JPS62230835A - Antistatic agent for synthetic polymer - Google Patents

Antistatic agent for synthetic polymer

Info

Publication number
JPS62230835A
JPS62230835A JP7536286A JP7536286A JPS62230835A JP S62230835 A JPS62230835 A JP S62230835A JP 7536286 A JP7536286 A JP 7536286A JP 7536286 A JP7536286 A JP 7536286A JP S62230835 A JPS62230835 A JP S62230835A
Authority
JP
Japan
Prior art keywords
antistatic agent
carbon atoms
synthetic polymer
phosphonium
antistatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7536286A
Other languages
Japanese (ja)
Other versions
JPH0129500B2 (en
Inventor
Masahito Sugiura
雅人 杉浦
Hideo Shimizu
清水 日出男
Shigeru Imamura
今村 繁
Fumitoshi Sugiura
文俊 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP7536286A priority Critical patent/JPS62230835A/en
Publication of JPS62230835A publication Critical patent/JPS62230835A/en
Publication of JPH0129500B2 publication Critical patent/JPH0129500B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide an antistatic agent for synthetic polymeric material, composed of a specific phosphonium sulfonate compound, having excellent antistaticity and heat-resistance and capable of imparting a polymer with antistaticity having low sensitivity to moisture. CONSTITUTION:The objective antistatic agent is composed of a compound of formula I (A is 4-18C alkyl, alkenyl, etc.; R<1>-R<4> are 1-18C hydrocarbon group or substituted 1-18C hydrocarbon group; preferably R<1>, R<2> and R<3> are same 1-8C aliphatic or aromatic univalent hydrocarbon groups) derived from a phosphonium sulfonate anion (e.g. butylsulfonate, octylsulfonate, etc.) and an organic phosphonium cation (e.g. tetramethyl phosphonium). The agent is compounded to a polymeric material or applied to the surface of the material e.g. by spraying at an amount of 0.1-10wt%.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は合成高分子材料用帯電防止剤に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to antistatic agents for synthetic polymeric materials.

合成高分子材料は通常、疎水性が犬きく、その結果とし
て帯電し易い特性を有し、かかる特性はこれらの材料の
製造工程やその製品使用上の大きな障害となっている0
本発明はこれらの障害を取シ除くための合成高分子材料
用帯電防止剤に関するものである0 〈従来の技術、その問題点〉 従来より、合成高分子材料の帯電を防ぐため、カーボン
や導電性金属床等の導電剤或いは界面活性剤等を用い、
それらを合成高分子材料へ練込み又はその表面へ塗布し
て、種々のトラブルを防ぐ試みがなされている0しかし
、導電剤によると、使用lが多く必要とされ、添加方法
が難しいこと、また透明なものが得にくいこと、更に導
電剤が高価であること等から一般的でなく、実際には使
用できる範囲がかなシ限定されてしまう。
Synthetic polymeric materials are usually highly hydrophobic and, as a result, have the property of being easily charged, and this property poses a major obstacle in the manufacturing process of these materials and in the use of their products.
The present invention relates to an antistatic agent for synthetic polymer materials to eliminate these obstacles. <Prior art and its problems> Conventionally, in order to prevent charging of synthetic polymer materials, carbon or conductive Using a conductive agent such as a conductive metal bed or a surfactant,
Attempts have been made to prevent various problems by kneading them into synthetic polymer materials or coating them on their surfaces. It is not common because it is difficult to obtain a transparent material and the conductive agent is expensive, and the range in which it can actually be used is quite limited.

