WO2017028203A1 - 用于生成地理坐标的方法和设备 - Google Patents

用于生成地理坐标的方法和设备 Download PDF

Info

Publication number
WO2017028203A1
WO2017028203A1 PCT/CN2015/087398 CN2015087398W WO2017028203A1 WO 2017028203 A1 WO2017028203 A1 WO 2017028203A1 CN 2015087398 W CN2015087398 W CN 2015087398W WO 2017028203 A1 WO2017028203 A1 WO 2017028203A1
Authority
WO
WIPO (PCT)
Prior art keywords
pointing
location point
point
geographic coordinates
geographic
Prior art date
Application number
PCT/CN2015/087398
Other languages
English (en)
French (fr)
Inventor
杨帆
Original Assignee
北京艾肯拓科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京艾肯拓科技有限公司 filed Critical 北京艾肯拓科技有限公司
Priority to PCT/CN2015/087398 priority Critical patent/WO2017028203A1/zh
Priority to US15/753,164 priority patent/US10598497B2/en
Priority to CN201610550641.3A priority patent/CN106468539B/zh
Publication of WO2017028203A1 publication Critical patent/WO2017028203A1/zh
Priority to US16/790,671 priority patent/US11268817B2/en
Priority to US16/790,673 priority patent/US11248913B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration

