable, so it is preferable. Furthermore, if it is 50% by mass or more, it is preferable because it will result in a stronger coating film and will also have better antistatic performance and slipperiness over time.
  • thermosetting binder resin is preferably contained in an amount of 95% by mass or less, and may be 90% by mass or less, based on 100% by mass of the total solid content in the antistatic layer. A content of 95% by mass or less is preferable because it can be used without affecting antistatic performance.
  • a surfactant may be used in the antistatic layer in the present invention to improve the appearance.
  • surfactants include nonionic surfactants such as acetylene glycol, polyoxyethylene octylphenyl ether, polyoxyethylene alkyl ether, polyoxyethylene sorbitan fatty acid ester, and fluoroalkyl carboxylic acids, perfluoroalkyl carboxylic acids, and perfluoroalkyl carboxylic acids.
  • Fluorine surfactants such as fluoroalkylbenzenesulfonic acid, perfluoroalkyl quaternary ammonium, perfluoroalkyl polyoxyethylene ethanol, and silicone surfactants can be used.
  • the antistatic layer may contain a lubricant, a pigment, an ultraviolet absorber, a silane coupling agent, etc., as necessary, as long as the purpose of the present invention is not impaired.
  • the thickness of the antistatic layer of the present invention is preferably 0.005 ⁇ m or more and 1 ⁇ m or less. More preferably, it is 0.01 ⁇ m or more and 0.5 ⁇ m or less, and still more preferably 0.01 ⁇ m or more and 0.2 ⁇ m or less. It is preferable that the thickness of the antistatic layer is 0.005 ⁇ m or more because an antistatic effect can be obtained. On the other hand, a thickness of 1 ⁇ m or less is preferable because less coloring occurs and transparency increases.
  • the surface resistivity of the antistatic layer of the present invention is 10 [log ⁇ / ⁇ ] or less. More preferably, it is 9 [log ⁇ / ⁇ ] or less, and still more preferably 8 [log ⁇ / ⁇ ] or less. For example, it may be 6.0 [log ⁇ / ⁇ ] or less.
  • the surface resistivity is 10 [log ⁇ / ⁇ ] or less.
  • charging of the film can be suppressed, and adhesion of foreign matter during the process can be prevented.
  • the lower limit of the surface resistivity of the antistatic film does not need to be particularly determined, but it is preferably 3.0 [log ⁇ / ⁇ ] or more. It is preferable that the surface resistivity of the antistatic film is 3.0 [log ⁇ / ⁇ ] or more because the antistatic agent can be used without being transferred to the ceramic green sheet.
  • the surface resistivity of the antistatic film is 3.2 [log ⁇ / ⁇ ] or more, and may be, for example, 3.5 [log ⁇ / ⁇ ] or more.
  • the surface resistivity of the antistatic film is 3.0 [log ⁇ / ⁇ ] or more and 8 [log ⁇ / ⁇ ] or less.
  • the method for forming the antistatic layer is not particularly limited.
  • a method is used in which the first functional layer is developed by coating or the like, the solvent and the like are removed by drying, and then heated and cured.
  • the drying temperature during solvent drying and thermosetting is preferably 180°C or lower, more preferably 150°C or lower.
  • the heating time is preferably 30 seconds or less, more preferably 20 seconds or less.
  • the temperature is 180° C. or lower, the flatness of the film is maintained, and there is little risk of causing thickness unevenness of the ceramic green sheet, which is preferable.
  • the temperature is 150° C. or lower, since the film can be processed without impairing its flatness, and the possibility of causing thickness unevenness of the ceramic green sheet is further reduced.
  • the first functional layer is provided between the substrate and the antistatic layer. In particular, it is provided to improve the adhesion between the base material and the antistatic layer. Moreover, the first functional layer can contribute to solving problems in the antistatic layer. For example, the conventional antistatic layer has a problem in that the antistatic layer easily falls off due to contact with a guide roll or the like during ceramic green sheet molding because its surface is difficult to slip. Further, there is a problem in that foreign matter may be generated due to this.
  • the first functional layer in the present invention can contribute to solving the above-mentioned problems that conventional antistatic layers have.
  • the first functional layer in the present invention is preferably a layer that can improve the adhesion between the base material and the antistatic layer and provide slipperiness to the antistatic layer.
  • the first functional layer that performs this function is referred to as a slip coating layer in the present invention.
  • the antistatic release film of the present invention preferably has an easily coated layer on one surface of the polyester base film as described above. That is, the antistatic layer is provided on one surface of the base material via the slippery coating layer.
  • the easy-sliding coating layer contains at least a binder resin and particles.
  • the binder resin constituting the easily coated layer in the present invention includes an acrylic resin.
  • the acrylic resin preferably has a hydroxyl group and a carboxyl group in its molecule. It is more preferable that the structural unit having a hydroxyl group is contained in an amount of 20 to 90 mol% based on 100 mol% of the total structural units. It is preferable that the content of the structural unit having a hydroxyl group is 20 mol % or more, since the water solubility of the acrylic resin can be maintained at an appropriate level.
  • the amount is 90 mol% or less, the hydroxyl groups of the acrylic resin and the particles contained in the easy-sliding coating layer do not significantly interact with each other, and the particles are uniformly dispersed, which is preferable.
  • hydroxyl groups In order to introduce hydroxyl groups into acrylic resin, monomers having hydroxy groups such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, etc. It is preferable to use a ring-opening adduct of ⁇ -butyrolactone or ⁇ -caprolactone to meth)acrylate as a copolymerization component. Among these, 2-hydroxyethyl (meth)acrylate is preferred in that it does not inhibit water solubility. Note that two or more of these may be used in combination. Needless to say, the acrylic resin referred to in the present invention includes methacrylic resin.
  • the hydroxyl value of the acrylic resin is preferably 10 mgKOH/g or more, more preferably 20 mgKOH/g or more, even more preferably 30 mgKOH/g or more. If the hydroxyl value of the acrylic resin is 10 mgKOH/g or more, the water solubility of the acrylic resin will be good, which is preferable. It is also preferable because it increases the number of reaction points with the thermosetting binder resin in the antistatic layer, making it possible to more firmly fix the antistatic layer to the base material.
  • the hydroxyl value of the acrylic resin is preferably 250 mgKOH/g or less, more preferably 230 mgKOH/g or less, even more preferably 200 mgKOH/g or less.
  • the hydroxyl value of the acrylic resin is 250 mgKOH/g or less, the hydroxyl groups of the acrylic resin and the particles contained in the easy-slip coating layer do not interact excessively, and the particles are uniformly dispersed, which is preferable.
  • the acrylic resin used in the present invention preferably has a carboxyl group in addition to a hydroxyl group.
  • a carboxyl group By having a carboxyl group, it becomes possible to form a crosslinked structure with a crosslinking agent and easily impart water solubility.
  • Examples include monomers containing a carboxy group such as (meth)acrylic acid, crotonic acid, itaconic acid, maleic acid, and fumaric acid, and monomers containing an acid anhydride group such as maleic anhydride and itaconic anhydride.
  • the monomer having a carboxyl group is preferably 4 mol% or more, more preferably 10 mol% or more, based on 100 mol% of the total constituent units of the acrylic resin. When the content is 4 mol % or more, it becomes easy to form a crosslinked structure in the slip coating layer and to impart water solubility, which is preferable.
  • the monomer having a carboxyl group is preferably at most 65 mol%, more preferably at most 50 mol%. When it is 65 mol % or less, the Tg of the resulting coating film will not be too high compared to the preferred range described below, and film forming properties and stretching suitability in in-line coating will be good, which is preferable.
  • Basic neutralizing agents include amine compounds such as ammonia, trimethylamine, triethylamine, and dimethylaminoethanol, and inorganic basic substances such as potassium hydroxide and sodium hydroxide.
  • an amine compound as a neutralizing agent. Among these, ammonia is most preferred since particle aggregation does not occur.
  • the neutralization rate is preferably 30 mol% to 95 mol%, more preferably 40 mol% to 90 mol%.
  • the neutralization rate is 30 mol% or more, the water solubility of the acrylic resin is sufficient, the acrylic resin can be easily dissolved when preparing a coating solution, and there is no risk of whitening of the coating surface after drying. preferable.
  • the neutralization rate is 95 mol % or less because the water solubility is not too high and it is easy to mix alcohol and the like in preparing the coating liquid.
  • the acid value of the acrylic resin is preferably 40 mgKOH/g or more, more preferably 50 mgKOH/g or more, still more preferably 60 mgKOH/g or more. If the acid value of the acrylic resin is 40 mgKOH/g or more, the number of crosslinking points with the oxazoline crosslinking agent or the carbodiimide crosslinking agent increases, so that a strong coating film with higher crosslinking density can be obtained, which is preferable.
  • the acid value of the acrylic resin is preferably 400 mgKOH/g or less, more preferably 350 mgKOH/g or less, even more preferably 300 mgKOH/g or less.
  • the carboxyl groups of the acrylic resin and the particles contained in the easy-sliding coating layer do not significantly interact with each other, and the particles are uniformly dispersed, which is preferable. It is preferable that the particles have good dispersibility because coarse protrusions will not occur on the easily coated surface and pinholes will not occur in the ceramic sheet.
  • the glass transition temperature (Tg) of the acrylic resin is preferably 50°C or higher, more preferably 55°C or higher, and still more preferably 60°C or higher. It is preferable that the glass transition temperature of the acrylic resin is 50° C. or higher because the hardness of the slip coating layer becomes appropriately high.
  • the glass transition temperature (Tg) of the acrylic resin is preferably 110°C or lower, more preferably 105°C or lower, even more preferably 100°C or lower. It is preferable that the glass transition temperature of the acrylic resin is 110° C. or lower because the coating film can be uniformly stretched without cracking in the stretching step after applying the easy-sliding coating layer.
  • (meth)acrylic monomers and non-acrylic vinyl monomers can be used as the Tg adjusting monomer copolymerized to bring the Tg within the above range.
  • Specific examples of (meth)acrylic monomers include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, and n-amyl (meth)acrylate.
  • n-hexyl (meth)acrylate 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate
  • examples include (meth)acrylic acid alkyl esters such as stearyl (meth)acrylate; nitrogen-containing acrylic monomers such as (meth)acrylamide, diacetone acrylamide, n-methylolacrylamide, and (meth)acrylonitrile; vinyl methacrylate; These can be used alone or in combination of two or more.
  • non-acrylic vinyl monomers examples include styrene monomers such as styrene, ⁇ -methylstyrene, vinyltoluene (a mixture of m-methylstyrene and p-methylstyrene), and chlorostyrene; vinyl acetate, vinyl propionate, and vinyl butyrate.
  • vinyl caproate vinyl caprylate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, vinyl pivalate, vinyl octylate, vinyl monochloroacetate, divinyl adipate
  • vinyl esters such as vinyl crotonate, vinyl sorbate, vinyl benzoate, and vinyl cinnamate
  • halogenated vinyl monomers such as vinyl chloride and vinylidene chloride; one type or two or more types can be used.
  • the monomer for Tg adjustment it is preferable to determine the appropriate amounts of the hydroxyl group-containing monomer and the carboxyl group-containing monomer, and then use the remainder as the remaining amount.
  • the Tg of the copolymer is determined by the following Fox formula.
  • Tg n Mass fraction of each monomer (mass%)
  • Tg n Tg (K) of homopolymer of each monomer
  • a component that lowers the surface free energy such as a long-chain alkyl group
  • an acrylic resin having an alkyl group having about 8 to 20 carbon atoms in the side chain of the acrylic resin is preferable.
  • a copolymer which is a polymer having (meth)acrylic acid ester as the main repeating unit and which contains a long chain alkyl group having 8 to 20 carbon atoms in the transesterified portion can also be suitably used.
  • the monomer having a long chain alkyl group in the monomer copolymerized for Tg adjustment is preferably 50 mol% or less, more preferably 40 mol% or less, based on 100 mol% of the total constituent units of the acrylic resin. If it is 50 mol% or less, the Tg of the resulting coating film will not be too low compared to the preferred range, and the hardness of the coating film can be maintained at a high level, which is preferable.
  • the monomer having a long-chain alkyl group may be used in an amount of 0 mol%, but if it is 5 mol% or more, the effect of adjusting the Tg of the acrylic resin is is clear, which is preferable.
  • the acrylic resin used in the present invention can be obtained by known radical polymerization. Emulsion polymerization, suspension polymerization, solution polymerization, bulk polymerization, etc. can all be employed. From the point of view of ease of handling, solution polymerization is preferred.
  • water-soluble organic solvents that can be used in solution polymerization include ethylene glycol n-butyl ether, isopropanol, ethanol, n-methylpyrrolidone, tetrahydrofuran, 1,4-dioxane, 1,3-oxolane, methyl sorosolve, and ethyl sorosolve. , ethyl carbitol, butyl carbitol, propylene glycol monopropyl ether, propylene glycol monobutyl ether, and the like. These may be used in combination with water.
  • the polymerization initiator may be any known compound that generates radicals, but preferably is a water-soluble azo polymerization initiator such as 2,2-azobis-2-methyl-N-2-hydroxyethylpropionamide.
  • the polymerization temperature, time, etc. are selected as appropriate.
  • the weight average molecular weight (Mw) of the acrylic resin is preferably about 10,000 to 200,000. A more preferred range is 20,000 to 150,000. When Mw is 10,000 or more, there is no fear of thermal decomposition within the tenter, which is preferable. When Mw is 200,000 or less, the viscosity of the coating liquid does not increase significantly and the coating properties are good, which is preferable.
  • binder resins may be used in combination with the acrylic resin.
  • binder resins include polyester resins, urethane resins, polyvinyl resins (such as polyvinyl alcohol), polyalkylene glycols, polyalkylene imines, methylcellulose, hydroxycellulose, and starches.
  • the content of the acrylic resin in the easily coated layer is preferably 20% by mass or more and 95% by mass or less based on the total solid content. More preferably, it is 30% by mass or more and 90% by mass or less. If it is 20% by mass or more, the carboxyl group as a crosslinking component will not decrease too much and the crosslinking density will not become low, which is preferable. If it is 95% by mass or less, the amount of the crosslinking agent to be crosslinked will not become too small and the crosslinking density will not become low, which is preferable.
  • the easy-slip coating layer contains at least one crosslinking agent selected from oxazoline-based crosslinking agents and carbodiimide-based crosslinking agents.
  • oxazoline-based crosslinking agent or a carbodiimide-based crosslinking agent, the adhesion to the PET base material is improved, and the coating strength of the slippery layer is improved by promoting crosslinking with the carboxyl group of the acrylic resin. can be done.
  • crosslinking agent that reacts with carboxyl groups
  • the hydroxyl groups in the acrylic resin can remain, and the remaining hydroxyl groups react with the thermosetting binder in the antistatic layer, resulting in stronger adhesion. can be granted.
  • other crosslinking agents may be used in combination, and specific examples of crosslinking agents that can be used in combination include urea-based, epoxy-based, melamine-based, isocyanate-based, and silanol-based.
  • a catalyst or the like may be used as appropriate.
  • a crosslinking agent having an oxazoline group for example, a polymerizable unsaturated monomer having an oxazoline group may be used together with other polymerizable unsaturated monomers as necessary by conventionally known methods (for example, solution polymerization, emulsion polymerization, etc.).
  • examples include polymers having oxazoline groups obtained by copolymerizing with.
  • Examples of the polymerizable unsaturated monomer having an oxazoline group include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, and 2-vinyl-2-oxazoline.
  • Examples include isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, and 2-isopropenyl-5-ethyl-2-oxazoline. These may be used alone or in combination of two or more.
  • Examples of other polymerizable unsaturated monomers include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and cyclohexyl (meth)acrylate.
  • Alkyl or cycloalkyl esters of (meth)acrylic acid having 1 to 24 carbon atoms such as acrylate, lauryl (meth)acrylate, and isobornyl (meth)acrylate; 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, etc.
  • Hydroxyalkyl esters having 2 to 8 carbon atoms of (meth)acrylic acid Vinyl aromatic compounds such as styrene and vinyltoluene; (meth)acrylamide, dimethylaminopropyl (meth)acrylamide, dimethylaminoethyl (meth)acrylate, Examples include adducts of glycidyl (meth)acrylate and amines; polyethylene glycol (meth)acrylate; N-vinylpyrrolidone, ethylene, butadiene, chloroprene, vinyl propionate, vinyl acetate, (meth)acrylonitrile, and the like. These may be used alone or in combination of two or more.
  • polymerizable unsaturated monomers are hydrophilic monomers from the viewpoint of improving compatibility with other resins, wettability, crosslinking reaction efficiency, etc. by using the obtained crosslinking agent having an oxazoline group as a water-soluble crosslinking agent.
  • it is a body.
  • hydrophilic monomers include monomers having a polyethylene glycol chain such as 2-hydroxyethyl (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, and monoester compounds of (meth)acrylic acid and polyethylene glycol; Examples include aminoethyl (meth)acrylate and its salts, (meth)acrylamide, N-methylol (meth)acrylamide, N-(2-hydroxyethyl)(meth)acrylamide, (meth)acrylonitrile, sodium styrene sulfonate, and the like.
  • monomers having polyethylene glycol chains such as methoxypolyethylene glycol (meth)acrylate and monoester compounds of (meth)acrylic acid and polyethylene glycol, which are highly soluble in water, are preferred.
  • the crosslinking agent having an oxazoline group preferably has an oxazoline group content of 3.0 to 9.0 mmol/g. More preferably, it is within the range of 4.0 to 8.0 mmol/g. If it is within the range of 4.0 to 8.0 mmol/g, it is preferable because an appropriate crosslinked structure can be formed.
  • carbodiimide crosslinking agents include monocarbodiimide compounds and polycarbodiimide compounds.
  • monocarbodiimide compounds include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, di- ⁇ -naphthylcarbodiimide, and the like.
  • polycarbodiimide compound those produced by conventionally known methods can be used. For example, it can be produced by synthesizing isocyanate-terminated polycarbodiimide through a condensation reaction of diisocyanate with removal of carbon dioxide.
  • 4-dicyclohexylmethane diisocyanate alicyclic diisocyanates such as 1,3-bis(isocyanatemethyl)cyclohexane, hexamethylene diisocyanate, and aliphatic diisocyanates such as 2,2,4-trimethylhexamethylene diisocyanate.
  • aromatic aliphatic diisocyanates, alicyclic diisocyanates, and aliphatic diisocyanates are preferred.
  • the above diisocyanate may be used by controlling the molecule to an appropriate degree of polymerization using a compound that reacts with the terminal isocyanate, such as monoisocyanate.
  • a compound that reacts with the terminal isocyanate such as monoisocyanate.
  • the monoisocyanate for controlling the degree of polymerization by blocking the terminals of polycarbodiimide include phenyl isocyanate, tolylene isocyanate, dimethylphenyl isocyanate, cyclohexyl isocyanate, butyl isocyanate, naphthyl isocyanate, and the like.
  • compounds having an OH group, -NH2 group, COOH group, or SO3H group can be used as the terminal capping agent.
  • the condensation reaction of diisocyanate accompanied by decarbonization proceeds in the presence of a carbodiimidization catalyst.
  • the catalyst include 1-phenyl-2-phospholene-1-oxide, 3-methyl-2-phospholene-1-oxide, 1-ethyl-2-phospholene-1-oxide, 3-methyl-1-phenyl-2 -phospholene-1-oxide and phospholene oxides such as 3-phospholene isomers thereof, and 3-methyl-1-phenyl-2-phospholene-1-oxide is preferred from the viewpoint of reactivity.
  • the amount of the catalyst used can be a catalytic amount.
  • the above-mentioned mono- or polycarbodiimide compounds be kept in a uniformly dispersed state when blended into water-based paints. It is preferable to add a hydrophilic segment to the molecular structure of the compound and blend it into the paint in the form of a self-emulsion or self-dissolution.
  • the carbodiimide crosslinking agent used in the present invention may be water-dispersible or water-soluble.
  • Water-soluble resins are preferred because they have good compatibility with other water-soluble resins and improve the crosslinking reaction efficiency of the easily coated layer.
  • it is necessary to synthesize isocyanate-terminated polycarbodiimide by a condensation reaction involving removal of carbon dioxide from isocyanate, and then add a hydrophilic moiety having a functional group that is reactive with an isocyanate group. It can be manufactured by
  • Hydrophilic moieties include (1) quaternary ammonium salts of dialkylamino alcohols and quaternary ammonium salts of dialkylaminoalkylamines, (2) alkyl sulfonates having at least one reactive hydroxyl group, and (3) Examples include poly(ethylene oxide) end-capped with an alkoxy group, a mixture of poly(ethylene oxide) and poly(propylene oxide), and the like.
  • hydrophilic moiety When the above hydrophilic moiety is introduced into the carbodiimide compound, it becomes (1) cationic, (2) anionic, and (3) nonionic.
  • nonionic resins that are compatible with other water-soluble resins are preferred, regardless of their ionicity.
  • the content of the crosslinking agent in the easily coated layer is preferably 5% by mass or more and 80% by mass or less based on the total solid content. More preferably, it is 10% by mass or more and 70% by mass or less. If it is 5% by mass or more, it is preferable because the crosslinking density of the resin in the coating layer does not decrease. If it is 80% by mass or less, the amount of carboxyl groups in the acrylic resin to be crosslinked will not become too small and the crosslinking density will not become low, which is preferable.
  • the easy-sliding coating layer preferably contains lubricant particles in order to impart slipperiness to the surface.
  • Particles may be inorganic particles or organic particles, and are not particularly limited, but include (1) silica, kaolinite, talc, light calcium carbonate, heavy calcium carbonate, zeolite, alumina, Barium sulfate, carbon black, zinc oxide, zinc sulfate, zinc carbonate, zirconium oxide, titanium dioxide, satin white, aluminum silicate, diatomaceous earth, calcium silicate, aluminum hydroxide, hydrated halloysite, calcium carbonate, magnesium carbonate, calcium phosphate, hydroxide Inorganic particles such as magnesium and barium sulfate, (2) Acrylic or methacrylic, vinyl chloride, vinyl acetate, nylon, styrene/acrylic, styrene/butadiene, polystyrene/acrylic, polystyrene/isoprene, polystyren
  • organic particles it is particularly preferable to use organic particles in order to prevent the particles from falling off from the slip coating layer.
  • the use of organic particles is preferable because it strengthens the interaction with the binder and crosslinking agent component of the slip coating layer, making it easier to prevent falling off.
  • acrylic resin particles and/or methacrylic resin particles which have a similar chemical structure to the acrylic resin present in the easy-slip coating layer, are particularly preferred in terms of preventing the particles from falling off the easy-slip coating layer. .
  • the average particle diameter of the particles is preferably 10 nm or more, more preferably 20 nm or more, and still more preferably 30 nm or more. It is preferable that the average particle diameter of the particles is 10 nm or more because it is difficult to aggregate and ensures slipperiness.
  • the average particle diameter of the particles is preferably 1000 nm or less, more preferably 800 nm or less, and even more preferably 600 nm or less. When the average particle diameter of the particles is 1000 nm or less, transparency is maintained and the particles do not fall off, which is preferable.
  • the average length (RSm) of the roughness curve element while keeping P) small to achieve both slipperiness and smoothness, and particularly preferably small particles of 30 nm or more and 250 nm or less and average particles.
  • the method is to use large particles with a diameter of 350 to 600 nm.
  • the mass content of the small particles is greater than the mass content of the large particles with respect to the entire solid content of the coating layer.
  • the method for measuring the average particle size of particles is to observe the particles in the cross section of the processed film using a transmission electron microscope or scanning electron microscope, observe 100 non-agglomerated particles, and use the average value to determine the average particle size. This was done using the method of determining the diameter.
  • the shape of the particles is not particularly limited as long as the object of the present invention is met, and spherical particles and irregularly shaped non-spherical particles can be used.
  • the particle diameter of irregularly shaped particles can be calculated as a circular equivalent diameter.
  • the equivalent circle diameter is a value obtained by dividing the area of the observed particle by ⁇ , calculating the square root, and doubling the square root.
  • the ratio of particles to the total solid content of the easily coated layer is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less. It is preferable that the ratio of particles to the total solid content of the easy-slip coating layer is 50% by mass or less, since transparency is maintained and particles do not noticeably fall off from the easy-slip coating layer.
  • the ratio of the particles to the total solid content of the easily coated layer is preferably 1% by mass or more, more preferably 1.5% by mass or more, and still more preferably 2% by mass or more. It is preferable that the ratio of particles to the total solid content of the easy-slip coating layer is 1% by mass or more because slipperiness can be ensured.
  • the following method can be used.
  • the easy-sliding coating layer provided on the processed film is extracted from the processed film using a solvent or the like and dried to solidify, thereby removing the easy-sliding coating layer.
  • only the inorganic components can be obtained by applying heat to the obtained slip coating layer and burning and distilling off the organic components contained in the slip coating layer.
  • the mass % of particles contained in the easy-slip coating layer can be determined.
  • the ratio of the above-mentioned particles in the total solid content of the easy-sliding coating layer means the ratio of the total amount of the plurality of types when there are multiple types of particles.
  • additives in slip coating layer In order to impart other functionality to the easy-sliding coating layer, various additives may be included within a range that does not impair the coating appearance. Examples of the additives include fluorescent dyes, optical brighteners, plasticizers, ultraviolet absorbers, pigment dispersants, foam inhibitors, antifoaming agents, and preservatives.
  • the easy-sliding coating layer can also contain a surfactant for the purpose of improving leveling properties during coating and defoaming the coating liquid.
  • the surfactant may be cationic, anionic, or nonionic, but silicone, acetylene glycol, or fluorine surfactants are preferred. It is preferable that these surfactants be contained in the coating layer within a range that does not cause abnormalities in the coating appearance if added in excess.
  • both the so-called in-line coating method, in which the coating is applied at the same time as the polyester base film is formed, and the so-called offline coating method, in which the polyester base film is coated with a separate coater after the film is formed, can be applied, but the in-line coating method is more efficient and preferable.
  • PET polyethylene terephthalate
  • reverse roll coating method gravure coating method, kiss coating method, die coater method, roll brushing method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, etc.
  • spray coating method air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, etc.
  • a method for providing an easy-slip coating layer on a polyester film includes a method of coating a polyester film with a coating liquid containing a solvent, particles, and resin and drying the coating solution.
  • the solvent include organic solvents such as toluene, water, or a mixture of water and a water-soluble organic solvent, but from the viewpoint of environmental issues, water alone or a so-called aqueous solvent, which is a mixture of water and a water-soluble organic solvent, is preferable. solvents are preferred.
  • the solid content concentration of the easy-sliding coating liquid depends on the type of binder resin and the type of solvent, it is preferably 0.5% by mass or more, and more preferably 1% by mass or more.
  • the solid content concentration of the coating liquid is preferably 35% by mass or less, more preferably 20% by mass or less.
  • the drying temperature after coating also depends on the type of binder resin, the type of solvent, the presence or absence of a crosslinking agent, the solid content concentration, etc., but is preferably 70°C or higher and preferably 250°C or lower.
  • the polyester film serving as the base film can be manufactured according to a general polyester film manufacturing method.
  • a polyester resin is melted, unoriented polyester extruded into a sheet, stretched in the longitudinal direction using a speed difference between rolls at a temperature higher than the glass transition temperature, and then stretched in the transverse direction with a tenter.
  • a method of applying heat treatment is a method of applying heat treatment.
  • Another method is to carry out biaxial stretching simultaneously in the longitudinal and lateral directions within a tenter.
  • the polyester film serving as the base film may be a uniaxially stretched film or a biaxially stretched film, but it is preferably a biaxially stretched film.
  • the thickness of the polyester film base material is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and still more preferably 15 ⁇ m or more. A thickness of 5 ⁇ m or more is preferable because the film is less likely to wrinkle during transportation.
  • the thickness of the polyester film base material is preferably 50 ⁇ m or less, more preferably 45 ⁇ m or less, and still more preferably 40 ⁇ m or less. It is preferable that the thickness is 40 ⁇ m or less because the cost per unit area decreases.
  • in-line coating it may be applied to an unstretched film before stretching in the longitudinal direction, or it may be applied to a uniaxially stretched film after stretching in the longitudinal direction and before stretching in the lateral direction.
  • coating is performed before stretching in the longitudinal direction, it is preferable to provide a drying step before stretching with rolls.
  • the film heating process in the tenter can also serve as a drying process, so it is not necessarily necessary to provide a separate drying process. The same applies to the case of simultaneous biaxial stretching.
  • the thickness of the easily coated layer is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more, even more preferably 0.02 ⁇ m or more, and particularly preferably 0.03 ⁇ m or more. It is preferable that the thickness of the coating layer is 0.001 ⁇ m or more because the film forming properties of the coating film are maintained and a uniform coating film can be obtained.
  • the thickness of the easily coated layer is preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less, even more preferably 0.8 ⁇ m or less, and particularly preferably 0.5 ⁇ m or less. It is preferable that the thickness of the coating layer is 2 ⁇ m or less, since there is no fear that blocking will occur.
  • a ceramic green sheet that is coated and molded onto a release layer, which will be described later, is wound up into a roll together with a release film after being coated and molded. At this time, the ceramic green sheet is wound up with the back surface of the release film in contact with the surface thereof.
  • the outermost surface of the release film (the outermost surface of the entire release layer that is not in contact with the polyester film) needs to be appropriately flat.
  • the area surface average roughness (Sa) of the surface opposite to the base material of the release layer is 0.1 nm or more and 5 nm or less, for example, 0.2 nm or more and 4.5 nm or less.
  • the maximum protrusion height (P) is preferably 1 nm or more and 50 nm or less, for example, 1 nm or more and 40 nm or less.
  • the area surface average roughness (Sa) of the surface opposite to the base material is 1 nm or more and 25 nm or less, and the maximum protrusion height (P) is 60 nm or more and 500 nm or less. It is preferable that the average roughness (Sa) and maximum protrusion height (P) are within such ranges, since the easily coated surface does not become too smooth and can maintain appropriate slipperiness. Furthermore, the smooth coated surface does not become too rough and defects in the ceramic green sheet due to protrusions do not occur, which is preferable. In one embodiment, the area surface average roughness (Sa) is 1 nm or more and 20 nm or less, and the maximum protrusion height (P) is 60 nm or more and 300 nm or less.
  • the average surface roughness (Sa) of the surface opposite to the base material and the maximum protrusion height (P) are both the surface roughness of the region of the surface opposite to the base material in the release layer. It is desirable that the average roughness (Sa) be larger than the value of the maximum protrusion height (P).
  • the release layer is provided on a side of the base material that is different from the antistatic layer.
  • the resin constituting the release layer in the present invention is not particularly limited, and silicone resins, fluororesins, alkyd resins, various waxes, aliphatic olefins, etc. can be used, and each resin may be used alone or in combination of two or more types. You can also do that.
  • silicone resin refers to a resin having a silicone structure in the molecule, and examples thereof include curable silicone, silicone graft resin, and modified silicone resin such as alkyl-modified resin. From these viewpoints, it is preferable to use a reactive cured silicone resin.
  • a reactive cured silicone resin As the reactive cured silicone resin, addition reaction type, condensation reaction type, ultraviolet ray or electron beam curing type, etc. can be used. More preferably, a low-temperature curing addition reaction type that can be processed at low temperatures and an ultraviolet or electron beam curing type are preferred. By using these materials, processing can be performed at low temperatures when coating a polyester film. Therefore, there is less heat damage to the polyester film during processing, a polyester film with high flatness can be obtained, and defects such as pinholes can be reduced even when manufacturing ultra-thin ceramic green sheets with a thickness of 0.2 to 2.0 ⁇ m. Can be done.
  • addition reaction type silicone resins include those that are cured by reacting polydimethylsiloxane into which a vinyl group has been introduced into the terminal or side chain with hydrogen siloxane using a platinum catalyst. At this time, it is more preferable to use a resin that can be cured within 30 seconds at 120° C., as this allows processing at low temperatures.
  • Examples include low-temperature addition-curing types manufactured by Dow Corning Toray (LTC1006L, LTC1056L, LTC300B, LTC303E, LTC310, LTC314, LTC350G, LTC450A, LTC371G, LTC750A, LTC755, LTC760A, etc.) and thermal UV-curing types (LTC 851, BY24 -510, BY24-561, BY24-562, etc.), Shin-Etsu Chemical's solvent addition + UV curing type (X62-5040, X62-5065, X62-5072T, KS5508, etc.), dual cure curing type (X62-2835, X62 -2834, X62-1980, etc.).
  • condensation reaction silicone resins include those that create a three-dimensional crosslinked structure by condensing polydimethylsiloxane having an OH group at the end and polydimethylsiloxane having an H group at the end using an organotin catalyst. Can be mentioned.
  • UV-curable silicone resins include those that use the same radical reaction as normal silicone rubber crosslinking as the most basic type, those that are photocured by introducing unsaturated groups, and those that are cured by photocuring by introducing unsaturated groups, and those that are made by decomposing onium salts with UV rays. Examples include those that generate a strong acid and use this to cleave the epoxy groups to effect crosslinking, and those that effect crosslinking by addition reaction of thiol to vinylsiloxane. Moreover, an electron beam can also be used instead of the ultraviolet rays. Electron beams have more energy than ultraviolet rays, and it is possible to carry out a crosslinking reaction using radicals without using an initiator as in the case of ultraviolet curing.
  • resins used include UV-curable silicones manufactured by Shin-Etsu Chemical (X62-7028A/B, X62-7052, X62-7205, X62-7622, X62-7629, X62-7660, etc.), Momentive Performance UV curing silicone manufactured by Materials Co., Ltd. (TPR6502, TPR6501, TPR6500, UV9300, UV9315, XS56-A2982, UV9430, etc.), UV curing silicone manufactured by Arakawa Chemical Co., Ltd. (Silico Lease UV POLY200, POLY215, POLY201, KF-UV2) 65AM etc. ).
  • acrylate-modified or glycidoxy-modified polydimethylsiloxane can also be used.
  • Good mold release performance can also be achieved by mixing these modified polydimethylsiloxanes with polyfunctional acrylate resins, epoxy resins, etc. and using them in the presence of an initiator.
  • Examples of other resins that may be used include stearyl-modified, lauryl-modified alkyd resins and acrylic resins, and alkyd resins and acrylic resins obtained by reaction with methylated melamine.
  • Examples of the amino alkyd resin obtained by the reaction of methylated melamine include Tesfine 303, Tesfine 305, and Tesfine 314 manufactured by Hitachi Chemical.
  • Examples of the aminoacrylic resin obtained by the reaction of methylated melamine include Tesfine 322 manufactured by Hitachi Chemical.
  • the above resins when used in the release layer in the present invention, they may be used alone or in a mixture of two or more types. Further, in order to adjust the release force, it is also possible to mix additives such as light release additives and heavy release additives.
  • the release coating layer in the present invention can contain particles with a particle size of 1 ⁇ m or less, but from the viewpoint of pinhole generation, it is preferable not to substantially contain particles that form protrusions.
  • Additives such as adhesion improvers and antistatic agents may be added to the release layer in the present invention. Furthermore, in order to improve the adhesion to the base material, it is also preferable to subject the surface of the polyester film to pretreatment such as anchor coating, corona treatment, plasma treatment, atmospheric pressure plasma treatment, etc. before providing the release coating layer.
  • the thickness of the release layer may be set depending on the purpose of use and is not particularly limited, but is preferably within a range where the thickness of the release coating layer after curing is 0.005 to 2.0 ⁇ m. Good. It is preferable that the thickness of the release coating layer is 0.005 ⁇ m or more because the release performance is maintained. Further, it is preferable that the thickness of the release coating layer is 2.0 ⁇ m or less, since the curing time will not be too long and there is no risk of uneven thickness of the ceramic green sheet due to deterioration of the flatness of the release film. Furthermore, since the curing time is not too long, there is no risk of the resin constituting the release coating layer coagulating, and there is no risk of forming protrusions, which is preferable because pinhole defects in the ceramic green sheet are less likely to occur.
  • the outer surface of the film on which the release layer is formed (the release coating layer surface of the entire coated film that is not in contact with the polyester film) is flat in order to prevent defects from occurring in the ceramic green sheet that is coated and molded on top of it. It is desirable that the area surface average roughness (Sa) is 5 nm or less and the maximum protrusion height (P) is 30 nm or less. More preferably, the area surface average roughness is 5 nm or less and the maximum protrusion height is 20 nm or less. If the area surface roughness is 5 nm or less and the maximum protrusion height is 30 nm or less, defects such as pinholes will not occur during the formation of the ceramic green sheet, and the yield will be good, which is preferable.
  • the method of forming the mold release layer is not particularly limited, and a coating liquid in which a mold release resin is dissolved or dispersed is spread by coating on one side of a polyester film as a base material, and a solvent etc. After removing by drying, heat drying, heat curing, or ultraviolet curing is used.
  • the drying temperature during solvent drying and thermosetting is preferably 180°C or lower, more preferably 150°C or lower, and most preferably 120°C or lower.
  • the heating time is preferably 30 seconds or less, more preferably 20 seconds or less.
  • the temperature is 180° C. or lower, the flatness of the film is maintained, and there is little risk of causing thickness unevenness of the ceramic green sheet, which is preferable. It is particularly preferable that the temperature is 120° C. or lower, since the film can be processed without impairing its flatness, and the possibility of causing thickness unevenness of the ceramic green sheet is further reduced.
  • the surface tension of the coating liquid when applying the composition forming the mold release layer is not particularly limited, but is preferably 30 mN/m or less. By controlling the surface tension as described above, it is possible to improve the applicability after coating and reduce the unevenness of the coating film surface after drying.
  • a solvent having a boiling point of 90° C. or higher is preferably added to the coating liquid when applying the composition forming the mold release layer, although it is not particularly limited.
  • a solvent with a boiling point of 90°C or higher bumping during drying can be prevented, the coating film can be leveled, and the smoothness of the coating film surface after drying can be improved.
  • the amount added is preferably about 10 to 80% by mass based on the entire coating liquid.
  • any known coating method can be used to apply the composition forming the release layer, such as roll coating methods such as gravure coating method and reverse coating method, bar coating method such as wire bar coating method, die coating method, etc.
  • roll coating methods such as gravure coating method and reverse coating method
  • bar coating method such as wire bar coating method, die coating method, etc.
  • Conventionally known methods such as a spray coating method and an air knife coating method can be used.
  • the amount of charge is ⁇ 1.5 kV or more and +1.5 kV or less, for example, ⁇ 1.0 kV or more and +1.0 kV or less.
  • the amount of charge is ⁇ 0.5 kV or more and +0.5 kV or less.
  • a multilayer ceramic capacitor has a rectangular parallelepiped ceramic body. Inside the ceramic body, first internal electrodes and second internal electrodes are provided alternately along the thickness direction. The first internal electrode is exposed on the first end surface of the ceramic body. A first external electrode is provided on the first end surface. The first internal electrode is electrically connected to the first external electrode at the first end surface. The second internal electrode is exposed on the second end surface of the ceramic body. A second external electrode is provided on the second end surface. The second internal electrode is electrically connected to the second external electrode at the second end surface.
  • the release film for producing ceramic green sheets of the present invention is used to produce such multilayer ceramic capacitors.
  • it is manufactured as follows. First, using the release film of the present invention as a carrier film, a ceramic slurry for forming a ceramic body is applied and dried. A conductive layer for forming the first or second internal electrode is printed on the coated and dried ceramic green sheet. A ceramic green sheet, a ceramic green sheet printed with a conductive layer for forming the first internal electrode, and a ceramic green sheet printed with a conductive layer for forming the second internal electrode are laminated as appropriate and pressed. By this, a mother laminate is obtained. The mother laminate is divided into multiple parts to produce raw ceramic bodies. A ceramic body is obtained by firing a raw ceramic body. Thereafter, the multilayer ceramic capacitor can be completed by forming the first and second external electrodes.
  • Tg of the acrylic polyol was determined from the composition ratio of the copolymer components determined by the above NMR measurement and the Fox equation described above.
  • the surface resistivity of the surface of the antistatic film of the present invention is determined by measuring the surface resistivity of the surface of the antistatic layer using a surface resistance meter after controlling the humidity for 24 hours at a temperature of 23°C and a humidity of 55%. (Work Surface Tester ST-3 manufactured by Simco Japan Co., Ltd.) and evaluated using the following criteria.
  • Solvent resistance evaluation Method B The surface of the antistatic layer is coated with a Kimwipe impregnated with a solvent (ethanol). I wiped it back and forth 10 times. In addition, changes in appearance after the above treatment were evaluated using the following criteria.
  • the film was peeled off at a peeling angle of 90°, a peeling temperature of 25° C., and a peeling speed of 10 m/min.
  • a double-sided adhesive tape manufactured by Nitto Denko Corporation, No. 535A
  • the release film side was fixed and peeled off by pulling the ceramic green sheet side.
  • the average value of the peeling force over a peeling distance of 20 mm to 70 mm was calculated, and this value was taken as the peeling force.
  • the measurement was carried out five times in total, and the average value of the peeling force was used for evaluation. Judgment was made based on the obtained peel force values based on the following criteria.
  • No pinholes, particularly good thickness variation. ⁇ : No pinholes, no particular problem with thickness variation. ⁇ : Very few pinholes, slightly visible thickness variation.
  • esterification reactor a continuous esterification reactor consisting of a three-stage complete mixing tank having a stirrer, a partial condenser, a raw material inlet, and a product outlet was used.
  • TPA terephthalic acid
  • EG ethylene glycol
  • antimony trioxide is set at an amount such that Sb atoms are 160 ppm relative to the produced PET, and these slurries are converted into esters.
  • the mixture was continuously supplied to the first esterification reactor of the esterification reactor and reacted at 255°C for an average residence time of 4 hours at normal pressure.
  • the reaction product in the first esterification reactor is continuously taken out of the system and supplied to the second esterification reactor, and the reaction product is distilled from the first esterification reactor into the second esterification reactor.
  • an EG solution containing magnesium acetate tetrahydrate in an amount such that Mg atoms are 65 ppm relative to the produced PET, and 40 ppm P atoms relative to the produced PET is supplied.
  • An EG solution containing an amount of TMPA (trimethyl phosphate) was added, and the mixture was reacted at 260°C for an average residence time of 1 hour at normal pressure.
  • the reaction product of the second esterification reactor was continuously taken out of the system and supplied to the third esterification reactor, and was heated to 39 MPa (400 kg/cm 2 ) using a high-pressure disperser (manufactured by Nippon Seiki Co., Ltd.).
  • PET (I) After filtering with a filter, ultrafiltration was performed and extruded into water, and after cooling, it was cut into chips to obtain PET chips with an intrinsic viscosity of 0.60 dl/g (hereinafter abbreviated as PET (I)). .
  • PET (I) an intrinsic viscosity of 0.60 dl/g
  • the lubricant content in the PET chip was 0.6% by mass.
  • PET polyethylene terephthalate pellets
  • PET chips were melted at 285°C, melted at 290°C by a separate melt extruder extruder, and filtered with sintered stainless steel fibers with a 95% cut diameter of 15 ⁇ m and a filter with a 95% cut diameter of 15 ⁇ m.
  • Two stages of filtration are performed using a filter made of sintered stainless steel particles of 15 ⁇ m, and they are merged in the feed block, and PET (I) becomes the anti-release side layer and PET (I) becomes the release side layer.
  • the unstretched material was laminated as shown, extruded (casting) into a sheet at a speed of 45 m/min, electrostatically adhered and cooled on a casting drum at 30°C using the electrostatic adhesion method, and unstretched with an intrinsic viscosity of 0.59 dl/g.
  • a polyethylene terephthalate sheet was obtained.
  • this unstretched sheet was heated with an infrared heater, and then stretched 3.5 times in the machine direction at a roll temperature of 80° C. using a speed difference between the rolls.
  • PET chips were melted at 285°C, melted at 290°C by a separate melt extruder extruder, and filtered with sintered stainless steel fibers with a 95% cut diameter of 15 ⁇ m and a filter with a 95% cut diameter of 15 ⁇ m.
  • Two stages of filtration are performed using a filter made of sintered stainless steel particles of 15 ⁇ m, and they are merged in the feed block, with PET (I) forming the anti-release side layer and PET (II) forming the release side layer.
  • the unstretched material was laminated as shown, extruded (casting) into a sheet at a speed of 45 m/min, electrostatically adhered and cooled on a casting drum at 30°C using the electrostatic adhesion method, and unstretched with an intrinsic viscosity of 0.59 dl/g.
  • a polyethylene terephthalate sheet was obtained.
  • this unstretched sheet was heated with an infrared heater, and then stretched 3.5 times in the machine direction at a roll temperature of 80° C. using a speed difference between the rolls.
  • Acrylic polyol A had a Tg of 88°C, an acid value of 87 mgKOH/g, and a hydroxyl value of 100 mgKOH/g.
  • oxazoline crosslinking agent B 460.6 parts of isopropyl alcohol was charged into a flask equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, and the mixture was heated to 80° C. while slowly flowing nitrogen gas.
  • a monomer mixture prepared in advance consisting of 126 parts of methyl methacrylate, 210 parts of 2-isopropenyl-2-oxazoline and 84 parts of methoxypolyethylene glycol acrylate, and 2,2'-azobis which is a polymerization initiator are added thereto.
  • This unstretched PET sheet was heated to 100°C with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group with a difference in circumferential speed to obtain a uniaxially stretched PET film.
  • the easy-slip coating liquid was applied to one side of the PET film using a bar coater, and then dried at 80°C for 15 seconds.
  • the coating amount after final stretching and drying was adjusted to 0.1 ⁇ m.
  • the film was stretched 4.0 times in the width direction at 150°C, and while the length of the film in the width direction was fixed, it was heated at 230°C for 0.5 seconds, and further at 230°C for 10 seconds.
  • % relaxation treatment in the width direction was performed to obtain a polyester film Z with an easy-sliding coating layer having a thickness of 31 ⁇ m.
  • the Sa of the release side layer of the obtained film Z was 1 nm, and the Sa of the anti-release side layer was 6 nm.
  • release coating layer A release agent solution was applied to the surface opposite to the surface on which the easy-slip coating layer of the polyester film with an easy-slip coating layer was formed using a reverse gravure coater so that the thickness after drying was 0.01 ⁇ m, and then After drying with hot air at 120°C for 30 seconds, UV irradiation (300 mJ/cm2) was immediately performed using an electrodeless lamp (H bulb manufactured by Heraeus Co., Ltd.) to form a release coating layer and obtain a release film. .
  • an electrodeless lamp H bulb manufactured by Heraeus Co., Ltd.
  • composition 1 for forming an antistatic layer was applied to the surface of the release film on which the easily coated layer was formed to a thickness of 0.05 ⁇ m after drying using a reverse gravure coater, and then It was dried and cured with hot air at °C for 30 seconds to obtain an antistatic release film.
  • Configuration 1 A configuration in which an antistatic layer is thus formed on the surface opposite to the mold release layer via another layer is referred to as Configuration 1.
  • Antistatic layer forming composition 1 Water 42.24 parts by mass Isopropyl alcohol 42.24 parts by mass Antistatic agent E-1 (polythiophene-based conductive polymer, solid content concentration 1.20% by mass) 11.67 parts by mass Thermosetting binder resin F-1 (Made by Nippon Carbide Co., Ltd., melamine resin, full ether type, solid content concentration 70% by mass) 0.80 parts by mass Conductive additive G-1 (NMP) 3.00 parts by mass Surfactant H-1 (manufactured by Nissin Chemical Co., Ltd., Dynor 604, solid content concentration 100% by mass) 0.06 parts by mass After being wound up as a release roll, the unwinding charge is low when it is unwound again for ceramic sheet coating, and the adhesion of environmental foreign matter can be suppressed, ensuring quality without reducing the yield of ceramic capacitors. We were able to create a good ceramic capacitor.
  • Example 2 The thermosetting binder resin in composition 1 for forming an antistatic layer used in Example 1 was replaced with thermosetting binder resin F-2 (manufactured by Nippon Carbide Co., Ltd., melamine resin, imino-methylol type, solid content concentration 70% by mass). An antistatic release film was obtained in the same manner as in Example 1, except that Composition 2 for forming an antistatic layer was used.
  • thermosetting binder resin F-2 manufactured by Nippon Carbide Co., Ltd., melamine resin, imino-methylol type, solid content concentration 70% by mass.
  • Example 3 Antistatic layer formation by changing the surfactant in composition 1 for forming an antistatic layer used in Example 1 to H-2 (manufactured by Nissin Chemical Co., Ltd., Surfynol SE-F, solid content concentration 81% by mass) An antistatic release film was obtained in the same manner as in Example 1, except that Composition 3 was used.
  • Example 4 An antistatic release film was obtained in the same manner as in Example 1, except that the antistatic layer forming composition 1 was changed to the following antistatic layer forming composition 4.
  • Antistatic layer forming composition 4 Water 45.10 parts by mass Isopropyl alcohol 45.10 parts by mass Antistatic agent E-1 (polythiophene-based conductive polymer, solid content concentration 1.20% by mass) 5.83 parts by mass Thermosetting binder resin F-1 (Made by Nippon Carbide Co., Ltd., melamine resin, full ether type, solid content concentration 70% by mass) 0.90 parts by mass Conductive additive G-1 (NMP) 3.00 parts by mass Surfactant H-1 (manufactured by Nissin Chemical Co., Ltd., Dynor 604, solid content concentration 100% by mass) 0.06 parts by mass (Example 5) An antistatic release film was obtained in the same manner as in Example 1, except that the antistatic layer forming composition 1 was changed to the following antistatic layer forming composition 5.
  • Antistatic layer forming composition 5 Water 39.37 parts by mass Isopropyl alcohol 39.37 parts by mass Antistatic agent E-1 (polythiophene-based conductive polymer, solid content concentration 1.20% by mass) 17.50 parts by mass thermosetting binder resin F-1 (Made by Nippon Carbide Co., Ltd., melamine resin, full ether type, solid content concentration 70% by mass) 0.70 parts by mass Conductive additive G-1 (NMP) 3.00 parts by mass Surfactant H-1 (manufactured by Nissin Chemical Co., Ltd., Dynor 604, solid content concentration 100% by mass) 0.06 parts by mass (Example 6) An antistatic release film was obtained in the same manner as in Example 1, except that the antistatic layer forming composition 1 was changed to the following antistatic layer forming composition 5.
  • Antistatic layer forming composition 5 Water 33.64 parts by mass Isopropyl alcohol 33.64 parts by mass Antistatic agent E-1 (polythiophene-based conductive polymer, solid content concentration 1.20% by mass) 29.17 parts by mass Thermosetting binder resin F-1 (Manufactured by Nippon Carbide Co., Ltd., melamine resin, full ether type, solid content concentration 70% by mass) 0.50 parts by mass Conductive additive G-1 (NMP) 3.00 parts by mass Surfactant H-1 (manufactured by Nissin Chemical Co., Ltd., Dynor 604, solid content concentration 100% by mass) 0.06 parts by mass (Example 7) An antistatic release film was obtained in the same manner as in Example 1, except that the coating thickness was changed so that the thickness after drying was 0.10 ⁇ m.
  • Example 8 An antistatic release film was obtained in the same manner as in Example 1, except that the coating thickness was changed so that the thickness after drying was 0.15 ⁇ m.
  • Example 9 An antistatic release film was obtained in the same manner as in Example 1, except that the antistatic layer forming composition 1 was changed to the following antistatic layer forming composition 7.
  • Antistatic layer forming composition 7 Water 42.17 parts by mass Isopropyl alcohol 42.17 parts by mass Antistatic agent E-1 (polythiophene-based conductive polymer, solid content concentration 1.20% by mass) 11.67 parts by mass Thermosetting binder resin F-3 (Manufactured by Nisshinbo Chemical Co., Ltd., polycarbodiimide resin, solid content concentration 40% by mass) 0.93 parts by mass Conductive additive G-1 (NMP) 3.00 parts by mass Surfactant H-1 (manufactured by Nissin Chemical Co., Ltd., Dynor 604, solid content concentration 100% by mass) 0.06 parts by mass (Comparative Example 1) An antistatic release film was obtained in the same manner as in Example 1, except that the antistatic layer forming composition 1 was changed to the following antistatic layer forming composition 8.
  • Antistatic layer forming composition 8 Water 19.30 parts by mass Isopropyl alcohol 19.30 parts by mass Antistatic agent E-1 (polythiophene-based conductive polymer, solid content concentration 1.20% by mass) 58.33 parts by mass Conductive additive G-1 (NMP) 3.00 parts by mass Surfactant H-1 (manufactured by Nissin Chemical Co., Ltd., Dynor 604, solid content concentration 100% by mass) 0.06 parts by mass (Comparative Example 2) An antistatic release film was obtained in the same manner as in Example 1 except that the base material was changed to X.
  • Example 4 An antistatic release film was obtained in the same manner as in Example 1, except that the base material was changed to Y and no antistatic layer was formed. A configuration in which no antistatic layer is formed as described above is referred to as configuration 2.
  • This unstretched PET sheet was heated to 100°C with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group with a difference in circumferential speed to obtain a uniaxially stretched PET film.
  • the easy-slip coating liquid was applied to one side of the PET film using a bar coater, and then dried at 80°C for 15 seconds.
  • the coating amount after final stretching and drying was adjusted to 0.1 ⁇ m.
  • the film was stretched 4.0 times in the width direction at 150°C, and while the length of the film in the width direction was fixed, it was heated at 230°C for 0.5 seconds, and further at 230°C for 10 seconds.
  • % relaxation treatment in the width direction was performed to obtain a polyester film Z with an easy-sliding coating layer having a thickness of 31 ⁇ m.
  • the Sa of the release side layer of the obtained film Z was 1 nm, and the Sa of the anti-release side layer was 6 nm.
  • Table 1 shows the evaluation results for each example and comparative example.
  • Table 1 above shows the mass ratio of antistatic agent/thermosetting binder in the composition for forming an antistatic layer, and this indicates that the total solid content of the antistatic agent and thermosetting binder is 100% by mass. This is the mass ratio when
  • the object of the present invention is to have a highly smooth mold release surface and back surface, to have good peelability, antistatic property, easy sliding property, and adhesion, and to have excellent antistatic property and easy slipping property even after long-term storage, and to prevent rubbing. It is an object of the present invention to provide a release film having an antistatic layer that does not easily fall off even when the film is heated.
  • Example 1 to 9 the processed rolls are stored for a long time and when unwound again, the unwinding charge is low and environmental foreign matter is less likely to adhere, so high quality ceramic capacitors can be manufactured without reducing the yield of ceramic capacitors. was able to create. Furthermore, since the antistatic layer is provided through the first functional layer, good powder removal properties and solvent resistance are obtained.
  • Comparative Example 1 since the thermosetting binder resin specified in the present invention was not used, the adhesion with the base material was poor, and even if an antistatic layer was provided through the first functional layer, the powder Poor removability and solvent resistance. Furthermore, when unwinding charging after long-term storage is measured, there is a concern that the yield may deteriorate due to adhesion of foreign matter. This is thought to be due to poor adhesion, which caused the film roll to repeat minute expansions and contractions during long-term storage, and the antistatic layer was scraped, resulting in poor unwinding charging. Furthermore, it is thought that the antistatic layer has an effect on the release layer, resulting in deterioration of surface roughness and deterioration of ceramic peel evaluation.
  • the present invention has a highly smooth mold release surface and back surface, and has good releasability, antistatic property, easy slipping property, and adhesion, and has excellent antistatic property and easy slipping property even after long-term storage, and does not scratch. It becomes possible to provide a release film having an antistatic layer that does not easily fall off even when the film is heated. Furthermore, by using the release film for producing ceramic green sheets of the present invention, it is possible to obtain ultra-thin ceramic green sheets and to efficiently produce minute ceramic capacitors.