対して界面活性剤を主とする帯電防止剤はその多くの種
類の中から適宜選定され、多くの場面に応用されている
。これらのうちで合成高分子材料に練込み使用する内部
添加型は塗布工程を別に必要とする塗布型に比べ加工工
程上の有利さをもつところから、多くの提案がある。し
かし、内部添加型帯電防止剤として用いられた場合、ア
ニオン界面活性剤は、相溶性が悪く、均一分散が難しか
ったシ、加熱時に分解劣化を生じたシして使用し難く、
第4級窒素を分子内に有するカチオン及び両性界面活性
剤は、帯電防止性は良好なるも、耐熱性が非常に悪く、
極く限定された範囲でしか使用できない。さらに非イオ
ン界面活性剤は、前記したイオン性界面活性剤に比べて
合成高分子材料への相溶性に優れるが、帯電防止性は弱
い傾向にあシ、シかもその効果は常温や高温で経時的に
消失しやすい欠点がある。一方、合成高分子材料の表面
へ使用する塗布型は、界面活性剤単独で、あるいはポリ
マーや潤滑剤その他の物質と共に用いられるが、この種
の従来の帯電防止剤は多くの不都合を有し、例えば低湿
下においては効果が充分に得られなかったシ、塗布後に
乾燥工程や延伸、熱セット、加熱成形等の工程で高温に
加熱されると効果が消失したシする。
On the other hand, antistatic agents mainly composed of surfactants are appropriately selected from among many types and are applied in many situations. Among these, many proposals have been made for the internal addition type, which is kneaded into synthetic polymer materials, because it has advantages in terms of processing steps compared to the coating type, which requires a separate coating process. However, when used as an internally added antistatic agent, anionic surfactants have poor compatibility, are difficult to disperse uniformly, and decompose and deteriorate when heated, making them difficult to use.
Cationic and amphoteric surfactants that have quaternary nitrogen in their molecules have good antistatic properties, but have very poor heat resistance.
It can only be used in a very limited range. Furthermore, although nonionic surfactants have better compatibility with synthetic polymer materials than the ionic surfactants mentioned above, they tend to have weaker antistatic properties and may lose their effectiveness over time at room or high temperatures. It has the disadvantage that it easily disappears. On the other hand, the coating type used on the surface of synthetic polymeric materials uses surfactants alone or together with polymers, lubricants, and other substances, but this type of conventional antistatic agent has many disadvantages. For example, the effect may not be sufficiently obtained under low humidity conditions, and the effect may disappear when heated to high temperatures in a drying process, stretching, heat setting, thermoforming, etc. after coating.

〈発明が解決しようとする問題点、その解決手段〉 本発明者らは、叙上の如き実情に鑑み、良好な帯電防止
性、耐熱性を有し、かつ湿度依存性の少ない帯電防止性
を付与することができる合成高分子材料用帯電防止剤を
得るべく鋭意研究した結果、特定のホスホニウムスルホ
ネート化合物が正しく好適であることを見い出し、本発
明に到達したものである。
<Problems to be Solved by the Invention and Means for Solving the Problems> In view of the above-mentioned circumstances, the present inventors have developed an antistatic property that has good antistatic properties, heat resistance, and is less dependent on humidity. As a result of intensive research in order to obtain an antistatic agent for synthetic polymer materials that can be applied, it was discovered that a specific phosphonium sulfonate compound is properly suitable, and the present invention was achieved.

すなわち本発明は、 下記一般式(I)で示されるホスホニウムスルホネート
を重要成分とすることを特徴とする合成高分子材料用帯
電防止剤に係る。
That is, the present invention relates to an antistatic agent for synthetic polymer materials, characterized in that it contains a phosphonium sulfonate represented by the following general formula (I) as an important component.

