WO2017018082A1 - 凝縮器および冷却システムと運転方法 - Google Patents

凝縮器および冷却システムと運転方法 Download PDF

Info

Publication number
WO2017018082A1
WO2017018082A1 PCT/JP2016/067503 JP2016067503W WO2017018082A1 WO 2017018082 A1 WO2017018082 A1 WO 2017018082A1 JP 2016067503 W JP2016067503 W JP 2016067503W WO 2017018082 A1 WO2017018082 A1 WO 2017018082A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
cooling system
refrigerant
temperature
flow rate
Prior art date
Application number
PCT/JP2016/067503
Other languages
English (en)
French (fr)
Inventor
直行 石田
Original Assignee
日立Geニュークリア・エナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Geニュークリア・エナジー株式会社 filed Critical 日立Geニュークリア・エナジー株式会社
Priority to MX2018000911A priority Critical patent/MX2018000911A/es
Priority to PL424424A priority patent/PL233803B1/pl
Priority to GB1800782.3A priority patent/GB2557055B/en
Publication of WO2017018082A1 publication Critical patent/WO2017018082A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D9/00Devices not associated with refrigerating machinery and not covered by groups F25D1/00 - F25D7/00; Combinations of devices covered by two or more of the groups F25D1/00 - F25D7/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/04Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid
    • F28B9/06Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid with provision for re-cooling the cooling water or other cooling liquid
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/004Pressure suppression
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/004Pressure suppression
    • G21C9/012Pressure suppression by thermal accumulation or by steam condensation, e.g. ice condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1615Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a condenser for allowing a refrigerant to flow in a heat transfer tube and condensing a condensable gas on the outer surface of the heat transfer tube, a cooling system using the same, and an operation method thereof.
  • the number and length of heat transfer tubes are determined for the required heat removal.
  • the heat transfer coefficient decreases as the concentration of the non-condensable gas increases. Therefore, it is necessary to increase the number and length of heat transfer tubes for a certain amount of heat removal.
  • the condenser is designed for a certain non-condensable gas concentration.
  • the amount of heat removal can be adjusted by the flow rate of the refrigerant.
  • a pipe through which the refrigerant passes is branched in front of the heat exchanger, and the pipe is arranged on one of the branched pipes.
  • the distribution amount of the refrigerant to each heat exchanger is adjusted by the flow rate adjusting valve.
  • the heat removed by the condenser is carried to an external heat exchanger for releasing to the outside.
  • the refrigerant temperature between the condenser outlet and the external heat exchanger inlet rises.
  • the cooling system compatible with the high temperature, and the heat transfer area of the external heat exchanger is increased, so that the external heat exchanger is increased in size and costs.
  • the cooling system contains a non-condensable gas
  • a driving force is generated due to the difference between the gas density inside and outside the condenser, and natural circulation of the mixed gas occurs.
  • this driving force is increased, a large amount of mixed gas flows into the condenser, and a heat removal amount can be ensured.
  • the present invention has been made in view of the above, a cooling system capable of adjusting the heat removal amount in the condenser and maintaining the temperature of the refrigerant flowing into the heat exchanger below a specified temperature to suppress an increase in cost, and natural circulation
  • An object of the present invention is to realize a method of operating a condenser and a cooling system that can increase the inflow rate of the air-fuel mixture.
  • the present invention is configured as follows.
  • a heat exchanger In the cooling system, a heat exchanger, a condenser that condenses condensable gas including non-condensable gas, an inlet side pipe that connects a refrigerant outlet of the heat exchanger and a refrigerant inlet of the condenser, and the condensation
  • An outlet side pipe connecting the refrigerant outlet of the condenser and the refrigerant inlet of the heat exchanger, a bypass pipe branching from the branch part of the inlet side pipe near the refrigerant inlet of the condenser from the inlet side pipe, Refrigerant inlet of the heat exchanger is connected to the outlet side pipe and the bypass pipe, the refrigerant flowing out from the refrigerant outlet of the condenser and the refrigerant supplied from the bypass pipe are mixed, and the refrigerant is supplied to the heat exchanger via the outlet side pipe.
  • a flow rate adjusting mechanism that adjusts the amount of refrigerant flowing into the refrigerant inlet
  • a condenser that is disposed in a reactor containment vessel in which the nitrogen concentration changes with time in a severe accident and condenses condensable gas containing non-condensable gas, a casing whose upper and lower surfaces are opened, and the casing
  • a plurality of heat transfer tubes arranged in the upper space and through which refrigerant flows in and out, and a lower chimney space in which the heat transfer tubes are not disposed is formed in the lower space in the casing.
  • thermometer for measuring the refrigerant temperature in the outlet side pipe is arranged, and when the temperature measured by the thermometer is higher than the target temperature, the inlet side flow rate adjusting valve is When the temperature measured by the thermometer is lower than the target temperature, the inlet side flow adjustment valve is opened and the flow adjustment valve of the bypass pipe is throttled. Control.
  • the cooling system capable of adjusting the heat removal amount in the condenser and maintaining the temperature of the refrigerant flowing into the heat exchanger below a specified temperature to suppress an increase in cost, and increasing the inflow flow rate of air-fuel mixture by natural circulation Possible condenser and cooling system operating methods can be realized.
  • FIG. 1 is a schematic diagram showing a configuration example when the cooling system according to the first embodiment of the present invention is applied to a boiling water nuclear power plant.
  • the cooling system releases the condenser 1 installed in the reactor containment vessel 50 and the heat removed by the condenser 1 to the outside.
  • an external heat exchanger 8 externally pass the refrigerant flowing out from the refrigerant outlet of the condenser 1 and the inlet side pipe 2 that carries the refrigerant (cooling water) from the refrigerant outlet of the heat exchanger 8 to the refrigerant inlet of the condenser 1. It is connected to the outlet side pipe 3 that carries to the refrigerant inlet of the heat exchanger 8.
  • a cooling water pump 7 for circulating the refrigerant through the inlet side pipe 1 and the outlet side pipe 3 is installed in the outlet side pipe 3.
  • the inlet side pipe 2 is provided with a bypass pipe 12 that branches off before the condenser 1.
  • the bypass pipe 12 is connected to a mixer (mixer) 4 provided in the outlet side pipe 3.
  • a flow rate adjusting valve (condenser inlet side flow rate adjusting valve) 5 for adjusting the flow rate of the refrigerant to the condenser 1 is installed.
  • the bypass pipe 12 is provided with a flow rate adjustment valve (bypass side flow rate adjustment valve) 6 for adjusting the flow rate of the refrigerant in the bypass pipe 12.
  • a cooling water pump 7 is installed between the mixer 4 and the external heat exchanger 8 in the outlet side pipe 3, and between the cooling water pump 7 and the external heat exchanger 8, A thermometer 21 for measuring the refrigerant temperature is installed.
  • Seawater is drawn into the external heat exchanger 8 as a refrigerant by the cooling water supply pump 9, the heat carried from the condenser 1 is transmitted to the seawater, and finally the heat removed is released to the sea.
  • the reactor containment vessel 50 of the boiling water nuclear power plant is filled with nitrogen during normal operation.
  • the steam generated by the decay heat is transferred to the containment vessel 50.
  • the pressure in the storage container 50 increases. In order to avoid the pressure rising above the design pressure and damaging the containment vessel 50, a means for condensing the generated steam or venting the steam from the containment vessel 50 is required.
