WO2017018033A1 - シリコーンゲル組成物及びシリコーンゲル硬化物 - Google Patents

シリコーンゲル組成物及びシリコーンゲル硬化物 Download PDF

Info

Publication number
WO2017018033A1
WO2017018033A1 PCT/JP2016/065141 JP2016065141W WO2017018033A1 WO 2017018033 A1 WO2017018033 A1 WO 2017018033A1 JP 2016065141 W JP2016065141 W JP 2016065141W WO 2017018033 A1 WO2017018033 A1 WO 2017018033A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone gel
group
composition
cured
niobium
Prior art date
Application number
PCT/JP2016/065141
Other languages
English (en)
French (fr)
Inventor
正 荒木
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP16830138.0A priority Critical patent/EP3327087B1/en
Priority to US15/746,509 priority patent/US10662331B2/en
Publication of WO2017018033A1 publication Critical patent/WO2017018033A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2220/00Compositions for preparing gels other than hydrogels, aerogels and xerogels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention relates to a silicone gel composition that cures to give a cured silicone gel (so-called silicone gel) having excellent heat resistance, and a cured silicone gel obtained by curing the composition.
  • the silicone gel composition contains an organohydrogenpolysiloxane having a hydrogen atom (ie, SiH group) bonded to a silicon atom, an organopolysiloxane having an alkenyl group such as a vinyl group bonded to a silicon atom, and a platinum-based catalyst.
  • the addition reaction curable organopolysiloxane composition is obtained by obtaining a cured product by addition reaction of hydrogen atoms bonded to silicon atoms to alkenyl groups.
  • the silicone gel cured product cured by heating this silicone gel composition is excellent in heat resistance, weather resistance, oil resistance, cold resistance, electrical insulation, etc. It is used to protect electronic parts such as parts and consumer electronic parts.
  • JP-A-2015-007203 Patent Document 2
  • All of the publications must be mixed with organopolysiloxane in advance, heat-treated to obtain a reaction product, and then added, so shortening the process and simplifying the supply of raw materials have been problems.
  • JP 2008-291148 A Japanese Patent Laying-Open No. 2015-007203
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a silicone gel composition that gives a cured silicone gel excellent in heat resistance at high temperatures and a cured product (silicone gel) thereof.
  • an addition reaction curable silicone gel composition to the following formula (3).
  • R 3 is the same or different monovalent hydrocarbon group
  • M is at least one metal selected from nickel and niobium
  • f is 2 when M is nickel
  • M is niobium. 4 or 5 for cases
  • a silicone gel composition containing 1 to 1,000 ppm of nickel carboxylate and / or niobium carboxylate represented by the formula (mass) can be a cured silicone gel with excellent heat resistance.
  • the headline and the present invention were made.
  • this invention provides the following silicone gel composition and its hardened
  • a silicone gel composition comprising: [2] The silicone gel composition according to [1], which is cured to give a cured silicone gel having a penetration of 10 to 150 as defined by JIS K2220. [3] Cured to give a cured silicone gel having a loss factor in the range of 0.1 to 1.0 and 0.3 to 1.5 at 25 ° C. and shear frequencies of 1 Hz and 10 Hz, respectively [1] or [1] 2] The silicone gel composition described in the above. [4] [1] A cured silicone gel obtained by curing the silicone gel composition according to any one of [3].
  • the silicone gel composition of the present invention provides a cured silicone gel that is superior in heat resistance at a higher temperature than before.
  • the silicone gel composition of the present invention comprises the following components (A) to (D) as essential components.
  • a silicone gel cured product (silicone gel) is a cured product having an organopolysiloxane as a main component and a very low crosslinking density, and has a penetration by JIS K2220 (1/4 cone). It means 10-150. This is equivalent to a measurement value (rubber hardness value) of 0 in rubber hardness measurement according to JIS K6249, which is so low that it does not show an effective rubber hardness value (that is, soft). It is different from a rubber cured product (rubber-like elastic body).
  • a viscosity is a value in 25 degreeC.
  • (A) component of this invention is the main ingredient (base polymer) of a silicone gel composition.
  • the component (A) is an average of alkenyl groups bonded to silicon atoms in one molecule represented by the following average composition formula (1) (referred to herein as “silicon atom-bonded alkenyl groups”).
  • An organopolysiloxane having at least one.
  • R a R 1 b SiO (4-ab) / 2 (1) Wherein R is independently an alkenyl group, R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond, and a is a positive number of 0.0001 to 0.2 And b is a positive number from 1.7 to 2.2, where a + b is 1.9 to 2.4.)
