WO2016133092A1 - Mold release film - Google Patents

Mold release film Download PDF

Info

Publication number
WO2016133092A1
WO2016133092A1 PCT/JP2016/054453 JP2016054453W WO2016133092A1 WO 2016133092 A1 WO2016133092 A1 WO 2016133092A1 JP 2016054453 W JP2016054453 W JP 2016054453W WO 2016133092 A1 WO2016133092 A1 WO 2016133092A1
Authority
WO
WIPO (PCT)
Prior art keywords
antistatic layer
mass
release
release film
layer
Prior art date
Application number
PCT/JP2016/054453
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 慶一
知巳 深谷
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN201680009539.0A priority Critical patent/CN107249879A/en
Priority to SG11201706672UA priority patent/SG11201706672UA/en
Priority to JP2017500691A priority patent/JP6678933B2/en
Priority to KR1020177022663A priority patent/KR102675215B1/en
Publication of WO2016133092A1 publication Critical patent/WO2016133092A1/en
Priority to PH12017501469A priority patent/PH12017501469A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/21Anti-static

Definitions

  • the present invention relates to a release film having an antistatic layer, and more particularly to a process film used in the production process of a multilayer ceramic capacitor.
  • the ceramic green sheet is generally manufactured by applying a ceramic slurry on a release film.
  • a release film with high surface smoothness is used. It is getting demanded.
  • a release film having a high surface smoothness is likely to have problems such as blocking when it is wound into a roll and charging being generated when the roll is unwound. In order to prevent such problems, it is known to add an antistatic agent or the like to the release film to impart an antistatic function.
  • a conductive polymer such as PEDOT-PSS (a mixture of polyethylene dioxythiophene and polystyrene sulfonate) may be used as an antistatic agent used for a release film.
  • a release layer of a release film may be formed of a release agent composition composed of a curable silicone emulsion, a curing agent, and PEDOT-PSS.
  • the release film may be provided with an antistatic layer separately from the release layer.
  • the antistatic layer is, for example, a resin composition in which a conductive polymer such as PEDOT-PSS is mixed with polyester resin, urethane resin, acrylic resin, or the like (see Patent Document 2), or PEDOT-PSS in a photo-curing coating agent It is known that it is formed of a resin composition (see Patent Document 3) in which a conductive polymer such as is mixed.
  • a resin composition in which a conductive polymer such as PEDOT-PSS is mixed with polyester resin, urethane resin, acrylic resin, or the like
  • Patent Document 3 a resin composition in which a conductive polymer such as is mixed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a release film excellent in antistatic performance, solvent resistance, and overcoatability while smoothing the surface.
  • the inventors of the present invention include a polythiophene-based conductive polymer such as PEDOT-PSS, and an aqueous and thermosetting resin composition having a predetermined thickness on a smooth substrate surface. It has been found that the above problems can be solved by forming an antistatic layer, and the following invention has been completed. That is, the present invention provides the following (1) to (9). (1) A substrate, an antistatic layer provided on one surface of the substrate, and a release layer provided on the antistatic layer or on the other surface side of the substrate.
  • One surface of the substrate has an arithmetic average roughness Ra of 15 nm or less and a maximum protrusion height Rp of 150 nm or less
  • the aqueous thermosetting resin composition comprises 8 to 35 parts by mass of the melamine compound (C) with respect to 100 parts by mass in total of the polythiophene-based conductive polymer (A) and the hydroxyl group-containing polyester resin (B).
  • the polythiophene-based conductive polymer (A) is a mixture of polyethylene dioxythiophene and polystyrene sulfonate (PEDOT-PSS).
  • PEDOT-PSS polystyrene sulfonate
  • the release film of the present invention includes a base material, an antistatic layer provided on one surface of the base material, and a release layer provided on the antistatic layer or on the other surface side of the base material.
  • a base material 11 an antistatic layer 12 provided on one surface 11A of the base material 11, and an antistatic layer 12
  • a release film 10A provided with a release layer 13 provided on the substrate 11 is provided.
  • an antistatic layer 12 is provided on one surface 11A of the substrate 11, and the release layer 13 is provided.
  • the release film wound up in a roll shape causes blocking in some cases, and generates static electricity when the release film is unwound from the roll.
  • the release film has an antistatic layer to prevent such pay-out charging and prevent blocking and lowering of winding property.
  • various articles such as a ceramic green sheet laminated on the release layer are peeled from the release film, poor peeling due to charging is less likely to occur.
  • it is possible to prevent dust and the like from adhering to the release layer due to static electricity.
  • As the release film as shown in FIG. 1, one in which a release layer 13 is provided on the antistatic layer 12 is preferable. In such a release film, charging on the release layer 13 is further easily prevented by the antistatic layer 12.
  • one surface (the surface 11A in FIGS. 1 and 2) on which the antistatic layer is formed has an arithmetic average roughness Ra of 15 nm or less and a maximum protrusion height Rp of 150 nm or less.
  • the aqueous thermosetting resin composition described later is a composition for forming an antistatic layer. However, it becomes difficult to smooth the surface of the antistatic layer.
  • the surface of the antistatic layer cannot be smoothed, for example, when a thin layer such as a release layer is provided on the antistatic layer, the surface of the release layer cannot be smoothed. Concavities and convexities and pinholes are likely to occur in the formed article such as a ceramic green sheet.
  • the arithmetic average roughness Ra and the maximum protrusion height Rp are preferably 12 nm or less and 120 nm or less, respectively. In consideration of the ease of production of the substrate, the arithmetic average roughness Ra and the maximum protrusion height Rp are each preferably 1 nm or more and 5 nm or more.
  • the base material is not particularly limited as long as the arithmetic average roughness Ra and the maximum protrusion height Rp are in the above ranges, for example, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polypropylene and polymethylpentene, Examples thereof include films made of plastics such as polycarbonate and polyvinyl acetate, and these may be a single layer or a multilayer of two or more of the same or different types. Among these, a polyester film is preferable, and a polyethylene terephthalate film is particularly preferable.
  • the thickness of the substrate is not particularly limited, and is usually about 10 to 300 ⁇ m, preferably about 15 to 200 ⁇ m.
  • the base material should not contain particles. However, as long as the arithmetic average roughness Ra and the maximum protrusion height Rp can be ensured, May be contained.
  • the particles for example, fillers such as silica, calcium carbonate and titanium oxide for imparting slipperiness
  • What is necessary is just to make a particle size small or to reduce the compounding quantity of this particle
  • the antistatic layer is formed by curing an aqueous thermosetting resin composition containing the polythiophene-based conductive polymer (A) (hereinafter also simply referred to as the component (A)).
  • the component (A) the polythiophene-based conductive polymer (A) (hereinafter also simply referred to as the component (A)).
  • the film strength of the antistatic layer is improved by making the resin composition forming the antistatic layer thermosetting, the solvent resistance of the antistatic layer is improved.
  • a thin layer such as a release layer
  • the overcoat property of the thin layer is improved. That is, when forming a thin layer such as a release layer on the antistatic layer, it is possible to prevent coating unevenness, repelling, streaks, and the like.
  • the polythiophene-based conductive polymer (A) can be easily dispersed or dissolved without agglomeration or the like in the composition, and the antistatic layer and the mold release formed thereon are formed. Layers and the like can be smoothed. Furthermore, unevenness and pinholes are prevented from being generated in the release layer formed on the antistatic layer.
  • the antistatic layer has a thickness of 12 to 250 nm.
  • the thickness of the antistatic layer is less than 12 nm, the thickness is too thin, the surface resistance value of the antistatic layer is not sufficiently lowered by the component (A), and it becomes difficult to impart antistatic performance. In addition, a sufficient film cannot be formed, and solvent resistance and overcoat properties are lowered.
  • the thickness of the antistatic layer is preferably 15 to 200 nm.
  • the thickness of the antistatic layer was measured using a spectroscopic ellipsometer.
  • the antistatic layer can be made to have a desired thickness by appropriately changing the solid content concentration in the aqueous thermosetting resin composition or changing the gap of the coating apparatus.
  • the solid content concentration in the aqueous thermosetting resin composition is not particularly limited, but is preferably about 0.4 to 2.0% by mass, more preferably about 0.5 to 1.6% by mass. .
  • the antistatic layer is preferably composed of a cured film formed by crosslinking a polyester resin and a melamine compound.
  • a hydroxyl group-containing polyester resin (B) hereinafter simply referred to as a polyester. It is obtained by curing an aqueous thermosetting resin composition containing a resin (B) or (B) component) and a melamine compound (C) (hereinafter also simply referred to as (C) component).
  • the aqueous thermosetting resin composition may be water-dispersible or water-soluble so that each component is dispersed or dissolved in a diluent containing water.
  • polythiophene-based conductive polymer (A) Specific examples of the polythiophene-based conductive polymer (A) include, for example, polyalkylene dioxythiophenes such as polyethylene dioxythiophene, polypropylene dioxythiophene, poly (ethylene / propylene) dioxythiophene, and polystyrene sulfonate. Mixtures: Polythiophene compounds having a sulfonic acid group such as poly (3-thiophene- ⁇ -ethanesulfonic acid).
  • the antistatic layer contains the polythiophene-based conductive polymer (A), even if it is a thin film, the surface resistance value is sufficiently low, and it becomes possible to effectively prevent charging. Further, the polythiophene-based conductive polymer (A) has water solubility or water dispersibility, and thus can be easily dissolved or dispersed in the aqueous thermosetting resin composition as described above.
  • the aqueous thermosetting resin composition for forming the antistatic layer may contain 0.5 to 50 parts by mass of the polythiophene-based conductive polymer (A) with respect to 100 parts by mass of the polyester resin (B). preferable.
  • the component (A) above the lower limit, it is possible to cause the release film to exhibit appropriate antistatic performance.
  • the component (A) is more preferably contained in an amount of 0.6 to 20 parts by mass with respect to 100 parts by mass of the component (B).
  • the polyester resin (B) can be obtained by reacting a polyvalent carboxylic acid component with a polyhydric alcohol component.
  • the polyester resin (B) contains a hydroxyl group in the molecule, and the equivalent ratio of the OH group of the alcohol component to the COOH group of the polyvalent carboxylic acid component for constituting the polyester (OH group / COOH group) is Preferably it is greater than 1.0.
  • the polyester resin (B) can be crosslinked with the melamine compound (C) by containing a hydroxyl group.
  • the polyvalent carboxylic acid component is a compound having two or more carboxyl groups in one molecule.
  • phthalic acid isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydroisophthalic acid, tetrahydroterephthalic acid, hexa Hydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid, trimellitic acid, adipic acid, sebacic acid, succinic acid, azelaic acid, naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, het acid, fumaric acid, maleic acid
  • Polybasic acids that can be generally used for the production of polyester resins such as itaconic acid and pyromellitic acid can be used.
  • polyvalent carboxylic acid component anhydrides of the above polyvalent carboxylic acid components can also be used. These polyvalent carboxylic acid components can be
  • the polyhydric alcohol component is a compound having two or more hydroxyl groups in one molecule, and specific examples thereof include ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, polyethylene glycol, Polypropylene glycol, neopentyl glycol, hexylene glycol, 1,3-butylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2-butyl-2-ethyl-1,3 -Diols such as propanediol, methylpropanediol, cyclohexanedimethanol, 3,3-diethyl-1,5-pentanediol, glycerin, trimethylolethane, trimethylolpropane, erythritol, Pentaerythritol, etc. trihydric or higher alcohols
  • the polyester resin (B) is preferably water-soluble or water-dispersible in order to be used as a component of the aqueous thermosetting resin composition.
  • the polyester resin (B) is not particularly limited, but in order to impart water-solubility or water-dispersibility, those containing a structural unit containing a sulfonate group or a carboxylate group as a structural unit of the polyester are preferably used.
  • the polyester resin (B) is a main component in the aqueous thermosetting resin composition, and is usually contained in an amount of 50% by mass or more based on the total solid content in the composition, preferably 65 to 92% by mass is contained.
  • solid content total amount means the quantity remove
  • methylol melamine include those in which 1 to 6 methylol groups are bonded to the nitrogen atom of the amino group of melamine.
  • alkoxylated methylol melamine include those obtained by alkoxylating at least a part of the methylol group of methylol melamine with a lower alcohol.
  • the carbon number of the alkoxy group such as methoxylated methylol melamine and butoxylated methylol melamine Examples are 1 to 4.
  • the melamine compound (C) is preferably water-soluble melamine, and an aqueous solution of the above compound is used.
  • the polyester resin and the melamine compound are cross-linked by blending the component (C) in addition to the component (B), the above-described overcoat property, solvent resistance and the like are improved.
  • the aqueous thermosetting resin composition preferably contains 8 to 35 parts by mass of the melamine compound (C) with respect to 100 parts by mass in total of the components (A) and (B).
  • the component (C) is blended in an amount of 8 parts by mass or more in the antistatic layer, the above-described solvent resistance and overcoat properties are improved, and the surface of the antistatic layer is easily smoothed.
  • the content of the melamine compound (C) is more preferably 10 to 32 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B).
  • the surface resistance value of the antistatic layer is preferably less than 1 ⁇ 10 11 ⁇ / ⁇ , and more preferably less than 1 ⁇ 10 10 ⁇ / ⁇ .
  • the aqueous thermosetting resin composition for forming the antistatic layer contains at least water as a diluent solvent, and further contains a polar solvent other than water, such as dimethyl sulfoxide, isopropyl alcohol (IPA), and ethanol, as a diluent solvent. Also good.
  • a dilution solvent it is more preferable to use the thing whose 30 mass% or more and 70 mass% or less in all the solvents are water. By making water 70 mass% or less, it becomes difficult to generate the repelling etc. which arise when apply
  • thermosetting resin composition by making water 30 mass% or more, it becomes possible to disperse
  • the antistatic layer is obtained by applying an aqueous thermosetting resin composition obtained by diluting at least the components (A) to (C) with a diluting solvent onto a base material, followed by drying by heating and thermosetting.
  • the application method of the aqueous thermosetting resin composition is not particularly limited, and examples thereof include a gravure coating method, a bar coating method, a spray coating method, a spin coating method, a knife coating method, a roll coating method, and a die coating method. Can be mentioned.
  • the aqueous thermosetting resin composition is not limited to the resin components other than the components (A) to (C), as long as the effects of the present invention are not impaired. It may contain additives.
  • the aqueous thermosetting resin composition preferably does not contain a filler such as an inorganic filler in order to ensure the smoothness of the surface of the antistatic layer.
  • the release layer is composed of a release agent.
  • a silicone resin release agent an alkyd resin release agent, an olefin resin release agent, an acrylic resin release agent, rubber System release agents, melamine resin release agents, fluororesin release agents and the like can be used, but silicone resin release agents are preferred.
  • silicone resin release agents are preferred.
  • a silicone resin type release agent is used as the release agent will be described in detail.
  • an addition reaction type silicone resin composition is preferably used.
  • the addition reaction type silicone resin composition includes a main component composed of an addition reaction type silicone resin and a crosslinking agent, a catalyst, and, if necessary, an addition reaction inhibitor, a release adjusting agent, an adhesion improver, a photosensitizer, and the like. Other additives are added.
  • the addition reaction type silicone resin there are no particular limitations on the addition reaction type silicone resin, and various types can be used. For example, polyorganosiloxane having an alkenyl group as a functional group in the molecule can be used, and more specifically, a vinyl group. And polydimethylsiloxane having a functional group such as a hexenyl group.
  • a linear polyorganosiloxane having an alkenyl group and having a mass average molecular weight (Mw) of 70000 or more, and a branched organosiloxane having an alkenyl group and a mass average molecular weight (Mw) of about 500 to 50000 What mixed with the oligomer etc. can also be used as an addition reaction type silicone resin.
  • a mass average molecular weight (Mw) means what was calculated
  • crosslinking agent examples include polyorganosiloxane having hydrogen atoms bonded to at least two silicon atoms in one molecule, and specifically, polymethylhydrogensiloxane.
  • the amount of the crosslinking agent used is preferably 0.1 to 100 parts by weight, more preferably 0.5 to 25 parts by weight with respect to 100 parts by weight of the addition reaction type silicone resin.
  • the catalyst a platinum-based catalyst is used.
  • the release layer preferably has a smooth surface in order to prevent irregularities and pin poles from being generated on an article such as a ceramic green sheet laminated on the release layer.
  • the surface of the release layer preferably has an arithmetic average roughness Ra of less than 10 nm, a maximum protrusion height Rp of less than 100 nm, an arithmetic average roughness Ra of 8 nm or less,
  • the maximum protrusion height Rp is more preferably 80 nm or less.
  • the arithmetic average roughness Ra and the maximum protrusion height Rp are each preferably 1 nm or more and 10 nm or more.
  • the arithmetic average roughness Ra and the maximum protrusion height Rp of the base material are set to a predetermined value or less, and the structure of the antistatic layer is set to a predetermined value. As described above, it is possible to reduce the arithmetic average roughness Ra and the maximum protrusion height Rp of the release layer formed in the above.
  • a release agent constituting the release layer a non-solvent type or an aqueous type using water as a dilution solvent can be used, but a solvent type using an organic solvent as a dilution solvent is used. It is preferable to do.
  • a solvent-type release agent various release agents can be widely used, and various required performances such as release performance can be easily designed.
  • specific examples of the organic solvent used as the diluting solvent include toluene, IPA, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK) and the like. Since the antistatic layer has good solvent resistance as described above, even when a solvent-type release agent is used, the antistatic layer dissolves when the release layer is formed. Can be prevented.
  • the release agent composition is applied on the antistatic layer or on the other side of the substrate (that is, the side on which the antistatic layer is not provided), and then the coating film is dried by heating. It can be formed by curing the same.
  • coating method of a mold release agent is not specifically limited, For example, the gravure coat method, the bar coat method, the spray coat method, the spin coat method, the knife coat method, the roll coat method, the die coat method etc. are mentioned.
  • the thickness of the release layer is not particularly limited, but is preferably adjusted so that the basis weight after drying is about 0.03 to 0.4 g / m 2 .
  • the release film is preferably used in the production process of the multilayer ceramic capacitor, and more preferably used for the production process of the ceramic green sheet.
  • the ceramic green sheet is produced by applying a ceramic slurry on a release layer of a release film and then drying it appropriately.
  • the release film may be used when various materials are applied on the release layer and appropriately cured to produce a sheet-shaped article. It may be used for other purposes.
  • the ceramic green sheet and other articles produced on the release film are peeled from the release film after the sheet is produced.
  • the measurement method and evaluation method in the present invention are as follows. [Measurement method of antistatic layer thickness] J. et al. A. Measurement was performed using a spectroscopic ellipsometer “M-2000” manufactured by Woollam Japan. [Evaluation of surface resistance] The surface resistance value of the antistatic layer was measured by the following method. Measuring device: “HIESTA UP” manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • Measurement conditions applied voltage 100 V, measurement time 10 seconds later, measured value is an average of 5 measurements [evaluation of coating properties of antistatic layer]
  • the surface of the antistatic layer formed on the substrate was rubbed 10 times with a finger, and smear (cloudy) and rub-off (dropout) were judged visually under a fluorescent lamp according to the following evaluation criteria.
  • An appropriate amount of solvent (MEK) is contained in Bencot (model number: AP-2) manufactured by Asahi Kasei Co., Ltd., and the surface of the antistatic layer formed on the substrate is 10 cm long with a load of about 100 g / cm 2.
  • Example 1 (Formation of antistatic layer) 8.4 parts by mass of a water-soluble hydroxyl group-containing polyester resin (component (B)) and 0.5 parts by mass of PEDOT-PSS (component (A)) are diluted with 15 parts by mass of dimethyl sulfoxide and 85 parts by mass of water.
  • thermosetting resin composition coating solution From 100 parts by mass of dilution liquid A (manufactured by Chukyo Yushi Co., Ltd., S-495: solid content 8.2% by mass), 70 parts by mass of water-soluble methylol melamine (component (C)) and 30 parts by mass of water 1.7 parts by mass of a melamine compound solution (manufactured by Chukyo Yushi Co., Ltd., P-795: solid content: 70.0% by mass) is further mixed with a mixed solvent of water and IPA (mass ratio of 1: 1). In addition, it was diluted so as to have a solid content of 0.6% by mass to obtain a thermosetting resin composition coating solution.
  • thermosetting resin composition After drying the coating liquid of this thermosetting resin composition on a base material comprising a polyethylene terephthalate film (thickness 31 ⁇ m, arithmetic average roughness Ra 10 nm of the surface on which the coating liquid is applied, maximum protrusion height Rp 80 nm) The film was uniformly coated to a thickness of 15 nm and dried at 120 ° C. for 60 seconds to form an antistatic layer.
  • the obtained coating solution was uniformly applied on the antistatic layer by a bar coating method so that the film thickness after drying was 0.04 g / m 2, and then dried at 130 ° C. for 1 minute. Thus, a release layer was formed, and a release film having a release layer laminated on the antistatic layer was obtained.
  • Example 2 The amount of the mixed solvent of water and IPA (mass ratio 1: 1) is adjusted so that the solid content concentration of the coating liquid of the thermosetting resin composition is 1.5% by mass, and the thickness of the antistatic layer is 200 nm. The same operation as in Example 1 was carried out except that
  • Example 3 It implemented similarly to Example 1 except having changed the compounding quantity of the melamine compound solution with respect to 100 mass parts of dilution liquid A into 3.5 mass parts.
  • Example 4 The amount of the mixed solvent of water and IPA (mass ratio 1: 1) is adjusted so that the solid content concentration of the coating liquid of the thermosetting resin composition is 1.5% by mass, and the thickness of the antistatic layer is 200 nm.
  • Example 3 was carried out in the same manner as in Example 3 except that.
  • Example 5 It implemented similarly to Example 1 except having changed the compounding quantity of the melamine compound solution with respect to 100 mass parts of dilution liquid A into 1.45 mass parts.
  • Example 6 (Formation of antistatic layer) 8.4 parts by mass of a water-soluble hydroxyl group-containing polyester resin (component (B)) and 0.5 parts by mass of PEDOT-PSS (component (A)) are diluted with 15 parts by mass of dimethyl sulfoxide and 85 parts by mass of water.
  • thermosetting resin composition coating solution From 100 parts by mass of dilution liquid A (manufactured by Chukyo Yushi Co., Ltd., S-495: solid content 8.2% by mass), 70 parts by mass of water-soluble methylol melamine (component (C)) and 30 parts by mass of water 1.7 parts by mass of a melamine compound solution (manufactured by Chukyo Yushi Co., Ltd., P-795: solid content: 70.0% by mass) is further mixed with a mixed solvent of water and IPA (mass ratio of 1: 1). In addition, it was diluted so as to have a solid content of 0.6% by mass to obtain a thermosetting resin composition coating solution.
  • thermosetting resin composition After drying the coating liquid of this thermosetting resin composition on a base material comprising a polyethylene terephthalate film (thickness 31 ⁇ m, arithmetic average roughness Ra 10 nm of the surface on which the coating liquid is applied, maximum protrusion height Rp 80 nm) The film was uniformly coated to a thickness of 15 nm and dried at 120 ° C. for 60 seconds to form an antistatic layer.
  • the obtained coating liquid was uniformly applied to a polyethylene terephthalate film opposite to the antistatic layer by a bar coating method so that the film thickness after drying was 0.04 g / m 2, and then 130 A release layer was formed by drying at 0 ° C. for 1 minute to obtain a release film in which the antistatic layer and the release layer were laminated.
  • Example 3 A mixed solvent of water and IPA (mass ratio 1: 1) was added to the diluent A, and diluted to a solid content of 0.6% by mass to obtain a resin composition coating solution.
  • This resin composition does not contain the melamine compound (C) and does not have thermosetting.
  • the resin composition coating solution is uniformly applied to the same substrate as in Example 1 so that the film thickness after drying is 15 nm, and dried at 120 ° C. for 60 seconds to form an antistatic layer. did. Thereafter, in the same manner as in Example 1, a release layer was formed on the antistatic layer.
  • the photocurable resin composition coating solution was applied uniformly to the same substrate as in Example 1 so that the film thickness after drying was 100 nm, dried at 70 ° C. for 60 seconds, and then irradiated with ultraviolet rays. Was irradiated with a light amount of 200 mJ / cm 2 to form an antistatic layer. Thereafter, in the same manner as in Example 1, a release layer was formed on the antistatic layer.
  • the mass part of the component (A) (PEDOT-PSS) represents the mass part relative to 100 parts by mass of the component (B).
  • the mass part of a component (melamine compound) shows the mass part with respect to a total of 100 mass parts of (A) component and (B) component.
  • the antistatic performance of the release film is formed by forming an antistatic layer having a predetermined thickness on a smooth substrate with an aqueous thermosetting resin composition containing PEDOT-PSS.
  • the coating properties, solvent resistance, and overcoat properties of the antistatic layer could be improved.
  • the smoothness of the surface of the antistatic layer has been secured, the arithmetic average roughness Ra of the release layer formed on the antistatic layer and the maximum protrusion height Rp are lowered, and the smoothness of the release layer is ensured. did it.
  • the release layer was provided on the surface opposite to the surface provided with the antistatic layer of the base material, but various performances could be improved.
  • Comparative Example 2 since the release film of Comparative Example 1 had a thin antistatic layer, the surface resistance value was high, the antistatic performance could not be sufficient, and the solvent resistance and overcoat properties were insufficient. .
  • Comparative Example 2 since the antistatic layer was too thick, smoothness of the surface of the antistatic layer could not be ensured, and the surface roughness of the release layer was increased.
  • Comparative Examples 3 and 4 since the resin composition was not aqueous thermosetting, the solvent resistance and overcoat properties were insufficient, and the (A) component was agglomerated and the smoothness was sufficient. could not secure.
  • the release film of Comparative Example 5 is one in which the antistatic layer does not contain the component (A), which is inferior in the solvent resistance and overcoat property of the antistatic layer, and the surface roughness of the release layer is increased. However, sufficient smoothness could not be secured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