RZ   R4 〔但し、Aは、炭素数4〜18のアルキル基もしくはア
ルケニル基、フェニル基、炭素数1〜18のアルキル基
で置換したフェニル基、ナフチル基又は炭素数1〜18
のアルキル基で置換したナフチル基。R1−R4は、同
−又は異なる炭素数1〜18の炭化水素基又は置換基を
有する炭素数1〜18の炭化水素基。〕 一般式(I)で示されるホスホニウムスルホネートハ有
機スルホネートアニオンと有機ホスホニウムカチオンと
から成る。該有機スルホネートアニオンの具体例として
は、プチルスルホネ−)1,1クチルスルホネート、ラ
ウリルスルホネート、ミリスチルスルホネート、ヘキサ
デシルスルホネート、2−エチルへキシルスルホネート
等の脂肪族スルホネート類及びこれらの混合物、p−ト
シレート、ブチルフェニルスルホネート、ドデシルフ工
二/I/ スルホネート、オクタデシルスルホネート、
ジブチルフェニルスルホネート等の置換フェニルスルホ
ネート類、ナフチルスルホネート、ジイソプロピルナ7
チルスルホネート、ジブチルナフチルスルホネート等の
置換あるいは非置換ナフチルスルホネート類等が挙げら
れる。また前記有機ホスホニウムカチオンの具体例とし
ては、テトラメチルホスホニウム、テトラエチルホスホ
ニウム、テトラブチルホスホニウム、トリエチルメチル
ホスホニウム、トリブチルメチルホスホニウム、トリブ
チルエチルホスホニウム、トリオクチルメチルホスホニ
ウム、トリメチルブチルホスホニウム、トリメチルオク
チルホスホニウム、トリメチルラウリルホスホニウム、
トリメチルステアリルホスホニウム、トリエチルオクチ
ルホスホニウム、トリブチルオクチルホスホニウム等の
脂肪族ホスホニウム、トリフェニルメチルホスホニウム
、トリフェニルエチルホスホニウム、トリエチルベンジ
ルホスホニウム、トリブチルベンジルホスホニウム等の
芳香族ホスホニウム等が挙げられる。さらに、テトラメ
チロールホスホニウム、トリ(2−シアンエチル)メチ
ルホスホニウム、トリ(2−シアノエチを)エチルホス
ホニウム、トリ(2−シアンエチル)ベンジルホスホニ
ウム、トリ(3−ヒドロキシプロピル)メチルホスホニ
ウム、トリ(3−ヒドロキシプロピル)ベンジルホスホ
ニウム、トリメチル(2−ヒドロキシエチル)ホスホニ
ウム、トリブチル(2−ヒドロキシエチル)ホスホニウ
ム等の置換基を有するホスホニウムも使用できる。
RZ R4 [However, A is an alkyl group or alkenyl group having 4 to 18 carbon atoms, a phenyl group, a phenyl group substituted with an alkyl group having 1 to 18 carbon atoms, a naphthyl group, or a naphthyl group having 1 to 18 carbon atoms
Naphthyl group substituted with an alkyl group. R1-R4 are the same or different hydrocarbon groups having 1 to 18 carbon atoms, or hydrocarbon groups having 1 to 18 carbon atoms having a substituent. ] The phosphonium sulfonate represented by general formula (I) consists of an organic sulfonate anion and an organic phosphonium cation. Specific examples of the organic sulfonate anions include aliphatic sulfonates such as butylsulfone-1,1ctylsulfonate, laurylsulfonate, myristylsulfonate, hexadecylsulfonate, 2-ethylhexylsulfonate, and mixtures thereof, p-tosylate, Butylphenyl sulfonate, dodecyl phenyl sulfonate, octadecyl sulfonate,
Substituted phenyl sulfonates such as dibutylphenyl sulfonate, naphthylsulfonate, diisopropylna 7
Examples include substituted or unsubstituted naphthylsulfonates such as tylsulfonate and dibutylnaphthylsulfonate. Specific examples of the organic phosphonium cations include tetramethylphosphonium, tetraethylphosphonium, tetrabutylphosphonium, triethylmethylphosphonium, tributylmethylphosphonium, tributylethylphosphonium, trioctylmethylphosphonium, trimethylbutylphosphonium, trimethyloctylphosphonium, trimethyllaurylphosphonium. ,
Examples include aliphatic phosphoniums such as trimethylstearylphosphonium, triethyloctylphosphonium, and tributyloctylphosphonium, and aromatic phosphoniums such as triphenylmethylphosphonium, triphenylethylphosphonium, triethylbenzylphosphonium, and tributylbenzylphosphonium. Furthermore, tetramethylolphosphonium, tri(2-cyanoethyl)methylphosphonium, tri(2-cyanoethyl)ethylphosphonium, tri(2-cyanoethyl)benzylphosphonium, tri(3-hydroxypropyl)methylphosphonium, tri(3-cyanoethyl)methylphosphonium, Phosphoniums having substituents such as hydroxypropyl)benzylphosphonium, trimethyl(2-hydroxyethyl)phosphonium, and tributyl(2-hydroxyethyl)phosphonium can also be used.

本発明のホスホニウムスルホネートはこれら有機スルホ
ネートアニオンと有機ホスホニウムカチオンとの任意の
組合せによ多構成されるが本発明はこれら具体例に限定
されるものではない。
The phosphonium sulfonate of the present invention is composed of various combinations of these organic sulfonate anions and organic phosphonium cations, but the present invention is not limited to these specific examples.

一般式(■)で示されるホスホニウムスルホネートを重
要成分とする本発明の帯電防止剤を用い、その帯電防止
性及び耐熱性の良さを利用して、合成高分子材料に好ま
しい帯電防止性を付与する方法は種々の手段が可能であ
る。
Using the antistatic agent of the present invention containing phosphonium sulfonate represented by the general formula (■) as an important component, and utilizing its good antistatic properties and heat resistance, desirable antistatic properties are imparted to synthetic polymer materials. Various methods are possible.

