JPH0789720A - Coating liquid for colored film forming, colored film, colored antistatic film and colored low reflective antistatic film - Google Patents

Coating liquid for colored film forming, colored film, colored antistatic film and colored low reflective antistatic film

Info

Publication number
JPH0789720A
JPH0789720A JP5217209A JP21720993A JPH0789720A JP H0789720 A JPH0789720 A JP H0789720A JP 5217209 A JP5217209 A JP 5217209A JP 21720993 A JP21720993 A JP 21720993A JP H0789720 A JPH0789720 A JP H0789720A
Authority
JP
Japan
Prior art keywords
film
colored
acid salt
solution
organic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5217209A
Other languages
Japanese (ja)
Inventor
Kazuya Hiratsuka
和也 平塚
Yasuhiro Sanada
恭宏 真田
Keisuke Abe
啓介 阿部
Keiko Ohashi
恵子 大橋
Takeshi Kawasato
健 河里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP5217209A priority Critical patent/JPH0789720A/en
Publication of JPH0789720A publication Critical patent/JPH0789720A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a low reflectivity and an antistatic characteristics and to produce inexpensively and in good productivity the coating liq. for color film forming by incorporating titanium oxide nitride and Sn org. acid salt and/or Co org. acid salt. CONSTITUTION:The compound product (A) is obtained by compounding the titanium oxide nitride such as TiOx (1.0<=x<2.0) containing 0.1-30wt.% N, the Sn org. acid salt such as stannous naphthenate and/or Co org. acid salt, the hydrolyzed product of the compd. of the formula (m+n=4, m is 1-4, n is 0-3, R and R' are 1-4C alkyl) and beta-diketone. Then, the coating liq. for colored film forming (B) is produced by incorporating >=1 kind selected from the group consisting of propylene glycol ether (deriv.) and propylene glycol then acetate (deriv.), >=1 kind selected among methanol and ethanol, etc., and diacetone alcohol to the component (A). Moreover, the coating liq. for colored film forming is prepared by adding the conductive oxide such as Sn, In and Sb to the component (B).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は陰極線管用パネル等に適
用される着色膜形成用塗布液、着色膜、着色帯電防止膜
および着色低反射帯電防止膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating solution for forming a colored film, a colored film, a colored antistatic film and a colored low reflection antistatic film applied to a panel for a cathode ray tube.

【0002】[0002]

【従来の技術】帯電防止膜、着色膜、着色帯電防止膜、
低反射帯電防止膜、着色低反射帯電防止膜のコーティン
グ方法は従来より光学機器においてはいうまでもなく、
民生用機器特にTV、コンピューター端末の陰極線管
(CRT)に関し多くの検討がなされてきた。
2. Description of the Related Art Antistatic films, colored films, colored antistatic films,
It goes without saying that the coating method of the low-reflection antistatic film and the colored low-reflection antistatic film is more conventional in optical equipment than before.
Much consideration has been given to consumer equipment, especially cathode ray tubes (CRTs) for TVs and computer terminals.

【0003】帯電防止に関しては、例えば特開昭63−
76247号にはブラウン管パネル表面を350℃程度
に加熱してCVD法により酸化スズおよび酸化インジウ
ム等の導電性酸化物層を設ける方法が提案されている。
With respect to antistatic, for example, Japanese Patent Laid-Open No. 63-
No. 76247 proposes a method in which the surface of a cathode ray tube panel is heated to about 350 ° C. and a conductive oxide layer such as tin oxide and indium oxide is provided by a CVD method.

【0004】膜の着色に関しては、特開平1−2756
64号に水溶性フタロシアニン化合物を用いる方法が提
案されている。帯電防止性能をもつ着色膜については特
開平1−251545号にメチルバイオレットを用いた
帯電防止膜の記載がある。
Regarding the coloring of the film, Japanese Patent Laid-Open No. 1-2756
No. 64 proposes a method using a water-soluble phthalocyanine compound. Regarding the colored film having antistatic performance, JP-A-1-251545 describes an antistatic film using methyl violet.

【0005】低反射性に関しては例えば特開昭61−1
18931号記載の如くブラウン管表面に防眩効果をも
たせるため、表面に微細な凹凸を有するSiO2 層を付
着させたり、弗酸により表面をエッチングして凹凸を設
ける等の方法が採られてきた。しかし、これらの方法
は、外部光を散乱させるノングレア処理と呼ばれ、本質
的に低反射層を設ける方法ではないため、反射率の低減
には限界があり、またブラウン管等においては解像度を
低下させる原因ともなっていた。
Regarding low reflectivity, for example, Japanese Patent Laid-Open No. 61-1
In order to provide an antiglare effect on the surface of the cathode ray tube as described in No. 18931, methods such as adhering a SiO 2 layer having fine irregularities on the surface or providing irregularities by etching the surface with hydrofluoric acid have been adopted. However, these methods are called non-glare processing that scatters external light and is not a method of providing a low reflection layer by nature, so there is a limit to the reduction of reflectance, and resolution is reduced in cathode ray tubes and the like. It was also the cause.

【0006】低反射帯電防止膜については、特開平3−
93136号にイオンプレーティング法による光学多層
膜を設ける方法が記載されている。
A low-reflection antistatic film is disclosed in JP-A-3-
No. 93136 describes a method of providing an optical multilayer film by an ion plating method.

【0007】[0007]

【発明が解決しようとする課題】上述の方法のうち、C
VD法による帯電防止膜を付与させる手法は、装置コス
トがかかることに加えてブラウン管表面を高温に加熱す
るためブラウン管内の蛍光体の脱落を生じたり、寸法精
度が低下する等の問題があった。またこの場合通常40
0℃程度の高温を必要とし、低温で焼成した場合充分低
抵抗な膜が得られない欠点があった。
Among the above methods, C
The method of applying the antistatic film by the VD method has a problem that the cost of the apparatus is high and that the phosphor in the cathode ray tube is dropped or the dimensional accuracy is lowered because the surface of the cathode ray tube is heated to a high temperature. . Also in this case usually 40
It requires a high temperature of about 0 ° C., and has a drawback that a film having a sufficiently low resistance cannot be obtained when baked at a low temperature.

【0008】また上記着色膜の水溶性フタロシアニン化
合物を用いる方法は、有機染料を用いるため耐熱性、耐
候性に乏しく特定波長に吸収をもつため可視光全波長領
域にわたって均一な吸収を得ることが難しいという欠点
がある。特開平1−251545号記載のメチルバイオ
レットを含む帯電防止膜も同様な理由より耐熱性、耐候
性に乏しく可視光全波長領域にわたって均一な吸収を得
ることが難しい。
In the method using a water-soluble phthalocyanine compound for the colored film, it is difficult to obtain uniform absorption over the entire visible light wavelength region because the organic dye is used, so that the heat resistance and weather resistance are poor and the absorption is at a specific wavelength. There is a drawback that. The antistatic film containing methyl violet described in JP-A-1-251545 has poor heat resistance and weather resistance for the same reason, and it is difficult to obtain uniform absorption over the entire visible light wavelength region.

【0009】またイオンプレーティングによる方法は工
業的に安価とはいえず、また可視光波長領域にわたって
の均一な吸収を得られないため陰極線管に成膜したとき
コントラストの向上も望めない。また溶液の基体への塗
布方法は、スピンコート法、ディップコート法、ロール
コーター法、メニスカスコーター法等、種々考えられる
が、特にスピンコート法は量産性、再現性に優れ、好ま
しく用いられる。かかる方法によって10nm〜1μm
程度の膜が形成可能である。しかし液中に粒子を分散し
た溶液でスピンコート塗布をする際は塗膜時に生じる液
の流れ跡、粒子の流れた跡、膜乾燥時の粒子の凝集、乾
燥むら、膜厚差による色むら等の問題があり外観良好な
膜を成膜することは難しく、さらに塗布液の基体に対す
る濡れ性の善し悪し、外気の変動による影響の受け易さ
は生産性を悪くする原因となるため、溶液中の溶媒の選
択および組成比が重要であった。
Further, the method using ion plating is not industrially inexpensive, and since it is not possible to obtain uniform absorption over the visible light wavelength region, improvement in contrast cannot be expected when a film is formed on a cathode ray tube. Various methods can be used for applying the solution to the substrate, such as a spin coating method, a dip coating method, a roll coater method, and a meniscus coater method. In particular, the spin coating method is preferable because it is excellent in mass productivity and reproducibility. By this method, 10 nm to 1 μm
A film of a certain degree can be formed. However, when spin coating is performed with a solution in which particles are dispersed in a liquid, the flow traces of the liquid generated at the time of coating, the traces of the flow of particles, the aggregation of particles during film drying, the uneven drying, the uneven color due to the film thickness difference, etc. It is difficult to form a film with good appearance due to the problem of, and the wettability of the coating liquid to the substrate is good or bad, and the susceptibility to the influence of fluctuations in the outside air causes the productivity to deteriorate. The choice of solvent and composition ratio were important.

【0010】本発明は従来技術の前述の欠点を解決し、
低温熱処理により膜形成が可能な着色膜形成用塗布液、
着色膜、着色帯電防止膜および着色低反射帯電防止膜を
新規に提供することを目的とする。
The present invention overcomes the aforementioned drawbacks of the prior art,
A coating solution for forming a colored film that can be formed by low-temperature heat treatment,
It is an object of the present invention to newly provide a colored film, a colored antistatic film and a colored low reflection antistatic film.

【0011】[0011]

【課題を解決するための手段】本発明は、酸窒化チタン
と、Sn有機酸塩および/またはCo有機酸塩とを含む
着色膜形成用塗布液、また、酸窒化チタンと、Si(O
R)m R’n (m+n=4、m=1〜4、n=0〜3、
R、R’=C1 〜C4 のアルキル基)またはその加水分
解物と、Sn有機酸塩と、β−ジケトンとを含み、さら
に、プロピレングリコールエーテル、その誘導体、プロ
ピレングリコールエーテルアセテートおよびその誘導体
からなる群から選ばれる少なくとも1種と、メタノー
ル、エタノール、およびプロパノールからなる群から選
ばれる少なくとも1種と、ジアセトンアルコールとを含
むことを特徴とする前記の着色膜形成用塗布液、さら
に、Sn、In、Sb、Zn、AlおよびGaのうち少
なくとも1種からなる導電性酸化物を含むことを特徴と
する前記の着色膜形成用塗布液を提供する。
According to the present invention, a coating solution for forming a colored film containing titanium oxynitride and a Sn organic acid salt and / or a Co organic acid salt, and titanium oxynitride and Si (O 2
R) m R ′ n (m + n = 4, m = 1 to 4, n = 0 to 3,
R, R ′ = C 1 -C 4 alkyl group) or a hydrolyzate thereof, Sn organic acid salt and β-diketone, and further propylene glycol ether, its derivative, propylene glycol ether acetate and its derivative At least one selected from the group consisting of, at least one selected from the group consisting of methanol, ethanol, and propanol, and the coating solution for forming a colored film, which further comprises diacetone alcohol, There is provided the above coating solution for forming a colored film, which contains a conductive oxide composed of at least one of Sn, In, Sb, Zn, Al and Ga.