According to the present invention, a mold release film 10A comprises a substrate 11, an antistatic layer 12 provided on one side 11A of the substrate 11 and a mold release layer 13 provided on the antistatic layer 12 or on the other side of the substrate 11, wherein the one side 11A of the substrate 11 has an arithmetical mean roughness Ra of at most 15 nm and a maximum peak height Rp of at most 150 nm and the antistatic layer 12 is formed by curing an aqueous thermosetting resin composition that comprises a polythiophene conductive polymer (A) so that the thickness of the antistatic layer 12 is from 12-250 nm.

Description

離型フィルムRelease film
 本発明は、帯電防止層を有する離型フィルムに関し、特に積層セラミックコンデンサの製造過程で使用される工程フィルムに関する。 The present invention relates to a release film having an antistatic layer, and more particularly to a process film used in the production process of a multilayer ceramic capacitor.
 近年、積層セラミックコンデンサは、小型化、軽量化が進み、それに伴い、セラミックグリーンシートの薄膜化の要望も年々高まっており、1μm未満のグリーンシートも製造されるようになってきている。このような薄膜のセラミックグリーンシートは、ピンホールが発生しやすく、また、僅かな凹凸でも不良品となり、歩留まりが下がる傾向にある。セラミックグリーンシートは、通常、離型フィルム上にセラミックスラリーを塗布して製造されるのが一般的であるが、上記ピンポールや凹凸の形成を防止するために、表面平滑性が高い離型フィルムが求められるようになってきている。
 一方で、表面平滑性が高い離型フィルムは、ロール状に巻き取った際にブロッキングが生じて、ロール繰り出し時に帯電が生じる等の不具合が起こりやすくなる。このような不具合を防止するために、離型フィルムに帯電防止剤等を含有させて帯電防止機能を付与することが知られている。
In recent years, multilayer ceramic capacitors have been reduced in size and weight, and accordingly, the demand for thin ceramic green sheets has been increasing year by year, and green sheets having a thickness of less than 1 μm have been manufactured. Such a thin ceramic green sheet tends to generate pinholes, and even a slight unevenness tends to be a defective product, which tends to reduce the yield. The ceramic green sheet is generally manufactured by applying a ceramic slurry on a release film. However, in order to prevent the formation of the pin poles and irregularities, a release film with high surface smoothness is used. It is getting demanded.
On the other hand, a release film having a high surface smoothness is likely to have problems such as blocking when it is wound into a roll and charging being generated when the roll is unwound. In order to prevent such problems, it is known to add an antistatic agent or the like to the release film to impart an antistatic function.
 離型フィルムに使用される帯電防止剤としては、近年、PEDOT-PSS(ポリエチレンジオキシチオフェンとポリスチレンスルホネートの混合物)等の導電性高分子が使用されることがある。例えば、特許文献1に開示されるように、離型フィルムの離型層が、硬化型シリコーンエマルジョンと、硬化剤と、PEDOT-PSSからなる離型剤組成物により形成されることがある。
 また、離型フィルムには、離型層とは別に帯電防止層が設けられることがある。帯電防止層は、例えば、ポリエステル樹脂、ウレタン樹脂、又はアクリル樹脂等にPEDOT-PSS等の導電性高分子が混合された樹脂組成物(特許文献2参照)や、光硬化コーティング剤にPEDOT-PSS等の導電性高分子が混合された樹脂組成物(特許文献3参照)により形成されることが知られている。
In recent years, a conductive polymer such as PEDOT-PSS (a mixture of polyethylene dioxythiophene and polystyrene sulfonate) may be used as an antistatic agent used for a release film. For example, as disclosed in Patent Document 1, a release layer of a release film may be formed of a release agent composition composed of a curable silicone emulsion, a curing agent, and PEDOT-PSS.
In addition, the release film may be provided with an antistatic layer separately from the release layer. The antistatic layer is, for example, a resin composition in which a conductive polymer such as PEDOT-PSS is mixed with polyester resin, urethane resin, acrylic resin, or the like (see Patent Document 2), or PEDOT-PSS in a photo-curing coating agent It is known that it is formed of a resin composition (see Patent Document 3) in which a conductive polymer such as is mixed.
特開2003-251756号公報JP 2003-251756 A 特開2012-224011号公報JP 2012-2224011 A 特開2010-6079号公報JP 2010-6079 A
 しかしながら、特許文献1のように、離型剤組成物中にPEDOT-PSSを配合すると、離型剤成分であるシリコーンエマルジョンとPEDOT-PSSの相溶性が悪く、PEDOT-PSSが凝集して粗大突起となりやすい。そのため、離型フィルムの表面を平滑にすることが難しくなる。また、特許文献3に記載の樹脂組成物でも、PEDOT-PSSが凝集しやすく、帯電防止層、及びその帯電防止層の上に形成された離型層の表面平滑性を確保することが困難になる。
 一方で、特許文献2に記載の樹脂組成物は、無架橋タイプであるため、皮膜強度等が十分なものとならず、帯電防止層の耐溶剤性や、帯電防止層のオーバーコート性、すなわち帯電防止層の上に形成される離型層等の塗布液のコート性が悪化する等の不具合が生じやすくなる。
However, as disclosed in Patent Document 1, when PEDOT-PSS is blended in the release agent composition, the compatibility between the silicone emulsion as the release agent component and PEDOT-PSS is poor, and PEDOT-PSS aggregates to produce coarse protrusions. It is easy to become. Therefore, it becomes difficult to smooth the surface of the release film. Further, even with the resin composition described in Patent Document 3, PEDOT-PSS is likely to aggregate, making it difficult to ensure the surface smoothness of the antistatic layer and the release layer formed on the antistatic layer. Become.
On the other hand, since the resin composition described in Patent Document 2 is a non-crosslinked type, the film strength and the like are not sufficient, and the solvent resistance of the antistatic layer and the overcoat property of the antistatic layer, that is, Problems such as deterioration of the coating properties of the coating solution such as a release layer formed on the antistatic layer are likely to occur.
 本発明は、以上の問題点に鑑みてなされたものであり、表面を平滑にしつつ、帯電防止性能、耐溶剤性、及びオーバーコート性に優れた離型フィルムを提供することを課題とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a release film excellent in antistatic performance, solvent resistance, and overcoatability while smoothing the surface.
 本発明者らは、鋭意検討の結果、PEDOT-PSSのようなポリチオフェン系導電性高分子を含み、水性でかつ熱硬化性を有する樹脂組成物によって、平滑な基材表面上に、所定厚みの帯電防止層を形成することで上記問題点を解決することができることを見出し、以下の本発明を完成させた。すなわち、本発明は、以下の(1)~(9)を提供するものである。
(1)基材と、前記基材の一方の面上に設けられた帯電防止層と、前記帯電防止層の上、又は前記基材の他方の面側に設けられた離型層とを備え、
 前記基材の一方の面は、算術平均粗さRaが15nm以下、最大突起高さRpが150nm以下であるとともに、
 前記帯電防止層が、ポリチオフェン系導電性高分子(A)を含む水性熱硬化性樹脂組成物を硬化してなるものであるとともに、前記帯電防止層の厚みが12~250nmである離型フィルム。
(2)前記離型層が帯電防止層の上に設けられる上記(1)に記載の離型フィルム。
(3)前記離型層の算術平均粗さRaが10nm未満、最大突起高さRpが100nm未満である上記(1)又は(2)に記載の離型フィルム。
(4)前記水性熱硬化性樹脂組成物が、さらに水酸基含有ポリエステル樹脂(B)と、メラミン化合物(C)とを含む上記(1)~(3)のいずれかに記載の離型フィルム。
(5)前記水性熱硬化性樹脂組成物が、ポリチオフェン系導電性高分子(A)及び水酸基含有ポリエステル樹脂(B)の合計100質量部に対して、メラミン化合物(C)を8~35質量部含有する上記(4)に記載の離型フィルム。
(6)前記水性熱硬化性樹脂組成物が、水酸基含有ポリエステル樹脂(B)100質量部に対して、ポリチオフェン系導電性高分子(A)を0.5~50質量部含有する上記(4)又は(5)に記載の離型フィルム。
(7)メラミン化合物(C)が、メチロールメラミンである上記(4)~(6)のいずれかに記載の離型フィルム。
(8)前記ポリチオフェン系導電性高分子(A)が、ポリエチレンジオキシチオフェンとポリスチレンスルホネートの混合物(PEDOT-PSS)である上記(1)~(7)のいずれかに記載の離型フィルム。
(9)セラミックグリーンシートの製造工程用に用いられる上記(1)~(8)のいずれかに記載の離型フィルム。
As a result of intensive studies, the inventors of the present invention include a polythiophene-based conductive polymer such as PEDOT-PSS, and an aqueous and thermosetting resin composition having a predetermined thickness on a smooth substrate surface. It has been found that the above problems can be solved by forming an antistatic layer, and the following invention has been completed. That is, the present invention provides the following (1) to (9).
(1) A substrate, an antistatic layer provided on one surface of the substrate, and a release layer provided on the antistatic layer or on the other surface side of the substrate. ,
One surface of the substrate has an arithmetic average roughness Ra of 15 nm or less and a maximum protrusion height Rp of 150 nm or less,
A release film in which the antistatic layer is obtained by curing an aqueous thermosetting resin composition containing a polythiophene-based conductive polymer (A), and the antistatic layer has a thickness of 12 to 250 nm.
(2) The release film according to (1), wherein the release layer is provided on the antistatic layer.
(3) The release film according to (1) or (2), wherein the release layer has an arithmetic average roughness Ra of less than 10 nm and a maximum protrusion height Rp of less than 100 nm.
(4) The release film according to any one of (1) to (3), wherein the aqueous thermosetting resin composition further comprises a hydroxyl group-containing polyester resin (B) and a melamine compound (C).
(5) The aqueous thermosetting resin composition comprises 8 to 35 parts by mass of the melamine compound (C) with respect to 100 parts by mass in total of the polythiophene-based conductive polymer (A) and the hydroxyl group-containing polyester resin (B). The release film as described in (4) above.
(6) The above (4), wherein the aqueous thermosetting resin composition contains 0.5 to 50 parts by mass of the polythiophene conductive polymer (A) with respect to 100 parts by mass of the hydroxyl group-containing polyester resin (B). Or the release film as described in (5).
(7) The release film according to any one of (4) to (6), wherein the melamine compound (C) is methylol melamine.
(8) The release film according to any one of (1) to (7), wherein the polythiophene-based conductive polymer (A) is a mixture of polyethylene dioxythiophene and polystyrene sulfonate (PEDOT-PSS).
(9) The release film according to any one of (1) to (8), which is used for a production process of a ceramic green sheet.
 本発明では、表面を平滑にしつつ、帯電防止性能、耐溶剤性、及びオーバーコート性に優れた離型フィルムを提供することができる。 In the present invention, it is possible to provide a release film excellent in antistatic performance, solvent resistance, and overcoatability while smoothing the surface.
本発明の離型フィルムの一実施形態を示す模式的な断面図である。It is typical sectional drawing which shows one Embodiment of the release film of this invention. 本発明の離型フィルムの他の実施形態を示す模式的な断面図である。It is typical sectional drawing which shows other embodiment of the release film of this invention.
 以下、本発明について実施形態を用いてより詳細に説明する。
 本発明の離型フィルムは、基材と、基材の一方の面上に設けられた帯電防止層と、この帯電防止層の上、又は基材の他方の面側に設けられた離型層とを備えるものである。
 より具体的には、離型フィルムとしては、図1に示すように、基材11と、基材11の一方の面11A上に設けられた帯電防止層12と、この帯電防止層12の上に設けられた離型層13とを備える離型フィルム10Aが挙げられるが、図2に示すように、帯電防止層12が基材11の一方の面11A上に設けられるとともに、離型層13が基材11の他方の面11B上に設けられる離型フィルム10Bであってもよい。
Hereinafter, the present invention will be described in more detail using embodiments.
The release film of the present invention includes a base material, an antistatic layer provided on one surface of the base material, and a release layer provided on the antistatic layer or on the other surface side of the base material. Are provided.
More specifically, as the release film, as shown in FIG. 1, a base material 11, an antistatic layer 12 provided on one surface 11A of the base material 11, and an antistatic layer 12 A release film 10A provided with a release layer 13 provided on the substrate 11 is provided. As shown in FIG. 2, an antistatic layer 12 is provided on one surface 11A of the substrate 11, and the release layer 13 is provided. May be a release film 10 </ b> B provided on the other surface 11 </ b> B of the substrate 11.
 ロール状に巻き取られた離型フィルムは、場合によってブロッキングを生じ、ロールから離型フィルムを繰り出す際に静電気を発生させる。離型フィルムは、帯電防止層を有することでこのような繰り出し帯電を防いで、ブロッキングや巻き取り性の低下を防止する。また、離型層上に積層されたセラミックグリーンシート等の各種物品を、離型フィルムから剥離する際、帯電による剥離不良が生じにくくなる。さらに、静電気により離型層の上に埃等が付着することも防止される。
 離型フィルムとしては、図1に示すように、離型層13が帯電防止層12の上に設けられたものが好ましい。このような離型フィルムにおいては、離型層13上の帯電を帯電防止層12によってさらに防止しやすくなる。
The release film wound up in a roll shape causes blocking in some cases, and generates static electricity when the release film is unwound from the roll. The release film has an antistatic layer to prevent such pay-out charging and prevent blocking and lowering of winding property. In addition, when various articles such as a ceramic green sheet laminated on the release layer are peeled from the release film, poor peeling due to charging is less likely to occur. Furthermore, it is possible to prevent dust and the like from adhering to the release layer due to static electricity.
As the release film, as shown in FIG. 1, one in which a release layer 13 is provided on the antistatic layer 12 is preferable. In such a release film, charging on the release layer 13 is further easily prevented by the antistatic layer 12.
 次に、離型フィルムの各部材について詳細に説明する。
[基材]
