WO2017018182A1 - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
WO2017018182A1
WO2017018182A1 PCT/JP2016/070378 JP2016070378W WO2017018182A1 WO 2017018182 A1 WO2017018182 A1 WO 2017018182A1 JP 2016070378 W JP2016070378 W JP 2016070378W WO 2017018182 A1 WO2017018182 A1 WO 2017018182A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna unit
magnetic body
radar apparatus
cover
disposed
Prior art date
Application number
PCT/JP2016/070378
Other languages
English (en)
French (fr)
Inventor
一正 櫻井
和司 川口
俊哉 境
杉本 勇次
旭 近藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016028229A external-priority patent/JP6360088B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/748,090 priority Critical patent/US10802139B2/en
Publication of WO2017018182A1 publication Critical patent/WO2017018182A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • H01P1/175Auxiliary devices for rotating the plane of polarisation using Faraday rotators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/12Refracting or diffracting devices, e.g. lens, prism functioning also as polarisation filter

Definitions

  • the present invention relates to a radar device that detects an object by transmitting and receiving electromagnetic waves.
  • the vehicle radar device may be used by being attached to the inside of a cover such as a vehicle bumper, for example.
  • a cover such as a vehicle bumper
  • the reflected wave reflected by the bumper may interfere with the direct wave from the radar device, thereby degrading the detection performance.
  • Japanese Patent Application Laid-Open No. 2009-103456 discloses a technique for suppressing the interference between the direct wave and the reflected wave by adjusting the reflection direction of the reflected wave by providing an angle to the bumper. ing.
  • the present invention has been made in view of these problems, and provides a radar apparatus that suppresses interference between a radiated wave from a radar and a reflected wave generated by the cover regardless of the shape of a cover such as a bumper. Objective.
  • the radar apparatus of the present invention includes an antenna unit (3, 3a, 3b), a magnetic body (41, 71, 81, 91), a magnet (42, 72, 81 to 87, 91 to 95), and a polarization filter.
  • the antenna unit transmits and receives exploration waves composed of electromagnetic waves.
  • a magnetic body is arrange
  • the magnet generates a magnetic field in the magnetic body along the propagation direction of the exploration wave.
  • the polarization filter is disposed on the opposite side of the antenna unit with the magnetic material interposed therebetween.
  • the plane of polarization of the direct wave which is the exploration wave radiated from the antenna unit, rotates due to the Faraday effect when passing through the magnetic material to which a magnetic field is applied.
  • a direct wave having a specific polarization plane is radiated from the radar device by passing through the polarization filter.
  • a part of the direct wave is reflected by a cover such as a bumper.
  • the reflected wave passes through the polarization filter and the magnetic body, and the polarization plane rotates again when passing through the magnetic body.
  • the rotation of the polarization plane due to the Faraday effect is a nonreciprocal action, and when the reflected wave passes through the magnetic body, the rotation does not return by the amount when the direct wave passes through the magnetic body, but the rotation further proceeds. Acts on direction. Then, the reflected wave that has passed through the magnetic body is reflected again by the antenna unit, passes through the magnetic body again, and the plane of polarization rotates again. As a result, the polarization plane of the re-reflected wave is different from the angle of the plane of polarization that the polarization filter passes (ideally 90 ° different), so that the re-reflection wave that passes through the polarization filter is suppressed, and thus the radar. Interference between the radiated wave radiated from the apparatus through the cover and the reflected wave radiated through the cover after being reflected inside the cover is suppressed.
  • the radar apparatus of the present invention it is possible to suppress deterioration in detection performance based on interference between a direct wave and a reflected wave generated by the cover, regardless of the shape of the cover. In addition, it is possible to suppress the generation of reflected waves from the bumper that causes noise in the vertical direction.
  • FIG. 1 is a diagram illustrating a configuration of a radar apparatus according to a first embodiment, where (b) is a plan view, (a) is a cross-sectional view taken along line AA shown in the plan view, and (c) is a cross-sectional view taken along line B-- It is sectional drawing of a B cross section. It is a top view which shows the radar apparatus of the state which removed the cover. It is explanatory drawing which shows the effect
  • the on-vehicle radar device 1 of this embodiment is disposed inside a front bumper 110 in the vehicle 100 and is fixed to a holding member 120 configured as a part of the frame of the vehicle 100. .
  • the radar apparatus 1 transmits and receives a radar wave made up of electromagnetic waves via the bumper 110.
  • the radar apparatus 1 includes a radar unit 2, an antenna unit 3, a magnetic body unit 4, a polarization filter 5, and a cover 6.
  • the radar unit 2 includes a transmission / reception circuit that transmits / receives the exploration wave via the antenna unit 3 and a signal processing unit that processes information received by the transmission / reception circuit to obtain information about an object that reflects the exploration wave. Yes.
  • the antenna unit 3 includes a plurality (three in the figure) of array antennas 31-33 each including a plurality (eight in the figure) of antenna elements arranged in a line in the vertical direction.
  • the vertical direction is the vehicle height direction when the radar device 1 is fixed to the vehicle 100
  • the horizontal direction is the vehicle width direction when the radar device 1 is fixed to the vehicle 100.
  • Any one of the array antennas 31 to 33 is used as a transmission antenna, and the other two are used as reception antennas.
  • the cover 6 is made of a dielectric and is formed in a box shape in which one surface covering the antenna unit 3 is opened.
  • the cover 6 has been devised in various ways for minimizing the influence of the reflection of the exploration wave at the boundary surface, but is well known and will not be described in detail.