Landscapes

  • Laminated Bodies (AREA)

Abstract

The present invention addresses the problem of providing an excellent mold release film for the production of a ceramic green sheet, the mold release film enabling the achievement of both reduction in electrostatic charge during unwinding and prevention of pinholes, local thickness variation and the like, even if a ceramic green sheet is thinned. The present invention provides a mold release film with an antistatic layer, the mold release film comprising a base material, an antistatic layer that is provided on one surface of the base material with a first functional layer being interposed therebetween, and a mold release layer that is provided on the other surface side of the base material. With respect to this mold release film with an antistatic layer, the antistatic layer is formed of an antistatic layer-forming composition that contains an antistatic agent and a thermosetting binder resin; the antistatic agent contains a conductive polymer; and the side on which the antistatic layer is provided has a surface resistivity (logΩ/□) of 3 to 10.

Description

帯電防止層付き離型フィルムRelease film with antistatic layer
 本発明は、セラミックグリーンシート製造用離型フィルムに関する。更に詳しくは、セラミックグリーンシート等の樹脂シートを薄膜化させた場合でも、ピンホールの発生の抑制、部分的な厚みばらつき等の防止、巻出し帯電の低減を、すべて備えることができる帯電防止層付き離型フィルムに関する。特に、セラミックグリーンシートの製造に用いる離型フィルムに関する。 The present invention relates to a release film for producing ceramic green sheets. More specifically, even when a resin sheet such as a ceramic green sheet is thinned, an antistatic layer can suppress the generation of pinholes, prevent local thickness variations, and reduce unwinding static electricity. Regarding a mold release film. In particular, it relates to a release film used in the production of ceramic green sheets.
通常、積層セラミックコンデンサの製造工程では離型フィルム上にセラミックスラリー等を成型し、一度ロール状態にし、次工程に進むのが一般的である。近年セラミックグリーンシートの薄膜化が進むことで、離型層表面の平滑性だけではなく、ロール状態でセラミックグリーンシートに接触するため離型フィルム裏面(離型層とは反対側のことを離型フィルム裏面と呼ぶ)の平滑性も注目されている。 Normally, in the manufacturing process of multilayer ceramic capacitors, a ceramic slurry or the like is molded onto a release film, once it is rolled, and then the process proceeds to the next step. In recent years, as ceramic green sheets have become thinner, not only the smoothness of the surface of the release layer, but also the back surface of the release film (the side opposite to the release layer), which comes into contact with the ceramic green sheet in a rolled state, has improved. The smoothness of the back surface of the film is also attracting attention.
  一方で、表面平滑性が高い離型フィルムは、ロール状に巻き取った際にブロッキングが生じて、ロール繰り出し時に帯電が生じる等の不具合が起こりやすくなる。このような不具合を防止するために、離型フィルムに帯電防止剤等を含有させて帯電防止機能を付与することが知られている。 On the other hand, a release film with a high surface smoothness tends to cause blocking when wound up into a roll, which tends to cause problems such as charging when the roll is unrolled. In order to prevent such problems, it is known to add an antistatic function to the release film by containing an antistatic agent or the like.
 例えば、特許文献1、2では、帯電防止層を離型層側に設け、帯電防止機能を付与する技術が開示されている。 For example, Patent Documents 1 and 2 disclose a technique in which an antistatic layer is provided on the release layer side to provide an antistatic function.
 さらに、特許文献3では、フィルム裏面に帯電防止機能を付与する技術が開示されている。 Further, Patent Document 3 discloses a technique for imparting an antistatic function to the back surface of the film.
特開2012-224011号公報Japanese Patent Application Publication No. 2012-224011 特開2003-251756号公報Japanese Patent Application Publication No. 2003-251756 特開平02-073833号公報(特公平7-68388号公報)Japanese Patent Application Publication No. 02-073833 (Japanese Patent Publication No. 7-68388)
  特許文献1に示す帯電防止離型フィルムでは、帯電防止層に含まれる成分が凝集してしまい、離型層表面の平滑性が悪化するおそれ、帯電防止層の影響により硬化阻害が発生し、離型性能の悪化につながるおそれがあった。 In the antistatic release film disclosed in Patent Document 1, the components contained in the antistatic layer may aggregate, resulting in deterioration of the surface smoothness of the release layer, and the effect of the antistatic layer may inhibit curing. This may lead to deterioration of mold performance.
  同様に特許文献2に示す帯電防止フィルムでは、離型層中に帯電防止剤を添加しているため、離型性能の悪化につながるおそれがあった。 Similarly, in the antistatic film shown in Patent Document 2, an antistatic agent is added to the release layer, which may lead to deterioration of the release performance.
  特許文献3に示す帯電防止離型フィルムでは、離型フィルムに帯電防止性を付与するために、離型フィルムの基材に対し、アルキルアンモニウム塩等を基材製膜時にインラインコートにより塗布して帯電防止層を形成したものが用いられてきた。裏面に帯電防止層を設けることにより、離型層表面への悪影響がなくなるが、帯電防止層の表面が滑り難いことから、セラミックグリーンシート成型時におけるガイドロール等への接触により帯電防止層が脱落し易く、またそれにより異物が発生する恐れがあった。 In the antistatic release film shown in Patent Document 3, in order to impart antistatic properties to the release film, an alkyl ammonium salt or the like is applied to the base material of the release film by inline coating during base material film formation. Those with an antistatic layer have been used. By providing an antistatic layer on the back side, there is no negative effect on the surface of the mold release layer, but since the surface of the antistatic layer is difficult to slip, the antistatic layer may fall off due to contact with guide rolls, etc. during ceramic green sheet molding. This could easily cause foreign matter to be generated.
さらに近年では、世界各国で積層セラミックコンデンサ製造用離型フィルムの需要が高まっており、製品輸送時間が長くなることが考えられる。ロール状態での長期保存にて、フィルムに応力がかかることで帯電防止層が脱落し、帯電防止性や易滑性が悪化する恐れがあった。 Furthermore, in recent years, demand for release films for manufacturing multilayer ceramic capacitors has been increasing in countries around the world, which may result in longer product transportation times. During long-term storage in a roll state, stress is applied to the film, causing the antistatic layer to fall off, resulting in deterioration of antistatic properties and slipperiness.
  本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、高平滑な離型面や裏面を備え、良好な剥離性、帯電防止性、易滑性、密着性を備え、長期保存後にも帯電防止性及び易滑性に優れ、擦れたときにも脱落し難い帯電防止層を備えた離型フィルムを提供することを目的とする。 The present invention has been made against the background of the problems of the prior art. That is, the object of the present invention is to provide a highly smooth mold release surface and back surface, to have good releasability, antistatic properties, easy sliding properties, and adhesion, and to have excellent antistatic properties and easy slipping properties even after long-term storage. An object of the present invention is to provide a release film having an antistatic layer that does not easily fall off even when rubbed.
 本発明は、以下の態様を示すことができる。 The present invention can exhibit the following aspects.
[1] 基材と、前記基材の一方の面上に第1の機能層を介して設けられた帯電防止層と、前記基材の他方の面側に設けられた離型層とを備え、
前記帯電防止層は、帯電防止剤と熱硬化型バインダー樹脂を含む帯電防止層形成用組成物から形成された層であり、
前記帯電防止剤は導電性高分子を含み、
前記帯電防止層が設けられている側の表面抵抗率(logΩ/□)が3以上、10以下である帯電防止層付き離型フィルム。
[1] A base material, an antistatic layer provided on one surface of the base material via a first functional layer, and a release layer provided on the other surface side of the base material. ,
The antistatic layer is a layer formed from an antistatic layer forming composition containing an antistatic agent and a thermosetting binder resin,
The antistatic agent includes a conductive polymer,
A release film with an antistatic layer having a surface resistivity (logΩ/□) of 3 or more and 10 or less on the side where the antistatic layer is provided.
[2] 前記基材が無機粒子を実質的に含有しておらず、
 前記第1の機能層が易滑塗布層であり、
 前記易滑塗布層は、粒子を含み、
前記帯電防止層が前記易滑塗布層を介して基材の一方の面に設けられている、[1]に記載の帯電防止層付き離型フィルム。
[2] The base material does not substantially contain inorganic particles,
The first functional layer is a slip coating layer,
The slip coating layer includes particles,
The release film with an antistatic layer according to [1], wherein the antistatic layer is provided on one surface of a base material via the easy-sliding coating layer.
[3]前記導電性高分子が、ポリチオフェン系導電性高分子である[1]または[2]に記載の帯電防止層付き離型フィルム。 [3] The release film with an antistatic layer according to [1] or [2], wherein the conductive polymer is a polythiophene-based conductive polymer.
[4]前記熱硬化型バインダー樹脂がアクリルアミド樹脂、メラミン樹脂、ポリカルボジイミド樹脂及びオキサゾリン樹脂から選択される少なくとも1種を含む[1]~[3]の何れかに記載の帯電防止層付き離型フィルム。 [4] The antistatic layer-equipped mold release according to any one of [1] to [3], wherein the thermosetting binder resin contains at least one selected from acrylamide resin, melamine resin, polycarbodiimide resin, and oxazoline resin. film.
[5] 前記帯電防止層において、導電性高分子と熱硬化型バインダー樹脂の固形分の合計値を100質量%とした場合、前記熱硬化型バインダー樹脂の含有量が40重量%以上95重量%以下である[1]~[4]のいずれかに記載の帯電防止層付き離型フィルム。 [5] In the antistatic layer, when the total solid content of the conductive polymer and thermosetting binder resin is 100% by mass, the content of the thermosetting binder resin is 40% by weight or more and 95% by weight. The release film with an antistatic layer according to any one of [1] to [4] below.
[6]前記帯電防止層における、前記基材とは反対側の面の表面粗さSaが、1nm以上25nm以下であり、最大山高さPが60nm以上500nm以下である[1]~[5]のいずれかに記載の帯電防止層付き離型フィルム。 [6] The antistatic layer has a surface roughness Sa of 1 nm or more and 25 nm or less, and a maximum peak height P of 60 nm or more and 500 nm or less [1] to [5] The release film with an antistatic layer according to any one of the above.
[7]前記離型層における、前記基材とは反対側の面の表面粗さSaが0.1nm以上、5nm以下、最大山高さPが1nm以上、50nm以下である[1]~[6]の何れかに記載の帯電防止層付き離型フィルム。 [7] In the release layer, the surface roughness Sa of the surface opposite to the base material is 0.1 nm or more and 5 nm or less, and the maximum peak height P is 1 nm or more and 50 nm or less [1] to [6] ] The release film with an antistatic layer according to any one of the above.
[8]剥離フィルムロールを40℃、湿度50%以下の環境下に30日間保管した後、100m/minで巻き返す際の帯電量が-2kVを超え、+2kV未満である[1]~[7]の何れかに記載の帯電防止層付き離型フィルム。 [8] After storing the release film roll in an environment of 40°C and 50% humidity or less for 30 days, the amount of charge when rewinding at 100 m/min is more than -2 kV and less than +2 kV [1] to [7] The release film with an antistatic layer according to any one of the above.
 本発明によれば、セラミックグリーンシートを薄膜化させた場合でも、ピンホール発生の抑制、部分的な厚みばらつき等の防止、巻出し帯電の低減を全て具備させることができる、樹脂シート、例えばセラミックグリーンシートの製造に適した帯電防止層付き離型フィルムが提供される。 According to the present invention, even when the ceramic green sheet is made thin, it is possible to suppress the occurrence of pinholes, prevent local thickness variations, etc., and reduce unwinding charging. A release film with an antistatic layer suitable for manufacturing green sheets is provided.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be explained in detail.
 本発明の帯電防止層付き離型フィルムは、基材と、基材の一方の面上に第1の機能層を介して設けられた帯電防止層と、基材の他方の面側に設けられた離型層とを備え、
帯電防止層は、帯電防止剤と熱硬化型バインダー樹脂を含む帯電防止層形成用組成物から形成された層であり、
帯電防止剤は導電性高分子を含み、
帯電防止層が設けられている側の表面抵抗率(logΩ/□)が3以上、10以下である帯電防止層付き離型フィルムである。
The release film with an antistatic layer of the present invention comprises a base material, an antistatic layer provided on one surface of the base material via a first functional layer, and a release film provided on the other surface of the base material. and a release layer,
The antistatic layer is a layer formed from an antistatic layer forming composition containing an antistatic agent and a thermosetting binder resin,
The antistatic agent contains a conductive polymer,
This is a release film with an antistatic layer that has a surface resistivity (logΩ/□) of 3 or more and 10 or less on the side where the antistatic layer is provided.
 一態様において、本発明の帯電防止層付き離型フィルムは、セラミックグリーンシート製造用の帯電防止層付き離型フィルムである。(以下、単に帯電防止層付き離型フィルムということがある)。 In one embodiment, the release film with an antistatic layer of the present invention is a release film with an antistatic layer for producing a ceramic green sheet. (Hereinafter, it may simply be referred to as a release film with an antistatic layer).
 本発明の帯電防止層付き離型フィルムであれば、離型層表面の平滑性が悪化することを抑制でき、帯電防止層の影響による離型層の硬化阻害も抑制できる。このため、本発明は、帯電防止性を備えながらも、優れた離型性能を示すことができる。 With the release film with an antistatic layer of the present invention, deterioration of the surface smoothness of the release layer can be suppressed, and inhibition of hardening of the release layer due to the influence of the antistatic layer can also be suppressed. Therefore, the present invention can exhibit excellent mold release performance while having antistatic properties.
 また、本発明は離型層に帯電防止剤を含まないので、離型性能を低下させることなく、離型層は高い平滑性、硬度、離型性を示すことができる。 Furthermore, since the mold release layer of the present invention does not contain an antistatic agent, the mold release layer can exhibit high smoothness, hardness, and mold release properties without deteriorating mold release performance.
 更に、本発明は、帯電防止層の表面が易滑性を示すことができる。その上、本発明は、セラミックグリーンシート成型時においてガイドロール等への接触により生じ得る帯電防止層の脱落も抑制できる。このため、セラミックグリーンシート成型時の異物の発生も抑制できる。 Furthermore, in the present invention, the surface of the antistatic layer can exhibit slipperiness. Furthermore, the present invention can prevent the antistatic layer from falling off, which may occur due to contact with guide rolls or the like during ceramic green sheet molding. Therefore, the generation of foreign matter during molding of the ceramic green sheet can also be suppressed.
 加えて、本発明は、例えば、日本から海外へ離型フィルムを搬送する際等、ロール状態での長期保存及び搬送に適しており、例えば、搬送時にフィルムから帯電防止層が脱落することを抑制できる。 In addition, the present invention is suitable for long-term storage and transportation in a roll state, for example, when transporting a release film from Japan to overseas, and for example, suppresses the antistatic layer from falling off from the film during transport. can.
(基材)
 本発明において好ましく基材として用いられるフィルムは、ポリエステル樹脂より構成されるフィルムであり、主に、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートから選ばれる少なくとも1種を含むポリエステルフィルムが好ましい。また、前記のようなポリエステルのジカルボン酸成分、又は、ジオール成分の一部として、第三成分モノマーが共重合されたポリエステルからなるフィルムであってもよい。これらのポリエステルフィルムの中でも、物性とコストのバランスからポリエチレンテレフタレートフィルムが最も好ましい。
(Base material)
The film preferably used as a base material in the present invention is a film composed of a polyester resin, and a polyester film mainly containing at least one selected from polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate is preferable. . Alternatively, the film may be made of a polyester in which a third component monomer is copolymerized as part of the dicarboxylic acid component or diol component of the polyester as described above. Among these polyester films, polyethylene terephthalate film is most preferred from the viewpoint of balance between physical properties and cost.
 また、前記のポリエステルフィルムは、単層であっても複層であってもかまわない。また、本発明における所望の効果を奏する範囲内であれば、これらの各層には、必要に応じて、ポリエステル樹脂中に各種添加剤を含有させることができる。添加剤としては、例えば、酸化防止剤、耐光剤、ゲル化防止剤、有機湿潤剤、帯電防止剤、紫外線吸収剤などが挙げられる。 Further, the polyester film described above may be a single layer or a multilayer. Further, each of these layers may contain various additives in the polyester resin as needed, as long as the desired effects of the present invention are achieved. Examples of additives include antioxidants, light stabilizers, antigelation agents, organic wetting agents, antistatic agents, and ultraviolet absorbers.
 本発明における基材であるポリエチレンテレフタレートフィルムは、粒径1.0μm以上の粒子を実質的に含まない。基材が多層構造を有する場合、離型層に接する面を形成する層が、粒径1.0μm以上の粒子を実質的に含まない。以下、基材が単層、多層構造のいずれにおいても、離型層に接する面を形成する層は、以下の態様を示すことが望ましい。 The polyethylene terephthalate film that is the base material in the present invention does not substantially contain particles with a particle size of 1.0 μm or more. When the base material has a multilayer structure, the layer forming the surface in contact with the release layer does not substantially contain particles with a particle size of 1.0 μm or more. Hereinafter, regardless of whether the base material has a single-layer structure or a multi-layer structure, it is desirable that the layer forming the surface in contact with the release layer exhibits the following aspects.
 また、基材には、粒径1.0μm未満1nm以上の粒子が存在してもよい。基材が、粒径1.0μm以上の粒子、たとえば無機粒子を実質的に含まないことにより、離型層が高い平滑性と離型性を発揮でき、グリーンシート等の樹脂シートに基材中の粒子形状が転写して不具合が生じることを低減できる。 Further, particles having a particle size of less than 1.0 μm and 1 nm or more may be present in the base material. Because the base material does not substantially contain particles with a particle size of 1.0 μm or more, such as inorganic particles, the mold release layer can exhibit high smoothness and mold release properties, and can be applied to resin sheets such as green sheets in the base material. It is possible to reduce the occurrence of defects caused by transfer of the particle shape.
 一態様において、基材は、粒径1.0μm未満の粒子についても含有しないことで、樹脂シートに基材中の粒子形状が転写して不具合が生じることを、より効果的に抑制できる。 In one embodiment, the base material does not contain particles with a particle size of less than 1.0 μm, so that it is possible to more effectively suppress problems caused by transfer of the particle shape in the base material to the resin sheet.
 一態様において、本発明の基材、例えば、ポリエチレンテレフタレートフィルムは、実質的に無機粒子を含まないフィルムであることが好ましい。これにより、さらに効果的に、樹脂シートに基材中の粒子形状が転写して不具合が生じることを抑制できる。 In one embodiment, the base material of the present invention, for example, a polyethylene terephthalate film, is preferably a film that does not substantially contain inorganic particles. Thereby, it is possible to more effectively suppress the transfer of the particle shape in the base material to the resin sheet and the occurrence of defects.
 たとえば、粒径1.0μm未満の粒子を実質的に含有しない基材は、粒径1.0μm以上の粒子についても実質的に含まない態様が好ましい。 For example, a base material that does not substantially contain particles with a particle size of less than 1.0 μm is preferably also substantially free of particles with a particle size of 1.0 μm or more.
 ここで、本発明において、「粒子を実質的に含有しない」とは、たとえば、1.0μm未満の無機粒子の場合、ケイ光X線分析で無機元素を定量した場合に50ppm以下、好ましくは10ppm以下、最も好ましくは検出限界以下となる含有量を意味する。これは積極的に粒子をフィルム中に添加させなくても、外来異物由来のコンタミ成分や、原料樹脂あるいはフィルムの製造工程におけるラインや装置に付着した汚れが剥離して、フィルム中に混入する場合があるためである。また、「粒径1.0μm以上の粒子を実質的に含まない」とは、積極的に粒径1.0μm以上の粒子を含まないことを意味する。 Here, in the present invention, "contains substantially no particles" means, for example, in the case of inorganic particles less than 1.0 μm, the amount of inorganic elements determined by fluorescent X-ray analysis is 50 ppm or less, preferably 10 ppm. Hereinafter, it most preferably means a content that is below the detection limit. Even if particles are not actively added to the film, contaminants derived from foreign substances or dirt attached to the raw resin or the line or equipment in the film manufacturing process are peeled off and mixed into the film. This is because there is. Further, "substantially not containing particles with a particle size of 1.0 μm or more" means that particles with a particle size of 1.0 μm or more are not included.
(帯電防止層)
 本発明の帯電防止層付き離型フィルムは、基材の一方の面上に第1の機能層を介して設けられた帯電防止層を有する。帯電防止層を積層することで、異物の付着を抑えることができ、更に、静電気力による剥離不良を抑制できる。後述するように第1の機能層を介して帯電防止層を設けることにより、帯電防止層と基材との密着性を向上でき、更に、帯電防止層の脱落を抑制する効果も向上する。また、本発明の帯電防止層は滑り性も備える。
(Antistatic layer)
The release film with an antistatic layer of the present invention has an antistatic layer provided on one surface of a base material via a first functional layer. By laminating the antistatic layer, it is possible to suppress the adhesion of foreign matter, and furthermore, it is possible to suppress peeling defects due to electrostatic force. As will be described later, by providing the antistatic layer through the first functional layer, the adhesion between the antistatic layer and the base material can be improved, and the effect of suppressing the antistatic layer from falling off can also be improved. Furthermore, the antistatic layer of the present invention also has slipperiness.
.
 帯電防止層は、帯電防止層は帯電防止剤と熱硬化型バインダー樹脂を含む帯電防止層形成用組成物から形成された層である。一態様において、帯電防止層形成用組成物は、導電性高分子、熱硬化型バインダー樹脂を含む組成物を硬化した層である。このような組成物を、単に、帯電防止層形成用組成物と称する場合がある。 The antistatic layer is a layer formed from an antistatic layer forming composition containing an antistatic agent and a thermosetting binder resin. In one embodiment, the composition for forming an antistatic layer is a layer obtained by curing a composition containing a conductive polymer and a thermosetting binder resin. Such a composition may simply be referred to as an antistatic layer forming composition.
 帯電防止層を積層する手段については特に限定されず、塗布法、真空蒸着法、貼り合せなど、既知の方法を使用することができる。例えば、帯電防止剤を含む塗液を塗布により設けることが製造工程の短縮と安定した製膜の観点より好ましい。 The means for laminating the antistatic layer is not particularly limited, and known methods such as coating, vacuum deposition, and bonding can be used. For example, it is preferable to apply a coating liquid containing an antistatic agent from the viewpoint of shortening the manufacturing process and stable film formation.
本発明の帯電防止層は、帯電防止剤と熱硬化型バインダー樹脂を含む帯電防止層形成用組成物から形成された層であり、帯電防止剤は導電性高分子を含む。 The antistatic layer of the present invention is a layer formed from an antistatic layer forming composition containing an antistatic agent and a thermosetting binder resin, and the antistatic agent contains a conductive polymer.
(導電性高分子)
 本発明における導電性高分子は、帯電防止性を付与できる高分子であり、カチオン性化合物などのイオン伝導を利用した高分子、π電子共役系導電性高分子などを用いることができる。低湿度下での帯電防止性の点からπ電子共役系導電性高分子を用いることが好ましい。また、π電子共役系導電性高分子は、空気中の水分に依存することなく帯電防止性能を高水準で維持することができるため、フィルムの様々な使用環境で良好な帯電防止性能を有するため好ましい。
(conductive polymer)
The conductive polymer in the present invention is a polymer capable of imparting antistatic properties, and may be a polymer utilizing ionic conduction such as a cationic compound, a π-electron conjugated conductive polymer, or the like. From the viewpoint of antistatic properties under low humidity, it is preferable to use a π-electron conjugated conductive polymer. In addition, π-electron conjugated conductive polymers can maintain a high level of antistatic performance without depending on moisture in the air, so they have good antistatic performance in various environments where the film is used. preferable.
 また、本発明に係る導電性高分子の奏する効果を損なわない範囲で、帯電防止剤を併用できる。帯電防止剤としては、本発明における導電性高分子以外の、カチオン性化合物などのイオン伝導を利用した高分子、π電子共役系導電性高分子であってもよく、界面活性剤、酸化ケイ素化合物、導電性の金属化合物などを用いることができる。 Furthermore, an antistatic agent can be used in combination as long as the effects of the conductive polymer according to the present invention are not impaired. The antistatic agent may be a polymer using ionic conduction such as a cationic compound, a π-electron conjugated conductive polymer, other than the conductive polymer in the present invention, a surfactant, a silicon oxide compound, etc. , a conductive metal compound, etc. can be used.
 π電子共役系導電性高分子としては、アニリンあるいはその誘導体を構成単位として含むアニリン系高分子、ピロールあるいはその誘導体を構成単位として含むピロール系高分子、アセチレンあるいはその誘導体を構成単位として含むアセチレン系高分子、チオフェンあるいはその誘導体を構成単位として含むチオフェン系高分子等が挙げられる。高い透明性を得ようとするならば、π電子共役系導電性高分子としては窒素原子を有さないものが好ましく、中でもチオフェンあるいはその誘導体を構成単位として含むチオフェン系高分子は透明性の点から好適である。好ましくは、導電性高分子は、ポリチオフェン系導電性高分子であり、特にポリアルキレンジオキシチオフェンが好適である。ポリアルキレンジオキシチオフェンとしては、ポリエチレンジオキシチオフェン、ポリプロピレンジオキシチオフェン、ポリ(エチレン/プロピレン)ジオキシチオフェンなどが挙げられる。 Examples of π-electron conjugated conductive polymers include aniline polymers containing aniline or its derivatives as a constitutional unit, pyrrole polymers containing pyrrole or its derivatives as a constitutional unit, and acetylene polymers containing acetylene or its derivatives as a constitutional unit. Examples include polymers, thiophene-based polymers containing thiophene or its derivatives as a constitutional unit, and the like. In order to obtain high transparency, it is preferable that the π-electron conjugated conductive polymer does not have a nitrogen atom, and in particular, thiophene-based polymers containing thiophene or its derivatives as a constituent unit have a disadvantage in terms of transparency. It is preferable because Preferably, the conductive polymer is a polythiophene-based conductive polymer, and polyalkylenedioxythiophene is particularly suitable. Examples of polyalkylene dioxythiophene include polyethylene dioxythiophene, polypropylene dioxythiophene, poly(ethylene/propylene) dioxythiophene, and the like.
 なお、チオフェンあるいはその誘導体を構成単位として含むチオフェン系高分子には、帯電防止性を更に良好なものとするためドーピング剤を、例えばチオフェンあるいはその誘導体を構成単位として含む高分子100質量部に対し0.1質量部以上500質量部以下配合することができる。多い場合には、電子移動が困難となるため帯電防止性能の低下の問題があり、逆に少ない場合には、溶媒に対する分散性低下の問題がある。このドーピング剤としては、LiCl、R1‐30COOLi(R1‐30:炭素数1以上30以下の飽和炭化水素基)、R1‐30SOLi、R1‐30COONa、R1‐30SONa、R1‐30COOK、R1‐30SOK、テトラエチルアンモニウム、I、BFNa、BFNa、HClO、CFSOH、FeCl、テトラシアノキノリン(TCNQ)、Na10Cl10、フタロシアニン、ポルフィリン、グルタミン酸、アルキルスルホン酸塩、ポリスチレンスルホン酸Na(K、Li)塩、スチレン・スチレンスルホン酸Na(K、Li)塩共重合体、ポリスチレンスルホン酸アニオン、スチレンスルホン酸・スチレンスルホン酸アニオン共重合体等を挙げることができる。 In order to improve the antistatic properties of thiophene-based polymers containing thiophene or its derivatives as a constituent unit, a doping agent may be added, for example, per 100 parts by mass of the polymer containing thiophene or its derivatives as a constituent unit. It can be blended from 0.1 parts by mass to 500 parts by mass. When the amount is too large, electron transfer becomes difficult, resulting in a problem of deterioration of antistatic performance.On the other hand, when it is small, there is a problem of deterioration of dispersibility in solvents. Examples of the doping agent include LiCl, R 1-30 COOLi (R 1-30 : saturated hydrocarbon group having 1 to 30 carbon atoms), R 1-30 SO 3 Li, R 1-30 COONa, R 1-30 SO3Na , R1-30COOK , R1-30SO3K , tetraethylammonium , I2 , BF3Na , BF4Na , HClO4 , CF3SO3H , FeCl3 , tetracyanoquinoline (TCNQ) , Na 2 B 10 Cl 10 , phthalocyanine, porphyrin, glutamic acid, alkyl sulfonate, polystyrene sulfonate Na (K, Li) salt, styrene/styrene sulfonate Na (K, Li) salt copolymer, polystyrene sulfonate anion , styrene sulfonic acid/styrene sulfonic acid anion copolymer, and the like.
 一態様において、帯電防止剤は、導電性高分子を含んでもよく、帯電防止剤が導電性高分子であってもよい。本発明において帯電防止層中に含まれる帯電防止剤、例えば導電性高分子は、帯電防止剤と熱硬化型バインダー樹脂の固形分の合計値を100質量%とした場合、5質量%以上で含まれることが好ましく、より好ましくは10質量%以上で含まれる。 In one embodiment, the antistatic agent may include a conductive polymer, and the antistatic agent may be a conductive polymer. In the present invention, the antistatic agent contained in the antistatic layer, such as a conductive polymer, is contained in an amount of 5% by mass or more when the total solid content of the antistatic agent and thermosetting binder resin is 100% by mass. It is preferably contained in an amount of 10% by mass or more, and more preferably in an amount of 10% by mass or more.
 なお、帯電防止剤としてπ電子共役系導電性高分子を用いる場合において、前記ドーピング剤を用いる場合は、本願に規定するπ電子共役系導電性高分子の帯電防止層中の含有量には、導電性高分子と前記ドーピング剤の合計量のことである。このような量で帯電防止剤を含むことで、良好な帯電防止性を付与できる。またこのような量を添加することで、帯電防止剤由来の微小な凹凸が多数形成され、帯電防止剤由来の粒子にかかる圧力が分散され、帯電防止剤の脱落を抑制できて好ましい。 In addition, in the case of using a π-electron conjugated conductive polymer as an antistatic agent, when using the above-mentioned doping agent, the content of the π-electron conjugated conductive polymer specified in the present application in the antistatic layer includes: This refers to the total amount of the conductive polymer and the doping agent. By including the antistatic agent in such an amount, good antistatic properties can be imparted. Further, by adding such an amount, a large number of minute irregularities derived from the antistatic agent are formed, the pressure applied to the particles derived from the antistatic agent is dispersed, and the dropping of the antistatic agent can be suppressed, which is preferable.