  • R is independently an alkenyl group usually having 2 to 6, preferably 2 to 4, more preferably 2 to 3 carbon atoms. Specific examples thereof include a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, and an isobutenyl group, and a vinyl group is preferable.
  • R 1 independently represents an unsubstituted or substituted monovalent hydrocarbon group that does not contain an aliphatic unsaturated bond, and the number of carbon atoms is usually 1 to 10, preferably 1 to 6.
  • a needs to be a positive number from 0.0001 to 0.2, and is preferably a positive number from 0.0005 to 0.1.
  • b needs to be a positive number of 1.7 to 2.2, and is preferably a positive number of 1.9 to 2.02.
  • a + b needs to satisfy the range of 1.9 to 2.4, and preferably 1.95 to 2.05.
  • the component (A) needs to have at least one silicon atom-bonded alkenyl group on average in the molecule as the whole component (A), preferably 2 to 50, more preferably 2 to 10 Have one. What is necessary is just to select the value of said a and b so that the conditions of this silicon atom bond alkenyl group may be satisfy
  • the molecular structure of the organopolysiloxane of component (A) is not particularly limited, and even if it is linear, for example, RSiO 3/2 unit, R 1 SiO 3/2 unit (R and R 1 are the same as above) , A branched chain containing a SiO 2 unit or the like may be used.
  • R 5 independently represents an unsubstituted or substituted monovalent hydrocarbon group that does not contain an aliphatic unsaturated bond
  • R 6 independently represents an unsubstituted or substituted monovalent group that does not contain an aliphatic unsaturated bond.
  • a hydrocarbon group or an alkenyl group provided that at least one, preferably 2 to 50, more preferably 2 to 10, R 6 is an alkenyl group, and either R 6 at both ends of the molecular chain is an alkenyl group.
  • K is an integer from 40 to 1,200
  • m is an integer from 0 to 50
  • n is an integer from 0 to 50
  • k + m + n is an integer from 40 to 1,200.
  • k is an integer of 40 to 1,200
  • m is an integer of 1 to 50
  • n is an integer of 0 to 50.
  • n + n is an integer of 1 or more
  • k + m + n is an integer of 40 to 1,200.
  • the unsubstituted or substituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond represented by R 5 is usually one having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms. . Specific examples thereof include those exemplified for R 1 . Among these, a methyl group, a phenyl group, or a 3,3,3-trifluoropropyl group is preferable from the viewpoints of easy synthesis and chemical stability.
  • the unsubstituted or substituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond is usually one having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms. Specific examples thereof include those exemplified for R 1 . Among these, a methyl group, a phenyl group, or a 3,3,3-trifluoropropyl group is preferable from the viewpoints of easy synthesis and chemical stability.
  • the alkenyl group usually has 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms, more preferably 2 to 3 carbon atoms. Specific examples thereof include a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, and an isobutenyl group, and a vinyl group is preferable.
  • k is an integer of 40 to 1,200
  • m is an integer of 0 to 50
  • n is It is an integer from 0 to 50
  • k + m + n is an integer from 40 to 1,200.
  • k is an integer of 100 to 1,000
  • m is an integer of 0 to 40
  • n is 0,
  • k + m + n is an integer of 100 to 1,000, particularly 100 to 600.
  • k is an integer of 40 to 1,200
  • m is an integer of 1 to 50
  • n is an integer of 0 to 50.
  • m + n is an integer of 1 or more
  • k + m + n is an integer of 40 to 1,200.
  • k is an integer of 98 to 1,000
  • m is an integer of 2 to 40
  • n is 0,
  • k + m + n is an integer of 100 to 1,000, particularly 100 to 600.
  • the total number (or degree of polymerization) of the diorganosiloxane units represented by k + m + n is determined, for example, as the number average degree of polymerization in terms of polystyrene in gel permeation chromatography (GPC) analysis using toluene or the like as a developing solvent. Can do.
  • GPC gel permeation chromatography
  • the values of k, m, and n are the molar ratio of each corresponding repeating unit calculated from the blending ratio of the raw material monomer component when the component (A) is produced, and the value of k + m + n (number average degree of polymerization, etc. ) And an average value or the like.
  • organopolysiloxane represented by the above formula (1a) examples include dimethylpolysiloxane having both ends dimethylvinylsiloxy group-blocked dimethylpolysiloxane, dimethylvinylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer, and both ends dimethylvinylsiloxy.
  • the viscosity of the organopolysiloxane of component (A) is not particularly limited, but the viscosity at 25 ° C. is 50 to 100,000 mPa from the point that the handling workability of the composition, the strength of the resulting cured product, and the fluidity are good. S is preferable, and 100 to 10,000 mPa ⁇ s is more preferable.