その一つは合成高分子材料に内部添加して好ましい帯電
防止性を付与する方法である。この方法においてはポリ
マー製造時あるいは、加工時に添加剤を直接に、又は前
もって添加剤を高濃度に含有するマスターチップの形と
しておいて添加混合することが通常行なわれ、本発明の
場合もこれら常法を用いて実施できる。例えばポリエチ
レン、ポリプロピレン、ポリスチレン等のポリオレフィ
ン、ポリメチルメタクリレート、ポリカーボネート、ポ
リエチレンテレフタレート、ポリブチレンテレフタレー
ト、ポリカプロラクタム等の熱可塑性樹脂では加工時に
直接又はマスターチップで添加混合することができ、ポ
リメチルメタクリレートのキャスト成形時あるいはポリ
エチレンテレフタレート等の重合工程の重合前や重合途
中で添加したシすることも有利に実施できる。これら内
部添加法によシ好ましい結果を得るには通常、成形物に
対して本発明の帯電防止剤を0.1〜10重量−の範囲
で用いるのが良く、よシ好ましくは0.3〜5重量%で
ある。本発明の帯電防止剤は従来のアニオン、カチオン
、両性等のイオン性界面活性剤あるいはノニオン界面活
性剤に比べて、よシ侵れた耐熱性を有し、なかでも炭化
水素基が他の置換基を有しないホスホニウムにおいては
特に耐熱性に優れるため、ポリカーボネート、ポリエチ
レンテレフタレート等の加工温度がよシ高い高分子材料
に適用した場合に一層その好ましい特性が発揮される。
One method is to add it internally to a synthetic polymer material to impart desirable antistatic properties. In this method, additives are usually added and mixed during polymer production or processing, either directly or in advance in the form of a master chip containing a high concentration of additives. It can be implemented using the law. For example, thermoplastic resins such as polyolefins such as polyethylene, polypropylene, and polystyrene, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, and polycaprolactam can be added and mixed directly during processing or with a master chip; It can also be advantageously added during molding or before or during the polymerization of polyethylene terephthalate or the like. In order to obtain preferable results using these internal addition methods, it is usually best to use the antistatic agent of the present invention in the molded product in an amount of 0.1 to 10% by weight, preferably 0.3 to 10% by weight. It is 5% by weight. The antistatic agent of the present invention has better heat resistance than conventional anionic, cationic, amphoteric, etc. ionic surfactants or nonionic surfactants, especially when hydrocarbon groups are substituted with other Since phosphonium having no group has particularly excellent heat resistance, its preferable properties are exhibited even more when applied to polymeric materials such as polycarbonate and polyethylene terephthalate, which require high processing temperatures.

合成高分子材料に帯電防止性を付与するもう一つの方法
は、本発明の帯電防止剤を単独で、あるいは他の物質と
共にその表面に付与する方法がある。付与する手段とし
ては本発明の帯電防止剤を含有する溶液、分散液、乳化
液を浸漬法、スプレー法、ローラーコート法、グラビア
コート法等各種の手段で実施することが可能であシ、更
には必要に応じて被処理面をコロナ処理、プラズマ処理
等の物理処理、あるいはアンカーコート剤の塗布等の化
学処理を行なってから塗布してもよい。また帯電防止性
を付与する主目的として帯電防止剤のみを含む液で塗布
することももちろん可能であるが、他の目的で用いる処
理液に添加して共に処理することによシ、帯電防止性も
同時に付与することも有用である。例えば、ポリマーを
主体として表面特性の改良を行なおうとする技術分野、
即ち表面に接着性、印刷適性、ガスバリア性、耐水蒸気
透過性、硬度等を付与するためのコート剤を付与するに
際し、これらの剤と併用塗布して良好な帯電防止性を付
与することができる。これらは主体として、アクリル重
合体、ビニル重合体、塩化ビニリデン重合体、ポリエス
テル等の有機ポリマー及びシリカゾル、アルミナゾル等
の皮膜形成性無機物を含有するのが一般的であυ、塗布
された後に表面に膜状となって機能を発揮するものであ
るが、この塗膜に本発明の帯電防止剤を用いて良好な効
果が得られる。同様な用い方の例としてインク、塗料、
磁性塗料の例、柔軟仕上、防汚仕上等の繊維処理の例、
その他多くの応用例が可能である。表面に付与する別の
例として、潤滑成分の如き低分子有機物との併用系で用
いる例も可能である。例えば、潤滑剤としての合成エス
テル、鉱物油、ポリエーテル等と共に、あるいは滑剤と
してのアルキルホスフェート塩等と共に用い、繊維製造
工程で用いることのできる繊維処理用油剤の一成分とし
ても有用であり、これによって工程中での静電気障害を
防ぐことが可能である。これら合成高分子材料の表面に
糧々の手段で本発明の帯電防止剤を適用することによシ
、その良好な耐熱特性によって、例えば塗布後に延伸工
程で加熱されるようなフィルム、繊維等の工程内におい
ても効果を失なうことなく良好な結果を得ることができ
、併せて従来のものに比べて温度依存性の少ないよシ安
定した好効果を得ることができる。
Another method for imparting antistatic properties to synthetic polymeric materials is to apply the antistatic agent of the present invention alone or together with other substances to the surface thereof. The application can be carried out by various methods such as dipping, spraying, roller coating, gravure coating, etc. using a solution, dispersion, or emulsion containing the antistatic agent of the present invention. If necessary, the surface to be treated may be subjected to physical treatment such as corona treatment or plasma treatment, or chemical treatment such as application of an anchor coating agent before coating. It is of course possible to apply with a solution containing only an antistatic agent for the main purpose of imparting antistatic properties, but it is also possible to apply antistatic properties by adding it to a processing solution used for other purposes and processing it together. It is also useful to add them at the same time. For example, technical fields that aim to improve surface properties mainly using polymers,
That is, when applying a coating agent to impart adhesion, printability, gas barrier properties, water vapor permeability resistance, hardness, etc. to the surface, it can be applied in combination with these agents to impart good antistatic properties. . These generally contain organic polymers such as acrylic polymers, vinyl polymers, vinylidene chloride polymers, and polyesters, and film-forming inorganic substances such as silica sol and alumina sol. Although it functions in the form of a film, good effects can be obtained by using the antistatic agent of the present invention in this coating film. Examples of similar uses include ink, paint,
Examples of magnetic paints, examples of fiber treatments such as flexible finishes and antifouling finishes,
Many other applications are possible. As another example of applying it to the surface, it is also possible to use it in combination with a low-molecular organic substance such as a lubricating component. For example, it is useful as a component of a fiber processing oil that can be used in the fiber manufacturing process by being used with synthetic esters, mineral oils, polyethers, etc. as lubricants, or with alkyl phosphate salts, etc. as lubricants. It is possible to prevent static electricity damage during the process. By applying the antistatic agent of the present invention to the surface of these synthetic polymeric materials, its good heat-resistant properties make it possible to apply the antistatic agent of the present invention to the surface of these synthetic polymeric materials. It is possible to obtain good results without losing the effect even during the process, and at the same time, it is possible to obtain a more stable and good effect with less temperature dependence than conventional products.

