WO2017020222A1 - 控制外部设备的移动的方法和设备 - Google Patents

控制外部设备的移动的方法和设备 Download PDF

Info

Publication number
WO2017020222A1
WO2017020222A1 PCT/CN2015/085930 CN2015085930W WO2017020222A1 WO 2017020222 A1 WO2017020222 A1 WO 2017020222A1 CN 2015085930 W CN2015085930 W CN 2015085930W WO 2017020222 A1 WO2017020222 A1 WO 2017020222A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
predetermined trajectory
trajectory
coordinates
array mode
Prior art date
Application number
PCT/CN2015/085930
Other languages
English (en)
French (fr)
Inventor
杨帆
Original Assignee
北京艾肯拓科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京艾肯拓科技有限公司 filed Critical 北京艾肯拓科技有限公司
Priority to US15/749,769 priority Critical patent/US10884406B2/en
Priority to PCT/CN2015/085930 priority patent/WO2017020222A1/zh
Priority to CN201610548121.9A priority patent/CN106406339B/zh
Publication of WO2017020222A1 publication Critical patent/WO2017020222A1/zh
Priority to US17/115,702 priority patent/US20210089023A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0016Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the operator's input device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • Embodiments of the present disclosure generally relate to the field of information technology, and more particularly to methods and apparatus for controlling movement of an external device.
  • Control operations of intelligent mobile devices are typically implemented by radio remote control, for example, the operator sends control to the smart mobile device via a controller (eg, a remote control, a handheld control terminal, or a ground console) command.
  • a controller eg, a remote control, a handheld control terminal, or a ground console
  • the controller sends dynamic control commands to the smart mobile device, for example, dynamically controlling the moving direction, moving speed or flying height of the smart mobile device through the controller;
  • the second is parameter control, and the controller sends a desired target location to the smart mobile device, for example, transmits the desired latitude and longitude coordinates, height coordinates, and the like to the smart mobile device, and the smart mobile device moves according to the received coordinate information.
  • embodiments of the present disclosure provide a method and apparatus for controlling movement of an external device, enabling rapid and efficient control of movement of the external device.
  • a method of controlling movement of an external device comprising: generating an array mode on an interface of the device; and generating a predetermined trajectory on the array mode to cause the external device to move according to a predetermined trajectory .
  • the generated array pattern includes any one of the following: a rectangular array and a circular array.
  • the rectangular array is an array of three rows and three columns.
  • generating the array mode on the interface of the device comprises: generating a corresponding array mode on the interface of the device according to a predetermined setting.
  • generating the array mode on the interface of the device comprises: generating an array mode on an electronic map of the device.
  • generating the predetermined trajectory in the array mode comprises moving and/or scaling the electronic map and/or the array mode to generate a predetermined trajectory on the array mode.
  • moving and/or scaling the electronic map and/or the array mode to generate the predetermined trajectory in the array mode comprises: moving and/or scaling the electronic map and/or the array according to the predetermined trajectory The mode is such that the predetermined trajectory is completely included in the array mode.
  • generating the predetermined trajectory in the array mode comprises rotating the electronic map and/or the array mode to generate a predetermined trajectory on the array mode.
  • rotating the electronic map and/or the array mode to generate the predetermined trajectory in the array mode comprises rotating the electronic map and/or the array pattern according to the predetermined trajectory such that the predetermined trajectory The direction matches the direction of the array mode.
  • generating a predetermined trajectory in the array mode such that the external device moves according to the predetermined trajectory comprises: automatically shifting the endpoint to the adjacent array point for the endpoint of the trajectory not in the array mode on.
  • the generating of the predetermined trajectory in the array mode to move the external device according to the predetermined trajectory comprises calculating the coordinates of the predetermined trajectory based on the position of the array point corresponding to the predetermined trajectory.
  • the coordinates are relative coordinates or absolute coordinates.
  • calculating the coordinates of the predetermined trajectory based on the position of the array point corresponding to the predetermined trajectory includes: when the coordinates are relative coordinates, using the origin of the array mode as a coordinate origin, calculating a predetermined The relative coordinates of the starting array point of the trajectory; and the method further comprises: controlling the external device to move to the relative coordinates to begin execution of the predetermined trajectory.
  • calculating the coordinates of the predetermined trajectory based on the position of the array point corresponding to the predetermined trajectory comprises: calculating the absolute value of the starting array point corresponding to the predetermined trajectory when the coordinates are absolute coordinates Coordinates; and the method further includes: controlling the external device to move to the absolute coordinates to begin execution of the predetermined trajectory.
  • the starting of the execution of the predetermined trajectory comprises: performing the predetermined trajectory from any point in the predetermined trajectory.
  • an apparatus for controlling movement of an external device including array generating means for generating an array mode on an interface of the apparatus; and trajectory generating means for generating on the array mode A predetermined trajectory to cause the external device to move according to a predetermined trajectory.
  • An exemplary embodiment of the present disclosure may bring at least one of the following technical effects: using an array mode as a reference point of a trajectory design, and generating a predetermined trajectory on the array mode to cause an external device to move according to a predetermined trajectory, thereby The movement of the external device can be quickly controlled, and the transmission efficiency of the control command and the moving efficiency of the smart mobile device can be improved.
  • FIG. 1 illustrates an exemplary diagram of generating a movement trajectory on an electronic map in the prior art
  • FIG. 2 illustrates a flow diagram of a method 200 of controlling movement of an external device, in accordance with an embodiment of the present disclosure
  • FIG. 3 illustrates an example diagram of an array mode in accordance with an embodiment of the present disclosure
  • FIGS. 4A-4D illustrate example diagrams of moving, zooming, and rotating an electronic map in accordance with an embodiment of the present disclosure
  • 5A-5F illustrate example diagrams of generated predetermined trajectories in accordance with an embodiment of the present disclosure
  • FIG. 6 illustrates a block diagram of an apparatus 600 that controls movement of an external device, in accordance with an embodiment of the present disclosure
  • each block of the flowchart or block diagram may represent a module, a program segment, or a portion of code, which may include one or more for implementing various embodiments. Executable instructions for the specified logical functions. It should also be noted that in some alternative implementations, the functions noted in the blocks may also occur in a different order than that illustrated in the drawings. For example, two blocks shown in succession may in fact be executed substantially in parallel, or they can sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the flowcharts and/or block diagrams, and combinations of blocks in the flowcharts and/or block diagrams can be implemented using a dedicated hardware-based system that performs the specified functions or operations. Or can be implemented using a combination of dedicated hardware and computer instructions.
  • FIG. 2 illustrates a flow diagram of a method 200 of controlling movement of an external device, in accordance with an embodiment of the present disclosure.
  • an array mode is generated on the interface of the device.
  • An array pattern is a collection of array points that represent the arrangement of array points.