  • the viscosity can be measured with a rotational viscometer (for example, BL type, BH type, BS type, cone plate type, rheometer, etc.) (hereinafter the same).
  • the organopolysiloxane of component (A) can be used alone or in combination as long as it satisfies the condition that the entire component (A) has at least one silicon-bonded alkenyl group on average in one molecule.
  • a combination of the above may also be used.
  • Organopolysiloxane having one alkenyl group or organopolysiloxane having less than one for example, organopolysiloxane having the same average degree of polymerization and distribution of polymerization degree and having one alkenyl group bonded to a silicon atom at one end of the molecular chain
  • organopolysiloxane having the same average degree of polymerization and distribution of polymerization degree and having one alkenyl group bonded to a silicon atom at one end of the molecular chain And a uniform mixture of an organopolysiloxane containing no alkenyl group in the molecule, etc.
  • a mass ratio of about 100: 0 to 40:60, particularly 100: 0 to 60:40 it is preferable because the composition has good curability and can stably obtain a soft (high penetration) silicone gel cured product. .
  • the component (B) of the present invention reacts with the component (A) and acts as a crosslinking agent (curing agent).
  • the component (B) has the following average composition formula (2) R 2 c H d SiO (4-cd) / 2 (2) (Wherein R 2 independently represents an unsubstituted or substituted monovalent hydrocarbon group that does not contain an aliphatic unsaturated bond, c is a positive number of 0.7 to 2.2, and d is 0.001.
  • An organohydrogenpolysiloxane having at least two hydrogen atoms bonded to silicon atoms in one molecule (referred to as “silicon atom-bonded hydrogen atoms” and “SiH groups” in the present specification).
  • the number of silicon-bonded hydrogen atoms in the molecule of the organohydrogenpolysiloxane is usually 2 to 500, preferably 3 to 300, more preferably 5 to 100, and particularly preferably 10 to 80. It is.
  • the SiH group may be bonded to the silicon atom at the end of the molecular chain or may be bonded to the silicon atom at the non-terminal end of the molecular chain (in the middle of the molecular chain). Good.
  • R 2 independently represents an unsubstituted or substituted monovalent hydrocarbon group that does not contain an aliphatic unsaturated bond, and the number of carbon atoms is usually 1 to 10, preferably 1 to 6. is there. Specific examples thereof include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group.
  • An alkyl group such as phenyl group, tolyl group, xylyl group, naphthyl group, etc .; aralkyl group such as benzyl group, phenylethyl group, phenylpropyl group, etc .; And a 3,3,3-trifluoropropyl group substituted with a halogen atom such as bromine and fluorine.
  • a halogen atom such as bromine and fluorine.
  • an alkyl group, an aryl group, and a 3,3,3-trifluoropropyl group are preferable, and a methyl group, a phenyl group, and a 3,3,3-trifluoropropyl group are more preferable.
  • c is a positive number of 0.7 to 2.2, and is preferably a positive number of 1.0 to 2.1.
  • d is a positive number of 0.001 to 0.5, and is preferably a positive number of 0.005 to 0.1.
  • c + d is 0.8 to 3, preferably 1.0 to 2.7, and more preferably 1.5 to 2.5.
  • the molecular structure of the organohydrogenpolysiloxane of component (B) is not particularly limited, and may be any of a linear, cyclic, branched, and three-dimensional network (resinous) structure.
  • the number of silicon atoms ie, degree of polymerization
  • the number is usually 4 to 500, more preferably 10 to 100.
  • the degree of polymerization can be determined, for example, as the number average degree of polymerization (or number average molecular weight) in terms of polystyrene in gel permeation chromatography (GPC) analysis using toluene or the like as a developing solvent.
  • GPC gel permeation chromatography
  • organohydrogenpolysiloxane represented by the above formula (2) examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, and methylhydrogensiloxane.
  • Cyclic polymer tris (dimethylhydrogensiloxy) methylsilane, tris (dimethylhydrogensiloxy) phenylsilane, methylhydrogensiloxane / dimethylsiloxane cyclic copolymer, both ends dimethylhydrogensiloxy group-blocked methylhydrogenpolysiloxane, both Terminal dimethylhydrogensiloxy group-blocked methylhydrogen / dimethylsiloxane copolymer, both-end dimethylhydrogensiloxy group-blocked methylhydrogen / diphenylsiloxane copolymer, both-end dimethyl Hydroxysiloxy group-blocked methylhydrogen / dimethylsiloxane / diphenylsiloxane copolymer, trimethylsiloxy group-blocked methylhydrogenpolysiloxane at both ends, trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane cop
  • the (B) component organohydrogenpolysiloxane may be used singly or in combination of two or more.