 本発明において帯電防止層中に含まれる帯電防止剤、例えば導電性高分子は、帯電防止層における全固形分100質量%に対し、60質量%以下であることが好ましく、より好ましくは50質量%以下である。なお、帯電防止剤としてπ電子共役系導電性高分子を用いる場合において、前記ドーピング剤を用いる場合は、本願に規定するπ電子共役系導電性高分子の帯電防止層中の含有量には、導電性高分子と前記ドーピング剤の合計量のことである。 In the present invention, the antistatic agent, such as a conductive polymer, contained in the antistatic layer is preferably 60% by mass or less, more preferably 50% by mass, based on 100% by mass of the total solid content in the antistatic layer. It is as follows. In addition, in the case of using a π-electron conjugated conductive polymer as an antistatic agent, when using the above-mentioned doping agent, the content of the π-electron conjugated conductive polymer specified in the present application in the antistatic layer includes: This refers to the total amount of the conductive polymer and the doping agent.
このような量で帯電防止剤を含むことで、熱硬化型バインダー樹脂などと相互作用を引き起こさず、帯電防止剤由来の粒子の粗大凝集が発生しにくく、帯電防止層の脱落を抑制でき好ましい。 Containing the antistatic agent in such an amount is preferable because it does not cause interaction with the thermosetting binder resin, makes coarse aggregation of particles derived from the antistatic agent less likely to occur, and prevents the antistatic layer from falling off.
例えば、帯電防止剤と熱硬化型バインダー樹脂の固形分の合計値を100質量%に対して、帯電防止剤は、5質量%以上60質量%以下で含まれ、10質量%以上50質量%以下であってもよい。 For example, when the total solid content of the antistatic agent and thermosetting binder resin is 100% by mass, the antistatic agent is contained in an amount of 5% by mass or more and 60% by mass or less, and 10% by mass or more and 50% by mass or less. It may be.
一態様において、帯電防止剤は、10質量%以上50質量%未満で含まれ、10質量%以上45質量%以下で含まれる。帯電防止剤の含有量が50質量%未満であることにより、帯電防止層の最大突起高さP(最大山高さPともいう)をより低くでき、更に、帯電防止層の粉落ち性を抑制できる。 In one aspect, the antistatic agent is contained in an amount of 10% by mass or more and less than 50% by mass, and is contained in an amount of 10% by mass or more and less than 45% by mass. When the content of the antistatic agent is less than 50% by mass, the maximum protrusion height P (also referred to as maximum peak height P) of the antistatic layer can be lowered, and furthermore, the powder falling off of the antistatic layer can be suppressed. .
(熱硬化型バインダー樹脂)
本発明は、基材の一方の面上に第1の機能層を介して帯電防止層が設けられる。基材と第1の機能層と帯電防止層との密着性の向上は、結果として、帯電防止層と基材の密着性の向上を導く。密着性の向上により、例えば、セラミックグリーンシート成型時においてガイドロール等への接触により生じ得る帯電防止層の脱落も抑制できる。このため、セラミックグリーンシート成型時の異物の発生も抑制できる。
(Thermosetting binder resin)
In the present invention, an antistatic layer is provided on one surface of a base material via a first functional layer. Improving the adhesion between the base material, the first functional layer, and the antistatic layer results in improved adhesion between the antistatic layer and the base material. By improving the adhesion, it is possible to prevent the antistatic layer from falling off, which may occur due to contact with a guide roll or the like during ceramic green sheet molding, for example. Therefore, the generation of foreign matter during molding of the ceramic green sheet can also be suppressed.
 加えて、例えば、ロール状態での長期保存に適しており、フィルムから帯電防止層が脱落することを抑制できる。 In addition, it is suitable for long-term storage, for example in a roll state, and can suppress the antistatic layer from falling off from the film.
このように、本発明は、擦れなどの外的要因に対しても、脱落し難い帯電防止層を備えた離型フィルムを提供できる。 In this manner, the present invention can provide a release film having an antistatic layer that does not easily fall off even in response to external factors such as rubbing.
本発明において、帯電防止層を基材に密着させるために、帯電防止層は、熱硬化型バインダー樹脂を含む組成物から形成されることが好ましい。熱硬化型バインダー樹脂を含有させることにより、耐久性が向上し高温高湿度条件で処理した場合にも帯電防止性能の低下が抑制されるため好ましい。具体的な熱硬化型バインダー樹脂としては、アクリルアミド系、メラミン系、カルボジイミド系、オキサゾリン系が挙げられる。 In the present invention, in order to bring the antistatic layer into close contact with the base material, the antistatic layer is preferably formed from a composition containing a thermosetting binder resin. Containing a thermosetting binder resin is preferable because durability is improved and deterioration in antistatic performance is suppressed even when processed under high temperature and high humidity conditions. Specific thermosetting binder resins include acrylamide, melamine, carbodiimide, and oxazoline binders.
一態様において、熱硬化型バインダー樹脂は、アクリルアミド樹脂、メラミン樹脂、ポリカルボジイミド樹脂及びオキサゾリン樹脂から選択される少なくとも1種を含む。 In one embodiment, the thermosetting binder resin includes at least one selected from acrylamide resin, melamine resin, polycarbodiimide resin, and oxazoline resin.
十分に自己架橋できる観点から、メラミン系が好ましい。上記に記載している熱硬化型バインダー樹脂のほかに、併用して尿素系、エポキシ系、イソシアネート系、ポリカルボジイミド系、アジリジン系の樹脂を用いても特に問題はない。また、架橋反応を促進させるため、触媒等を必要に応じて適宜使用することができる。 From the viewpoint of sufficient self-crosslinking, melamine-based materials are preferred. In addition to the thermosetting binder resins described above, urea-based, epoxy-based, isocyanate-based, polycarbodiimide-based, and aziridine-based resins may be used in combination without any particular problem. Further, in order to promote the crosslinking reaction, a catalyst or the like may be used as appropriate.
本発明においては、第1の機能層が後述する成分を含むことが望ましい。このように、本発明は、各層の機能に応じて、本明細書に記載の成分を選択することにより、各層の有する機能を十分に発揮できる。更に、帯電防止性、易滑性、密着性を備え、長期保存後にも帯電防止性及び易滑性に優れ、擦れたときにも脱落し難い帯電防止層を備えた離型フィルムを提供することができる。 In the present invention, it is desirable that the first functional layer contains the components described below. Thus, in the present invention, the functions of each layer can be fully exhibited by selecting the components described in this specification according to the function of each layer. Furthermore, to provide a release film having antistatic properties, slipperiness, and adhesion, and having an antistatic layer that has excellent antistatic properties and slipperiness even after long-term storage, and does not easily fall off even when rubbed. Can be done.
 本発明に用いるメラミン系の熱硬化型バインダー樹脂としては、フルエーテル型メラミン樹脂、メチロール型メラミン樹脂、イミノ型メラミン樹脂、イミノ・メチロール型メラミン樹脂などが挙げられる。 Examples of the melamine-based thermosetting binder resin used in the present invention include full ether type melamine resin, methylol type melamine resin, imino type melamine resin, and imino-methylol type melamine resin.
これらメラミン樹脂に関してはどのタイプのメラミン樹脂を用いても特に限定はないが、塗膜の硬化性の観点から、フルエーテル型メラミン樹脂が最も好ましい。 Although there are no particular limitations on the type of melamine resin used, full ether type melamine resins are most preferred from the viewpoint of curability of the coating film.
 本発明の帯電防止層に含まれる熱硬化型バインダー樹脂は、導電性高分子と熱硬化型バインダー樹脂の固形分の合計値を100質量%とした場合、熱硬化型バインダー樹脂の含有量が40重量%以上95重量%以下である。 The thermosetting binder resin contained in the antistatic layer of the present invention has a content of 40% by mass when the total solid content of the conductive polymer and the thermosetting binder resin is 100% by mass. It is at least 95% by weight.
熱硬化型バインダー樹脂は、帯電防止層における全固形分100質量%に対し、より好ましくは50質量%以上である。40質量%以上であれば、より架橋密度の高い強固な塗膜が得られ、易滑塗布層との密着性や耐溶剤性が良好であり好ましい。さらに50質量%以上であれば、さらに強固な塗膜となるため、経時での帯電防止性能や滑り性なども良好となるため好ましい。 The thermosetting binder resin preferably accounts for 50% by mass or more based on 100% by mass of the total solid content in the antistatic layer. If it is 40% by mass or more, a strong coating film with a higher crosslinking density can be obtained, and the adhesion with the easy-to-slip coating layer and solvent resistance are favorable, so it is preferable. Furthermore, if it is 50% by mass or more, it is preferable because it will result in a stronger coating film and will also have better antistatic performance and slipperiness over time.
 熱硬化型バインダー樹脂は、帯電防止層における全固形分100質量%に対し、95質量%以下で含まることが好ましく、90質量%以下であってもよい。95質量%以下であると、帯電防止性能に影響なく使用できるため好ましい。 The thermosetting binder resin is preferably contained in an amount of 95% by mass or less, and may be 90% by mass or less, based on 100% by mass of the total solid content in the antistatic layer. A content of 95% by mass or less is preferable because it can be used without affecting antistatic performance.
 本発明における帯電防止層には、外観向上のために界面活性剤を用いてもかまわない。界面活性剤としては、例えば、アセチレングリコール、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンソルビタン脂肪酸エステルなどの非イオン界面活性剤及びフルオロアルキルカルボン酸、パーフルオロアルキルカルボン酸、パーフルオロアルキルベンゼンスルホン酸、パーフルオロアルキル4級アンモニウム、パーフルオロアルキルポリオキシエチレンエタノールなどのフッ素系界面活性剤や、シリコーン系の界面活性剤を用いることができる。 A surfactant may be used in the antistatic layer in the present invention to improve the appearance. Examples of surfactants include nonionic surfactants such as acetylene glycol, polyoxyethylene octylphenyl ether, polyoxyethylene alkyl ether, polyoxyethylene sorbitan fatty acid ester, and fluoroalkyl carboxylic acids, perfluoroalkyl carboxylic acids, and perfluoroalkyl carboxylic acids. Fluorine surfactants such as fluoroalkylbenzenesulfonic acid, perfluoroalkyl quaternary ammonium, perfluoroalkyl polyoxyethylene ethanol, and silicone surfactants can be used.
 帯電防止層には、前述のほか、本発明の目的を阻害しない範囲で必要に応じて、滑剤、色素、紫外線吸収剤、シランカップリング剤、等を混合しても良い。 In addition to the above, the antistatic layer may contain a lubricant, a pigment, an ultraviolet absorber, a silane coupling agent, etc., as necessary, as long as the purpose of the present invention is not impaired.
 本発明の帯電防止層の膜厚は、0.005μm以上1μm以下が好ましい。より好ましくは、0.01μm以上0.5μm以下であり、さらに好ましくは、0.01μm以上0.2μm以下である。帯電防止層の膜厚が0.005μm以上であると、帯電防止効果が得られ好ましい。一方、1μm以下であると、着色が少なく透明性が高くなるため好ましい。  The thickness of the antistatic layer of the present invention is preferably 0.005 μm or more and 1 μm or less. More preferably, it is 0.01 μm or more and 0.5 μm or less, and still more preferably 0.01 μm or more and 0.2 μm or less. It is preferable that the thickness of the antistatic layer is 0.005 μm or more because an antistatic effect can be obtained. On the other hand, a thickness of 1 μm or less is preferable because less coloring occurs and transparency increases. 
本発明の帯電防止層の表面抵抗率は、10[logΩ/□]以下である。さらに好ましくは、9[logΩ/□]以下であり、さらに好ましくは、8[logΩ/□]以下である。例えば、6.0[logΩ/□]以下であってもよい。表面抵抗率を10[logΩ/□]以下にすることでフィルムへの帯電を抑制することができ、工程中の異物付着を防ぐことができる。さらに、9[logΩ/□]以下、8[logΩ/□]以下と小さくすることで、セラミックグリーンシート製造時の帯電による製品不良を少なくすることができ、好ましい。 The surface resistivity of the antistatic layer of the present invention is 10 [logΩ/□] or less. More preferably, it is 9 [logΩ/□] or less, and still more preferably 8 [logΩ/□] or less. For example, it may be 6.0 [logΩ/□] or less. By setting the surface resistivity to 10 [logΩ/□] or less, charging of the film can be suppressed, and adhesion of foreign matter during the process can be prevented. Furthermore, it is preferable to set the resistance to 9 [logΩ/□] or less, or 8 [logΩ/□] or less, since it is possible to reduce product defects due to charging during the production of ceramic green sheets.
 また、帯電防止フィルムの表面抵抗率の下限は特に定めなくてもよいが、3.0[logΩ/□]以上であることが好ましい。帯電防止フィルムの表面抵抗率が3.0[logΩ/□]以上であると、セラミックグリーンシートへ帯電防止剤が転写せず使用できるため好ましい。 Further, the lower limit of the surface resistivity of the antistatic film does not need to be particularly determined, but it is preferably 3.0 [logΩ/□] or more. It is preferable that the surface resistivity of the antistatic film is 3.0 [logΩ/□] or more because the antistatic agent can be used without being transferred to the ceramic green sheet.
 一態様において、帯電防止フィルムの表面抵抗率が3.2[logΩ/□]以上であり、例えば、3.5[logΩ/□]以上であってもよい。 In one embodiment, the surface resistivity of the antistatic film is 3.2 [logΩ/□] or more, and may be, for example, 3.5 [logΩ/□] or more.
 例えば、帯電防止フィルムの表面抵抗率は、3.0[logΩ/□]以上8[logΩ/□]以下である。 For example, the surface resistivity of the antistatic film is 3.0 [logΩ/□] or more and 8 [logΩ/□] or less.
 本発明において、帯電防止層の形成方法は、特に限定されず、上記の帯電防止剤および熱硬化型バインダー樹脂を溶解もしくは分散させた塗液を、基材のポリエステルフィルムの一方の面に、後述する第1の機能層を介して塗布等により展開し、溶媒等を乾燥により除去後、加熱乾燥、熱硬化させる方法が用いられる。このとき、溶媒乾燥、熱硬化時の乾燥温度は、180℃以下であることが好ましく、150℃以下であることがより好ましい。その加熱時間は、30秒以下が好ましく、20秒以下がより好ましい。180℃以下の場合、フィルムの平面性が保たれ、セラミックグリーンシートの厚みムラを引き起こすおそれが小さく好ましい。150℃以下であるとフィルムの平面性を損なうことなく加工することができ、セラミックグリーンシートの厚みムラを引き起こすおそれが更に低下するので特に好ましい。 In the present invention, the method for forming the antistatic layer is not particularly limited. A method is used in which the first functional layer is developed by coating or the like, the solvent and the like are removed by drying, and then heated and cured. At this time, the drying temperature during solvent drying and thermosetting is preferably 180°C or lower, more preferably 150°C or lower. The heating time is preferably 30 seconds or less, more preferably 20 seconds or less. When the temperature is 180° C. or lower, the flatness of the film is maintained, and there is little risk of causing thickness unevenness of the ceramic green sheet, which is preferable. It is particularly preferable that the temperature is 150° C. or lower, since the film can be processed without impairing its flatness, and the possibility of causing thickness unevenness of the ceramic green sheet is further reduced.
(第1の機能層)
第1の機能層は、基材と帯電防止層の間に設けられる。特に、基材と、帯電防止層の密着性を向上さるために設けられる。また、第1の機能層は、帯電防止層における課題解決に貢献し得る。例えば、従来の帯電防止層は、その表面が滑り難いことから、セラミックグリーンシート成型時におけるガイドロール等への接触により帯電防止層が脱落し易いという問題を有していた。また、それにより異物が発生し得る問題を有していた。本発明における第1の機能層は、従来の帯電防止層が有していた上記課題の解決に寄与できる。
(First functional layer)
The first functional layer is provided between the substrate and the antistatic layer. In particular, it is provided to improve the adhesion between the base material and the antistatic layer. Moreover, the first functional layer can contribute to solving problems in the antistatic layer. For example, the conventional antistatic layer has a problem in that the antistatic layer easily falls off due to contact with a guide roll or the like during ceramic green sheet molding because its surface is difficult to slip. Further, there is a problem in that foreign matter may be generated due to this. The first functional layer in the present invention can contribute to solving the above-mentioned problems that conventional antistatic layers have.
このように、本発明における第1の機能層は、基材と帯電防止層との密着性の向上と、帯電防止層に対する滑り性を付与できる層が好ましい。この機能を奏する、第1の機能層を、本発明においては、易滑塗布層と称する。 As described above, the first functional layer in the present invention is preferably a layer that can improve the adhesion between the base material and the antistatic layer and provide slipperiness to the antistatic layer. The first functional layer that performs this function is referred to as a slip coating layer in the present invention.
(易滑塗布層)
 本発明の帯電防止離型フィルムは、上記のようなポリエステル製の基材フィルムの一方の表面上に易滑塗布層を有することが好ましい。すなわち、帯電防止層は、易滑塗布層を介して基材の一方の面に設けられている。
(Easy slip coating layer)
The antistatic release film of the present invention preferably has an easily coated layer on one surface of the polyester base film as described above. That is, the antistatic layer is provided on one surface of the base material via the slippery coating layer.
 易滑塗布層を設けることにより、フィルムの搬送性を良くする効果だけではなく、基材と帯電防止層の密着性が向上される。 By providing the easy-sliding coating layer, not only the transportability of the film is improved, but also the adhesion between the base material and the antistatic layer is improved.
 易滑塗布層中には、少なくともバインダー樹脂及び粒子が含まれていることが好ましい。 It is preferable that the easy-sliding coating layer contains at least a binder resin and particles.
(易滑塗布層中のバインダー樹脂)
 本発明における易滑塗布層を構成するバインダー樹脂としてはアクリル樹脂が含まれていることが好ましい。アクリル樹脂は、分子中に水酸基、及びカルボキシル基を有するアクリル樹脂であることが好ましい。水酸基を有する構成ユニットは、全構成ユニット100モル%中、20~90モル%含まれていることが更に好ましい。水酸基を有する構成ユニットが20モル%以上であると、アクリル樹脂の水溶性を適度に保つことができ好ましい。一方、90モル%以下であると、アクリル樹脂の水酸基と易滑塗布層中に含まれる粒子が極端に相互作用を引き起こさず粒子が均一に分散され好ましい。
(Binder resin in slip coating layer)
It is preferable that the binder resin constituting the easily coated layer in the present invention includes an acrylic resin. The acrylic resin preferably has a hydroxyl group and a carboxyl group in its molecule. It is more preferable that the structural unit having a hydroxyl group is contained in an amount of 20 to 90 mol% based on 100 mol% of the total structural units. It is preferable that the content of the structural unit having a hydroxyl group is 20 mol % or more, since the water solubility of the acrylic resin can be maintained at an appropriate level. On the other hand, when the amount is 90 mol% or less, the hydroxyl groups of the acrylic resin and the particles contained in the easy-sliding coating layer do not significantly interact with each other, and the particles are uniformly dispersed, which is preferable.
 水酸基をアクリル樹脂に導入するには、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシ基を有するモノマーや、2-ヒドロキシエチル(メタ)アクリレートへのγ-ブチロラクトンやε-カプロラクトンの開環付加物等を共重合成分として用いるとよい。中でも、水溶性を阻害しない点で、2-ヒドロキシエチル(メタ)アクリレートが好ましい。なお、これらは2種以上併用してもよい。言うまでもないが、本発明でいうアクリル樹脂とはメタクリル樹脂を含んでいる。 In order to introduce hydroxyl groups into acrylic resin, monomers having hydroxy groups such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, etc. It is preferable to use a ring-opening adduct of γ-butyrolactone or ε-caprolactone to meth)acrylate as a copolymerization component. Among these, 2-hydroxyethyl (meth)acrylate is preferred in that it does not inhibit water solubility. Note that two or more of these may be used in combination. Needless to say, the acrylic resin referred to in the present invention includes methacrylic resin.
 アクリル樹脂の水酸基価は10mgKOH/g以上であることが好ましく、より好ましくは20mgKOH/g以上、更に好ましくは30mgKOH/g以上である。アクリル樹脂の水酸基価が10mgKOH/g以上であれば、アクリル樹脂の水溶性が良好となり好ましい。また帯電防止層中の熱硬化型バインダー樹脂との反応点が増加し、帯電防止層をより強固に基材に固定できるようになるため、好ましい。 The hydroxyl value of the acrylic resin is preferably 10 mgKOH/g or more, more preferably 20 mgKOH/g or more, even more preferably 30 mgKOH/g or more. If the hydroxyl value of the acrylic resin is 10 mgKOH/g or more, the water solubility of the acrylic resin will be good, which is preferable. It is also preferable because it increases the number of reaction points with the thermosetting binder resin in the antistatic layer, making it possible to more firmly fix the antistatic layer to the base material.
 アクリル樹脂の水酸基価は250mgKOH/g以下であることが好ましく、より好ましくは230mgKOH/g以下、更に好ましくは200mgKOH/g以下である。アクリル樹脂の水酸基価が250mgKOH/g以下であれば、アクリル樹脂の水酸基と易滑塗布層中に含まれる粒子が極端に相互作用を引き起こさず粒子が均一に分散され好ましい。 The hydroxyl value of the acrylic resin is preferably 250 mgKOH/g or less, more preferably 230 mgKOH/g or less, even more preferably 200 mgKOH/g or less. When the hydroxyl value of the acrylic resin is 250 mgKOH/g or less, the hydroxyl groups of the acrylic resin and the particles contained in the easy-slip coating layer do not interact excessively, and the particles are uniformly dispersed, which is preferable.
 本発明で用いるアクリル樹脂は水酸基に加えて、カルボキシル基を有する樹脂であることが好ましい。カルボキシル基を有することで、架橋剤との架橋構造を形成することと、水溶性を容易に付与することが可能となる。例として(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマール酸等のカルボキシ基を含有するモノマー、無水マレイン酸、無水イタコン酸等の酸無水物基を含有するモノマーが挙げられる。 The acrylic resin used in the present invention preferably has a carboxyl group in addition to a hydroxyl group. By having a carboxyl group, it becomes possible to form a crosslinked structure with a crosslinking agent and easily impart water solubility. Examples include monomers containing a carboxy group such as (meth)acrylic acid, crotonic acid, itaconic acid, maleic acid, and fumaric acid, and monomers containing an acid anhydride group such as maleic anhydride and itaconic anhydride.
カルボキシル基を有するモノマーは、アクリル樹脂の全構成ユニット100モル%中、4モル%以上が好ましく、10モル%以上がより好ましい。4モル%以上であると、易滑塗布層に架橋構造を形成すること、及び水溶性を付与することが容易となり好ましい。カルボキシル基を有するモノマーは、65モル%以下が好ましく、50モル%以下がより好ましい。65モル%以下であると、得られる塗膜のTgが後述する好適範囲に対して高くなりすぎず、造膜性や、インラインコーティングにおける延伸適正が良好であり好ましい。
The monomer having a carboxyl group is preferably 4 mol% or more, more preferably 10 mol% or more, based on 100 mol% of the total constituent units of the acrylic resin. When the content is 4 mol % or more, it becomes easy to form a crosslinked structure in the slip coating layer and to impart water solubility, which is preferable. The monomer having a carboxyl group is preferably at most 65 mol%, more preferably at most 50 mol%. When it is 65 mol % or less, the Tg of the resulting coating film will not be too high compared to the preferred range described below, and film forming properties and stretching suitability in in-line coating will be good, which is preferable.
 良好な水溶性を発現させるためには、アクリル酸やメタクリル酸の共重合によってアクリル樹脂中に導入されたカルボキシル基を中和することが好ましい。塩基性の中和剤としては、アンモニア、トリメチルアミン、トリエチルアミン、ジメチルアミノエタノール等のアミン化合物や、水酸化カリウム、水酸化ナトリウム等の無機系塩基性物質等があり、このうち、中和剤の揮発のしやすさ、架橋構造の形成のしやすさのためには、中和剤としてアミン化合物を使用することが好ましい。なかでも、粒子の凝集が発生しない点からアンモニアが最も好ましい。また中和率としては、30モル%~95モル%であることが好ましく、より好ましくは40モル%~90モル%である。中和率が30モル%以上の場合、アクリル樹脂の水溶性が十分であり、塗布液調製の際にアクリル樹脂の溶解が容易であり、乾燥後の塗膜面が白化したりするおそれがなく好ましい。一方、中和率が95モル%以下であると、水溶性が高すぎず、塗布液調製においてアルコール等の混合が容易となり好ましい。
In order to develop good water solubility, it is preferable to neutralize carboxyl groups introduced into the acrylic resin by copolymerization of acrylic acid or methacrylic acid. Basic neutralizing agents include amine compounds such as ammonia, trimethylamine, triethylamine, and dimethylaminoethanol, and inorganic basic substances such as potassium hydroxide and sodium hydroxide. For ease of application and ease of formation of a crosslinked structure, it is preferable to use an amine compound as a neutralizing agent. Among these, ammonia is most preferred since particle aggregation does not occur. Further, the neutralization rate is preferably 30 mol% to 95 mol%, more preferably 40 mol% to 90 mol%. When the neutralization rate is 30 mol% or more, the water solubility of the acrylic resin is sufficient, the acrylic resin can be easily dissolved when preparing a coating solution, and there is no risk of whitening of the coating surface after drying. preferable. On the other hand, it is preferable that the neutralization rate is 95 mol % or less because the water solubility is not too high and it is easy to mix alcohol and the like in preparing the coating liquid.
 アクリル樹脂の酸価は40mgKOH/g以上であることが好ましく、より好ましくは50mgKOH/g以上、更に好ましくは60mgKOH/g以上である。アクリル樹脂の酸価が40mgKOH/g以上であれば、オキサゾリン架橋剤もしくはカルボジイミド架橋剤との架橋点が増加するので、より架橋密度の高い強固な塗膜が得られるため好ましい。 The acid value of the acrylic resin is preferably 40 mgKOH/g or more, more preferably 50 mgKOH/g or more, still more preferably 60 mgKOH/g or more. If the acid value of the acrylic resin is 40 mgKOH/g or more, the number of crosslinking points with the oxazoline crosslinking agent or the carbodiimide crosslinking agent increases, so that a strong coating film with higher crosslinking density can be obtained, which is preferable.
 アクリル樹脂の酸価は400mgKOH/g以下であることが好ましく、より好ましくは350mgKOH/g以下、更に好ましくは300mgKOH/g以下である。アクリル樹脂の酸価が400mgKOH/g以下であれば、アクリル樹脂のカルボキシル基と易滑塗布層中に含まれる粒子が極端に相互作用を引き起こさず粒子が均一に分散され好ましい。粒子の分散性が良好であると易滑塗布面に粗大な突起が発生せず、セラミックシートのピンホールが発生しないため好ましい。 The acid value of the acrylic resin is preferably 400 mgKOH/g or less, more preferably 350 mgKOH/g or less, even more preferably 300 mgKOH/g or less. When the acid value of the acrylic resin is 400 mgKOH/g or less, the carboxyl groups of the acrylic resin and the particles contained in the easy-sliding coating layer do not significantly interact with each other, and the particles are uniformly dispersed, which is preferable. It is preferable that the particles have good dispersibility because coarse protrusions will not occur on the easily coated surface and pinholes will not occur in the ceramic sheet.
 アクリル樹脂のガラス転移温度(Tg)は50℃以上であることが好ましく、より好ましくは55℃以上、更に好ましくは60℃以上である。アクリル樹脂のガラス転移温度が50℃以上であると、易滑塗布層の硬度が適度に高くなり好ましい。 The glass transition temperature (Tg) of the acrylic resin is preferably 50°C or higher, more preferably 55°C or higher, and still more preferably 60°C or higher. It is preferable that the glass transition temperature of the acrylic resin is 50° C. or higher because the hardness of the slip coating layer becomes appropriately high.
 アクリル樹脂のガラス転移温度(Tg)は110℃以下であることが好ましく、より好ましくは105℃以下、更に好ましくは100℃以下である。アクリル樹脂のガラス転移温度が110℃以下であると、易滑塗布層を塗工した後の延伸工程で、塗膜にクラックが発生せず均一に延伸されるため好ましい。 The glass transition temperature (Tg) of the acrylic resin is preferably 110°C or lower, more preferably 105°C or lower, even more preferably 100°C or lower. It is preferable that the glass transition temperature of the acrylic resin is 110° C. or lower because the coating film can be uniformly stretched without cracking in the stretching step after applying the easy-sliding coating layer.
 Tgを上記範囲にするために共重合されるTg調整用モノマーとしては、(メタ)アクリル系モノマーや、非アクリル系ビニルモノマーが利用できる。(メタ)アクリル系モノマーの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-アミル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ステアリル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル類;(メタ)アクリルアミド、ジアセトンアクリルアミド、n-メチロールアクリルアミド、(メタ)アクリロニトリル等の窒素含有アクリル系モノマー;メタクリル酸ビニル等が挙げられ、これらは1種または2種以上を用いることができる。
As the Tg adjusting monomer copolymerized to bring the Tg within the above range, (meth)acrylic monomers and non-acrylic vinyl monomers can be used. Specific examples of (meth)acrylic monomers include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, and n-amyl (meth)acrylate. Acrylate, n-hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, Examples include (meth)acrylic acid alkyl esters such as stearyl (meth)acrylate; nitrogen-containing acrylic monomers such as (meth)acrylamide, diacetone acrylamide, n-methylolacrylamide, and (meth)acrylonitrile; vinyl methacrylate; These can be used alone or in combination of two or more.
 また、非アクリル系ビニルモノマーとしては、スチレン、α-メチルスチレン、ビニルトルエン(m-メチルスチレンとp-メチルスチレンの混合物)、クロロスチレン等のスチレン系モノマー;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、シクロヘキサンカルボン酸ビニル、ピバリン酸ビニル、オクチル酸ビニル、モノクロロ酢酸ビニル、アジピン酸ジビニル、クロトン酸ビニル、ソルビン酸ビニル、安息香酸ビニル、ケイ皮酸ビニル等のビニルエステル;塩化ビニル、塩化ビニリデン等のハロゲン化ビニルモノマー;が挙げられ、1種または2種以上を用いることができる。 Examples of non-acrylic vinyl monomers include styrene monomers such as styrene, α-methylstyrene, vinyltoluene (a mixture of m-methylstyrene and p-methylstyrene), and chlorostyrene; vinyl acetate, vinyl propionate, and vinyl butyrate. , vinyl caproate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, vinyl pivalate, vinyl octylate, vinyl monochloroacetate, divinyl adipate, Examples include vinyl esters such as vinyl crotonate, vinyl sorbate, vinyl benzoate, and vinyl cinnamate; and halogenated vinyl monomers such as vinyl chloride and vinylidene chloride; one type or two or more types can be used.
 Tg調整用のモノマーは、水酸基含有モノマーとカルボキシル基含有モノマーの適正量を決めてから、その残部とすることが好ましい。共重合体のTgは、下記のFoxの式で求められる。 As for the monomer for Tg adjustment, it is preferable to determine the appropriate amounts of the hydroxyl group-containing monomer and the carboxyl group-containing monomer, and then use the remainder as the remaining amount. The Tg of the copolymer is determined by the following Fox formula.
 