  • the magnetic body unit 4 includes a plate-like magnetic body 41 disposed facing the antenna unit 3 inside the cover 6 and a pair of magnets 42 and 42 provided at both ends of the magnetic body 41 in the vertical direction. .
  • the magnets 42 and 42 are both arranged so that the south pole faces the antenna unit 3 side.
  • the magnetic body unit 4 functions as a Faraday rotator and is configured to rotate the polarization plane of the electromagnetic wave passing through the magnetic body 41 along the thickness direction of the magnetic body 41 by 45 °. Specifically, when the Verde coefficient of the magnetic body 41 is V and the magnetic field applied by the magnet 42 is H, the thickness L of the magnetic body 41 is set to satisfy the expression (1).
  • the polarization filter 5 is a well-known filter configured by arranging conductor wires 51 at intervals equal to or smaller than the wavelength of the exploration wave radiated from the antenna unit 3.
  • the antenna unit 3 is disposed on the opposite side of the magnetic unit 4.
  • the conductor wire 51 is formed so as to be inclined by 45 ° with respect to the vertical direction and the horizontal direction.
  • the direct wave which is the exploration wave radiated from the antenna unit 3, passes through the magnetic unit 4 acting as a Faraday rotator, and the polarization plane. Rotate 45 °. Thereafter, only the direct wave whose polarization plane is inclined by 45 ° by passing through the polarization filter 5 is radiated from the radar apparatus 1.
  • the angles of the plane of polarization are all expressed as angles viewed from the antenna unit 3 side.
  • the direct wave is radiated to the outside of the vehicle 100 via the bumper 110, and a part of the direct wave is reflected on the inner surface of the bumper 110 and becomes a reflected wave toward the radar device 1.
  • this reflected wave Since this reflected wave has an angle of polarization of 45 °, it passes through the polarization filter 5.
  • the plane of polarization again rotates 45 °.
  • the rotation of the polarization plane due to the Faraday effect is nonreciprocal, when the reflected wave passes through the magnetic body unit 4, the rotation does not return by the amount when the direct wave passes through the magnetic body unit 4. Acting in the direction of rotation, the angle of the plane of polarization is 90 °.
  • the reflected wave that has passed through the magnetic unit 4 is re-reflected on the surface of the antenna unit 3, passes through the magnetic unit 4 again, and the plane of polarization further rotates by 45 °.
  • the re-reflected wave that has passed through the magnetic unit 4 has a polarization plane angle of 135 ° and is inclined 90 ° with respect to an angle of 45 ° that can pass through the polarization filter 5.
  • Can't pass That is, since the re-reflected wave is not radiated to the outside from the radar apparatus 1, only the direct wave from the antenna unit 3 is radiated to the outside of the vehicle 100 via the bumper 110.
  • the description of the operation of the cover 6 having a small influence on the exploration wave is omitted for easy understanding.
  • the radar apparatus 1 the direct wave radiated directly from the antenna unit 3 and the reflected wave reflected on the inside of the bumper 110 (and thus the antenna unit 3) by the action of the magnetic body unit 4 and the polarization filter 5. Interference with the re-reflected wave re-reflected at (1). Therefore, according to the radar apparatus 1, the radiated wave radiated to the outside of the vehicle via the bumper 110 regardless of the shape of the bumper 110 (reflection direction of the reflected wave) is reflected wave (and thus regenerated). Since it is not affected by interference due to (reflected wave), deterioration of detection performance based on the reflected wave is suppressed.
  • FIG. 5 is a graph showing the characteristics of the radar apparatus 1 of the first embodiment, the characteristics of the antenna unit 3 alone, and the characteristics of a radar apparatus having a conventional structure in which the magnetic body unit 4 and the polarization filter 5 are removed from the radar apparatus 1. is there.
  • required by simulation assumes that the wavelength of a radiated wave shall be 4 mm, and the polarization filter 5 has arrange
  • the radar apparatus 1a of the present embodiment uses a cover 6a in which a polarization filter 5 is built instead of the cover 6, and only the antenna unit 3 and the magnetic unit 4 are inside the cover 6a. Is arranged.
  • the polarization filter 5 is disposed not on the inside of the cover 6 but on the outside of the cover 6, and on the inside of the cover 6, the antenna unit 3 and the magnetic body unit are disposed. Only 4 are arranged.
  • the cover 71 is made of a magnetic material, and magnets 72, 72 are arranged on both ends of the inner surface of the cover 71 in the vertical direction.
  • the cover 71 and the magnets 72 and 72 are configured to constitute a magnetic body unit 7 that acts as a Faraday rotator.
  • the polarization filter 5 is disposed outside the cover 71, and the antenna unit 3 and the magnets 72 and 72 are disposed inside the cover 71.
  • the radar apparatus 1d of the present embodiment differs from the antenna unit 3 and the magnetic body unit 4 of the first embodiment in the configuration of the antenna unit 3a and the magnetic body unit 8.
  • the antenna unit 3a includes a transmission antenna unit 3S and a reception antenna unit 3R, and is arranged in the vertical direction.
  • the transmission antenna unit 3S and the reception antenna unit 3R are both configured in the same manner, and a plurality of (for example, four) array antennas composed of a plurality of (for example, four) antenna elements arranged in a line in the vertical direction are arranged in the horizontal direction (for example, 3 Array).
  • the magnetic body unit 8 includes a plate-like magnetic body 81 disposed opposite to the antenna unit 3 a and four magnets 82 to 85 inside the cover 6.
  • the magnets 82 and 83 are disposed so as to sandwich the magnetic body 81 at the upper end portion of the magnetic body 81, and the magnets 84 and 85 are disposed so as to sandwich the magnetic body 81 at the lower end portion of the magnetic body 81.
  • the magnets 82 and 84 provided on the polarization filter 5 side of the magnetic body 81 are both arranged so that the south pole faces upward and the north pole faces downward, and on the antenna unit 3a side of the magnetic body 81.