  • organohydrogenpolysiloxane having 2 or more, particularly 3 or more hydrogen atoms bonded to silicon atoms in the middle of the molecular chain (side chain), and hydrogen atoms bonded to silicon atoms at both ends of the molecular chain It is possible to mix and use organohydrogenpolysiloxane having 2 (only) in a mass ratio of about 100: 0 to 5:95, particularly about 100: 0 to 8:92.
  • a favorable and flexible (high penetration) silicone gel cured product is preferred because it can be stably obtained.
  • Component (B) is added in an amount of hydrogen atoms bonded to silicon atoms in component (B) relative to one alkenyl group bonded to silicon atoms in the entire composition (particularly component (A) above).
  • the amount of SiH groups) is 0.01 to 3, preferably 0.05 to 2, and more preferably 0.2 to 1.5.
  • the number of hydrogen atoms bonded to the silicon atom of component (B) is less than 0.01 with respect to one alkenyl group in the entire composition, a gel cured product cannot be obtained.
  • cured material falls.
  • the component (C) of the present invention is used as a catalyst for promoting the hydrosilylation addition reaction between the silicon atom-bonded alkenyl group of the component (A) and the silicon atom-bonded hydrogen atom in the component (B). It is.
  • the component (C) is a platinum-based catalyst (platinum or a platinum-based compound), and a known one can be used. Specific examples thereof include platinum-based catalysts such as platinum-modified catalysts such as platinum black, chloroplatinic acid, and chloroplatinic acid; complexes of chloroplatinic acid and olefins, aldehydes, vinyl siloxanes, and acetylene alcohols. Is done.
  • the compounding amount of the component (C) may be an effective amount, and can be appropriately increased or decreased depending on the desired curing rate, but is usually in terms of the mass of platinum atoms with respect to the total mass of the components (A) and (B).
  • the range is usually 0.1 to 1,000 ppm, preferably 1 to 300 ppm. If the amount is too large, the heat resistance of the resulting cured product may decrease.
  • the component (D) of the present invention is a nickel carboxylate and / or niobium carboxylate represented by the following formula (3) for imparting excellent heat resistance to the silicone gel composition of the present invention. It is an essential ingredient.
  • R 3 is the same or different, preferably a monovalent hydrocarbon group having 1 to 20 carbon atoms, more preferably 1 to 18 carbon atoms, specifically, methyl group, ethyl group, propyl group.
  • nickel carboxylate and / or niobium carboxylate include nickel compounds such as 2-ethylhexanoic acid, naphthenic acid, oleic acid, lauric acid, and stearic acid, and / or niobium compounds. .
  • the value of f indicating the valence of the metal is 2 when M is nickel, 4 or 5 when M is niobium, and f is more preferably 4 when M is niobium.
  • the content of the nickel carboxylate and / or niobium carboxylate as the component (D) is 1 to 1,000 ppm with respect to the mass of the entire composition (particularly, the total of the components (A) to (D)).
  • the amount is preferably 100 to 800 ppm, more preferably 200 to 500 ppm.
  • the content of nickel carboxylate and / or niobium carboxylate is less than 1 ppm, the effect of improving the heat resistance at high temperature is not seen. Conversely, when the content exceeds 1,000 ppm, the insulation is greatly improved. Decrease or curability decreases.
  • an optional component can be blended in the silicone gel composition of the present invention as long as the object of the present invention is not impaired.
  • the optional component include a reaction inhibitor, an inorganic filler, an organopolysiloxane containing no silicon atom-bonded hydrogen atom and silicon atom-bonded alkenyl group, a heat resistance imparting agent other than the component (D), and imparting flame retardancy.
  • the reaction inhibitor is a component for suppressing the reaction of the composition, and specifically includes, for example, acetylene-based, amine-based, carboxylic acid ester-based, phosphite-based reaction inhibitor, and the like. It is done.
  • inorganic fillers examples include fumed silica, crystalline silica, precipitated silica, hollow filler, silsesquioxane, fumed titanium dioxide, magnesium oxide, zinc oxide, iron oxide, aluminum hydroxide, magnesium carbonate, and calcium carbonate.
  • inorganic fillers such as zinc carbonate, layered mica, carbon black, diatomaceous earth, and glass fiber; these fillers are organic silicon compounds such as organoalkoxysilane compounds, organochlorosilane compounds, organosilazane compounds, and low molecular weight siloxane compounds. Examples thereof include a surface hydrophobized filler. Silicone rubber powder, silicone resin powder, and the like may also be blended.