【0012】また本発明は、前記の塗布液を塗布した
後、加熱および/または紫外線を照射することにより得
られたことを特徴とする380nmから700nmの波
長領域において透過率が低下された着色膜を提供する。
さらに本発明は、基体表面に、酸窒化チタンを含み、さ
らにSn有機酸塩およびCo有機酸塩のうち少なくとも
1種を含む溶液を塗布した後加熱および/または紫外線
を照射してなることを特徴とする着色膜、基体表面に、
酸窒化チタンを含み、さらにSn有機酸塩、さらにS
n、In、Sb、Zn、Al、Gaのうち少なくとも1
種の酸化物を含む溶液を塗布した後加熱および/または
紫外線を照射してなることを特徴とする着色帯電防止
膜、当該着色帯電防止膜の上に低屈折率を有する膜を形
成することを特徴とする着色低反射帯電防止膜、および
基体上に多層膜からなり、そのうち少なくとも1層が上
記着色帯電防止膜であることを特徴とする着色低反射帯
電防止膜を提供する。
Further, the present invention is characterized by being obtained by applying the above-mentioned coating solution and then heating and / or irradiating it with ultraviolet rays, which has a reduced transmittance in the wavelength range of 380 nm to 700 nm. I will provide a.
Furthermore, the present invention is characterized in that the substrate surface is coated with a solution containing titanium oxynitride and further containing at least one of Sn organic acid salt and Co organic acid salt, and then heated and / or irradiated with ultraviolet rays. On the colored film and substrate surface
Includes titanium oxynitride, Sn organic acid salt, and S
At least one of n, In, Sb, Zn, Al, and Ga
A colored antistatic film comprising applying a solution containing a seed oxide and then heating and / or irradiating ultraviolet rays, and forming a film having a low refractive index on the colored antistatic film. Provided is a colored low-reflection antistatic film, which is characterized by comprising a multilayered film on a substrate, at least one layer of which is the above-mentioned colored antistatic film.

【0013】本発明はディスプレイ用途に供されるガラ
ス物品の表面へのコーティングに対し最適である。かか
るガラス物品としての陰極線管は近年コンピューターの
端末表示等に使用される場合、高解像度の要求とともに
ハイコントラストの要求も高まりつつある。しかしコン
トラストの向上を期してガラス自体の透過率を低下させ
た場合、ディスプレイの大型化に伴ってフェイスプレー
トの肉厚も厚くなっていることから、特に大型ディスプ
レイでは透過率の著しい低下が問題となる。本発明では
ガラス自体の透過率を下げることなくその表面に膜を形
成しこの膜で光吸収を生じさせることによりコントラス
トの向上を図ることができる。
The present invention is best suited for coating the surface of glass articles for display applications. In recent years, when a cathode ray tube as such a glass article is used for a terminal display of a computer or the like, a demand for high resolution and a demand for high contrast are increasing. However, if the transmittance of the glass itself is reduced in order to improve the contrast, the faceplate will become thicker as the display becomes larger, so that the transmittance will decrease significantly, especially for large displays. Become. In the present invention, contrast can be improved by forming a film on the surface of the glass without lowering the transmittance of the glass itself and causing light absorption by this film.

【0014】したがって、種々の肉厚をもつディスプレ
イ用ガラスパネルへの適用が極めて容易に可能となる。
陰極線管の発光スペクトルは複数のスペクトルで構成さ
れるが、発光スペクトルのバランスを崩さずにコントラ
ストの向上を図るには特定の光吸収を持つ着色膜よりも
可視光領域にわたって均一の光吸収を持つ着色膜が好ま
しい。このような観点より鋭意研究を行った結果、酸窒
化チタンを含む着色膜を構成することにより、可視光領
域において均一な光吸収を可能とし上記の問題点を解決
できた。
Therefore, it can be very easily applied to glass panels for displays having various wall thicknesses.
The emission spectrum of the cathode ray tube is composed of multiple spectra, but in order to improve the contrast without disturbing the balance of the emission spectrum, it has more uniform light absorption over the visible light region than the colored film with specific light absorption. Colored films are preferred. As a result of earnest research from such a viewpoint, it was possible to achieve uniform light absorption in the visible light region and solve the above problems by forming a colored film containing titanium oxynitride.

【0015】しかし一方で酸窒化チタンは比較的耐熱性
に優れるが空気中等酸化雰囲気中で長時間高温焼成した
場合、酸化退色することにより可視光域での均一な吸収
が損なわれ、陰極線管上に成膜した際も所定のコントラ
スト向上効果が望めない場合がある。本発明では酸窒化
チタンの対酸化性向上にSn有機酸塩やCo有機酸塩が
効果を有することを見いだした。
On the other hand, titanium oxynitride is relatively excellent in heat resistance, but when it is burned at a high temperature for a long time in an oxidizing atmosphere such as air, oxidative discoloration impairs uniform absorption in the visible light region, and the cathode ray tube is damaged. Even when the film is formed on the substrate, a predetermined contrast improving effect may not be expected. In the present invention, it was found that Sn organic acid salt and Co organic acid salt are effective in improving the oxidation resistance of titanium oxynitride.

【0016】また、ナフテン酸第一スズ、2−エチルヘ
キサン酸スズ等の有機酸スズは加水分解し易く、水分を
含む溶媒と混合すると沈澱を生じるため、外観良好な膜
を得るための溶媒が、および導電性酸化物と酸窒化チタ
ン粒子の分散媒が限定されるため、また空気中の水分と
も反応する可能性があり、塗布液の安定性という点で問
題があった。本発明ではβ−ジケトンにより有機酸スズ
を安定化することにより加水分解が抑制され、膜特性が
向上し、さらに液の安定性も向上することが見いだされ
た。
Further, organic acid tin such as stannous naphthenate and tin 2-ethylhexanoate is easily hydrolyzed and precipitates when mixed with a solvent containing water. Therefore, a solvent for obtaining a film having a good appearance is used. Since the dispersion medium of the conductive oxide and the titanium oxynitride particles is limited, it may react with the water in the air, and there was a problem in the stability of the coating liquid. In the present invention, it was found that by stabilizing the organic acid tin with β-diketone, hydrolysis is suppressed, the film characteristics are improved, and the stability of the liquid is also improved.

【0017】また本発明においては塗布をする際に塗膜
時に生じる液の流れ跡、粒子の流れた跡、膜乾燥時の粒
子の凝集、乾燥むら、膜厚差等が少ない外観良好な膜を
成膜するために塗布液中に水、C1 〜C4 の低級アルコ
ールの他にプロピレングリコールエーテル、その誘導
体、プロピレングリコールエーテルアセテートおよびそ
の誘導体からなる群から選ばれる少なくとも1種を0.
1〜70wt%と、ジアセトンアルコールを0.1〜3
0wt%加えており、それによって基体に対する濡れ性
がよく外気の影響を受けにくい塗布液が得られる。
Further, in the present invention, a film having a good appearance with few traces of liquid flow, traces of particle flow, agglomeration of particles during drying of the film, unevenness of drying, film thickness difference, etc., during coating is obtained. In order to form a film, at least one selected from the group consisting of water, a C 1 -C 4 lower alcohol, propylene glycol ether, a derivative thereof, propylene glycol ether acetate and a derivative thereof is added to the coating solution in an amount of 0.
1-70 wt% and diacetone alcohol 0.1-3
Since 0 wt% is added, a coating liquid having good wettability with respect to the substrate and being hardly affected by the outside air can be obtained.

【0018】さらに本発明ではこの着色膜にSn、I
n、Sb、Zn、AlおよびGaのうち少なくとも1種
の酸化物を含有することによりディスプレイのオン・オ
フ時に生起する静電気を抑える帯電防止性能も付与さ
せ、ほこり等の付着を抑制することも可能とした。さら
には上記着色帯電防止膜上に当該被膜よりも低屈折率を
有する膜を構成し解像度を損なうことなく蛍光灯の映り
込み等を抑制する低反射性能をも付与することも可能と
した。
Further, in the present invention, Sn, I
By containing at least one oxide of n, Sb, Zn, Al, and Ga, it is possible to add antistatic performance that suppresses static electricity generated when the display is turned on and off, and it is also possible to suppress the adhesion of dust and the like. And Furthermore, by forming a film having a lower refractive index than the above-mentioned colored antistatic film on the colored antistatic film, it is possible to impart low reflection performance for suppressing the reflection of a fluorescent lamp without impairing the resolution.

【0019】本発明で用いる酸窒化チタン粒子は還元処
理した酸化チタンを用いる。還元処理にはN2 ガス、N
3 ガス等を用いることができる。酸窒化チタン自体導
電性を有しているため、帯電防止膜を構成する場合導電
補助成分として機能する。酸窒化チタンは、Nを0. 1
〜30wt%含有するTiOx (1.0≦x<2.0)
であることが好ましい。また、酸窒化チタンの溶液中で
の含有量は、着色膜の場合溶液中の全固型分量に対し1
〜90wt%が好ましく、これ以下の場合着色性能が充
分でなく、これ以上の場合は膜の強度が低下し好ましく
ない。着色帯電防止膜、着色低反射帯電防止膜の場合は
1〜80wt%が好ましい。酸窒化チタン量が少なすぎ
ると着色性能が充分で、また多すぎると帯電防止能およ
び膜の透過率が悪化し好ましくない。
As the titanium oxynitride particles used in the present invention, titanium oxide subjected to reduction treatment is used. N 2 gas, N for reduction treatment
H 3 gas or the like can be used. Since titanium oxynitride itself has conductivity, it functions as a conductivity auxiliary component when forming an antistatic film. Titanium oxynitride has a N content of 0.1
TiO x (1.0 ≦ x <2.0) containing ˜30 wt%
Is preferred. In the case of a colored film, the content of titanium oxynitride in the solution is 1 with respect to the total solid content in the solution.
90 wt% or less is preferable, and if it is less than this, the coloring performance is not sufficient, and if it is more than this, the strength of the film decreases, which is not preferable. In the case of a colored antistatic film or a colored low reflection antistatic film, 1 to 80 wt% is preferable. If the amount of titanium oxynitride is too small, the coloring performance is sufficient, and if it is too large, the antistatic ability and the film transmittance are deteriorated, which is not preferable.

【0020】また本発明で用いるSn有機酸塩やCo有
機酸塩としては、酢酸塩、酒石酸塩、カルボン酸塩等種
々の化合物が使用可能であるが、溶解性、酸窒化チタン
に対する耐酸化性向上効果の点からそれぞれナフテン酸
第1スズ、 2−エチルヘキサン酸スズ、およびナフテン
酸第1コバルト、2−エチルヘキサン酸コバルトを用い
ることが好ましい。Sn有機酸塩やCo有機酸塩の溶液
中での含有量はそれぞれSnO2 、Co34 換算で前
固形分量に対し1〜60wt%の範囲にあることが好ま
しい。これ以下であると酸窒化チタンの耐酸化性向上効
果、および色調が劣り、これ以上であると膜強度の低下
が起こるため好ましくない。
As the Sn organic acid salt and the Co organic acid salt used in the present invention, various compounds such as acetate salt, tartrate salt, and carboxylate salt can be used, but they are soluble and have an oxidation resistance to titanium oxynitride. From the viewpoint of the improvement effect, it is preferable to use stannous naphthenate, tin 2-ethylhexanoate, and stannous naphthenate and cobalt 2-ethylhexanoate, respectively. The content of the Sn organic acid salt or the Co organic acid salt in the solution is preferably in the range of 1 to 60 wt% with respect to the previous solid content in terms of SnO 2 and Co 3 O 4 , respectively. If it is less than this range, the effect of improving the oxidation resistance of titanium oxynitride and the color tone are poor, and if it is more than this range, the film strength decreases, which is not preferable.

【0021】また本発明では液中にSi(OR)m R’
n (m+n=4、m=1〜4、n=0〜3、R、R’=
1 〜C4 のアルキル基)、またはその加水分解物を加
えることにより溶液中の粒子の安定性が向上し、アルコ
ール類、ケトン類、エーテル類、エステル類、アルコー
ルエステル類、ケトンエステル類、エーテルアルコール
類、ケトンエーテル類、エステルエーテル類のうちの1
種または2種以上の混合物からなる有機溶剤で希釈した
場合でも凝集沈澱を生じることがない。その含有量につ
いては酸化物換算で全固形分に対して0.5〜65wt
%が好ましく、これ以下であると粒子を含む溶液に有機
溶剤を混合させたときに沈澱を生じることがあり、これ
以上であると着色性能および帯電防止性能が悪化してし
まう。
Further, in the present invention, Si (OR) m R'is contained in the liquid.
n (m + n = 4, m = 1 to 4, n = 0 to 3, R, R ′ =
The stability of the particles in the solution is improved by adding a C 1 -C 4 alkyl group) or a hydrolyzate thereof, and alcohols, ketones, ethers, esters, alcohol esters, ketone esters, 1 of ether alcohols, ketone ethers and ester ethers
Even when diluted with an organic solvent consisting of one kind or a mixture of two or more kinds, no cohesive precipitation occurs. The content is 0.5 to 65 wt% in terms of oxide based on the total solid content.
% Is preferable, and if it is less than this range, precipitation may occur when an organic solvent is mixed with the solution containing particles, and if it is more than this range, the coloring performance and antistatic performance deteriorate.