  • an array mode is generated on the interface of the device, the array mode including nine array points, namely array point A, array point B, array point C, array point D, array point E, array point F, array point G, array point H, and array point I.
  • the array pattern is superimposed (eg, suspended) on top of the background interface of the device such that the array mode and background interface can be displayed simultaneously.
  • the generated array pattern includes any one of the following: a rectangular array and a circular array.
  • the resulting array pattern can be either a rectangular array, such as the rectangular array pattern of Figures 5A-5E, or a circular array, such as the circular array of Figure 5F, which exhibits center symmetry.
  • the rectangular array is an array of three rows and three columns (also referred to as a "nine square grid" array), such as the 3 x 3 array illustrated in Figure 3, which may be presented Evenly distributed.
  • Jiugong grid array is a common array mode in smartphones. Generally, users are familiar with this array mode and are very familiar with the pattern generated in this array mode. Although the Jiugong grid array has only nine array points, it can generate hundreds of thousands of different trajectories, so it can meet the needs of general mobile trajectories.
  • generating the array mode on the interface of the device comprises: generating a corresponding array mode on the interface of the device according to a predetermined setting.
  • the array mode can be randomly generated automatically, but the corresponding array mode can also be generated according to the needs of the user.
  • the user selects the desired array mode or enters the corresponding requirements. For example, if the user wants to perform a rectangular movement trajectory, a rectangular array can be generated; if the user wants to perform a circular movement trajectory, a circular array can be generated.
  • the user after generating the array mode, can change the array mode. For example, if the user is not satisfied with the generated array mode, the device can present all of the array mode templates to the user for the user to select the desired array mode. According to yet another embodiment of the present disclosure, the user may refresh the array mode to randomly generate a new array mode.
  • generating the array mode on the interface of the device comprises: generating an array mode on an electronic map of the device.
  • the current background of the device interface is an electronic map
  • an array mode is generated on the upper layer of the electronic map.
  • the interface of the device includes an electronic map of the lower layer, an array pattern of the upper layer, and a scale of the current map (for example, In the example of Figure 3, the actual distance between adjacent array points is 100 meters).
  • the electronic map may be a two-dimensional map, a three-dimensional map, or a satellite map or the like.
  • a predetermined trajectory is generated on the array mode to cause the external device to move in accordance with a predetermined trajectory.
  • the external device is controlled to move according to the position corresponding to the trajectory on the array mode by drawing the desired trajectory on the array mode.
  • only the array points in the array mode become the endpoints of the trajectory, so using the array mode produces fewer trajectory endpoints, thereby reducing the number of location points sent to external devices (eg, smart mobile devices).
  • generating the predetermined trajectory in the array mode comprises: moving and/or scaling the electronic map and/or the array mode to generate a predetermined trajectory on the array mode.
  • the electronic map may be moved such that the layer map presents the actual map location of the trajectory desired by the user.
  • the mobile electronic map can be panned by dragging the map directly or by an auxiliary arrow (not shown). For example, if the default location of the electronic map is the A area and the predetermined trajectory is in the B area, the electronic map can be moved from the A area to the B area.
  • the current location of the external device can be obtained in real time, and the current location of the external device is set as the center point of the current electronic map, thereby realizing automatic movement of the electronic map.
  • the electronic map and/or array mode may be scaled such that the default map size matches the desired track size. For example, if the default map scale is 1:10,000, and the movement of the external device may be in the range of tens of thousands of square meters, the electronic map needs to be scaled, for example, the map scale is scaled to 1:100.
  • moving and/or scaling the electronic map and/or the array mode to generate the predetermined trajectory in the array mode comprises: moving and/or scaling the electronic map and/or the array mode according to the predetermined trajectory, So that the predetermined trajectory is completely included in the array mode.
  • the electronic map and/or array mode is moved and/or scaled such that the predetermined trajectory is just included in the array mode, such that the array mode is optimally used.
  • the scale of the array mode in the absence of a background map, can be scaled to meet the requirements of a predetermined trajectory.
  • the scale between adjacent array points is expanded from 1:100 to 1:500, and the actual positional distance between adjacent array points is increased by a factor of five.
  • generating the predetermined trajectory in the array mode comprises rotating the electronic map and/or the array mode to generate a predetermined trajectory on the array mode.
  • a rotation operation can be performed, and during the rotation, both the electronic map and the array mode can be rotated.
  • rotating the electronic map and/or the array mode to generate the predetermined trajectory in the array mode comprises rotating the electronic map and/or the array pattern according to the predetermined trajectory such that the predetermined trajectory The direction matches the direction of the array mode. For example, in the examples of FIGS.
  • the array mode and the predetermined trajectory are both rectangular, they do not completely coincide with each other, that is, there is an angular deviation, so the electronic map can be rotated so that the array mode and the predetermined trajectory are maximized.
  • the degree of coincidence is not only linear.
  • FIG. 4A shows the current background electronic map
  • the left side of FIG. 4B is a predetermined array mode
  • the right side of FIG. 4B represents a predetermined trajectory
  • FIG. 4c represents an interface for generating an array mode on an electronic map.
  • the predetermined trajectory of the dashed line does not match the current electronic map and array pattern, so the electronic map of Figure 4C needs to be entered. Line processing.
  • the map is selected clockwise so that the predetermined trajectory of the rectangle matches the array pattern of the rectangle in the direction, thereby obtaining the interface of FIG. 4D.
  • the rotation operation may also be performed first, followed by the moving and/or zooming operation.
  • the electronic map may also be held stationary, and the array pattern and the predetermined trajectory may be coincident and/or matched by moving and/or scaling the array mode.
  • a corresponding trajectory is generated on the array mode according to a predetermined trajectory.
  • the finger sequentially passes through the array point H, the array point G, the array point A, the array point C, the array point I, and the array point H in FIG. 4D, thereby generating a trajectory in the direction indicated by the arrow in FIG. 4D.
  • the generating of the predetermined trajectory in the array mode such that the external device moves according to the predetermined trajectory comprises automatically panning the endpoint to the adjacent array point for the endpoints of the trajectory not in the array mode.
  • an input error for example, an error in finger touch.
  • the endpoints that are not in array mode can be automatically translated to adjacent array points, reducing unnecessary input errors when the trajectory is generated.
  • the generated trajectory may be arbitrarily drawn by the user, and may include, but is not limited to, the triangular trajectory in FIG. 5A, the "Z" shaped trajectory in FIG. 5B, and the interleaving in FIG. 5C in addition to the common rectangular trajectory.
  • the trajectories of Figures 5A-5D since the distance between the array points is known and equal, it is easy to determine which motion mode the trajectory belongs to.