  • the silicone gel composition of the present invention can be prepared by mixing the above components (A) to (D) (including optional components when optional components are blended) according to a conventional method. At that time, the components to be mixed may be divided into two or more parts and mixed as necessary. For example, it comprises a part of component (A) and components (C) and (D). It is also possible to divide and mix the part into a part composed of the remainder of the component (A) and the part composed of the component (B).
  • the silicone gel composition of the present invention is heated at room temperature (25 ° C. ⁇ 10 ° C.) or at a heating temperature according to the application (for example, about 35 to 130 ° C., particularly about 50 to 110 ° C.) for 30 to 120 minutes.
  • a cured silicone gel can be obtained by curing for about 40 to 60 minutes.
  • the silicone gel composition of the present invention is preferably used for sealing or filling electric / electronic parts.
  • the cured product (silicone gel or cured silicone gel) of the silicone gel composition of the present invention preferably has a penetration of 10 to 150, more preferably 20 to 150, with a 1/4 cone defined by JIS K2220. 100, more preferably 30-80. If the penetration is less than 10, the silicone gel composition may not be able to withstand the stress at the time of curing, and a part of the electronic circuit may be broken or a crack may be generated inside the silicone gel. If the penetration exceeds 150, a cured silicone gel having sufficient shape retention ability may not be obtained, and the filled and cured silicone gel may flow out of the circuit.
  • the cured silicone gel of the present invention has a loss factor at 25 ° C. and a shear frequency of 1 Hz, preferably 0.1 to 1.0, more preferably 0.12 to 0.8, and still more preferably 0.5 to
  • the loss factor at 25 ° C. and a shear frequency of 10 Hz is preferably 0.3 to 1.5, more preferably 0.35 to 1.2, and still more preferably 0.4 to 1.0.
  • the loss factor at 25 ° C. and shear frequency of 1 Hz is less than 0.1, the silicone gel composition cannot withstand the stress at the time of curing, and part of the electronic circuit breaks or cracks are generated inside the silicone gel. Sometimes.
  • the loss coefficient at 25 ° C. and a shear frequency of 10 Hz exceeds 1.5, a cured silicone gel having sufficient shape retention ability may not be obtained, and the filled and cured silicone gel may flow out of the circuit. .
  • the present invention will be specifically described by way of examples and comparative examples, but the following examples are not intended to limit the present invention.
  • “part” represents “part by mass”
  • “%” represents “mass%”
  • “Vi” represents “vinyl group”.
  • the penetration is a penetration with a 1 ⁇ 4 cone defined by JIS K2220, and was measured using an automatic penetration meter RPM-101 manufactured by Kouaisha.
  • the degree of polymerization (or the number of each repeating unit) is calculated from the number average degree of polymerization in terms of polystyrene in GPC analysis using toluene as a developing solvent.
  • Example 1 The following average molecular formula (4) 60 parts of a dimethylvinylsiloxy group-blocked dimethylsiloxane / diphenylsiloxane copolymer having a viscosity at 25 ° C. of 1,000 mPa ⁇ s represented by the following average molecular formula (5) 40 parts of a terminal trimethylsiloxy group / dimethylvinylsiloxy group-blocked dimethylsiloxane / diphenylsiloxane copolymer having a viscosity at 25 ° C.
  • composition 1 A silicone gel composition (Composition 1) was obtained by uniformly mixing 05 parts, 0.02 part of ethynylcyclohexanol, and 0.05 part of nickel 2-ethylhexanoate (about 500 ppm relative to the total mass of the composition). It was. When the obtained composition 1 was heat-cured at 80 ° C. for 60 minutes, a cured silicone gel having a penetration of 45 was obtained.
  • Example 2 In Example 1, instead of using 0.05 parts of nickel 2-ethylhexanoate, 0.01 parts of niobium 2-ethylhexanoate (about 100 ppm with respect to the total mass of the composition) was used. Product 2 was obtained. When this composition 2 was heat-cured at 80 ° C. for 60 minutes, a cured silicone gel having a penetration of 50 was obtained.
  • composition 3 (content of nickel carboxylate and / or niobium carboxylate 0 ppm) was obtained in the same manner as in Example 1, except that 0.05 parts of nickel 2-ethylhexanoate was not used. When this composition was heat-cured at 80 ° C. for 60 minutes, a cured silicone gel having a penetration of 40 was obtained.
  • Example 2 In Example 1, instead of using 0.05 parts of nickel 2-ethylhexanoate, 0.15 parts of a 2-ethylhexanoate solution (iron element content 8%) containing iron as a main component was added. Similarly, composition 4 (iron content of 120 ppm relative to the mass of the entire composition) was obtained. When this composition was heat-cured at 80 ° C. for 60 minutes, a cured silicone gel having a penetration of 40 was obtained.