以下、本発明の構成及び効果をよシ具体的にするため実
施例等を挙げるが、本発明はこれらの実施例に限定され
るものではない。
Examples will be given below to make the structure and effects of the present invention more concrete, but the present invention is not limited to these Examples.

〈実施例等〉 ・試験区分1−1(実施例) 表−1中に記載した本発明の帯電防止剤a % fを使
い、ラボプラストミル(東洋精機社製)を用いて、ポリ
メチルメタクリレート、ポリカーボネート、ポリエチレ
ンに所定量混練した0得られた樹脂組成物を東洋精機社
製ホットプレスにて各々所定温度で成型し、厚さ211
IIのシートを作製した。
<Examples, etc.> ・Test Category 1-1 (Example) Using the antistatic agent a% f of the present invention listed in Table 1, polymethyl methacrylate was , polycarbonate, and polyethylene in a predetermined amount, and the obtained resin composition was molded at a predetermined temperature using a hot press made by Toyo Seiki Co., Ltd. to a thickness of 211 mm.
A sheet II was produced.

各シートにつき外観をチェックし、ブランクと比較した
後に、20℃×65%RHの恒温恒湿室に一夜放置後、
同雰囲気下にて超絶縁抵抗計(SM−5E型、東亜電波
工業社製)によシ表面抵抗を測定した。結果を表−1に
示した。
After checking the appearance of each sheet and comparing it with the blank, leave it in a constant temperature and humidity room at 20℃ x 65%RH overnight.
The surface resistance was measured under the same atmosphere using a super insulation resistance meter (Model SM-5E, manufactured by Toa Denpa Kogyo Co., Ltd.). The results are shown in Table-1.

・試験区分1−2(比較例) 表−2中に記載した従来の帯電防止剤を使い、試験区分
1−1と同様の実験を行ない、同様の比較及び測定をし
た。結果を表−2中に示した。
- Test Category 1-2 (Comparative Example) Using the conventional antistatic agents listed in Table 2, the same experiment as in Test Category 1-1 was conducted, and the same comparisons and measurements were made. The results are shown in Table-2.

(C3H7)2 φは0.PMMAはポリメチルメタクリレート、pcは
ポリカーボネート、PEはポリエチレン。
(C3H7)2 φ is 0. PMMA is polymethyl methacrylate, PC is polycarbonate, and PE is polyethylene.