  • wherein generating a predetermined trajectory in the array mode to cause the external device to move according to the predetermined trajectory includes calculating a coordinate of the predetermined trajectory based on a position of the array point corresponding to the predetermined trajectory. For example, by determining the position points of the map corresponding to each of the predetermined trajectories, the coordinates of each array point in the trajectory are obtained. Position, thereby obtaining the coordinate position of the predetermined trajectory. For example, in the embodiment of FIG. 4, the coordinates of the position points of the map corresponding to the array point H, the array point G, the array point A, the array point c, and the array point I are respectively calculated, and the calculated values are transmitted to the external device.
  • the position coordinates that is, the coordinates corresponding to the H point, the coordinates corresponding to the G point, the coordinates corresponding to the A point, the coordinates corresponding to the C point, and the coordinates corresponding to the I point.
  • the external device After receiving the above coordinate command, the external device will sequentially move to the coordinates corresponding to the H point, the coordinates corresponding to the G point, the coordinates corresponding to the A point, the coordinates corresponding to the C point, and the coordinates corresponding to the I point according to the order. And the coordinates corresponding to the H point.
  • a "Start" button on the interface may be triggered to control the external device to start moving.
  • the external device is immediately controlled to start moving.
  • the calculated coordinates are relative coordinates or absolute coordinates.
  • calculating the coordinates of the predetermined trajectory based on the position of the array point corresponding to the predetermined trajectory includes calculating a predetermined trajectory when the coordinates are relative coordinates, using the origin of the array mode as a coordinate origin The relative coordinates of the starting array points; and the method further comprises: controlling the external device to move to the relative coordinates to begin execution of the predetermined trajectory. For example, in the example of FIG.
  • a trajectory of H point - G point - A point - C point - I point - H point is generated, when the distance between adjacent array points is 100 meters and the upward direction is In the north, select the E point as the origin of the array mode, and calculate the relative coordinates of the starting point H.
  • the external device first moves 100 meters to the south (ie, moves from the origin E point to the starting point H of the array mode), and then starts. Perform a predetermined trajectory, that is, first move 100 meters to the west, then move 200 meters to the north, then move 200 meters to the east, then move 200 meters to the south, and finally move 100 meters to the west, returning to the origin of the external device. position.
  • calculating the coordinates of the predetermined trajectory based on the position of the array point corresponding to the predetermined trajectory includes calculating the initial array point corresponding to the predetermined trajectory when the coordinates are absolute coordinates Absolute coordinates; and the method further comprises: controlling the external device to move to the absolute coordinates to begin execution of the predetermined trajectory.
  • a trajectory of H point - G point - A point - C point - I point - H point is generated, device calculation An absolute coordinate position corresponding to a predetermined trajectory (ie, H point, G point, A point, C point, I point) is obtained, and after receiving the coordinate position of the predetermined trajectory, the external device first uses a method known in the art.
  • the technique moves to the absolute coordinate position corresponding to the starting point H, and then starts to execute the predetermined trajectory, that is, sequentially moves to the absolute coordinate position corresponding to the G point, the absolute coordinate position corresponding to the A point, and corresponds to the C point.
  • the starting of the execution of the predetermined trajectory comprises: performing the predetermined trajectory from any point in the predetermined trajectory.
  • the device can be controlled to execute from any point in the trajectory, for example, starting from point C.
  • the actual trajectory of the external device is C point - I point - H point.
  • FIG. 6 illustrates a block diagram of an apparatus 600 that controls movement of an external device, the apparatus including an array generation device 602 for generating an array mode on an interface of the device, and a trajectory generating device, in accordance with an embodiment of the present disclosure. 604.
  • the trajectory generating device is configured to generate a predetermined trajectory in the array mode to cause the external device to move according to a predetermined trajectory.
  • the generated array pattern includes any one of the following: a rectangular array and a circular array.
  • the rectangular array is an array of three rows and three columns.
  • the array generating device is further configured to: generate a corresponding array mode on an interface of the device according to a predetermined setting.
  • the array generating device is further configured to: generate an array mode on an electronic map of the device.
  • the array generation device further includes: a mobile device and/or a zooming device for moving and/or scaling the electronic map and/or the array mode to generate a predetermined trajectory on the array mode.
  • the mobile device and/or the zooming device is further configured to: move and/or scale an electronic map and/or an array pattern according to a predetermined trajectory such that the predetermined trajectory is completely included In array mode.
  • the array generating device further comprises: spinning A rotating device for rotating the electronic map and/or array mode to generate a predetermined trajectory in the array mode.
  • the rotating device is further configured to: rotate the electronic map and/or the array pattern according to a predetermined trajectory such that a direction of the predetermined trajectory matches a direction of the array mode.
  • the trajectory generating device further comprises: translating means for automatically translating the endpoint to adjacent array points for endpoints of the trajectory that are not in the array mode.
  • the trajectory generating device further comprises: calculating means for calculating a coordinate of the predetermined trajectory based on a position of the array point corresponding to the predetermined trajectory.
  • the computing device is further configured to: when the coordinates are relative coordinates, calculate an relative coordinate of a starting array point of the predetermined trajectory with an origin of the array mode as a coordinate origin; and the trajectory generating device further Used to: control the external device to move to the relative coordinates to start executing the predetermined trajectory.
  • the computing device is further configured to: when the coordinates are absolute coordinates, calculate absolute coordinates of the starting array point corresponding to the predetermined trajectory; and the trajectory generating device is further configured to: control the external device to move to At the absolute coordinates, to start the execution of the predetermined trajectory.
  • the starting of the execution of the predetermined trajectory comprises: performing the predetermined trajectory from any point in the predetermined trajectory.
  • device 600 can be implemented in a variety of ways.
  • device 600 can be implemented in hardware, software, or a combination of software and hardware.
  • the hardware portion can be implemented using dedicated logic; the software portion can be stored in memory and executed by a suitable instruction execution system, such as a microprocessor or dedicated design hardware.
  • a suitable instruction execution system such as a microprocessor or dedicated design hardware.
  • processor control code such as a carrier medium such as a magnetic disk, CD or DVD-ROM, such as a read-only memory.
  • Such code is provided on a programmable memory or data carrier such as an optical or electronic signal carrier.
  • inventions of the present disclosure may be used not only by semiconductors such as very large scale integrated circuits or gate arrays, such as logic chips, transistors, etc., or such as field programmable gate arrays
  • semiconductors such as very large scale integrated circuits or gate arrays, such as logic chips, transistors, etc., or such as field programmable gate arrays
  • Hardware circuit implementations of programmable hardware devices, such as columns, programmable logic devices, etc. may also be implemented, for example, by software executed by various types of processors, or by a combination of the above-described hardware circuits and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • User Interface Of Digital Computer (AREA)
  • Processing Or Creating Images (AREA)