  • composition 5 was obtained in the same manner as in Example 1, except that 0.15 part of nickel 2-ethylhexanoate (about 1,500 ppm relative to the total mass of the composition) was used. When this composition 5 was heat-cured at 80 ° C. for 60 minutes, a cured silicone gel having a penetration of 80 was obtained.
  • composition 6 was obtained in the same manner as in Example 2, except that 0.15 parts of niobium 2-ethylhexanoate (about 1,500 ppm relative to the total mass of the composition) was used. When this composition 6 was heat-cured at 80 ° C. for 60 minutes, a cured silicone gel having a penetration of 90 was obtained.
  • volume resistivity of the cured silicone gel obtained in the above examples and comparative examples was measured by the method described in JIS K6249.
  • compositions of Examples 1 and 2 satisfy the requirements of the present invention, and a cured silicone gel having good rubber properties can be obtained, and the penetration is not reduced even under long-term heat resistance of 215 ° C or 250 ° C. The stability was confirmed without any abnormal appearance such as cracks.
  • the compositions of Comparative Examples 1 and 2 do not contain the component (D) of the present invention, that is, contain the nickel carboxylate and / or niobium carboxylate, which is an essential component of the present invention. It does not meet the requirements, and it can be seen that the heat resistance is lowered and the insulation is greatly lowered.
  • compositions of Comparative Examples 3 and 4 have a high content of component (D) of the present invention, that is, the content of nickel carboxylate and / or niobium carboxylate satisfies the requirements of the present invention. It can be seen that the softening deterioration is remarkably confirmed by the heat resistance test, and the insulating property is lowered.
  • the silicone gel cured product obtained by curing the silicone gel composition of the present invention maintains the low elastic modulus and low stress that are the characteristics of the silicone gel cured product even when kept for a long time in an atmosphere of 200 ° C. Therefore, long-term durability is expected to be improved in applications for protecting electronic parts such as ICs and hybrid ICs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

高温での耐熱性に優れたシリコーンゲル硬化物を与えるシリコーンゲル組成物及びその硬化物(シリコーンゲル)を提供する。 付加反応硬化型のシリコーンゲル組成物に、下記式(3) (R3COO)fM (3) (式中、R3は同一又は異種の1価炭化水素基であり、Mはニッケル及びニオブから選ばれる少なくとも1種の金属であり、fは、Mがニッケルの場合は2、Mがニオブの場合は4又は5である。) で示されるニッケルのカルボン酸塩及び/又はニオブのカルボン酸塩を組成物全体(質量)の1~1,000ppm含有したシリコーンゲル組成物。