  • the condenser 1 in order to prevent the overpressure of the containment vessel 50, it is reasonable to design the condenser 1 under the condition that the heat transfer performance is most deteriorated under the highest possible nitrogen concentration environment.
  • the heat transfer tube length of the condenser 1 is determined so that the refrigerant (cooling water) temperature at the outlet of the condenser 1 satisfies the inlet temperature specification of the external heat exchanger 8.
  • the nitrogen concentration of the mixed gas in the containment vessel 50 varies depending on the inflow / condensation of steam and the status of nitrogen isolation.
  • the nitrogen concentration of the mixed gas in the containment vessel 50 decreases, the heat transfer inhibition effect by the non-condensable gas disappears and the condensation heat transfer coefficient increases.
  • the condensation heat transfer rate increases, the amount of heat transferred to the cooling water of the condenser 1 increases, and the cooling water temperature at the outlet of the condenser 1 increases.
  • the inlet side pipe 2 of the condenser 1 is branched and a bypass pipe 12 is installed, and is connected to the outlet side pipe 3 by the mixer 4.
  • a flow rate adjusting valve 5 is installed in the inlet side pipe 2, and a flow rate adjusting valve 6 is installed in the bypass pipe 12.
  • the flow rate is determined by the following equation (1) so that the heat removal amount at the assumed maximum nitrogen concentration becomes the specification temperature of the external heat exchanger 8.
  • Q 0 m 0 c p ( T out -T in) ⁇ (1)
  • the amount of heat removal decreases and the cooling water outlet temperature rises.
  • the amount of cooling water flowing into the condenser 1 is reduced by reducing the opening of the inlet-side flow rate adjustment valve 5 to condense. The amount of heat removal from the vessel 1 can be controlled.
  • the cooling water temperature is condensed.
  • the temperature reaches 100 ° C. before being discharged from the vessel 1, and after reaching 100 ° C., there is no temperature difference, so heat removal is not performed and the effective heat transfer area is reduced.
  • Q is quantity of heat removed (W)
  • m is coolant flow rate (kg / s)
  • the c p the specific heat (J / kgK)
  • the heat removal amount can be controlled by the cooling water flow rate.
  • the cooling water temperature at the outlet of the condenser 1 rises to the temperature in the storage container 50.
  • the cooling water of the outlet side pipe 3 whose temperature has increased is mixed with the low-temperature cooling water that has passed through the bypass pipe 12 by the mixer 4, and the cooling water is lowered to a temperature that satisfies the specifications of the external heat exchanger 8.
  • FIG. 2 is a graph showing the temperature change of the cooling water from the heat transfer tube inlet of the condenser 1 to the outlet of the mixer 4, the vertical axis shows the cooling water temperature, and the horizontal axis shows the position of the cooling water.
  • the solid line indicates the change in cooling water temperature when the nitrogen concentration decreases
  • the alternate long and short dash line indicates the change in cooling water temperature when the nitrogen concentration is maximum.
  • the condenser 1 is designed to be equal to or lower than the limit temperature of the external heat exchanger 8 when the nitrogen concentration becomes maximum.
  • the heat transfer rate is improved, so that the temperature rise rate of the cooling water is increased.
  • the cooling water temperature reaches 100 ° C., which is the saturation temperature in the containment vessel 50, there is no temperature difference, so heat transfer is not performed, and the cooling water temperature becomes constant at 100 ° C.
  • the cooling water that has risen to 100 ° C. is mixed with the low-temperature cooling water supplied from the bypass pipe 12 by the mixer 4 and falls below the limit temperature of the external heat exchanger 8.
  • the cooling water whose temperature has been lowered below the specification temperature of the external heat exchanger 8 is cooled by exchanging heat with seawater in the external heat exchanger 8 and supplied to the condenser 1 again. Seawater to which heat is transmitted from the cooling water is returned to the sea, and the heat in the storage container 50 is released to the sea.
  • the temperature of the cooling water flowing into the external heat exchanger 8 is measured by the thermometer 21.
  • the opening degree of the flow rate adjusting valves 5, 6 is adjusted, the amount of cooling water supplied to the condenser 1, and the cooling supplied to the mixer 4 from the bypass pipe 12.
  • the water flow rate is adjusted.
  • the opening adjustment of the flow rate adjusting valves 5 and 6 is performed by, for example, monitoring the temperature measured by the thermometer 21 at the control center, and adjusting the opening degree of the flow rate adjusting valves 5 and 6 from the control center to the operator according to the monitored temperature. It is also possible to provide a valve opening degree driving mechanism for the flow rate adjusting valves 5 and 6 and to configure the valve opening degree driving mechanism to operate according to a command from the control center. .
  • the amount of cooling water to the condenser 1 is adjusted by the flow rate adjusting valve 5 to condense.
  • low-temperature cooling water is supplied from the bypass pipe 12 to the mixer 4, and mixed with the high-temperature cooling water flowing out from the condenser 1 by the mixer 4, so that the cooling water temperature is externally heated. It is comprised so that it may fall below to the specification temperature of the exchanger 8.
  • FIG. 3 is a schematic diagram showing a configuration example when the cooling system according to the second embodiment of the present invention is applied to a boiling water nuclear power plant.
  • the configuration different from the first embodiment in the second embodiment is that a pressurizer (water tank) 10 that pressurizes the entire cooling system is installed in the inlet side pipe 2, and the other configurations are the same as the first embodiment. It has become.
  • the containment vessel 50 is pressurized to atmospheric pressure or higher, and the temperature in the containment vessel 50 is assumed to exceed 100 ° C.
  • the cooling water is circulated at atmospheric pressure, the cooling water that has reached 100 ° C. by heating with steam higher than 100 ° C. boils.
  • the pressurizer 10 that pressurizes the entire cooling system is installed, and the pressure of the pressurizer 10 (the pressure of the gas in the pressurizer 10) is set higher than the design pressure of the containment vessel 50.
  • the pressure of the pressurizer 10 (the pressure of the gas in the pressurizer 10) is set higher than the design pressure of the containment vessel 50.
  • FIG. 4 is a graph showing the temperature change of the cooling water from the heat transfer tube inlet of the condenser 1 to the outlet of the mixer 4, the vertical axis shows the cooling water temperature, and the horizontal axis shows the position of the cooling water. Moreover, in FIG. 4, a continuous line shows the temperature change at the time of pressurizing cooling water, and a broken line shows the cooling water temperature change at the time of not pressurizing cooling water.
  • the cooling water temperature rises to the temperature in the containment vessel 50 when pressurized by the pressurizer 10, and the cooling water pressure when not pressurized.
  • the cooling water temperature rises to the saturation temperature of.
  • the mixture is mixed with the low-temperature cooling water flowing from the bypass pipe 12 in the mixer 4 and the cooling water temperature falls below the limit temperature of the external heat exchanger 8, but when not pressurized, the temperature drop is small and the external heat exchanger The limit temperature of 8 may be exceeded.
  • FIG. 5 is a graph showing the change in the enthalpy of the cooling water from the heat transfer tube inlet of the condenser 1 to the outlet of the mixer 4, the vertical axis shows the enthalpy of the cooling water, and the horizontal axis shows the position of the cooling water.
  • the solid line shows the temperature change when the cooling water is pressurized
  • the broken line shows the cooling water temperature change when the cooling water is not pressurized.