 基材は、帯電防止層が形成される基材の一方の面(図1、2における面11A)が、算術平均粗さRa15nm以下、最大突起高さRp150nm以下となるものである。本発明では、基材の一方の面の算術平均粗さRa又は最大突起高さRpがこれら上限値を超えると、帯電防止層を形成するための組成物を後述する水性熱硬化性樹脂組成物としても、帯電防止層の表面を平滑にしにくくなる。帯電防止層の表面が平滑にできないと、例えば、帯電防止層の上に離型層等の薄層を設ける場合に、その離型層等の表面が平滑にできず、離型層の上に形成されるセラミックグリーンシート等の物品に凹凸やピンホールが生じやすくなる。
 以上の観点から、上記算術平均粗さRa及び最大突起高さRpはそれぞれ、12nm以下、120nm以下が好ましい。また、基材の製造のしやすさ等も考慮すると、算術平均粗さRa、最大突起高さRpそれぞれは、1nm以上、5nm以上であることが好ましい。
Next, each member of the release film will be described in detail.
[Base material]
In the base material, one surface (the surface 11A in FIGS. 1 and 2) on which the antistatic layer is formed has an arithmetic average roughness Ra of 15 nm or less and a maximum protrusion height Rp of 150 nm or less. In the present invention, when the arithmetic average roughness Ra or the maximum protrusion height Rp on one surface of the substrate exceeds these upper limit values, the aqueous thermosetting resin composition described later is a composition for forming an antistatic layer. However, it becomes difficult to smooth the surface of the antistatic layer. If the surface of the antistatic layer cannot be smoothed, for example, when a thin layer such as a release layer is provided on the antistatic layer, the surface of the release layer cannot be smoothed. Concavities and convexities and pinholes are likely to occur in the formed article such as a ceramic green sheet.
From the above viewpoints, the arithmetic average roughness Ra and the maximum protrusion height Rp are preferably 12 nm or less and 120 nm or less, respectively. In consideration of the ease of production of the substrate, the arithmetic average roughness Ra and the maximum protrusion height Rp are each preferably 1 nm or more and 5 nm or more.
 基材としては、算術平均粗さRa及び最大突起高さRpが上記の範囲であれば特に制限はないが、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル、ポリプロピレンやポリメチルペンテン等のポリオレフィン、ポリカーボネート、ポリ酢酸ビニルなどのプラスチックからなるフィルムが挙げられ、これらは単層であってもよいし、同種又は異種の2層以上の多層であってもよい。これらの中でもポリエステルフィルムが好ましく、特にポリエチレンテレフタレートフィルムが好ましい。ポリエチレンテレフタレートフィルムは、加工時、使用時等において、埃等が発生しにくいため、例えば、埃等によるセラミックスラリー塗工不良等を効果的に防止することができる。
 また、基材の厚みは、特に限定されず、通常、10~300μm、好ましくは15~200μm程度である。
 基材は、上記の算術平均粗さRa、及び最大突起高さRpを確保するために、粒子を含有しないほうがよいが、上記の算術平均粗さRa及び最大突起高さRpを確保できる限り粒子を含有していてもよい。粒子を含有する場合、基材の算術平均粗さRa及び最大突起高さRpを小さくするために、その粒子(例えば易滑性を付与するためのシリカ、炭酸カルシウム及び酸化チタン等のフィラー)の粒径を小さくしたり、該粒子の配合量を少なくしたりすればよい。
The base material is not particularly limited as long as the arithmetic average roughness Ra and the maximum protrusion height Rp are in the above ranges, for example, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polypropylene and polymethylpentene, Examples thereof include films made of plastics such as polycarbonate and polyvinyl acetate, and these may be a single layer or a multilayer of two or more of the same or different types. Among these, a polyester film is preferable, and a polyethylene terephthalate film is particularly preferable. Since the polyethylene terephthalate film hardly generates dust or the like during processing or use, for example, it is possible to effectively prevent a ceramic slurry coating failure due to dust or the like.
The thickness of the substrate is not particularly limited, and is usually about 10 to 300 μm, preferably about 15 to 200 μm.
In order to secure the arithmetic average roughness Ra and the maximum protrusion height Rp, the base material should not contain particles. However, as long as the arithmetic average roughness Ra and the maximum protrusion height Rp can be ensured, May be contained. In the case of containing particles, in order to reduce the arithmetic average roughness Ra and the maximum protrusion height Rp of the substrate, the particles (for example, fillers such as silica, calcium carbonate and titanium oxide for imparting slipperiness) What is necessary is just to make a particle size small or to reduce the compounding quantity of this particle | grain.
[帯電防止層]
 帯電防止層は、ポリチオフェン系導電性高分子(A)(以下、単に(A)成分ともいう)を含む水性熱硬化性樹脂組成物を硬化してなるものである。
 本発明においては、帯電防止層を形成する樹脂組成物を熱硬化性とすることで、帯電防止層の皮膜強度が向上するため、帯電防止層の耐溶剤性が良好になる。さらには、帯電防止層の上に離型層等の薄層を設ける場合には、その薄層のオーバーコート性が良好になる。すなわち、帯電防止層の上に離型層等の薄層を形成する際、塗りムラが生じたり、ハジキやスジ等が発生したりすることが防止される。
 また、組成物を水性のものとすることで、ポリチオフェン系導電性高分子(A)が組成物において凝集等することなく容易に分散または溶解し、帯電防止層やその上に形成される離型層等を平滑にすることができる。さらには、帯電防止層の上に形成される離型層等に、凹凸やピンホールが生じることが防止される。
[Antistatic layer]
The antistatic layer is formed by curing an aqueous thermosetting resin composition containing the polythiophene-based conductive polymer (A) (hereinafter also simply referred to as the component (A)).
In the present invention, since the film strength of the antistatic layer is improved by making the resin composition forming the antistatic layer thermosetting, the solvent resistance of the antistatic layer is improved. Furthermore, when a thin layer such as a release layer is provided on the antistatic layer, the overcoat property of the thin layer is improved. That is, when forming a thin layer such as a release layer on the antistatic layer, it is possible to prevent coating unevenness, repelling, streaks, and the like.
Further, by making the composition aqueous, the polythiophene-based conductive polymer (A) can be easily dispersed or dissolved without agglomeration or the like in the composition, and the antistatic layer and the mold release formed thereon are formed. Layers and the like can be smoothed. Furthermore, unevenness and pinholes are prevented from being generated in the release layer formed on the antistatic layer.
 また、帯電防止層の厚みは、12~250nmとなるものである。帯電防止層の厚みが12nm未満であると、厚みが薄すぎて、帯電防止層の表面抵抗値が(A)成分により十分に下がらず、帯電防止性能を付与しにくくなる。また、十分な皮膜が形成できずに、耐溶剤性やオーバーコート性が低くなる。一方で、250nmより大きくすると、基材の一方の面を平滑面としても、帯電防止層の表面を平滑にしにくくなり、帯電防止層の上に形成される離型層等の表面平滑性を確保することが困難となる。以上の観点から、帯電防止層の厚みは、15~200nmであることが好ましい。なお、帯電防止層の厚みは、分光エリプソメーターを用いて測定したものである。
 なお、帯電防止層は、水性熱硬化性樹脂組成物における固形分濃度を適宜変更したり、塗布装置のギャップ等を変更したりすることにより所望の厚みとすることが可能になる。水性熱硬化性樹脂組成物における固形分濃度は、特に限定されないが、0.4~2.0質量%程度であることが好ましく、0.5~1.6質量%程度であることがより好ましい。
The antistatic layer has a thickness of 12 to 250 nm. When the thickness of the antistatic layer is less than 12 nm, the thickness is too thin, the surface resistance value of the antistatic layer is not sufficiently lowered by the component (A), and it becomes difficult to impart antistatic performance. In addition, a sufficient film cannot be formed, and solvent resistance and overcoat properties are lowered. On the other hand, if it is larger than 250 nm, even if one surface of the substrate is a smooth surface, it becomes difficult to smooth the surface of the antistatic layer, and the surface smoothness of the release layer and the like formed on the antistatic layer is ensured. Difficult to do. From the above viewpoint, the thickness of the antistatic layer is preferably 15 to 200 nm. The thickness of the antistatic layer was measured using a spectroscopic ellipsometer.
The antistatic layer can be made to have a desired thickness by appropriately changing the solid content concentration in the aqueous thermosetting resin composition or changing the gap of the coating apparatus. The solid content concentration in the aqueous thermosetting resin composition is not particularly limited, but is preferably about 0.4 to 2.0% by mass, more preferably about 0.5 to 1.6% by mass. .
 帯電防止層は、好ましくはポリエステル樹脂とメラミン化合物が架橋されて形成された硬化膜からなり、具体的には、上記(A)成分に加えて、水酸基含有ポリエステル樹脂(B)(以下、単にポリエステル樹脂(B)、或いは(B)成分ともいう)と、メラミン化合物(C)(以下、単に(C)成分ともいう)とを含む水性熱硬化性樹脂組成物を硬化してなるものであることが好ましい。
 なお、水性熱硬化性樹脂組成物は、水を含む希釈液中に、各成分が分散し又は溶解する水分散性ないし水溶性であればよい。
The antistatic layer is preferably composed of a cured film formed by crosslinking a polyester resin and a melamine compound. Specifically, in addition to the component (A), a hydroxyl group-containing polyester resin (B) (hereinafter simply referred to as a polyester). It is obtained by curing an aqueous thermosetting resin composition containing a resin (B) or (B) component) and a melamine compound (C) (hereinafter also simply referred to as (C) component). Is preferred.
The aqueous thermosetting resin composition may be water-dispersible or water-soluble so that each component is dispersed or dissolved in a diluent containing water.
 以下、帯電防止層を構成する各成分についてより詳細に説明する。
<ポリチオフェン系導電性高分子(A)>
 ポリチオフェン系導電性高分子(A)の具体的な化合物としては、例えば、ポリエチレンジオキシチオフェン、ポリプロピレンジオキシチオフェン、ポリ(エチレン/プロピレン)ジオキシチオフェンなどのポリアルキレンジオキシチオフェンとポリスチレンスルホネートとの混合物;ポリ(3-チオフェン-β-エタンスルホン酸)等のスルホン酸基を有するポリチオフェン系化合物等が挙げられる。これらの中ではポリアルキレンジオキシチオフェンとポリスチレンスルホネートとの混合物が好ましく、中でもポリエチレンジオキシチオフェンとポリスチレンスルホネートの混合物(PEDOT-PSS)がより好ましい。
 帯電防止層は、ポリチオフェン系導電性高分子(A)を含有することで、薄膜であっても表面抵抗値が十分に低くなり、帯電を効果的に防止することが可能になる。また、ポリチオフェン系導電性高分子(A)は、水溶性又は水分散性を有し、そのため、上記したように、水性熱硬化性樹脂組成物において容易に溶解又は分散することが可能になる。
Hereinafter, each component constituting the antistatic layer will be described in more detail.
<Polythiophene-based conductive polymer (A)>
Specific examples of the polythiophene-based conductive polymer (A) include, for example, polyalkylene dioxythiophenes such as polyethylene dioxythiophene, polypropylene dioxythiophene, poly (ethylene / propylene) dioxythiophene, and polystyrene sulfonate. Mixtures: Polythiophene compounds having a sulfonic acid group such as poly (3-thiophene-β-ethanesulfonic acid). Among these, a mixture of polyalkylene dioxythiophene and polystyrene sulfonate is preferable, and a mixture of polyethylene dioxythiophene and polystyrene sulfonate (PEDOT-PSS) is more preferable.
When the antistatic layer contains the polythiophene-based conductive polymer (A), even if it is a thin film, the surface resistance value is sufficiently low, and it becomes possible to effectively prevent charging. Further, the polythiophene-based conductive polymer (A) has water solubility or water dispersibility, and thus can be easily dissolved or dispersed in the aqueous thermosetting resin composition as described above.
 帯電防止層を形成するための水性熱硬化性樹脂組成物は、ポリエステル樹脂(B)100質量部に対して、ポリチオフェン系導電性高分子(A)を0.5~50質量部含有することが好ましい。(A)成分を上記下限値以上含有させることで、離型フィルムに適切な帯電防止性能を発揮させることが可能になる。また、上限値以下とすることで、(A)成分が凝集したり、帯電防止層の硬化不良が生じたりすることが防止される。
 以上の観点から、水性熱硬化性樹脂組成物において、(A)成分は、(B)成分100質量部に対して0.6~20質量部含有されることがより好ましい。
The aqueous thermosetting resin composition for forming the antistatic layer may contain 0.5 to 50 parts by mass of the polythiophene-based conductive polymer (A) with respect to 100 parts by mass of the polyester resin (B). preferable. By containing the component (A) above the lower limit, it is possible to cause the release film to exhibit appropriate antistatic performance. Moreover, by setting it as the upper limit value or less, it is possible to prevent the component (A) from aggregating and the antistatic layer from being poorly cured.
From the above viewpoint, in the aqueous thermosetting resin composition, the component (A) is more preferably contained in an amount of 0.6 to 20 parts by mass with respect to 100 parts by mass of the component (B).
<ポリエステル樹脂(B)>
 ポリエステル樹脂(B)は、多価カルボン酸成分と、多価アルコール成分とを反応することによって得ることができるものである。ポリエステル樹脂(B)は、その分子内に水酸基を含有するものであり、ポリエステルを構成するための多価カルボン酸成分のCOOH基に対するアルコール成分のOH基の当量比(OH基/COOH基)が1.0より大きくなることが好ましい。ポリエステル樹脂(B)は、水酸基を含有することでメラミン化合物(C)と架橋することが可能になる。
<Polyester resin (B)>
The polyester resin (B) can be obtained by reacting a polyvalent carboxylic acid component with a polyhydric alcohol component. The polyester resin (B) contains a hydroxyl group in the molecule, and the equivalent ratio of the OH group of the alcohol component to the COOH group of the polyvalent carboxylic acid component for constituting the polyester (OH group / COOH group) is Preferably it is greater than 1.0. The polyester resin (B) can be crosslinked with the melamine compound (C) by containing a hydroxyl group.