Definitions

  • Embodiments of the present disclosure generally relate to geographic information technology, and more particularly to methods and apparatus for generating geographic coordinates.
  • Control operations of intelligent mobile devices are typically implemented by radio remote control, for example, the operator sends control to the smart mobile device via a controller (eg, a remote control, a handheld control terminal, or a ground console) command.
  • a controller eg, a remote control, a handheld control terminal, or a ground console
  • the controller sends dynamic control commands to the smart mobile device, for example, dynamically controlling the moving direction, moving speed or flying height of the smart mobile device through the controller;
  • the second is parameter control, and the controller sends a desired target location to the smart mobile device, for example, transmits the desired latitude and longitude coordinates, height coordinates, and the like to the smart mobile device, and the smart mobile device moves according to the received coordinate information.
  • the dynamic control method requires the operator to continually make corrections, and when the orientation of the operator is inconsistent with the orientation of the smart mobile device, the operation of the dynamic control is particularly difficult, requiring the operator to perform long-term training to accurately control the direction of movement.
  • the parameter control method does not require dynamic correction by the operator, the operator is required to have a strong positional understanding of the position and orientation of the smart mobile device. For example, if it is necessary to control the smart mobile device to advance 10m, the operator needs to obtain the moving direction and distance according to the complex trigonometric relationship according to the orientation of the smart mobile device, and then obtain the desired position point based on the current position coordinate of the smart mobile device. The coordinates, therefore, the parameter control method requires complex calculations by the operator, and the control operation is still not simple enough and intuitive.
  • embodiments of the present disclosure provide a method and apparatus for generating geographic coordinates that can obtain geographic coordinates of a desired location point simply and quickly.
  • a method for generating geographic coordinates comprising pointing a device to a location point, obtaining geographic coordinates for determining a device, a relative height of a device and a location point, and pointing information of the device Data; and geographic coordinates based on the data to generate location points.
  • the pointing information of the device includes an angle between the pointing direction of the device and the horizontal plane and a horizontal angle between the pointing direction of the device and the geographic north.
  • pointing the device to the location point comprises using an optical sight or a mechanical sight to point the device to the location point.
  • pointing the device to the location point comprises using the camera to point the device to a location point, wherein the camera is located inside the device or external to the device.
  • pointing the device to the location point comprises: displaying an icon of a center point of the camera on a display device of the device; and adjusting the device such that an icon of a center point of the camera coincides with the location point.
  • the icon of the center point includes any one of the following: a dotted line intersection, an arrow, a radiation, and a single point.
  • obtaining data for determining geographic coordinates of the device, relative height of the device and the location point, and pointing information of the device includes obtaining an angle between the pointing direction of the device and the horizontal plane by the acceleration sensor.
  • obtaining an angle between the pointing direction of the device and the horizontal plane by the acceleration sensor comprises: obtaining a ratio between the pointing direction of the device and the horizontal plane by calculating a ratio of the acceleration value of the pointing direction of the device to the gravity acceleration value Angle.
  • obtaining data for determining geographic coordinates of the device, relative height of the device and the location point, and pointing information of the device includes: obtaining a relative position of the device and the location point by manual input or a range finder height.
  • the relative height of the device and the location point and the data of the pointing information of the device include: obtaining a horizontal angle between the pointing direction of the device and the geographic north by the electronic compass.
  • obtaining data for determining geographic coordinates of the device, relative height of the device and the location point, and pointing information of the device includes obtaining geographic coordinates of the device by a satellite positioning sensor or a geographic information system.
  • the generating the geographic coordinates of the location point based on the data includes calculating a horizontal distance between the device and the location point based on an angle between the pointing direction of the device and the horizontal plane and a relative height of the device and the location point And calculating the geographic coordinates of the location point based on the horizontal distance of the device from the location point, the horizontal angle between the device pointing direction and the geographic north, and the geographic coordinates of the device.
  • the method further includes moving the external device controlled by the device to the location point after generating the geographic coordinates of the location point.
  • an apparatus for generating geographic coordinates comprising pointing means for pointing a device to a location point, data obtaining means for obtaining a geographic coordinate for determining a device, a device Data relating to the relative height of the location point and the pointing information of the device; and generating means for generating geographic coordinates of the location point based on the data.
  • An exemplary embodiment of the present disclosure may bring at least one of the following technical effects: pointing a device to a location point, by acquiring sensor data of the device, thereby being able to quickly obtain geographic coordinates of a desired location point, and simplifying smart movement
  • the control operation of the device achieves the effect of generating the coordinates of the “point what is obtained”.
  • FIG. 1 illustrates a flow diagram of a method 100 for generating geographic coordinates in accordance with an embodiment of the present disclosure
  • Interface diagram 2 illustrates an interaction of pointing a device to a location point in accordance with one embodiment of the present disclosure.
  • 3A-3B illustrate a graph of geographic coordinate calculations pointing to a location point, in accordance with one embodiment of the present disclosure
  • FIG. 4 illustrates a graph of geographic coordinate calculations pointing to a location point, in accordance with another embodiment of the present disclosure
  • FIG. 5 illustrates a block diagram of an apparatus 500 for generating geographic coordinates, in accordance with an embodiment of the present disclosure.
  • each block of the flowchart or block diagram may represent a module, a program segment, or a portion of code, which may include one or more for implementing various embodiments. Executable instructions for the specified logical functions. It should also be noted that in some alternative implementations, the functions noted in the blocks may also occur in a different order than that illustrated in the drawings. For example, two blocks shown in succession may in fact be executed substantially in parallel, or they can sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the flowcharts and/or block diagrams, and combinations of blocks in the flowcharts and/or block diagrams can be implemented using a dedicated hardware-based system that performs the specified functions or operations. Or can be implemented using a combination of dedicated hardware and computer instructions.
  • FIG. 1 illustrates a flow diagram of a method 100 for generating geographic coordinates in accordance with an embodiment of the present disclosure.
  • the device is pointed to a location point.
  • a device refers to a control device capable of controlling the movement of an external smart device, which may be any smart device having a sensor (eg, an acceleration sensor, an electronic compass, a satellite positioning sensor, etc.), including but not limited to a smart phone, a tablet, a laptop Computers, smart controllers, and wearable devices.
  • the device provides a sensor data interface that can output corresponding sensor data, such as the orientation of the device (such as orientation, direction), the angle of the device to the horizontal plane, the geographic coordinates of the device (such as latitude and longitude coordinates), and the like.
  • pointing the device to the location point comprises using an optical sight or a mechanical sight to point the device to the location point.
  • the optical sight is an aiming component through an optical viewfinder (for example, a lens)
  • the mechanical sight is a component that is aimed by a metal sight.
  • the operator can aim the device to the desired position through an optical sight or a mechanical sight.
  • the position point, aiming can be achieved by means of the display device of the device, or can be mechanically aimed by the operator.
  • pointing the device to the location point comprises using the camera to point the device to the location point, wherein the camera is located inside the device or external to the device.
  • the camera is one of the most common components in smart devices. By framing the camera, the operator can point the camera of the device at the desired location.
  • the device in order to perform aiming more accurately, may also externally connect a dedicated camera (for example, the device is connected to a separate camera located on the pan/tilt) to improve the accuracy of positional pointing.
  • pointing the device to the location point includes: displaying an icon of a center point of the camera on a display device of the device; and adjusting the device such that an icon of a center point of the camera coincides with the location point.
  • the scene acquired by the camera is displayed on the display device of the device in real time, and the operator continuously adjusts the direction of the device according to the desired position point, so that the device points to the desired position point, and adjusts The direction can be adjusted for the up and down direction, the left and right direction, and the like.
  • the center point icon of the camera eg, the dotted line focus in FIG. 2
  • the device is pointing to the desired location point.
  • an icon of a center point of the camera includes the following items Any of the following: dotted intersections, arrows, radiation, and single points.
  • various eye-catching icons can be set on the display device of the device to remind the user that the icon is the location that the device is currently pointing to.
  • the center point icon of the camera may be displayed at a center position of the display device.
  • step 104 data is obtained for determining the geographic coordinates of the device, the relative height of the device and the location point, and the pointing information of the device.
  • the geographic coordinates of the device represent the current latitude and longitude coordinates of the device (for example, 39.9694721070, 116.3548332380)
  • the relative height of the device and the location point represents the distance between the device and the location point in the vertical direction
  • the pointing information of the device indicates the stereo orientation information of the device, ie Angle between the device and each direction of the 3D geographic coordinates.
  • the device when the device is pointing to the desired location point, the operator triggers a "move" button on the screen and the device begins to obtain the data needed to calculate the geographic coordinates of the location point.
  • the device can automatically obtain the required data without operator intervention.
  • the pointing information of the device includes an angle between the pointing direction of the device and the horizontal plane and a horizontal angle between the pointing direction of the device and the geographic north.
  • the pointing direction of the device refers to the connecting direction between the current position point of the device and the pointing position point.
  • the horizontal angle represents the angle between the projections of the two directions on the horizontal plane
  • the horizontal angle between the pointing direction of the device and the geographic north represents the angle between the projection direction of the pointing direction of the device on the horizontal plane and the geographic north direction