n:各モノマーの質量分率(質量%)
Tgn:各モノマーのホモポリマーのTg(K)

 Tg調整のために共重合されるモノマーとして、長鎖アルキル基など表面自由エネルギーを低下させる成分が導入されていることが好ましい。長鎖アルキル基を導入したアクリル樹脂としては、アクリル樹脂の側鎖に炭素数が8~20程度のアルキル基を有するものが好ましい。また、(メタ)アクリル酸エステルを主な繰り返し単位とする重合体であり、エステル交換された部分に炭素数8~20の長鎖アルキル基を含む共重合体も好適に使用することができる。

W n : Mass fraction of each monomer (mass%)
Tg n : Tg (K) of homopolymer of each monomer

It is preferable that a component that lowers the surface free energy, such as a long-chain alkyl group, be introduced as a monomer copolymerized for Tg adjustment. As the acrylic resin into which a long-chain alkyl group has been introduced, an acrylic resin having an alkyl group having about 8 to 20 carbon atoms in the side chain of the acrylic resin is preferable. Further, a copolymer which is a polymer having (meth)acrylic acid ester as the main repeating unit and which contains a long chain alkyl group having 8 to 20 carbon atoms in the transesterified portion can also be suitably used.
 Tg調整のために共重合されるモノマー中の長鎖アルキル基を有するモノマーは、アクリル樹脂の全構成ユニット100モル%中、50モル%以下が好ましく、40モル%以下がより好ましい。50モル%以下であると、得られる塗膜のTgが好適範囲に対して低くなりすぎず、塗膜の硬度が高く維持できるため好ましい。本発明においては、Tgが好適範囲を維持できるのであれば、長鎖アルキル基を有するモノマーは、0モル%であっても構わないが、5モル%以上であるとアクリル樹脂のTg調整の効果が明瞭となり好ましい。 The monomer having a long chain alkyl group in the monomer copolymerized for Tg adjustment is preferably 50 mol% or less, more preferably 40 mol% or less, based on 100 mol% of the total constituent units of the acrylic resin. If it is 50 mol% or less, the Tg of the resulting coating film will not be too low compared to the preferred range, and the hardness of the coating film can be maintained at a high level, which is preferable. In the present invention, as long as the Tg can be maintained within a suitable range, the monomer having a long-chain alkyl group may be used in an amount of 0 mol%, but if it is 5 mol% or more, the effect of adjusting the Tg of the acrylic resin is is clear, which is preferable.
 本発明で使用するアクリル樹脂は、公知のラジカル重合によって得ることができる。乳化重合、懸濁重合、溶液重合、塊状重合等、いずれも採用可能である。取り扱い性の点からは、溶液重合が好ましい。溶液重合に用いることのできる水溶性有機溶媒としては、エチレングリコールn-ブチルエーテル、イソプロパノール、エタノール、n-メチルピロリドン、テトラヒドロフラン、1,4-ジオキサン、1,3-オキソラン、メチルソロソルブ、エチルソロソルブ、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等が挙げられる。これらは水と混合して用いてもよい。 The acrylic resin used in the present invention can be obtained by known radical polymerization. Emulsion polymerization, suspension polymerization, solution polymerization, bulk polymerization, etc. can all be employed. From the point of view of ease of handling, solution polymerization is preferred. Examples of water-soluble organic solvents that can be used in solution polymerization include ethylene glycol n-butyl ether, isopropanol, ethanol, n-methylpyrrolidone, tetrahydrofuran, 1,4-dioxane, 1,3-oxolane, methyl sorosolve, and ethyl sorosolve. , ethyl carbitol, butyl carbitol, propylene glycol monopropyl ether, propylene glycol monobutyl ether, and the like. These may be used in combination with water.
重合開始剤としてはラジカルを発生する公知の化合物であればよいが、例えば、2,2-アゾビス-2-メチル-N-2-ヒドロキシエチルプロピオンアミド等の水溶性アゾ系重合開始剤が好ましい。重合の温度や時間等は適宜選択される。
The polymerization initiator may be any known compound that generates radicals, but preferably is a water-soluble azo polymerization initiator such as 2,2-azobis-2-methyl-N-2-hydroxyethylpropionamide. The polymerization temperature, time, etc. are selected as appropriate.
アクリル樹脂の質量平均分子量(Mw)は、10,000~200,000程度が好ましい。より好ましい範囲は、20,000~150,000である。Mwが10,000以上の場合、テンター内での熱分解のおそれがなく好ましい。Mwが200,000以下であると、塗布液の粘度の著しい上昇がなく、塗工性が良好であり好ましい。 The weight average molecular weight (Mw) of the acrylic resin is preferably about 10,000 to 200,000. A more preferred range is 20,000 to 150,000. When Mw is 10,000 or more, there is no fear of thermal decomposition within the tenter, which is preferable. When Mw is 200,000 or less, the viscosity of the coating liquid does not increase significantly and the coating properties are good, which is preferable.
 本発明における易滑塗布層のバインダーとして、アクリル樹脂以外に他のバインダー樹脂を併用してもよい。他のバインダー樹脂としては、ポリエステル樹脂、ウレタン樹脂、ポリビニル系樹脂(ポリビニルアルコール等)、ポリアルキレングリコール、ポリアルキレンイミン、メチルセルロース、ヒドロキシセルロース、でんぷん類等が挙げられる。 As the binder for the slip coating layer in the present invention, other binder resins may be used in combination with the acrylic resin. Examples of other binder resins include polyester resins, urethane resins, polyvinyl resins (such as polyvinyl alcohol), polyalkylene glycols, polyalkylene imines, methylcellulose, hydroxycellulose, and starches.
 アクリル樹脂の易滑塗布層中の含有量としては、全固形分中、20質量%以上95質量%以下が好ましい。より好ましくは30質量%以上90質量%以下である。20質量%以上であれば、架橋成分であるカルボキシル基が少なくなりすぎず、架橋密度が低くならないため好ましい。95質量%以下であれば、架橋する対象である架橋剤の量が少なくなりすぎず、架橋密度が低くならないため好ましい。 The content of the acrylic resin in the easily coated layer is preferably 20% by mass or more and 95% by mass or less based on the total solid content. More preferably, it is 30% by mass or more and 90% by mass or less. If it is 20% by mass or more, the carboxyl group as a crosslinking component will not decrease too much and the crosslinking density will not become low, which is preferable. If it is 95% by mass or less, the amount of the crosslinking agent to be crosslinked will not become too small and the crosslinking density will not become low, which is preferable.
(架橋剤)
 本発明において、易滑塗布層中に架橋構造を形成させるために、易滑塗布層はオキサゾリン系架橋剤またはカルボジイミド系架橋剤から選ばれる少なくとも1種の架橋剤を含有していることが好ましい。オキサゾリン系架橋剤またはカルボジイミド系架橋剤を含有させることにより、PET基材との密着性を向上させること、及びアクリル樹脂のカルボキシル基との架橋を促進させることにより易滑層の塗膜強度を向上させることができる。さらにカルボキシル基と反応する架橋剤を選定することで、アクリル樹脂中の水酸基を残存させることができ、残存した水酸基と帯電防止層中の熱硬化性バインダーが反応することで、より強固な密着性を付与することができる。また他の架橋剤を併用してもよく、併用できる具体的な架橋剤としては、尿素系、エポキシ系、メラミン系、イソシアネート系、シラノール系等が挙げられる。また、架橋反応を促進させるため、触媒等を必要に応じて適宜使用することができる。
(Crosslinking agent)
In the present invention, in order to form a crosslinked structure in the easy-slip coating layer, it is preferable that the easy-slip coating layer contains at least one crosslinking agent selected from oxazoline-based crosslinking agents and carbodiimide-based crosslinking agents. By containing an oxazoline-based crosslinking agent or a carbodiimide-based crosslinking agent, the adhesion to the PET base material is improved, and the coating strength of the slippery layer is improved by promoting crosslinking with the carboxyl group of the acrylic resin. can be done. Furthermore, by selecting a crosslinking agent that reacts with carboxyl groups, the hydroxyl groups in the acrylic resin can remain, and the remaining hydroxyl groups react with the thermosetting binder in the antistatic layer, resulting in stronger adhesion. can be granted. Further, other crosslinking agents may be used in combination, and specific examples of crosslinking agents that can be used in combination include urea-based, epoxy-based, melamine-based, isocyanate-based, and silanol-based. Further, in order to promote the crosslinking reaction, a catalyst or the like may be used as appropriate.
 オキサゾリン基を有する架橋剤としては、例えば、オキサゾリン基を有する重合性不飽和単量体を、必要に応じその他の重合性不飽和単量体とともに従来公知の方法(例えば溶液重合、乳化重合等)で共重合させることにより得られるオキサゾリン基を有する重合体等を挙げることができる。  As a crosslinking agent having an oxazoline group, for example, a polymerizable unsaturated monomer having an oxazoline group may be used together with other polymerizable unsaturated monomers as necessary by conventionally known methods (for example, solution polymerization, emulsion polymerization, etc.). Examples include polymers having oxazoline groups obtained by copolymerizing with.​
 オキサゾリン基を有する重合性不飽和単量体としては、例えば、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリンなどを挙げることができる。これらは単独で用いてもよいし2種以上を併用してもよい。 Examples of the polymerizable unsaturated monomer having an oxazoline group include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, and 2-vinyl-2-oxazoline. Examples include isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, and 2-isopropenyl-5-ethyl-2-oxazoline. These may be used alone or in combination of two or more.
 その他の重合性不飽和単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の(メタ)アクリル酸の炭素数1~24個のアルキルまたはシクロアルキルエステル;2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等の(メタ)アクリル酸の炭素数2~8個のヒドロキシアルキルエステル;スチレン、ビニルトルエン等のビニル芳香族化合物;(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレートとアミン類との付加物;ポリエチレングリコール(メタ)アクリレート;N-ビニルピロリドン、エチレン、ブタジエン、クロロプレン、プロピオン酸ビニル、酢酸ビニル、(メタ)アクリロニトリル等が挙げられる。これらは単独で用いてもよいし2種以上を併用してもよい。 Examples of other polymerizable unsaturated monomers include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and cyclohexyl (meth)acrylate. Alkyl or cycloalkyl esters of (meth)acrylic acid having 1 to 24 carbon atoms such as acrylate, lauryl (meth)acrylate, and isobornyl (meth)acrylate; 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, etc. Hydroxyalkyl esters having 2 to 8 carbon atoms of (meth)acrylic acid; Vinyl aromatic compounds such as styrene and vinyltoluene; (meth)acrylamide, dimethylaminopropyl (meth)acrylamide, dimethylaminoethyl (meth)acrylate, Examples include adducts of glycidyl (meth)acrylate and amines; polyethylene glycol (meth)acrylate; N-vinylpyrrolidone, ethylene, butadiene, chloroprene, vinyl propionate, vinyl acetate, (meth)acrylonitrile, and the like. These may be used alone or in combination of two or more.
 その他の重合性不飽和単量体は、得られるオキサゾリン基を有する架橋剤を水溶性架橋剤として、他樹脂との相溶性、濡れ性、架橋反応効率等を向上させる観点から、親水性単量体であることが好ましい。親水性単量体としては、2-ヒドロキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、(メタ)アクリル酸とポリエチレングリコールのモノエステル化合物等のポリエチレングリコール鎖を有する単量体、2-アミノエチル(メタ)アクリレートおよびその塩、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、(メタ)アクリロニトリル、スチレンスルホン酸ナトリウム等が挙げられる。これらの中でも、水への溶解性の高いメトキシポリエチレングリコール(メタ)アクリレート、(メタ)アクリル酸とポリエチレングリコールのモノエステル化合物等のポリエチレングリコール鎖を有する単量体が好ましい。 Other polymerizable unsaturated monomers are hydrophilic monomers from the viewpoint of improving compatibility with other resins, wettability, crosslinking reaction efficiency, etc. by using the obtained crosslinking agent having an oxazoline group as a water-soluble crosslinking agent. Preferably, it is a body. Examples of hydrophilic monomers include monomers having a polyethylene glycol chain such as 2-hydroxyethyl (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, and monoester compounds of (meth)acrylic acid and polyethylene glycol; Examples include aminoethyl (meth)acrylate and its salts, (meth)acrylamide, N-methylol (meth)acrylamide, N-(2-hydroxyethyl)(meth)acrylamide, (meth)acrylonitrile, sodium styrene sulfonate, and the like. Among these, monomers having polyethylene glycol chains, such as methoxypolyethylene glycol (meth)acrylate and monoester compounds of (meth)acrylic acid and polyethylene glycol, which are highly soluble in water, are preferred.
 オキサゾリン基を有する架橋剤は、そのオキサゾリン基含有量が3.0~9.0mmol/gであることが好ましい。より好ましくは4.0~8.0mmol/gの範囲内である。4.0~8.0mmol/gの範囲内であれば、適度な架橋構造を形成できるため好ましい。 The crosslinking agent having an oxazoline group preferably has an oxazoline group content of 3.0 to 9.0 mmol/g. More preferably, it is within the range of 4.0 to 8.0 mmol/g. If it is within the range of 4.0 to 8.0 mmol/g, it is preferable because an appropriate crosslinked structure can be formed.
 カルボジイミド系架橋剤としては、モノカルボジイミド化合物やポリカルボジイミド化合物が挙げられる。モノカルボジイミド化合物としては、例えばジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-t-ブチルカルボジイミド、ジ-β-ナフチルカルボジイミド等を挙げることができる。ポリカルボジイミド化合物としては、従来公知の方法で製造したものを使用することができる。例えば、ジイソシアネートの脱二酸化炭素を伴う縮合反応によりイソシアネート末端ポリカルボジイミドを合成することにより製造することができる。 Examples of carbodiimide crosslinking agents include monocarbodiimide compounds and polycarbodiimide compounds. Examples of monocarbodiimide compounds include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, di-β-naphthylcarbodiimide, and the like. . As the polycarbodiimide compound, those produced by conventionally known methods can be used. For example, it can be produced by synthesizing isocyanate-terminated polycarbodiimide through a condensation reaction of diisocyanate with removal of carbon dioxide.
 ポリカルボジイミド化合物の合成原料であるジイソシアネートとしては、例えばトルイレンジイソシアネートの異性体類、4,4-ジフェニルメタンジイソシアネート等の芳香族ジイソシアネート類、キシリレンジイソシアネート等の芳香族脂肪族ジイソシアネート類、イソホロンジイソシアネート及び4,4-ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン等の脂環式ジイソシアネート類、ヘキサメチレンジイソシアネート、および2,2,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート類が挙げられる。黄変の問題から、芳香族脂肪族ジイソシアネート類、脂環式ジイソシアネート類、脂肪族ジイソシアネート類が好ましい。 Examples of diisocyanates that are raw materials for synthesizing polycarbodiimide compounds include isomers of toluylene diisocyanate, aromatic diisocyanates such as 4,4-diphenylmethane diisocyanate, aromatic aliphatic diisocyanates such as xylylene diisocyanate, isophorone diisocyanate, and 4,4-diphenylmethane diisocyanate. , 4-dicyclohexylmethane diisocyanate, alicyclic diisocyanates such as 1,3-bis(isocyanatemethyl)cyclohexane, hexamethylene diisocyanate, and aliphatic diisocyanates such as 2,2,4-trimethylhexamethylene diisocyanate. From the viewpoint of yellowing, aromatic aliphatic diisocyanates, alicyclic diisocyanates, and aliphatic diisocyanates are preferred.
 また、上記ジイソシアネートは、モノイソシアネート等の末端イソシアネートと反応する化合物を用いて分子を適当な重合度に制御して使用しても差し支えない。このようにポリカルボジイミドの末端を封止してその重合度を制御するためのモノイソシアネートとしては、例えばフェニルイソシアネート、トルイレンイソシアネート、ジメチルフェニルイソシアネート、シクロヘキシルイソシアネート、ブチルイソシアネート、ナフチルイソシアネート等が挙げられる。また、この他にも末端封止剤としてOH基、-NH2基、COOH基、SO3H基を有する化合物を使用することができる。 Furthermore, the above diisocyanate may be used by controlling the molecule to an appropriate degree of polymerization using a compound that reacts with the terminal isocyanate, such as monoisocyanate. Examples of the monoisocyanate for controlling the degree of polymerization by blocking the terminals of polycarbodiimide include phenyl isocyanate, tolylene isocyanate, dimethylphenyl isocyanate, cyclohexyl isocyanate, butyl isocyanate, naphthyl isocyanate, and the like. In addition, compounds having an OH group, -NH2 group, COOH group, or SO3H group can be used as the terminal capping agent.
 ジイソシアネートの脱二酸化炭素を伴う縮合反応は、カルボジイミド化触媒の存在下に進行する。触媒としては、例えば1-フェニル-2-ホスホレン-1-オキシド、3-メチル-2-ホスホレン-1-オキシド、1-エチル-2-ホスホレン-1-オキシド、3-メチル-1-フェニル-2-ホスホレン-1-オキシドや、これらの3-ホスホレン異性体等のホスホレンオキシドなどが挙げられ、反応性の面から3-メチル-1-フェニル-2-ホスホレン-1-オキシドが好ましい。なお、上記触媒の使用量は触媒量とすることができる。 The condensation reaction of diisocyanate accompanied by decarbonization proceeds in the presence of a carbodiimidization catalyst. Examples of the catalyst include 1-phenyl-2-phospholene-1-oxide, 3-methyl-2-phospholene-1-oxide, 1-ethyl-2-phospholene-1-oxide, 3-methyl-1-phenyl-2 -phospholene-1-oxide and phospholene oxides such as 3-phospholene isomers thereof, and 3-methyl-1-phenyl-2-phospholene-1-oxide is preferred from the viewpoint of reactivity. Note that the amount of the catalyst used can be a catalytic amount.
 上記したモノ又はポリカルボジイミド化合物は、水性塗料への配合時に均一な分散状態に保たれることが望ましく、このために適切な乳化剤を用いて乳化加工して乳濁液として使用したり、ポリカルボジイミド化合物の分子構造内に親水性のセグメントを付加して自己乳化物の形態で、あるいは自己溶解物の形態で塗料に配合することが好ましい。 It is desirable that the above-mentioned mono- or polycarbodiimide compounds be kept in a uniformly dispersed state when blended into water-based paints. It is preferable to add a hydrophilic segment to the molecular structure of the compound and blend it into the paint in the form of a self-emulsion or self-dissolution.
 本発明で用いられるカルボジイミド系架橋剤は、水分散性、水溶性が挙げられる。他の水溶性樹脂との相溶性がよく、易滑塗布層の架橋反応効率を向上させることから、水溶性が好ましい。カルボジイミド化合物を水溶性にするためには、イソシアネートの脱二酸化炭素を伴う縮合反応によりイソシアネート末端ポリカルボジイミドを合成した後、更にイソシアネート基との反応性を有する官能基を持つ親水性部位を付加することにより製造することができる。 The carbodiimide crosslinking agent used in the present invention may be water-dispersible or water-soluble. Water-soluble resins are preferred because they have good compatibility with other water-soluble resins and improve the crosslinking reaction efficiency of the easily coated layer. In order to make a carbodiimide compound water-soluble, it is necessary to synthesize isocyanate-terminated polycarbodiimide by a condensation reaction involving removal of carbon dioxide from isocyanate, and then add a hydrophilic moiety having a functional group that is reactive with an isocyanate group. It can be manufactured by
 親水性部位としては、(1)ジアルキルアミノアルコールの四級アンモニウム塩やジアルキルアミノアルキルアミンの四級アンモニウム塩など、(2)反応性ヒドロキシル基を少なくとも1個有するアルキルスルホン酸塩など、(3)アルコキシ基で末端封鎖されたポリ(エチレンオキサイド)、ポリ(エチレンオキサイド)とポリ(プロピレンオキサイド)との混合物などが挙げられる。カルボジイミド化合物は上記親水性部位を導入した場合は(1)カチオン性、(2)アニオン性、(3)ノニオン性となる。なかでも、他の水溶性樹脂のイオン性に関係なく、相溶できるノニオン性が好ましい。 Hydrophilic moieties include (1) quaternary ammonium salts of dialkylamino alcohols and quaternary ammonium salts of dialkylaminoalkylamines, (2) alkyl sulfonates having at least one reactive hydroxyl group, and (3) Examples include poly(ethylene oxide) end-capped with an alkoxy group, a mixture of poly(ethylene oxide) and poly(propylene oxide), and the like. When the above hydrophilic moiety is introduced into the carbodiimide compound, it becomes (1) cationic, (2) anionic, and (3) nonionic. Among these, nonionic resins that are compatible with other water-soluble resins are preferred, regardless of their ionicity.
 架橋剤の易滑塗布層中の含有量としては、全固形分中、5質量%以上80質量%以下が好ましい。より好ましくは10質量%以上70質量%以下である。5質量%以上であれば、塗布層の樹脂の架橋密度が低下しないことから好ましい。80質量%以下であれば、架橋する対象であるアクリル樹脂のカルボキシル基の量が少なくなりすぎず、架橋密度が低くならないため好ましい。 The content of the crosslinking agent in the easily coated layer is preferably 5% by mass or more and 80% by mass or less based on the total solid content. More preferably, it is 10% by mass or more and 70% by mass or less. If it is 5% by mass or more, it is preferable because the crosslinking density of the resin in the coating layer does not decrease. If it is 80% by mass or less, the amount of carboxyl groups in the acrylic resin to be crosslinked will not become too small and the crosslinking density will not become low, which is preferable.
(易滑塗布層中の粒子)
 易滑塗布層は、表面にすべり性を付与するために、滑剤粒子を含むことが好ましい。粒子は、無機粒子であっても、有機粒子であってもよく、特に限定されるものではないが、(1)シリカ、カオリナイト、タルク、軽質炭酸カルシウム、重質炭酸カルシウム、ゼオライト、アルミナ、硫酸バリウム、カーボンブラック、酸化亜鉛、硫酸亜鉛、炭酸亜鉛、酸化ジルコニウム、二酸化チタン、サチンホワイト、珪酸アルミニウム、ケイソウ土、珪酸カルシウム、水酸化アルミニウム、加水ハロイサイト、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウム、水酸化マグネシウム、硫酸バリウム等の無機粒子、(2)アクリルあるいはメタアクリル系、塩化ビニル系、酢酸ビニル系、ナイロン、スチレン/アクリル系、スチレン/ブタジエン系、ポリスチレン/アクリル系、ポリスチレン/イソプレン系、ポリスチレン/イソプレン系、メチルメタアクリレート/ブチルメタアクリレート系、メラミン系、ポリカーボネート系、尿素系、エポキシ系、ウレタン系、フェノール系、ジアリルフタレート系、ポリエステル系等の有機粒子が挙げられる。
(Particles in the slippery coating layer)
The easy-sliding coating layer preferably contains lubricant particles in order to impart slipperiness to the surface. Particles may be inorganic particles or organic particles, and are not particularly limited, but include (1) silica, kaolinite, talc, light calcium carbonate, heavy calcium carbonate, zeolite, alumina, Barium sulfate, carbon black, zinc oxide, zinc sulfate, zinc carbonate, zirconium oxide, titanium dioxide, satin white, aluminum silicate, diatomaceous earth, calcium silicate, aluminum hydroxide, hydrated halloysite, calcium carbonate, magnesium carbonate, calcium phosphate, hydroxide Inorganic particles such as magnesium and barium sulfate, (2) Acrylic or methacrylic, vinyl chloride, vinyl acetate, nylon, styrene/acrylic, styrene/butadiene, polystyrene/acrylic, polystyrene/isoprene, polystyrene/ Examples of organic particles include isoprene-based, methyl methacrylate/butyl methacrylate-based, melamine-based, polycarbonate-based, urea-based, epoxy-based, urethane-based, phenol-based, diallylphthalate-based, and polyester-based organic particles.
粒子の易滑塗布層からの脱落を防止する点で、有機粒子を使用することが特に好ましい。有機粒子を使用することで、易滑塗布層のバインダー及び、架橋剤成分との相互作用が強くなり、脱落を防止することが容易となり好ましい。有機粒子の中でも、易滑塗布層中に存在するアクリル樹脂と化学構造が似通っているアクリル系樹脂粒子及び/又はメタクリル系樹脂粒子が、粒子の易滑塗布層からの脱落の防止性において特に好ましい。 It is particularly preferable to use organic particles in order to prevent the particles from falling off from the slip coating layer. The use of organic particles is preferable because it strengthens the interaction with the binder and crosslinking agent component of the slip coating layer, making it easier to prevent falling off. Among the organic particles, acrylic resin particles and/or methacrylic resin particles, which have a similar chemical structure to the acrylic resin present in the easy-slip coating layer, are particularly preferred in terms of preventing the particles from falling off the easy-slip coating layer. .
 粒子の平均粒径は10nm以上であることが好ましく、より好ましくは20nm以上であり、さらに好ましくは30nm以上である。粒子の平均粒径は10nm以上であると、凝集しにくく、滑り性が確保できて好ましい。 The average particle diameter of the particles is preferably 10 nm or more, more preferably 20 nm or more, and still more preferably 30 nm or more. It is preferable that the average particle diameter of the particles is 10 nm or more because it is difficult to aggregate and ensures slipperiness.
 粒子の平均粒径は1000nm以下であることが好ましく、より好ましくは800nm以下であり、さらに好ましくは600nm以下である。粒子の平均粒径が1000nm以下であると、透明性が保たれ、また、粒子が脱落することがなく好ましい。 The average particle diameter of the particles is preferably 1000 nm or less, more preferably 800 nm or less, and even more preferably 600 nm or less. When the average particle diameter of the particles is 1000 nm or less, transparency is maintained and the particles do not fall off, which is preferable.
 また、例えば、平均粒径が10~270nm程度の小さい粒子と、平均粒径が300~1000nm程度の大きい粒子を混用することも、後述の領域表面平均粗さ(Sa)、最大突起高さ(P)を小さく保ちながら、粗さ曲線要素の平均長さ(RSm)を小さくして、すべり性と平滑性を両立させる上で好ましく、特に好ましくは、30nm以上250nm以下の小さい粒子と、平均粒径が350~600nmの大きい粒子を併用することである。小さい粒子と大きい粒子を混用する場合、塗布層固形分全体に対して、小さい粒子の質量含有率を大きい粒子の質量含有率より大きくしておくことが好ましい。 Furthermore, for example, it is possible to use a mixture of small particles with an average particle size of about 10 to 270 nm and large particles with an average particle size of about 300 to 1000 nm. It is preferable to reduce the average length (RSm) of the roughness curve element while keeping P) small to achieve both slipperiness and smoothness, and particularly preferably small particles of 30 nm or more and 250 nm or less and average particles. The method is to use large particles with a diameter of 350 to 600 nm. When using a mixture of small particles and large particles, it is preferable that the mass content of the small particles is greater than the mass content of the large particles with respect to the entire solid content of the coating layer.
 粒子の平均粒径の測定方法は、加工後のフィルムの断面の粒子を透過型電子顕微鏡または走査型電子顕微鏡で観察を行い、凝集していない粒子100個を観察し、その平均値をもって平均粒径とする方法で行った。 The method for measuring the average particle size of particles is to observe the particles in the cross section of the processed film using a transmission electron microscope or scanning electron microscope, observe 100 non-agglomerated particles, and use the average value to determine the average particle size. This was done using the method of determining the diameter.
 本発明の目的を満たすものであれば、粒子の形状は特に限定されるものでなく、球状粒子、不定形の球状でない粒子を使用できる。不定形の粒子の粒子径は円相当径として計算することができる。円相当径は、観察された粒子の面積をπで除し、平方根を算出し2倍した値である。 The shape of the particles is not particularly limited as long as the object of the present invention is met, and spherical particles and irregularly shaped non-spherical particles can be used. The particle diameter of irregularly shaped particles can be calculated as a circular equivalent diameter. The equivalent circle diameter is a value obtained by dividing the area of the observed particle by π, calculating the square root, and doubling the square root.
 粒子の易滑塗布層の全固形分に対する比率は、50質量%以下であることが好ましく、より好ましくは40質量%以下であり、さらに好ましくは30質量%以下である。粒子の易滑塗布層の全固形分に対する比率が50質量%以下であれば、透明性が保たれ、易滑塗布層からの粒子の脱落が顕著に発生せず、好ましい。 The ratio of particles to the total solid content of the easily coated layer is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less. It is preferable that the ratio of particles to the total solid content of the easy-slip coating layer is 50% by mass or less, since transparency is maintained and particles do not noticeably fall off from the easy-slip coating layer.
 粒子の易滑塗布層の全固形分に対する比率は、1質量%以上であることが好ましく、より好ましくは1.5質量%以上であり、さらに好ましくは2質量%以上である。粒子の易滑塗布層の全固形分に対する比率が1質量%以上であれば、滑り性が確保できて好ましい。 The ratio of the particles to the total solid content of the easily coated layer is preferably 1% by mass or more, more preferably 1.5% by mass or more, and still more preferably 2% by mass or more. It is preferable that the ratio of particles to the total solid content of the easy-slip coating layer is 1% by mass or more because slipperiness can be ensured.
 易滑塗布層に含まれる粒子の含有率を測定する方法としては、例えば、易滑塗布層に有機成分の樹脂と無機粒子が含まれる場合、次の方法を用いることができる。まず加工フィルムに設けられた易滑塗布層を、溶剤などを用いて加工フィルムより抽出し乾固することで易滑塗布層取り出す。次に得られた易滑塗布層に熱をかけ、易滑塗布層に含まれる有機成分を熱により燃焼留去させることで無機成分のみを得ることができる。得られた無機成分と燃焼留去前の易滑塗布層の重量を測定することで、易滑塗布層に含まれる粒子の質量%を測定することができる。このとき、市販の示差熱・熱重量同時測定装置を用いることで精度良く測定することができる。なお、上記の粒子の易滑塗布層の全固形分中の比率は、粒子が複数種類存在する場合は、その複数種の合計量の比率を意味する。 As a method for measuring the content of particles contained in the easy-slip coating layer, for example, when the easy-slip coating layer contains an organic component resin and inorganic particles, the following method can be used. First, the easy-sliding coating layer provided on the processed film is extracted from the processed film using a solvent or the like and dried to solidify, thereby removing the easy-sliding coating layer. Next, only the inorganic components can be obtained by applying heat to the obtained slip coating layer and burning and distilling off the organic components contained in the slip coating layer. By measuring the weight of the obtained inorganic component and the easy-slip coating layer before combustion and distillation, the mass % of particles contained in the easy-slip coating layer can be determined. At this time, accurate measurement can be achieved by using a commercially available differential thermal/thermogravimetric simultaneous measuring device. In addition, the ratio of the above-mentioned particles in the total solid content of the easy-sliding coating layer means the ratio of the total amount of the plurality of types when there are multiple types of particles.
(易滑塗布層中の添加剤)
 易滑塗布層に他の機能性を付与するために、塗布外観を損なわない程度の範囲で、各種の添加剤を含有させても構わない。前記添加剤としては、例えば、蛍光染料、蛍光増白剤、可塑剤、紫外線吸収剤、顔料分散剤、抑泡剤、消泡剤、防腐剤等が挙げられる。
(Additives in slip coating layer)
In order to impart other functionality to the easy-sliding coating layer, various additives may be included within a range that does not impair the coating appearance. Examples of the additives include fluorescent dyes, optical brighteners, plasticizers, ultraviolet absorbers, pigment dispersants, foam inhibitors, antifoaming agents, and preservatives.
 易滑塗布層には、塗布時のレベリング性の向上、塗布液の脱泡を目的に界面活性剤を含有させることもできる。界面活性剤は、カチオン系、アニオン系、ノニオン系などいずれのものでも構わないが、シリコーン系、アセチレングリコール系又はフッ素系界面活性剤が好ましい。これらの界面活性剤は、過剰に添加することで塗布外観の異常が発生しない程度の範囲で塗布層に含有させることが好ましい。 The easy-sliding coating layer can also contain a surfactant for the purpose of improving leveling properties during coating and defoaming the coating liquid. The surfactant may be cationic, anionic, or nonionic, but silicone, acetylene glycol, or fluorine surfactants are preferred. It is preferable that these surfactants be contained in the coating layer within a range that does not cause abnormalities in the coating appearance if added in excess.
 塗布方法としては、ポリエステル基材フィルム製膜時に同時に塗布する所謂インラインコーティング法、及び、ポリエステル基材フィルムを製膜後、別途コーターで塗布する所謂オフラインコーティング法のいずれも適用できるが、インラインコーティング法が効率的でより好ましい。 As a coating method, both the so-called in-line coating method, in which the coating is applied at the same time as the polyester base film is formed, and the so-called offline coating method, in which the polyester base film is coated with a separate coater after the film is formed, can be applied, but the in-line coating method is more efficient and preferable.
 塗布方法として塗布液をポリエチレンテレフタレート(以下、PETと略記する場合がある)フィルムに塗布するための方法は、公知の任意の方法を用いることができる。例えば、リバースロールコート法、グラビアコート法、キスコート法、ダイコーター法、ロールブラッシュ法、スプレーコート法、エアーナイフコート法、ワイヤーバーコート法、パイプドクター法、含浸コート法、カーテンコート法、などが挙げられる。これらの方法を単独で、あるいは組み合わせて塗布する。 Any known method can be used to apply the coating liquid to a polyethylene terephthalate (hereinafter sometimes abbreviated as PET) film. For example, reverse roll coating method, gravure coating method, kiss coating method, die coater method, roll brushing method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, etc. Can be mentioned. These methods may be used alone or in combination.
 本発明において、ポリエステルフィルム上に易滑塗布層を設ける方法としては、溶媒、粒子、樹脂を含有する塗布液をポリエステルフィルムに塗布、乾燥する方法が挙げられる。溶媒として、トルエン等の有機溶剤、水、あるいは水と水溶性の有機溶剤の混合系が挙げられるが、好ましくは、環境問題の点から水単独あるいは水に水溶性の有機溶剤を混合した所謂水系の溶媒が好ましい。 In the present invention, a method for providing an easy-slip coating layer on a polyester film includes a method of coating a polyester film with a coating liquid containing a solvent, particles, and resin and drying the coating solution. Examples of the solvent include organic solvents such as toluene, water, or a mixture of water and a water-soluble organic solvent, but from the viewpoint of environmental issues, water alone or a so-called aqueous solvent, which is a mixture of water and a water-soluble organic solvent, is preferable. solvents are preferred.
 易滑塗布液の固形分濃度はバインダー樹脂の種類や溶媒の種類などにもよるが、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましい。塗布液の固形分濃度は35質量%以下であることが好ましく、より好ましくは20質量%以下である。 Although the solid content concentration of the easy-sliding coating liquid depends on the type of binder resin and the type of solvent, it is preferably 0.5% by mass or more, and more preferably 1% by mass or more. The solid content concentration of the coating liquid is preferably 35% by mass or less, more preferably 20% by mass or less.
 塗布後の乾燥温度についても、バインダー樹脂の種類、溶媒の種類、架橋剤の有無、固形分濃度などにもよるが、70℃以上であることが好ましく、250℃以下であることが好ましい。 The drying temperature after coating also depends on the type of binder resin, the type of solvent, the presence or absence of a crosslinking agent, the solid content concentration, etc., but is preferably 70°C or higher and preferably 250°C or lower.
(ポリエステルフィルムの製造)
 本発明において、基材フィルムとなるポリエステルフィルムは、一般的なポリエステルフィルムの製造方法に従って製造することができる。例えば、ポリエステル樹脂を溶融し、シート状に押出し成形された無配向ポリエステルをガラス転移温度以上の温度において、ロールの速度差を利用して縦方向に延伸した後、テンターにより横方向に延伸し、熱処理を施す方法が挙げられる。また、テンター内で縦横同時に二軸延伸する方法も挙げられる。
(Manufacture of polyester film)
In the present invention, the polyester film serving as the base film can be manufactured according to a general polyester film manufacturing method. For example, a polyester resin is melted, unoriented polyester extruded into a sheet, stretched in the longitudinal direction using a speed difference between rolls at a temperature higher than the glass transition temperature, and then stretched in the transverse direction with a tenter. One example is a method of applying heat treatment. Another method is to carry out biaxial stretching simultaneously in the longitudinal and lateral directions within a tenter.
 本発明において、基材フィルムとなるポリエステルフィルムは、一軸延伸フィルムであっても、二軸延伸フィルムであっても構わないが、二軸延伸フィルムであることが好ましい。 In the present invention, the polyester film serving as the base film may be a uniaxially stretched film or a biaxially stretched film, but it is preferably a biaxially stretched film.
 ポリエステルフィルム基材の厚みは5μm以上であることが好ましく、より好ましくは10μm以上であり、さらに好ましくは15μm以上である。厚みは5μm以上であると、フィルムの搬送時にシワが入りにくく好ましい。 The thickness of the polyester film base material is preferably 5 μm or more, more preferably 10 μm or more, and still more preferably 15 μm or more. A thickness of 5 μm or more is preferable because the film is less likely to wrinkle during transportation.
 ポリエステルフィルム基材の厚みは50μm以下であることが好ましく、より好ましくは45μm以下であり、さらに好ましくは40μm以下である。厚みが40μm以下であると、単位面積当たりのコストが低下するため好ましい。 The thickness of the polyester film base material is preferably 50 μm or less, more preferably 45 μm or less, and still more preferably 40 μm or less. It is preferable that the thickness is 40 μm or less because the cost per unit area decreases.
 インラインコートの場合は縦方向の延伸前の未延伸フィルムに塗工しても、縦方向の延伸後で横方向の延伸前の一軸延伸フィルムに塗工しても良い。縦方向の延伸前に塗工する場合にはロール延伸前に乾燥工程を設けることが好ましい。横方向の延伸前の一軸延伸フィルムに塗工する場合はテンター内でのフィルム加熱工程で乾燥工程を兼ねることが出来るので、必ずしも別途乾燥工程を設ける必要はない。なお、同時二軸延伸する場合も同様である。 In the case of in-line coating, it may be applied to an unstretched film before stretching in the longitudinal direction, or it may be applied to a uniaxially stretched film after stretching in the longitudinal direction and before stretching in the lateral direction. When coating is performed before stretching in the longitudinal direction, it is preferable to provide a drying step before stretching with rolls. When coating a uniaxially stretched film before being stretched in the lateral direction, the film heating process in the tenter can also serve as a drying process, so it is not necessarily necessary to provide a separate drying process. The same applies to the case of simultaneous biaxial stretching.
 易滑塗布層の膜厚は0.001μm以上であることが好ましく、より好ましくは0.01μm以上であり、さらに好ましくは0.02μm以上であり、特に好ましくは0.03μm以上である。塗布層の膜厚が0.001μm以上であると、塗布膜の造膜性が維持され、均一な塗布膜が得られるため好ましい。 The thickness of the easily coated layer is preferably 0.001 μm or more, more preferably 0.01 μm or more, even more preferably 0.02 μm or more, and particularly preferably 0.03 μm or more. It is preferable that the thickness of the coating layer is 0.001 μm or more because the film forming properties of the coating film are maintained and a uniform coating film can be obtained.
 易滑塗布層の膜厚は2μm以下であることが好ましく、より好ましくは1μm以下であり、さらに好ましくは0.8μm以下であり、特に好ましくは0.5μm以下である。塗布層の膜厚が2μm以下であると、ブロッキングが生じるおそれがなく好ましい。 The thickness of the easily coated layer is preferably 2 μm or less, more preferably 1 μm or less, even more preferably 0.8 μm or less, and particularly preferably 0.5 μm or less. It is preferable that the thickness of the coating layer is 2 μm or less, since there is no fear that blocking will occur.
 後述する離型層上に、塗布、成型されるセラミックグリーンシートは、塗布、成型後に離型フィルムと共にロール状に巻き取られる。このとき、セラミックグリーンシート表面に離型フィルムの裏面が接触した状態で巻き取られることとなる。セラミックグリーンシート表面に欠陥を発生させないために、離型フィルムの最外面(ポリエステルフィルムと接していない離型層全体の最表面)は、適度に平坦であることが必要である。 A ceramic green sheet that is coated and molded onto a release layer, which will be described later, is wound up into a roll together with a release film after being coated and molded. At this time, the ceramic green sheet is wound up with the back surface of the release film in contact with the surface thereof. In order to prevent defects from occurring on the surface of the ceramic green sheet, the outermost surface of the release film (the outermost surface of the entire release layer that is not in contact with the polyester film) needs to be appropriately flat.
 離型層における、基材とは反対側の面の領域表面平均粗さ(Sa)が0.1nm以上5nm以下であり、例えば、0.2nm以上4.5nm以下である。 The area surface average roughness (Sa) of the surface opposite to the base material of the release layer is 0.1 nm or more and 5 nm or less, for example, 0.2 nm or more and 4.5 nm or less.
 最大突起高さ(P)が1nm以上50nm以下であることが好ましく、例えば、1nm以上40nm以下である。 The maximum protrusion height (P) is preferably 1 nm or more and 50 nm or less, for example, 1 nm or more and 40 nm or less.
帯電防止層における、基材とは反対側の面の領域表面平均粗さ(Sa)が1nm以上25nm以下であり、最大突起高さ(P)が60nm以上500nm以下である。平均粗さ(Sa)と最大突起高さ(P)がこのような範囲内であることにより、易滑塗布面が平滑になりすぎず適度な滑り性が維持できるため好ましい。更に、易滑塗布面が粗くなりすぎず突起によるセラミックグリーンシートの欠陥が発生せず好ましい。一態様において、領域表面平均粗さ(Sa)が1nm以上20nm以下であり、最大突起高さ(P)が60nm以上300nm以下である。 In the antistatic layer, the area surface average roughness (Sa) of the surface opposite to the base material is 1 nm or more and 25 nm or less, and the maximum protrusion height (P) is 60 nm or more and 500 nm or less. It is preferable that the average roughness (Sa) and maximum protrusion height (P) are within such ranges, since the easily coated surface does not become too smooth and can maintain appropriate slipperiness. Furthermore, the smooth coated surface does not become too rough and defects in the ceramic green sheet due to protrusions do not occur, which is preferable. In one embodiment, the area surface average roughness (Sa) is 1 nm or more and 20 nm or less, and the maximum protrusion height (P) is 60 nm or more and 300 nm or less.