 ここで、多価カルボン酸成分は、1分子中に2個以上のカルボキシル基を有する化合物であり、例えば、フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、テトラヒドロイソフタル酸、テトラヒドロテレフタル酸、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、トリメリット酸、アジピン酸、セバシン酸、コハク酸、アゼライン酸、ナフタレンジカルボン酸、4,4-ジフェニルジカルボン酸、ヘット酸、フマル酸、マレイン酸、イタコン酸、ピロメリット酸などのポリエステル樹脂の製造に一般的に使用可能な多塩基酸を使用することができる。また、多価カルボン酸成分としては、上記多価カルボン酸成分の無水物も使用可能である。これら多価カルボン酸成分は、単独で又は2種以上組み合わせて使用することができる。 Here, the polyvalent carboxylic acid component is a compound having two or more carboxyl groups in one molecule. For example, phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydroisophthalic acid, tetrahydroterephthalic acid, hexa Hydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid, trimellitic acid, adipic acid, sebacic acid, succinic acid, azelaic acid, naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, het acid, fumaric acid, maleic acid Polybasic acids that can be generally used for the production of polyester resins such as itaconic acid and pyromellitic acid can be used. As the polyvalent carboxylic acid component, anhydrides of the above polyvalent carboxylic acid components can also be used. These polyvalent carboxylic acid components can be used alone or in combination of two or more.
 多価アルコール成分は、1分子中に2個以上の水酸基を有する化合物であり、その具体例としては、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ネオペンチルグリコール、ヘキシレングリコール、1,3-ブチレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、メチルプロパンジオール、シクロヘキサンジメタノール、3,3-ジエチル-1,5-ペンタンジオールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、エリスリトール、ペンタエリスリトール、ジペンタエリストールなどの3価以上のアルコールなど、通常のポリエステル樹脂を製造する際に使用されるものが挙げられる。これらの多価アルコール成分は単独で又は2種以上組み合わせて使用することができる。 The polyhydric alcohol component is a compound having two or more hydroxyl groups in one molecule, and specific examples thereof include ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, polyethylene glycol, Polypropylene glycol, neopentyl glycol, hexylene glycol, 1,3-butylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2-butyl-2-ethyl-1,3 -Diols such as propanediol, methylpropanediol, cyclohexanedimethanol, 3,3-diethyl-1,5-pentanediol, glycerin, trimethylolethane, trimethylolpropane, erythritol, Pentaerythritol, etc. trihydric or higher alcohols such as dipentaerythritol, include those used in making the conventional polyester resin. These polyhydric alcohol components can be used alone or in combination of two or more.
 ポリエステル樹脂(B)は、水性熱硬化性樹脂組成物の成分として使用するために、水溶性又は水分散性を有するものが好ましい。ポリエステル樹脂(B)は、特に限定されないが、水溶性又は水分散性を付与するために、スルホン酸塩基や、カルボン酸塩基を含む構成単位をポリエステルの構成単位として含むものが好適に使用される。
 なお、ポリエステル樹脂(B)は、水性熱硬化性樹脂組成物において、主成分となるものであり、組成物中の固形分全量に対して、通常、50質量%以上含有され、好ましくは65~92質量%含有されるものである。なお、本明細書において、固形分全量とは、硬化工程等の製造過程で揮発される溶媒等の揮発成分を、水性熱硬化性樹脂組成物から除いた量をいう。
The polyester resin (B) is preferably water-soluble or water-dispersible in order to be used as a component of the aqueous thermosetting resin composition. The polyester resin (B) is not particularly limited, but in order to impart water-solubility or water-dispersibility, those containing a structural unit containing a sulfonate group or a carboxylate group as a structural unit of the polyester are preferably used. .
The polyester resin (B) is a main component in the aqueous thermosetting resin composition, and is usually contained in an amount of 50% by mass or more based on the total solid content in the composition, preferably 65 to 92% by mass is contained. In addition, in this specification, solid content total amount means the quantity remove | excluding volatile components, such as a solvent volatilized in manufacturing processes, such as a hardening process, from the aqueous thermosetting resin composition.
<メラミン化合物(C)>
 また、メラミン化合物(C)の具体例としては、メチロールメラミンや、アルコキシ化メチロールメラミンが挙げられるが、水溶性が高く、熱硬化速度が速い点から、メチロールメラミンがより好ましい。なお、メチロールメラミンは、メラミンのアミノ基の窒素原子にメチロール基が1~6個結合したものが挙げられる。また、アルコキシ化メチロールメラミンは、メチロールメラミンのメチロール基の少なくとも一部を低級アルコールでアルコキシ化したものが挙げられ、具体的にはメトキシ化メチロールメラミン、ブトキシ化メチロールメラミン等のアルコキシ基の炭素数が1~4のものが挙げられる。
 また、メラミン化合物(C)は、水溶性メラミンであることが好ましく、上記化合物の水溶液としたものが使用される。
 帯電防止層は、(B)成分に加えて(C)成分が配合されることで、ポリエステル樹脂とメラミン化合物が架橋するため、上記したオーバーコート性、耐溶剤性等が良好となる。
<Melamine compound (C)>
Specific examples of the melamine compound (C) include methylol melamine and alkoxylated methylol melamine, and methylol melamine is more preferable from the viewpoint of high water solubility and high thermosetting speed. Examples of methylol melamine include those in which 1 to 6 methylol groups are bonded to the nitrogen atom of the amino group of melamine. Examples of the alkoxylated methylol melamine include those obtained by alkoxylating at least a part of the methylol group of methylol melamine with a lower alcohol. Specifically, the carbon number of the alkoxy group such as methoxylated methylol melamine and butoxylated methylol melamine Examples are 1 to 4.
The melamine compound (C) is preferably water-soluble melamine, and an aqueous solution of the above compound is used.
In the antistatic layer, since the polyester resin and the melamine compound are cross-linked by blending the component (C) in addition to the component (B), the above-described overcoat property, solvent resistance and the like are improved.
 水性熱硬化性樹脂組成物は、(A)成分及び(B)成分の合計100質量部に対して、メラミン化合物(C)を8~35質量部含有することが好ましい。帯電防止層は、(C)成分が8質量部以上配合されることで、上記した耐溶剤性やオーバーコート性が良好となり、さらには、帯電防止層の表面を平滑化しやすくなる。また、35質量部以下とすることで、組成物の分散安定性が良好となり、凝集物が発生しにくくなる。
 また、上記メラミン化合物(C)の含有量は、(A)成分及び(B)成分の合計100質量部に対して、10~32質量部であることがより好ましい。
The aqueous thermosetting resin composition preferably contains 8 to 35 parts by mass of the melamine compound (C) with respect to 100 parts by mass in total of the components (A) and (B). When the component (C) is blended in an amount of 8 parts by mass or more in the antistatic layer, the above-described solvent resistance and overcoat properties are improved, and the surface of the antistatic layer is easily smoothed. Moreover, by setting it as 35 mass parts or less, the dispersion stability of a composition becomes favorable and it becomes difficult to generate | occur | produce an aggregate.
Further, the content of the melamine compound (C) is more preferably 10 to 32 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B).
 また、帯電防止層の表面抵抗値は、1×1011Ω/□未満であることが好ましく、1×1010Ω/□未満であることがより好ましい。帯電防止層の表面抵抗値を1×1011Ω/□未満とすることで、離型フィルムの帯電を適切に防止することが可能になり、特に、離型フィルムを使用して、セラミックグリーンシートを製造する際に発生する各種不具合を抑制しやすくなる。 Further, the surface resistance value of the antistatic layer is preferably less than 1 × 10 11 Ω / □, and more preferably less than 1 × 10 10 Ω / □. By making the surface resistance value of the antistatic layer less than 1 × 10 11 Ω / □, it becomes possible to appropriately prevent the release film from being charged. It is easy to suppress various problems that occur when manufacturing the.
 帯電防止層を形成するための水性熱硬化性樹脂組成物は、少なくとも水を希釈溶媒として含み、ジメチルスルホキシド、イソプロピルアルコール(IPA)、エタノール等の水以外の極性溶媒を希釈溶媒としてさらに含んでいてもよい。なお、希釈溶媒は、全溶媒中の30質量%以上70質量%以下が水であるものを使用することがより好ましい。水を70質量%以下とすることで、水性熱硬化性樹脂組成物を塗布する際に生じるハジキ等を発生させにくくなる。
 また、水を30質量%以上とすることで、(A)成分を希釈液中に分散または溶解することが可能になり、(A)成分の凝集を防止しやすくなる。さらには、水溶性又は水分散性の(B)成分及び水溶性の(C)成分を、組成物中で容易に分散または溶解することが可能になる。そのため、熱硬化性樹脂組成物の塗工性を良好として、適切な皮膜を形成することが可能になる。
The aqueous thermosetting resin composition for forming the antistatic layer contains at least water as a diluent solvent, and further contains a polar solvent other than water, such as dimethyl sulfoxide, isopropyl alcohol (IPA), and ethanol, as a diluent solvent. Also good. In addition, as for a dilution solvent, it is more preferable to use the thing whose 30 mass% or more and 70 mass% or less in all the solvents are water. By making water 70 mass% or less, it becomes difficult to generate the repelling etc. which arise when apply | coating an aqueous thermosetting resin composition.
Moreover, by making water 30 mass% or more, it becomes possible to disperse | distribute or melt | dissolve (A) component in a diluent, and it becomes easy to prevent aggregation of (A) component. Furthermore, the water-soluble or water-dispersible component (B) and the water-soluble (C) component can be easily dispersed or dissolved in the composition. Therefore, it becomes possible to form an appropriate film with good coating properties of the thermosetting resin composition.
 帯電防止層は、少なくとも(A)~(C)成分を希釈溶媒で希釈した水性熱硬化性樹脂組成物を、基材上に塗布した後、加熱乾燥して熱硬化することで得られるものである。
 ここで、水性熱硬化性樹脂組成物の塗布方法は、特に限定されず、例えば、グラビアコート法、バーコート法、スプレーコート法、スピンコート法、ナイフコート法、ロールコート法、ダイコート法などが挙げられる。
 なお、水性熱硬化性樹脂組成物は、(A)~(C)成分、及び希釈溶媒以外にも、本発明の効果を損なわない限り、(A)~(C)成分以外の樹脂成分、各種添加剤等を含有していてもよい。ただし、水性熱硬化性樹脂組成物は、帯電防止層表面の平滑性を確保するために、無機フィラー等の充填材を含有しないほうがよい。
The antistatic layer is obtained by applying an aqueous thermosetting resin composition obtained by diluting at least the components (A) to (C) with a diluting solvent onto a base material, followed by drying by heating and thermosetting. is there.
Here, the application method of the aqueous thermosetting resin composition is not particularly limited, and examples thereof include a gravure coating method, a bar coating method, a spray coating method, a spin coating method, a knife coating method, a roll coating method, and a die coating method. Can be mentioned.
In addition to the components (A) to (C) and the diluting solvent, the aqueous thermosetting resin composition is not limited to the resin components other than the components (A) to (C), as long as the effects of the present invention are not impaired. It may contain additives. However, the aqueous thermosetting resin composition preferably does not contain a filler such as an inorganic filler in order to ensure the smoothness of the surface of the antistatic layer.
[離型層]
 離型層は、離型剤により構成されるものであり、具体的には、シリコーン樹脂系離型剤、アルキド樹脂系離型剤、オレフィン樹脂系離型剤、アクリル樹脂系離型剤、ゴム系離型剤、メラミン樹脂系離型剤、フッ素樹脂系離型剤等が使用可能であるが、シリコーン樹脂系離型剤が好ましい。以下、離型剤としてシリコーン樹脂系離型剤を使用する場合について詳細に説明する。
[Release layer]
The release layer is composed of a release agent. Specifically, a silicone resin release agent, an alkyd resin release agent, an olefin resin release agent, an acrylic resin release agent, rubber System release agents, melamine resin release agents, fluororesin release agents and the like can be used, but silicone resin release agents are preferred. Hereinafter, the case where a silicone resin type release agent is used as the release agent will be described in detail.
 シリコーン樹脂系離型剤としては、好ましくは付加反応型シリコーン樹脂組成物が使用される。付加反応型シリコーン樹脂組成物は、付加反応型シリコーン樹脂と架橋剤からなる主剤に、触媒、及び、必要に応じて、付加反応抑制剤、剥離調整剤、密着向上剤、光増感剤などのその他添加剤を加えたものである。
 付加反応型シリコーン樹脂としては、特に制限はなく、様々なものを用いることができるが、例えば分子中に、官能基としてアルケニル基を有するポリオルガノシロキサンが使用でき、より具体的には、ビニル基やヘキセニル基等を官能基とするポリジメチルシロキサンが挙げられる。
 また、アルケニル基を有し、例えば質量平均分子量(Mw)が70000以上の直鎖状ポリオルガノシロキサンと、アルケニル基を有し、質量平均分子量(Mw)が500~50000程度の分岐状のオルガノシロキサンオリゴマーとを混合したもの等も付加反応型シリコーン樹脂として使用することができる。なお、本明細書において質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレン換算値として求めたものをいう。
As the silicone resin release agent, an addition reaction type silicone resin composition is preferably used. The addition reaction type silicone resin composition includes a main component composed of an addition reaction type silicone resin and a crosslinking agent, a catalyst, and, if necessary, an addition reaction inhibitor, a release adjusting agent, an adhesion improver, a photosensitizer, and the like. Other additives are added.
There are no particular limitations on the addition reaction type silicone resin, and various types can be used. For example, polyorganosiloxane having an alkenyl group as a functional group in the molecule can be used, and more specifically, a vinyl group. And polydimethylsiloxane having a functional group such as a hexenyl group.
In addition, a linear polyorganosiloxane having an alkenyl group and having a mass average molecular weight (Mw) of 70000 or more, and a branched organosiloxane having an alkenyl group and a mass average molecular weight (Mw) of about 500 to 50000 What mixed with the oligomer etc. can also be used as an addition reaction type silicone resin. In addition, in this specification, a mass average molecular weight (Mw) means what was calculated | required as a polystyrene conversion value by gel permeation chromatography (GPC).