【0022】また本発明で用いるβ−ジケトンとしては
種々のものが使用可能であり特に限定されないが、アセ
チルアセトンが特に好ましく用いられる。溶液中のの含
有量はSn有機酸塩の0.1〜10倍モルが好ましい。
これ以下であると液の安定性に寄与せず、これ以上であ
ると膜強度の低下が起こるため好ましくない。
Various β-diketones can be used in the present invention and are not particularly limited, but acetylacetone is particularly preferably used. The content in the solution is preferably 0.1 to 10 times the mol of the Sn organic acid salt.
If it is less than this, it does not contribute to the stability of the liquid, and if it is more than this, the film strength is lowered, which is not preferable.

【0023】本発明におけるプロピレングリコールエー
テル、その誘導体、プロピレングリコールエーテルアセ
テートおよびその誘導体からなる群から選ばれる少なく
とも1種は特に限定されるものではなく、プロピレング
リコールモノメチルエーテル、プロピレングリコールモ
ノエチルエーテル、プロピレングリコールモノプロピル
エーテル、プロピレングリコールモノブチルエーテル、
プロピレングリコールモノメチルエーテルアセテート、
プロピレングリコールモノエチルエーテルアセテート、
プロピレングリコールモのプロピルエーテルアセテート
等いずれも使用可能である。
At least one selected from the group consisting of propylene glycol ether, its derivative, propylene glycol ether acetate and its derivative in the present invention is not particularly limited, and includes propylene glycol monomethyl ether, propylene glycol monoethyl ether and propylene. Glycol monopropyl ether, propylene glycol monobutyl ether,
Propylene glycol monomethyl ether acetate,
Propylene glycol monoethyl ether acetate,
Any of propylene glycol acetate propyl ether acetate and the like can be used.

【0024】本発明で用いる導電性酸化物には、Sbを
ドープしたSnO2 、ITO、AlをドープしたZn
O、GaをドープしたZnOを用いることができる。こ
れらの酸化物は導電性を有しており、形成された膜に導
電性を付与することができ、帯電防止性能を付与するこ
とができる。これらの酸化物は塗布液中に微粒子として
分散させて用いることも可能であり、また溶液として用
いて基体上で酸化物化させることも可能である。
The conductive oxide used in the present invention includes Sb-doped SnO 2 , ITO, and Al-doped Zn.
ZnO doped with O or Ga can be used. These oxides have electroconductivity, can impart electroconductivity to the formed film, and can impart antistatic performance. These oxides can be used by dispersing them as fine particles in a coating solution, or can be used as a solution to be oxidized on a substrate.

【0025】これらの粒子あるいは塩の分散媒、分散法
も特に限定されるものではなく種々の溶媒および分散法
が使用可能である。好ましくは、水あるいはアルコール
等の有機溶媒中に粒子を添加し、酸あるいはアルカリを
添加しpHを調整し、コロイドボールミル、サンドミ
ル、ホモジナイザー、等の市販の粉砕器で分散させて得
ることができる。この場合、分散中の粒子の平均粒径は
300nm以下となっていることが好ましい。溶液を用
いる場合、キレート錯体のような有機化合物、硝酸塩の
ような無機化合物を用い上記の粒子を分散した液と混合
して用いる。
The dispersion medium and dispersion method of these particles or salts are not particularly limited, and various solvents and dispersion methods can be used. Preferably, particles can be added to an organic solvent such as water or alcohol, an acid or an alkali can be added to adjust the pH, and the particles can be dispersed by a commercially available crusher such as a colloid ball mill, a sand mill or a homogenizer. In this case, the average particle diameter of the dispersed particles is preferably 300 nm or less. When a solution is used, an organic compound such as a chelate complex or an inorganic compound such as nitrate is used and mixed with a liquid in which the above particles are dispersed.

【0026】また、溶液の基体への塗布方法は、スピン
コート法、ディップ法、スプレー法、ロールコーター
法、メニスカスコーター法等種々考えられるが、特にス
ピンコート法は量産性、再現性に優れ、好ましく採用可
能である。かかる方法によって100Å〜1μm程度の
膜が形成可能である。
Various methods of applying the solution to the substrate are conceivable, such as spin coating, dipping, spraying, roll coater, meniscus coater, etc. In particular, spin coating is excellent in mass productivity and reproducibility. It can be preferably adopted. By this method, a film having a thickness of about 100 to 1 μm can be formed.

【0027】一般に、薄膜の光学的性能はその膜を構成
する屈折率と膜厚で決定される。ここで一定の屈折率n
s を有する基体上に屈折率nを有する薄膜を付着させ、
屈折率n0 の媒質中より波長λの光が入射した場合のエ
ネルギー反射率Rは光が膜中を通過する際の位相差をΔ
とするとΔ=4πnd/λ(d:膜厚)であり、Δ=
(2m+1)π、すなわち位相差Δが半波長の奇数倍の
時、極小値をとり、このとき、R=((n2 −n0 nS
/(n2 +n0S ))2 ・・・(1)式となる。
Generally, the optical performance of a thin film is determined by the refractive index and film thickness of the film. Where the constant refractive index n
depositing a thin film having a refractive index n on a substrate having s ,
The energy reflectance R when the light of wavelength λ is incident from the medium having the refractive index n 0 is the phase difference Δ when the light passes through the film.
Then, Δ = 4πnd / λ (d: film thickness), and Δ =
(2m + 1) π, that is, when the phase difference Δ is an odd multiple of a half wavelength, a minimum value is obtained, and at this time, R = ((n 2 −n 0 n S ).
/ (N 2 + n 0 n s )) 2 (1) is obtained.

【0028】無反射条件を満たすには、(1)式におい
て、R=0とおき、
In order to satisfy the antireflection condition, R = 0 in the equation (1),

【0029】n=(n0S1/2 ・・・(2)式が必
要とされる。
N = (n 0 n S ) 1/2 (2) is required.

【0030】(2)式を2層構成に拡張した場合、nS
1 2=n2 20 ・・・(3)式となる(n1 :媒質側
層、n2 :基体側層)。
When the equation (2) is expanded to a two-layer structure, n S
n 1 2 = n 2 2 n 0 (3) is obtained (n 1 : medium layer, n 2 : substrate layer).

【0031】ここでn0 =1(空気)、nS =1. 52
(ガラス)を(3)式に適用した場合、n2 /n1
1.23となり、この場合、2層構成膜の最大の低反射
性が得られる。勿論n2 /n1 =1.23を満たさなく
ても、2層膜の屈折率がこれに近い値をとれる場合、低
反射性が得られる。したがって、基体側に設ける高屈折
率層と媒質側に設ける低屈折率層は両者の屈折率比がで
きるだけ1.23に近い値を選択するのが望ましい。
Here, n 0 = 1 (air), n S = 1.52
When (glass) is applied to the equation (3), n 2 / n 1 =
It becomes 1.23, and in this case, the maximum low reflectivity of the two-layer constitution film is obtained. Of course, even if n 2 / n 1 = 1.23 is not satisfied, low reflectivity can be obtained when the refractive index of the two-layer film can take a value close to this. Therefore, it is desirable that the high refractive index layer provided on the substrate side and the low refractive index layer provided on the medium side have a refractive index ratio of both as close to 1.23 as possible.

【0032】本発明において、所望の低反射膜を得るに
は、多層膜間の屈折率差とあわせて膜厚も重要な要素で
ある。反射防止性能を有する多層の低反射膜の構成とし
ては、反射防止をしたい波長をλとして、基体側より高
屈折率層−低屈折率層を光学厚みλ/2−λ/4で構成
した低反射膜、基体側より中屈折率層−高屈折率層−低
屈折率層を光学厚みλ/4−λ/2−λ/4で形成した
3層の低反射膜、基体側より低屈折率層−中屈折率層−
高屈折率層−低屈折率層を光学厚みλ/4−λ/4−λ
/2−λ/4で形成した4層の低反射膜等が典型的な例
として知られている。
In the present invention, in order to obtain a desired low reflection film, the film thickness as well as the refractive index difference between the multilayer films are important factors. The multilayer low-reflection film having the antireflection property has a structure in which the wavelength for which antireflection is desired is λ, and the high refractive index layer-low refractive index layer is formed with an optical thickness of λ / 2-λ / 4 from the substrate side. Reflective film, from the side of the substrate: a medium-refractive-index layer-high-refractive-index layer-low-refractive-index layer formed with an optical thickness of λ / 4-λ / 2-λ / 4. Layer-Medium Refractive Index Layer-
High Refractive Index Layer-Low Refractive Index Layer with Optical Thickness λ / 4-λ / 4-λ
A 4-layer low-reflection film formed of / 2-? / 4 is known as a typical example.

【0033】本発明の着色膜を高屈折率膜として用い、
その上層に低屈折率膜を設ける場合は、MgF2 ゾルを
含む溶液や、加熱によりSiO2 となるSiアルコキシ
ド等のSi化合物を含む溶液のうちから選ばれる少なく
とも1種よりなる溶液を用いて形成する。屈折率の面か
らみると該材料のうちMgF2 が最も低く反射率低減の
ためにはMgF2 ゾルを含む溶液を用いることが好まし
いが、膜の硬度や耐擦傷性の点ではSiO2 を主成分と
する膜が好ましい。
Using the colored film of the present invention as a high refractive index film,
When a low refractive index film is provided on the upper layer, it is formed by using a solution containing at least one selected from a solution containing MgF 2 sol and a solution containing a Si compound such as Si alkoxide which becomes SiO 2 by heating. To do. From the viewpoint of the refractive index, MgF 2 is the lowest of the materials, and it is preferable to use a solution containing MgF 2 sol to reduce the reflectance, but SiO 2 is mainly used in terms of film hardness and scratch resistance. Membranes of component are preferred.

【0034】低屈折率膜形成用のSi化合物を含む溶液
としては、Si(OR)m R’n (m+n=4、m=1
〜4、n=0〜3、R、R’=C1 〜C4 のアルキル
基)で示される化合物あるいは部分加水分解物を用いる
ことが好ましく、例えば、シリコンエトキシド、シリコ
ンメトキシド、シリコンイソプロポキシド、シリコンブ
トキシドのモノマーあるいは重合体が好ましく使用可能
であるが、珪弗化水素酸、硼酸を含む水溶液に二酸化珪
素粉末を飽和させてなる溶液より析出させてできるSi
化合物も使用可能である。Si(OR)m R’n で示さ
れる化合物あるいは部分加水分解物の着色帯電防止膜上
への塗布方法としては、前述した方法と同様に種々の方
法が好ましく採用可能である。
As a solution containing a Si compound for forming a low refractive index film, Si (OR) m R'n (m + n = 4, m = 1
To 4, n = 0 to 3, R, R ′ = C 1 to C 4 alkyl group) or a partial hydrolyzate is preferably used, and examples thereof include silicon ethoxide, silicon methoxide, and silicon isooxide. Although a monomer or polymer of propoxide or silicon butoxide can be preferably used, Si obtained by precipitating a solution obtained by saturating a silicon dioxide powder in an aqueous solution containing hydrosilicofluoric acid and boric acid.
Compounds can also be used. As a method for applying the compound represented by Si (OR) m R ′ n or the partial hydrolyzate onto the colored antistatic film, various methods can be preferably employed as in the method described above.