  • the provided magnets 83 and 85 are arranged so that the N pole faces upward and the S pole faces downward, opposite to the magnets 82 and 84.
  • a magnetic field directed from the polarization filter 5 side to the antenna unit 3a side is applied to the upper half of the magnetic body 81
  • a magnetic field directed from the antenna unit 3a side to the polarization filter 5 side is applied to the lower half of the magnetic body 81.
  • the lower half part of the magnetic unit 8 facing the transmitting antenna unit 3S functions as a Faraday rotator that rotates the polarization plane of the electromagnetic wave passing through the part by ⁇ 45 °.
  • the upper half part of the magnetic unit 8 facing the receiving antenna unit 3R functions as a Faraday rotator that rotates the polarization plane of the electromagnetic wave passing through the part 45 °.
  • a direct wave that is an exploration wave radiated from the transmitting antenna unit 3S in this case, a horizontal polarization whose polarization plane angle is 90 ° is
  • the plane of polarization rotates by -45 °. That is, the direct wave that has passed through the magnetic unit 8 has a plane of polarization inclined by 45 °.
  • the direct wave whose polarization plane is inclined by 45 ° by passing through the polarization filter 5 is radiated from the radar apparatus 1.
  • the operation is the same as in the first embodiment.
  • a reflected wave coming from an object that reflects a direct wave whose polarization plane is tilted by 45 ° has a polarization plane tilted by 45 ° and enters the radar device 1d.
  • the reflected wave passes through the polarization filter 5 and passes through the magnetic unit 8, the plane of polarization rotates by 45 °.
  • the reflected wave received by the receiving antenna unit 3R has a polarization plane angle of 90 ° and has the same horizontal polarization as the direct wave radiated from the transmitting antenna unit 3S.
  • the receiving antenna unit 3R can receive the same horizontal polarization as that transmitted from the transmitting antenna unit 3S. Therefore, as shown in FIG. 11, the reflected wave from a wider angle range is used. Can be received.
  • the gain at the detection angle of ⁇ 20 ° to ⁇ 60 ° is significantly improved as compared with the first embodiment.
  • the radar apparatus 1 e of this embodiment uses a magnetic body unit 8 a instead of the magnetic body unit 8.
  • the magnetic unit 8 a includes magnets 86 and 87 in addition to the configuration of the magnetic unit 8.
  • the magnets 86 and 87 are disposed in the vicinity of the center of the magnetic body 81 in the vertical direction so as to face each other with the magnetic body 81 interposed therebetween.
  • the magnet 86 disposed on the polarization filter 5 side is disposed such that the south pole faces upward and the north pole faces downward
  • the magnet 87 disposed on the antenna unit 3a side is As with the magnets 83 and 85, the N pole is disposed upward and the S pole is disposed downward.
  • the radar apparatus 1d configured as described above, not only the same effect as the radar apparatus 1 of the first embodiment described above can be obtained, but also the strength of the magnetic field applied to the magnetic body unit 8a is increased, and more Performance is improved.
  • the radar apparatus 1f of the present embodiment is different from the antenna unit 3 and the magnetic body unit 4 of the first embodiment in the configuration of the antenna unit 3b and the magnetic body unit 9.
  • the antenna unit 3b includes a transmission antenna unit 3S and a reception antenna unit 3R.
  • the transmission antenna unit 3S and the reception antenna unit 3R in the antenna unit 3b are arranged side by side in the horizontal direction.
  • the magnetic body unit 9 includes a plate-like magnetic body 91 disposed opposite to the antenna unit 3 b and four magnets 92 to 95 inside the cover 6.
  • the magnets 92 and 93 are disposed so as to sandwich the magnetic body 81 at the upper end portion of the magnetic body 81, and the magnets 94 and 95 are disposed so as to sandwich the magnetic body 81 at the lower end portion of the magnetic body 91.
  • the magnets 92 and 94 provided on the polarization filter 5 side of the magnetic body 91 are both on the side where the receiving antenna unit 3R having the S pole in the horizontal direction is provided, and on the transmitting antenna unit 3S having the N pole in the horizontal direction. It is arrange
  • the magnets 93 and 95 provided on the antenna unit 3b side of the magnetic body 91 are opposite to the magnets 92 and 94, respectively, on the side where the receiving antenna unit 3R having the N pole in the horizontal direction is provided, and the S pole is in the horizontal direction. It is arrange
  • a magnetic field directed from the polarization filter 5 side to the antenna unit 3b side is applied to the lateral half of the magnetic body 91 facing the transmitting antenna unit 3S, and the lateral half of the magnetic body 91 facing the receiving antenna unit 3R is applied to the lateral half.
  • the magnetic field from the antenna unit 3b side toward the polarization filter 5 side is applied.
  • the part of the magnetic body unit 9 facing the transmitting antenna unit 3S functions as a Faraday rotator that rotates the polarization plane of the electromagnetic wave passing through the part by ⁇ 45 °.
  • the portion of the magnetic unit 9 facing the receiving antenna unit 3R functions as a Faraday rotator that rotates the polarization plane of the electromagnetic wave passing through the portion by 45 °.
  • the same effect as that of the radar device 1d described above can be obtained.
  • the tips of the magnetic poles of the magnets 92 to 95 are arranged so as to be positioned at the lateral center of the transmission antenna unit 3S and the reception antenna unit 3R, so that the transmission antenna unit 3S and the reception antenna unit are arranged.
  • a magnetic field is efficiently applied to the portion of the magnetic body 91 facing 3R.
  • the on-vehicle radar device 1 has been described.
  • the present invention is not limited to this, and any radar device may be used as long as it is arranged to transmit and receive a survey wave through some cover.
  • the present invention can be realized in various forms such as a system including the radar apparatus as a constituent element and an interference suppression method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