 架橋剤としては、例えば一分子中に少なくとも2個のケイ素原子に結合した水素原子を有するポリオルガノシロキサンが挙げられ、具体的には、ポリメチルハイドロジェンシロキサンが挙げられる。架橋剤の使用量は、付加反応型シリコーン樹脂100質量部に対し、0.1~100重量部が好ましく、より好ましくは0.5~25質量部の範囲で選定される。また、触媒としては、白金系触媒が用いられる。 Examples of the crosslinking agent include polyorganosiloxane having hydrogen atoms bonded to at least two silicon atoms in one molecule, and specifically, polymethylhydrogensiloxane. The amount of the crosslinking agent used is preferably 0.1 to 100 parts by weight, more preferably 0.5 to 25 parts by weight with respect to 100 parts by weight of the addition reaction type silicone resin. As the catalyst, a platinum-based catalyst is used.
 離型層は、離型層の上に積層されるセラミックグリーンシート等の物品に凹凸やピンポールが生じないようにするために、表面が平滑であることが好ましい。具体的には、離型層の表面は、算術平均粗さRaが10nm未満であるとともに、最大突起高さRpが100nm未満であることが好ましく、算術平均粗さRaが8nm以下であるとともに、最大突起高さRpが80nm以下であることがより好ましい。また、離型層の製造しやすさ等も考慮すると、算術平均粗さRa、最大突起高さRpそれぞれは、1nm以上、10nm以上であることが好ましい。
 本発明では、上記したように、基材の算術平均粗さRa及び最大突起高さRpを所定値以下とするとともに、帯電防止層の構成を所定のものとすることで、帯電防止層の上に形成される離型層の算術平均粗さRa及び最大突起高さRpを、上記したように小さくすることが可能になる。
The release layer preferably has a smooth surface in order to prevent irregularities and pin poles from being generated on an article such as a ceramic green sheet laminated on the release layer. Specifically, the surface of the release layer preferably has an arithmetic average roughness Ra of less than 10 nm, a maximum protrusion height Rp of less than 100 nm, an arithmetic average roughness Ra of 8 nm or less, The maximum protrusion height Rp is more preferably 80 nm or less. In consideration of the ease of production of the release layer, the arithmetic average roughness Ra and the maximum protrusion height Rp are each preferably 1 nm or more and 10 nm or more.
In the present invention, as described above, the arithmetic average roughness Ra and the maximum protrusion height Rp of the base material are set to a predetermined value or less, and the structure of the antistatic layer is set to a predetermined value. As described above, it is possible to reduce the arithmetic average roughness Ra and the maximum protrusion height Rp of the release layer formed in the above.
 離型層を構成する離型剤としては、非溶剤型のものや、希釈溶媒として水を使用した水系のものも用いることができるが、希釈溶媒として有機溶剤を使用した溶剤型のものを使用することが好ましい。溶剤型の離型剤を使用することで、種々の離型剤を幅広く使用でき、離型性能等の各種要求性能を所望のものに設計しやすくなる。
 離型剤が溶剤型である場合、希釈溶剤として使用される有機溶剤の具体例としては、トルエン、IPA、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等が挙げられる。帯電防止層は、上記したように耐溶剤性が良好であるから、離型剤に溶剤型のものが使用されても、離型層を形成する際に、帯電防止層が溶解したりする等の不具合が防止される。
As a release agent constituting the release layer, a non-solvent type or an aqueous type using water as a dilution solvent can be used, but a solvent type using an organic solvent as a dilution solvent is used. It is preferable to do. By using a solvent-type release agent, various release agents can be widely used, and various required performances such as release performance can be easily designed.
When the release agent is a solvent type, specific examples of the organic solvent used as the diluting solvent include toluene, IPA, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK) and the like. Since the antistatic layer has good solvent resistance as described above, even when a solvent-type release agent is used, the antistatic layer dissolves when the release layer is formed. Can be prevented.
 離型層は、離型剤組成物を帯電防止層の上、又は基材の他方の面(すなわち、帯電防止層が設けられない側の面)に塗布し、その後、その塗布膜を加熱乾燥等して硬化することで形成することが可能である。また、離型剤の塗布方法は、特に限定されず、例えば、グラビアコート法、バーコート法、スプレーコート法、スピンコート法、ナイフコート法、ロールコート法、ダイコート法などが挙げられる。
 なお、離型層の厚みは、特に限定されないが、乾燥後の坪量が0.03~0.4g/m2程度となるように調整されることが好ましい。
For the release layer, the release agent composition is applied on the antistatic layer or on the other side of the substrate (that is, the side on which the antistatic layer is not provided), and then the coating film is dried by heating. It can be formed by curing the same. Moreover, the application | coating method of a mold release agent is not specifically limited, For example, the gravure coat method, the bar coat method, the spray coat method, the spin coat method, the knife coat method, the roll coat method, the die coat method etc. are mentioned.
The thickness of the release layer is not particularly limited, but is preferably adjusted so that the basis weight after drying is about 0.03 to 0.4 g / m 2 .
[離型フィルムの使用方法]
 離型フィルムは、積層セラミックコンデンサの製造過程で使用されるものであることが好ましく、セラミックグリーンシートの製造工程用に用いられることがより好ましい。セラミックグリーンシートは、具体的には、離型フィルムの離型層の上にセラミックスラリーが塗工された後、適宜乾燥等されて作製されるものである。また、離型フィルムは、セラミックグリーンシート以外にも、各種材料が離型層の上に塗布されて、適宜硬化等されてシート形状の物品が作製されるときに使用されるものであってもよいし、その他の用途に使用されてもよい。なお、離型フィルム上に作製されたセラミックグリーンシートやその他の物品は、シート作製後、離型フィルムから剥離される。
[How to use the release film]
The release film is preferably used in the production process of the multilayer ceramic capacitor, and more preferably used for the production process of the ceramic green sheet. Specifically, the ceramic green sheet is produced by applying a ceramic slurry on a release layer of a release film and then drying it appropriately. In addition to the ceramic green sheet, the release film may be used when various materials are applied on the release layer and appropriately cured to produce a sheet-shaped article. It may be used for other purposes. In addition, the ceramic green sheet and other articles produced on the release film are peeled from the release film after the sheet is produced.
 以下、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれらの例によって制限されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
 本発明における測定方法、評価方法は以下のとおりである。
[帯電防止層の厚みの測定方法]
 J.A.Woollam Japan製の分光エリプソメーター「M-2000」を用いて測定を行った。
[表面抵抗値の評価]
 帯電防止層の表面抵抗値は、以下の方法で測定した。
測定装置:株式会社三菱化学アナリテック製「ハイレスタUP」
測定条件:印加電圧100V、測定時間10秒後、測定値は5回測定の平均値
[帯電防止層の塗膜性の評価]
 基材上に形成した帯電防止層の表面を指で10回擦り、スミア(曇り)、及びラブオフ(脱落)を以下の評価基準で蛍光灯下、目視にて判断した。
 A:変化なし   B:曇り又は脱落のいずれかがある。
[耐溶剤性の評価]
 旭化成株式会社製のベンコット(型番:AP-2)に溶剤(MEK)を適量含ませ、基材上に形成した帯電防止層の表面を、約100g/cm2の荷重で10cmの長さを1往復1秒程度の速さで20往復拭取り、帯電防止層の脱落の有無を蛍光灯下、以下の評価基準にて目視にて確認した。
 A:変化なし   B:脱落あり。
[オーバーコート性の評価]
 各実施例、比較例において、離型剤組成物を塗布した面が、離型剤組成物の希釈溶剤によって面状態に不具合(白化、ムラ、又はキズ)が生じなかったか、または、形成された離型層の面状態に不具合(ハジキ、又はスジ)がないかを蛍光灯下、目視確認した。上記の不具合がないものを“A”と判定し、一つでも生じた場合は“B”と判断した。
[表面粗さの測定]
 算術平均粗さRa及び最大突起高さRpは、JIS B0601-1994に基づき以下の条件により測定した。
測定装置:Veeco社製の光干渉式表面粗さ計「WYKO-1100」
測定条件:PSIモード、レンズ50倍率
The measurement method and evaluation method in the present invention are as follows.
[Measurement method of antistatic layer thickness]
J. et al. A. Measurement was performed using a spectroscopic ellipsometer “M-2000” manufactured by Woollam Japan.
[Evaluation of surface resistance]
The surface resistance value of the antistatic layer was measured by the following method.
Measuring device: “HIESTA UP” manufactured by Mitsubishi Chemical Analytech Co., Ltd.
Measurement conditions: applied voltage 100 V, measurement time 10 seconds later, measured value is an average of 5 measurements [evaluation of coating properties of antistatic layer]
The surface of the antistatic layer formed on the substrate was rubbed 10 times with a finger, and smear (cloudy) and rub-off (dropout) were judged visually under a fluorescent lamp according to the following evaluation criteria.
A: No change B: Either cloudy or fallen.
[Evaluation of solvent resistance]
An appropriate amount of solvent (MEK) is contained in Bencot (model number: AP-2) manufactured by Asahi Kasei Co., Ltd., and the surface of the antistatic layer formed on the substrate is 10 cm long with a load of about 100 g / cm 2. 20 reciprocations were wiped at a speed of about 1 second reciprocation, and the presence or absence of the antistatic layer was visually confirmed under a fluorescent lamp according to the following evaluation criteria.
A: No change B: Dropout
[Evaluation of overcoat properties]
In each of Examples and Comparative Examples, the surface to which the release agent composition was applied was not formed or formed with defects (whitening, unevenness, or scratches) in the surface state due to the dilution solvent of the release agent composition. The surface state of the release layer was visually confirmed under a fluorescent lamp for defects (repellency or streaks). A case without the above-mentioned problem was determined as “A”, and when any one occurred, it was determined as “B”.
[Measurement of surface roughness]
The arithmetic average roughness Ra and the maximum protrusion height Rp were measured under the following conditions based on JIS B0601-1994.
Measuring device: Optical interference surface roughness meter “WYKO-1100” manufactured by Veeco
Measurement conditions: PSI mode, lens 50 magnification
[実施例1]
(帯電防止層の形成)
 水溶性の水酸基含有ポリエステル樹脂((B)成分)8.4質量部と、PEDOT-PSS((A)成分)0.5質量部とを、ジメチルスルホキシド15質量部及び水85質量部で希釈してなる希釈液A(中京油脂株式会社製、S-495:固形分8.2質量%)100質量部に対して、水溶性メチロールメラミン((C)成分)70質量部と水30質量部からなるメラミン化合物溶液(中京油脂株式会社製、P-795:固形分70.0質量%)を1.7質量部混合し、そこへさらに、水とIPAの混合溶媒(質量比1:1)を加えて、固形分0.6質量%となるように希釈して、熱硬化性樹脂組成物の塗工液を得た。
 この熱硬化性樹脂組成物の塗工液を、ポリエチレンテレフタレートフィルム(厚み31μm、塗工液が塗工される面の算術平均粗さRa10nm、最大突起高さRp80nm)からなる基材に、乾燥後の膜厚が15nmとなるように均一に塗工し、120℃で60秒乾燥させて、帯電防止層を形成した。
[Example 1]
(Formation of antistatic layer)
8.4 parts by mass of a water-soluble hydroxyl group-containing polyester resin (component (B)) and 0.5 parts by mass of PEDOT-PSS (component (A)) are diluted with 15 parts by mass of dimethyl sulfoxide and 85 parts by mass of water. From 100 parts by mass of dilution liquid A (manufactured by Chukyo Yushi Co., Ltd., S-495: solid content 8.2% by mass), 70 parts by mass of water-soluble methylol melamine (component (C)) and 30 parts by mass of water 1.7 parts by mass of a melamine compound solution (manufactured by Chukyo Yushi Co., Ltd., P-795: solid content: 70.0% by mass) is further mixed with a mixed solvent of water and IPA (mass ratio of 1: 1). In addition, it was diluted so as to have a solid content of 0.6% by mass to obtain a thermosetting resin composition coating solution.
After drying the coating liquid of this thermosetting resin composition on a base material comprising a polyethylene terephthalate film (thickness 31 μm, arithmetic average roughness Ra 10 nm of the surface on which the coating liquid is applied, maximum protrusion height Rp 80 nm) The film was uniformly coated to a thickness of 15 nm and dried at 120 ° C. for 60 seconds to form an antistatic layer.
(離型層の形成)
 両末端トリビニル変性直鎖状ポリオルガノシロキサン、分岐状ビニル変性オルガノシロキサンオリゴマー、および、ポリメチルハイドロジェンシロキサンの混合物(質量平均分子量:287000)を、固形分30質量%となるようにMEKで希釈した。この希釈液100質量部に対して、白金系触媒(信越化学工業株式会社製,PL-50T)2質量部を加え、MEKで固形分濃度が0.7質量%となるように調整し、付加反応型シリコーン樹脂組成物の塗工液を得た。
 得られた塗工液を、乾燥後の膜厚が坪量0.04g/m2となるように、帯電防止層の上にバーコート法により均一に塗布した後、130℃で1分間乾燥させて離型層を形成し、帯電防止層の上に離型層を積層した離型フィルムを得た。
(Formation of release layer)
A mixture of both ends trivinyl-modified linear polyorganosiloxane, branched vinyl-modified organosiloxane oligomer, and polymethylhydrogensiloxane (mass average molecular weight: 287000) was diluted with MEK so as to have a solid content of 30% by mass. . Add 2 parts by mass of a platinum-based catalyst (PL-50T, manufactured by Shin-Etsu Chemical Co., Ltd.) to 100 parts by mass of this diluted solution, and adjust the solid content concentration to 0.7% by mass with MEK. A coating liquid of a reactive silicone resin composition was obtained.
The obtained coating solution was uniformly applied on the antistatic layer by a bar coating method so that the film thickness after drying was 0.04 g / m 2, and then dried at 130 ° C. for 1 minute. Thus, a release layer was formed, and a release film having a release layer laminated on the antistatic layer was obtained.
[実施例2]
 水とIPAの混合溶媒(質量比1:1)の添加量を調整して、熱硬化性樹脂組成物の塗工液の固形分濃度を1.5質量%とし、帯電防止層の厚みが200nmとなるようにした以外は、実施例1と同様に実施した。