 帯電防止層における、基材とは反対側の面の領域表面平均粗さ(Sa)と、最大突起高さ(P)は共に、離型層における、基材とは反対側の面の領域表面平均粗さ(Sa)最大突起高さ(P)の値よりも大きくなることが望ましい。帯電防止層と離型層がこのような関係を有することで、例えば、ロール状態での長期保存及び搬送に適しており、フィルムから帯電防止層が脱落することを抑制できる。 In the antistatic layer, the average surface roughness (Sa) of the surface opposite to the base material and the maximum protrusion height (P) are both the surface roughness of the region of the surface opposite to the base material in the release layer. It is desirable that the average roughness (Sa) be larger than the value of the maximum protrusion height (P). Such a relationship between the antistatic layer and the release layer makes it suitable for long-term storage and transportation in a roll state, and it is possible to suppress the antistatic layer from falling off from the film.
(離型層)
 離型層は、基材の帯電防止層とは異なる面側に設けられる。
(Release layer)
The release layer is provided on a side of the base material that is different from the antistatic layer.
 本発明における離型層を構成する樹脂には特に限定はなく、シリコーン樹脂、フッ素樹脂、アルキド樹脂、各種ワックス、脂肪族オレフィンなどを用いることができ、各樹脂を単独もしくは、2種類以上併用することもできる。 The resin constituting the release layer in the present invention is not particularly limited, and silicone resins, fluororesins, alkyd resins, various waxes, aliphatic olefins, etc. can be used, and each resin may be used alone or in combination of two or more types. You can also do that.
 本発明における離型層として、例えばシリコーン樹脂とは、分子内にシリコーン構造を有する樹脂のことであり、硬化型シリコーン、シリコーングラフト樹脂、アルキル変性などの変性シリコーン樹脂などが挙げられるが、移行性などの観点から反応性の硬化シリコーン樹脂を用いることが好ましい。反応性の硬化シリコーン樹脂としては、付加反応系のもの、縮合反応系のもの、紫外線もしくは電子線硬化系のものなどを用いることができる。より好ましくは、低温で加工できる低温硬化性の付加反応系のもの、および紫外線もしくは、電子線硬化系のものがよい。これらのものを用いることで、ポリエステルフィルムへの塗工加工時に、低温で加工できる。そのため、加工時におけるポリエステルフィルムへの熱ダメージが少なく、平面性の高いポリエステルフィルムが得られ、0.2~2.0μm厚みの超薄膜セラミックグリーンシート製造時にもピンホールなどの欠点を少なくすることができる。 As the release layer in the present invention, for example, silicone resin refers to a resin having a silicone structure in the molecule, and examples thereof include curable silicone, silicone graft resin, and modified silicone resin such as alkyl-modified resin. From these viewpoints, it is preferable to use a reactive cured silicone resin. As the reactive cured silicone resin, addition reaction type, condensation reaction type, ultraviolet ray or electron beam curing type, etc. can be used. More preferably, a low-temperature curing addition reaction type that can be processed at low temperatures and an ultraviolet or electron beam curing type are preferred. By using these materials, processing can be performed at low temperatures when coating a polyester film. Therefore, there is less heat damage to the polyester film during processing, a polyester film with high flatness can be obtained, and defects such as pinholes can be reduced even when manufacturing ultra-thin ceramic green sheets with a thickness of 0.2 to 2.0 μm. Can be done.
 付加反応系のシリコーン樹脂としては、例えば末端もしくは側鎖にビニル基を導入したポリジメチルシロキサンとハイドロジエンシロキサンとを、白金触媒を用いて反応させて硬化させるものが挙げられる。このとき、120℃で30秒以内に硬化できる樹脂を用いる方が、低温での加工ができ、より好ましい。例としては、東レ・ダウコーニング社製の低温付加硬化型(LTC1006L、LTC1056L、LTC300B、LTC303E、LTC310、LTC314、LTC350G、LTC450A、LTC371G、LTC750A、LTC755、LTC760Aなど)および熱UV硬化型(LTC851、BY24-510、BY24-561、BY24-562など)、信越化学社製の溶剤付加+UV硬化型(X62-5040、X62-5065、X62-5072T、KS5508など)、デュアルキュア硬化型(X62-2835、X62-2834、X62-1980など)などが挙げられる。 Examples of addition reaction type silicone resins include those that are cured by reacting polydimethylsiloxane into which a vinyl group has been introduced into the terminal or side chain with hydrogen siloxane using a platinum catalyst. At this time, it is more preferable to use a resin that can be cured within 30 seconds at 120° C., as this allows processing at low temperatures. Examples include low-temperature addition-curing types manufactured by Dow Corning Toray (LTC1006L, LTC1056L, LTC300B, LTC303E, LTC310, LTC314, LTC350G, LTC450A, LTC371G, LTC750A, LTC755, LTC760A, etc.) and thermal UV-curing types (LTC 851, BY24 -510, BY24-561, BY24-562, etc.), Shin-Etsu Chemical's solvent addition + UV curing type (X62-5040, X62-5065, X62-5072T, KS5508, etc.), dual cure curing type (X62-2835, X62 -2834, X62-1980, etc.).
 縮合反応系のシリコーン樹脂としては、例えば、末端にOH基をもつポリジメチルシロキサンと末端にH基をもつポリジメチルシロキサンを、有機錫触媒を用いて縮合反応させ、3次元架橋構造をつくるものが挙げられる。 Examples of condensation reaction silicone resins include those that create a three-dimensional crosslinked structure by condensing polydimethylsiloxane having an OH group at the end and polydimethylsiloxane having an H group at the end using an organotin catalyst. Can be mentioned.
 紫外線硬化系のシリコーン樹脂としては、例えば最も基本的なタイプとして通常のシリコーンゴム架橋と同じラジカル反応を利用するもの、不飽和基を導入して光硬化させるもの、紫外線でオニウム塩を分解して強酸を発生させ、これでエポキシ基を開裂させて架橋させるもの、ビニルシロキサンへのチオールの付加反応で架橋するもの等が挙げられる。また、前記紫外線の代わりに電子線を用いることもできる。電子線は紫外線よりもエネルギーが強く、紫外線硬化の場合のように開始剤を用いなくても、ラジカルによる架橋反応を行うことが可能である。使用する樹脂の例としては、信越化学社製のUV硬化系シリコーン(X62-7028A/B、X62-7052、X62-7205、X62-7622、X62-7629、X62-7660など)、モメンティブ・パフォーマンス・マテリアルズ社製のUV硬化系シリコーン(TPR6502、TPR6501、TPR6500、UV9300、UV9315、XS56-A2982、UV9430など)、荒川化学社製のUV硬化系シリコーン(シリコリースUV POLY200、POLY215、POLY201、KF-UV265AMなど)が挙げられる。 Examples of UV-curable silicone resins include those that use the same radical reaction as normal silicone rubber crosslinking as the most basic type, those that are photocured by introducing unsaturated groups, and those that are cured by photocuring by introducing unsaturated groups, and those that are made by decomposing onium salts with UV rays. Examples include those that generate a strong acid and use this to cleave the epoxy groups to effect crosslinking, and those that effect crosslinking by addition reaction of thiol to vinylsiloxane. Moreover, an electron beam can also be used instead of the ultraviolet rays. Electron beams have more energy than ultraviolet rays, and it is possible to carry out a crosslinking reaction using radicals without using an initiator as in the case of ultraviolet curing. Examples of resins used include UV-curable silicones manufactured by Shin-Etsu Chemical (X62-7028A/B, X62-7052, X62-7205, X62-7622, X62-7629, X62-7660, etc.), Momentive Performance UV curing silicone manufactured by Materials Co., Ltd. (TPR6502, TPR6501, TPR6500, UV9300, UV9315, XS56-A2982, UV9430, etc.), UV curing silicone manufactured by Arakawa Chemical Co., Ltd. (Silico Lease UV POLY200, POLY215, POLY201, KF-UV2) 65AM etc. ).
 上記、紫外線硬化系のシリコーン樹脂としては、アクリレート変性や、グリシドキシ変性されたポリジメチルシロキサンなどを用いることもできる。これら変性されたポリジメチルシロキサンを、多官能のアクリレート樹脂やエポキシ樹脂などと混合し、開始剤存在下で使用することでも良好な離型性能を出すことができる。 As the above-mentioned ultraviolet curable silicone resin, acrylate-modified or glycidoxy-modified polydimethylsiloxane can also be used. Good mold release performance can also be achieved by mixing these modified polydimethylsiloxanes with polyfunctional acrylate resins, epoxy resins, etc. and using them in the presence of an initiator.
 その他用いられる樹脂の例としては、ステアリル変性、ラウリル変性などをしたアルキド樹脂やアクリル樹脂、またはメチル化メラミンの反応などで得られるアルキド系樹脂、アクリル系樹脂なども好適である。 Examples of other resins that may be used include stearyl-modified, lauryl-modified alkyd resins and acrylic resins, and alkyd resins and acrylic resins obtained by reaction with methylated melamine.
 上記、メチル化メラミンの反応などで得られるアミノアルキド樹脂としては、日立化成社製のテスファイン303、テスファイン305、テスファイン314などが挙げられる。メチル化メラミンの反応などで得られるアミノアクリル樹脂としては、日立化成社製のテスファイン322などが挙げられる。 Examples of the amino alkyd resin obtained by the reaction of methylated melamine include Tesfine 303, Tesfine 305, and Tesfine 314 manufactured by Hitachi Chemical. Examples of the aminoacrylic resin obtained by the reaction of methylated melamine include Tesfine 322 manufactured by Hitachi Chemical.
 本発明における離型層に上記樹脂を用いる場合は、1種類で使用してもよいし、2種類以上を混合して用いてもよい。また、剥離力を調整するために、軽剥離添加剤や、重剥離添加剤といった添加剤を混合することも可能である。 When the above resins are used in the release layer in the present invention, they may be used alone or in a mixture of two or more types. Further, in order to adjust the release force, it is also possible to mix additives such as light release additives and heavy release additives.
 本発明における離型塗布層には、粒径が1μm以下の粒子などを含有することができるが、ピンホール発生の観点から粒子などの突起を形成するものは、実質的に含有しないほうが好ましい。 The release coating layer in the present invention can contain particles with a particle size of 1 μm or less, but from the viewpoint of pinhole generation, it is preferable not to substantially contain particles that form protrusions.
 本発明における離型層には、密着向上剤や、帯電防止剤などの添加剤などを添加してもよい。また、基材との密着性を向上させるために、離型塗布層を設ける前にポリエステルフィルム表面に、アンカーコート、コロナ処理、プラズマ処理、大気圧プラズマ処理等の前処理をすることも好ましい。 Additives such as adhesion improvers and antistatic agents may be added to the release layer in the present invention. Furthermore, in order to improve the adhesion to the base material, it is also preferable to subject the surface of the polyester film to pretreatment such as anchor coating, corona treatment, plasma treatment, atmospheric pressure plasma treatment, etc. before providing the release coating layer.
 本発明において、離型層の厚みは、その使用目的に応じて設定すれば良く、特に限定されないが、好ましくは、硬化後の離型塗布層の厚みが0.005~2.0μmとなる範囲がよい。離型塗布層の厚みが0.005μm以上であると、剥離性能が保たれて好ましい。また、離型塗布層の厚みが2.0μm以下であると、硬化時間が長くなり過ぎず、離型フィルムの平面性の低下によるセラミックグリーンシートの厚みムラを生じおそれがなく好ましい。また、硬化時間が長くなり過ぎないので、離型塗布層を構成する樹脂が凝集するおそれがなく、突起を形成するおそれがないため、セラミックグリーンシートのピンホール欠点が生じにくく好ましい。 In the present invention, the thickness of the release layer may be set depending on the purpose of use and is not particularly limited, but is preferably within a range where the thickness of the release coating layer after curing is 0.005 to 2.0 μm. Good. It is preferable that the thickness of the release coating layer is 0.005 μm or more because the release performance is maintained. Further, it is preferable that the thickness of the release coating layer is 2.0 μm or less, since the curing time will not be too long and there is no risk of uneven thickness of the ceramic green sheet due to deterioration of the flatness of the release film. Furthermore, since the curing time is not too long, there is no risk of the resin constituting the release coating layer coagulating, and there is no risk of forming protrusions, which is preferable because pinhole defects in the ceramic green sheet are less likely to occur.
 離型層を形成させたフィルム外表面(ポリエステルフィルムと接していない塗布フィルム全体の離型塗布層表面)は、その上で塗布、成型するセラミックグリーンシートに欠陥を発生させないために、平坦であることが望ましく、領域表面平均粗さ(Sa)が5nm以下かつ最大突起高さ(P)が30nm以下であることが好ましい。さらには領域表面平均粗さ5nm以下かつ最大突起高さ20nm以下がより好ましい。領域表面粗さが5nm以下、且つ、最大突起高さが30nm以下であれば、セラミックグリーンシート形成時に、ピンホールなどの欠点の発生がなく、歩留まりが良好で好ましい。領域表面平均粗さ(Sa)は小さいほど好ましいと言えるが、0.1nm以上であっても構わず、0.3nm以上であっても構わない。最大突起高さ(P)も小さいほど好ましいと言えるが、1nm以上でも構わず、3nm以上であっても構わない。 The outer surface of the film on which the release layer is formed (the release coating layer surface of the entire coated film that is not in contact with the polyester film) is flat in order to prevent defects from occurring in the ceramic green sheet that is coated and molded on top of it. It is desirable that the area surface average roughness (Sa) is 5 nm or less and the maximum protrusion height (P) is 30 nm or less. More preferably, the area surface average roughness is 5 nm or less and the maximum protrusion height is 20 nm or less. If the area surface roughness is 5 nm or less and the maximum protrusion height is 30 nm or less, defects such as pinholes will not occur during the formation of the ceramic green sheet, and the yield will be good, which is preferable. Although it can be said that the smaller the area surface average roughness (Sa) is, the more preferable it is, but it may be 0.1 nm or more, or 0.3 nm or more. It can be said that the smaller the maximum protrusion height (P) is, the more preferable it is, but it may be 1 nm or more, or 3 nm or more.
 本発明において、離型層の形成方法は、特に限定されず、離型性の樹脂を溶解もしくは分散させた塗液を、基材のポリエステルフィルムの一方の面に塗布等により展開し、溶媒等を乾燥により除去後、加熱乾燥、熱硬化または紫外線硬化させる方法が用いられる。このとき、溶媒乾燥、熱硬化時の乾燥温度は、180℃以下であることが好ましく、150℃以下であることがより好ましく、120℃以下であることがもっとも好ましい。その加熱時間は、30秒以下が好ましく、20秒以下がより好ましい。180℃以下の場合、フィルムの平面性が保たれ、セラミックグリーンシートの厚みムラを引き起こすおそれが小さく好ましい。120℃以下であるとフィルムの平面性を損なうことなく加工することができ、セラミックグリーンシートの厚みムラを引き起こすおそれが更に低下するので特に好ましい。 In the present invention, the method of forming the mold release layer is not particularly limited, and a coating liquid in which a mold release resin is dissolved or dispersed is spread by coating on one side of a polyester film as a base material, and a solvent etc. After removing by drying, heat drying, heat curing, or ultraviolet curing is used. At this time, the drying temperature during solvent drying and thermosetting is preferably 180°C or lower, more preferably 150°C or lower, and most preferably 120°C or lower. The heating time is preferably 30 seconds or less, more preferably 20 seconds or less. When the temperature is 180° C. or lower, the flatness of the film is maintained, and there is little risk of causing thickness unevenness of the ceramic green sheet, which is preferable. It is particularly preferable that the temperature is 120° C. or lower, since the film can be processed without impairing its flatness, and the possibility of causing thickness unevenness of the ceramic green sheet is further reduced.
 本発明において、離型層を形成する組成物を塗布するときの塗液の表面張力は、特に限定されないが30mN/m以下であることが好ましい。表面張力を前記のようにすることで、塗工後の塗れ性が向上し、乾燥後の塗膜表面の凹凸を低減することができる。 In the present invention, the surface tension of the coating liquid when applying the composition forming the mold release layer is not particularly limited, but is preferably 30 mN/m or less. By controlling the surface tension as described above, it is possible to improve the applicability after coating and reduce the unevenness of the coating film surface after drying.
 本発明において、離型層を形成する組成物を塗布するときの塗液には、特に限定されないが、沸点が90℃以上の溶剤を添加することが好ましい。沸点が90℃以上の溶剤を添加することで、乾燥時の突沸を防ぎ、塗膜をレベリングさせることができ、乾燥後の塗膜表面の平滑性を向上させることができる。その添加量としては、塗液全体に対し、10~80質量%程度添加することが好ましい。 In the present invention, a solvent having a boiling point of 90° C. or higher is preferably added to the coating liquid when applying the composition forming the mold release layer, although it is not particularly limited. By adding a solvent with a boiling point of 90°C or higher, bumping during drying can be prevented, the coating film can be leveled, and the smoothness of the coating film surface after drying can be improved. The amount added is preferably about 10 to 80% by mass based on the entire coating liquid.
 上記離型層を形成する組成物の塗布法としては、公知の任意の塗布法が適用出来、例えばグラビアコート法やリバースコート法などのロールコート法、ワイヤーバーなどのバーコート法、ダイコート法、スプレーコート法、エアーナイフコート法、等の従来から知られている方法が利用できる。 Any known coating method can be used to apply the composition forming the release layer, such as roll coating methods such as gravure coating method and reverse coating method, bar coating method such as wire bar coating method, die coating method, etc. Conventionally known methods such as a spray coating method and an air knife coating method can be used.
本発明の帯電防止層付き離型フィルムを、ロールに巻取り、剥離フィルムロールを40℃、湿度50%以下の環境下に30日間保管した後、100m/minで巻き返す際の帯電量は、-2kVを超え、+2kV未満である。一態様において、帯電量は、-1.5kV以上+1.5kV以下であり、例えば、-1.0kV以上+1.0kV以下である。 The amount of charge when the release film with an antistatic layer of the present invention is wound into a roll, the release film roll is stored at 40°C and a humidity of 50% or less for 30 days, and then rewound at 100 m/min is - More than 2kV and less than +2kV. In one embodiment, the amount of charge is −1.5 kV or more and +1.5 kV or less, for example, −1.0 kV or more and +1.0 kV or less.
一態様において、帯電量は、-0.5kV以上+0.5kV以下である。 In one embodiment, the amount of charge is −0.5 kV or more and +0.5 kV or less.
 帯電量がこのような範囲内であることにより、セラミックグリーンシート製造時の異物巻き込みを抑制することができ、帯電による製品不良を減らすことができる。 When the amount of charge is within this range, it is possible to suppress the inclusion of foreign matter during the production of the ceramic green sheet, and it is possible to reduce product defects due to charge.
(セラミックグリーンシートとセラミックコンデンサ)
 一般に、積層セラミックコンデンサは、直方体状のセラミック素体を有する。セラミック素体の内部には、第1の内部電極と第2の内部電極とが厚み方向に沿って交互に設けられている。第1の内部電極は、セラミック素体の第1の端面に露出している。第1の端面の上には第1の外部電極が設けられている。第1の内部電極は、第1の端面において第1の外部電極と電気的に接続されている。第2の内部電極は、セラミック素体の第2の端面に露出している。第2の端面の上には第2の外部電極が設けられている。第2の内部電極は、第2の端面において第2の外部電極と電気的に接続されている。
(Ceramic green sheet and ceramic capacitor)
Generally, a multilayer ceramic capacitor has a rectangular parallelepiped ceramic body. Inside the ceramic body, first internal electrodes and second internal electrodes are provided alternately along the thickness direction. The first internal electrode is exposed on the first end surface of the ceramic body. A first external electrode is provided on the first end surface. The first internal electrode is electrically connected to the first external electrode at the first end surface. The second internal electrode is exposed on the second end surface of the ceramic body. A second external electrode is provided on the second end surface. The second internal electrode is electrically connected to the second external electrode at the second end surface.
 本発明のセラミックグリーンシート製造用離型フィルムは、このような積層セラミックコンデンサを製造するために用いられる。例えば、以下のようにして製造される。まず、本発明の離型フィルムをキャリアフィルムとして用い、セラミック素体を構成するためのセラミックスラリーを塗布、乾燥させる。塗布、乾燥したセラミックグリーンシートの上に、第1又は第2の内部電極を構成するための導電層を印刷する。セラミックグリーンシート、第1の内部電極を構成するための導電層が印刷されたセラミックグリーンシート及び第2の内部電極を構成するための導電層が印刷されたセラミックグリーンシートを適宜積層し、プレスすることにより、マザー積層体を得る。マザー積層体を複数に分断し、生のセラミック素体を作製する。生のセラミック素体を焼成することによりセラミック素体を得る。その後、第1及び第2の外部電極を形成することにより積層セラミックコンデンサを完成させることができる。 The release film for producing ceramic green sheets of the present invention is used to produce such multilayer ceramic capacitors. For example, it is manufactured as follows. First, using the release film of the present invention as a carrier film, a ceramic slurry for forming a ceramic body is applied and dried. A conductive layer for forming the first or second internal electrode is printed on the coated and dried ceramic green sheet. A ceramic green sheet, a ceramic green sheet printed with a conductive layer for forming the first internal electrode, and a ceramic green sheet printed with a conductive layer for forming the second internal electrode are laminated as appropriate and pressed. By this, a mother laminate is obtained. The mother laminate is divided into multiple parts to produce raw ceramic bodies. A ceramic body is obtained by firing a raw ceramic body. Thereafter, the multilayer ceramic capacitor can be completed by forming the first and second external electrodes.
 次に、実施例、比較例を用いて本発明を詳細に説明するが、本発明は当然以下の実施例に限定されるものではない。また、本発明で用いた評価方法は以下の通りである。 Next, the present invention will be explained in detail using Examples and Comparative Examples, but the present invention is of course not limited to the following Examples. Moreover, the evaluation method used in the present invention is as follows.
 [NMR測定]
 アクリルポリオール中に導入された共重合成分の比率は、核磁気共鳴分光法(1H-N
MR、13C-NMR:Varian Unity 400、Agilent社製)を用いて確認した。測定は、合成したアクリルポリオール中の溶媒を真空乾燥機にて除去した後、乾固物を重クロロフォルムに溶解させて行った。得られたNMRスペクトルから、各基の部位に帰属される化学シフトδ(ppm)のピークを同定した。得られた各ピークの積分強度を求め、各基の部位の水素数と積分強度から、アクリルポリオールに導入された共重合成分の組成比率(mol%)を確認した。
[NMR measurement]
The ratio of the copolymer components introduced into the acrylic polyol was determined by nuclear magnetic resonance spectroscopy ( 1H -N
MR, 13 C-NMR: Varian Unity 400, manufactured by Agilent). The measurement was performed by removing the solvent in the synthesized acrylic polyol using a vacuum drier, and then dissolving the dried product in deuterated chloroform. From the obtained NMR spectrum, peaks of chemical shift δ (ppm) assigned to each group site were identified. The integrated intensity of each peak obtained was determined, and the composition ratio (mol%) of the copolymer component introduced into the acrylic polyol was confirmed from the number of hydrogens at each group site and the integrated intensity.
 [Tgの確認]
 上記NMR測定で求めた共重合成分の組成比率と、前記したFoxの式からアクリルポリオールのTgを求めた。
[Check Tg]
The Tg of the acrylic polyol was determined from the composition ratio of the copolymer components determined by the above NMR measurement and the Fox equation described above.
(1)塗布フィルムの表面特性
 非接触表面形状計測システム(VertScan R550H-M100)を用いて、下記の条件で測定した値である。領域表面平均粗さ(Sa)、粗さ曲線要素の平均長さ(RSm)は、5回測定の平均値を採用し、最大突起高さ(P)は5回測定の最大値を採用した。
(1) Surface characteristics of coated film These are values measured under the following conditions using a non-contact surface shape measurement system (VertScan R550H-M100). For the area surface average roughness (Sa) and the average length of the roughness curve element (RSm), the average value of five measurements was used, and for the maximum protrusion height (P), the maximum value of the five measurements was used.
 (測定条件)
  ・測定モード:WAVEモード
  ・対物レンズ:50倍
  ・0.5×Tubeレンズ
  ・測定面積 187×139μm (Sa,P測定)
(4)帯電防止層の耐粉落ち性
 摩擦堅牢度試験機(大栄科学精器製作所製、RT-200)にグリーンシート製造用剥離フィルム(3cm(フィルム幅方向)×20cm(フィルム長手方向))を帯電防止層が上になるように取り付け、荷重ヘッド部(2cmx2cm、200g)と試料フィルムの接触部にアルミ箔(厚さ80μm、算術的平均表面粗さ0.03μm)を用い、10cmの距離を1往復2秒の速度で10往復させた。黒台紙の上に得られたフィルムをのせ、粉落ちしているか目視で確認した。  
(Measurement condition)
・Measurement mode: WAVE mode ・Objective lens: 50x ・0.5×Tube lens ・Measurement area 187×139μm (Sa, P measurement)
(4) Powdery resistance of antistatic layer A release film for green sheet production (3 cm (film width direction) x 20 cm (film longitudinal direction)) was placed in a friction fastness tester (manufactured by Daiei Kagaku Seiki Seisakusho, RT-200). was attached with the antistatic layer facing upward, and aluminum foil (thickness: 80 μm, arithmetic mean surface roughness: 0.03 μm) was used at the contact area between the load head (2 cm x 2 cm, 200 g) and the sample film, and the distance was 10 cm. was made to make 10 reciprocations at a speed of 2 seconds per reciprocation. The obtained film was placed on a black mount and visually checked to see if powder had fallen off.
 ◎:黒台紙上で粉落ちが確認できない。 ◎: Powder falling cannot be confirmed on the black mount.
 ○:黒台紙上の一部でわずかな粉落ちが確認できる。 ○: A slight amount of powder can be observed on a part of the black mount.
 △:黒台紙上で全体的にわずかな粉落ちが確認できる。 △: Slight powder fall can be observed on the black mount overall.
 ×:黒台紙上で全体的に粉落ちが確認できる。 ×: Powder fall-off can be observed throughout on the black mount.
(5)表面抵抗率測定
本発明の帯電防止フィルム表面の表面抵抗率は、温度23℃、湿度55%の条件下で24時間調湿後、帯電防止層表面の表面抵抗率を表面抵抗測定器(シムコジャパン(株)製、ワークサーフェイステスター ST-3)を用いて測定し、下記の判定基準で評価した。
(5) Measurement of surface resistivity The surface resistivity of the surface of the antistatic film of the present invention is determined by measuring the surface resistivity of the surface of the antistatic layer using a surface resistance meter after controlling the humidity for 24 hours at a temperature of 23°C and a humidity of 55%. (Work Surface Tester ST-3 manufactured by Simco Japan Co., Ltd.) and evaluated using the following criteria.
 ◎:表面抵抗率が3以上6以下[logΩ/□]
 ○:表面抵抗率が6超10以下[logΩ/□]
 △:表面抵抗率が10超12以下[logΩ/□]
 ×:表面抵抗率が12超[logΩ/□]以上 
(5)耐溶剤性評価 A法
前記帯電防止層の表面を、溶剤(トルエン)を染み込ませたキムワイプを用いて、10往復拭き取りした。また、上記処理後の外観変化を下記の判定基準で評価した。
◎: Surface resistivity is 3 or more and 6 or less [logΩ/□]
○: Surface resistivity is more than 6 and less than 10 [logΩ/□]
△: Surface resistivity is more than 10 and less than 12 [logΩ/□]
×: Surface resistivity is more than 12 [logΩ/□] or more
(5) Solvent Resistance Evaluation Method A The surface of the antistatic layer was wiped back and forth 10 times using a Kimwipe impregnated with a solvent (toluene). In addition, changes in appearance after the above treatment were evaluated using the following criteria.
 〇:ほとんど変化なし
 △:変化有り
 ×:帯電防止層が染み落ちるほど変化あり
(6)耐溶剤性評価 B法
前記帯電防止層の表面を、溶剤(エタノール)を染み込ませたキムワイプを用いて、10往復拭き取りした。また、上記処理後の外観変化を下記の判定基準で評価した。
〇: Almost no change △: Change ×: Change so much that the antistatic layer is stained (6) Solvent resistance evaluation Method B: The surface of the antistatic layer is coated with a Kimwipe impregnated with a solvent (ethanol). I wiped it back and forth 10 times. In addition, changes in appearance after the above treatment were evaluated using the following criteria.
〇:ほとんど変化なし
 △:変化有り
 ×:帯電防止層が染み落ちるほど変化あり
(7)セラミックグリーンシートの剥離力測定
 次いで得られた離型フィルムサンプルの離型面にアプリケーターを用いて乾燥後のスラリーが2.0μmの厚みになるように塗布し60℃で1分乾燥しセラミックグリーンシートを離型フィルム上に成型した。得られたセラミックグリーンシート付き離型フィルムを除電機(キーエンス社製、SJ-F020)を用いて除電した後に剥離試験機(協和界面科学社製、VPA-3、ロードセル荷重0.1N)を用いて、剥離角度90度、剥離温度25℃、剥離速度10m/minで剥離した。剥離する向きとしては、剥離試験機付属のSUS板上に両面接着テープ(日東電工社製、No.535A)を貼りつけ、その上に離型フィルム側を両面テープと接着する形で離型フィルムを固定し、セラミックグリーンシート側を引っ張る形で剥離した。得られた測定値のうち、剥離距離20mm~70mmの剥離力の平均値を算出し、その値を剥離力とした。測定は計5回実施し、その剥離力の平均値の値を採用し、評価を行った。得られた剥離力の数値から下記の基準で判定した。
〇: Almost no change △: Change ×: Change so much that the antistatic layer is stained (7) Peel force measurement of ceramic green sheet Next, use an applicator on the release surface of the obtained release film sample to remove The slurry was applied to a thickness of 2.0 μm, dried at 60° C. for 1 minute, and a ceramic green sheet was molded onto the release film. The obtained mold release film with ceramic green sheet was neutralized using a static eliminator (manufactured by Keyence Corporation, SJ-F020), and then tested using a peel tester (manufactured by Kyowa Interface Science Co., Ltd., VPA-3, load cell load 0.1N). The film was peeled off at a peeling angle of 90°, a peeling temperature of 25° C., and a peeling speed of 10 m/min. For the direction of peeling, stick a double-sided adhesive tape (manufactured by Nitto Denko Corporation, No. 535A) on the SUS plate attached to the peel tester, and attach the release film side to the double-sided tape on top of it. was fixed and peeled off by pulling the ceramic green sheet side. Among the measured values obtained, the average value of the peeling force over a peeling distance of 20 mm to 70 mm was calculated, and this value was taken as the peeling force. The measurement was carried out five times in total, and the average value of the peeling force was used for evaluation. Judgment was made based on the obtained peel force values based on the following criteria.
◎:0.4mN/mm以上、0.6mN/mm以下
○:0.6mN/mmより大きく、0.8mN/mm以下
△:0.8mN/mmより大きく、1.0mN/mm以下
×:0.4mN/mm未満または1.0mN/mmより大きい、または測定中にセラミックグリーンシートが破断
(8)セラミックグリーンシートのピンホール、厚みばらつき評価
 各実施例および各比較例で得られた帯電防止離型フィルムを、幅400mm、長さ5000mのロール状に巻き上げ、帯電防止離型フィルムを得た。この帯電防止離型フィルムロールを40℃、湿度50%以下の環境下に30日間保管した後の帯電防止フィルムを使用して評価を実施した。
◎: 0.4 mN/mm or more, 0.6 mN/mm or less ○: More than 0.6 mN/mm, 0.8 mN/mm or less △: More than 0.8 mN/mm, 1.0 mN/mm or less ×: 0 Less than .4 mN/mm or greater than 1.0 mN/mm, or the ceramic green sheet breaks during measurement (8) Pinhole and thickness variation evaluation of ceramic green sheet Antistatic release obtained in each example and each comparative example The mold film was rolled up into a roll having a width of 400 mm and a length of 5000 m to obtain an antistatic release film. This antistatic release film roll was stored in an environment of 40° C. and humidity of 50% or less for 30 days, and then the antistatic film was used for evaluation.
下記、材料からなるスラリー組成物Iを10分間攪拌混合し、ビーズミルを用いて直径0.5mmのジルコニアビーズで10分間分散し1次分散体を得た。その後下記材料からなるスラリー組成物IIを(スラリー組成物I):(スラリー組成物II)=3.4:1.0の比率になるように1次分散体に加え、ビーズミルを用いて直径0.5mmのジルコニアビーズで10分間2次分散し、セラミックスラリーを得た。 A slurry composition I consisting of the following materials was stirred and mixed for 10 minutes, and dispersed for 10 minutes with zirconia beads having a diameter of 0.5 mm using a bead mill to obtain a primary dispersion. Thereafter, slurry composition II consisting of the following materials was added to the primary dispersion at a ratio of (slurry composition I): (slurry composition II) = 3.4:1.0, and a diameter of 0. Secondary dispersion was performed for 10 minutes using .5 mm zirconia beads to obtain a ceramic slurry.
(スラリー組成物I)
トルエン                         22.3質量部
エタノール                        18.3質量部
チタン酸バリウム(平均粒径100nm)           57.5質量部
ホモゲノールL-18(花王社製)              1.9質量部
(スラリー組成物II)
トルエン                         39.6質量部
エタノール                        39.6質量部
フタル酸ジオクチル                     3.3質量部
ポリビニルブチラール(積水化学社製 エスレックBM-S) 16.3質量部
1-エチル-3-メチルイミダゾリウムエチルサルフェート      0.5質量部
 帯電防止離型フィルムサンプルの離型面にアプリケーターを用いて乾燥後のスラリーが0.5μmの厚みになるように塗布し90℃で1分乾燥後、スラリー面と平滑化塗布層面を重ね合わせ、10分間、1kg/cmの加重を掛けたあと、離型フィルムを剥離し、セラミックグリーンシートを得た。
(Slurry composition I)
Toluene 22.3 parts by mass Ethanol 18.3 parts by mass Barium titanate (average particle size 100 nm) 57.5 parts by mass Homogenol L-18 (manufactured by Kao Corporation) 1.9 parts by mass (Slurry Composition II)
Toluene 39.6 parts by mass Ethanol 39.6 parts by mass Dioctyl phthalate 3.3 parts by mass Polyvinyl butyral (Sekisui Chemical Co., Ltd. S-LEC BM-S) 16.3 parts by mass
1-Ethyl-3-methylimidazolium ethyl sulfate 0.5 parts by mass Apply to the release surface of the antistatic release film sample using an applicator so that the dried slurry has a thickness of 0.5 μm and heat at 90°C. After drying for 1 minute, the slurry surface and the smoothing coating layer surface were overlapped, and after applying a load of 1 kg/cm 2 for 10 minutes, the release film was peeled off to obtain a ceramic green sheet.
 得られたセラミックグリーンシートのフィルム幅方向の中央領域において25cmの範囲でセラミックスラリーの塗布面の反対面から光を当て、光が透過して見えるピンホールの発生状況を観察し、下記基準で目視判定した。 Light was applied from the opposite side of the ceramic slurry coated surface to the central region of the obtained ceramic green sheet in the film width direction within a 25 cm 2 area, and the occurrence of pinholes that were visible through the light was observed. Judging visually.
 ◎:ピンホールの発生なし、厚みばらつき特に良好
 ○:ピンホールの発生なし、厚みばらつき特に問題なし
 △:ピンホールの発生がごくわずかにあり、厚みばらつきが若干見える。
◎: No pinholes, particularly good thickness variation. ○: No pinholes, no particular problem with thickness variation. △: Very few pinholes, slightly visible thickness variation.
 ×:ピンホールの発生が少しあり、及び、厚みばらつきが少し目立つ。 ×: There are some pinholes, and the thickness variation is slightly noticeable.
(9)離型フィルムロールの巻出し帯電
 各実施例および各比較例で得られた帯電防止離型フィルムを、幅400mm、長さ5000mのロール状に巻き上げ、帯電防止離型フィルムロールを得た。この帯電防止離型フィルムロールを40℃、湿度50%以下の環境下に30日間保管した後、100m/minで巻き返す際の帯電量を春日電機社製「KSD-0103」を用いて測定した。帯電量は、巻出し直後100mmの箇所について、巻出し長さ500M毎に測定し、その平均値を算出した。   
(9) Charging of unwinding release film roll The antistatic release film obtained in each example and each comparative example was rolled up into a roll having a width of 400 mm and a length of 5000 m to obtain an antistatic release film roll. . After storing this antistatic release film roll for 30 days in an environment of 40° C. and 50% humidity or less, the amount of charge when rewinding at 100 m/min was measured using “KSD-0103” manufactured by Kasuga Denki Co., Ltd. The amount of charge was measured at every 500 M of unwinding length at a position 100 mm immediately after unwinding, and the average value was calculated.
 ◎:-0.5kVを超え、0.5kV未満
 ○:0.5kV以上、1kV未満 、または-1kVを超え、―0.5kV以下  
 △:1kV以上、5kV未満、または―5kVを超え、―1kV以下   
 ×:-5kV以下、5kV以上
(ポリエチレンテレフタレートペレット(PET(I))の調製)
 エステル化反応装置として、攪拌装置、分縮器、原料仕込口及び生成物取出口を有する3段の完全混合槽よりなる連続エステル化反応装置を用いた。TPA(テレフタル酸)を2トン/時とし、EG(エチレングリコール)をTPA1モルに対して2モルとし、三酸化アンチモンを生成PETに対してSb原子が160ppmとなる量とし、これらのスラリーをエステル化反応装置の第1エステル化反応缶に連続供給し、常圧にて平均滞留時間4時間、255℃で反応させた。次いで、第1エステル化反応缶内の反応生成物を連続的に系外に取り出して第2エステル化反応缶に供給し、第2エステル化反応缶内に第1エステル化反応缶から留去されるEGを生成PETに対して8質量%供給し、さらに、生成PETに対してMg原子が65ppmとなる量の酢酸マグネシウム四水塩を含むEG溶液と、生成PETに対してP原子が40ppmのとなる量のTMPA(リン酸トリメチル)を含むEG溶液を添加し、常圧にて平均滞留時間1時間、260℃で反応させた。次いで、第2エステル化反応缶の反応生成物を連続的に系外に取り出して第3エステル化反応缶に供給し、高圧分散機(日本精機社製)を用いて39MPa(400kg/cm)の圧力で平均処理回数5パスの分散処理をした平均粒径が0.9μmの多孔質コロイダルシリカ0.2質量%と、ポリアクリル酸のアンモニウム塩を炭酸カルシウムあたり1質量%付着させた平均粒径が0.6μmの合成炭酸カルシウム0.4質量%とを、それぞれ10%のEGスラリーとして添加しながら、常圧にて平均滞留時間0.5時間、260℃で反応させた。第3エステル化反応缶内で生成したエステル化反応生成物を3段の連続重縮合反応装置に連続的に供給して重縮合を行い、95%カット径が20μmのステンレススチール繊維を焼結したフィルターで濾過を行ってから、限外濾過を行って水中に押出し、冷却後にチップ状にカットして、固有粘度0.60dl/gのPETチップを得た(以後、PET(I)と略す)。PETチップ中の滑剤含有量は0.6質量%であった。
◎: More than -0.5kV and less than 0.5kV ○: More than 0.5kV and less than 1kV, or more than -1kV and less than -0.5kV
△: 1kV or more, less than 5kV, or more than -5kV, -1kV or less
×: -5kV or less, 5kV or more (preparation of polyethylene terephthalate pellets (PET(I)))
As the esterification reactor, a continuous esterification reactor consisting of a three-stage complete mixing tank having a stirrer, a partial condenser, a raw material inlet, and a product outlet was used. TPA (terephthalic acid) is set at 2 tons/hour, EG (ethylene glycol) is set at 2 moles per 1 mole of TPA, antimony trioxide is set at an amount such that Sb atoms are 160 ppm relative to the produced PET, and these slurries are converted into esters. The mixture was continuously supplied to the first esterification reactor of the esterification reactor and reacted at 255°C for an average residence time of 4 hours at normal pressure. Next, the reaction product in the first esterification reactor is continuously taken out of the system and supplied to the second esterification reactor, and the reaction product is distilled from the first esterification reactor into the second esterification reactor. In addition, an EG solution containing magnesium acetate tetrahydrate in an amount such that Mg atoms are 65 ppm relative to the produced PET, and 40 ppm P atoms relative to the produced PET is supplied. An EG solution containing an amount of TMPA (trimethyl phosphate) was added, and the mixture was reacted at 260°C for an average residence time of 1 hour at normal pressure. Next, the reaction product of the second esterification reactor was continuously taken out of the system and supplied to the third esterification reactor, and was heated to 39 MPa (400 kg/cm 2 ) using a high-pressure disperser (manufactured by Nippon Seiki Co., Ltd.). Average particles made of 0.2% by mass of porous colloidal silica with an average particle diameter of 0.9 μm that has been subjected to dispersion treatment at a pressure of 5 times on average and 1% by mass of ammonium salt of polyacrylic acid per calcium carbonate. While adding 0.4% by mass of synthetic calcium carbonate having a diameter of 0.6 μm as a 10% EG slurry, the mixture was reacted at 260° C. for an average residence time of 0.5 hours at normal pressure. The esterification reaction product produced in the third esterification reactor was continuously fed to a three-stage continuous polycondensation reactor to perform polycondensation, and stainless steel fibers with a 95% cut diameter of 20 μm were sintered. After filtering with a filter, ultrafiltration was performed and extruded into water, and after cooling, it was cut into chips to obtain PET chips with an intrinsic viscosity of 0.60 dl/g (hereinafter abbreviated as PET (I)). . The lubricant content in the PET chip was 0.6% by mass.
(ポリエチレンテレフタレートペレット(PET(II))の調製)
 一方、上記PETチップの製造において、炭酸カルシウム、シリカ等の粒子を全く含有しない固有粘度0.62dl/gのPETチップを得た(以後、PET(II)と略す。)。
 