【0035】本発明の着色帯電防止膜は酸窒化チタンを
含有するため、高屈折率を有し上記低屈折率膜との2層
で構成した場合前述の低反射性能が容易に発現される。
Since the colored antistatic film of the present invention contains titanium oxynitride, it has a high refractive index and can easily exhibit the above-mentioned low reflection performance when it is composed of two layers including the above low refractive index film.

【0036】本発明において、着色膜、着色帯電防止
膜、着色低反射帯電防止膜を形成する基体としは特に限
定されるものではなく、目的に応じてソーダライムシリ
ケートガラス、アルミノシリケートガラス、硼珪酸塩ガ
ラス、リチウムアルミノシリケートガラス、石英ガラス
等のガラス、鋼玉等の単結晶、マグネシア、サイアロン
等の透光性セラミックス、ポリカーボネイト等のプラス
チックも使用できる。また、その用途はブラウン管フェ
イスパネル用、複写機用、計算機用、クリーンルーム
用、CRTやLCDなどの表示装置用、など各種用途に
及ぶものである。
In the present invention, the substrate for forming the colored film, the colored antistatic film and the colored low reflection antistatic film is not particularly limited, and soda lime silicate glass, aluminosilicate glass, borosilicate can be used according to the purpose. Glass such as salt glass, lithium aluminosilicate glass, and quartz glass, single crystals such as corundum, translucent ceramics such as magnesia and sialon, and plastics such as polycarbonate can also be used. Further, its applications extend to various applications such as CRT face panels, copying machines, computers, clean rooms, and display devices such as CRTs and LCDs.

【0037】[0037]

【作用】本発明においてSn有機酸塩やCo有機酸塩に
よる酸窒化チタンの耐酸化性向上効果のメカニズムにつ
いては明確ではないが、Sn、Coが2価で存在するこ
とにより酸化雰囲気中で高温焼成した際、Sn、Coや
有機酸の還元効果により酸窒化チタンの耐酸化性が向上
するものと思われる。
In the present invention, the mechanism of the effect of improving the oxidation resistance of titanium oxynitride by the Sn organic acid salt and the Co organic acid salt is not clear, but due to the presence of Sn and Co in the divalent state, the temperature is high in an oxidizing atmosphere. When fired, it is considered that the oxidation resistance of titanium oxynitride is improved due to the reducing effect of Sn, Co and organic acids.

【0038】またβ−ジケトンの効果も明確ではないが
Sn有機酸塩、Co有機酸塩に配位することにより液の
安定性が増すものと思われる。全可視光領域において均
一な吸収に起因して低反射特性も向上する。更には窒素
を含有してなる酸化チタン自体も導電性を有しているた
め酸窒化チタンも帯電防止能を発現させる成分として機
能している。
Although the effect of β-diketone is not clear, it is considered that the stability of the liquid is increased by coordinating with the Sn organic acid salt and the Co organic acid salt. Low reflection characteristics are also improved due to uniform absorption in the entire visible light region. Furthermore, since titanium oxide itself containing nitrogen has conductivity, titanium oxynitride also functions as a component for exhibiting antistatic ability.

【0039】[0039]

【実施例】以下に実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。得られた膜の評価結果は下記のとおりである。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. The evaluation results of the obtained film are as follows.

【0040】透過率評価:日立製作所製スペクトロフォ
トメータU−3500により380nm、550nm、
780nmの透過率を測定した。
Transmittance evaluation: 380 nm, 550 nm by a spectrophotometer U-3500 manufactured by Hitachi Ltd.
The transmittance at 780 nm was measured.

【0041】ヘーズ評価:スガ試験機製直読ヘーズコン
ピューターにより膜自体のヘーズを測定した。
Haze evaluation: The haze of the film itself was measured by a direct-reading haze computer manufactured by Suga Test Instruments.

【0042】導電性評価:着色帯電防止膜、低反射帯電
防止膜について三菱油化製ハイレスタ抵抗測定器により
相対湿度30%以下の雰囲気中で膜表面の表面抵抗値を
測定した。
Conductivity evaluation: Colored antistatic film and low-reflection antistatic film The surface resistance value of the film surface was measured in an atmosphere with a relative humidity of 30% or less by a Hiresta resistance meter manufactured by Mitsubishi Petrochemical.

【0043】耐擦傷性:1kg重の荷重下で(LION
製50−50)、消しゴムで膜表面を50回往復後、そ
の表面の傷の付きを目視で判断した。評価基準は以下の
通りとした。○:傷が全く付かない、△:傷が多少付
く、×:多くの傷が付くか剥離。
Scratch resistance: under a load of 1 kg (LION
50-50), and after reciprocating the membrane surface 50 times with an eraser, scratches on the surface were visually judged. The evaluation criteria are as follows. ◯: No scratches, Δ: Some scratches, ×: Many scratches or peeling.

【0044】鉛筆硬度:1kg重の荷重下、鉛筆で膜表
面を走査し、その後目視により表面の傷の生じ始める鉛
筆の硬度を膜の鉛筆硬度と判断した。
Pencil hardness: The surface of the film was scanned with a pencil under a load of 1 kg, and the pencil hardness at which scratches on the surface began to occur was judged to be the pencil hardness of the film.

【0045】視感反射率:着色低反射帯電防止膜につい
てGAMMA分光反射スペクトル測定器により膜の38
0〜700nmの視感反射率を測定した。
Luminous reflectance: Colored low-reflection antistatic film 38 of the film was measured by a GAMMA spectroscopic reflection spectrophotometer.
The luminous reflectance of 0 to 700 nm was measured.

【0046】液中の粒子の分散安定性の評価:大塚電子
製レーザー粒径解析システムLAP−3100により液
合成直後および5℃で4週間静置保存したのち液中の粒
子の平均粒径を測定した。
Evaluation of dispersion stability of particles in liquid: The average particle size of the particles in the liquid was measured by a laser particle size analysis system LAP-3100 manufactured by Otsuka Electronics immediately after liquid synthesis and after being stored at 5 ° C. for 4 weeks. did.

【0047】[実施例1]酸窒化チタン粉末15gをあ
らかじめpH3.0に調整した水溶液85g中に添加し
てサンドミルで4時間粉砕して90℃で1時間加熱した
のち、濃度10wt%に調整し、平均粒径90nmのゾ
ルを得た(A液)。Si(OEt)4 のエタノール溶液
(酸化物換算で固形分20wt%)にSi(OEt)4
に対してpH3.0に調整した塩酸酸性水溶液を8mo
l比添加し、80℃で2時間撹拌下で還流を行った(B
液)。2−エチルヘキサン酸スズを酸化物換算で固形分
3wt%になるようにエタノールで希釈した(C液)。
Example 1 15 g of titanium oxynitride powder was added to 85 g of an aqueous solution whose pH was adjusted to 3.0 in advance, pulverized in a sand mill for 4 hours, heated at 90 ° C. for 1 hour, and then adjusted to a concentration of 10 wt%. A sol having an average particle size of 90 nm was obtained (Liquid A). Si (OEt) 4 was added to an ethanol solution of Si (OEt) 4 (solid content 20 wt% in terms of oxide).
8mo to the acidic aqueous hydrochloric acid solution adjusted to pH 3.0
1 ratio was added, and the mixture was refluxed under stirring at 80 ° C. for 2 hours (B
liquid). Tin 2-ethylhexanoate was diluted with ethanol so that the solid content was 3 wt% in terms of oxide (Liquid C).

【0048】A液とB液、C液を各酸化物換算で1.2
wt%となるようにエタノールで希釈した後、A液:B
液:C液=65:20:15重量比となるように混合
し、ブラウン管パネル表面に100rpmの回転速度で
60秒間塗布し、その後160℃で30分間加熱し約1
00nmの厚さの膜を得た。
Liquid A, liquid B, and liquid C are 1.2 in terms of each oxide.
After diluting with ethanol so as to be wt%, solution A: B
Liquid: C liquid = 65:20:15 mixed in a weight ratio, coated on the surface of the cathode ray tube panel at a rotation speed of 100 rpm for 60 seconds, and then heated at 160 ° C for 30 minutes to about 1
A film with a thickness of 00 nm was obtained.

【0049】[実施例2]実施例1におけるA液とC液
を各酸化物換算で1.2wt%となるようにエタノール
で希釈した後、A液:C液=65:35重量比となるよ
うに混合した以外は実施例1と同様に行い、約100n
mの厚さの膜を得た。
Example 2 Liquids A and C in Example 1 were diluted with ethanol so as to be 1.2 wt% in terms of each oxide, and then the ratio of liquid A: liquid C was 65:35. The same procedure as in Example 1 was repeated except that
A film with a thickness of m was obtained.

【0050】[実施例3]Sbが8mol%ドープされ
たSnO2 粉末(1次粒径100Å)15gを水85g
中に添加してサンドミルで16時間粉砕して90℃で1
時間加熱した後、濃度10wt%に調整し、平均粒径5
0nmのゾルを得た(D液)。
Example 3 15 g of SnO 2 powder (primary particle size 100 Å) doped with 8 mol% of Sb was added to 85 g of water.
Add to the inside and pulverize with a sand mill for 16 hours at 90 ° C for 1
After heating for an hour, the concentration was adjusted to 10 wt% and the average particle size was 5
A sol of 0 nm was obtained (solution D).

【0051】D液および実施例1におけるA液とB液と
C液を各酸化物換算で1.2wt%となるようにエタノ
ールで希釈した後、A液:B液:C液:D液=45:2
0:15:20重量比となるように混合し、ブラウン管
パネル表面に100rpmの回転速度で60秒間塗布
し、その後160℃で30分間加熱し約90nmの厚さ
の膜を得た。
Solution D, solution A, solution B and solution C in Example 1 were diluted with ethanol so as to be 1.2 wt% in terms of each oxide, and solution A: solution B: solution C: solution D = 45: 2
The mixture was mixed at a weight ratio of 0:15:20, coated on the surface of the cathode ray tube panel at a rotation speed of 100 rpm for 60 seconds, and then heated at 160 ° C. for 30 minutes to obtain a film having a thickness of about 90 nm.

【0052】[実施例4]2−エチルヘキサン酸コバル
トを酸化物換算で固形分3wt%になるようにエタノー
ルで希釈した(E液) 。
Example 4 Cobalt 2-ethylhexanoate was diluted with ethanol so that the solid content was 3 wt% in terms of oxide (Liquid E).

【0053】実施例1におけるA液、B液、C液および
実施例3におけるD液およびE液を各酸化物換算で1.
2wt%となるようにエタノールで希釈した後、A液:
B液:C液:D液:E液=35:20:15:20:1
0重量比となるように混合し、ブラウン管パネル表面に
100rpmの回転速度で60秒間塗布し、その後16
0℃で30分間加熱し約90nmの厚さの膜を得た。
The liquids A, B and C in Example 1 and the liquids D and E in Example 3 were calculated as 1.
After being diluted with ethanol to be 2 wt%, solution A:
Solution B: Solution C: Solution D: Solution E = 35: 20: 15: 20: 1
Mix so that the weight ratio becomes 0, and coat the surface of the cathode ray tube panel at a rotation speed of 100 rpm for 60 seconds.
It was heated at 0 ° C. for 30 minutes to obtain a film having a thickness of about 90 nm.

【0054】[実施例5]Sbが8mol%ドープされ
たSnO2 粉末(1次粒径100Å)15gを水85g
中に添加してサンドミルで4時間粉砕して90℃で1時
間加熱した後、濃度10wt%に調整し、平均粒径50
nmのゾルを得た(D液)。
[Embodiment 5] 15 g of SnO 2 powder (primary particle size 100 Å) doped with 8 mol% of Sb was added to 85 g of water.
Add to the inside and pulverize with a sand mill for 4 hours and heat at 90 ° C for 1 hour, then adjust to a concentration of 10 wt%, average particle size 50
nm sol was obtained (Liquid D).