Description

シリコーンゲル組成物及びシリコーンゲル硬化物
 本発明は、硬化して優れた耐熱性を有するシリコーンゲル硬化物(いわゆるシリコーンゲル)を与えるシリコーンゲル組成物、及び該組成物を硬化してなるシリコーンゲル硬化物に関する。
 シリコーンゲル組成物は、ケイ素原子に結合した水素原子(即ち、SiH基)を有するオルガノハイドロジェンポリシロキサン、ケイ素原子に結合したビニル基等のアルケニル基を有するオルガノポリシロキサン及び白金系触媒を含有し、前記ケイ素原子に結合した水素原子のアルケニル基への付加反応により硬化物を得る付加反応硬化型オルガノポリシロキサン組成物として調製される。このシリコーンゲル組成物を加熱することにより硬化したシリコーンゲル硬化物は、耐熱性、耐候性、耐油性、耐寒性、電気絶縁性等に優れ、低弾性率かつ低応力であることにより、車載電子部品、民生用電子部品等の電子部品の保護に用いられている。シリコーンゲル硬化物の特徴である低弾性率かつ低応力であることは、他のエラストマー製品には見られない。また、近年では、車載電子部品や民生用電子部品の高信頼性化などの要求から、封止に用いられるシリコーンゲル材料に対する耐熱性の要求が高まってきている。
 一般的なシリコーンゴムにおいて、耐熱性を向上させる手段としては、カーボン、酸化鉄等のフィラーを充填することが有効であるが、低粘度で、透明性が要求されるシリコーンゲル材料において、耐熱性を向上させる手段としてのフィラーの充填は、透明性の低下、フィラーの沈降、粘度増大に伴う作業性の低下などのデメリットが発生するため、容易に受け容れられる手段ではない。
 また、特開2008-291148号公報(特許文献1)に記載されるような、セリウムの金属塩を用いた耐熱性付与の手段もあるが、セリウムが希土類元素であるため、安定的な入手性に問題があることから、新たな耐熱性付与の手法が望まれていた。
 近年、特開2015-007203号公報(特許文献2)に記載されるような、鉄のカルボン酸塩を用いた耐熱付与の手段もあるが、特開2008-291148号公報並びに特開2015-007203号公報のいずれも事前にオルガノポリシロキサンと混合し、加熱処理して反応生成物を得たのち添加しなければならないため、工程の短縮化や原料供給の単純化が課題であった。
特開2008-291148号公報 特開2015-007203号公報
 本発明は、上記事情に鑑みてなされたもので、高温での耐熱性に優れたシリコーンゲル硬化物を与えるシリコーンゲル組成物及びその硬化物(シリコーンゲル)を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意検討を行った結果、付加反応硬化型のシリコーンゲル組成物に、下記式(3)
  (R3COO)fM     (3)
(式中、R3は同一又は異種の1価炭化水素基であり、Mはニッケル及びニオブから選ばれる少なくとも1種の金属であり、fは、Mがニッケルの場合は2、Mがニオブの場合は4又は5である。)
で示されるニッケルのカルボン酸塩及び/又はニオブのカルボン酸塩を組成物全体(質量)の1~1,000ppm含有したシリコーンゲル組成物が、耐熱性に優れたシリコーンゲル硬化物となり得ることを見出し、本発明をなすに至った。
 従って、本発明は、下記のシリコーンゲル組成物及びその硬化物(シリコーンゲル)を提供する。
〔1〕
 (A)下記平均組成式(1)
  Ra1 bSiO(4-a-b)/2     (1)
(式中、Rは独立にアルケニル基であり、R1は独立に脂肪族不飽和結合を含まない非置換又は置換の1価炭化水素基であり、aは0.0001~0.2の正数であり、bは1.7~2.2の正数であり、但しa+bは1.9~2.4である。)
で表される、一分子中にケイ素原子に結合したアルケニル基を少なくとも1個有するオルガノポリシロキサン:  100質量部、
(B)下記平均組成式(2)
  R2 cdSiO(4-c-d)/2     (2)
(式中、R2は独立に脂肪族不飽和結合を含まない非置換又は置換の1価炭化水素基であり、cは0.7~2.2の正数であり、dは0.001~0.5の正数であり、但しc+dは0.8~3である。)
で表される、一分子中にケイ素原子に結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン:  組成物全体中のケイ素原子に結合したアルケニル基1個あたり(B)成分中のケイ素原子に結合した水素原子が0.01~3個となる量、
(C)白金系触媒:  有効量、
(D)下記式(3)
  (R3COO)fM     (3)
(式中、R3は同一又は異種の1価炭化水素基であり、Mはニッケル及びニオブから選ばれる少なくとも1種の金属であり、fは、Mがニッケルの場合は2、Mがニオブの場合は4又は5である。)
で示されるニッケルのカルボン酸塩及び/又はニオブのカルボン酸塩:  組成物全体の質量に対し1~1,000ppm
を含有することを特徴とするシリコーンゲル組成物。
〔2〕
 硬化してJIS K2220で規定される針入度が10~150であるシリコーンゲル硬化物を与えるものである〔1〕記載のシリコーンゲル組成物。
〔3〕
 硬化して25℃、剪断周波数1Hz及び10Hzにおける損失係数がそれぞれ0.1~1.0及び0.3~1.5の範囲内であるシリコーンゲル硬化物を与えるものである〔1〕又は〔2〕記載のシリコーンゲル組成物。
〔4〕
 〔1〕~〔3〕のいずれかに記載のシリコーンゲル組成物を硬化してなるシリコーンゲル硬化物。
 本発明のシリコーンゲル組成物は、従来よりも高温での耐熱性に優れたシリコーンゲル硬化物を与えるものである。