(Preparation of polyethylene terephthalate pellets (PET(II)))
On the other hand, in the production of the above PET chip, a PET chip with an intrinsic viscosity of 0.62 dl/g containing no particles of calcium carbonate, silica, etc. was obtained (hereinafter abbreviated as PET (II)).
(積層フィルムXの製造)
 これらのPETチップを乾燥後、285℃で溶融し、別個の溶融押出し機押出機により290℃で溶融し、95%カット径が15μmのステンレススチール繊維を焼結したフィルターと、95%カット径が15μmのステンレススチール粒子を焼結したフィルターの2段の濾過を行って、フィードブロック内で合流させ、PET(I)を反離型面側層、PET(I)を離型面側層となるように積層し、シート状に45m/分のスピードで押出(キャステイング)し、静電密着法により30℃のキャスティングドラム上に静電密着・冷却させ、固有粘度が0.59dl/gの未延伸ポリエチレンテレフタレートシートを得た。層比率は各押出機の吐出量計算で反離型面側層/離型面側層=60%/40%となるように調整した。次いで、この未延伸シートを赤外線ヒーターで加熱した後、ロール温度80℃でロール間のスピード差により縦方向に3.5倍延伸した。その後、テンターに導き、140℃で横方向に4.2倍の延伸を行なった。次いで、熱固定ゾーンにおいて、210℃で熱処理した。その後、横方向に170℃で2.3%の緩和処理をして、厚さ31μmの二軸延伸ポリエチレンテレフタレートフィルムXを得た。得られたフィルムXの離型面側層のSaは23nm、反離型面側層のSaは21nmであった。
(Manufacture of laminated film X)
After drying, these PET chips were melted at 285°C, melted at 290°C by a separate melt extruder extruder, and filtered with sintered stainless steel fibers with a 95% cut diameter of 15 μm and a filter with a 95% cut diameter of 15 μm. Two stages of filtration are performed using a filter made of sintered stainless steel particles of 15 μm, and they are merged in the feed block, and PET (I) becomes the anti-release side layer and PET (I) becomes the release side layer. The unstretched material was laminated as shown, extruded (casting) into a sheet at a speed of 45 m/min, electrostatically adhered and cooled on a casting drum at 30°C using the electrostatic adhesion method, and unstretched with an intrinsic viscosity of 0.59 dl/g. A polyethylene terephthalate sheet was obtained. The layer ratio was adjusted by calculating the discharge amount of each extruder so that anti-release surface side layer/mold release surface side layer = 60%/40%. Next, this unstretched sheet was heated with an infrared heater, and then stretched 3.5 times in the machine direction at a roll temperature of 80° C. using a speed difference between the rolls. Thereafter, it was introduced into a tenter and stretched 4.2 times in the transverse direction at 140°C. Then, heat treatment was performed at 210° C. in a heat fixing zone. Thereafter, a 2.3% relaxation treatment was performed at 170° C. in the transverse direction to obtain a biaxially stretched polyethylene terephthalate film X having a thickness of 31 μm. The Sa of the release side layer of the obtained film X was 23 nm, and the Sa of the anti-release side layer was 21 nm.
(積層フィルムYの製造)
 これらのPETチップを乾燥後、285℃で溶融し、別個の溶融押出し機押出機により290℃で溶融し、95%カット径が15μmのステンレススチール繊維を焼結したフィルターと、95%カット径が15μmのステンレススチール粒子を焼結したフィルターの2段の濾過を行って、フィードブロック内で合流させ、PET(I)を反離型面側層、PET(II)を離型面側層となるように積層し、シート状に45m/分のスピードで押出(キャステイング)し、静電密着法により30℃のキャスティングドラム上に静電密着・冷却させ、固有粘度が0.59dl/gの未延伸ポリエチレンテレフタレートシートを得た。層比率は各押出機の吐出量計算で反離型面側層/離型面側層=60%/40%となるように調整した。次いで、この未延伸シートを赤外線ヒーターで加熱した後、ロール温度80℃でロール間のスピード差により縦方向に3.5倍延伸した。その後、テンターに導き、140℃で横方向に4.2倍の延伸を行なった。次いで、熱固定ゾーンにおいて、210℃で熱処理した。その後、横方向に170℃で2.3%の緩和処理をして、厚さ31μmの二軸延伸ポリエチレンテレフタレートフィルムYを得た。得られたフィルムYの離型面側層のSaは2nm、反離型面側層のSaは26nmであった。
(Manufacture of laminated film Y)
After drying, these PET chips were melted at 285°C, melted at 290°C by a separate melt extruder extruder, and filtered with sintered stainless steel fibers with a 95% cut diameter of 15 μm and a filter with a 95% cut diameter of 15 μm. Two stages of filtration are performed using a filter made of sintered stainless steel particles of 15 μm, and they are merged in the feed block, with PET (I) forming the anti-release side layer and PET (II) forming the release side layer. The unstretched material was laminated as shown, extruded (casting) into a sheet at a speed of 45 m/min, electrostatically adhered and cooled on a casting drum at 30°C using the electrostatic adhesion method, and unstretched with an intrinsic viscosity of 0.59 dl/g. A polyethylene terephthalate sheet was obtained. The layer ratio was adjusted by calculating the discharge amount of each extruder so that anti-release surface side layer/mold release surface side layer = 60%/40%. Next, this unstretched sheet was heated with an infrared heater, and then stretched 3.5 times in the machine direction at a roll temperature of 80° C. using a speed difference between the rolls. Thereafter, it was introduced into a tenter and stretched 4.2 times in the transverse direction at 140°C. Then, heat treatment was performed at 210° C. in a heat fixing zone. Thereafter, a 2.3% relaxation treatment was performed at 170° C. in the transverse direction to obtain a biaxially stretched polyethylene terephthalate film Y having a thickness of 31 μm. The Sa of the release side layer of the obtained film Y was 2 nm, and the Sa of the anti-release side layer was 26 nm.
(アクリルポリオールAの製造)
 撹拌機、還流式冷却器、温度計および窒素吹き込み管を備えた4つ口フラスコに、メチルメタクリレート(MMA)231質量部、ステアリルメタクリレート(SMA)130質量部、ヒドロキシエチルメタクリレート(HEMA)100質量部、メタクリル酸(MAA)33質量部およびイソプロピルアルコール(IPA)1153質量部を仕込み、撹拌を行いながら80℃までフラスコ内を昇温した。フラスコ内を80℃に維持したまま3時間の撹拌を行い、その後、2,2-アゾビス-2―メチル-N-2-ヒドロキシエチルプロピオンアミドを0.5質量部フラスコに添加した。フラスコ内を120℃に昇温しながら窒素置換を行った後、120℃で混合物を2時間撹拌した。
 次いで、120℃で1.5kPaの減圧操作を行い、未反応の原材料と溶媒を除去し、アクリルポリオールを得た。フラスコ内を大気圧に戻して室温まで冷却し、IPA水溶液(水含量50質量%)1976質量部を添加混合した。その後、撹拌しながら滴下ロートを用いて、アンモニアを加え、溶液のpHが5.5~7.5の範囲になるまでアクリルポリオールの中和処理を行い、固形分濃度が20質量%のアクリルポリオールAを得た。アクリルポリオールAのTgは88℃、酸価は87mgKOH/g、水酸基価は100mgKOH/gであった。
(Manufacture of acrylic polyol A)
In a four-neck flask equipped with a stirrer, reflux condenser, thermometer, and nitrogen blowing tube, 231 parts by mass of methyl methacrylate (MMA), 130 parts by mass of stearyl methacrylate (SMA), and 100 parts by mass of hydroxyethyl methacrylate (HEMA). , 33 parts by mass of methacrylic acid (MAA) and 1153 parts by mass of isopropyl alcohol (IPA) were charged, and the temperature inside the flask was raised to 80° C. while stirring. Stirring was performed for 3 hours while maintaining the inside of the flask at 80° C., and then 0.5 parts by mass of 2,2-azobis-2-methyl-N-2-hydroxyethylpropionamide was added to the flask. After purging the inside of the flask with nitrogen while raising the temperature to 120°C, the mixture was stirred at 120°C for 2 hours.
Next, a vacuum operation of 1.5 kPa was performed at 120° C. to remove unreacted raw materials and solvent, and an acrylic polyol was obtained. The inside of the flask was returned to atmospheric pressure and cooled to room temperature, and 1976 parts by mass of an IPA aqueous solution (water content 50% by mass) was added and mixed. Thereafter, ammonia was added using a dropping funnel while stirring, and the acrylic polyol was neutralized until the pH of the solution was in the range of 5.5 to 7.5. I got an A. Acrylic polyol A had a Tg of 88°C, an acid value of 87 mgKOH/g, and a hydroxyl value of 100 mgKOH/g.
(オキサゾリン系架橋剤Bの製造)
 撹拌機、還流冷却器、窒素導入管および温度計を備えたフラスコに、イソプロピルアルコール460.6部を仕込み、緩やかに窒素ガスを流しながら80℃に加熱した。そこへ予め調製しておいたメタクリル酸メチル126部、2-イソプロペニル-2-オキサゾリン210部およびメトキシポリエチレングリコールアクリレート84部からなる単量体混合物と、重合開始剤である2,2’-アゾビス(2-メチルブチロニトリル)(日本ヒドラジン工業株式会社製「ABN-E」)21部およびイソプロピルアルコール189部からなる開始剤溶液を、それぞれ滴下漏斗から2時間かけて滴下して反応させ、滴下終了後も引き続き5時間反応させた。反応中は窒素ガスを流し続け、フラスコ内の温度を80±1℃に保った。その後、反応液を冷却し、固形分濃度25%のオキサゾリン基を有する樹脂(B)を得た。得られたオキサゾリン基を有する樹脂(B)のオキサゾリン基量は4.3mmol/gであり、GPC(ゲルパーミエーションクロマトグラフィ)により測定した数平均分子量は20000であった。
(Production of oxazoline crosslinking agent B)
460.6 parts of isopropyl alcohol was charged into a flask equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, and the mixture was heated to 80° C. while slowly flowing nitrogen gas. A monomer mixture prepared in advance consisting of 126 parts of methyl methacrylate, 210 parts of 2-isopropenyl-2-oxazoline and 84 parts of methoxypolyethylene glycol acrylate, and 2,2'-azobis which is a polymerization initiator are added thereto. An initiator solution consisting of 21 parts of (2-methylbutyronitrile) ("ABN-E" manufactured by Nippon Hydrazine Kogyo Co., Ltd.) and 189 parts of isopropyl alcohol was added dropwise from a dropping funnel over a period of 2 hours to react. After the completion of the reaction, the reaction was continued for 5 hours. During the reaction, nitrogen gas was kept flowing to maintain the temperature inside the flask at 80±1°C. Thereafter, the reaction solution was cooled to obtain a resin (B) having an oxazoline group with a solid content concentration of 25%. The amount of oxazoline groups of the obtained resin (B) having oxazoline groups was 4.3 mmol/g, and the number average molecular weight measured by GPC (gel permeation chromatography) was 20,000.
(アクリル粒子C-1)
 アクリル粒子水分散体(日本触媒製、商品名MX100W、平均粒径150nm、固形分濃度10質量%)
(アクリル粒子C-2)
 アクリル粒子水分散体(日本触媒製、商品名MX300W、平均粒径450nm、固形分濃度10質量%)
 (易滑塗布液の調整)
 下記の組成の易滑塗布液を調整した。
(Acrylic particles C-1)
Acrylic particle water dispersion (manufactured by Nippon Shokubai, trade name MX100W, average particle size 150 nm, solid content concentration 10% by mass)
(Acrylic particles C-2)
Acrylic particle water dispersion (manufactured by Nippon Shokubai, trade name MX300W, average particle size 450 nm, solid content concentration 10% by mass)
(Adjustment of easy-slip coating liquid)
A slippery coating liquid having the following composition was prepared.
(易滑塗布液)
 水                            39.62質量部
 イソプロピルアルコール                  35.00質量部
 アクリルポリオール樹脂A(固形分濃度20質量%)     16.57質量部
 オキサゾリン系架橋剤B(固形分濃度25質量%)       5.68質量部
 アクリル粒子C-1                     2.37質量部
  (平均粒径150nm、固形分濃度10質量%)         
 アクリル粒子C―2                     0.47質量部
  (平均粒径450nm、固形分濃度10質量%)
 界面活性剤D(シリコーン系、固形分濃度10質量%)     0.30質量部
(離型剤溶液)
 熱・UV硬化型シリコーン樹脂(東レ・ダウコーニング社製 LTC851)100質量部と硬化触媒である白金触媒(東レ・ダウコーニング社製 SRX212)2質量部を、トルエン/メチルエチルケトン/ヘプタン(=7:7:6)溶液で希釈し、固形分2質量%の離型剤溶液を調製した。
(Easy slip coating liquid)
Water 39.62 parts by mass Isopropyl alcohol 35.00 parts by mass Acrylic polyol resin A (solids concentration 20% by mass) 16.57 parts by mass Oxazoline crosslinking agent B (solids concentration 25% by mass) 5.68 parts by mass Acrylic particles C-1 2.37 parts by mass (average particle size 150 nm, solid content concentration 10% by mass)
Acrylic particles C-2 0.47 parts by mass (average particle size 450 nm, solid content concentration 10% by mass)
Surfactant D (silicone type, solid content concentration 10% by mass) 0.30 parts by mass (mold release agent solution)
100 parts by mass of heat/UV curable silicone resin (LTC851 manufactured by Toray Dow Corning) and 2 parts by mass of a platinum catalyst (SRX212 manufactured by Toray Dow Corning) as a curing catalyst were mixed into toluene/methyl ethyl ketone/heptane (=7:7). :6) A mold release agent solution having a solid content of 2% by mass was prepared by diluting with a solution.
(実施例1)
(積層フィルムZの製造)
 フィルム原料ポリマーとして、固有粘度(溶媒:フェノール/テトラクロロエタン=60/40)が0.62dl/gで、かつ粒子を実質的に含有していないPET樹脂ペレット(PET(II))を、133Paの減圧下、135℃で6時間乾燥した。その後、押し出し機に供給し、約280℃でシート状に溶融押し出しして、表面温度20℃に保った回転冷却金属ロール上で急冷密着固化させ、未延伸PETシートを得た。
(Example 1)
(Manufacture of laminated film Z)
As a film raw material polymer, PET resin pellets (PET (II)) having an intrinsic viscosity (solvent: phenol/tetrachloroethane = 60/40) of 0.62 dl/g and containing substantially no particles were used at a pressure of 133 Pa. It was dried at 135° C. for 6 hours under reduced pressure. Thereafter, it was fed into an extruder, melted and extruded at about 280°C into a sheet, and rapidly cooled and tightly solidified on a rotating cooling metal roll whose surface temperature was kept at 20°C to obtain an unstretched PET sheet.
 この未延伸PETシートを加熱されたロール群及び赤外線ヒーターで100℃に加熱し、その後周速差のあるロール群で長手方向に3.5倍延伸して、一軸延伸PETフィルムを得た。 This unstretched PET sheet was heated to 100°C with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group with a difference in circumferential speed to obtain a uniaxially stretched PET film.
 次いで、易滑塗布液をバーコーターでPETフィルムの片面に塗布した後、80℃で15秒間乾燥した。なお、最終延伸、乾燥後の塗布量が0.1μmになるように調整した。引続いてテンターで、150℃で幅方向に4.0倍に延伸し、フィルムの幅方向の長さを固定した状態で、230℃で0.5秒間加熱し、さらに230℃で10秒間3%の幅方向の弛緩処理を行ない、厚さ31μmの易滑塗布層付きポリエステルフィルムZを得た。得られたフィルムZの離型面側層のSaは1nm、反離型面側層のSaは6nmであった。   Next, the easy-slip coating liquid was applied to one side of the PET film using a bar coater, and then dried at 80°C for 15 seconds. The coating amount after final stretching and drying was adjusted to 0.1 μm. Subsequently, with a tenter, the film was stretched 4.0 times in the width direction at 150°C, and while the length of the film in the width direction was fixed, it was heated at 230°C for 0.5 seconds, and further at 230°C for 10 seconds. % relaxation treatment in the width direction was performed to obtain a polyester film Z with an easy-sliding coating layer having a thickness of 31 μm. The Sa of the release side layer of the obtained film Z was 1 nm, and the Sa of the anti-release side layer was 6 nm.  
(離型塗布層の形成)
 易滑塗布層付きポリエステルフィルムの易滑塗布層が形成されている面とは反対の面に離型剤溶液を乾燥後の厚みで0.01μmとなるようにリバースグラビアコーターにて塗布し、次いで、120℃の熱風で30秒間乾燥した後、直ちに無電極ランプ(ヘレウス株式会社製Hバルブ)にて紫外線照射(300mJ/cm2)を行い、離型塗布層を形成し、離型フィルムを得た。
(Formation of release coating layer)
A release agent solution was applied to the surface opposite to the surface on which the easy-slip coating layer of the polyester film with an easy-slip coating layer was formed using a reverse gravure coater so that the thickness after drying was 0.01 μm, and then After drying with hot air at 120°C for 30 seconds, UV irradiation (300 mJ/cm2) was immediately performed using an electrodeless lamp (H bulb manufactured by Heraeus Co., Ltd.) to form a release coating layer and obtain a release film. .
(帯電防止層の形成)
 離型フィルムの易滑塗布層が形成されている面に乾燥後の厚みで0.05μmとなるように、下記の帯電防止層形成用組成物1をリバースグラビアコーターにて塗布し、次いで、140℃の熱風で30秒間乾燥・硬化を行い、帯電防止離型フィルムを得た。このように反離型層面に他層を介して帯電防止層を形成した構成を構成1とする。
(Formation of antistatic layer)
The following composition 1 for forming an antistatic layer was applied to the surface of the release film on which the easily coated layer was formed to a thickness of 0.05 μm after drying using a reverse gravure coater, and then It was dried and cured with hot air at ℃ for 30 seconds to obtain an antistatic release film. A configuration in which an antistatic layer is thus formed on the surface opposite to the mold release layer via another layer is referred to as Configuration 1.
(帯電防止層形成用組成物1)
水                            42.24質量部
イソプロピルアルコール                  42.24質量部
帯電防止剤E―1(ポリチオフェン系導電性高分子、固形分濃度1.20質量%) 
                           11.67質量部
熱硬化型バインダー樹脂F―1
(日本カーバイド社製、メラミン樹脂、フルエーテルタイプ、固形分濃度70質量%)                          
0.80質量部
導電助剤G-1(NMP)                  3.00質量部
界面活性剤H-1(日信化学社製、ダイノール604、固形分濃度100質量%)
0.06質量部
離型ロールとして巻き取った後に、セラミックシート塗工のために再度巻きだした時の巻出し帯電も低く、環境異物の付着が抑制できセラミックコンデンサの歩留まりを落とすことなく、品質の良いセラミックコンデンサを作成することができた。
(Antistatic layer forming composition 1)
Water 42.24 parts by mass Isopropyl alcohol 42.24 parts by mass Antistatic agent E-1 (polythiophene-based conductive polymer, solid content concentration 1.20% by mass)
11.67 parts by mass Thermosetting binder resin F-1
(Made by Nippon Carbide Co., Ltd., melamine resin, full ether type, solid content concentration 70% by mass)
0.80 parts by mass Conductive additive G-1 (NMP) 3.00 parts by mass Surfactant H-1 (manufactured by Nissin Chemical Co., Ltd., Dynor 604, solid content concentration 100% by mass)
0.06 parts by mass After being wound up as a release roll, the unwinding charge is low when it is unwound again for ceramic sheet coating, and the adhesion of environmental foreign matter can be suppressed, ensuring quality without reducing the yield of ceramic capacitors. We were able to create a good ceramic capacitor.
(実施例2)
 実施例1で使用した帯電防止層形成用組成物1中の熱硬化型バインダー樹脂を熱硬化型バインダー樹脂F-2(日本カーバイド社製、メラミン樹脂、イミノ・メチロールタイプ、固形分濃度70質量%)に変更した帯電防止層形成用組成物2を使用した以外は、実施例1と同様にして帯電防止離型フィルムを得た。
(Example 2)
The thermosetting binder resin in composition 1 for forming an antistatic layer used in Example 1 was replaced with thermosetting binder resin F-2 (manufactured by Nippon Carbide Co., Ltd., melamine resin, imino-methylol type, solid content concentration 70% by mass). An antistatic release film was obtained in the same manner as in Example 1, except that Composition 2 for forming an antistatic layer was used.
(実施例3)
 実施例1で使用した帯電防止層形成用組成物1中の界面活性剤をH―2(日信化学社製、サーフィノールSE-F、固形分濃度81質量%)に変更した帯電防止層形成用組成物3を使用した以外は、実施例1と同様にして帯電防止離型フィルムを得た。
(Example 3)
Antistatic layer formation by changing the surfactant in composition 1 for forming an antistatic layer used in Example 1 to H-2 (manufactured by Nissin Chemical Co., Ltd., Surfynol SE-F, solid content concentration 81% by mass) An antistatic release film was obtained in the same manner as in Example 1, except that Composition 3 was used.
(実施例4)
 帯電防止層形成用組成物1を、下記の帯電防止層形成用組成物4に変更した以外は、実施例1と同様にして帯電防止離型フィルムを得た。
(Example 4)
An antistatic release film was obtained in the same manner as in Example 1, except that the antistatic layer forming composition 1 was changed to the following antistatic layer forming composition 4.
(帯電防止層形成用組成物4)
 水                           45.10質量部
イソプロピルアルコール                  45.10質量部
帯電防止剤E―1(ポリチオフェン系導電性高分子、固形分濃度1.20質量%) 
                            5.83質量部
熱硬化型バインダー樹脂F―1
(日本カーバイド社製、メラミン樹脂、フルエーテルタイプ、固形分濃度70質量%) 
                              0.90質量部
導電助剤G-1(NMP)                  3.00質量部
界面活性剤H-1(日信化学社製、ダイノール604、固形分濃度100質量%)
0.06質量部
(実施例5)
 帯電防止層形成用組成物1を、下記の帯電防止層形成用組成物5に変更した以外は、実施例1と同様にして帯電防止離型フィルムを得た。
(Antistatic layer forming composition 4)
Water 45.10 parts by mass Isopropyl alcohol 45.10 parts by mass Antistatic agent E-1 (polythiophene-based conductive polymer, solid content concentration 1.20% by mass)
5.83 parts by mass Thermosetting binder resin F-1
(Made by Nippon Carbide Co., Ltd., melamine resin, full ether type, solid content concentration 70% by mass)
0.90 parts by mass Conductive additive G-1 (NMP) 3.00 parts by mass Surfactant H-1 (manufactured by Nissin Chemical Co., Ltd., Dynor 604, solid content concentration 100% by mass)
0.06 parts by mass (Example 5)
An antistatic release film was obtained in the same manner as in Example 1, except that the antistatic layer forming composition 1 was changed to the following antistatic layer forming composition 5.
(帯電防止層形成用組成物5)
 水                           39.37質量部
イソプロピルアルコール                  39.37質量部
帯電防止剤E―1(ポリチオフェン系導電性高分子、固形分濃度1.20質量%) 
                           17.50質量部
熱硬化型バインダー樹脂F―1
(日本カーバイド社製、メラミン樹脂、フルエーテルタイプ、固形分濃度70質量%)
                              0.70質量部
導電助剤G-1(NMP)                  3.00質量部
界面活性剤H-1(日信化学社製、ダイノール604、固形分濃度100質量%)
0.06質量部
(実施例6)
帯電防止層形成用組成物1を、下記の帯電防止層形成用組成物5に変更した以外は、実施例1と同様にして帯電防止離型フィルムを得た。
(Antistatic layer forming composition 5)
Water 39.37 parts by mass Isopropyl alcohol 39.37 parts by mass Antistatic agent E-1 (polythiophene-based conductive polymer, solid content concentration 1.20% by mass)
17.50 parts by mass thermosetting binder resin F-1
(Made by Nippon Carbide Co., Ltd., melamine resin, full ether type, solid content concentration 70% by mass)
0.70 parts by mass Conductive additive G-1 (NMP) 3.00 parts by mass Surfactant H-1 (manufactured by Nissin Chemical Co., Ltd., Dynor 604, solid content concentration 100% by mass)
0.06 parts by mass (Example 6)
An antistatic release film was obtained in the same manner as in Example 1, except that the antistatic layer forming composition 1 was changed to the following antistatic layer forming composition 5.
(帯電防止層形成用組成物5)
 水                           33.64質量部
イソプロピルアルコール                  33.64質量部
帯電防止剤E―1(ポリチオフェン系導電性高分子、固形分濃度1.20質量%) 
                           29.17質量部
熱硬化型バインダー樹脂F―1
(日本カーバイド社製、メラミン樹脂、フルエーテルタイプ、固形分濃度70質量%)                           
0.50質量部
導電助剤G-1(NMP)                  3.00質量部
界面活性剤H-1(日信化学社製、ダイノール604、固形分濃度100質量%)
0.06質量部
(実施例7)
 乾燥後の厚みで0.10μmとなるように、コート厚みを変更した以外は、実施例1と同様にして帯電防止離型フィルムを得た。
(Antistatic layer forming composition 5)
Water 33.64 parts by mass Isopropyl alcohol 33.64 parts by mass Antistatic agent E-1 (polythiophene-based conductive polymer, solid content concentration 1.20% by mass)
29.17 parts by mass Thermosetting binder resin F-1
(Manufactured by Nippon Carbide Co., Ltd., melamine resin, full ether type, solid content concentration 70% by mass)
0.50 parts by mass Conductive additive G-1 (NMP) 3.00 parts by mass Surfactant H-1 (manufactured by Nissin Chemical Co., Ltd., Dynor 604, solid content concentration 100% by mass)
0.06 parts by mass (Example 7)
An antistatic release film was obtained in the same manner as in Example 1, except that the coating thickness was changed so that the thickness after drying was 0.10 μm.
(実施例8)
 乾燥後の厚みで0.15μmとなるように、コート厚みを変更した以外は、実施例1と同様にして帯電防止離型フィルムを得た。
(Example 8)
An antistatic release film was obtained in the same manner as in Example 1, except that the coating thickness was changed so that the thickness after drying was 0.15 μm.
(実施例9)
 帯電防止層形成用組成物1を、下記の帯電防止層形成用組成物7に変更した以外は、実施例1と同様にして帯電防止離型フィルムを得た。
(Example 9)
An antistatic release film was obtained in the same manner as in Example 1, except that the antistatic layer forming composition 1 was changed to the following antistatic layer forming composition 7.
(帯電防止層形成用組成物7)
 水                           42.17質量部
イソプロピルアルコール                  42.17質量部
帯電防止剤E―1(ポリチオフェン系導電性高分子、固形分濃度1.20質量%) 
                           11.67質量部
熱硬化型バインダー樹脂F―3
(日清紡ケミカル社製、ポリカルボジイミド樹脂、固形分濃度40質量%) 
                              0.93質量部
導電助剤G-1(NMP)                  3.00質量部
界面活性剤H-1(日信化学社製、ダイノール604、固形分濃度100質量%)
0.06質量部
(比較例1)
 帯電防止層形成用組成物1を、下記の帯電防止層形成用組成物8に変更した以外は、実施例1と同様にして帯電防止離型フィルムを得た。
(Antistatic layer forming composition 7)
Water 42.17 parts by mass Isopropyl alcohol 42.17 parts by mass Antistatic agent E-1 (polythiophene-based conductive polymer, solid content concentration 1.20% by mass)
11.67 parts by mass Thermosetting binder resin F-3
(Manufactured by Nisshinbo Chemical Co., Ltd., polycarbodiimide resin, solid content concentration 40% by mass)
0.93 parts by mass Conductive additive G-1 (NMP) 3.00 parts by mass Surfactant H-1 (manufactured by Nissin Chemical Co., Ltd., Dynor 604, solid content concentration 100% by mass)
0.06 parts by mass (Comparative Example 1)
An antistatic release film was obtained in the same manner as in Example 1, except that the antistatic layer forming composition 1 was changed to the following antistatic layer forming composition 8.
(帯電防止層形成用組成物8)
 水                           19.30質量部
イソプロピルアルコール                  19.30質量部
帯電防止剤E―1(ポリチオフェン系導電性高分子、固形分濃度1.20質量%) 
                           58.33質量部
導電助剤G-1(NMP)                  3.00質量部
界面活性剤H-1(日信化学社製、ダイノール604、固形分濃度100質量%)
0.06質量部
(比較例2)
 基材をXに変更した以外は、実施例1と同様にして帯電防止離型フィルムを得た。
(Antistatic layer forming composition 8)
Water 19.30 parts by mass Isopropyl alcohol 19.30 parts by mass Antistatic agent E-1 (polythiophene-based conductive polymer, solid content concentration 1.20% by mass)
58.33 parts by mass Conductive additive G-1 (NMP) 3.00 parts by mass Surfactant H-1 (manufactured by Nissin Chemical Co., Ltd., Dynor 604, solid content concentration 100% by mass)
0.06 parts by mass (Comparative Example 2)
An antistatic release film was obtained in the same manner as in Example 1 except that the base material was changed to X.
(比較例3)
 基材をYに変更した以外は、実施例1と同様にして帯電防止離型フィルムを得た。
(Comparative example 3)
An antistatic release film was obtained in the same manner as in Example 1 except that the base material was changed to Y.
(比較例4)
 基材をYに変更し、帯電防止層を形成しないこと以外は、実施例1と同様にして帯電防止離型フィルムを得た。このように帯電防止層が形成されていない構成を構成2とする。
(Comparative example 4)
An antistatic release film was obtained in the same manner as in Example 1, except that the base material was changed to Y and no antistatic layer was formed. A configuration in which no antistatic layer is formed as described above is referred to as configuration 2.
(比較例5)
(ポリエステルフィルムの製造)
 フィルム原料ポリマーとして、固有粘度(溶媒:フェノール/テトラクロロエタン=60/40)が0.62dl/gで、かつ粒子を実質的に含有していないPET樹脂ペレット(PET(II))を、133Paの減圧下、135℃で6時間乾燥した。その後、押し出し機に供給し、約280℃でシート状に溶融押し出しして、表面温度20℃に保った回転冷却金属ロール上で急冷密着固化させ、未延伸PETシートを得た。
(Comparative example 5)
(Manufacture of polyester film)
As a film raw material polymer, PET resin pellets (PET (II)) having an intrinsic viscosity (solvent: phenol/tetrachloroethane = 60/40) of 0.62 dl/g and containing substantially no particles were used at a pressure of 133 Pa. It was dried at 135° C. for 6 hours under reduced pressure. Thereafter, it was fed into an extruder, melted and extruded at about 280°C into a sheet, and rapidly cooled and tightly solidified on a rotating cooling metal roll whose surface temperature was kept at 20°C to obtain an unstretched PET sheet.
 この未延伸PETシートを加熱されたロール群及び赤外線ヒーターで100℃に加熱し、その後周速差のあるロール群で長手方向に3.5倍延伸して、一軸延伸PETフィルムを得た。 This unstretched PET sheet was heated to 100°C with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group with a difference in circumferential speed to obtain a uniaxially stretched PET film.
 次いで、易滑塗布液をバーコーターでPETフィルムの片面に塗布した後、80℃で15秒間乾燥した。なお、最終延伸、乾燥後の塗布量が0.1μmになるように調整した。引続いてテンターで、150℃で幅方向に4.0倍に延伸し、フィルムの幅方向の長さを固定した状態で、230℃で0.5秒間加熱し、さらに230℃で10秒間3%の幅方向の弛緩処理を行ない、厚さ31μmの易滑塗布層付きポリエステルフィルムZを得た。得られたフィルムZの離型面側層のSaは1nm、反離型面側層のSaは6nmであった。  Next, the easy-slip coating liquid was applied to one side of the PET film using a bar coater, and then dried at 80°C for 15 seconds. The coating amount after final stretching and drying was adjusted to 0.1 μm. Subsequently, with a tenter, the film was stretched 4.0 times in the width direction at 150°C, and while the length of the film in the width direction was fixed, it was heated at 230°C for 0.5 seconds, and further at 230°C for 10 seconds. % relaxation treatment in the width direction was performed to obtain a polyester film Z with an easy-sliding coating layer having a thickness of 31 μm. The Sa of the release side layer of the obtained film Z was 1 nm, and the Sa of the anti-release side layer was 6 nm. 
(帯電防止層の形成)
 基材Zの易滑塗布層が形成されていない面(離型層面)に乾燥後の厚みで0.05μmとなるように、下記の帯電防止層形成用組成物1をリバースグラビアコーターにて塗布し、次いで、140℃の熱風で30秒間乾燥・硬化を行い、帯電防止フィルムを得た。
(Formation of antistatic layer)
Apply the following antistatic layer forming composition 1 to the surface of the base material Z on which the easily coated layer is not formed (release layer surface) using a reverse gravure coater so that the thickness after drying is 0.05 μm. Then, it was dried and cured with hot air at 140° C. for 30 seconds to obtain an antistatic film.
(離型塗布層の形成)
 帯電防止フィルムの帯電防止層が形成されている面に離型剤溶液を乾燥後の厚みで0.01μmとなるようにリバースグラビアコーターにて塗布し、次いで、120℃の熱風で30秒間乾燥した後、直ちに無電極ランプ(ヘレウス株式会社製Hバルブ)にて紫外線照射(300mJ/cm2)を行い、離型塗布層を形成し、帯電防止離型フィルムを得た。このように基材Zの離型層面側に帯電防止層を設け、帯電防止層の上に離型層を設けた構成を構成3とする。
(Formation of release coating layer)
A release agent solution was applied to the surface of the antistatic film on which the antistatic layer was formed using a reverse gravure coater so that the thickness after drying was 0.01 μm, and then dried with hot air at 120°C for 30 seconds. Immediately thereafter, UV irradiation (300 mJ/cm2) was performed using an electrodeless lamp (H bulb manufactured by Heraeus Co., Ltd.) to form a release coating layer and obtain an antistatic release film. In this way, a configuration in which an antistatic layer is provided on the side of the release layer of the base material Z and a release layer is provided on the antistatic layer is referred to as Configuration 3.
 各実施例及び比較例の評価結果を表1に示す。 Table 1 shows the evaluation results for each example and comparative example.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
   