【0055】D液および実施例1におけるA液とB液と
C液を各酸化物換算で1.2wt%となるようにエタノ
ールで希釈した後、A液:B液:C液:D液=45:2
0:15:20重量比となるように混合し、ブラウン管
パネル表面に100rpmの回転速度で60秒間塗布
し、その後60℃で10分間加熱し約100nmの厚さ
の膜を得た。この膜上にSi(OEt)4 のエタノール
溶液(酸化物換算で固形分20wt%)にSi(OE
t)4 に対してpH3.0に調整した塩酸酸性水溶液を
8mol比添加し、80℃で2時間撹拌を行った後、エ
タノールで酸化物換算0.9wt%に希釈した溶液(E
液)を100rpmの回転速度で60秒間塗布し、その
後380℃で30分間加熱し2層構成の着色低反射帯電
防止膜を得た。
Solution D and solution A, solution B and solution C in Example 1 were diluted with ethanol so as to be 1.2 wt% in terms of each oxide, and solution A: solution B: solution C: solution D = 45: 2
The mixture was mixed in a weight ratio of 0:15:20, and applied on the surface of the cathode ray tube panel at a rotation speed of 100 rpm for 60 seconds, and then heated at 60 ° C. for 10 minutes to obtain a film having a thickness of about 100 nm. On this film, an ethanol solution of Si (OEt) 4 (solid content 20 wt% in terms of oxide) was added to Si (OEt).
t) 4 ) 8 mol ratio of hydrochloric acid acidic aqueous solution adjusted to pH 3.0 was added, stirred at 80 ° C. for 2 hours, and then diluted with ethanol to an oxide conversion of 0.9 wt% (E)
Liquid) was applied at a rotation speed of 100 rpm for 60 seconds and then heated at 380 ° C. for 30 minutes to obtain a colored low-reflection antistatic film having a two-layer structure.

【0056】[実施例6]2−エチルヘキサン酸コバル
トを酸化物換算で固形分3wt%になるようにエタノー
ルで希釈した(F液)。
[Example 6] Cobalt 2-ethylhexanoate was diluted with ethanol so that the solid content was 3 wt% in terms of oxide (F liquid).

【0057】F液および実施例1におけるA液、B液、
C液および実施例3におけるD液を各酸化物換算で1.
2wt%となるようにエタノールで希釈した後、A液:
B液:C液:D液:F液=35:20:15:20:1
0重量比となるように混合し、ブラウン管パネル表面に
100rpmの回転速度で60秒間塗布し、その後60
℃で30分間加熱し約100nmの厚さの膜を得た。こ
の膜上にSi(OEt)4 のエタノール溶液(酸化物換
算で固形分20wt%)にSi(OEt)4 に対してp
H3.0に調整した塩酸酸性水溶液を8mol比添加
し、80℃で2時間撹拌を行った後、エタノールで酸化
物換算0.9wt%に希釈した溶液(E液)を100r
pmの回転速度で60秒間塗布し、その後380℃で3
0分間加熱し2層構成の着色低反射帯電防止膜を得た。
Solution F and solutions A and B in Example 1,
The liquid C and the liquid D in Example 3 were converted into the respective oxides by 1.
After being diluted with ethanol to be 2 wt%, solution A:
Solution B: Solution C: Solution D: Solution F = 35: 20: 15: 20: 1
Mix so that the weight ratio becomes 0, and coat the surface of the cathode ray tube panel at a rotation speed of 100 rpm for 60 seconds.
It was heated at 0 ° C. for 30 minutes to obtain a film having a thickness of about 100 nm. On this film, a solution of Si (OEt) 4 in ethanol (solid content 20 wt% in terms of oxide) was added to p with respect to Si (OEt) 4 .
After adding 8 mol ratio of hydrochloric acid acidic aqueous solution adjusted to H3.0 and stirring at 80 ° C. for 2 hours, a solution (solution E) diluted with ethanol to an oxide conversion of 0.9 wt% was added to 100 r.
Apply at a rotation speed of pm for 60 seconds, then at 380 ° C for 3 seconds.
It was heated for 0 minutes to obtain a colored low-reflection antistatic film having a two-layer structure.

【0058】[実施例7]ITO粉末(Sn/I n(m
ol比)=10/90、1次粒径300Å)15g を水
85g中に添加してサンドミルで4時間粉砕して90℃
で1時間加熱した後、濃度10wt%に調整し、平均粒
径90nmのゾルを得た(G液)。
[Example 7] ITO powder (Sn / In (m
ol ratio) = 10/90, primary particle size 300Å) 15 g was added to water 85 g, and the mixture was pulverized in a sand mill for 4 hours and then 90 ° C.
After heating for 1 hour, the concentration was adjusted to 10 wt% to obtain a sol having an average particle diameter of 90 nm (solution G).

【0059】G液および実施例1におけるA液とB液と
C液を各酸化物換算で1.2wt%となるようにエタノ
ールで希釈した後、G液:A液:B液:C液=20:4
5:20:15重量比となるように混合し、ブラウン管
パネル表面に100rpmの回転速度で60秒間塗布
し、その後60℃で30分間加熱し約100nmの厚さ
の膜を得た。この膜上にSi(OEt)4 のエタノール
溶液(酸化物換算で固形分20wt%)にSi(OE
t)4 に対してpH3.0に調整した塩酸酸性水溶液を
8mol比添加し、80℃で2時間撹拌を行った後、エ
タノールで酸化物換算0.9wt%に希釈した溶液(E
液) を100rpmの回転速度で60秒間塗布し、その
後380℃で30分間加熱し2層構成の着色低反射帯電
防止膜を得た。
Solution G and solution A, solution B and solution C in Example 1 were diluted with ethanol so as to be 1.2 wt% in terms of each oxide, and solution G: solution A: solution B: solution C = 20: 4
The mixture was mixed in a weight ratio of 5:20:15, coated on the surface of the cathode ray tube panel at a rotation speed of 100 rpm for 60 seconds, and then heated at 60 ° C. for 30 minutes to obtain a film having a thickness of about 100 nm. On this film, an ethanol solution of Si (OEt) 4 (solid content 20 wt% in terms of oxide) was added to Si (OEt).
t) 4 to 8 mol ratio of hydrochloric acid acidic aqueous solution adjusted to pH 3.0 was added, stirred at 80 ° C. for 2 hours, and then diluted with ethanol to an oxide conversion of 0.9 wt% (E
Liquid) was applied at a rotation speed of 100 rpm for 60 seconds, and then heated at 380 ° C. for 30 minutes to obtain a colored low-reflection antistatic film having a two-layer structure.

【0060】[実施例8]酸窒化チタン14gおよびS
bが8mol%ドープされたSnO2 粉末(1次粒径1
00Å)6.0gをあらかじめpH13に調整した水8
0g中に添加してサンドミルで16時間粉砕して90℃
で1時間加熱した後、濃度10wt%に調整し、平均粒
径90nmのゾルを得た(H液) 。
Example 8 14 g of titanium oxynitride and S
SnO 2 powder doped with b of 8 mol% (primary particle size 1
00Å) 6.0 g of water 8 adjusted to pH 13 in advance
Add to 0 g and pulverize with a sand mill for 16 hours and 90 ° C
After heating for 1 hour at a temperature of 10% by weight, a sol having an average particle size of 90 nm was obtained (solution H).

【0061】H液および実施例1におけるA液とB液と
C液を各酸化物換算で1.2wt%となるようにエタノ
ールで希釈した後、A液:B液:C液:H液=45:2
0:15:20重量比となるように混合し、ブラウン管
パネル表面に100rpmの回転速度で60秒間塗布
し、その後60℃で30分間加熱し約100nmの厚さ
の膜を得た。この膜上にSi(OEt)4 のエタノール
溶液(酸化物換算で固形分20wt%)にSi(OE
t)4 に対してpH3.0に調整した塩酸酸性水溶液を
8mol比添加し、80℃で2時間撹拌を行った後、エ
タノールで酸化物換算0.9wt%に希釈した溶液(E
液) を100rpmの回転速度で60秒間塗布し、その
後380℃で30分間加熱し2層構成の着色低反射帯電
防止膜を得た。
Solution H and solutions A, B and C in Example 1 were diluted with ethanol so as to be 1.2 wt% in terms of each oxide, and then solution A: solution B: solution C: solution H = 45: 2
The mixture was mixed in a weight ratio of 0:15:20, coated on the surface of the cathode ray tube panel at a rotation speed of 100 rpm for 60 seconds, and then heated at 60 ° C. for 30 minutes to obtain a film having a thickness of about 100 nm. On this film, an ethanol solution of Si (OEt) 4 (solid content 20 wt% in terms of oxide) was added to Si (OEt).
t) 4 to 8 mol ratio of hydrochloric acid acidic aqueous solution adjusted to pH 3.0 was added, stirred at 80 ° C. for 2 hours, and then diluted with ethanol to an oxide conversion of 0.9 wt% (E
Liquid) was applied at a rotation speed of 100 rpm for 60 seconds, and then heated at 380 ° C. for 30 minutes to obtain a colored low-reflection antistatic film having a two-layer structure.

【0062】[実施例9]実施例1におけるA液および
C液を各酸化物換算で1.2wt%となるようにエタノ
ールで希釈した後、A液:C液=80:20重量比とな
るように混合し、ブラウン管パネル表面に100rpm
の回転速度で60秒間塗布し、その後160℃で30分
間加熱し約100nmの厚さの膜を得た。
Example 9 Liquids A and C in Example 1 were diluted with ethanol so as to be 1.2 wt% in terms of each oxide, and then the ratio of liquid A: liquid C = 80: 20 was obtained. And mix it up to 100 rpm on the surface of the cathode ray tube panel.
Was applied for 60 seconds at a rotation speed of, and then heated at 160 ° C. for 30 minutes to obtain a film having a thickness of about 100 nm.

【0063】[実施例10]実施例1におけるA液、B
液、C液および実施例3におけるD液を各酸化物換算で
1.2wt%となるようにエタノールで希釈した後、A
液:B液:C液:D液=40:18:2:40重量比と
なるように混合し、ブラウン管パネル表面に100rp
mの回転速度で60秒間塗布し、その後160℃で30
分間加熱し約100nmの厚さの膜を得た。
[Embodiment 10] Liquid A and B in Embodiment 1.
Solution A, Solution C and Solution D in Example 3 were diluted with ethanol so as to be 1.2 wt% in terms of each oxide, and then A
Liquid: Liquid B: Liquid C: Liquid D = 40: 18: 2: 40 Mix in a weight ratio of 100 rp on the surface of the cathode ray tube panel.
coating at a rotation speed of 60 m for 60 seconds, and then at 160 ° C. for 30 seconds.
After heating for a minute, a film having a thickness of about 100 nm was obtained.

【0064】[実施例11]ナフテン酸コバルトを酸化
物換算で3wt%になるようにエタノールで希釈した
(H液)。
[Example 11] Cobalt naphthenate was diluted with ethanol so as to be 3 wt% in terms of oxide (liquid H).

【0065】実施例1におけるA液、B液、実施例3に
おけるD液およびH液をA液:B液:D液:H液=4
5:20:20:15重量比となるように混合し、ブラ
ウン管パネル表面に100rpmの回転速度で60秒間
塗布し、その後60℃で30分間加熱し約100nmの
厚さの膜を得た。この膜上に実施例7におけるE液を1
00rpmの回転速度で60秒間塗布し、その後380
℃で30分間加熱し2層構成の着色低反射帯電防止膜を
得た。
Solution A and solution B in Example 1, and solution D and solution H in Example 3 were solution A: solution B: solution D: solution H = 4.
The mixture was mixed in a weight ratio of 5: 20: 20: 15, coated on the surface of the cathode ray tube panel at a rotation speed of 100 rpm for 60 seconds, and then heated at 60 ° C. for 30 minutes to obtain a film having a thickness of about 100 nm. On this film, 1 part of the liquid E in Example 7 was applied.
Apply for 60 seconds at a rotation speed of 00 rpm, then 380
It was heated at 30 ° C. for 30 minutes to obtain a colored low reflection antistatic film having a two-layer structure.