混線条件は、PMMAの場合に130℃X5分、pcの
場合に260℃×5分、PEの場合に150℃×5分。
The crosstalk conditions were 130°C x 5 minutes for PMMA, 260°C x 5 minutes for PC, and 150°C x 5 minutes for PE.

A、R’〜R4は一般式(I)中の各記号に相当。A, R' to R4 correspond to each symbol in general formula (I).

これらは以下同じ。These are the same below.

・試験区分2(実施例、比較例〕 表−3中に記載した帯電防止剤の0.5係水溶液を作製
し、この中にポリエチレンのシート又はポリエステルの
シートを浸漬した。次いで、80℃×5分乾燥した後に
20℃x30%RHで1夜調湿し、実施例1と同様に表
面抵抗を測定した。そして更に、150℃XIO分で熱
処理し、20℃X65%で1夜調湿してから、効果の耐
熱性をみた。結果を表−3に示した。
・Test Category 2 (Example, Comparative Example) A 0.5 aqueous solution of the antistatic agent listed in Table 3 was prepared, and a polyethylene sheet or a polyester sheet was immersed in it. Then, it was heated at 80°C After drying for 5 minutes, the humidity was conditioned overnight at 20°C x 30% RH, and the surface resistance was measured in the same manner as in Example 1.Then, it was further heat treated at 150°C x IO minutes, and the humidity was conditioned overnight at 20°C x 65%. After that, the heat resistance of the effect was examined.The results are shown in Table 3.

・試験区分3(実施例、比較例) 塩化ビニリデンラテ・ノクス又はポリエステル水分散液
(テレフタル酸/イソフタル酸/エチレンクリコール/
ネオペンチルグリコール15−スルホイソフタル酸共重
合物)を用い、ポリマーに対して表−4中に記載の量の
帯電防止剤を添加した後、これを5俤に希釈し、ポリエ
ステルフィルム表面にバーコーターを用い塗布した。8
0℃×5分乾燥後、20℃×30%RHで1夜調湿し、
コート面の観察及び実施例1と同様の方法にて表面抵抗
を測定した。結果を表−4に示しだ。
・Test Category 3 (Example, Comparative Example) Vinylidene chloride latte Nox or polyester aqueous dispersion (terephthalic acid/isophthalic acid/ethylene glycol/
Neopentyl glycol 15-sulfoisophthalic acid copolymer) was added to the polymer in the amount of antistatic agent listed in Table 4, diluted to 5 ml, and coated on the surface of the polyester film with a bar coater. It was applied using. 8
After drying at 0°C for 5 minutes, the humidity was controlled overnight at 20°C and 30% RH.
The coated surface was observed and the surface resistance was measured in the same manner as in Example 1. The results are shown in Table 4.

・試験区分4(実施例、比較例) 表−5に記載した各側の油剤をそれぞれ配合調整した。・Test Category 4 (Example, Comparative Example) The oils for each side listed in Table 5 were mixed and adjusted.

これらの各油剤の15重量%エマルジョンを用い、あら
かじめシクロヘキサンで脱脂し乾燥した市販のポリエス
テルフィラメント(76デ二−ル×36フイラメント)
にオイリングローラ−にて給油し、油剤を0.6重量%
付着させた。各試料を25℃x6s%RHの雰囲気下で
μmメーター(エイコー測器社製)を用い、初張力20
fで、220℃×501長の接触型ヒーター2本、次い
でクロムメッキ梨地摩擦体(接触角90度)の順に30
0 m1分の速度で走行させ、摩擦体通過直後の糸条の
帯電圧を測定し、帯電防止効果をみた。結果を表−5に
示した。
Using a 15% by weight emulsion of each of these oils, commercially available polyester filaments (76 denier x 36 filaments) were degreased with cyclohexane and dried.
Lubricate with an oiling roller and add 0.6% by weight of oil.
Attached. Using a μm meter (manufactured by Eiko Sokki Co., Ltd.) in an atmosphere of 25°C x 6s% RH, each sample was measured at an initial tension of 20
f, two contact type heaters of 220℃ x 501 length, then chrome-plated satin friction body (contact angle 90 degrees), 30℃
The yarn was run at a speed of 0.0 m/min, and the charged voltage of the yarn immediately after passing through the friction body was measured to examine the antistatic effect. The results are shown in Table-5.

注)a、b、(!l gは表−1〜表−3と同じ。Note) a, b, (!l g) are the same as Tables 1 to 3.