  • the angle of the included angle can be defined according to the usual methods in the art, for example, the angle between the angles is between -180 and +180, and the angle is defined as positive clockwise, that is, the projection of the device in the horizontal direction.
  • the angle is positive
  • the projection direction of the device in the horizontal plane is counterclockwise in the geographic north direction
  • the pointing direction of the device can be directly derived according to the sensor data of the device, for example, constructing a vector pointing direction of the device When the pointing point is on the ground, the pointing point is a vector The intersection with the ground.
  • obtaining data for determining geographic coordinates of the device, relative height of the device and the location point, and pointing information of the device includes: transmitting by acceleration The sensor obtains an angle between the pointing direction of the device and the horizontal plane.
  • the obtaining an angle between the pointing direction of the device and the horizontal plane by the acceleration sensor comprises: obtaining a ratio between the pointing direction of the device and the horizontal plane by calculating a ratio of the acceleration value of the pointing direction of the device to the gravity acceleration value The angle of the.
  • the angle between the pointing direction of the device and the horizontal plane may be provided by the frame angle of the pan/tilt, and the frame angle may be measured by the potentiometer.
  • other tilt detection techniques known in the art can be utilized to obtain an angle between the pointing direction of the device and the horizontal plane.
  • obtaining data for determining geographic coordinates of the device, relative height of the device and the location point, and pointing information of the device includes obtaining a relative height of the device and the location point by manual input or a range finder.
  • the operator's height can be set to the relative height of the device to the location point, or it can also be externally connected to the rangefinder (eg , ultrasonic range finder, laser range finder, infrared range finder, etc.) to measure the height between the device and the ground, as the relative height of the device and the location point.
  • the rangefinder eg , ultrasonic range finder, laser range finder, infrared range finder, etc.
  • obtaining data for determining geographic coordinates of the device, relative height of the device and the location point, and pointing information of the device includes obtaining, by the electronic compass, a horizontal angle between the pointing direction of the device and the geographic north.
  • the electronic compass is a digital compass that can output the orientation information of the device. For example, if the orientation of the device is 30° north east by the electronic compass, the horizontal angle between the pointing direction of the device and the geographic north is determined to be 30°. When the orientation of the device is 30° to the north, the horizontal angle between the pointing direction of the device and the geographic north is determined to be -30°.
  • obtaining data for determining geographic coordinates of the device, relative height of the device and the location point, and pointing information of the device includes obtaining geographic coordinates of the device by a satellite positioning sensor or a geographic information system.
  • the current geographic coordinates of the device are obtained in real time by a GPS navigation sensor.
  • the coordinates and direction of the device can also be obtained by means of physical measurements.
  • geographic coordinates of the location points are generated based on the data obtained above. For example, based on the vector direction of the device and the geographic coordinates of the device and the device and location points The relative height of the intersection calculates the geographic coordinates of the intersection of the vector pointing direction of the device and the horizontal plane, and the geographical coordinates of the intersection point are the geographical coordinates of the location point.
  • the generating the geographic coordinates of the location point based on the data includes calculating a horizontal distance between the device and the location point based on an angle between the pointing direction of the device and the horizontal plane and a relative height of the device and the location point And calculating the geographic coordinates of the location point based on the horizontal distance of the device from the location point, the horizontal angle between the device pointing direction and the geographic north, and the geographic coordinates of the device.
  • the specific calculation process of the geographic coordinates pointing to the location point according to the present embodiment, reference may be made to the exemplary calculation method in FIGS. 3A-3B.
  • the method 100 of generating geographic coordinates further includes moving the external device controlled by the device to the location point after generating the geographic coordinates of the location point. For example, after the device calculates the geographic coordinates pointing to the location point, such as in the example of FIG. 2, the operator triggers a "move" button, the device performs the calculation and storage of the geographic coordinate location pointing to the location point, and will point to the location point. Geographic coordinates are sent to an external device (eg, a smart mobile device) to control the movement of the external device to the point of the point, thereby enabling a "what you see is what you get" that can be quickly moved to that location by the external device. effect.
  • an external device eg, a smart mobile device
  • FIGS. 3A-3B and 4 below exemplarily illustrate a method of calculating geographic coordinates pointing to a point of position according to an embodiment of the present disclosure, however, the two methods of calculation are merely exemplary embodiments, and are not intended The content of the present disclosure is specifically limited to any one of the following two methods.
  • FIG. 3A-3B illustrate coordinate plots of geographic coordinate calculations directed to location points, in accordance with one embodiment of the present disclosure.
  • the operator lifts the device (e.g., smart phone) to the operator's head position and points to a location on the ground.
  • the device e.g., smart phone
  • the device e.g., smart phone
  • the geodetic coordinate system is set to XYZ, where the XY axis is on a horizontal plane, the X axis is pointing to the east, the Y axis is pointing to the north, and the Z axis is pointing directly above.
  • the intersection point B of the pointing axis X' of the device with the ground is a pointing point.
  • indicates the angle between the pointing axis X' and the horizontal plane of the device (i.e., the pointing direction of the device).
  • Angle with the horizontal plane as shown in Fig. 3B, ⁇ represents the angle between the projection X of the device pointing axis X' at the horizontal plane and the Y-axis of the geodetic coordinate system (i.e., the level between the pointing direction of the device and the geographic north).
  • the vertical height of the device to the ground is L1, in meters, which can be pre-inputted into the device by the operator.
  • can be calculated from the built-in magnetic field strength sensor (for example, electronic compass).
  • the existing smart device usually has a compass function, which can directly output the direction angle ⁇ of the device.
  • the coordinates (x2, y2) of the pointing position point B in the XYZ coordinate system can be calculated according to the following formula (2), and the pointing position point can be obtained by conversion.
  • FIG. 4 illustrates a graph of geographic coordinate calculations directed to a location point in accordance with another embodiment of the present disclosure. Similar to the embodiment of FIGS. 3A-3B, the angle ⁇ between the pointing direction of the device and the horizontal plane, the relative height L1 of the device and the position point, the horizontal angle ⁇ between the pointing direction of the device and the geographic north, and the corresponding are obtained by the sensor of the device. The coordinates of the geographical coordinates of the device, thereby obtaining the coordinates (x1, y1) in the XYZ coordinate system by conversion.
  • the geodetic coordinate system is set to XYZ
  • the point A (x1, y1, z1) represents the coordinates in the current XYZ coordinate system of the device
  • the point B represents the coordinates in the XYZ coordinate system pointing to the position point. Its
  • the value of (x2, y2) can be calculated according to the following formulas (3) and (4), thereby obtaining the geographical coordinates of point B by conversion.
  • FIG. 5 illustrates a block diagram of an apparatus 500 for generating geographic coordinates, the pointing device 502 for pointing a device to a location point, and the data obtaining device 504 for obtaining a device for determining a device, in accordance with an embodiment of the present disclosure.
  • the pointing information of the device includes an angle between the pointing direction of the device and the horizontal plane and a horizontal angle between the pointing direction of the device and the geographic north.
  • the pointing device is further for using an optical sight or a mechanical sight to point the device at a point of position.
  • the pointing device is further for using the camera to point the device to a location point, wherein the camera is located inside the device or external to the device.
  • the pointing device is further configured to: display an icon of a center point of the camera on the display device of the device; and adjust the device such that the icon of the center point of the camera coincides with the position point.
  • the icon of the center point includes any one of the following: a dotted line intersection, an arrow, a radiation, and a single point.
  • the data obtaining device is further configured to obtain an angle between a pointing direction of the device and a horizontal plane by the acceleration sensor.
  • the data obtaining device is further configured to: point to the side through the computing device The ratio of the acceleration value to the gravity acceleration value to obtain the angle between the pointing direction of the device and the horizontal plane.
  • the data obtaining device is further configured to obtain a relative height of the device and the position point by manual input or a range finder.
  • the data obtaining means is further configured to obtain, by the electronic compass, a horizontal angle between the pointing direction of the device and the geographic north.
  • the data obtaining device is further configured to obtain the geographic coordinates of the device by a satellite positioning sensor or a geographic information system.
  • the generating means is further configured to: calculate a horizontal distance between the device and the location point based on an angle between the pointing direction of the device and the horizontal plane and a relative height of the device and the location point; and based on the device and the location Calculate the geographic coordinates of the location point by the horizontal distance of the point, the horizontal angle between the pointing direction of the device and the geographic north, and the geographic coordinates of the device.
  • the apparatus 500 for generating geographic coordinates further includes a control device 508 for moving an external device controlled by the device to a location point after generating the geographic coordinates of the location point.
  • device 500 can be implemented in a variety of ways.
  • device 500 can be implemented in hardware, software, or a combination of software and hardware.
  • the hardware portion can be implemented using dedicated logic; the software portion can be stored in memory and executed by a suitable instruction execution system, such as a microprocessor or dedicated design hardware.
  • a suitable instruction execution system such as a microprocessor or dedicated design hardware.
  • processor control code such as a carrier medium such as a magnetic disk, CD or DVD-ROM, such as a read-only memory.
  • Such code is provided on a programmable memory or data carrier such as an optical or electronic signal carrier.
  • the apparatus and apparatus of embodiments of the present disclosure may be implemented not only by hardware such as very large scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc., or programmable hardware devices such as field programmable gate arrays, programmable logic devices, and the like.
  • the circuit implementation can also be implemented by, for example, software executed by various types of processors, or by a combination of the above hardware circuits and software.