【0066】[比較例1]実施例1におけるA液とB液
を各酸化物換算で1.2wt%となるようにエタノール
で希釈した後、A液:B液=80:20重量比となるよ
うに混合し、ブラウン管パネル表面に100rpmの回
転速度で60秒間塗布し、その後160℃で30分間加
熱し約100nmの厚さの膜を得た。
Comparative Example 1 Liquids A and B in Example 1 were diluted with ethanol so as to be 1.2 wt% in terms of each oxide, and then the ratio of liquid A: liquid B was 80:20. The mixture was mixed, coated on the surface of the cathode ray tube panel at a rotation speed of 100 rpm for 60 seconds, and then heated at 160 ° C. for 30 minutes to obtain a film having a thickness of about 100 nm.

【0067】[比較例2]実施例1におけるA液とB液
および実施例3におけるD液を各酸化物換算で1.2w
t%となるようにエタノールで希釈した後、A液:B
液:D液=40:20:40重量比となるように混合
し、ブラウン管パネル表面に100rpmの回転速度で
60秒間塗布し、その後60℃で30分間加熱し約10
0nmの厚さの膜を得た。
[Comparative Example 2] Liquids A and B in Example 1 and liquid D in Example 3 were 1.2 w in terms of each oxide.
After being diluted with ethanol to be t%, solution A: B
Liquid: D liquid = 40:20:40 mixed in a weight ratio, coated on the surface of the cathode ray tube panel at a rotation speed of 100 rpm for 60 seconds, and then heated at 60 ° C for 30 minutes to about 10
A film with a thickness of 0 nm was obtained.

【0068】[比較例3]実施例1におけるA液、B
液、C液および実施例3におけるD液を各酸化物換算で
1.2wt%となるようにエタノールで希釈した後、A
液:B液:C液:D液=40:19.5:0.5:40
重量比となるように混合し、ブラウン管パネル表面に1
00rpmの回転速度で60秒間塗布し、その後160
℃で30分間加熱し約100nmの厚さの膜を得た。こ
の膜上にSi(OEt)4 のエタノール溶液(酸化物換
算で固形分20wt%)にSi(OEt)4 に対してp
H3.0に調整した塩酸酸性水溶液を8mol比添加
し、80℃で2時間撹拌を行った後、エタノール酸化物
換算0.9wt%に希釈した溶液(E液)を100rp
mの回転速度で60秒間塗布し、その後380℃で30
分間加熱し2層構成の着色低反射帯電防止膜を得た。
[Comparative Example 3] Liquids A and B in Example 1
Solution A, Solution C and Solution D in Example 3 were diluted with ethanol so as to be 1.2 wt% in terms of each oxide, and then A
Liquid: Liquid B: Liquid C: Liquid D = 40: 19.5: 0.5: 40
Mix in a weight ratio to give 1 to the surface of the cathode ray tube panel.
Apply for 60 seconds at a rotation speed of 00 rpm, then 160
It was heated at 0 ° C. for 30 minutes to obtain a film having a thickness of about 100 nm. On this film, a solution of Si (OEt) 4 in ethanol (solid content 20 wt% in terms of oxide) was added to p with respect to Si (OEt) 4 .
After adding 8 mol ratio of hydrochloric acid acidic aqueous solution adjusted to H3.0 and stirring at 80 ° C. for 2 hours, a solution (solution E) diluted to 0.9 wt% in terms of ethanol oxide was added at 100 rp.
m rotation speed for 60 seconds, then at 380 ° C for 30 seconds
After heating for a minute, a colored low reflection antistatic film having a two-layer structure was obtained.

【0069】以上の結果を表1に示す。The above results are shown in Table 1.

【0070】[0070]

【表1】 [Table 1]

【0071】[実施例12]酸窒化チタン15gをあら
かじめpH3.0に調整した水溶液85g中に添加して
サンドミルで4時間粉砕して90℃、1時間加熱したの
ち、濃度5wt%に調整し、平均粒径90nmのゾルを
得た(I液)。Si(OEt)4 のエタノール溶液(酸
化物換算で固形分5wt%)にSi(OEt)4 に対し
てpH3.0に調整した硝酸酸性水溶液を8mol比添
加し、80℃で2時間還流した(J液)。エタノール1
00g中にアセチルアセトン7.5gを添加し、2−エ
チルヘキサン酸スズ16gを加え、1時間撹拌した(K
液)。
Example 12 15 g of titanium oxynitride was added to 85 g of an aqueous solution whose pH was adjusted to 3.0 in advance, pulverized in a sand mill for 4 hours, heated at 90 ° C. for 1 hour, and then adjusted to a concentration of 5 wt%. A sol having an average particle size of 90 nm was obtained (solution I). Si a (OEt) 4 in ethanol nitric acid aqueous solution adjusted to pH3.0 with respect to Si (OEt) 4 (having a solid part 5 wt% in terms of oxide) was added 8mol ratio, and the mixture was refluxed for 2 hours at 80 ° C. ( Solution J). Ethanol 1
Acetylacetone 7.5 g was added to 00 g, tin 2-ethylhexanoate 16 g was added, and the mixture was stirred for 1 hour (K.
liquid).

【0072】I液とJ液とK液をI液:J液:K液=
6:3:1重量比となるように混合した。この混合液1
2.6gにエタノール8.4g、プロピレングリコール
モノメチルエーテルアセテート27.3g、イソプロピ
ルアルコール7.8g、ジアセトンアルコール3.9g
を混合し、着色膜用コート液とした。
Solution I, solution J and solution K are prepared as solution I: solution J: solution K =
The mixture was mixed at a weight ratio of 6: 3: 1. This mixture 1
Ethanol 8.4 g, propylene glycol monomethyl ether acetate 27.3 g, isopropyl alcohol 7.8 g, diacetone alcohol 3.9 g in 2.6 g
Were mixed to obtain a coating liquid for colored film.

【0073】[実施例13]Sbが8mol%ドープさ
れたSnO2 微粒子(1次粒径10nm)15gをKO
HであらかじめpH8.0とした水85g中に添加して
サンドミルで16時間粉砕して90℃で1時間加熱した
後、濃度5wt%に調整しゾルを得た(L液)。
Example 13 15 g of SnO 2 fine particles (primary particle size 10 nm) doped with 8 mol% of Sb was KO.
The mixture was added to 85 g of water that had been adjusted to pH 8.0 with H in advance, pulverized with a sand mill for 16 hours, heated at 90 ° C. for 1 hour, and then adjusted to have a concentration of 5 wt% to obtain a sol (Liquid L).

【0074】I液とJ液とK液とL液をI液:J液:K
液:L液=15:30:10:45重量比となるように
混合した。この混合液12.6gにエタノール8.4
g、プロピレングリコールモノメチルエーテルアセテー
ト27.3g、イソプロピルアルコール7.8g、ジア
セトンアルコール3.9gを混合し、着色帯電防止膜用
コート液とした。
Liquid I, liquid J, liquid K and liquid L are liquid I: liquid J: K
Liquid: L liquid = 15: 30: 10: 45 were mixed in a weight ratio. Ethanol 8.4 was added to 12.6 g of this mixed solution.
g, propylene glycol monomethyl ether acetate 27.3 g, isopropyl alcohol 7.8 g, and diacetone alcohol 3.9 g were mixed to obtain a colored antistatic coating solution.

【0075】[実施例14]実施例13におけるSbが
8mol%ドープされたSnO2 微粒子のかわりにIT
O微粒子(Sn/In=10/90mol比、1次粒径
30nm)を用いた以外は実施例13と同様に行った。
[Embodiment 14] IT instead of SnO 2 fine particles doped with 8 mol% of Sb in Embodiment 13 was used.
Example 13 was repeated except that O fine particles (Sn / In = 10/90 mol ratio, primary particle size 30 nm) were used.

【0076】[実施例15]実施例13におけるSbが
8mol%ドープされたSnO2 微粒子のかわりにAl
が10mol%ドープされたZnO微粒子(1次粒径2
0nm)を用いた以外は実施例13と同様に行った。
[Embodiment 15] Al instead of the SnO 2 particles doped with 8 mol% of Sb in Embodiment 13 is replaced by Al.
ZnO fine particles (primary particle size 2
The same procedure as in Example 13 was performed except that 0 nm) was used.

【0077】[実施例16]実施例13におけるSbが
8mol%ドープされたSnO2 微粒子のかわりにGa
が8mol%ドープされたZnO微粒子(1次粒径40
nm)を用いた以外は実施例13と同様に行った。
[Example 16] In place of the SnO 2 fine particles doped with 8 mol% of Sb in Example 13, Ga was used.
ZnO fine particles (primary particle size 40
nm) was used, and the same procedure as in Example 13 was performed.

【0078】[比較例4]エタノール100g中に、2
−エチルヘキサン酸スズ15gを加え、1時間撹拌した
(M液)。実施例13におけるK液のかわりにM液を用
いた以外は実施例13と同様に行った。
[Comparative Example 4] In 100 g of ethanol, 2
15 g of tin ethylhexanoate was added and stirred for 1 hour (M liquid). The procedure of Example 13 was repeated except that the solution M was used instead of the solution K in Example 13.

【0079】実施例12〜16および比較例4において
作製された塗布液の評価結果を表2に示す。
Table 2 shows the evaluation results of the coating solutions prepared in Examples 12 to 16 and Comparative Example 4.

【0080】[0080]

【表2】 [Table 2]

【0081】[実施例17]実施例12において得られ
たコート液をブラウン管パネル表面に100rpmの回
転速度で60秒間塗布し、その後380℃で30分加熱
し約90nmの厚さの膜を得た。
Example 17 The coating liquid obtained in Example 12 was applied onto the surface of a cathode ray tube panel at a rotation speed of 100 rpm for 60 seconds, and then heated at 380 ° C. for 30 minutes to obtain a film having a thickness of about 90 nm. .

【0082】[実施例18]実施例13において得られ
たコート液をブラウン管パネル表面に100rpmの回
転速度で60秒間塗布し、その後380℃で30分加熱
し約90nmの厚さの膜を得た。
[Example 18] The coating liquid obtained in Example 13 was applied on the surface of a cathode ray tube panel at a rotation speed of 100 rpm for 60 seconds, and then heated at 380 ° C for 30 minutes to obtain a film having a thickness of about 90 nm. .

【0083】[実施例19]実施例14において得られ
たコート液をブラウン管パネル表面に100rpmの回
転速度で60秒間塗布し、その後380℃で30分加熱
し約90nmの厚さの膜を得た。
Example 19 The coating liquid obtained in Example 14 was applied on the surface of a cathode ray tube panel at a rotation speed of 100 rpm for 60 seconds, and then heated at 380 ° C. for 30 minutes to obtain a film having a thickness of about 90 nm. .

【0084】[実施例20]実施例15において得られ
たコート液をブラウン管パネル表面に100rpmの回
転速度で60秒間塗布し、その後380℃で30分加熱
し約90nmの厚さの膜を得た。
[Example 20] The coating liquid obtained in Example 15 was applied to the surface of a cathode ray tube panel at a rotation speed of 100 rpm for 60 seconds, and then heated at 380 ° C for 30 minutes to obtain a film having a thickness of about 90 nm. .

【0085】[実施例21]実施例16において得られ
たコート液をブラウン管パネル表面に100rpmの回
転速度で60秒間塗布し、その後380℃で30分加熱
し約90nmの厚さの膜を得た。
[Example 21] The coating solution obtained in Example 16 was applied on the surface of a cathode ray tube panel at a rotation speed of 100 rpm for 60 seconds, and then heated at 380 ° C for 30 minutes to obtain a film having a thickness of about 90 nm. .