Abstract

一种控制外部设备的移动的方法和设备,该方法(200)包括:在设备的界面上生成阵列模式(202);以及在所述阵列模式上产生预定的轨迹,以使得所述外部设备按照所述预定的轨迹移动(204)。通过使用阵列模式来产生预定的轨迹,能够快速、高效地控制外部设备的移动。

Description

控制外部设备的移动的方法和设备 技术领域
本公开的实施例总体上涉及信息技术领域,更具体地涉及控制外部设备的移动的方法和设备。
背景技术
智能移动设备(例如,无人机、机器人等)的控制操作通常是由无线电遥控实现,例如,操作人员通过控制器(例如,遥控器、手持控制终端或者地面控制台)向智能移动设备发送控制命令。传统的控制方法有以下两种,第一种是动态控制,控制器向智能移动设备发送动态的控制命令,例如,通过控制器动态地控制智能移动设备的移动方向、移动速度或者飞行高度等;第二种是参数控制,控制器向智能移动设备发送期望的目标位置,例如,向智能移动设备发送期望的经纬度坐标、高度坐标等,智能移动设备根据接收到的坐标信息进行移动。
此外,通过移动通信设备(例如,智能手机、平板电脑)控制智能移动设备的移动已经开始出现。例如,如图1所示出的,操作人员在智能手机的电子地图界面上描绘任意一条曲线,智能手机将该曲线拟合成一条或者多条线段,并且将线段端点作为移动位置点发送到无人机,从而使得无人机根据该曲线的轨迹进行移动。然而,直接在地图上描绘轨迹会产生很多的角点,拟合后会生成过多的位置点,降低了控制命令的传输效率和智能移动设备的移动效率。同时,图1中的轨迹中的各个线段长短不一,很难根据点与点的相对关系判断轨迹的移动模式。此外,智能移动设备的移动一般不需要复杂的轨迹,例如,在无人机巡检过程中,矩形或者三角形轨迹就能覆盖大部分的应用场景,因此,现有的控制方法过于复杂并且效率较低。
因此,在无需过多复杂的操作的情况下,如何能够快速、高效地控制智能移动设备的移动,成为一个亟待解决的问题。
发明内容
有鉴于此,本公开的实施例提供一种控制外部设备的移动的方法和设备,能够实现快速、高效地控制外部设备的移动。
根据本公开的一个方面,公开了一种控制外部设备的移动的方法,该方法包括在设备的界面上生成阵列模式;以及在阵列模式上产生预定的轨迹,以使得外部设备按照预定的轨迹移动。
根据本公开的一个实施例,其中生成的阵列模式包括以下各项中的任何一项:矩形阵列和环形阵列。
根据本公开的另一个实施例,其中矩形阵列是三行三列的阵列。
根据本公开的又一个实施例,其中在设备的界面上生成阵列模式包括:按照预定的设置,在设备的界面上生成对应的阵列模式。
根据本公开的一个实施例,其中在设备的界面上生成阵列模式包括:在设备的电子地图上生成阵列模式。
根据本公开的另一个实施例,其中在阵列模式上产生预定的轨迹包括:移动和/或缩放电子地图和/或阵列模式,以在阵列模式上产生预定的轨迹。
根据本公开的又一个实施例,其中移动和/或缩放电子地图和/或阵列模式,以在阵列模式上产生预定的轨迹包括:根据预定的轨迹来移动和/或缩放电子地图和/或阵列模式,以使得预定的轨迹完全地被包括在阵列模式中。
根据本公开的一个实施例,其中在阵列模式上产生预定的轨迹包括:旋转电子地图和/或阵列模式,以在阵列模式上产生预定的轨迹。
根据本公开的另一个实施例,其中旋转电子地图和/或阵列模式,以在阵列模式上产生预定的轨迹包括:根据预定的轨迹来旋转电子地图和/或阵列模式,以使得预定的轨迹的方向与阵列模式的方向相匹配。
根据本公开的又一个实施例,其中在阵列模式上产生预定的轨迹,以使得外部设备按照预定的轨迹移动包括:对于不在阵列模式中的轨迹的端点,自动地将端点平移到邻近的阵列点上。
根据本公开的一个实施例,其中在阵列模式上产生预定的轨迹,以使外部设备按照预定的轨迹移动包括:基于对应于预定的轨迹的阵列点的位置,来计算预定的轨迹的坐标。
根据本公开的另一个实施例,其中该坐标是相对坐标或者绝对坐标。
根据本公开的又一个实施例,其中基于对应于预定的轨迹的阵列点的位置,来计算预定的轨迹的坐标包括:当坐标是相对坐标时,以阵列模式的原点作为坐标原点,计算预定的轨迹的起始阵列点的相对坐标;并且方法进一步包括:控制外部设备移动到相对坐标处,以开始执行预定的轨迹。
根据本公开的一个实施例,其中基于对应于预定的轨迹的阵列点的位置,来计算预定的轨迹的坐标包括:当坐标是绝对坐标时,计算对应于预定的轨迹的起始阵列点的绝对坐标;并且方法进一步包括:控制外部设备移动到绝对坐标处,以开始执行预定的轨迹。
根据本公开的另一个实施例,其中开始执行预定的轨迹包括:从预定的轨迹中的任何一点开始执行预定的轨迹。
根据本公开的另一个方面,公开了一种控制外部设备的移动的设备,该设备包括阵列生成装置,用于在设备的界面上生成阵列模式;以及轨迹产生装置,用于在阵列模式上产生预定的轨迹,以使得外部设备按照预定的轨迹移动。
本公开的示例性实施例可以带来以下技术效果中的至少一种:使用阵列模式作为轨迹设计的参考点,并在阵列模式上产生预定的轨迹,以使得外部设备按照预定的轨迹移动,从而能够快速地控制外部设备的移动,并且能够提高控制命令的传输效率和智能移动设备的移动效率。
附图说明
结合附图并参考以下详细说明,本公开的各实施例的特征、优点及其他方面将变得更加明显,在此以示例性而非限制性的方式示出了 本公开的若干实施例。在附图中:
图1图示了现有技术中在电子地图上产生移动轨迹的示例图;
图2图示了根据本公开的实施例的控制外部设备的移动的方法200的流程图;
图3图示了根据本公开的实施例的阵列模式的示例图;
图4A-4D图示了根据本公开的实施例移动、缩放和旋转电子地图的示例图;
图5A-5F图示了根据本公开的实施例的生成的预定的轨迹的示例图;
图6图示了根据本公开的实施例的控制外部设备的移动的设备600的框图;
具体实施方式
以下参考附图详细描述本公开的各个示例性实施例。附图中的流程图和框图示出了根据本公开的各种实施例的方法和系统的可能实现的体系架构、功能和操作。应当注意,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,所述模块、程序段、或代码的一部分可以包括一个或多个用于实现各个实施例中所规定的逻辑功能的可执行指令。也应当注意,在有些作为备选的实现中,方框中所标注的功能也可以按照不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,或者它们有时也可以按照相反的顺序执行,这取决于所涉及的功能。同样应当注意的是,流程图和/或框图中的每个方框、以及流程图和/或框图中的方框的组合,可以使用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以使用专用硬件与计算机指令的组合来实现。
本文所使用的术语“包括”、“包含”及类似术语应该被理解为是开放性的术语,即“包括/包含但不限于”。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一个实施例”、“又一个实施例”表示“至少一个另外的实施例”。其 他术语的相关定义将在下文描述中给出。