A−1: トリメチロールプロパン(PO/EO=15
/g5)ランダム付加物、MW =3000 A−2;ブタノール(PO/EO=  60/40)ラ
ンダム付加物、MW= 1700 A−3;2−エチルへキシルステアレートN−1:PO
E(6)ノニルフェニルエーテルB−1:Fog(4)
オクチルホスフェートKB−2;インステアリン酸トリ
エタノールアミン B−3;アルキルスルホネートNa 〈発明の効果〉 各表の結果からも明らかなように、以上説明した本発明
には、良好な耐熱性を有し且つ湿度依存性が少ないとい
う特性を備えて合成高分子材料へ優れた帯電防止性を付
与することができる効果がある。
A-1: Trimethylolpropane (PO/EO=15
/g5) Random adduct, MW = 3000 A-2; Butanol (PO/EO = 60/40) Random adduct, MW = 1700 A-3; 2-ethylhexyl stearate N-1: PO
E(6) Nonylphenyl ether B-1: Fog(4)
Octyl phosphate KB-2; triethanolamine instearate B-3; alkyl sulfonate Na <Effects of the invention> As is clear from the results in each table, the present invention described above has good heat resistance. In addition, it has the property of having little humidity dependence, and has the effect of imparting excellent antistatic properties to synthetic polymer materials.

Claims (1)

【特許請求の範囲】 1 下記一般式( I )で示されるホスホニウムスルホ
ネートを重要成分とすることを特徴とする合成高分子材
料用帯電防止剤。 ▲数式、化学式、表等があります▼( I ) 〔但し、Aは、炭素数4〜18のアルキル基もしくはア
ルケニル基、フェニル基、炭素数1〜18のアルキル基
で置換したフェニル基、ナフチル基又は炭素数1〜18
のアルキル基で置換したナフチル基。R^1〜R^4は
、同一又は異なる炭素数1〜18の炭化水素基又は置換
基を有する炭素数1〜18の炭化水素基。〕 2 一般式( I )のR^1、R^2、R^3が同一で
且つ炭素数1〜8の脂肪族又は芳香族一価炭化水素基で
ある特許請求の範囲第1項記載の合成高分子材料用帯電
防止剤。
[Claims] 1. An antistatic agent for synthetic polymer materials, characterized in that it contains a phosphonium sulfonate represented by the following general formula (I) as an important component. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (I) [However, A is an alkyl group or alkenyl group having 4 to 18 carbon atoms, a phenyl group, a phenyl group substituted with an alkyl group having 1 to 18 carbon atoms, or a naphthyl group. or carbon number 1-18
Naphthyl group substituted with an alkyl group. R^1 to R^4 are the same or different hydrocarbon groups having 1 to 18 carbon atoms, or hydrocarbon groups having 1 to 18 carbon atoms having a substituent. 2. The compound according to claim 1, wherein R^1, R^2, and R^3 of the general formula (I) are the same and are aliphatic or aromatic monovalent hydrocarbon groups having 1 to 8 carbon atoms. Antistatic agent for synthetic polymer materials.
JP7536286A 1986-03-31 1986-03-31 Antistatic agent for synthetic polymer Granted JPS62230835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7536286A JPS62230835A (en) 1986-03-31 1986-03-31 Antistatic agent for synthetic polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7536286A JPS62230835A (en) 1986-03-31 1986-03-31 Antistatic agent for synthetic polymer

Publications (2)

Publication Number Publication Date
JPS62230835A true JPS62230835A (en) 1987-10-09
JPH0129500B2 JPH0129500B2 (en) 1989-06-12

Family

ID=13574032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7536286A Granted JPS62230835A (en) 1986-03-31 1986-03-31 Antistatic agent for synthetic polymer

Country Status (1)