アンテナ装置はアンテナユニットを有する。アンテナユニットは、電磁波からなる探査波を送受信する。磁性体は、アンテナユニットにて送受信される探査波が通過する位置に配置される。磁石は、探査波の伝搬方向に沿った磁界を磁性体に発生させる。偏波フィルタは、磁性体を挟んでアンテナユニットとは反対側に配置される。これにより、バンパ等のカバーの形状によらず、カバーで発生する反射波と放射波との干渉が抑制される。

Description

レーダ装置
 本発明は、電磁波を送受信することによって物体を検出するレーダ装置に関する。
 車両用レーダ装置は、例えば、車両のバンパ等のカバーの内側に取り付けて使用される場合がある。この場合、バンパで反射した反射波がレーダ装置からの直接波と干渉することにより、検知性能を劣化させてしまう場合がある。
 上記問題点を解消するために、特開2009-103456号公報は、バンパに角度を持たせて反射波の反射方向を調整することにより、直接波と反射波の干渉を抑制する技術が開示されている。
 しかしながら、従来技術では、バンパを調整しておく必要があり、未調整のバンパを取り付けた車両では、上記干渉を抑制することができないという問題があった。また、従来技術では、バンパからの反射波が上方や下方へ伝搬するため、標識や地面で再反射してレーダ装置に戻り、ノイズの原因となることもあった。
 本発明は、こうした問題に鑑みてなされたものであり、バンパ等のカバーの形状によらず、レーダからの放射波とカバーで発生する反射波との干渉を抑制するレーダ装置を提供することを目的とする。
 本発明のレーダ装置は、アンテナユニット(3,3a,3b)と、磁性体(41,71,81,91)と、磁石(42,72,81~87,91~95)と、偏波フィルタ(5)とを備える。アンテナユニットは、電磁波からなる探査波を送受信する。磁性体は、アンテナユニットにて送受信される探査波が通過する位置に配置される。磁石は、探査波の伝搬方向に沿った磁界を磁性体に発生させる。偏波フィルタは、磁性体を挟んでアンテナユニットとは反対側に配置される。
 このような構成によれば、アンテナユニットから放射された探査波である直接波は、磁界が付与された磁性体を通過する際にファラデー効果によって偏波面が回転する。その後、偏波フィルタを通過することで、レーダ装置からは、特定の偏波面を有した直接波が放射される。また、直接波の一部は、バンパ等のカバーで反射される。この反射波は、偏波フィルタおよび磁性体を通過し、磁性体を通過する際に、再び偏波面が回転する。但し、ファラデー効果による偏波面の回転は非相反な作用であり、反射波が磁性体を通過する時には、直接波が磁性体を通過した時の分だけ回転が戻るのではなく、更に回転が進む方向に作用する。そして、磁性体を通過した反射波は、アンテナユニットにて再反射し、磁性体を再度通過し、その再に偏波面が回転する。その結果、再反射波の偏波面が、偏波フィルタが通過させる偏波面の角度と異なる(理想的には90°異なる)ことにより、偏波フィルタを通過する再反射波が抑制され、ひいてはレーダ装置からカバーを介して放射される放射波とカバーの内側で反射した後、カバーを介して放射される反射波との干渉が抑制される。
 従って、本発明のレーダ装置によれば、カバーの形状によらず、直接波とカバーで発生する反射波との干渉に基づく検知性能の劣化を抑制することができる。
 また、ノイズの原因となるバンパから上下方向に向かう反射波の発生も抑制することができる。
 なお、特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。
レーダ装置の使用状態を示す説明図である。 第1実施形態のレーダ装置の構成を示す図であり、(b)が平面図、(a)が平面図中に示すA-A断面の断面図、(c)が平面図中に示すB-B断面の断面図である。 カバーを除去した状態のレーダ装置を示す平面図である。 レーダ装置の作用を示す説明図である。 レーダ装置の指向性をシミュレーションによって求めた結果を示すグラフである。 第2実施形態のレーダ装置の構成を示す断面図である。 第3実施形態のレーダ装置の構成を示す断面図である。 第4実施形態のレーダ装置の構成を示す断面図である。 第5実施形態のレーダ装置の構成を示す断面図である。 第5実施形態のレーダ装置の作用を示す説明図である。 第5実施形態のレーダ装置の指向性をシミュレーションによって求めた結果を示すグラフである。 第6実施形態のレーダ装置の構成を示す断面図である。 第7実施形態のレーダ装置の構成を示す図であり、図14のXIII-XIII断面における断面図である。 第7実施形態のレーダ装置においてカバーを除去した状態を示す平面図である。 図14のXV-XV断面における第7実施形態のレーダ装置の断面図である。 図14のXVI-XVI断面における第7実施形態のレーダ装置の断面図である。
 以下に本発明が適用された実施形態について、図面を用いて説明する。
 [1.第1実施形態]
 [1.1.全体構成]
 本実施形態の車載用レーダ装置1は、図1に示すように、車両100における前面のバンパ110の内側に配置され、車両100のフレームの一部として構成された保持部材120に固定されている。レーダ装置1は、電磁波からなる探査波(radar wave)を、バンパ110を介して送受信する。