[Example 2]
The amount of the mixed solvent of water and IPA (mass ratio 1: 1) is adjusted so that the solid content concentration of the coating liquid of the thermosetting resin composition is 1.5% by mass, and the thickness of the antistatic layer is 200 nm. The same operation as in Example 1 was carried out except that
[実施例3]
 希釈液A100質量部に対する、メラミン化合物溶液の配合量を3.5質量部に変更した以外は、実施例1と同様に実施した。
[Example 3]
It implemented similarly to Example 1 except having changed the compounding quantity of the melamine compound solution with respect to 100 mass parts of dilution liquid A into 3.5 mass parts.
[実施例4]
 水とIPAの混合溶媒(質量比1:1)の添加量を調整して、熱硬化性樹脂組成物の塗工液の固形分濃度を1.5質量%とし、帯電防止層の厚みが200nmとなるようにした以外は、実施例3と同様に実施した。
[Example 4]
The amount of the mixed solvent of water and IPA (mass ratio 1: 1) is adjusted so that the solid content concentration of the coating liquid of the thermosetting resin composition is 1.5% by mass, and the thickness of the antistatic layer is 200 nm. Example 3 was carried out in the same manner as in Example 3 except that.
[実施例5]
 希釈液A100質量部に対する、メラミン化合物溶液の配合量を1.45質量部に変更した以外は、実施例1と同様に実施した。
[Example 5]
It implemented similarly to Example 1 except having changed the compounding quantity of the melamine compound solution with respect to 100 mass parts of dilution liquid A into 1.45 mass parts.
[実施例6]
(帯電防止層の形成)
 水溶性の水酸基含有ポリエステル樹脂((B)成分)8.4質量部と、PEDOT-PSS((A)成分)0.5質量部とを、ジメチルスルホキシド15質量部及び水85質量部で希釈してなる希釈液A(中京油脂株式会社製、S-495:固形分8.2質量%)100質量部に対して、水溶性メチロールメラミン((C)成分)70質量部と水30質量部からなるメラミン化合物溶液(中京油脂株式会社製、P-795:固形分70.0質量%)を1.7質量部混合し、そこへさらに、水とIPAの混合溶媒(質量比1:1)を加えて、固形分0.6質量%となるように希釈して、熱硬化性樹脂組成物の塗工液を得た。
 この熱硬化性樹脂組成物の塗工液を、ポリエチレンテレフタレートフィルム(厚み31μm、塗工液が塗工される面の算術平均粗さRa10nm、最大突起高さRp80nm)からなる基材に、乾燥後の膜厚が15nmとなるように均一に塗工し、120℃で60秒乾燥させて、帯電防止層を形成した。
[Example 6]
(Formation of antistatic layer)
8.4 parts by mass of a water-soluble hydroxyl group-containing polyester resin (component (B)) and 0.5 parts by mass of PEDOT-PSS (component (A)) are diluted with 15 parts by mass of dimethyl sulfoxide and 85 parts by mass of water. From 100 parts by mass of dilution liquid A (manufactured by Chukyo Yushi Co., Ltd., S-495: solid content 8.2% by mass), 70 parts by mass of water-soluble methylol melamine (component (C)) and 30 parts by mass of water 1.7 parts by mass of a melamine compound solution (manufactured by Chukyo Yushi Co., Ltd., P-795: solid content: 70.0% by mass) is further mixed with a mixed solvent of water and IPA (mass ratio of 1: 1). In addition, it was diluted so as to have a solid content of 0.6% by mass to obtain a thermosetting resin composition coating solution.
After drying the coating liquid of this thermosetting resin composition on a base material comprising a polyethylene terephthalate film (thickness 31 μm, arithmetic average roughness Ra 10 nm of the surface on which the coating liquid is applied, maximum protrusion height Rp 80 nm) The film was uniformly coated to a thickness of 15 nm and dried at 120 ° C. for 60 seconds to form an antistatic layer.
(離型層の形成)
 両末端トリビニル変性直鎖状ポリオルガノシロキサン、分岐状ビニル変性オルガノシロキサンオリゴマー、および、ポリメチルハイドロジェンシロキサンの混合物(質量平均分子量:287000)を、固形分30質量%となるようにMEKで希釈した。この希釈液100質量部に対して、白金系触媒(信越化学工業株式会社製,PL-50T)2質量部を加え、MEKで固形分濃度が0.7質量%となるように調整し、付加反応型シリコーン樹脂組成物の塗工液を得た。
 得られた塗工液を、乾燥後の膜厚が坪量0.04g/m2となるように、帯電防止層とは反対面のポリエチレンテレフタレートフィルムにバーコート法により均一に塗布した後、130℃で1分間乾燥させて離型層を形成し、帯電防止層と離型層が積層された離型フィルムを得た。
(Formation of release layer)
A mixture of both ends trivinyl-modified linear polyorganosiloxane, branched vinyl-modified organosiloxane oligomer, and polymethylhydrogensiloxane (mass average molecular weight: 287000) was diluted with MEK so as to have a solid content of 30% by mass. . Add 2 parts by mass of a platinum-based catalyst (PL-50T, manufactured by Shin-Etsu Chemical Co., Ltd.) to 100 parts by mass of this diluted solution, and adjust the solid content concentration to 0.7% by mass with MEK. A coating liquid of a reactive silicone resin composition was obtained.
The obtained coating liquid was uniformly applied to a polyethylene terephthalate film opposite to the antistatic layer by a bar coating method so that the film thickness after drying was 0.04 g / m 2, and then 130 A release layer was formed by drying at 0 ° C. for 1 minute to obtain a release film in which the antistatic layer and the release layer were laminated.
[比較例1]
 水とIPAの混合溶媒(質量比1:1)の添加量を調整して、熱硬化性樹脂組成物の塗工液の固形分濃度を0.5質量%とし、乾燥後の膜厚が10nmとなるように塗工した以外は、実施例1と同様に帯電防止層を形成した。その後、実施例1と同様に、帯電防止層の上に離型層を形成した。
[Comparative Example 1]
The addition amount of a mixed solvent of water and IPA (mass ratio 1: 1) is adjusted so that the solid content concentration of the coating liquid of the thermosetting resin composition is 0.5 mass%, and the film thickness after drying is 10 nm. An antistatic layer was formed in the same manner as in Example 1 except that coating was performed so that Thereafter, in the same manner as in Example 1, a release layer was formed on the antistatic layer.
[比較例2]
 水とIPAの混合溶媒(質量比1:1)の添加量を調整して、熱硬化性樹脂組成物の塗工液の固形分濃度を2.0質量%とし、乾燥後の膜厚が300nmとなるように塗工した以外は、実施例1と同様に帯電防止層を形成した。その後、実施例1と同様に、帯電防止層の上に離型層を形成した。
[Comparative Example 2]
The addition amount of a mixed solvent of water and IPA (mass ratio 1: 1) is adjusted so that the solid content concentration of the coating liquid of the thermosetting resin composition is 2.0 mass%, and the film thickness after drying is 300 nm. An antistatic layer was formed in the same manner as in Example 1 except that coating was performed so that Thereafter, in the same manner as in Example 1, a release layer was formed on the antistatic layer.
[比較例3]
 希釈液Aに、水とIPAの混合溶媒(質量比1:1)を加えて、固形分0.6質量%となるように希釈して樹脂組成物の塗工液を得た。この樹脂組成物は、メラミン化合物(C)を含有しておらず、熱硬化を有していないものである。樹脂組成物の塗工液を、実施例1と同様の基材に、乾燥後の膜厚が15nmとなるように均一に塗工し、120℃で60秒乾燥させて、帯電防止層を形成した。その後、実施例1と同様に、帯電防止層の上に離型層を形成した。
[Comparative Example 3]
A mixed solvent of water and IPA (mass ratio 1: 1) was added to the diluent A, and diluted to a solid content of 0.6% by mass to obtain a resin composition coating solution. This resin composition does not contain the melamine compound (C) and does not have thermosetting. The resin composition coating solution is uniformly applied to the same substrate as in Example 1 so that the film thickness after drying is 15 nm, and dried at 120 ° C. for 60 seconds to form an antistatic layer. did. Thereafter, in the same manner as in Example 1, a release layer was formed on the antistatic layer.
[比較例4]
 ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールトリアクリレート及びN-ビニルピロリドンを質量比で45:20:10の割合で含有するアクリル系モノマー混合物75質量部と、酢酸ブチル20質量部と、IPA30質量部とを含有するバインダー溶液125質量部に、PEDOT-PSSを1.3質量%の割合で含有する水溶液15.5質量部、及びα-ヒドロキシシクロヘキシルフェニルメタノン(光開始剤)0.2質量部を混合し、更にアクリル系モノマー混合物およびPEDOT-PSSの合計量が2.5質量%になるようにIPAで希釈して、光硬化型樹脂組成物の塗工液を得た。
 この光硬化型樹脂組成物の塗工液を実施例1と同様の基材に、乾燥後の膜厚が100nmとなるように均一に塗工し、70℃で60秒間乾燥させた後、紫外線を光量200mJ/cm2照射して帯電防止層を形成した。その後、実施例1と同様に、帯電防止層の上に離型層を形成した。
[Comparative Example 4]
75 parts by mass of an acrylic monomer mixture containing dipentaerythritol hexaacrylate, dipentaerythritol triacrylate and N-vinylpyrrolidone in a mass ratio of 45:20:10, 20 parts by mass of butyl acetate, and 30 parts by mass of IPA 15.5 parts by mass of an aqueous solution containing 1.3% by mass of PEDOT-PSS and 0.2 part by mass of α-hydroxycyclohexylphenylmethanone (photoinitiator) The mixture was further diluted with IPA so that the total amount of the acrylic monomer mixture and PEDOT-PSS was 2.5% by mass to obtain a coating solution of the photocurable resin composition.
The photocurable resin composition coating solution was applied uniformly to the same substrate as in Example 1 so that the film thickness after drying was 100 nm, dried at 70 ° C. for 60 seconds, and then irradiated with ultraviolet rays. Was irradiated with a light amount of 200 mJ / cm 2 to form an antistatic layer. Thereafter, in the same manner as in Example 1, a release layer was formed on the antistatic layer.
[比較例5]
 テトラエトキシシランの部分加水分解物(コルコート社製、N-103X)をIPAにて固形分0.6質量%になるように希釈して、樹脂塗工液にした。この樹脂塗工液を、乾燥後の膜厚が70nmとなるように、実施例1と同様の基材の上に均一に塗工し、120℃で60秒間乾燥させて、帯電防止層を形成した。その後、実施例1と同様に、帯電防止層の上に離型層を形成した。
[Comparative Example 5]
A partial hydrolyzate of tetraethoxysilane (manufactured by Colcoat, N-103X) was diluted with IPA to a solid content of 0.6% by mass to obtain a resin coating solution. This resin coating solution was applied uniformly on the same substrate as in Example 1 so that the film thickness after drying was 70 nm, and dried at 120 ° C. for 60 seconds to form an antistatic layer. did. Thereafter, in the same manner as in Example 1, a release layer was formed on the antistatic layer.
Figure JPOXMLDOC01-appb-T000001
※なお、表1において、(A)成分(PEDOT-PSS)の質量部は、(B)成分100質量部に対する質量部を示す。(C)成分(メラミン化合物)の質量部は、(A)成分と(B)成分の合計100質量部に対する質量部を示す。
Figure JPOXMLDOC01-appb-T000001
* In Table 1, the mass part of the component (A) (PEDOT-PSS) represents the mass part relative to 100 parts by mass of the component (B). (C) The mass part of a component (melamine compound) shows the mass part with respect to a total of 100 mass parts of (A) component and (B) component.
 以上の実施例1~5では、平滑な基材の上に、PEDOT-PSSを含む水性熱硬化性樹脂組成物によって、所定厚みの帯電防止層を形成することで、離型フィルムの帯電防止性能を良好にしつつ、帯電防止層の塗膜性、耐溶剤性、オーバーコート性を良好にすることができた。また、帯電防止層表面の平滑性が確保できたため、帯電防止層の上に形成した離型層の算術平均粗さRaや、最大突起高さRpが低くなり、離型層の平滑性が確保できた。さらに、実施例6は、基材の帯電防止層を設けた面とは反対側の面に離型層を設けたものであるが、各種性能を良好にすることができた。
 一方で、比較例1の離型フィルムは、帯電防止層が薄かったため、表面抵抗値が高く、十分な帯電防止性能を有することができず、耐溶剤性やオーバーコート性も不十分であった。また、比較例2では、帯電防止層が厚すぎたため、帯電防止層表面の平滑性が確保できず、離型層の表面粗さも大きくなった。
 さらに、比較例3、4では、樹脂組成物が、水性熱硬化性ではなかったため、耐溶剤性、オーバーコート性が不十分となり、また、(A)成分に凝集が生じて平滑性を十分に確保できなかった。また、比較例5の離型フィルムは、帯電防止層が(A)成分を含有しないものであり、帯電防止層の耐溶剤性及びオーバーコート性に劣るとともに、離型層の表面粗さが増大し平滑性を十分に確保できなかった。
In Examples 1 to 5 described above, the antistatic performance of the release film is formed by forming an antistatic layer having a predetermined thickness on a smooth substrate with an aqueous thermosetting resin composition containing PEDOT-PSS. The coating properties, solvent resistance, and overcoat properties of the antistatic layer could be improved. In addition, since the smoothness of the surface of the antistatic layer has been secured, the arithmetic average roughness Ra of the release layer formed on the antistatic layer and the maximum protrusion height Rp are lowered, and the smoothness of the release layer is ensured. did it. Furthermore, in Example 6, the release layer was provided on the surface opposite to the surface provided with the antistatic layer of the base material, but various performances could be improved.
On the other hand, since the release film of Comparative Example 1 had a thin antistatic layer, the surface resistance value was high, the antistatic performance could not be sufficient, and the solvent resistance and overcoat properties were insufficient. . In Comparative Example 2, since the antistatic layer was too thick, smoothness of the surface of the antistatic layer could not be ensured, and the surface roughness of the release layer was increased.
Further, in Comparative Examples 3 and 4, since the resin composition was not aqueous thermosetting, the solvent resistance and overcoat properties were insufficient, and the (A) component was agglomerated and the smoothness was sufficient. Could not secure. In addition, the release film of Comparative Example 5 is one in which the antistatic layer does not contain the component (A), which is inferior in the solvent resistance and overcoat property of the antistatic layer, and the surface roughness of the release layer is increased. However, sufficient smoothness could not be secured.
 10A,10B 離型フィルム
 11 基材
 11A 一方の面
 12 帯電防止層
 13 離型層
10A, 10B Release film 11 Base material 11A One side 12 Antistatic layer 13 Release layer