  • FIG. 6 is a view showing a modification of the second embodiment shown in FIG.
  • the example shown in FIG. 3 is an example in the case of applying a water tank as the pressurizer 10, but for adjusting the pressure between the mixer 4 and the cooling water pump 7 in the outlet side pipe 3 as shown in FIG. 6.
  • a valve 11 may be installed. By reducing the valve opening of the pressure adjusting valve 11, the pressure loss at the valve 11 increases, and the range from the cooling water pump (circulation pump) 7 to the front of the valve 11 is increased by the pressure loss at the valve 11. be able to. However, a high-lift circulating pump that can compensate for the pressure loss is required.
  • valve opening of the valve 11 can be fixed, an orifice may be installed in the outlet side pipe 3 between the mixer 4 and the cooling water pump 7 instead of the valve.
  • effect According to the second embodiment, the same effect as that of the first embodiment can be obtained, and the mixer can be obtained by suppressing the boiling of the cooling water by pressurizing the cooling water higher than the pressure in the containment vessel 50. The effect that generation
  • FIG. 7 is a schematic diagram showing a configuration example when the cooling system according to the third embodiment of the present invention is applied to a boiling water nuclear power plant.
  • the third embodiment is different from the second embodiment in that the third embodiment has a calculation unit 23 to which the temperature detected by the thermometer 21 is input and a valve drive motor 51 that adjusts the valve opening degree of the flow rate adjustment valve 5. And a valve drive motor 60 that adjusts the valve opening degree of the flow rate adjusting valve 6, and the other configuration is the same as that of the second embodiment.
  • pressurizer 10 is installed in the example shown in FIG. 7 as in the second embodiment, the pressurizer 10 can be omitted in the third embodiment.
  • the change in the nitrogen concentration in the containment vessel 50 is difficult to predict when a non-uniform concentration distribution occurs, and as described above, the adjustment of the cooling water flow rate in the condenser 1 and the bypass pipe 12 flows into the external heat exchanger 8. It is better to monitor the temperature of the cooling water.
  • the nitrogen concentration in the storage container 50 decreases and the heat removal amount of the condenser 1 increases, the temperature of the cooling water in the outlet side pipe 3 rises and the indicated value of the thermometer 21 increases.
  • the temperature detected by the thermometer 21 is input to the calculation unit 23.
  • the calculation unit 23 adjusts the flow rate of the inlet side pipe 2 via the signal cable 22.
  • An opening adjustment signal is sent to the first drive motor 51 that adjusts the opening of the valve 5, and an opening adjustment signal is sent to the second drive motor 60 that adjusts the opening of the flow rate adjustment valve 6 of the bypass pipe 12.
  • the drive motor 51 throttles the opening of the flow rate adjustment valve 5 according to the opening adjustment signal from the calculation unit 23, and the drive motor 60 opens the flow rate adjustment valve 6 of the bypass pipe 12 according to the opening adjustment signal from the calculation unit 23. Increase the degree.
  • the cooling water temperature can be controlled below the specification temperature of the external heat exchanger 8.
  • the temperature indication value of the thermometer 21 decreases (when it is lower than the specified temperature (target temperature)).
  • the calculation unit 23 sends an opening degree adjustment signal to the drive motors 51 and 60, and the flow rate adjustment valve 5 of the inlet side pipe 2 is adjusted so that the temperature of the cooling water flowing into the external heat exchanger 8 does not exceed the specified temperature.
  • the opening degree is increased, and the opening degree of the flow rate adjustment valve 6 of the bypass pipe 12 is reduced.
  • thermometer 21 that measures the temperature of the cooling water in the outlet side pipe 3 between the mixer 4 and the external heat exchanger 8, the calculation unit 23, and the measurement of the thermometer 21.
  • the inside of the containment vessel 50 is controlled by a control system including a signal cable 22 for transmitting a signal for adjusting the opening degree of the flow rate adjusting valves 5 and 6 according to values and drive motors 51 and 60 for driving the flow rate adjusting valves 5 and 6. Even if the nitrogen concentration of the refrigerant changes, the temperature of the cooling water flowing into the external heat exchanger 8 can be automatically controlled to be equal to or lower than the specification temperature of the external heat exchanger 8 to ensure the necessary heat removal amount in the condenser 1. it can.
  • FIG. 8 is a schematic diagram showing the configuration of the condenser 1 applied to the cooling system according to the fourth embodiment of the present invention.
  • the condenser 1 includes a plurality of heat transfer tubes (tubes through which refrigerant flows in and out) 32 arranged in the horizontal direction and the vertical direction, and a casing 31 that surrounds the heat transfer tubes 32 and is open at the top and bottom.
  • a space (lower chimney) 43 in which the heat transfer tube 32 is not disposed is provided in a lower portion of 31.
  • the upper and lower sides of the casing 31 are opened to form an upper surface opening 41 and a lower surface opening 42, and a lower chimney space 43 without a heat transfer pipe 32 through which cooling water flows is formed in the lower part of the casing 31.
  • nitrogen and steam nitrogen has a higher density, and the higher the nitrogen concentration, the higher the density of the mixed gas.
  • the lower surface opening 42 is provided and the lower surface of the casing 31 is opened so that the mixed gas in the casing 31 having a high density is smoothly discharged to the outside of the casing 31.
  • the surrounding mixed gas flows into the condenser 1 from the upper surface opening 41.
  • the upper surface of the casing is opened, the surrounding mixed gas smoothly flows into the condenser 1. Since the driving force generated by the density difference is small, the use of the casing 31 with the upper and lower surfaces open allows the pressure loss associated with the inflow / discharge of the mixed gas to be minimized and more mixed gas flows into the condenser 1. Can be made.
  • the height of the lower chimney space 43 should be increased as much as possible with respect to the allowable dimensions of the installation location.
  • the driving force increases, more mixed gas flows into the condenser 1. Since only the vapor of the mixed gas that has flowed in is condensed, the nitrogen concentration increases toward the bottom of the condenser. That is, the lower the heat transfer tube in the condenser, the lower the heat transfer amount due to the heat transfer inhibition effect of nitrogen.
  • the amount of steam passing through the heat transfer tube per unit time increases, but the amount of condensation does not increase greatly, and therefore, an increase in the downward nitrogen concentration is suppressed. . For this reason, since steam can be condensed in a state where the nitrogen concentration is low in the lower heat transfer tube, the heat removal effect can be improved.
  • the upper and lower surfaces of the casing 31 are openings, so that the mixed gas generated due to the density difference can flow smoothly and the lower chimney space 43 is installed.
  • the driving force for natural circulation can be increased, and a larger amount of mixed gas can flow into the condenser 1.
  • the heat removal effect of the condenser 1 can be improved.
  • condenser 1 of the fourth embodiment of the present invention can also be applied to the cooling system according to the present invention.
  • the flow rate adjusting valve 5 is arranged in the inlet side pipe 2 of the condenser 1 and the flow rate adjusting valve 6 is arranged in the bypass pipe 12.
  • a configuration in which only one of the flow rate adjusting valve 5 and the flow rate adjusting valve 6 is used as the flow rate adjusting valve may be another embodiment of the present invention.
  • the present invention can be applied not only to cooling in a reactor pressure vessel but also to an in-vessel cooling system in other manufacturing plants.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