应当理解,给出这些示例性实施例仅是为了使本领域技术人员能够更好地理解进而实现本公开的实施例,而并非以任何方式限制发明的范围。
图2图示了根据本公开的实施例的控制外部设备的移动的方法200的流程图。参考图2,在步骤202处,在设备的界面上生成阵列模式。阵列模式是由一组阵列点组成的集合,用来表示阵列点的排列。例如,在图3所图示的示例中,在设备的界面上生成阵列模式,该阵列模式包括九个阵列点,分别为阵列点A、阵列点B、阵列点C、阵列点D、阵列点E、阵列点F、阵列点G、阵列点H以及阵列点I。该阵列模式叠加(例如,悬浮)在设备的背景界面上层,从而使得阵列模式和背景界面能够同时被显示。
根据本公开的实施例,其中生成的阵列模式包括以下各项中的任何一项:矩形阵列和环形阵列。例如,生成的阵列模式既可以是矩形阵列,例如,图5A-5E中的矩形阵列模式,也可以是环形阵列,例如,图5F中的圆形阵列,阵列呈现中心对称。根据本公开的另一个实施例,该矩形阵列是三行三列的阵列(也被称为“九宫格”阵列),例如图3中所图示的3×3阵列,这九个阵列点可以呈现均匀分布。九宫格阵列是智能手机中常见的阵列模式,一般用户对这种阵列模式较为熟悉,也非常熟悉在这种阵列模式中产生图案。九宫格阵列虽然只有九个阵列点,但却能产生高达几十万种不同的轨迹,因此,能够满足一般的移动轨迹的需求
根据本公开的实施例,其中在设备的界面上生成阵列模式包括:按照预定的设置,在设备的界面上生成对应的阵列模式。通常情况下,可以自动地随机生成阵列模式,但是也可以根据用户的需求,产生相应的阵列模式。在生成阵列模式之前,用户选择所需的阵列模式或者输入相应的需求。例如,如果用户想要执行矩形的移动轨迹,则可以生成矩形阵列;如果用户想要执行圆形的移动轨迹,则可以生成圆形阵列。
根据本公开的另一个实施例,在生成阵列模式之后,用户可以更换阵列模式。例如,如果用户对已生成的阵列模式不满意,则设备可以向用户呈现所有的阵列模式模板,以供用户选择所需要的阵列模式。根据本公开的又一个实施例,用户可以刷新阵列模式来随机生成新的阵列模式。
根据本公开的实施例,其中在设备的界面上生成阵列模式包括:在设备的电子地图上生成阵列模式。例如,在图3的示例中,设备界面的当前背景为电子地图,在电子地图上层生成阵列模式,此时,设备的界面包括下层的电子地图、上层的阵列模式以及当前地图的比例尺(例如,在图3的示例中,相邻阵列点之间的实际距离为100米)。通过将阵列模式与电子地图相关联,可以使得用户更直观地理解每个阵列点的实际位置。根据本公开的一个实施例,电子地图可以为二维地图、三维地图或者卫星地图等。
继续参考图2,在步骤204处,在阵列模式上产生预定的轨迹,以使得外部设备按照预定的轨迹移动。通过在阵列模式上描绘出所期望的轨迹,来控制外部设备根据对应于阵列模式上的轨迹的位置进行移动。同时,只有阵列模式中的阵列点才会成为轨迹的端点,因此使用阵列模式产生的轨迹端点较少,从而减少了向外部设备(例如,智能移动设备)发送的位置点的数量。
根据本公开的实施例,其中在阵列模式上产生预定的轨迹包括:移动和/或缩放电子地图和/或阵列模式,以在阵列模式上产生预定的轨迹。当默认的地图位置与预定的轨迹位置不匹配时,可以移动电子地图,以使得在阵列模式下层呈现用户所期望的轨迹的实际地图位置。可选地,移动电子地图可以通过直接拖动地图,或者通过辅助箭头(未示出)进行平移。例如,电子地图的默认位置为A区域,预定的轨迹处于B区域,则可以将电子地图从A区域移动到B区域。根据本公开的另一个实施例,可以实时地获得外部设备的当前位置,并将外部设备的当前位置设置为当前电子地图的中心点,从而实现自动地移动电子地图。
根据本公开的实施例,当默认的地图比例尺与期望的轨迹大小不匹配时,可以缩放电子地图和/或阵列模式,以使得默认的地图大小与期望的轨迹大小相匹配。例如,默认的地图比例尺是1∶10,000,而外部设备的移动轨迹可能在几万平米的范围内,则需要对电子地图进行缩放处理,例如,将地图比例尺缩放为1∶100。
根据本公开的实施例,其中移动和/或缩放电子地图和/或阵列模式,以在阵列模式上产生预定的轨迹包括:根据预定的轨迹来移动和/或缩放电子地图和/或阵列模式,以使得预定的轨迹完全地被包括在阵列模式中。例如,移动和/或缩放电子地图和/或阵列模式,以使得预定的轨迹刚好被包括在阵列模式中,从而使得阵列模式得到最优的使用效率。
根据本公开的另一个实施例,在没有背景地图的情况下,可以通过缩放阵列模式的比例尺,以满足预定的轨迹的需求。例如,在没有背景地图的情况下,将相邻阵列点之间的比例尺由1∶100扩大到1∶500,则相邻阵列点之间的实际位置距离扩大了五倍。
根据本公开的实施例,其中在阵列模式上产生预定的轨迹包括:旋转电子地图和/或阵列模式,以在阵列模式上产生预定的轨迹。当预定的轨迹与阵列模式角度上有偏差时,可以进行旋转操作,在旋转的过程中,既可以旋转电子地图又可以旋转阵列模式。根据本公开的另一个实施例,其中旋转电子地图和/或阵列模式,以在阵列模式上产生预定的轨迹包括:根据预定的轨迹来旋转电子地图和/或阵列模式,以使得预定的轨迹的方向与阵列模式的方向相匹配。例如,在图4A-D的示例中,阵列模式和预定的轨迹虽然都是矩形,但是它们之间并不能完全重合,即存在角度偏差,因此可以旋转电子地图,以便阵列模式和预定的轨迹最大程度地重合。
在图4的示例中,图4A表示当前的背景电子地图,图4B的左侧为预定的阵列模式,图4B的右侧表示预定的轨迹,图4c表示在电子地图上生成阵列模式的界面。在图4C中,虚线的预定的轨迹与当前的电子地图和阵列模式并不匹配,因此需要对图4C的电子地图进 行处理。例如,首先将地图往上移动一些,以使得预定的轨迹的中心与阵列模式的中心阵列点重合,然后缩放电子地图,以使得预定的轨迹刚好被包括在阵列模式中(即最大程度的重合),最后再顺时针选择地图,以使得矩形的预定的轨迹与矩形的阵列模式在方向上相匹配,从而得到图4D的界面。根据本公开的另一个实施例,也可以先进行旋转操作,再进行移动和/或缩放操作。根据本公开的又一个实施例,也可以保持电子地图静止,通过移动和/或缩放阵列模式来使得阵列模式和预定的轨迹重合和/或匹配。
在生成图4D的界面之后,根据预定的轨迹在阵列模式上产生相应的轨迹。例如,手指依次划过图4D中的阵列点H、阵列点G、阵列点A、阵列点C、阵列点I以及阵列点H,从而产生图4D中箭头所指的方向的轨迹,此时的矩形轨迹中只有5个端点,即阵列点H、阵列点G、阵列点A、阵列点C以及阵列点I。
根据本公开的实施例,其中在阵列模式上产生预定的轨迹,以使得外部设备按照预定的轨迹移动包括:对于不在阵列模式中的轨迹的端点,自动地将端点平移到邻近的阵列点上。在产生预定的轨迹时,由于输入的误差(例如,手指触摸的误差),某些输入点与实际的阵列点之间存在一定距离。可以将不在阵列模式中的端点,自动地平移到邻近的阵列点上,减少了轨迹产生时不必要的输入误差。
根据本公开的实施例,产生的轨迹可由用户任意绘制,除了常见的矩形轨迹之外,还可以包括但不限于图5A中的三角形轨迹、图5B中的“Z”形轨迹、图5C的交错形轨迹、图5D的八边形轨迹、图5E的“M”形轨迹以及图5F的环形轨迹。在图5A-5D的轨迹中,由于阵列点之间的距离是已知的并且相等的,因此很容易判断出轨迹属于何种运动模式。