Abstract

一种用于生成地理坐标的方法(100)及用于生成地理坐标的设备(500),所述方法(100)包括:将设备指向位置点(102),获得用于确定设备的地理坐标、设备与位置点的相对高度以及设备的指向信息的数据(104),以及基于该数据来生成所述位置点的地理坐标(106);所述用于生成地理坐标的设备(500)相应的包括:指向装置(502),数据获得装置(504),以及生成装置(506)。通过将设备指向期望的位置点,能够快速地获得期望的位置点的地理坐标。

Description

用于生成地理坐标的方法和设备 技术领域
本公开的实施例总体上涉及地理信息技术,更具体地涉及用于生成地理坐标的方法和设备。
背景技术
智能移动设备(例如,无人机、机器人等)的控制操作通常是由无线电遥控实现,例如,操作人员通过控制器(例如,遥控器、手持控制终端或者地面控制台)向智能移动设备发送控制命令。传统的控制方法有以下两种,第一种是动态控制,控制器向智能移动设备发送动态的控制命令,例如,通过控制器动态地控制智能移动设备的移动方向、移动速度或者飞行高度等;第二种是参数控制,控制器向智能移动设备发送期望的目标位置,例如,向智能移动设备发送期望的经纬度坐标、高度坐标等,智能移动设备根据接收到的坐标信息进行移动。
然而,动态控制方法需要操作人员不断地进行修正,并且当操作人员的朝向与智能移动设备的指向不一致时,动态控制的操作尤其困难,需要操作人员进行长期的训练以便准确地控制移动方向。参数控制方法虽然无需操作人员的动态修正,但要求操作人员对智能移动设备的位置和方向有很强的位置理解。例如,如果需要控制智能移动设备前进10m,则需要操作人员根据智能移动设备的朝向,根据复杂的三角函数关系,得到移动方向和距离,然后基于智能移动设备当前的位置坐标,得到期望的位置点的坐标,因此,参数控制方法需要操作人员复杂的计算,控制操作仍然不够简单和直观。
因此,在无需操作人员的长期训练和复杂计算的情况下,如何能够快速地获得期望的位置点的地理坐标,成为一个亟待解决的问题。
发明内容
有鉴于此,本公开的实施例提供一种用于生成地理坐标的方法和设备,能够简单、快速地获得期望的位置点的地理坐标。
根据本公开的一个方面,公开了一种用于生成地理坐标的方法,该方法包括将设备指向位置点,获得用于确定设备的地理坐标、设备与位置点的相对高度以及设备的指向信息的数据;以及基于数据来生成位置点的地理坐标。
根据本公开的一个实施例,其中设备的指向信息包括设备指向方向与水平面之间的夹角以及设备指向方向与地理北之间的水平角。
根据本公开的另一个实施例,其中将设备指向位置点包括:使用光学瞄准器或者机械瞄准器来将设备指向位置点。
根据本公开的又一个实施例,其中将设备指向位置点包括:使用摄像头来将设备指向位置点,其中摄像头位于设备的内部或者位于设备的外部。
根据本公开的一个实施例,其中将设备指向位置点包括:在设备的显示装置上显示摄像头的中心点的图标;以及调整设备以使得摄像头的中心点的图标与位置点重合。
根据本公开的另一个实施例,其中中心点的图标包括以下各项中的任何一项:虚线交点、箭头、放射线以及单点。
根据本公开的又一个实施例,其中获得用于确定设备的地理坐标、设备与位置点的相对高度以及设备的指向信息的数据包括:通过加速度传感器获得设备指向方向与水平面之间的夹角。
根据本公开的一个实施例,其中通过加速度传感器获得设备指向方向与水平面之间的夹角包括:通过计算设备指向方向的加速度值与重力加速度值的比值,来获得设备指向方向与水平面之间的夹角。
根据本公开的另一个实施例,其中获得用于确定设备的地理坐标、设备与位置点的相对高度以及设备的指向信息的数据包括:通过手动输入或者测距仪来获得设备与位置点的相对高度。
根据本公开的又一个实施例,其中获得用于确定设备的地理坐标、 设备与位置点的相对高度以及设备的指向信息的数据包括:通过电子罗盘获得设备指向方向与地理北之间的水平角。
根据本公开的一个实施例,其中获得用于确定设备的地理坐标、设备与位置点的相对高度以及设备的指向信息的数据包括:通过卫星定位传感器或地理信息系统获得设备的地理坐标。
根据本公开的另一个实施例,其中基于数据来生成位置点的地理坐标包括:基于设备指向方向与水平面之间的夹角以及设备与位置点的相对高度,来计算设备与位置点的水平距离;以及基于设备与位置点的水平距离、设备指向方向与地理北之间的水平角以及设备的地理坐标,来计算位置点的地理坐标。
根据本公开的又一个实施例,该方法进一步包括在生成位置点的地理坐标之后,将由设备控制的外部设备移动到位置点处。
根据本公开的另一个方面,公开了一种用于生成地理坐标的设备,该设备包括指向装置,用于将设备指向位置点;数据获得装置,用于获得用于确定设备的地理坐标、设备与位置点的相对高度以及设备的指向信息的数据;以及生成装置,用于基于数据来生成位置点的地理坐标。
本公开的示例性实施例可以带来以下技术效果中的至少一种:将设备指向位置点,通过获取设备的传感器数据,从而能够快速地获得期望的位置点的地理坐标,并且简化了智能移动设备的控制操作,达到“所指即所得”的位置坐标生成效果。
附图说明
结合附图并参考以下详细说明,本公开的各实施例的特征、优点及其他方面将变得更加明显,在此以示例性而非限制性的方式示出了本公开的若干实施例。在附图中:
图1图示了根据本公开的实施例的用于生成地理坐标的方法100的流程图;
图2图示了根据本公开的一个实施例的将设备指向位置点的交互 界面图;
图3A-3B图示了根据本公开的一个实施例的指向位置点的地理坐标计算的坐标图;
图4图示了根据本公开的另一个实施例的指向位置点的地理坐标计算的坐标图;以及
图5图示了根据本公开的实施例的用于生成地理坐标的设备500的框图。
具体实施方式
以下参考附图详细描述本公开的各个示例性实施例。附图中的流程图和框图示出了根据本公开的各种实施例的方法和系统的可能实现的体系架构、功能和操作。应当注意,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,所述模块、程序段、或代码的一部分可以包括一个或多个用于实现各个实施例中所规定的逻辑功能的可执行指令。也应当注意,在有些作为备选的实现中,方框中所标注的功能也可以按照不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,或者它们有时也可以按照相反的顺序执行,这取决于所涉及的功能。同样应当注意的是,流程图和/或框图中的每个方框、以及流程图和/或框图中的方框的组合,可以使用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以使用专用硬件与计算机指令的组合来实现。
本文所使用的术语“包括”、“包含”及类似术语应该被理解为是开放性的术语,即“包括/包含但不限于”。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一个实施例”、“又一个实施例”表示“至少一个另外的实施例”。其他术语的相关定义将在下文描述中给出。
应当理解,给出这些示例性实施例仅是为了使本领域技术人员能够更好地理解进而实现本公开的实施例,而并非以任何方式限制发明的范围。