 [1.2.レーダ装置]
 レーダ装置1は、図2に示すように、レーダユニット2と、アンテナユニット3と、磁性体ユニット4と、偏波フィルタ5と、カバー6とを備える。
 レーダユニット2は、アンテナユニット3を介して探査波を送受信する送受信回路や送受信回路にて得られた受信信号を処理して探査波を反射した物体に関する情報を求める信号処理部等が内蔵されている。
 アンテナユニット3は、上下方向に一列に配列された複数個(図では8個)のアンテナ素子からなるアレーアンテナ31-33を、横方向に複数個(図では3個)配列している。なお、上下方向とは、車両100にレーダ装置1を固定した時に車高方向であり、横方向とは、車両100にレーダ装置1を固定した時に車幅方向である。そして、アレーアンテナ31~33のいずれか一つが送信アンテナとして使用され、他の二つが受信アンテナとして使用される。
 カバー6は、誘電体からなりアンテナユニット3を覆う1面が開放された箱状に形成されている。カバー6は、その境界面での探査波の反射による影響を最小限に抑制するための様々な工夫が施されているが、公知のものでありその詳細についての説明は省略する。
 磁性体ユニット4は、カバー6の内側に、アンテナユニット3に対して対向配置された板状の磁性体41と、磁性体41の上下方向両端に設けられた一対の磁石42,42とを備える。磁石42,42は、いずれもS極がアンテナユニット3側を向くように配置されている。磁性体ユニット4は、ファラデー回転子として機能し、磁性体41の厚さ方向に沿って該磁性体41を通過する電磁波の偏波面を45°回転させるように構成されている。具体的には、磁性体41のベルデ係数をV、磁石42による印加磁界をHとすると、磁性体41の厚さLは、(1)式を満たすように設定される。
   L=45/(V×H)    (1)
 偏波フィルタ5は、アンテナユニット3から放射される探査波の波長以下の間隔で導体線51を並べることで構成された周知のものであり、磁性体ユニット4と同様にカバー6の内側に、磁性体ユニット4を挟んでアンテナユニット3とは反対側に配置されている。導体線51は、図3に示すように、上下方向および横方向に対して45°傾いた状態となるように形成されている。
 [1.3.作用]
 このような構成を有するレーダ装置1では、図4に示すように、アンテナユニット3から放射された探査波である直接波は、ファラデー回転子として作用する磁性体ユニット4を通過する際に偏波面が45°回転する。その後、偏波フィルタ5を通過することで偏波面が45°傾いた直接波のみがレーダ装置1から放射される。以下、偏波面の角度は、すべてアンテナユニット3側から見た角度で表すものとする。この直接波はバンパ110を介して車両100の外部に放射されると共に、その一部は、バンパ110の内側面で反射され、レーダ装置1に向かう反射波となる。この反射波は偏波面の角度は45°であるため偏波フィルタ5を通過する。偏波フィルタ5を通過した反射波は、磁性体ユニット4を通過する際に、再び偏波面が45°回転する。なお、ファラデー効果による偏波面の回転は非相反であるため、反射波が磁性体ユニット4を通過する時には、直接波が磁性体ユニット4を通過した時の分だけ回転が戻るのではなく、更に回転が進む方向に作用し、偏波面の角度は90°となる。この磁性体ユニット4を通過した反射波は、アンテナユニット3の表面で再反射し、再度、磁性体ユニット4を通過し、その際に偏波面が更に45°回転する。その結果、磁性体ユニット4を通過した再反射波は、偏波面の角度が135°となり、偏波フィルタ5を通過可能な角度45°に対して90°傾いているため、偏波フィルタ5を通過することができない。つまり、再反射波は、レーダ装置1から外部に放射されることがないため、アンテナユニット3からの直接波だけがバンパ110を介して車両100の外部に放射されることになる。なお、ここでは探査波への影響が小さいカバー6の作用については、理解を容易にするため説明を省略している。
 [1.4.効果]
 以上説明したように、レーダ装置1では、磁性体ユニット4および偏波フィルタ5の作用により、アンテナユニット3から直接放射された直接波と、バンパ110の内側で反射した反射波(ひいてはアンテナユニット3で再反射した再反射波)との干渉が抑制される。従って、レーダ装置1によれば、バンパ110の形状(反射波の反射方向)によらず、バンパ110を介して車両の外部に放射される放射波は、バンパ110で発生する反射波(ひいては再反射波)による干渉の影響を受けないため、反射波に基づく検知性能の劣化が抑制される。
 また、従来技術とは異なり、レーダ装置1は、ノイズの原因となるバンパ110から上下方向に向かう反射波の発生も抑制する。
 図5は、実施例1のレーダ装置1の特性と、アンテナユニット3単体の特性と、レーダ装置1から磁性体ユニット4および偏波フィルタ5を除去した従来構造のレーダ装置の特性を示すグラフである。なお、放射波の波長は4mmとし、偏波フィルタ5は、直径1mmの銅線を2mm間隔で配置されているものとして、シミュレーションによって求めた結果を示す。