 上記表1において、帯電防止層形成用組成物中の帯電防止剤/熱硬化型バインダーの質量比率を示しているが、これは帯電防止剤と熱硬化型バインダーの全固形分を100質量%とした際の質量比である。 Table 1 above shows the mass ratio of antistatic agent/thermosetting binder in the composition for forming an antistatic layer, and this indicates that the total solid content of the antistatic agent and thermosetting binder is 100% by mass. This is the mass ratio when
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed herein are illustrative in all respects and should not be considered restrictive. The scope of the present invention is indicated by the claims rather than the embodiments described above, and it is intended that equivalent meanings to the claims and all changes within the scope are included.
本発明の目的は、高平滑な離型面や裏面を備え、良好な剥離性、帯電防止性、易滑性、密着性を備え、長期保存後にも帯電防止性や易滑性に優れ、擦れたときにも脱落し難い帯電防止層を備えた離型フィルムを提供することである。 The object of the present invention is to have a highly smooth mold release surface and back surface, to have good peelability, antistatic property, easy sliding property, and adhesion, and to have excellent antistatic property and easy slipping property even after long-term storage, and to prevent rubbing. It is an object of the present invention to provide a release film having an antistatic layer that does not easily fall off even when the film is heated.
 実施例1~9においては、加工後のロールを長期保存し、再度巻きだした場合の巻出し帯電が低く環境異物が付着しにくいため、セラミックコンデンサの歩留まりを落とすことなく、品質の良いセラミックコンデンサを作成することができた。また第1の機能層を介して帯電防止層を設けているため、粉落ち性や耐溶剤性が良好な結果となっている。 In Examples 1 to 9, the processed rolls are stored for a long time and when unwound again, the unwinding charge is low and environmental foreign matter is less likely to adhere, so high quality ceramic capacitors can be manufactured without reducing the yield of ceramic capacitors. was able to create. Furthermore, since the antistatic layer is provided through the first functional layer, good powder removal properties and solvent resistance are obtained.
 一方、比較例1においては、本発明で規定する熱硬化型バインダー樹脂を用いていないため、基材との密着性が劣り、第1の機能層を介して帯電防止層を設けても、粉落ち性や耐溶剤性が悪い。また、長期保存後の巻き出し帯電を測定すると、異物の付着による、歩留まりの悪化が懸念される。これは密着性が劣るため、長期保存の間にフィルムロールが微小な膨張・収縮を繰り返し、帯電防止層が削られることで巻き出し帯電が悪くなったと考えられる。さらに、帯電防止層が離型層に影響をもたらし、表面粗さの悪化やセラミック剥離評価の悪化をもたらしていると考えられる。 On the other hand, in Comparative Example 1, since the thermosetting binder resin specified in the present invention was not used, the adhesion with the base material was poor, and even if an antistatic layer was provided through the first functional layer, the powder Poor removability and solvent resistance. Furthermore, when unwinding charging after long-term storage is measured, there is a concern that the yield may deteriorate due to adhesion of foreign matter. This is thought to be due to poor adhesion, which caused the film roll to repeat minute expansions and contractions during long-term storage, and the antistatic layer was scraped, resulting in poor unwinding charging. Furthermore, it is thought that the antistatic layer has an effect on the release layer, resulting in deterioration of surface roughness and deterioration of ceramic peel evaluation.
また、比較例2、3においては第1の機能層を介して設けられていないため、基材との密着性が劣り、粉落ち性や耐溶剤性が悪い。そのため長期保存後の巻き出し帯電測定すると、異物の付着による、歩留まりの悪化が懸念される。 Further, in Comparative Examples 2 and 3, since the first functional layer was not provided, the adhesion to the base material was poor, and the powder removal property and solvent resistance were poor. Therefore, when unwinding and charging after long-term storage is measured, there is a concern that the yield will deteriorate due to adhesion of foreign matter.
比較例4に関しては、帯電防止層を設けていないため、長期保存後の巻き出し帯電が高くなり、薄層のセラミックグリーンシートを製造する際に歩留まりの悪化が懸念される。 Regarding Comparative Example 4, since no antistatic layer was provided, the unwinding charge after long-term storage becomes high, and there is a concern that the yield will deteriorate when producing a thin ceramic green sheet.
比較例5に関しては、帯電防止剤を基材と離型層の間に配置しているため、離型層の硬化不良が発生し、剥離評価において悪化したと考えられる。 Regarding Comparative Example 5, since the antistatic agent was disposed between the base material and the release layer, it is thought that curing failure of the release layer occurred and the peel evaluation deteriorated.
 本発明によれば、高平滑な離型面や裏面を備え、良好な剥離性、帯電防止性、易滑性、密着性を備え、長期保存後にも帯電防止性や易滑性に優れ、擦れたときにも脱落し難い帯電防止層を備えた離型フィルムの提供が可能となる。また、本発明のセラミックグリーンシート製造用離型フィルムを用いることにより、極薄膜のセラミックグリーンシートが得られ、微小なセラミックコンデンサを効率的に製造することができる。
 