凝縮器での除熱量を調整して熱交換器に流入する冷媒温度を規定温度以下に維持してコスト増大を抑制可能な冷却システムを実現する。格納容器(50)内の窒素濃度が低下して凝縮器(1)での除熱量が増加する場合、流量調整バルブ(5)により凝縮器(1)への冷却水量を調整して凝縮器(1)での除熱量を制御する。さらに、バイパス配管(12)から低温の冷却水をミキサ(4)に供給して、凝縮器(1)から流出した高温の冷却水とミキサ(4)で混合させ、外部熱交換器(8)に流入される冷却水温度を外部熱交換器(8)の仕様温度以下に低下させる。

Description

凝縮器および冷却システムと運転方法
 本発明は、伝熱管内に冷媒を流して伝熱管外表面で凝縮性ガスを凝縮させる凝縮器、それを用いた冷却システムおよびその運転方法に関する。
 一般的な凝縮器は、必要な除熱量に対して伝熱管本数および長さが決められている。非凝縮性ガスを含む混合ガスの凝縮では、非凝縮性ガスの濃度が高いほど熱伝達率が低下するため、一定の除熱量に対し伝熱管本数および長さを増やす必要がある。一般的には、ある決まった非凝縮性ガス濃度に対して凝縮器は設計される。
 熱交換器では、冷媒の流量により除熱量を調整することができる。
 特許文献1に記載された技術では、複数種類の温度調整対象物の温度を適切に調整するために、熱交換器の前で冷媒が通る配管を分岐させ、分岐した一方の配管に配置された流量調整弁により、各熱交換器への冷媒の分配量を調整している。
特開2014-34301号公報
 ところで、冷却システムにおいて、除熱対象の非凝縮性ガス濃度が大きく変化した場合、除熱量も大きく変化する。ある特定の非凝縮性ガス濃度で設計した凝縮器では、非凝縮性ガス濃度が大きく低下した場合、除熱量が大きくなる。
 一般に、凝縮器で除熱した熱は、外部に放出するための外部熱交換器に運ばれる。除熱量が大きくなると、凝縮器出口から外部熱交換器入口の間の冷媒温度が上昇する。この場合、冷却システムを高温対応の仕様にする必要があるとともに、外部熱交換器の伝熱面積を増加させるため外部熱交換器が大型化しコストが増加する。例えば、循環ポンプのシール部分等を高熱対応とする必要があり、冷却システム全体のコストアップとなる。
 また、原子力プラントの過酷事故時の格納容器冷却に凝縮器を用いる場合、電源を利用しないで凝縮器で蒸気を凝縮させるのが望ましい。冷却システムに非凝縮性ガスを含む場合、凝縮器内部と外部のガス密度との差で駆動力が発生し混合ガスの自然循環が生じる。この駆動力を大きくすると、多くの混合ガスが凝縮器に流入し、除熱量を確保することができる。
 本発明は、上記に鑑みてなされたもので、凝縮器での除熱量を調整して熱交換器に流入する冷媒温度を規定温度以下に維持してコスト増大を抑制可能な冷却システム、自然循環による混合気流入流量を増大可能な凝縮器および冷却システムの運転方法を実現することを目的とする。
 上記目的を達成するために、本発明は次のように構成される。
 冷却システムにおいて、熱交換器と、非凝縮性ガスを含む凝縮性ガスを凝縮させる凝縮器と、上記熱交換器の冷媒出口と上記凝縮器の冷媒入口とを接続する入口側配管と、上記凝縮器の冷媒出口と上記熱交換器の冷媒入口とを接続する出口側配管と、上記入口側配管から上記凝縮器の上記冷媒入口付近の上記入口側配管の分岐部から分岐するバイパス配管と、上記出口側配管と上記バイパス配管とに接続され、上記凝縮器の冷媒出口から流出した冷媒と上記バイパス配管から供給された冷媒とを混合し、上記出口側配管を介して上記熱交換器の冷媒入口に供給するミキサと、上記入口側配管から上記凝縮器の冷媒入口に流入する冷媒の流入量と上記バイパス配管への冷媒の流入量とを調整する流量調整機構とを備える。
 また、過酷事故時に窒素濃度が経時的に変化する原子炉格納容器内に配置され、非凝縮性ガスを含む凝縮性ガスを凝縮させる凝縮器において、上面および下面が開放されたケーシングと、上記ケーシング内の上部空間に配置され、冷媒が流入流出する複数の伝熱管と、を備え、上記ケーシング内の下部空間に上記伝熱管が配置されていない下部チムニ空間が形成されている。
 また、冷却システムの運転方法において、上記出口側配管内の冷媒温度を計測する温度計を配置し、この温度計の計測した温度が目標温度よりも高い場合には、上記入口側流量調整バルブを絞り、上記バイパス配管の流量調整バルブを開き、上記温度計の計測した温度が目標温度よりも低い場合には、上記入口側流量調整バルブを開き、上記バイパス配管の上記流量調整バルブを絞るように制御する。
 本発明によれば、凝縮器での除熱量を調整して熱交換器に流入する冷媒温度を規定温度以下に維持してコスト増大を抑制可能な冷却システム、自然循環による混合気流入流量を増大可能な凝縮器および冷却システムの運転方法を実現することができる。
本発明の第1実施例に係る冷却システムを沸騰水型原子力プラントに適用した場合の一構成例を表す概要図である。 凝縮器の伝熱管入口からミキサの出口までの冷却水の温度変化を示すグラフである。 本発明の第2実施例に係る冷却システムを沸騰水型原子力プラントに適用した場合の一構成例を表す概要図である。 本発明の第2実施例における凝縮器の伝熱管入口からミキサの出口までの冷却水の温度変化を示すグラフである。 本発明の第2実施例における凝縮器の伝熱管入口からミキサの出口までの冷却水のエンタルピの変化を示すグラフである。 本発明の第2実施例の変形例を示す図である。 本発明の第3実施例に係る冷却システムを沸騰水型原子力プラントに適用した場合の一構成例を表す概要図である。 本発明の第4実施例に係る冷却システムに適用する凝縮器の構成を示す概略図である。
 以下、添付図面を参照して本発明の実施形態を説明する。
 (第1実施例)
 (構成)
 図1は、本発明の第1実施例に係る冷却システムを沸騰水型原子力プラントに適用した場合の一構成例を表す概要図である。
 図1に示すように、本発明の第1実施例に係る冷却システムは、原子炉格納容器50内に設置される凝縮器1と、この凝縮器1で除熱された熱を外部に放出する外部熱交換器8とを有する。凝縮器1と外部熱交換器8は、熱交換器8の冷媒出口から凝縮器1の冷媒入口へ冷媒(冷却水)を運ぶ入口側配管2と凝縮器1の冷媒出口から流出した冷媒を外部熱交換器8の冷媒入口へ運ぶ出口側配管3とで接続されている。
 入口側配管1および出口側配管3を通して冷媒を循環させる冷却水ポンプ7が出口側配管3に設置されている。また、入口側配管2は凝縮器1の手前で分岐されるバイパス配管12が設けられている。バイパス配管12は出口側配管3に設けられたミキサ(混合器)4に接続されている。入口側配管2の分岐部から凝縮器1の冷媒入口までの間には、凝縮器1への冷媒の流量を調整するための流量調整バルブ(凝縮器入口側流量調整バルブ)5が設置され、バイパス配管12には、バイパス配管12の冷媒の流量を調整するための流量調整バルブ(バイパス側流量調整バルブ)6が設置されている。
 また、出口側配管3のミキサ4から外部熱交換器8までの間には、冷却水ポンプ7が設置され、この冷却水ポンプ7から外部熱交換器8までの間には出口側配管内の冷媒温度を計測する温度計21が設置されている。
 外部熱交換器8には、冷却水供給ポンプ9により冷媒として海水を引き込み、凝縮器1から運ばれた熱を海水に伝達して、最終的に除熱した熱を海に放出する。
 (動作)
 沸騰水型原子力プラントの原子炉格納容器50は、通常運転時には窒素が充填されている。炉心から発生する崩壊熱を除去する機能が喪失するような事故が発生した場合には、崩壊熱で発生した蒸気が格納容器50に移行する。格納容器50からの除熱量よりも崩壊熱量が大きい場合は、格納容器50の圧力は上昇していく。設計圧力を超えて圧力が上昇し格納容器50が破損するのを回避するため、発生した蒸気を凝縮させるか、格納容器50から蒸気をベントする手段が必要となる。
 格納容器50に蒸気が流入すると、充填されていた窒素との混合ガスとなる。格納容器50内の圧力が上昇すると、逆止弁や真空破壊弁が作動して窒素を隔離する機能が働くため、凝縮器1は比較的広範囲の窒素濃度で運転される。
 そして、格納容器50の過圧を防止するため、凝縮器1は、想定される最も高い窒素濃度環境下で最も伝熱性能が劣化した条件で設計するのが合理的である。一般的に、凝縮器1の出口での冷媒(冷却水)温度が、外部熱交換器8の入口温度仕様を満たすように凝縮器1の伝熱管長さが決定される。
 格納容器50内の混合ガスの窒素濃度は、蒸気の流入・凝縮および窒素の隔離状況によって変化する。格納容器50内の混合ガスの窒素濃度が低下すると、非凝縮性ガスによる伝熱阻害効果がなくなり凝縮熱伝達率が増加する。凝縮熱伝達率が増加すると凝縮器1の冷却水に伝達される熱量が多くなり、凝縮器1の出口での冷却水温度が上昇する。