Country Link
JP (1) JPS62230835A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943380A (en) * 1987-09-18 1990-07-24 Takemoto Yushi Kabushiki Kaisha Antistatic resin composition with transparency containing phosphonium sulphonate
WO1990008171A1 (en) * 1989-01-10 1990-07-26 Teijin Limited Aromatic polyester film and production thereof
EP0382957A1 (en) * 1989-02-15 1990-08-22 Takemoto Yushi Kabushiki Kaisha Antistatic resin composition with transparency
US5449709A (en) * 1993-07-02 1995-09-12 Mitsubishi Gas Chemical Company, Inc. Resin composition for lens based materials
US5486555A (en) * 1993-08-26 1996-01-23 Teijin Limited Process for production of stabilized polycarbonate
US5849822A (en) * 1995-08-17 1998-12-15 Teijin Limited Thermoplastic resin composition superior in transparency and antistatic property
US6268030B1 (en) 1997-04-04 2001-07-31 Teijin Limited Silicon wafer carrier
US6355716B1 (en) 1996-01-11 2002-03-12 Teijin Limited Silicon wafer carrier
US6914092B1 (en) 1999-08-16 2005-07-05 Bayer Aktiengesellschaft Antistatic agent
JP2011219542A (en) * 2010-04-06 2011-11-04 Adeka Corp Antistatic agent for polycarbonate resin, and polycarbonate resin composition
KR20180037214A (en) 2015-08-05 2018-04-11 리켄 테크노스 가부시키가이샤 Antistatic resin composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943380A (en) * 1987-09-18 1990-07-24 Takemoto Yushi Kabushiki Kaisha Antistatic resin composition with transparency containing phosphonium sulphonate
WO1990008171A1 (en) * 1989-01-10 1990-07-26 Teijin Limited Aromatic polyester film and production thereof
US5188774A (en) * 1989-01-10 1993-02-23 Teijin Limited Aromatic polyester film and process for producing the same
EP0382957A1 (en) * 1989-02-15 1990-08-22 Takemoto Yushi Kabushiki Kaisha Antistatic resin composition with transparency
US5494952A (en) * 1993-01-29 1996-02-27 Teijin Limited Process for production of stabilized polycarbonate
US5449709A (en) * 1993-07-02 1995-09-12 Mitsubishi Gas Chemical Company, Inc. Resin composition for lens based materials
US5486555A (en) * 1993-08-26 1996-01-23 Teijin Limited Process for production of stabilized polycarbonate
US5668202A (en) * 1993-08-26 1997-09-16 Teijin Limited Process for production of stabilized polycarbonate
US5849822A (en) * 1995-08-17 1998-12-15 Teijin Limited Thermoplastic resin composition superior in transparency and antistatic property
US6355716B1 (en) 1996-01-11 2002-03-12 Teijin Limited Silicon wafer carrier
US6268030B1 (en) 1997-04-04 2001-07-31 Teijin Limited Silicon wafer carrier
US6914092B1 (en) 1999-08-16 2005-07-05 Bayer Aktiengesellschaft Antistatic agent
JP2011219542A (en) * 2010-04-06 2011-11-04 Adeka Corp Antistatic agent for polycarbonate resin, and polycarbonate resin composition
KR20180037214A (en) 2015-08-05 2018-04-11 리켄 테크노스 가부시키가이샤 Antistatic resin composition

Also Published As

Publication number Publication date
JPH0129500B2 (en) 1989-06-12

Similar Documents

Publication Publication Date Title
JPS62230835A (en) Antistatic agent for synthetic polymer
Ortelli et al. Coatings made of proteins adsorbed on TiO 2 nanoparticles: A new flame retardant approach for cotton fabrics
DE69410628T2 (en) WATER-SOLUBLE ORGANOSILOXANE COMPOUNDS
US3671504A (en) Method for electrostatically coating synthetic resin moldings
US3364192A (en) Antistatic polymer compositions containing ammonium phosphates
BR0100808B1 (en) peelable coating composition, and process of preparing a peelable coating.
JPH02232279A (en) Melamine/formaldehyde antitack agent having low free formaldehyde content, and method of using it
JPH02274763A (en) Antibacterial silicone particle
CN110483898A (en) A kind of resistance to precipitation halogen-free flame retardants of high fluidity and its preparation method and application
US3888809A (en) Paint containing pullulan
JP2767772B2 (en) Antistatic agent for synthetic polymer materials
AU2012325224A1 (en) Use of antistats in interior coating compositions
US5514222A (en) Method for controlling asbestos dust
EP0309622A1 (en) Method for reducing build up of electrostatic charges on transparent synthetic macromolecular materials selected from polymethyl methycrylate or polycarbonate
JP2527697B2 (en) Antistatic agent for synthetic polymer materials
BRPI0711744A2 (en) water dilutable concentrates for coating different substrates
MXPA01010902A (en) Antistatic agents and resin compositions incorporated therein.
JPH0445533B2 (en)
JP7177634B2 (en) Coating composition, coating film and article
US2640817A (en) Antistatic coating for plastics
US3280059A (en) Latex paints containing zirconyl salts of monocarboxylic acids
US3629177A (en) Process for preparing an aqueous solution of a polyvinyl alcohol-formaldehyde-urea polymer for use in wood finishing compositions
Ansari et al. Shellac‐acrylic emulsion paint for cementations surfaces
US3457100A (en) Process for increasing the scuffresistance of paperboard
JPS6291232A (en) Agent for improving flowability

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term