According to the present invention, it has a highly smooth mold release surface and back surface, and has good releasability, antistatic property, easy slipping property, and adhesion, and has excellent antistatic property and easy slipping property even after long-term storage, and does not scratch. It becomes possible to provide a release film having an antistatic layer that does not easily fall off even when the film is heated. Furthermore, by using the release film for producing ceramic green sheets of the present invention, it is possible to obtain ultra-thin ceramic green sheets and to efficiently produce minute ceramic capacitors.

Claims (8)

  1.  基材と、前記基材の一方の面上に第1の機能層を介して設けられた帯電防止層と、前記基材の他方の面側に設けられた離型層とを備え、
    前記帯電防止層は、帯電防止剤と熱硬化型バインダー樹脂を含む帯電防止層形成用組成物から形成された層であり、
    前記帯電防止剤は導電性高分子を含み、
    前記帯電防止層が設けられている側の表面抵抗率(logΩ/□)が3以上、10以下である帯電防止層付き離型フィルム。
    comprising a base material, an antistatic layer provided on one surface of the base material via a first functional layer, and a release layer provided on the other surface side of the base material,
    The antistatic layer is a layer formed from an antistatic layer forming composition containing an antistatic agent and a thermosetting binder resin,
    The antistatic agent includes a conductive polymer,
    A release film with an antistatic layer having a surface resistivity (logΩ/□) of 3 or more and 10 or less on the side where the antistatic layer is provided.
  2.  前記基材が無機粒子を実質的に含有しておらず、
     前記第1の機能層が易滑塗布層であり、
     前記易滑塗布層は、粒子を含み、
    前記帯電防止層が前記易滑塗布層を介して基材の一方の面に設けられている、
    請求項1に記載の帯電防止層付き離型フィルム。
    The base material does not substantially contain inorganic particles,
    The first functional layer is a slip coating layer,
    The slip coating layer includes particles,
    The antistatic layer is provided on one surface of the base material via the slip coating layer,
    The release film with an antistatic layer according to claim 1.
  3.  前記導電性高分子が、ポリチオフェン系導電性高分子である請求項1に記載の帯電防止層付き離型フィルム。 The release film with an antistatic layer according to claim 1, wherein the conductive polymer is a polythiophene-based conductive polymer.
  4.  前記熱硬化型バインダー樹脂がアクリルアミド樹脂、メラミン樹脂、ポリカルボジイミド樹脂及びオキサゾリン樹脂から選択される少なくとも1種を含む請求項1に記載の帯電防止層付き離型フィルム。 The release film with an antistatic layer according to claim 1, wherein the thermosetting binder resin contains at least one selected from acrylamide resin, melamine resin, polycarbodiimide resin, and oxazoline resin.
  5.  前記帯電防止層において、帯電防止剤と熱硬化型バインダー樹脂の固形分の合計値を100質量%とした場合、
    前記熱硬化型バインダー樹脂の含有量が40重量%以上95重量%以下である請求項1に記載の帯電防止層付き離型フィルム。
    In the antistatic layer, when the total solid content of the antistatic agent and thermosetting binder resin is 100% by mass,
    The release film with an antistatic layer according to claim 1, wherein the content of the thermosetting binder resin is 40% by weight or more and 95% by weight or less.
  6.  前記帯電防止層における、前記基材とは反対側の面の表面粗さSaが、1nm以上25nm以下であり、最大突起高さPが60nm以上500nm以下である請求項1に記載の帯電防止層付き離型フィルム。 The antistatic layer according to claim 1, wherein the surface of the antistatic layer opposite to the base material has a surface roughness Sa of 1 nm or more and 25 nm or less, and a maximum protrusion height P of 60 nm or more and 500 nm or less. Comes with release film.
  7.  前記離型層における、前記基材とは反対側の面の表面粗さSaが0.1nm以上、5nm以下、最大突起高さPが1nm以上、50nm以下である請求項1に記載の帯電防止層付き離型フィルム。 The antistatic device according to claim 1, wherein the release layer has a surface roughness Sa of 0.1 nm or more and 5 nm or less, and a maximum protrusion height P of 1 nm or more and 50 nm or less on the surface opposite to the base material. Layered release film.
  8. 剥離フィルムロールを40℃、湿度50%以下の環境下に30日間保管した後、100m/minで巻き返す際の帯電量が-2kVを超え、+2kV未満である
    請求項1に記載の帯電防止層付き離型フィルム。
     
     
    The antistatic layer according to claim 1, wherein the release film roll is stored in an environment of 40° C. and 50% humidity or less for 30 days, and then the amount of charge when rewinding at 100 m/min is more than -2 kV and less than +2 kV. Release film.

PCT/JP2023/025924 2022-07-19 2023-07-13 Mold release film with antistatic layer WO2024018993A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022114715 2022-07-19
JP2022-114715 2022-07-19

Publications (1)

Publication Number Publication Date
WO2024018993A1 true WO2024018993A1 (en) 2024-01-25

Family

ID=89617662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025924 WO2024018993A1 (en) 2022-07-19 2023-07-13 Mold release film with antistatic layer

Country Status (1)

Country Link
WO (1) WO2024018993A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133092A1 (en) * 2015-02-18 2016-08-25 リンテック株式会社 Mold release film
JP2017218507A (en) * 2016-06-07 2017-12-14 三菱ケミカル株式会社 Laminated polyester film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133092A1 (en) * 2015-02-18 2016-08-25 リンテック株式会社 Mold release film
JP2017218507A (en) * 2016-06-07 2017-12-14 三菱ケミカル株式会社 Laminated polyester film

Similar Documents

Publication Publication Date Title
JP6791329B2 (en) Release film for manufacturing ceramic green sheets
JP7306395B2 (en) release film
JP6610810B2 (en) Release film for manufacturing ceramic green sheets
JP7522393B2 (en) Release Film
JP2024028476A (en) Release film for manufacturing ceramic green sheet
TWI792241B (en) Release film, method of manufacturing release film, method of manufacturing ceramic green body, and method of manufacturing ceramic capacitor
JP7338233B2 (en) Release film for manufacturing ceramic green sheets
JP7310289B2 (en) Release film for manufacturing ceramic green sheets
WO2024018993A1 (en) Mold release film with antistatic layer
WO2022004784A1 (en) Process film
JP2022145807A (en) release film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842916

Country of ref document: EP

Kind code of ref document: A1