【0086】[実施例22]酸窒化チタン15gおよび
Sbが8mol%ドープされたSnO2 粒子(1次粒径
10nm)5.0gをあらかじめpH13に調整した水
80g中に添加してサンドミルで16時間粉砕して90
℃で1時間加熱した後、濃度10wt%に調整し、平均
粒径90nmのゾルを得た(N液)。N液および実施例
12におけるJ液とK液をJ:K:N=3:1:6重量
比となるように混合した(P液)。P液12.6gにエ
タノール8.4g、プロピレングリコールモノメチルエ
ーテルアセテート27.3g、イソプロピルアルコール
7.8g、ジアセトンアルコール3.9gを混合し、着
色帯電防止膜用コート液とした。ブラウン管パネル表面
に100rpmの回転速度で60秒間塗布し、その後3
80℃で30分加熱し約90nmの厚さの膜を得た。
Example 22 15 g of titanium oxynitride and 5.0 g of SnO 2 particles (primary particle size: 10 nm) doped with 8 mol% of Sb were added to 80 g of water whose pH was adjusted to 13 in advance, and a sand mill was used for 16 hours. Crushed 90
After heating at 0 ° C. for 1 hour, the concentration was adjusted to 10 wt% to obtain a sol having an average particle size of 90 nm (N liquid). The N liquid and the J liquid and the K liquid in Example 12 were mixed at a J: K: N = 3: 1: 6 weight ratio (P liquid). 12.6 g of the P liquid were mixed with 8.4 g of ethanol, 27.3 g of propylene glycol monomethyl ether acetate, 7.8 g of isopropyl alcohol, and 3.9 g of diacetone alcohol to prepare a coating liquid for a colored antistatic film. Coat the surface of the cathode ray tube panel at a rotation speed of 100 rpm for 60 seconds, and then 3
After heating at 80 ° C. for 30 minutes, a film having a thickness of about 90 nm was obtained.

【0087】[実施例23]実施例22におけるP液1
2.6gにエタノール8.4gプロピレングリコールモ
ノメチルエーテルアセテート19.5g、イソプロピル
アルコール15.6g、ジアセトンアルコール3.9g
を混合し、着色帯電防止膜用コート液とした。ブラウン
管パネル表面に100rpmの回転速度で60秒間塗布
し、その後380℃で30分加熱し約90nmの厚さの
膜を得た。
[Example 23] Liquid P 1 in Example 22
Ethanol 8.4g Propylene glycol monomethyl ether acetate 19.5g, isopropyl alcohol 15.6g, diacetone alcohol 3.9g to 2.6g
Were mixed to obtain a coating liquid for a colored antistatic film. It was applied on the surface of the cathode ray tube panel at a rotation speed of 100 rpm for 60 seconds and then heated at 380 ° C. for 30 minutes to obtain a film having a thickness of about 90 nm.

【0088】[実施例24]実施例22におけるP液1
2.6gにエタノール8.4gプロピレングリコールモ
ノメチルエーテルアセテート35.1g、ジアセトンア
ルコール3.9gを混合し、着色帯電防止膜用コート液
とした。ブラウン管パネル表面に100rpmの回転速
度で60秒間塗布し、その後380℃で30分加熱し約
90nmの厚さの膜を得た。
[Example 24] Liquid P 1 in Example 22
2.6 g of ethanol was mixed with 8.4 g of ethanol and 35.1 g of propylene glycol monomethyl ether acetate and 3.9 g of diacetone alcohol to prepare a coating liquid for a colored antistatic film. It was applied on the surface of the cathode ray tube panel at a rotation speed of 100 rpm for 60 seconds and then heated at 380 ° C. for 30 minutes to obtain a film having a thickness of about 90 nm.

【0089】[実施例25]実施例22におけるP液1
2.6gにエタノール8.4gプロピレングリコールモ
ノプロピルエーテル27.3g、イソプロピルアルコー
ル7.8g、ジアセトンアルコール3.9gを混合し、
着色帯電防止膜用コート液とした。ブラウン管パネル表
面に100rpmの回転速度で60秒間塗布し、その後
380℃で30分加熱し約100nmの厚さの膜を得
た。
[Example 25] Liquid P 1 in Example 22
2.6 g of ethanol was mixed with 8.4 g of ethanol, 27.3 g of propylene glycol monopropyl ether, 7.8 g of isopropyl alcohol, and 3.9 g of diacetone alcohol,
It was used as a coating liquid for a colored antistatic film. It was applied on the surface of a cathode ray tube panel for 60 seconds at a rotation speed of 100 rpm, and then heated at 380 ° C. for 30 minutes to obtain a film having a thickness of about 100 nm.

【0090】[実施例26]J液20gにプロピレング
リコールモノメチルエーテルアセテート52.5g、イ
ソプロピルアルコール42.0g、ジアセトンアルコー
ル10.5gを混合した(Q液)。実施例22における
380℃、30分の加熱処理を60℃、10分の加熱処
理に変更し、約100nmの厚さの膜を得た。この膜の
上に、H液を実施例17記載のスピンコート法で塗布
し、380℃で30分加熱処理し着色低反射帯電防止膜
を得た。
[Example 26] 20 g of J liquid was mixed with 52.5 g of propylene glycol monomethyl ether acetate, 42.0 g of isopropyl alcohol and 10.5 g of diacetone alcohol (liquid Q). The heat treatment at 380 ° C. for 30 minutes in Example 22 was changed to the heat treatment at 60 ° C. for 10 minutes to obtain a film having a thickness of about 100 nm. Liquid H was applied onto this film by the spin coating method described in Example 17, and heat-treated at 380 ° C. for 30 minutes to obtain a colored low-reflection antistatic film.

【0091】[実施例27]実施例23における380
℃、30分の加熱処理を60℃、10分の加熱処理に変
更し、約100nmの厚さの膜を得た。この膜の上に、
H液を実施例17記載のスピンコート法で塗布し、38
0℃で30分加熱処理し着色低反射帯電防止膜を得た。
[Embodiment 27] 380 in Embodiment 23
The heat treatment at 30 ° C. for 30 minutes was changed to the heat treatment at 60 ° C. for 10 minutes to obtain a film having a thickness of about 100 nm. On this membrane,
Solution H was applied by the spin coating method described in Example 17 to give 38
Heat treatment was carried out at 0 ° C. for 30 minutes to obtain a colored low reflection antistatic film.

【0092】[比較例5]比較例4において得られたコ
ート液をブラウン管パネル表面に100rpmの回転速
度で60秒間塗布し、その後380℃で30分加熱し約
90nmの厚さの膜を得た。
[Comparative Example 5] The coating solution obtained in Comparative Example 4 was applied to the surface of the cathode ray tube panel at a rotation speed of 100 rpm for 60 seconds, and then heated at 380 ° C for 30 minutes to obtain a film having a thickness of about 90 nm. .

【0093】[比較例6]P液12.6gにエタノール
8.4g、メチルエチルケトン27.3g、イソプロピ
ルアルコール7.8g、ジアセトンアルコール3.9g
を混合し、着色帯電防止膜用コート液とした。ブラウン
管パネル表面に100rpmの回転速度で60秒間塗布
し、その後380℃で30分加熱し約100nmの厚さ
の膜を得た。
[Comparative Example 6] 8.4 g of ethanol, 27.3 g of methyl ethyl ketone, 7.8 g of isopropyl alcohol, and 3.9 g of diacetone alcohol were added to 12.6 g of P liquid.
Were mixed to obtain a coating liquid for a colored antistatic film. It was applied on the surface of a cathode ray tube panel for 60 seconds at a rotation speed of 100 rpm, and then heated at 380 ° C. for 30 minutes to obtain a film having a thickness of about 100 nm.

【0094】[比較例7]P液12.6gにエタノール
8.4g、プロピレングリコールモノメチルエーテルア
セテート7.8g、イソプロピルアルコール23.4
g、ジアセトンアルコール7.8gを混合し、着色帯電
防止膜用コート液とした。ブラウン管パネル表面に10
0rpmの回転速度で60秒間塗布し、その後380℃
で30分加熱し約100nmの厚さの膜を得た。
[Comparative Example 7] 8.4 g of ethanol, 7.8 g of propylene glycol monomethyl ether acetate, and 23.4 g of isopropyl alcohol were added to 12.6 g of P liquid.
g and 7.8 g of diacetone alcohol were mixed to obtain a coating liquid for a colored antistatic film. 10 on the surface of a CRT panel
Apply for 60 seconds at a rotation speed of 0 rpm, then 380 ° C
After heating for 30 minutes, a film having a thickness of about 100 nm was obtained.

【0095】実施例17〜27および比較例5〜7にお
いて着色膜、着色帯電防止膜、着色低反射帯電防止膜の
外観についての評価結果および膜特性の評価結果をそれ
ぞれ表3、表4に示す。
Tables 3 and 4 show the evaluation results of the appearance of the colored films, the colored antistatic films, and the colored low-reflection antistatic films and the evaluation results of the film characteristics in Examples 17 to 27 and Comparative Examples 5 to 7, respectively. .

【0096】[0096]

【表3】 [Table 3]

【0097】[0097]

【表4】 [Table 4]

【0098】[0098]

【発明の効果】本発明の着色膜、着色帯電防止膜、着色
低反射帯電防止膜は、低温熱処理が可能であり、全可視
光領域において均一な吸収を有するため低反射特性がす
ぐれている。また、窒素を含有してなる酸化チタン自体
は導電性を有しているため帯電防止能を発現することが
できる。
INDUSTRIAL APPLICABILITY The colored film, the colored antistatic film and the colored low reflection antistatic film of the present invention can be heat-treated at a low temperature and have uniform absorption in the entire visible light region, and thus have excellent low reflection characteristics. In addition, since titanium oxide itself containing nitrogen has conductivity, it can exhibit antistatic ability.