 凝縮器1の出口での冷却水温度が過度に上昇する場合、外部熱交換器8および冷却システム全体を高温仕様にする必要があり、冷却水システム全体のコスト増加の要因となる。この高温仕様によるコスト増加は、窒素濃度が低下したときに凝縮器1の除熱量が増加することが要因であるため、冷却水温度が過度に上昇しないようにすればよい。
 本第1実施例では、凝縮器1の入口側配管2を分岐してバイパス配管12を設置し、ミキサ4により、出口側配管3と接続している。入口側配管2には流量調整バルブ5が設置され、バイパス配管12には流量調整バルブ6が設置されている。
 本冷却システムの設計では、想定される最大の窒素濃度での除熱量に対し、外部熱交換器8の仕様温度となるように、次式(1)式で流量が決定される。
 Q=m(Tout-Tin)   ・・・(1)
 上記式(1)において、Qは必要除熱量(W)、mは窒素濃度最大時の冷却水流量(kg/s)、cは比熱(J/kgK)、Toutは冷却水出口温度(℃)、Tinは冷却水入口温度(℃)である。凝縮器1の出口での冷却水出口温度は外部熱交換器8の仕様温度を超えないように決定される。
 凝縮器1への流量を少なくすると、除熱量が低下するとともに、冷却水出口温度が上昇する。窒素濃度が低下し凝縮熱伝達率が上昇して除熱量が増加する場合には、入口側流量調整バルブ5の開度を絞って凝縮器1へ流入する冷却水の流量を少なくすることにより凝縮器1の除熱量を制御することができる。
 例えば、格納容器50内部が大気圧の蒸気で満たされている(窒素濃度0%)場合、窒素が含まれることを想定して十分な伝熱面積を有する凝縮器1では、冷却水温度は凝縮器1から排出される前に100℃に到達し、100℃到達後は温度差が生じないため除熱が行われず、有効な伝熱面積が減少する。
 冷却水が沸騰しないとすると、除熱量は次式(2)となる。
 Q=mc(100-Tin)   ・・・(2)
 上記式(2)において、Qは除熱量(W)、mは冷却水流量(kg/s)、cは比熱(J/kgK)、Tinは冷却水入口温度(℃)である。
 上記式(2)から、冷却水入口温度が同じであれば、冷却水流量で除熱量が制御できることがわかる。凝縮器1へ流入する冷却水流量が少なくなると、凝縮器1の出口の冷却水温度は格納容器50内の温度まで上昇する。温度が上昇した出口側配管3の冷却水は、バイパス配管12を通ってきた低温の冷却水とミキサ4で混合し、冷却水が外部熱交換器8の仕様を満たす温度まで下げられる。
 図2は、凝縮器1の伝熱管入口からミキサ4の出口までの冷却水の温度変化を示すグラフであり、縦軸は冷却水温度を示し、横軸は冷却水の位置を示す。また、図2において、実線は窒素濃度低下時の冷却水温度変化を示し、一点鎖線は窒素濃度最大時の冷却水温度変化を示す。
 図2の一点鎖線で示すように、凝縮器1は、窒素濃度が最大となるときに外部熱交換器8の制限温度以下になるように設計されている。図2において、窒素濃度が低下すると熱伝達率が向上するため、冷却水の温度上昇速度が早くなる。本第1実施例の場合、冷却水温度が格納容器50内の飽和温度である100℃に到達すると温度差がなくなるため伝熱が行われなくなり、冷却水温度は100℃で一定となる。100℃まで上昇した冷却水は、ミキサ4でバイパス配管12から供給される低温の冷却水と混合して外部熱交換器8の制限温度以下に低下する。
 バイパス配管12を設けないシステムで冷却水流量を減少させると、外部熱交換器8へ流入する冷却水温度を低下させる手段がなく、仕様を満たさなくなる可能性がある。
 外部熱換器8の仕様温度以下に温度を低下させた冷却水は、外部熱交換器8で海水と熱交換を行い冷却されて再び凝縮器1へ供給される。冷却水から熱を伝達された海水は海に戻され、格納容器50内の熱が海へ放出される。
 本発明の第1実施例においては、温度計21により、外部熱交換器8へ流入する冷却水の温度が計測される。温度計21により計測された冷却水温度に応じて、流量調整バルブ5、6の開度が調整され、凝縮器1への冷却水の供給量と、バイパス配管12からミキサ4に供給される冷却水の流量が調整される。流量調整バルブ5、6の開度調整は、例えば、コントロールセンタにおいて、温度計21の計測温度をモニタし、モニタした温度に従って、コントロールセンタから作業者に流量調整パルブ5、6の開度調整を指示しても行ってもよいし、流量調整バルブ5、6の弁開度駆動機構を設け、コントロールセンタからの指令により弁開度駆動機構が動作するように構成し、行うことも可能である。
 (効果)
 本第1実施例によれば、格納容器50内の窒素濃度が低下して凝縮器1での除熱量が増加する場合に、流量調整バルブ5により凝縮器1への冷却水量を調整して凝縮器1での除熱量を制御するとともに、バイパス配管12から低温の冷却水をミキサ4に供給して、凝縮器1から流出した高温の冷却水とミキサ4で混合させて冷却水温度を外部熱交換器8の仕様温度以下に低下させるように構成される。
 したがって、凝縮器1での除熱量を調整して熱交換器8に流入する冷媒温度を規定温度以下に維持してコスト増大を抑制可能な冷却システムおよび冷却システムの運転方法を実現することができる。
 (第2実施例)
 (構成)
 図3は、本発明の第2実施例に係る冷却システムを沸騰水型原子力プラントに適用した場合の一構成例を表す概要図である。
 第2実施例における第1実施例と異なる構成は、入口側配管2に冷却システム全体を加圧する加圧器(水タンク)10を設置したことであり、他の構成は、第1実施例と同等となっている。
 (動作)
 過酷事故時には、格納容器50は大気圧以上に加圧され、格納容器50内の温度は100℃超となると想定される。冷却水を大気圧で循環させた場合、100℃超の蒸気による加熱で100℃に到達した冷却水は沸騰する。
 沸騰が始まると、上記式(2)に潜熱分が加わり除熱量が増加するため、さらに流量を減少させる必要がある。流量の調整により除熱量の制御は可能であるが、凝縮器1から流出した蒸気がミキサ4で低温の冷却水と混合すると、急激な凝縮によりウォーターハンマーが発生する可能性がある。
 本第2実施例では、冷却システム全体を加圧する加圧器10を設置し、加圧器10の圧力(加圧器10内の気体の圧力)を格納容器50の設計圧力よりも高くしている。冷却水を格納容器50の設計圧力よりも高く加圧することにより、冷却水の沸騰を防止することができる。
 図4は、凝縮器1の伝熱管入口からミキサ4の出口までの冷却水の温度変化を示すグラフであり、縦軸は冷却水温度を示し、横軸は冷却水の位置を示す。また、図4において、実線は冷却水を加圧した場合の温度変化を示し、破線は冷却水を加圧しない場合の冷却水温度変化を示す。
 格納容器50内の窒素濃度が大きく低下して熱伝達率が増加すると、加圧器10により加圧した場合は格納容器50内の温度まで冷却水温度が上昇し、加圧しない場合は冷却水圧力の飽和温度まで冷却水温度が上昇する。その後、ミキサ4でバイパス配管12から流入した低温の冷却水と混合して冷却水温度が外部熱交換器8の制限温度以下に低下するが、加圧しない場合は温度低下が小さく外部熱交換器8の制限温度を超える可能性がある。
 図5は、凝縮器1の伝熱管入口からミキサ4の出口までの冷却水のエンタルピの変化を示すグラフであり、縦軸は冷却水のエンタルピを示し、横軸は冷却水の位置を示す。また、図5において、実線は冷却水を加圧した場合の温度変化を示し、破線は冷却水を加圧しない場合の冷却水温度変化を示す。
 図5において、加圧しない場合は、冷却水温度が飽和温度に到達した後に冷却水の沸騰が発生し、冷却水温度が変化しなくても伝熱が行われるためエンタルピが上昇し続ける。このため、ミキサ4で低温の冷却水と混合させて、加圧した場合と同じだけエンタルピを下げても最終的なエンタルピは加圧した場合よりも高くなり、外部熱交換器8へ流入する冷却水温度が高くなり、条件によっては外部熱交換器8の制限温度を超える可能性がある。冷却水が沸騰すると、低温の冷却水と混合させても、まず凝縮潜熱で低温の冷却水が温められるため、温度低下幅が小さくなる。
 図6は、図3に示した第2実施例の変形例を示す図である。図3に示した例は、加圧器10として、水タンクを適用する場合の例であるが、図6に示すように出口側配管3におけるミキサ4と冷却水ポンプ7との間に圧力調整用バルブ11を設置してもよい。圧力調整用バルブ11のバルブ開度を絞ることによりバルブ11での圧力損失が増大し、冷却水ポンプ(循環ポンプ)7からバルブ11の手前までの範囲をバルブ11での圧力損失分だけ高くすることができる。ただし、その圧力損失分を補える高揚程の循環ポンプが必要となる。