Claims (9)

  1.  基材と、前記基材の一方の面上に設けられた帯電防止層と、前記帯電防止層の上、又は前記基材の他方の面側に設けられた離型層とを備え、
     前記基材の一方の面は、算術平均粗さRaが15nm以下、最大突起高さRpが150nm以下であるとともに、
     前記帯電防止層が、ポリチオフェン系導電性高分子(A)を含む水性熱硬化性樹脂組成物を硬化してなるものであるとともに、前記帯電防止層の厚みが12~250nmである離型フィルム。
    A base material, an antistatic layer provided on one surface of the base material, and a release layer provided on the antistatic layer or on the other surface side of the base material,
    One surface of the substrate has an arithmetic average roughness Ra of 15 nm or less and a maximum protrusion height Rp of 150 nm or less,
    A release film in which the antistatic layer is obtained by curing an aqueous thermosetting resin composition containing a polythiophene-based conductive polymer (A), and the antistatic layer has a thickness of 12 to 250 nm.
  2.  前記離型層が、前記帯電防止層の上に設けられる請求項1に記載の離型フィルム。 The release film according to claim 1, wherein the release layer is provided on the antistatic layer.
  3.  前記離型層の算術平均粗さRaが10nm未満、最大突起高さRpが100nm未満である請求項1又は2に記載の離型フィルム。 3. The release film according to claim 1, wherein the release layer has an arithmetic average roughness Ra of less than 10 nm and a maximum protrusion height Rp of less than 100 nm.
  4.  前記水性熱硬化性樹脂組成物が、さらに水酸基含有ポリエステル樹脂(B)と、メラミン化合物(C)とを含む請求項1~3のいずれか1項に記載の離型フィルム。 The release film according to any one of claims 1 to 3, wherein the aqueous thermosetting resin composition further comprises a hydroxyl group-containing polyester resin (B) and a melamine compound (C).
  5.  前記水性熱硬化性樹脂組成物が、ポリチオフェン系導電性高分子(A)及び水酸基含有ポリエステル樹脂(B)の合計100質量部に対して、メラミン化合物(C)を8~35質量部含有する請求項4に記載の離型フィルム。 The aqueous thermosetting resin composition contains 8 to 35 parts by mass of the melamine compound (C) with respect to a total of 100 parts by mass of the polythiophene conductive polymer (A) and the hydroxyl group-containing polyester resin (B). Item 5. The release film according to Item 4.
  6.  前記水性熱硬化性樹脂組成物が、水酸基含有ポリエステル樹脂(B)100質量部に対して、ポリチオフェン系導電性高分子(A)を0.5~50質量部含有する請求項4又は5に記載の離型フィルム。 6. The aqueous thermosetting resin composition according to claim 4, wherein the polythiophene conductive polymer (A) is contained in an amount of 0.5 to 50 parts by mass with respect to 100 parts by mass of the hydroxyl group-containing polyester resin (B). Release film.
  7.  メラミン化合物(C)が、メチロールメラミンである請求項4~6のいずれか1項に記載の離型フィルム。 The release film according to any one of claims 4 to 6, wherein the melamine compound (C) is methylolmelamine.
  8.  前記ポリチオフェン系導電性高分子(A)が、ポリエチレンジオキシチオフェンとポリスチレンスルホネートの混合物である請求項1~7のいずれか1項に記載の離型フィルム。 The release film according to any one of claims 1 to 7, wherein the polythiophene-based conductive polymer (A) is a mixture of polyethylene dioxythiophene and polystyrene sulfonate.
  9.  セラミックグリーンシートの製造工程用に用いられる請求項1~8のいずれか1項に記載の離型フィルム。 The release film according to any one of claims 1 to 8, which is used for a production process of a ceramic green sheet.
PCT/JP2016/054453 2015-02-18 2016-02-16 Mold release film WO2016133092A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680009539.0A CN107249879A (en) 2015-02-18 2016-02-16 Mold release film
SG11201706672UA SG11201706672UA (en) 2015-02-18 2016-02-16 Mold release film
JP2017500691A JP6678933B2 (en) 2015-02-18 2016-02-16 Release film
KR1020177022663A KR102675215B1 (en) 2015-02-18 2016-02-16 release film
PH12017501469A PH12017501469A1 (en) 2015-02-18 2017-08-14 Mold release film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015029900 2015-02-18
JP2015-029900 2015-02-18