根据本公开的实施例,其中在阵列模式上产生预定的轨迹,以使外部设备按照预定的轨迹移动包括:基于对应于预定的轨迹的阵列点的位置,来计算预定的轨迹的坐标。例如,通过确定与预定的轨迹中的每个阵列相对应的地图的位置点,得到轨迹中的每个阵列点的坐标 位置,从而获得预定的轨迹的坐标位置。例如,在图4的实施例中,分别计算与阵列点H、阵列点G、阵列点A、阵列点c以及阵列点I相对应的地图的位置点的坐标,并且向外部设备发送计算出的位置坐标,即,对应于H点的坐标、对应于G点的坐标、对应于A点的坐标、对应于C点的坐标以及对应于I点的坐标。外部设备在收到上述坐标命令之后,将根据顺序依次移动到对应于H点的坐标、对应于G点的坐标、对应于A点的坐标、对应于C点的坐标、对应于I点的坐标以及对应于H点的坐标。
根据本公开的实施例,在完成预定的轨迹的绘制后,如图3中所图示的,可以触发界面上的“开始”按钮,以控制外部设备开始移动。根据本公开的另一个实施例,在轨迹完成之后(即,手指离开阵列模式),就立即控制外部设备开始移动。
根据本公开的实施例,计算出的坐标是相对坐标或者绝对坐标。根据本公开的一个实施例,其中基于对应于预定的轨迹的阵列点的位置,来计算预定的轨迹的坐标包括:当坐标是相对坐标时,以阵列模式的原点作为坐标原点,计算预定的轨迹的起始阵列点的相对坐标;并且方法进一步包括:控制外部设备移动到相对坐标处,以开始执行预定的轨迹。例如,例如,在图3的示例中,产生H点-G点-A点-C点-I点-H点的轨迹,当相邻阵列点之间的距离是100米并且朝上的方向为北时,将E点选为阵列模式的原点,并计算起始点H点的相对坐标,外部设备首先往南移动100米(即从原点E点移动到阵列模式的起始点H点),然后开始执行预定的轨迹,即,首先向西移动100米,然后向北移动200米,然后向东移动200米,然后向南移动200米,最后再向西移动100米,从而回到外部设备的原点位置。
根据本公开的另一个实施例,其中基于对应于预定的轨迹的阵列点的位置,来计算预定的轨迹的坐标包括:当坐标是绝对坐标时,计算对应于预定的轨迹的起始阵列点的绝对坐标;并且方法进一步包括:控制外部设备移动到绝对坐标处,以开始执行预定的轨迹。例如,在图4的示例中产生H点-G点-A点-C点-I点-H点的轨迹,设备计算 出对应于预定的轨迹(即,H点、G点、A点、C点、I点)的绝对坐标位置,外部设备在接收到预定的轨迹的坐标位置之后,首先,利用本领域已知的技术来移动到对应于起始点H的绝对坐标位置处,然后再开始执行预定的轨迹,即依次移动到对应于G点的绝对坐标位置、对应于A点的绝对坐标位置、对应于C点的绝对坐标位置、对应于I点的绝对坐标位置以及对应于H点的绝对坐标位置。
根据本公开的又一个实施例,其中开始执行预定的轨迹包括:从预定的轨迹中的任何一点开始执行预定的轨迹。例如,在图4的示例中的H点-G点-A点-c点-I点-H点轨迹中,可以控制设备从轨迹中的任何一点开始执行,例如,从C点开始执行预定的轨迹,则外部设备的实际的轨迹为C点-I点-H点。
图6图示了根据本公开的实施例的控制外部设备的移动的设备600的框图,该设备包括阵列生成装置602,该阵列生成装置用于在设备的界面上生成阵列模式;以及轨迹产生装置604,该轨迹产生装置用于在阵列模式上产生预定的轨迹,以使得外部设备按照预定的轨迹移动。
根据本公开的一个实施例,其中生成的阵列模式包括以下各项中的任何一项:矩形阵列和环形阵列。根据本公开的另一个实施例,其中矩形阵列是三行三列的阵列。
根据本公开的又一个实施例,其中该阵列生成装置进一步用于:按照预定的设置,在设备的界面上生成对应的阵列模式。
根据本公开的一个实施例,其中该阵列生成装置进一步用于:在设备的电子地图上生成阵列模式。根据本公开的另一个实施例,其中该阵列生成装置进一步包括:移动装置和/或缩放装置,用于移动和/或缩放电子地图和/或阵列模式,以在阵列模式上产生预定的轨迹。根据本公开的又一个实施例,其中该移动装置和/或缩放装置进一步用于:根据预定的轨迹来移动和/或缩放电子地图和/或阵列模式,以使得预定的轨迹完全地被包括在阵列模式中。
根据本公开的一个实施例,其中该阵列生成装置进一步包括:旋 转装置,用于旋转电子地图和/或阵列模式,以在阵列模式上产生预定的轨迹。根据本公开的另一个实施例,其中该旋转装置进一步用于:根据预定的轨迹来旋转电子地图和/或阵列模式,以使得预定的轨迹的方向与阵列模式的方向相匹配。
根据本公开的又一个实施例,其中该轨迹产生装置进一步包括:平移装置,用于对于不在阵列模式中的轨迹的端点,自动地将端点平移到邻近的阵列点上。
根据本公开的一个实施例,其中该轨迹产生装置进一步包括:计算装置,用于基于对应于预定的轨迹的阵列点的位置,来计算预定的轨迹的坐标。
根据本公开的另一个实施例,其中计算装置进一步用于:当坐标是相对坐标时,以阵列模式的原点作为坐标原点,计算预定的轨迹的起始阵列点的相对坐标;并且轨迹产生装置进一步用于:控制外部设备移动到相对坐标处,以开始执行预定的轨迹。根据本公开的一个实施例,其中计算装置进一步用于:当坐标是绝对坐标时,计算对应于预定的轨迹的起始阵列点的绝对坐标;并且轨迹产生装置进一步用于:控制外部设备移动到绝对坐标处,以开始执行预定的轨迹。根据本公开的另一个实施例,其中开始执行预定的轨迹包括:从预定的轨迹中的任何一点开始执行预定的轨迹。
应当理解,设备600可以利用各种方式来实现。例如,在某些实施例中,设备600可以通过硬件、软件或者软件和硬件的结合来实现。其中,硬件部分可以利用专用逻辑来实现;软件部分则可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域的普通技术人员可以理解上述的方法和系统可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本公开的实施例的设备和装置不仅可以由诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵 列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用例如由各种类型的处理器所执行的软件实现,还可以由上述硬件电路和软件的结合来实现。
应当注意,尽管在上文的详细描述中提及了设备的若干装置或子装置,但是这种划分仅仅是示例性而非强制性的。实际上,根据本公开的实施例,上文描述的两个或更多装置的特征和功能可以在一个装置中具体化。反之,上文描述的一个装置的特征和功能可以进一步划分为由多个装置来具体化。
以上所述仅为本公开的实施例可选实施例,并不用于限制本公开的实施例,对于本领域的技术人员来说,本公开的实施例可以有各种更改和变化。凡在本公开的实施例的精神和原则之内,所作的任何修改、等效替换、改进等,均应包含在本公开的实施例的保护范围之内。
虽然已经参考若干具体实施例描述了本公开的实施例,但是应该理解,本公开的实施例并不限于所公开的具体实施例。本公开的实施例旨在涵盖在所附权利要求的精神和范围内所包括的各种修改和等同布置。所附权利要求的范围符合最宽泛的解释,从而包含所有这样的修改及等同结构和功能。