 また、バルブ11の弁開度を固定とすることが可能であれば、バルブでは無く、オリフィスをミキサ4と冷却水ポンプ7との間の出口側配管3に設置してもよい。
 (効果)
 本第2実施例によれば、第1実施例と同様な効果を得ることができる他、冷却水を格納容器50内の圧力よりも高く加圧して冷却水の沸騰を抑制することにより、ミキサ4でのウォーターハンマー発生を防止することができるという効果が得られる。
 (第3実施例)
 (構成)
 図7は、本発明の第3実施例に係る冷却システムを沸騰水型原子力プラントに適用した場合の一構成例を表す概要図である。
 第3実施例における第2実施例と異なる構成は、第3実施例は、温度計21の検出温度が入力される演算部23と、流量調整バルブ5の弁開度を調整する弁駆動モータ51と、流量調整バルブ6の弁開度を調整する弁駆動モータ60とを備えることであり、他の構成は、第2実施例と同等となっている。
 ただし、図7に示した例では、第2実施例と同様に、加圧器10を設置しているが、この加圧器10は、第3の実施例においては、省略可能である。
 (動作)
 格納容器50内の窒素濃度の変化は、不均一な濃度分布が発生すると予測が難しく、上述したように、凝縮器1とバイパス配管12の冷却水流量の調整は外部熱交換器8へ流入する冷却水の温度を監視しながら行うのが良い。格納容器50内の窒素濃度が低下して、凝縮器1の除熱量が増加すると、出口側配管3内の冷却水温度が上昇し、温度計21の指示値が高くなる。
 温度計21が検出した温度は、演算部23に入力される。演算部23は、温度計21が検出した温度が外部熱交換器8の仕様温度(目標温度)を超えそうな場合(高い場合)には、信号ケーブル22を介して入口側配管2の流量調整バルブ5の開度を調整する第1駆動モータ51に開度調整信号を送るとともに、バイパス配管12の流量調整バルブ6の開度を調整する第2駆動モータ60に開度調整信号を送る。駆動モータ51は、演算部23から開度調整信号に従って、流量調整バルブ5の開度を絞り、駆動モータ60は、演算部23から開度調整信号に従って、バイパス配管12の流量調整バルブ6の開度を大きくする。
 凝縮器1へ流入する冷却水流量を減少させることにより凝縮器1の除熱量が低下するとともに、バイパス配管12を通る低温の冷却水流量が増加して、ミキサ4で混合した冷却水温度が低下するので、外部熱交換器8の仕様温度以下に冷却水温度を制御することができる。
 逆に、格納容器50内の窒素濃度が上昇して除熱量が低下すると、温度計21の温度指示値が下がる(仕様温度(目標温度)より低い場合)。この場合、演算部23は、駆動モータ51、60に開度調整信号を送り、外部熱交換器8に流入する冷却水温度が仕様温度を超えない程度に入口側配管2の流量調整バルブ5の開度を大きくし、バイパス配管12の流量調整バルブ6の開度を絞る。凝縮器1へ流入する冷却水流量を増加させることにより除熱量が増加し、必要な除熱量を確保することができる。
 (効果)
 本発明の第3実施例によれば、ミキサ4から外部熱交換器8までの間の出口側配管3に冷却水の温度を測定する温度計21と、演算部23と、温度計21の計測値により流量調整バルブ5、6の開度を調整する信号を伝達する信号ケーブル22と、流量調整バルブ5、6を駆動する駆動モータ51、60とで構成された制御系により、格納容器50内の窒素濃度が変化しても、外部熱交換器8に流入する冷却水温度を外部熱交換器8の仕様温度以下に自動的に制御し、凝縮器1において必要な除熱量を確保することができる。
 これにより、凝縮器1での除熱量を調整して熱交換器8に流入する冷媒温度を規定温度以下に維持してコスト増大を抑制可能な冷却システムを実現することができる。
 (第4実施例)
 (構成)
 図8は、本発明の第4実施例に係る冷却システムに適用する凝縮器1の構成を示す概略図である。
 図8において、凝縮器1は、水平方向および鉛直方向に配置された複数の伝熱管(冷媒が流入流出する管)32と、これら伝熱管32を囲み上下が開放されたケーシング31を備え、ケーシング31の下部には伝熱管32が配置されていない空間(下部チムニ)43が設けられている。
 (動作)
 過酷事故時に格納容器50内に蒸気が流入すると、湿度が上昇しファン等の電動機器が使えなくなる可能性がある。また、蒸気を凝縮させて過圧を防止するため格納容器50内にスプレイを散布する場合もあり、電動機器の動作を期待しない凝縮器設計が望ましい。この場合、格納容器50内に設置される凝縮器1への混合ガスの流入は、自然循環力を利用することになる。
 本第4実施例では、ケーシング31の上下を開放して上面開口部41と下面開口部42を形成しており、ケーシング31の下部には、冷却水が流れる伝熱管32がない下部チムニ空間43を設けている。窒素と蒸気では、窒素の方が、密度が大きく、窒素濃度が高いほど混合ガスの密度が大きくなる。
 凝縮器1に混合ガスが流入すると蒸気だけが凝縮するので、ケーシング31内部と外部とでは内部の方が混合ガスの密度が大きくなっている。この密度差を駆動力として、ケーシング31内部の混合ガスが下方に流れようとする自然循環が発生する。
 このとき、密度の高いケーシング31内の混合ガスはスムーズにケーシング31の外へ排出されるように、下面開口部42が設けられ、ケーシング31の下面が開放されている。混合ガスの排出に伴い、上面開口部41から周囲の混合ガスが凝縮器1内へ流入する。このとき、ケーシング上面が開放されているため、周囲の混合ガスはスムーズに凝縮器1内に流入する。密度差により発生する駆動力は小さいため、上面および下面を開放したケーシング31を用いることにより混合ガスの流入・排出に伴う圧力損失を最小限にしてより多くの混合ガスを凝縮器1内に流入させることができる。
 また、駆動力Fは次式(3)に示すように、密度差△ρと、重力gと、下部チムニ高さhとの積となる。伝熱管32での凝縮に伴い、伝熱管32群でも密度差が発生するが、ここでは保守的に駆動力を下部チムニ高さだけで評価する。
  F=△ρ・g・h   ・・・(3)
 したがって、駆動力を最大限増加させるには、設置場所の許容寸法に対してできるだけ下部チムニ空間43の高さを大きくすればよい。駆動力が増加すると、より多くの混合ガスが凝縮器1に流入する。流入した混合ガスのうち蒸気だけが凝縮するため、凝縮器の下方ほど窒素濃度が高くなる。つまり、凝縮器内の下段の伝熱管ほど窒素の伝熱阻害効果により伝熱量が低下する。より多くの混合ガスを凝縮器1に流入させると、単位時間あたりに伝熱管を通過する蒸気量が増えるのに対し、凝縮量は大きく増えないため、下方向の窒素濃度の増加は抑制される。このため、下段の伝熱管で窒素濃度が低い状態で蒸気が凝縮できるため、除熱効果を向上させることができる。
 (効果)
 本発明の第4実施例によれば、ケーシング31の上面および下面を開口部とすることにより、密度差によって発生する混合ガスの鉛直方向の流れを円滑にでき、下部チムニ空間43を設置することにより、自然循環の駆動力を増加させ、より多くの混合ガスを凝縮器1内に流入させることができる。これにより、凝縮器1の除熱効果を向上することができる。
 そして、本発明の第4実施例の凝縮器1を、本発明の第1~第3の実施例に適用すれば、冷却効果を向上した冷却システムを実現することができる。
 なお、本発明の第4実施例の凝縮器1は、本発明に係る冷却システムにも適用可能である。
 また、上述した本発明の第1~第3の実施例において、凝縮器1の入口側配管2に流量調整バルブ5を配置し、バイパス配管12に流量調整用バルブ6を配置する構成としたが、流量調整バルブは、流量調整バルブ5または流量調整用バルブ6のいずれか一方のみとする構成も、本発明の他の実施例とすることができる。
 流量調整バルブ5および6を配置する例と、流量調整バルブ5又は6のいずれか一方を配置する例とを含めて、凝縮器1への冷却水流量及びバイパスする流量調整機構と総称することとする。
 また、本発明は、原子炉の圧力容器内の冷却のみならず、他の製造プラント等における容器内冷却システムにも適用可能である。
 1・・・凝縮器、2・・・入口側配管、3・・・出口側配管、4・・・ミキサ(混合器)、5・・・凝縮器流量調整バルブ、6・・・バイパス流量調整バルブ、7・・・冷却水循環ポンプ、8・・・外部熱交換器、9・・・冷却水供給ポンプ、10・・・加圧器、11・・・圧力調整バルブ、12・・・バイパス配管、21・・・温度計、22・・・信号ケーブル、23・・・演算部、31・・・ケーシング、32・・・伝熱管、41・・・上面開口部、42・・・下面開口部、43・・・下部チムニ空間、50・・・原子炉格納容器、51、60・・・駆動モータ