 図5のグラフに示すように、従来構造のレーダ装置と比較して、特性のばらつきが抑制されていることがわかる。
 [2.第2実施形態]
 第2実施形態は、基本的な構成は第1実施形態と同様であるため、共通する構成については説明を省略し、相違点を中心に説明する。
 本実施形態のレーダ装置1aは、図6に示すように、カバー6の代わりに偏波フィルタ5が内蔵されたカバー6aを用い、カバー6aの内側には、アンテナユニット3と磁性体ユニット4のみが配置されている。
 このように構成されたレーダ装置1aによれば、前述した第1実施形態のレーダ装置1と同様の効果が得られる。
 [3.第3実施形態]
 第3実施形態は、基本的な構成は第1実施形態と同様であるため、共通する構成については説明を省略し、相違点を中心に説明する。
 本実施形態のレーダ装置1bは、図7に示すように、偏波フィルタ5がカバー6の内側ではなく、カバー6の外側に配置され、カバー6の内側には、アンテナユニット3と磁性体ユニット4のみが配置されている。
 このように構成されたレーダ装置1bによれば、前述した第1実施形態のレーダ装置1と同様の効果が得られる。
 [4.第4実施形態]
 第4実施形態は、基本的な構成は第1実施形態と同様であるため、共通する構成については説明を省略し、相違点を中心に説明する。
 本実施形態のレーダ装置1cは、図8に示すように、カバー71が磁性体により構成され、このカバー71の内側面の上下方向両端部に磁石72,72が配置されている。これらカバー71および磁石72,72がファラデー回転子として作用する磁性体ユニット7を構成するように構成されている。また、偏波フィルタ5が、カバー71の外側に配置され、カバー71の内側には、アンテナユニット3と磁石72,72が配置されている。
 このように構成されたレーダ装置1cによれば、前述した第1実施形態のレーダ装置1と同様の効果が得られる。
 [5.第5実施形態]
 第5実施形態は、基本的な構成は第1実施形態と同様であるため、共通する構成については説明を省略し、相違点を中心に説明する。
 [5.1.構成]
 本実施形態のレーダ装置1dは、図9に示すように、アンテナユニット3aおよび磁性体ユニット8の構成が、第1実施形態のアンテナユニット3および磁性体ユニット4とは異なる。
 アンテナユニット3aは、送信アンテナユニット3Sと、受信アンテナユニット3Rとを備え、上下方向に並べて配置されている。送信アンテナユニット3Sと受信アンテナユニット3Rは、いずれも同様に構成され、上下方向に一列に配列された複数個(例えば4個)のアンテナ素子からなるアレーアンテナを、横方向に複数個(例えば3個)配列している。
 磁性体ユニット8は、カバー6の内側に、アンテナユニット3aに対して対向配置された板状の磁性体81と、4個の磁石82~85とを備える。磁石82,83は、磁性体81の上端部にて磁性体81を挟むように配置され、磁石84,85は、磁性体81の下端部にて磁性体81を挟むように配置されている。また、磁性体81の偏波フィルタ5側に設けられた磁石82,84は、いずれもS極が上方向、N極が下方向を向くように配置され、磁性体81のアンテナユニット3a側に設けられた磁石83,85は、磁石82,84とは反対に、いずれもN極が上方向、S極が下方向を向くように配置されている。
 つまり、磁性体81の上半分には、偏波フィルタ5側からアンテナユニット3a側に向かう磁界が印加され、磁性体81の下半分には、アンテナユニット3a側から偏波フィルタ5側に向かう磁界が印加されるように構成されている。これにより、送信アンテナユニット3Sと対向する磁性体ユニット8の下半分の部位は、その部位を通過する電磁波の偏波面を-45°回転させるファラデー回転子として機能する。また、受信アンテナユニット3Rと対向する磁性体ユニット8の上半分の部位は、その部位を通過する電磁波の偏波面を45°回転させるファラデー回転子として機能する。
 [5.2.作用]
 このように構成されたレーダ装置1dでは、図10に示すように、送信アンテナユニット3Sから放射された探査波である直接波、ここでは偏波面の角度が90°の水平偏波は、磁性体ユニット8を通過する際に偏波面が-45°回転する。つまり、磁性体ユニット8を通過した直接波は偏波面が45°傾いたものとなる。その後、偏波フィルタ5を通過することで偏波面が45°傾いた直接波のみがレーダ装置1から放射される。以下、第1実施形態の場合と同様に作用する。
 一方、偏波面が45°傾いた直接波を反射した物体から到来する反射波は、偏波面が45°傾いたものとなり、レーダ装置1dに入射する。この反射波は、偏波フィルタ5を通過し、磁性体ユニット8を通過する際に偏波面が45°回転する。これにより、受信アンテナユニット3Rで受信される反射波は、偏波面の角度が90°となり、送信アンテナユニット3Sから放射された直接波と同じ水平偏波となる。
 [5.3.効果]
 以上説明したように、レーダ装置1dによれば、前述したレーダ装置1と同様の効果を得ることができる。
 更に、レーダ装置1dでは、受信アンテナユニット3Rは、送信アンテナユニット3Sから送信されたものと同じ水平偏波を受信することができるため、図11に示すように、より広角な範囲からの反射波を受信することができる。図中では実施例2と表記されたレーダ装置1dでは、実施例1と比較して検知角度が±20°~±60°の利得が大幅に向上していることがわかる。