Claims (30)

  1. 一种控制外部设备的移动的方法,包括:
    在设备的界面上生成阵列模式;以及
    在所述阵列模式上产生预定的轨迹,以使得所述外部设备按照所述预定的轨迹移动。
  2. 根据权利要求1所述的方法,其中所述生成的阵列模式包括以下各项中的任何一项:矩形阵列和环形阵列。
  3. 根据权利要求2所述的方法,其中所述矩形阵列是三行三列的阵列。
  4. 根据权利要求1-3中任一项所述的方法,其中在设备的界面上生成阵列模式包括:
    按照预定的设置,在设备的界面上生成对应的阵列模式。
  5. 根据权利要求1所述的方法,其中在设备的界面上生成阵列模式包括:
    在所述设备的电子地图上生成阵列模式。
  6. 根据权利要求5所述的方法,其中在所述阵列模式上产生预定的轨迹包括:
    移动和/或缩放所述电子地图和/或所述阵列模式,以在所述阵列模式上产生所述预定的轨迹。
  7. 根据权利要求6所述的方法,其中移动和/或缩放所述电子地图和/或所述阵列模式,以在所述阵列模式上产生所述预定的轨迹包括:
    根据所述预定的轨迹来移动和/或缩放所述电子地图和/或所述阵列模式,以使得所述预定的轨迹完全地被包括在所述阵列模式中。
  8. 根据权利要求5所述的方法,其中在所述阵列模式上产生预定的轨迹包括:
    旋转所述电子地图和/或所述阵列模式,以在所述阵列模式上产生所述预定的轨迹。
  9. 根据权利要求8所述的方法,其中旋转所述电子地图和/或所 述阵列模式,以在所述阵列模式上产生所述预定的轨迹包括:
    根据所述预定的轨迹来旋转所述电子地图和/或所述阵列模式,以使得所述预定的轨迹的方向与所述阵列模式的方向相匹配。
  10. 根据权利要求1所述的方法,其中在所述阵列模式上产生预定的轨迹,以使得所述外部设备按照所述预定的轨迹移动包括:
    对于不在所述阵列模式中的所述轨迹的端点,自动地将所述端点平移到邻近的阵列点上。
  11. 根据权利要求1所述的方法,其中在所述阵列模式上产生预定的轨迹,以使所述外部设备按照所述预定的轨迹移动包括:
    基于对应于所述预定的轨迹的所述阵列点的位置,来计算所述预定的轨迹的坐标。
  12. 根据权利要求11所述的方法,其中所述坐标是相对坐标或者绝对坐标。
  13. 根据权利要求12所述的方法,其中
    基于对应于所述预定的轨迹的所述阵列点的位置,来计算所述预定的轨迹的坐标包括:
    当所述坐标是相对坐标时,以阵列模式的原点作为坐标原点,计算所述预定的轨迹的起始阵列点的相对坐标;
    并且所述方法进一步包括:
    控制所述外部设备移动到所述相对坐标处,以开始执行所述预定的轨迹。
  14. 根据权利要求12所述的方法,其中
    基于对应于所述预定的轨迹的所述阵列点的位置,来计算所述预定的轨迹的坐标包括:
    当所述坐标是绝对坐标时,计算对应于所述预定的轨迹的起始阵列点的绝对坐标;
    并且所述方法进一步包括:
    控制所述外部设备移动到所述绝对坐标处,以开始执行所述预定的轨迹。
  15. 根据权利要求13或14所述的方法,其中开始执行所述预定的轨迹包括:
    从所述预定的轨迹中的任何一点开始执行所述预定的轨迹。
  16. 一种控制外部设备的移动的设备,包括:
    阵列生成装置,用于在设备的界面上生成阵列模式;以及
    轨迹产生装置,用于在所述阵列模式上产生预定的轨迹,以使得所述外部设备按照所述预定的轨迹移动。
  17. 根据权利要求16所述的设备,其中所述生成的阵列模式包括以下各项中的任何一项:矩形阵列和环形阵列。
  18. 根据权利要求17所述的设备,其中所述矩形阵列是三行三列的阵列。
  19. 根据权利要求16-18中任一项所述的设备,其中所述阵列生成装置进一步用于:
    按照预定的设置,在设备的界面上生成对应的阵列模式。
  20. 根据权利要求16所述的设备,其中所述阵列生成装置进一步用于:
    在所述设备的电子地图上生成阵列模式。
  21. 根据权利要求20所述的设备,其中所述阵列生成装置进一步包括:
    移动装置和/或缩放装置,用于移动和/或缩放所述电子地图和/或所述阵列模式,以在所述阵列模式上产生所述预定的轨迹。
  22. 根据权利要求21所述的设备,其中所述移动装置和/或缩放装置进一步用于:
    根据所述预定的轨迹来移动和/或缩放所述电子地图和/或所述阵列模式,以使得所述预定的轨迹完全地被包括在所述阵列模式中。
  23. 根据权利要求20所述的设备,其中所述阵列生成装置进一步包括:
    旋转装置,用于旋转所述电子地图和/或所述阵列模式,以在所述阵列模式上产生所述预定的轨迹。
  24. 根据权利要求23所述的设备,其中所述旋转装置进一步用于:
    根据所述预定的轨迹来旋转所述电子地图和/或所述阵列模式,以使得所述预定的轨迹的方向与所述阵列模式的方向相匹配。
  25. 根据权利要求16所述的设备,其中所述轨迹产生装置进一步包括:
    平移装置,用于对于不在所述阵列模式中的所述轨迹的端点,自动地将所述端点平移到邻近的阵列点上。
  26. 根据权利要求16所述的设备,其中所述轨迹产生装置进一步包括:
    计算装置,用于基于对应于所述预定的轨迹的所述阵列点的位置,来计算所述预定的轨迹的坐标。
  27. 根据权利要求26所述的设备,其中所述坐标是相对坐标或者绝对坐标。
  28. 根据权利要求27所述的设备,其中
    所述计算装置进一步用于:
    当所述坐标是相对坐标时,以阵列模式的原点作为坐标原点,计算所述预定的轨迹的起始阵列点的相对坐标;
    并且所述轨迹产生装置进一步用于:
    控制所述外部设备移动到所述相对坐标处,以开始执行所述预定的轨迹。
  29. 根据权利要求27所述的设备,其中
    所述计算装置进一步用于:
    当所述坐标是绝对坐标时,计算对应于所述预定的轨迹的起始阵列点的绝对坐标;
    并且所述轨迹产生装置进一步用于:
    控制所述外部设备移动到所述绝对坐标处,以开始执行所述预定的轨迹。
  30. 根据权利要求28或29所述的设备,其中开始执行所述预 定的轨迹包括:
    从所述预定的轨迹中的任何一点开始执行所述预定的轨迹。
PCT/CN2015/085930 2015-08-03 2015-08-03 控制外部设备的移动的方法和设备 WO2017020222A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/749,769 US10884406B2 (en) 2015-08-03 2015-08-03 Method and device for controlling movement of external device
PCT/CN2015/085930 WO2017020222A1 (zh) 2015-08-03 2015-08-03 控制外部设备的移动的方法和设备
CN201610548121.9A CN106406339B (zh) 2015-08-03 2016-07-12 控制外部设备的移动的方法和设备
US17/115,702 US20210089023A1 (en) 2015-08-03 2020-12-08 Method and device for controlling movement of external device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/085930 WO2017020222A1 (zh) 2015-08-03 2015-08-03 控制外部设备的移动的方法和设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/749,769 A-371-Of-International US10884406B2 (en) 2015-08-03 2015-08-03 Method and device for controlling movement of external device
US17/115,702 Continuation US20210089023A1 (en) 2015-08-03 2020-12-08 Method and device for controlling movement of external device