Claims (10)

  1.  熱交換器と、
     非凝縮性ガスを含む凝縮性ガスを凝縮させる凝縮器と、
     上記熱交換器の冷媒出口と上記凝縮器の冷媒入口とを接続する入口側配管と、
     上記凝縮器の冷媒出口と上記熱交換器の冷媒入口とを接続する出口側配管と、
     上記入口側配管から上記凝縮器の上記冷媒入口付近の上記入口側配管の分岐部から分岐するバイパス配管と、
     上記出口側配管と上記バイパス配管とに接続され、上記凝縮器の冷媒出口から流出した冷媒と上記バイパス配管から供給された冷媒とを混合し、上記出口側配管を介して上記熱交換器の冷媒入口に供給するミキサと、
     上記入口側配管から上記凝縮器の冷媒入口に流入する冷媒の流入量と上記バイパス配管への冷媒の流入量とを調整する流量調整機構と、
     を備えることを特徴とする冷却システム。
  2.  請求項1に記載の冷却システムにおいて、
     上記凝縮器は、原子力プラントの原子炉格納容器内に配置されることを特徴とする冷却システム。
  3.  請求項1に記載の冷却システムにおいて、
     上記流量調整機構は、上記凝縮器の冷媒入口と上記分岐部との間に配置される凝縮器入口側流量調整バルブと、上記バイパス配管に配置されるバイパス側流量調整バルブとを有することを特徴とする冷却システム。
  4.  請求項1に記載の冷却システムにおいて、
     上記入口側配管及び出口側配管内の冷媒圧力を加圧する加圧器を、さらに備えることを特徴とする冷却システム。
  5.  請求項4に記載の冷却システムにおいて、
     上記加圧器は、水タンクであることを特徴とする冷却システム。
  6.  請求項4に記載の冷却システムにおいて、
     上記加圧器は、上出口側配管に配置される圧力調整用バルブであることを特徴とする冷却システム。
  7.  請求項3に記載の冷却システムにおいて、
     上記出口側配管内の冷媒温度を計測する温度計と、この温度計が計測した冷媒温度に基づいて、上記凝縮器入口側流量調整バルブの弁開度及び上記バイパス側流量調整バルブの弁開度を演算する演算部と、この演算部からの開度調整信号に従って上記凝縮器入口側流量調整バルブの弁開度を調整する第1駆動モータと、上記演算部からの開度調整信号に従って上記バイパス側流量調整バルブの弁開度を調整する第2駆動モータとをさらに備えることを特徴とする冷却システム。
  8.  非凝縮性ガスを含む凝縮性ガスを凝縮させる凝縮器において、
     上面および下面が開放されたケーシングと、
     上記ケーシング内の上部空間に配置され、冷媒が流入流出する複数の伝熱管と、を備え、
     上記ケーシング内の下部空間に上記伝熱管が配置されていない下部チムニ空間が形成されていることを特徴とする凝縮器。
  9.  請求項1に記載の冷却システムにおいて、
     上記凝縮器は、上面および下面が開放されたケーシングと、上記ケーシング内の上部空間に配置され、冷媒が流入流出する複数の伝熱管とを備え、上記ケーシング内の下部空間に上記伝熱管が配置されていない下部チムニ空間が形成され、窒素濃度が変化する原子炉格納容器内に配置されることを特徴とする冷却システム。
  10.  冷却システムの運転方法において、
     請求項3に記載の冷却システムの上記出口側配管内に冷媒温度を計測する温度計を配置し、この温度計の計測した温度が目標温度よりも高い場合には、上記入口側流量調整バルブを絞り、上記バイパス配管の流量調整バルブを開き、上記温度計の計測した温度が目標温度よりも低い場合には、上記入口側流量調整バルブを開き、上記バイパス配管の上記流量調整バルブを絞るように制御することを特徴とする冷却システムの運転方法。
PCT/JP2016/067503 2015-07-27 2016-06-13 凝縮器および冷却システムと運転方法 WO2017018082A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2018000911A MX2018000911A (es) 2015-07-27 2016-06-13 Condensador, sistema de refrigeracion y metodo de funcionamiento.
PL424424A PL233803B1 (pl) 2015-07-27 2016-06-13 Uklad chlodzenia i sposob dzialania ukladu chlodzenia
GB1800782.3A GB2557055B (en) 2015-07-27 2016-06-13 Condenser, Cooling System, and Operating Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015147623A JP6487290B2 (ja) 2015-07-27 2015-07-27 凝縮器および冷却システムと運転方法
JP2015-147623 2015-07-27