 [6.第6実施形態]
 第6実施形態は、基本的な構成は第5実施形態と同様であるため、共通する構成については説明を省略し、相違点を中心に説明する。
 本実施形態のレーダ装置1eは、図12に示すように、磁性体ユニット8の代わりに磁性体ユニット8aが用いられている。
 磁性体ユニット8aは、磁性体ユニット8の構成に加えて磁石86,87を備えている。磁石86,87は、磁性体81の上下方向中心付近に、磁性体81を挟んで対向して配置されている。偏波フィルタ5側に配置された磁石86は、磁石82,84と同様に、S極が上方向、N極が下方向を向くように配置され、アンテナユニット3a側に配置された磁石87は、磁石83,85と同様に、N極が上方向、S極が下方向を向くように配置されている。
 このように構成されたレーダ装置1dによれば、前述した第1実施形態のレーダ装置1と同様の効果が得られるだけでなく、磁性体ユニット8aに印加される磁界の強度が強くなり、より性能が向上される。
 [7.第7実施形態]
 第5実施形態は、基本的な構成は第1実施形態と同様であるため、共通する構成については説明を省略し、相違点を中心に説明する。
 [7.1.構成]
 本実施形態のレーダ装置1fは、図13~図16に示すように、アンテナユニット3bおよび磁性体ユニット9の構成が、第1実施形態のアンテナユニット3および磁性体ユニット4とは異なる。
 アンテナユニット3bは、アンテナユニット3aと同様に、送信アンテナユニット3Sと、受信アンテナユニット3Rとを備える。但し、アンテナユニット3bにおける送信アンテナユニット3Sおよび受信アンテナユニット3Rは、アンテナユニット3aとは異なり、横方向に並べて配置されている。
 磁性体ユニット9は、カバー6の内側に、アンテナユニット3bに対して対向配置された板状の磁性体91と、4個の磁石92~95とを備える。磁石92,93は、磁性体81の上端部にて磁性体81を挟むように配置され、磁石94,95は、磁性体91の下端部にて磁性体81を挟むように配置されている。また、磁性体91の偏波フィルタ5側に設けられた磁石92,94は、いずれもS極が横方向の受信アンテナユニット3Rが設けられている側、N極が横方向の送信アンテナユニット3Sが設けられている側を向くように配置されている。磁性体91のアンテナユニット3b側に設けられた磁石93,95は、磁石92,94とは反対に、いずれもN極が横方向の受信アンテナユニット3Rが設けられている側、S極が横方向の送信アンテナユニット3Sが設けられている側を向くように配置されている。更に、各磁石93~95は、各磁極の端部が、それぞれ送信アンテナユニット3Sを構成するアンテナ素子が配置された領域の横方向中心を通る中心線の延長線上、および受信アンテナユニット3Rを構成するアンテナ素子が配置された領域の横方向中心を通る中心線の延長線上に位置するように配置されている。
 つまり、磁性体91の送信アンテナユニット3Sに対向した横半分には、偏波フィルタ5側からアンテナユニット3b側に向かう磁界が印加され、磁性体91の受信アンテナユニット3Rに対向した横半分には、アンテナユニット3b側から偏波フィルタ5側に向かう磁界が印加されるように構成されている。これにより、送信アンテナユニット3Sと対向する磁性体ユニット9の部位は、その部位を通過する電磁波の偏波面を-45°回転させるファラデー回転子として機能する。また、受信アンテナユニット3Rと対向する磁性体ユニット9の部位は、その部位を通過する電磁波の偏波面を45°回転させるファラデー回転子として機能する。
 [7.2.効果]
 以上説明したように、レーダ装置1fによれば、前述したレーダ装置1dと同様の効果が得られる。しかも、レーダ装置1fでは、磁石92~95の両磁極の先端が、送信アンテナユニット3Sおよび受信アンテナユニット3Rの横方向中心に位置するように配置されているため、送信アンテナユニット3Sおよび受信アンテナユニット3Rと対向する磁性体91の部位に、効率よく磁界が印加される。
 [8.他の実施形態]
 以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されることなく、種々の形態を採り得る。
 (1)上記実施形態では、車載のレーダ装置1について説明したが、これに限定されるものではなく、何等かのカバーを介して探査波を送受信するように配置されるものであればよい。
 (2)上記実施形態における一つの構成要素が有する機能を複数の構成要素に分散させたり、複数の構成要素が有する機能を一つの構成要素に統合させたりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加または置換等してもよい。なお、特許請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本発明の実施形態である。
 (3)上述したレーダ装置の他、当該レーダ装置を構成要素とするシステム、干渉抑制方法など、種々の形態で実現することもできる。