Publications (1)

Publication Number Publication Date
WO2016133092A1 true WO2016133092A1 (en) 2016-08-25

Family

ID=56689402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054453 WO2016133092A1 (en) 2015-02-18 2016-02-16 Mold release film

Country Status (7)

Country Link
JP (1) JP6678933B2 (en)
KR (1) KR102675215B1 (en)
CN (1) CN107249879A (en)
PH (1) PH12017501469A1 (en)
SG (1) SG11201706672UA (en)
TW (1) TWI702145B (en)
WO (1) WO2016133092A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159247A1 (en) * 2017-03-01 2018-09-07 東洋紡株式会社 Mold releasing film for manufacturing ceramic green sheet and method for manufacturing mold releasing film
WO2019128802A1 (en) * 2017-12-27 2019-07-04 东丽先端材料研究开发(中国)有限公司 Thin film material for thermosetting resin molding and use thereof
KR20220031910A (en) 2019-06-28 2022-03-14 도요보 가부시키가이샤 Release film for manufacturing ceramic green sheet
WO2023048103A1 (en) * 2021-09-24 2023-03-30 リンテック株式会社 Release sheet
WO2024018993A1 (en) * 2022-07-19 2024-01-25 東洋紡株式会社 Mold release film with antistatic layer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101993318B1 (en) * 2018-11-15 2019-09-27 최창근 Non-silicone process sheet including a anti-static primer layer and manufacturing thereof
CN112280085A (en) * 2020-09-24 2021-01-29 浙江日久新材料科技有限公司 Low-roughness MLCC functional release film capable of being used in tape casting and preparation method thereof
KR102648682B1 (en) * 2021-07-21 2024-03-15 도레이첨단소재 주식회사 Anti-static polyester release film
KR102601242B1 (en) * 2022-12-27 2023-11-14 이에프티솔루션주식회사 Functional nano composite release film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229027A (en) * 1997-02-14 1998-08-25 Teijin Ltd Carrier sheet for manufacturing ceramic capacitor
JP2003145685A (en) * 2001-11-07 2003-05-20 Toyobo Co Ltd Release film roll for manufacturing thin ceramic sheet
JP2006281572A (en) * 2005-03-31 2006-10-19 Lintec Corp Release film
JP2011201118A (en) * 2010-03-25 2011-10-13 Teijin Dupont Films Japan Ltd Release film
JP2012224011A (en) * 2011-04-21 2012-11-15 Lintec Corp Release film for ceramic green sheet manufacturing process
JP2014189007A (en) * 2013-03-28 2014-10-06 Lintec Corp Release film for green sheet production
JP2015066908A (en) * 2013-09-30 2015-04-13 リンテック株式会社 Release film for producing green sheet and method for producing release film for producing green sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3628303B2 (en) 2002-02-28 2005-03-09 ソニーケミカル株式会社 Release film with antistatic ability
KR100734760B1 (en) * 2005-11-18 2007-07-03 장관식 Antistatic releasable film and Antistatic adhesive releasable film using it and Method for production thereof
KR100718848B1 (en) * 2005-11-30 2007-05-17 도레이새한 주식회사 Anti-static polyester film
JP2009107329A (en) * 2007-10-10 2009-05-21 Jsr Corp Surface protective film
JP4949450B2 (en) 2009-10-09 2012-06-06 リンテック株式会社 Release film having antistatic properties
WO2016114256A1 (en) * 2015-01-16 2016-07-21 日東電工株式会社 Surface protection film, and optical member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229027A (en) * 1997-02-14 1998-08-25 Teijin Ltd Carrier sheet for manufacturing ceramic capacitor
JP2003145685A (en) * 2001-11-07 2003-05-20 Toyobo Co Ltd Release film roll for manufacturing thin ceramic sheet
JP2006281572A (en) * 2005-03-31 2006-10-19 Lintec Corp Release film
JP2011201118A (en) * 2010-03-25 2011-10-13 Teijin Dupont Films Japan Ltd Release film
JP2012224011A (en) * 2011-04-21 2012-11-15 Lintec Corp Release film for ceramic green sheet manufacturing process
JP2014189007A (en) * 2013-03-28 2014-10-06 Lintec Corp Release film for green sheet production
JP2015066908A (en) * 2013-09-30 2015-04-13 リンテック株式会社 Release film for producing green sheet and method for producing release film for producing green sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159247A1 (en) * 2017-03-01 2018-09-07 東洋紡株式会社 Mold releasing film for manufacturing ceramic green sheet and method for manufacturing mold releasing film
JP6409997B1 (en) * 2017-03-01 2018-10-24 東洋紡株式会社 Release film for producing ceramic green sheet and method for producing the same
CN110312602A (en) * 2017-03-01 2019-10-08 东洋纺株式会社 Ceramic green sheet release film for manufacture and its manufacturing method
CN110312602B (en) * 2017-03-01 2021-12-14 东洋纺株式会社 Release film for producing ceramic green sheet and method for producing same
WO2019128802A1 (en) * 2017-12-27 2019-07-04 东丽先端材料研究开发(中国)有限公司 Thin film material for thermosetting resin molding and use thereof
KR20220031910A (en) 2019-06-28 2022-03-14 도요보 가부시키가이샤 Release film for manufacturing ceramic green sheet
WO2023048103A1 (en) * 2021-09-24 2023-03-30 リンテック株式会社 Release sheet
WO2024018993A1 (en) * 2022-07-19 2024-01-25 東洋紡株式会社 Mold release film with antistatic layer

Also Published As

Publication number Publication date
JP6678933B2 (en) 2020-04-15
JPWO2016133092A1 (en) 2017-11-24
SG11201706672UA (en) 2017-09-28
CN107249879A (en) 2017-10-13
TWI702145B (en) 2020-08-21
KR102675215B1 (en) 2024-06-13
KR20170118730A (en) 2017-10-25
TW201634287A (en) 2016-10-01
PH12017501469A1 (en) 2018-01-15

Similar Documents

Publication Publication Date Title
WO2016133092A1 (en) Mold release film
JP5479740B2 (en) Process for producing polyester film exhibiting low heat shrinkage
JP5444707B2 (en) Method for producing antistatic polyester film, antistatic polyester film produced by the method, and use thereof
JP5162054B2 (en) Optical laminated polyester film
JP5428089B2 (en) Antistatic polyester film with improved coating appearance defect and method for producing the same
JP2007152930A (en) Anti-static polyester film
JP5048443B2 (en) Laminated polyester film for antireflection film
CN105555849B (en) Laminate film and its manufacturing method
JP2012159548A (en) Mold-release polyester film for polarizing plate
JP2010032609A (en) Polyester film for dry film photoresist
JP5281595B2 (en) Polyester film
WO2017200056A1 (en) Mold release film
JP2006281498A (en) Laminated polyester film
JP2011140562A (en) Polyester film
JP6039140B2 (en) Laminated polyester film
JP2012137567A (en) Release polyester film for polarizing plate
JP2012136612A (en) Polyester film for double-sided adhesive sheet having no substrate
JP6315940B2 (en) Water-based adhesive and coating obtained therefrom
JP2006281731A (en) Laminated film
JP2011042177A (en) Laminated polyester film
WO2015152193A1 (en) Anti-static polyester film and method for producing same
TW201412913A (en) Coating composition for adhesive polyester film with excellent surface smoothness and polyester film using same
JP4917344B2 (en) Antistatic multilayer film
JP2018058270A (en) Laminated polyester film
JP2016186072A (en) Antistatic polyester film, and production method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017500691

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177022663

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12017501469

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11201706672U

Country of ref document: SG

122 Ep: pct application non-entry in european phase

Ref document number: 16752478

Country of ref document: EP

Kind code of ref document: A1