Publications (1)

Publication Number Publication Date
WO2017018082A1 true WO2017018082A1 (ja) 2017-02-02

Family

ID=57885511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067503 WO2017018082A1 (ja) 2015-07-27 2016-06-13 凝縮器および冷却システムと運転方法

Country Status (5)

Country Link
JP (1) JP6487290B2 (ja)
GB (1) GB2557055B (ja)
MX (1) MX2018000911A (ja)
PL (1) PL233803B1 (ja)
WO (1) WO2017018082A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107424654A (zh) * 2017-08-01 2017-12-01 中广核研究院有限公司 导出安全壳内热量的系统和方法
CN107449289A (zh) * 2017-07-27 2017-12-08 江苏长海化工有限公司 一种冷凝器进水温度的自动控制系统及方法
CN112466485A (zh) * 2020-11-26 2021-03-09 中国船舶工业集团公司第七0八研究所 一种非能动余热排出系统缓冲水箱
CN113847817A (zh) * 2021-08-27 2021-12-28 日月光半导体制造股份有限公司 机台降温装置和方法
CN113865207A (zh) * 2021-10-29 2021-12-31 美的集团武汉暖通设备有限公司 冷却系统及其控制方法、计算机可读存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6905451B2 (ja) * 2017-11-07 2021-07-21 日立Geニュークリア・エナジー株式会社 水素濃度測定システム
JP6967484B2 (ja) * 2018-04-11 2021-11-17 日立Geニュークリア・エナジー株式会社 凝縮器
JP7045966B2 (ja) * 2018-09-20 2022-04-01 日立Geニュークリア・エナジー株式会社 原子力プラント及びその運転方法
CN109369003A (zh) * 2018-12-28 2019-02-22 江苏通鼎光棒有限公司 一种光纤预制棒母棒烧结的进气装置及其进气方法
KR102307564B1 (ko) * 2019-12-17 2021-10-05 한국수력원자력 주식회사 냉각성능이 강화된 원자로건물냉각계통

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49173A (ja) * 1972-04-21 1974-01-05
JPS6385215A (ja) * 1986-09-27 1988-04-15 Mitsubishi Heavy Ind Ltd 内燃機関の冷却装置
JP2001153381A (ja) * 1999-11-25 2001-06-08 Kobe Steel Ltd 地域熱供給システム
JP2004082104A (ja) * 2002-06-25 2004-03-18 Ska Ltd 電解式滅菌装置と方法
JP2007051929A (ja) * 2005-08-18 2007-03-01 Toshiba Corp 原子炉格納容器冷却設備および原子力プラント
JP2010236786A (ja) * 2009-03-31 2010-10-21 Yamatake Corp 送水温度制御装置および方法
JP2010243002A (ja) * 2009-04-02 2010-10-28 Daikin Ind Ltd 空調システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49173A (ja) * 1972-04-21 1974-01-05
JPS6385215A (ja) * 1986-09-27 1988-04-15 Mitsubishi Heavy Ind Ltd 内燃機関の冷却装置
JP2001153381A (ja) * 1999-11-25 2001-06-08 Kobe Steel Ltd 地域熱供給システム
JP2004082104A (ja) * 2002-06-25 2004-03-18 Ska Ltd 電解式滅菌装置と方法
JP2007051929A (ja) * 2005-08-18 2007-03-01 Toshiba Corp 原子炉格納容器冷却設備および原子力プラント
JP2010236786A (ja) * 2009-03-31 2010-10-21 Yamatake Corp 送水温度制御装置および方法
JP2010243002A (ja) * 2009-04-02 2010-10-28 Daikin Ind Ltd 空調システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107449289A (zh) * 2017-07-27 2017-12-08 江苏长海化工有限公司 一种冷凝器进水温度的自动控制系统及方法
CN107449289B (zh) * 2017-07-27 2019-10-25 江苏长海化工有限公司 一种冷凝器进水温度的自动控制系统及方法
CN107424654A (zh) * 2017-08-01 2017-12-01 中广核研究院有限公司 导出安全壳内热量的系统和方法
CN112466485A (zh) * 2020-11-26 2021-03-09 中国船舶工业集团公司第七0八研究所 一种非能动余热排出系统缓冲水箱
CN113847817A (zh) * 2021-08-27 2021-12-28 日月光半导体制造股份有限公司 机台降温装置和方法
CN113865207A (zh) * 2021-10-29 2021-12-31 美的集团武汉暖通设备有限公司 冷却系统及其控制方法、计算机可读存储介质

Also Published As

Publication number Publication date
GB2557055B (en) 2020-10-21
GB201800782D0 (en) 2018-03-07
PL424424A1 (pl) 2018-05-07
PL233803B1 (pl) 2019-11-29
MX2018000911A (es) 2018-05-22
GB2557055A (en) 2018-06-13
JP2017026541A (ja) 2017-02-02
JP6487290B2 (ja) 2019-03-20

Similar Documents

Publication Publication Date Title
JP6487290B2 (ja) 凝縮器および冷却システムと運転方法
JP5759899B2 (ja) 発電モジュール組立体、原子炉モジュールおよび原子炉冷却方法
US8300759B2 (en) Decay heat removal system comprising heat pipe heat exchanger
KR102198440B1 (ko) 격납용기 내부 수동 열제거 시스템
JP2012230079A (ja) 原子力プラント、燃料プール水冷却装置及び燃料プール水冷却方法
JP5876320B2 (ja) 原子力プラント
WO2016078421A1 (zh) 非能动安全冷却系统
KR101463440B1 (ko) 피동안전설비 및 이를 구비하는 원전
KR20090066663A (ko) 소듐냉각 고속로의 잔열제거용 중간 소듐루프에서의 소듐고화가능성을 배제한 피동 안전등급 잔열제거 시스템
JP6022286B2 (ja) 凝縮室用冷却系
CA2066828A1 (en) Passive indirect shutdown cooling system for nuclear reactors
KR101456170B1 (ko) 압력경계 보존형 피동형 공냉 격납건물 냉각 장치 및 시스템
JPH05180974A (ja) 原子炉及び原子炉冷却設備並びに原子力発電プラント及びその運転方法
KR102431077B1 (ko) 극단적 노출 후 원자력 발전소를 안전한 상태로 만드는 시스템 및 방법
KR102067396B1 (ko) 자연 순환되는 2차 냉각 계통이 구비된 일체형 원자로 시스템
KR102196292B1 (ko) 사용후 핵연료 냉각 장치 및 이를 이용한 사용후 핵연료 냉각 방법
JP2013096927A (ja) 原子力発電プラントの非常用復水器
JP2016080301A (ja) 冷却システム
JP6072919B2 (ja) 原子炉冷却システム
JP6004438B2 (ja) 原子炉冷却システム
CA3066162C (en) Method and system for bringing a nuclear power plant into a safe state after extreme effect
Mori et al. Plant dynamics evaluation of a Monju ex-vessel fuel storage system during a station blackout
KR20200110971A (ko) 원자로건물 피동 냉각시스템용 냉각수저장조 냉각장치
JP5754952B2 (ja) 原子力発電プラントの1/2次系冷却水システム及び原子力発電プラント
JP2015137905A (ja) 原子炉格納容器及び原子炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830187

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201800782

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160613

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/000911

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: P.424424

Country of ref document: PL

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830187

Country of ref document: EP

Kind code of ref document: A1