图1图示了根据本公开的实施例的用于生成地理坐标的方法100的流程图。参考图1,在步骤102处,将设备指向位置点。设备是指能够控制外部智能设备移动的控制设备,其可以是具有传感器(例如,加速度传感器、电子罗盘、卫星定位传感器等)的任何智能设备,包括但不限于智能电话、平板电脑、膝上型计算机、智能控制器以及可穿戴设备等。设备提供传感器数据接口,可以输出相应的传感器数据,例如设备的指向(诸如,朝向、方向)、设备与水平面的角度、设备的地理坐标(诸如,经纬度坐标)等。
根据本公开的实施例,其中将设备指向位置点包括:使用光学瞄准器或者机械瞄准器来将设备指向位置点。其中,光学瞄准器是通过光学取景器(例如,透镜)进行瞄准部件,机械瞄准器是通过金属瞄准具进行瞄准的部件,操作人员可以通过光学瞄准器或者机械瞄准器来将设备瞄准到期望的位置点,瞄准可以借助于设备的显示装置来实现,也可以由操作人员进行机械瞄准。
根据本公开的实施例,其中将设备指向位置点包括:使用摄像头来将设备指向位置点,其中摄像头位于设备的内部或者位于设备的外部。摄像头是智能设备中最常见的部件之一,通过摄像头进行取景,操作人员可以将设备的摄像头对准期望的位置点。根据本公开的另一个实施例,为了更准确地进行瞄准,设备也可以外接专用摄像头(例如,设备连接位于云台上的独立摄像机),以提高位置指向的准确性。
根据本公开的实施例,其中将设备指向位置点包括:在设备的显示装置上显示摄像头的中心点的图标;以及调整设备以使得摄像头的中心点的图标与位置点重合。例如,在图2所示出的示例中,在设备的显示装置上实时显示由摄像头获取的场景,操作人员根据期望的位置点,不断调整设备的方向,以使得设备指向期望的位置点,调整方向可以为调整上下方向、左右方向等。根据本公开的一个实施例,当摄像头的中心点图标(例如,图2中的虚线焦点)与期望的位置点重合时,说明设备正指向期望的位置点。
根据本公开的实施例,其中摄像头的中心点的图标包括以下各项 中的任何一项:虚线交点、箭头、放射线以及单点。例如,可以在设备的显示装置上设置各种醒目的图标,以提醒用户该图标处为设备当前指向的位置。根据本公开的另一个实施例,摄像头的中心点图标可以显示在显示装置的中心位置处。
继续进行到步骤104,获得用于确定设备的地理坐标、设备与位置点的相对高度以及设备的指向信息的数据。其中设备的地理坐标表示设备当前的经纬度坐标(例如,39.9694721070,116.3548332380),设备与位置点的相对高度表示设备与位置点在垂直方向上的距离,设备的指向信息表示设备的立体朝向信息,即设备与三维地理坐标的各个方向的夹角信息。如图2所示的,当设备正在指向期望的位置点时,操作人员触发屏幕上的“移动”按钮,然后设备开始获得用于计算位置点地理坐标所需要的数据。根据本公开的另一个实施例,设备指向位置点后,在无需操作人员操作的情况下,设备可以自动地获得所需要的数据。
根据本公开的一个实施例,其中设备的指向信息包括设备指向方向与水平面之间的夹角以及设备指向方向与地理北之间的水平角。其中设备指向方向是指设备的当前位置点与指向位置点之间的连线方向。其中水平角表示两个方向在水平面上投影之间的夹角,设备指向方向与地理北之间的水平角表示设备指向方向在水平面上的投影方向与地理北方向之间的夹角,其中该夹角的大小可以按照本领域通常的方法进行定义,例如夹角的大小在-180°至+180°之间,并且将夹角定义为顺时针为正,即设备指向方向在水平面上的投影方向在地理北方向的顺时针方向时,该夹角为正,设备指向方向在水平面上的投影方向在地理北方向的逆时针方向时,该夹角为负。
根据本公开的另一个实施例,可以根据设备的传感器数据,直接得出设备的指向方向,例如,构建设备指向方向的矢量
Figure PCTCN2015087398-appb-000001
,当指向位置点位于地面上时,则指向位置点为矢量
Figure PCTCN2015087398-appb-000002
与地面的交点。
根据本公开的实施例,其中获得用于确定设备的地理坐标、设备与位置点的相对高度以及设备的指向信息的数据包括:通过加速度传 感器获得设备指向方向与水平面之间的夹角。根据本公开的另一个实施例,其中通过加速度传感器获得设备指向方向与水平面之间的夹角包括:通过计算设备指向方向的加速度值与重力加速度值的比值,来获得设备指向方向与水平面之间的夹角。根据本公开的又一个实施例,当设备处于云台上时,设备指向方向与水平面之间的夹角可以由云台的框架角提供,而框架角可以由电位器测量。此外,还可以利用本领域公知的其他倾斜检测技术来获得设备指向方向与水平面之间的夹角。
根据本公开的实施例,其中获得用于确定设备的地理坐标、设备与位置点的相对高度以及设备的指向信息的数据包括:通过手动输入或者测距仪来获得设备与位置点的相对高度。例如,当指向的位置点位于地面时,并且设备处于操作人员的头部高度时,可以将操作人员的身高设置为设备与位置点的相对高度,或者也可以通过设备外接的测距仪(例如,超声波测距仪,激光测距仪,红外测距仪等)等来测出设备与地面之间的高度,作为设备与位置点的相对高度。
根据本公开的实施例,其中获得用于确定设备的地理坐标、设备与位置点的相对高度以及设备的指向信息的数据包括:通过电子罗盘获得设备指向方向与地理北之间的水平角。电子罗盘是一种数字指南针,可以输出设备的朝向信息,例如,通过电子罗盘测得设备的朝向为北偏东30°,则将设备指向方向与地理北之间的水平角确定为30°,而当设备的朝向为北偏西30°时,则将设备指向方向与地理北之间的水平角确定为-30°。
根据本公开的实施例,其中获得用于确定设备的地理坐标、设备与位置点的相对高度以及设备的指向信息的数据包括:通过卫星定位传感器或地理信息系统获得设备的地理坐标。例如,通过GPS导航传感器实时地获得设备的当前地理坐标。根据本公开的另一个实施例,设备的坐标和方向也可以通过物理测量的方式获得。
在步骤106处,基于上述所获得的数据来生成位置点的地理坐标。例如,基于设备指向方向的矢量和设备的地理坐标以及设备与位置点 的相对高度,计算出设备指向方向的矢量与水平面的交点地理坐标,该交点地理坐标即为位置点的地理坐标。
根据本公开的另一个实施例,其中基于数据来生成位置点的地理坐标包括:基于设备指向方向与水平面之间的夹角以及设备与位置点的相对高度,来计算设备与位置点的水平距离;以及基于设备与位置点的水平距离、设备指向方向与地理北之间的水平角以及设备的地理坐标,来计算位置点的地理坐标。根据本实施例的指向位置点的地理坐标的具体计算过程,可以参考图3A-3B中的示例性的计算方法。
在步骤108处,生成地理坐标的方法100进一步包括在生成位置点的地理坐标之后,将由设备控制的外部设备移动到位置点处。例如,设备在计算出指向位置点的地理坐标之后,例如在图2的示例中,操作人员触发“移动”按钮,设备执行指向位置点的地理坐标位置的计算和存储,并且将指向位置点的地理坐标发送给外部设备(例如,智能移动设备),以控制外部设备移动到指向的位置点,从而实现了指向某个位置,外部设备就能快速移动到该位置的“所见即所得”的效果。
以下的图3A-3B和图4示例性地示出了根据本公开的实施例计算指向位置点的地理坐标的方法,然而,这两种计算方法仅仅是示例性的实施例,而不旨在将本公开的内容具体限定为以下两种方法中的任何一种方法。