Claims (11)

  1.  電磁波からなる探査波を送受信するアンテナユニット(3,3a,3b)と、
     前記アンテナユニットにて送受信される探査波が通過する位置に配置された磁性体(41,71,81,91)と、
     前記探査波の伝搬方向に沿った磁界を前記磁性体に発生させる一つ以上の磁石(42,72,82~87,92~95)と、
     前記磁性体を挟んで前記アンテナユニットとは反対側に配置される偏波フィルタ(5)と、
     を備えることを特徴とするレーダ装置。
  2.  前記磁性体は、該磁性体を通過する前記探査波の偏波面を45°回転させる厚さに形成されていることを特徴とする請求項1に記載のレーダ装置。
  3.  前記磁石は、前記探査波が通過する部位を囲う位置に配置されていることを特徴とする請求項1または請求項2に記載のレーダ装置。
  4.  前記偏波フィルタは、導体線を前記探査波の波長以下の間隔で配置した構造を有することを特徴とする請求項1ないし請求項3のいずれか1項に記載のレーダ装置。
  5.  前記アンテナユニットおよび前記磁性体を覆うカバー(6)を備え、
     前記偏波フィルタは、前記カバーの内部に配置されていることを特徴とする請求項1ないし請求項4のいずれか1項に記載のレーダ装置。
  6.  前記アンテナユニットおよび前記磁性体を覆うカバー(6a)を備え、
     前記偏波フィルタは、前記カバーに内蔵されていることを特徴とする請求項1ないし請求項4のいずれか1項に記載のレーダ装置。
  7.  前記アンテナユニットおよび前記磁性体を覆うカバー(6)を備え、
     前記偏波フィルタは、前記カバーの外部に配置されていることを特徴とする請求項1ないし請求項4のいずれか1項に記載のレーダ装置。
  8.  前記磁性体(71)は、前記アンテナユニットを覆う形状に形成されていることを特徴とする請求項1ないし請求項4のいずれか1項に記載のレーダ装置。
  9.  前記アンテナユニット(3a,3b)は、前記探査波を送信する送信アンテナユニット(3S)と、前記探査波を受信する受信アンテナユニット(3R)とを備え、
     前記磁石(82~87,92~95)は、前記送信アンテナユニットから送信される前記探査波が通過する前記磁性体の部位と、前記受信アンテナユニットにて受信される前記探査波が通過する前記磁性体の部位とで、反対方向の磁界を発生させるように配置されていることを特徴とする請求項1ないし請求項8のいずれか1項に記載のレーダ装置。
  10.  前記磁石は、前記磁性体を挟んで前記アンテナユニット側と前記磁性体側とに配置され、前記磁性体を挟んで対向し合う磁石の磁極が、互いに異なるように配置されていることを特徴とする請求項9に記載のレーダ装置。
  11.  前記磁性体を挟んで前記アンテナユニット側または前記磁性体側の一方の側に配置される複数の前記磁石は、磁極の向きが一致するように配置されていることを特徴とする請求項10に記載のレーダ装置。
PCT/JP2016/070378 2015-07-30 2016-07-11 レーダ装置 WO2017018182A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/748,090 US10802139B2 (en) 2015-07-30 2016-07-11 Radar apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-150720 2015-07-30
JP2015150720 2015-07-30
JP2016028229A JP6360088B2 (ja) 2015-07-30 2016-02-17 レーダ装置
JP2016-028229 2016-02-17

Publications (1)

Publication Number Publication Date
WO2017018182A1 true WO2017018182A1 (ja) 2017-02-02

Family

ID=57884575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070378 WO2017018182A1 (ja) 2015-07-30 2016-07-11 レーダ装置

Country Status (1)

Country Link
WO (1) WO2017018182A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091730A (en) * 1983-10-31 1992-02-25 Raytheon Company Pulse radar and components therefor
JPH05107337A (ja) * 1991-07-01 1993-04-27 Raytheon Co パルス・レーダおよびその構成要素
JPH05157990A (ja) * 1991-12-05 1993-06-25 Nec Corp 光アイソレータ及びその製造方法
JPH1194926A (ja) * 1997-09-16 1999-04-09 Oki Electric Ind Co Ltd レーダアンテナ
JP2008122188A (ja) * 2006-11-10 2008-05-29 Mitsubishi Electric Corp 車両用レーダ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091730A (en) * 1983-10-31 1992-02-25 Raytheon Company Pulse radar and components therefor
JPH05107337A (ja) * 1991-07-01 1993-04-27 Raytheon Co パルス・レーダおよびその構成要素
JPH05157990A (ja) * 1991-12-05 1993-06-25 Nec Corp 光アイソレータ及びその製造方法
JPH1194926A (ja) * 1997-09-16 1999-04-09 Oki Electric Ind Co Ltd レーダアンテナ
JP2008122188A (ja) * 2006-11-10 2008-05-29 Mitsubishi Electric Corp 車両用レーダ装置

Similar Documents

Publication Publication Date Title
WO2017146163A1 (ja) アンテナ装置
CN107017456A (zh) 接收微波射线的设备
WO2017203762A1 (ja) アンテナ、センサ及び車載システム
JP2016219996A (ja) アンテナ装置、無線通信装置、及びレーダ装置
KR20160041633A (ko) 차량용 레이더 장치
JP6654506B2 (ja) レーダ装置
JP7026053B2 (ja) 窓ガラス
JP6360088B2 (ja) レーダ装置
JP5524714B2 (ja) ダイバーシティアンテナ
CN110546815A (zh) 天线装置
JP2005249659A (ja) レーダ装置用送受信アンテナ
KR20170119590A (ko) 레이더 장치
CN106249206B (zh) 用于接收电磁波的天线设备和用于运行用于接收电磁波的天线设备的方法
JP2016152590A (ja) アンテナユニット
JP5289579B2 (ja) 空中超音波センサ
WO2017018182A1 (ja) レーダ装置
JP3884772B2 (ja) 偏平状のアンテナを自動車のウィンドウの内側に取り付けるためのアンテナ装置
JP5242362B2 (ja) アンテナ装置
KR101945824B1 (ko) 지면 이격형 지표투과레이다 안테나
JP4675940B2 (ja) 統合アンテナ
JP2012220418A (ja) アンテナ装置およびレーダ装置
JP3833609B2 (ja) 車載アンテナ
JP5439527B2 (ja) 方向性結合器
KR20140090886A (ko) 간섭 신호 감소 기능을 갖는 레이돔 및 그 제조 방법
JP7244361B2 (ja) アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830287

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15748090

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830287

Country of ref document: EP

Kind code of ref document: A1