Publications (1)

Publication Number Publication Date
WO2017020222A1 true WO2017020222A1 (zh) 2017-02-09

Family

ID=57942215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085930 WO2017020222A1 (zh) 2015-08-03 2015-08-03 控制外部设备的移动的方法和设备

Country Status (3)

Country Link
US (2) US10884406B2 (zh)
CN (1) CN106406339B (zh)
WO (1) WO2017020222A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107329474B (zh) * 2017-07-26 2020-05-12 五邑大学 智能小车控制方法
CN107632608A (zh) * 2017-10-09 2018-01-26 珠海格力电器股份有限公司 控制被控电子设备移动的方法、装置及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110035087A1 (en) * 2009-08-10 2011-02-10 Samsung Electronics Co., Ltd. Method and apparatus to plan motion path of robot
CN102087530A (zh) * 2010-12-07 2011-06-08 东南大学 基于手绘地图和路径的移动机器人视觉导航方法
CN102890507A (zh) * 2011-07-21 2013-01-23 鸿奇机器人股份有限公司 自走机器人、清洁机器人及其定位方法
CN203117786U (zh) * 2013-03-12 2013-08-07 西北农林科技大学 一种山地农业机器人远程无线触摸屏控制系统
CN103329057A (zh) * 2010-09-03 2013-09-25 奥尔德巴伦机器人公司 移动式机器人
US20140121833A1 (en) * 2012-10-30 2014-05-01 Samsung Techwin Co., Ltd. Apparatus and method for planning path of robot, and the recording media storing the program for performing the method
CN104133472A (zh) * 2013-04-30 2014-11-05 库卡实验仪器有限公司 无人驾驶运输车辆及运行方法,包括该无人驾驶运输车辆的系统及规划虚拟轨迹的方法
CN104677376A (zh) * 2013-11-29 2015-06-03 广东瑞图万方科技股份有限公司 导航系统手势指令输入方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7286913B2 (en) * 2003-10-23 2007-10-23 International Business Machines Corporation Navigating a UAV with telemetry through a socket
US7231294B2 (en) * 2003-10-23 2007-06-12 International Business Machines Corporation Navigating a UAV
JP5118813B2 (ja) 2005-12-08 2013-01-16 クラリオン株式会社 ナビゲーション装置
KR101614270B1 (ko) 2009-12-04 2016-04-29 삼성전자주식회사 휴대용 단말기에서 약도 정보를 생성하기 위한 장치 및 방법
JP5402957B2 (ja) * 2011-02-09 2014-01-29 株式会社デンソー 電子機器
CN102663033A (zh) * 2012-03-23 2012-09-12 汉海信息技术(上海)有限公司 采用手绘方式搜索地图指定区域兴趣点的方法
CN103791912A (zh) 2012-10-30 2014-05-14 大陆汽车投资(上海)有限公司 支持手绘路径的导航路径规划装置
US9116009B2 (en) 2013-03-15 2015-08-25 Intel Corporation Sketch aided route selection for navigation devices and applications
CN104677369B (zh) 2013-11-29 2018-02-27 广东瑞图万方科技股份有限公司 导航系统中沿手绘路线的路径规划方法及装置
CN106455523B (zh) * 2014-10-31 2020-08-04 深圳市大疆创新科技有限公司 用于遛宠物的系统和方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110035087A1 (en) * 2009-08-10 2011-02-10 Samsung Electronics Co., Ltd. Method and apparatus to plan motion path of robot
CN103329057A (zh) * 2010-09-03 2013-09-25 奥尔德巴伦机器人公司 移动式机器人
CN102087530A (zh) * 2010-12-07 2011-06-08 东南大学 基于手绘地图和路径的移动机器人视觉导航方法
CN102890507A (zh) * 2011-07-21 2013-01-23 鸿奇机器人股份有限公司 自走机器人、清洁机器人及其定位方法
US20140121833A1 (en) * 2012-10-30 2014-05-01 Samsung Techwin Co., Ltd. Apparatus and method for planning path of robot, and the recording media storing the program for performing the method
CN203117786U (zh) * 2013-03-12 2013-08-07 西北农林科技大学 一种山地农业机器人远程无线触摸屏控制系统
CN104133472A (zh) * 2013-04-30 2014-11-05 库卡实验仪器有限公司 无人驾驶运输车辆及运行方法,包括该无人驾驶运输车辆的系统及规划虚拟轨迹的方法
CN104677376A (zh) * 2013-11-29 2015-06-03 广东瑞图万方科技股份有限公司 导航系统手势指令输入方法及装置

Also Published As

Publication number Publication date
US10884406B2 (en) 2021-01-05
US20210089023A1 (en) 2021-03-25
US20200089218A1 (en) 2020-03-19
CN106406339B (zh) 2021-03-19
CN106406339A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN107000839B (zh) 无人机的控制方法、装置、设备和无人机的控制系统
WO2019090488A1 (zh) 生成模拟航线的方法、模拟飞行的方法、设备及存储介质
US11886203B2 (en) Flight control method and apparatus, and control device
WO2018095407A1 (zh) 控制无人机飞行的方法及装置
CN103902061B (zh) 空中鼠标的光标显示方法、设备及系统
WO2018076372A1 (zh) 一种航点编辑方法、装置、设备及飞行器
US20210089023A1 (en) Method and device for controlling movement of external device
WO2016095352A1 (zh) 逆向导航方法及移动终端
WO2013031134A1 (en) Information processing apparatus, information processing method, and program
CN108731663A (zh) 对应关系建立方法、装置、介质及电子设备
JP2017156736A (ja) 電子地図上にビーコンの受信状態を表示させる、コンピュータで実施される方法
CN109032190A (zh) 云台转向控制方法、装置、电子设备及存储介质
KR101511995B1 (ko) 제스처 정보를 이용하여 서비스에 대한 사용자간 관계를 설정하는 방법 및 시스템
CN110491178A (zh) 航点的操作方法、装置和系统、地面站和计算机可读存储介质
CN109579826A (zh) 一种机器人导航地图的方向显示控制方法、装置及芯片
JP2020523668A (ja) 仮想カメラを構成するシステム及び方法
WO2017028203A1 (zh) 用于生成地理坐标的方法和设备
CN109240561B (zh) 旋转元素的吸附元素选择方法和装置、旋转吸附方法
CN110196441A (zh) 终端的定位方法、装置、存储介质与设备
KR102248741B1 (ko) 디스플레이 장치 및 그 제어 방법
US10496177B2 (en) Simulated touch input
CN112529984B (zh) 绘制多边形的方法、装置、电子设备及存储介质
US20120299861A1 (en) Coordinate input device, coordinate input method, coordinate input program, and portable terminal
CN103245354A (zh) 一种统计圈数的方法和装置
US10657688B2 (en) Multi-dimensional visualization and resource evaluation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899997

Country of ref document: EP

Kind code of ref document: A1