图3A-3B图示了根据本公开的一个实施例的指向位置点的地理坐标计算的坐标图。如图3A所示出的,操作人员将设备(例如,智能电话)举到操作人员的头部位置,并且指向地面上的某个位置。设置以设备为原点的空间直角坐标系为X’Y’Z’,其中X’轴与设备的摄像头指向方向一致,Y’轴指向设备正左侧,Z’轴指向设备正上方。如图3B所示出的,将大地坐标系设置为XYZ,其中XY轴在水平面上,X轴指向正东,Y轴指向正北,Z轴指向正上方。
设备的指向轴X’与地面的交点B为指向位置点,如图3A所示出的,α表示设备指向轴X’与水平面之间的夹角(即,设备指向方向 与水平面的夹角),如图3B所示出的,β表示设备指向轴X’在水平面的投影X”与大地坐标系Y轴的夹角(即,设备指向方向与地理北之间的水平角)。在图3A的示例中,设备与地面的垂直高度为L1,单位为米,可以由操作人员预先输入到设备中。在图3B的示例中,其中O点为设备的地理位置,其地理坐标由设备的GPS测得,通过转换得到XYZ坐标系中的O点坐标(x1,y1)。地理坐标与XYZ坐标的转换方法可以例如通过2005年3月16日公开的公开号为CN1595067A的专利申请中的方法实现,其全部内容通过引用并入本文。
在图3A的示例中,α可以通过设备的重力加速度传感器的数据获得,其计算过程为:α=asin(ax’/g),其中ax’为设备指向轴X’方向上的加速度值,g为重力加速度(约等于9.8m/s^2)。β可由设备内置的磁场强度传感器(例如,电子罗盘)计算得出,现有的智能设备通常有指南针功能,可直接输出设备的方向角β。
由于α和L1的数据已知,因此根据以下公式(1)可以得到设备与位置点之间的水平距离L2。
L2=cot(α)×L1      (公式1)
由于β、(x1,y1)以及L2的数据已知,因此根据以下公式(2)可以计算出指向位置点B在XYZ坐标系中的坐标(x2,y2),并通过转换可以获得指向位置点B的地理坐标。
x2=x1+L2×sin(β)
y2=y1+L2×cos(β)      (公式2)
图4图示了根据本公开的另一个实施例的指向位置点的地理坐标计算的坐标图。与图3A-3B的实施例类似,通过设备的传感器获得设备指向方向与水平面之间的夹角α、设备与位置点的相对高度L1、设备指向方向与地理北之间的水平角β以及对应于设备的地理坐标的坐标,从而通过转换获得XYZ坐标系中的坐标(x1,y1)。将大地坐标系设置为XYZ,点A(x1,y1,z1)表示设备当前的XYZ坐标系中的坐标,点B(x2,y2,z2)表示指向位置点的XYZ坐标系中的坐标。其 中设备与位置点的相对高度L1=z1-z2。
在坐标系XYZ中,根据以下公式(3)和(4)可以算出(x2,y2)的值,从而通过转换得出B点的地理坐标。
Figure PCTCN2015087398-appb-000003
      公式(3)
Figure PCTCN2015087398-appb-000004
          公式(4)
在图3A-3B和图4的示例中,当位置点处于坐标系XY的第一象限时,x2>x1,y2>y1;当位置点处于坐标系XY的第二象限时,x2<x1,y2>y1;当位置点处于坐标系XY的第三象限时,x2<x1,y2<y1;当位置点处于坐标系XY的第一象限时,x2>x1,y2<y1。
图5图示了根据本公开的实施例的用于生成地理坐标的设备500的框图,该设备包括指向装置502,用于将设备指向位置点;数据获得装置504,用于获得用于确定设备的地理坐标、设备与位置点的相对高度以及设备的指向信息的数据;以及生成装置506,用于基于数据来生成位置点的地理坐标。
根据本公开的一个实施例,其中设备的指向信息包括设备指向方向与水平面之间的夹角以及设备指向方向与地理北之间的水平角。
根据本公开的另一个实施例,其中指向装置进一步用于:使用光学瞄准器或者机械瞄准器来将设备指向位置点。根据本公开的又一个实施例,其中指向装置进一步用于:使用摄像头来将设备指向位置点,其中摄像头位于设备的内部或者位于设备的外部。
根据本公开的一个实施例,其中指向装置进一步用于:在设备的显示装置上显示摄像头的中心点的图标;以及调整设备以使得摄像头的中心点的图标与位置点重合。根据本公开的另一个实施例,其中中心点的图标包括以下各项中的任何一项:虚线交点、箭头、放射线以及单点。
根据本公开的一个实施例,其中数据获得装置进一步用于:通过加速度传感器获得设备指向方向与水平面之间的夹角。根据本公开的另一个实施例,其中数据获得装置进一步用于:通过计算设备指向方 向的加速度值与重力加速度值的比值,来获得设备指向方向与水平面之间的夹角。根据本公开的又一个实施例,其中数据获得装置进一步用于:通过手动输入或者测距仪来获得设备与位置点的相对高度。根据本公开的一个实施例,其中数据获得装置进一步用于:通过电子罗盘获得设备指向方向与地理北之间的水平角。根据本公开的另一个实施例,其中数据获得装置进一步用于:通过卫星定位传感器或地理信息系统获得设备的地理坐标。
根据本公开的一个实施例,其中生成装置进一步用于:基于设备指向方向与水平面之间的夹角以及设备与位置点的相对高度,来计算设备与位置点的水平距离;以及基于设备与位置点的水平距离、设备指向方向与地理北之间的水平角以及设备的地理坐标,来计算位置点的地理坐标。
根据本公开的一个实施例,用于生成地理坐标的设备500进一步包括控制装置508,用于在生成位置点的地理坐标之后,将由设备控制的外部设备移动到位置点处。
应当理解,设备500可以利用各种方式来实现。例如,在某些实施例中,设备500可以通过硬件、软件或者软件和硬件的结合来实现。其中,硬件部分可以利用专用逻辑来实现;软件部分则可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域的普通技术人员可以理解上述的方法和系统可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本公开的实施例的设备和装置不仅可以由诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用例如由各种类型的处理器所执行的软件实现,还可以由上述硬件电路和软件的结合来实现。
应当注意,尽管在上文的详细描述中提及了设备的若干装置或子 装置,但是这种划分仅仅是示例性而非强制性的。实际上,根据本公开的实施例,上文描述的两个或更多装置的特征和功能可以在一个装置中具体化。反之,上文描述的一个装置的特征和功能可以进一步划分为由多个装置来具体化。
以上所述仅为本公开的实施例可选实施例,并不用于限制本公开的实施例,对于本领域的技术人员来说,本公开的实施例可以有各种更改和变化。凡在本公开的实施例的精神和原则之内,所作的任何修改、等效替换、改进等,均应包含在本公开的实施例的保护范围之内。
虽然已经参考若干具体实施例描述了本公开的实施例,但是应该理解,本公开的实施例并不限于所公开的具体实施例。本公开的实施例旨在涵盖在所附权利要求的精神和范围内所包括的各种修改和等同布置。所附权利要求的范围符合最宽泛的解释,从而包含所有这样的修改及等同结构和功能。