【0099】本発明の塗布液は長期安定性に優れ、かつ
スピンコート法で塗布する際に液の流れ跡、粒子の流れ
た跡、膜乾燥時の粒子の凝集、乾燥むら、膜厚差等の少
ない、全可視光領域において均一な吸収を有する優れた
着色膜、着色帯電防止膜、着色低反射帯電防止膜を提供
することが可能となる。本発明は生産性に優れ、かつ真
空を必要としないので装置も比較的安価なものでよい。
特にCRTのパネルフェイス面等の大面積の基体にも充
分適用でき、量産も可能であるため工業的価値は非常に
高い。
The coating liquid of the present invention is excellent in long-term stability, and traces of liquid flow, traces of flow of particles, agglomeration of particles at the time of film drying, unevenness of drying, film thickness difference, etc. when applied by spin coating. It is possible to provide an excellent colored film, a colored antistatic film, and a colored low-reflection antistatic film which have a small amount and have uniform absorption in the entire visible light region. Since the present invention is excellent in productivity and does not require a vacuum, the apparatus may be relatively inexpensive.
In particular, it can be applied to a large-area substrate such as a panel face surface of a CRT and can be mass-produced, so that its industrial value is very high.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C09D 5/00 PPQ 183/04 PMS H01J 29/89 // G02B 1/10 (72)発明者 大橋 恵子 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 河里 健 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C09D 5/00 PPQ 183/04 PMS H01J 29/89 // G02B 1/10 (72) Inventor Ohashi Keiko 1150, Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa Asahi Glass Co., Ltd. Central Research Laboratory (72) Inventor Ken Kawari 1150, Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa Pref., Asahi Glass Co., Ltd.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】酸窒化チタンと、Sn有機酸塩および/ま
たはCo有機酸塩とを含む着色膜形成用塗布液。
1. A coating solution for forming a colored film, which contains titanium oxynitride and a Sn organic acid salt and / or a Co organic acid salt.
【請求項2】酸窒化チタンと、Si(OR)m R’n
(m+n=4、m=1〜4、n=0〜3、R、R’=C
1 〜C4 のアルキル基)またはその加水分解物と、Sn
有機酸塩と、β−ジケトンとを含み、さらに、プロピレ
ングリコールエーテル、その誘導体、プロピレングリコ
ールエーテルアセテートおよびその誘導体からなる群か
ら選ばれる少なくとも1種と、メタノール、エタノー
ル、およびプロパノールからなる群から選ばれる少なく
とも1種と、ジアセトンアルコールとを含むことを特徴
とする請求項1記載の着色膜形成用塗布液。
2. Titanium oxynitride and Si (OR) m R'n
(M + n = 4, m = 1 to 4, n = 0 to 3, R, R ′ = C
Alkyl group) or a hydrolyzate of 1 -C 4, Sn
At least one selected from the group consisting of propylene glycol ether, a derivative thereof, propylene glycol ether acetate and a derivative thereof, containing an organic acid salt and β-diketone, and selected from the group consisting of methanol, ethanol, and propanol. The coating liquid for forming a colored film according to claim 1, comprising at least one selected from the group consisting of diacetone alcohol and diacetone alcohol.
【請求項3】Sn、In、Sb、Zn、AlおよびGa
のうち少なくとも1種からなる導電性酸化物を含むこと
を特徴とする請求項1または2記載の着色膜形成用塗布
液。
3. Sn, In, Sb, Zn, Al and Ga
The coating liquid for forming a colored film according to claim 1, which contains a conductive oxide of at least one of the above.
【請求項4】前記Sn有機酸塩が、ナフテン酸第1スズ
および2−エチルヘキサン酸スズの少なくとも1種であ
ることを特徴とする請求項1〜3いずれか1項記載の着
色膜形成用塗布液。
4. The colored film forming composition according to claim 1, wherein the Sn organic acid salt is at least one of stannous naphthenate and tin 2-ethylhexanoate. Coating liquid.
【請求項5】前記Co有機酸塩が、ナフテン酸第1コバ
ルトおよび2−エチルヘキサン酸コバルトの少なくとも
1種であることを特徴とする請求項1または3記載の着
色膜形成用塗布液。
5. The coating solution for forming a colored film according to claim 1 or 3, wherein the Co organic acid salt is at least one selected from primary cobalt naphthenate and cobalt 2-ethylhexanoate.
【請求項6】前記酸窒化チタンが、Nを0. 1〜30w
t%含有するTiOx (1.0≦x<2.0)であるこ
とを特徴とする請求項1〜5いずれか1項記載の着色膜
形成用塗布液。
6. The titanium oxynitride has a N content of 0.1 to 30 w.
The coating liquid for forming a colored film according to claim 1, wherein the coating liquid is TiO x (1.0 ≦ x <2.0) containing t%.
【請求項7】請求項1〜6いずれか1項記載の塗布液を
塗布した後、加熱および/または紫外線を照射すること
により得られたことを特徴とする380nmから700
nmの波長領域において透過率が低下された着色膜。
7. A coating obtained by applying the coating liquid according to claim 1 and then heating and / or irradiating with ultraviolet rays to obtain 380 nm to 700 nm.
A colored film having reduced transmittance in the wavelength region of nm.
【請求項8】基体表面に、酸窒化チタンを含み、さらに
Sn有機酸塩およびCo有機酸塩のうち少なくとも1種
を含み、さらにSn、In、Sb、Zn、AlおよびG
aのうち少なくとも1種からなる導電性酸化物を含む溶
液を塗布した後、加熱および/または紫外線を照射する
ことにより得られたことを特徴とする380nmから7
00nmの波長領域において透過率が低下され、かつ帯
電防止能を有する着色帯電防止膜。
8. A substrate surface containing titanium oxynitride, further containing at least one of Sn organic acid salt and Co organic acid salt, and further Sn, In, Sb, Zn, Al and G.
380 nm to 7 which is obtained by applying a solution containing a conductive oxide of at least one of a and then heating and / or irradiating with ultraviolet light.
A colored antistatic film having a reduced transmittance in the wavelength region of 00 nm and having antistatic ability.
【請求項9】基体表面に、酸窒化チタンを含み、さらに
Sn有機酸塩およびCo有機酸塩のうち少なくとも1種
を含み、さらにSn、In、Sb、Zn、AlおよびG
aのうち少なくとも1種からなる導電性酸化物を含む溶
液を塗布した後、加熱および/または紫外線を照射する
ことに被膜を形成し、さらにこの上に当該被膜よりも低
屈折率を有する膜を形成したことを特徴とする380n
mから700nmの波長領域において透過率が低下さ
れ、かつ帯電防止能および低反射能を有する着色低反射
帯電防止膜。
9. A substrate surface containing titanium oxynitride, further containing at least one of Sn organic acid salt and Co organic acid salt, and further Sn, In, Sb, Zn, Al and G.
After coating a solution containing a conductive oxide consisting of at least one of a, a coating is formed by heating and / or irradiating with ultraviolet light, and a film having a lower refractive index than the coating is formed on the coating. 380n characterized by being formed
A colored low-reflection antistatic film having a reduced transmittance in the wavelength range of m to 700 nm and having antistatic ability and low reflectance.
【請求項10】基体上に形成された多層膜からなり、そ
のうち少なくとも1層が酸窒化チタンを含み、さらにS
n有機酸塩およびCo有機酸塩のうち少なくとも1種を
含み、さらにSn、In、Sb、Zn、Al、Gaのう
ち少なくとも1種の導電性酸化物を含む溶液を塗布した
ことにより得られる被膜であることを特徴とする着色低
反射帯電防止膜。
10. A multilayer film formed on a substrate, at least one layer of which contains titanium oxynitride, and S
A film obtained by applying a solution containing at least one kind of n organic acid salt and Co organic acid salt and further containing at least one conductive oxide of Sn, In, Sb, Zn, Al, and Ga. Is a colored low-reflection antistatic film.
【請求項11】前記Sn有機酸塩が、ナフテン酸第1ス
ズおよび2−エチルヘキサン酸スズの少なくとも1種で
あることを特徴とする請求項8〜10いずれか1項記載
の着色膜、着色帯電防止膜および着色低反射帯電防止
膜。
11. The colored film according to any one of claims 8 to 10, wherein the Sn organic acid salt is at least one of stannous naphthenate and tin 2-ethylhexanoate. Antistatic film and colored low reflection antistatic film.
【請求項12】前記Co有機酸塩が、ナフテン酸第1コ
バルトおよび2−エチルヘキサン酸コバルトの少なくと
も1種であることを特徴とする請求項8〜10いずれか
1項記載の着色膜、着色帯電防止膜および着色低反射帯
電防止膜。
12. The colored film according to any one of claims 8 to 10, wherein the Co organic acid salt is at least one of cobalt cobalt naphthenate and cobalt 2-ethylhexanoate. Antistatic film and colored low reflection antistatic film.
【請求項13】前記酸窒化チタンが、Nを0. 1〜30
wt%含有するTiOx (1.0≦x<2.0)である
ことを特徴とする請求項8〜12いずれか1項記載の着
色膜、着色帯電防止膜、着色低反射帯電防止膜。
13. The titanium oxynitride has a N content of 0.1 to 30.
The colored film, the colored antistatic film, or the colored low-reflection antistatic film according to any one of claims 8 to 12, which is TiO x (1.0 ≦ x <2.0) contained in an amount of wt%.
【請求項14】請求項7〜13いずれか1項記載の着色
膜、着色帯電防止膜、着色低反射帯電防止膜を形成した
陰極線管。
14. A cathode ray tube having a colored film, a colored antistatic film, and a colored low-reflection antistatic film according to any one of claims 7 to 13.
【請求項15】請求項7〜13いずれか1項記載の着色
膜、着色帯電防止膜、着色低反射帯電防止膜を形成した
ガラス物品。
15. A glass article on which the colored film, the colored antistatic film or the colored low reflection antistatic film according to any one of claims 7 to 13 is formed.
JP5217209A 1993-06-30 1993-09-01 Coating liquid for colored film forming, colored film, colored antistatic film and colored low reflective antistatic film Pending JPH0789720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5217209A JPH0789720A (en) 1993-06-30 1993-09-01 Coating liquid for colored film forming, colored film, colored antistatic film and colored low reflective antistatic film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-187278 1993-06-30
JP18727893 1993-06-30
JP5217209A JPH0789720A (en) 1993-06-30 1993-09-01 Coating liquid for colored film forming, colored film, colored antistatic film and colored low reflective antistatic film

Publications (1)

Publication Number Publication Date
JPH0789720A true JPH0789720A (en) 1995-04-04

Family

ID=26504252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5217209A Pending JPH0789720A (en) 1993-06-30 1993-09-01 Coating liquid for colored film forming, colored film, colored antistatic film and colored low reflective antistatic film

Country Status (1)

Country Link
JP (1) JPH0789720A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000078879A1 (en) * 1999-06-24 2000-12-28 Nippon Arc Co., Ltd. Coated article
US7208203B2 (en) * 2002-08-19 2007-04-24 Fujitsu Limited Method for forming metal oxide film and method for forming secondary electron emission film in gas discharge tube
JP2016126921A (en) * 2014-12-29 2016-07-11 小林 博 Transparent conductive film and method for producing the same
JP2018058712A (en) * 2016-10-03 2018-04-12 住友電気工業株式会社 Coated optical fiber
JPWO2017022637A1 (en) * 2015-08-05 2018-06-07 リケンテクノス株式会社 Antistatic resin composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000078879A1 (en) * 1999-06-24 2000-12-28 Nippon Arc Co., Ltd. Coated article
US6703131B1 (en) 1999-06-24 2004-03-09 Nippon Arc Co., Ltd. Coated article
US7208203B2 (en) * 2002-08-19 2007-04-24 Fujitsu Limited Method for forming metal oxide film and method for forming secondary electron emission film in gas discharge tube
JP2016126921A (en) * 2014-12-29 2016-07-11 小林 博 Transparent conductive film and method for producing the same
JPWO2017022637A1 (en) * 2015-08-05 2018-06-07 リケンテクノス株式会社 Antistatic resin composition
JP2018058712A (en) * 2016-10-03 2018-04-12 住友電気工業株式会社 Coated optical fiber

Similar Documents

Publication Publication Date Title
JPH0877832A (en) Base material with transparent conductive covering, its manufacture, and display device with this base material
JPH10142401A (en) Low-reflectivity transparent conductive film as well as its production and display device
JPH0789720A (en) Coating liquid for colored film forming, colored film, colored antistatic film and colored low reflective antistatic film
JPH05107403A (en) High refractivity conductive film or low reflective anti-static film and manufacture thereof
EP0552796A1 (en) Conductive film and low reflection conductive film and processes for their production
JPH07268251A (en) Coating composition for conductive film with high rffractive index, and transparent laminate with conductive reflectionproof film obtained therefrom
US5578377A (en) Colored thin film-forming coating solution and colored thin film obtained by such coating solution
JP3347467B2 (en) Coating liquid for forming colored thin film, colored thin film and method for producing the same, and glass article
JPH0782527A (en) Colored film-forming liquid coating, colored film, and production thereof
JPH0854502A (en) Coating liquid for forming colored low resistance film, colored low resistance film and glass product having colored low resistance film
US7132169B2 (en) Composition for forming coating layer and flat monitor panel for display device having coating layer prepared from the same
JPH0782526A (en) Liquid coating, colored film, and production thereof
JP3729528B2 (en) Colored film-forming coating solution, colored film and glass article on which colored film is formed
JPH07326308A (en) Coating liquid for forming colored thin film and colored thin film obtained by the same
JPH0762323A (en) Coating liquid for forming colored film, colored film and preparation thereof
JPH0474568A (en) Low reflection antistatic film and preparation and use thereof
JPH07281004A (en) Colored low resistance film forming application liquid, colored low resistance film and manufacture thereof
JP3484903B2 (en) Coating liquid for forming low-resistance film, low-resistance film and method for manufacturing the same, and low-reflection low-resistance film and method for manufacturing the same
JPH06119816A (en) Transparent conductive film and manufacture thereof
JPH06228500A (en) Antistatic and antireflecting film and coating for forming thereof
JPH10212138A (en) Display device
JPH06139822A (en) Transparent conducting film, reflection-proof electrification preventing film, and their manufacture
JPH0785788A (en) Solution for antistatic film formation, antistatic film, and its manufacture
JPH0612920A (en) Transparent conductive film, a low reflecting antistatic film, and these manufacture
JP2000204282A (en) Coating liquid for forming low-transmittance transparent layer