Claims (26)

  1. 一种用于生成地理坐标的方法,包括:
    将设备指向位置点;
    获得用于确定所述设备的地理坐标、所述设备与所述位置点的相对高度以及所述设备的指向信息的数据;以及
    基于所述数据来生成所述位置点的地理坐标。
  2. 根据权利要求1所述的方法,其中所述设备的指向信息包括:
    所述设备指向方向与水平面之间的夹角以及所述设备指向方向与地理北之间的水平角。
  3. 根据权利要求2所述的方法,其中将设备指向位置点包括:
    使用光学瞄准器或者机械瞄准器来将所述设备指向所述位置点。
  4. 根据权利要求2所述的方法,其中将设备指向位置点包括:
    使用摄像头来将所述设备指向所述位置点,其中所述摄像头位于所述设备的内部或者位于所述设备的外部。
  5. 根据权利要求4所述的方法,其中将设备指向位置点包括:
    在所述设备的显示装置上显示所述摄像头的中心点的图标;以及
    调整所述设备以使得所述摄像头的中心点的图标与所述位置点重合。
  6. 根据权利要求5所述的方法,其中所述中心点的图标包括以下各项中的任何一项:虚线交点、箭头、放射线以及单点。
  7. 根据权利要求2所述的方法,其中获得用于确定所述设备的地理坐标、所述设备与所述位置点的相对高度以及所述设备的指向信息的数据包括:
    通过加速度传感器获得所述设备指向方向与水平面之间的所述夹角。
  8. 根据权利要求7所述的方法,其中通过加速度传感器获得所述设备指向方向与水平面之间的所述夹角包括:
    通过计算所述设备指向方向的加速度值与重力加速度值的比值, 来获得所述设备指向方向与水平面之间的所述夹角。
  9. 根据权利要求2所述的方法,其中获得用于确定所述设备的地理坐标、所述设备与所述位置点的相对高度以及所述设备的指向信息的数据包括:
    通过手动输入或者测距仪来获得所述设备与所述位置点的所述相对高度。
  10. 根据权利要求2所述的方法,其中获得用于确定所述设备的地理坐标、所述设备与所述位置点的相对高度以及所述设备的指向信息的数据包括:
    通过电子罗盘获得所述设备指向方向与地理北之间的所述水平角。
  11. 根据权利要求2所述的方法,其中获得用于确定所述设备的地理坐标、所述设备与所述位置点的相对高度以及所述设备的指向信息的数据包括:
    通过卫星定位传感器或地理信息系统获得所述设备的所述地理坐标。
  12. 根据权利要求2所述的方法,其中基于所述数据来生成所述位置点的地理坐标包括:
    基于所述设备指向方向与水平面之间的所述夹角以及所述设备与所述位置点的所述相对高度,来计算所述设备与所述位置点的水平距离;以及
    基于所述设备与所述位置点的所述水平距离、所述设备指向方向与地理北之间的所述水平角以及所述设备的所述地理坐标,来计算所述位置点的地理坐标。
  13. 根据权利要求1-12中任一项所述的方法,进一步包括:
    在生成所述位置点的地理坐标之后,将由所述设备控制的外部设备移动到所述位置点处。
  14. 一种用于生成地理坐标的设备,包括:
    指向装置,用于将设备指向位置点;
    数据获得装置,用于获得用于确定所述设备的地理坐标、所述设备与所述位置点的相对高度以及所述设备的指向信息的数据;以及
    生成装置,用于基于所述数据来生成所述位置点的地理坐标。
  15. 根据权利要求14所述的设备,其中所述设备的指向信息包括:
    所述设备指向方向与水平面之间的夹角以及所述设备指向方向与地理北之间的水平角。
  16. 根据权利要求15所述的设备,其中所述指向装置进一步用于:
    使用光学瞄准器或者机械瞄准器来将所述设备指向所述位置点。
  17. 根据权利要求15所述的设备,其中所述指向装置进一步用于:
    使用摄像头来将所述设备指向所述位置点,其中所述摄像头位于所述设备的内部或者位于所述设备的外部。
  18. 根据权利要求17所述的设备,其中所述指向装置进一步用于:
    在所述设备的显示装置上显示所述摄像头的中心点的图标;以及
    调整所述设备以使得所述摄像头的中心点的图标与所述位置点重合。
  19. 根据权利要求18所述的设备,其中所述中心点的图标包括以下各项中的任何一项:虚线交点、箭头、放射线以及单点。
  20. 根据权利要求15所述的设备,其中所述数据获得装置进一步用于:
    通过加速度传感器获得所述设备指向方向与水平面之间的所述夹角。
  21. 根据权利要求20所述的设备,其中所述数据获得装置进一步用于:
    通过计算所述设备指向方向的加速度值与重力加速度值的比值,来获得所述设备指向方向与水平面之间的所述夹角。
  22. 根据权利要求15所述的设备,其中所述数据获得装置进一 步用于:
    通过手动输入或者测距仪来获得所述设备与所述位置点的所述相对高度。
  23. 根据权利要求15所述的设备,其中所述数据获得装置进一步用于:
    通过电子罗盘获得所述设备指向方向与地理北之间的所述水平角。
  24. 根据权利要求15所述的设备,其中所述数据获得装置进一步用于:
    通过卫星定位传感器或地理信息系统获得所述设备的所述地理坐标。
  25. 根据权利要求15所述的设备,其中所述生成装置进一步用于:
    基于所述设备指向方向与水平面之间的所述夹角以及所述设备与所述位置点的所述相对高度,来计算所述设备与所述位置点的水平距离;以及
    基于所述设备与所述位置点的所述水平距离、所述设备指向方向与地理北之间的所述水平角以及所述设备的所述地理坐标,来计算所述位置点的地理坐标。
  26. 根据权利要求14-25中任一项所述的设备,进一步包括:
    控制装置,用于在生成所述位置点的地理坐标之后,将由所述设备控制的外部设备移动到所述位置点处。
PCT/CN2015/087398 2015-08-18 2015-08-18 用于生成地理坐标的方法和设备 WO2017028203A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2015/087398 WO2017028203A1 (zh) 2015-08-18 2015-08-18 用于生成地理坐标的方法和设备
US15/753,164 US10598497B2 (en) 2015-08-18 2015-08-18 Method and device for generating geographic coordinates
CN201610550641.3A CN106468539B (zh) 2015-08-18 2016-07-13 用于生成地理坐标的方法和设备
US16/790,671 US11268817B2 (en) 2015-08-18 2020-02-13 Method and device for generating geographic coordinates
US16/790,673 US11248913B2 (en) 2015-08-18 2020-02-13 Method and device for generating geographic coordinates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/087398 WO2017028203A1 (zh) 2015-08-18 2015-08-18 用于生成地理坐标的方法和设备

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US15/753,164 A-371-Of-International US10598497B2 (en) 2015-08-18 2015-08-18 Method and device for generating geographic coordinates
US15753164 A-371-Of-International 2018-08-15
US16/790,673 Continuation US11248913B2 (en) 2015-08-18 2020-02-13 Method and device for generating geographic coordinates
US16/790,671 Continuation US11268817B2 (en) 2015-08-18 2020-02-13 Method and device for generating geographic coordinates

Publications (1)

Publication Number Publication Date
WO2017028203A1 true WO2017028203A1 (zh) 2017-02-23

Family

ID=58050491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087398 WO2017028203A1 (zh) 2015-08-18 2015-08-18 用于生成地理坐标的方法和设备

Country Status (3)

Country Link
US (3) US10598497B2 (zh)
CN (1) CN106468539B (zh)
WO (1) WO2017028203A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106611467B (zh) * 2015-10-22 2020-09-15 中兴通讯股份有限公司 一种实现报警的方法、装置和系统
WO2020074070A1 (en) * 2018-10-09 2020-04-16 Nokia Technologies Oy Positioning system and method
CN112037122A (zh) * 2020-08-31 2020-12-04 四川易利数字城市科技有限公司 一种在游戏引擎中使用地理坐标的方法
CN114504285B (zh) * 2022-04-21 2022-07-05 深圳市倍思科技有限公司 清洁位置确定方法、装置、设备及存储介质
CN114521843B (zh) * 2022-04-21 2022-07-12 深圳市倍思科技有限公司 清洁位置确定方法、装置、终端设备及智能清洁系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899161A (en) * 1988-07-21 1990-02-06 International Business Machines Corporation High accuracy coordinate conversion method for air traffic control applications
CN1641628A (zh) * 2004-01-17 2005-07-20 华为技术有限公司 一种通过手持设备获取目标地点方向的方法
CN102214000A (zh) * 2011-06-15 2011-10-12 浙江大学 用于移动增强现实系统的目标物体混合注册方法及系统
CN102564417A (zh) * 2011-12-30 2012-07-11 中国测绘科学研究院 非接触式动态主动定位方法
CN103438887A (zh) * 2013-09-18 2013-12-11 上海海事大学 用于移动机器人定位与环境重构的绝对坐标获取方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE787649A (fr) * 1971-09-20 1973-02-19 Blount & George Inc Systeme de poursuite ou de depistage a l'aide d'un instrument d'optiqu
US5568152A (en) * 1994-02-04 1996-10-22 Trimble Navigation Limited Integrated image transfer for remote target location
US5672820A (en) * 1995-05-16 1997-09-30 Boeing North American, Inc. Object location identification system for providing location data of an object being pointed at by a pointing device
US5903235A (en) 1997-04-15 1999-05-11 Trimble Navigation Limited Handheld surveying device and method
US6140957A (en) * 1998-03-12 2000-10-31 Trimble Navigation Limited Method and apparatus for navigation guidance
JP3733464B2 (ja) * 2002-07-17 2006-01-11 和光機械工業株式会社 台車用アウトリガー装置
US20050057745A1 (en) * 2003-09-17 2005-03-17 Bontje Douglas A. Measurement methods and apparatus
JP4424665B2 (ja) * 2004-07-30 2010-03-03 株式会社 ソキア・トプコン 測量機
US7568289B2 (en) * 2005-03-14 2009-08-04 Robert Bosch Company Limited Handheld optical distance measurement device
US10168153B2 (en) * 2010-12-23 2019-01-01 Trimble Inc. Enhanced position measurement systems and methods
EP2474810A1 (de) * 2011-01-11 2012-07-11 Leica Geosystems AG Vermessungsgerät mit einer dynamischen Anzielfunktionalität
EP2511658A1 (de) * 2011-04-14 2012-10-17 Hexagon Technology Center GmbH Vermessungssystem und Verfahren zur Neupunktbestimmung
DE102011116303B3 (de) * 2011-10-18 2012-12-13 Trimble Jena Gmbh Geodätisches Messsystem und Verfahren zum Betreiben eines geodätischen Messsystems
US9513120B2 (en) 2012-09-20 2016-12-06 Trimble Navigation Limited Workflow improvements for stakeout
CN102928861B (zh) * 2012-09-29 2015-05-06 凯迈(洛阳)测控有限公司 机载设备用目标定位方法及装置
CN102955478B (zh) * 2012-10-24 2016-01-20 深圳一电科技有限公司 无人机飞行控制方法及系统
CN107256030B (zh) * 2013-07-05 2021-01-12 深圳市大疆创新科技有限公司 无人飞行器的遥控终端、飞行辅助系统和方法
CN103399319A (zh) * 2013-07-22 2013-11-20 山东神戎电子股份有限公司 一种适用于视频监控的空间目标定位方法
US10028426B2 (en) 2015-04-17 2018-07-24 360 Yield Center, Llc Agronomic systems, methods and apparatuses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899161A (en) * 1988-07-21 1990-02-06 International Business Machines Corporation High accuracy coordinate conversion method for air traffic control applications
CN1641628A (zh) * 2004-01-17 2005-07-20 华为技术有限公司 一种通过手持设备获取目标地点方向的方法
CN102214000A (zh) * 2011-06-15 2011-10-12 浙江大学 用于移动增强现实系统的目标物体混合注册方法及系统
CN102564417A (zh) * 2011-12-30 2012-07-11 中国测绘科学研究院 非接触式动态主动定位方法
CN103438887A (zh) * 2013-09-18 2013-12-11 上海海事大学 用于移动机器人定位与环境重构的绝对坐标获取方法

Also Published As

Publication number Publication date
CN106468539B (zh) 2020-06-09
US10598497B2 (en) 2020-03-24
CN106468539A (zh) 2017-03-01
US11248913B2 (en) 2022-02-15
US11268817B2 (en) 2022-03-08
US20200182621A1 (en) 2020-06-11
US20180252529A1 (en) 2018-09-06
US20200182620A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
US11532136B2 (en) Registration between actual mobile device position and environmental model
WO2017028203A1 (zh) 用于生成地理坐标的方法和设备
US9679414B2 (en) Federated mobile device positioning
US10168153B2 (en) Enhanced position measurement systems and methods
US9879993B2 (en) Enhanced bundle adjustment techniques
US9182229B2 (en) Enhanced position measurement systems and methods
EP2904351B1 (en) Enhanced position measurement systems and methods
US9503628B1 (en) Camera mounting and control device
EP3592001B1 (en) Information display method and apparatus
US11272153B2 (en) Information processing apparatus, method for controlling the same, and recording medium
RU2652535C2 (ru) Способ и система измерения расстояния до удаленных объектов
US10726534B1 (en) Layout projection
WO2023283922A1 (zh) 控制可移动物体跟踪目标物的方法和装置
CN109977784B (zh) 用于获取信息的方法及装置
JP2023094344A (ja) 拡張現実表示装置、方法、及びプログラム
RU142555U1 (ru) Устройство для геодезических измерений
JP2015145043A (ja) 投影制御装置、ロボット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901407

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15753164

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15901407

Country of ref document: EP

Kind code of ref document: A1