 本発明のシリコーンゲル組成物は、下記の(A)~(D)成分を必須成分として含有してなるものである。なお、本発明において、シリコーンゲル硬化物(シリコーンゲル)とは、オルガノポリシロキサンを主成分とする架橋密度の非常に低い硬化物であって、JIS K2220(1/4コーン)による針入度が10~150のものを意味する。これは、JIS K6249によるゴム硬度測定では測定値(ゴム硬度値)が0となり、有効なゴム硬度値を示さない程低硬度(即ち、軟らか)であるものに相当し、この点において、いわゆるシリコーンゴム硬化物(ゴム状弾性体)とは別異のものである。
 以下、各成分について詳細に説明する。なお、本明細書において、粘度は25℃における値である。
〔(A)オルガノポリシロキサン〕
 本発明の(A)成分は、シリコーンゲル組成物の主剤(ベースポリマー)である。該(A)成分は、下記平均組成式(1)で表される、一分子中にケイ素原子に結合したアルケニル基(本明細書中において「ケイ素原子結合アルケニル基」という)を、平均して少なくとも1個有するオルガノポリシロキサンである。
  Ra1 bSiO(4-a-b)/2     (1)
(式中、Rは独立にアルケニル基であり、R1は独立に脂肪族不飽和結合を含まない非置換又は置換の1価炭化水素基であり、aは0.0001~0.2の正数であり、bは1.7~2.2の正数であり、但しa+bは1.9~2.4である。)
 上記式(1)中、Rは独立に、通常炭素原子数2~6、好ましくは2~4、より好ましくは2~3のアルケニル基である。その具体例としては、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基等が挙げられ、好ましくはビニル基である。R1は独立に脂肪族不飽和結合を含まない非置換又は置換の1価炭化水素基であり、その炭素原子数は、通常1~10、好ましくは1~6である。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、デシル基等のアルキル基;フェニル基、トリル基等のアリール基;ベンジル基、フェニルエチル基等のアラルキル基;これらの基の水素原子の一部又は全部を、塩素、臭素、フッ素等のハロゲン原子で置換したクロロメチル基、3,3,3-トリフルオロプロピル基等が挙げられる。中でも合成が容易であることから、メチル基、フェニル基又は3,3,3-トリフルオロプロピル基が好ましい。
 また、aは0.0001~0.2の正数であることが必要であり、好ましくは0.0005~0.1の正数である。bは1.7~2.2の正数であることが必要であり、好ましくは1.9~2.02の正数である。但し、a+bは1.9~2.4の範囲を満たすことが必要であり、好ましくは1.95~2.05の範囲である。
 (A)成分は、一分子中にケイ素原子結合アルケニル基を、(A)成分全体として平均して、少なくとも1個有することが必要であり、好ましくは2~50個、より好ましくは2~10個有する。このケイ素原子結合アルケニル基の条件を満たすように前記a及びbの値を選択すればよい。
 (A)成分のオルガノポリシロキサンの分子構造は特に限定されず、直鎖状であっても、例えば、RSiO3/2単位、R1SiO3/2単位(R、R1は上記と同じ)、SiO2単位等を含む分岐鎖状であってもよいが、下記一般式(1a):
Figure JPOXMLDOC01-appb-C000001
(式中、R5は独立に脂肪族不飽和結合を含まない非置換又は置換の1価炭化水素基であり、R6は独立に脂肪族不飽和結合を含まない非置換又は置換の1価炭化水素基又はアルケニル基であり、但し少なくとも1個、好ましくは2~50個、より好ましくは2~10個のR6はアルケニル基であり、分子鎖両末端のR6のいずれかがアルケニル基である場合には、kは40~1,200の整数であり、mは0~50の整数であり、nは0~50の整数であり、k+m+nは40~1,200の整数である。分子鎖両末端のR6のいずれもがアルケニル基でない場合には、kは40~1,200の整数であり、mは1~50の整数であり、nは0~50の整数であり、但しm+nは1以上の整数であり、k+m+nは40~1,200の整数である。)
で表されるオルガノポリシロキサン、即ち主鎖が基本的にジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状のジオルガノポリシロキサンであることが好ましい。
 上記式(1a)中、R5で表される脂肪族不飽和結合を含まない非置換又は置換の1価炭化水素基は、通常炭素原子数1~10、好ましくは1~6のものである。その具体例としては、R1で例示したものが挙げられる。中でも合成が容易であることや化学的安定性等の点から、メチル基、フェニル基又は3,3,3-トリフルオロプロピル基が好ましい。
 また、R6で表される基のうち、脂肪族不飽和結合を含まない非置換又は置換の1価炭化水素基は、通常炭素原子数1~10、好ましくは1~6のものである。その具体例としては、R1で例示したものが挙げられる。中でも合成が容易であることや化学的安定性等の点から、メチル基、フェニル基又は3,3,3-トリフルオロプロピル基が好ましい。R6で表される基のうち、アルケニル基としては、通常炭素原子数2~6、好ましくは2~4、より好ましくは2~3のものである。その具体例としては、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基等が挙げられ、好ましくはビニル基である。 
 上記式(1a)中、分子鎖両末端のR6のいずれかがアルケニル基である場合には、kは40~1,200の整数であり、mは0~50の整数であり、nは0~50の整数であり、k+m+nは40~1,200の整数である。好ましくは、kは100~1,000の整数であり、mは0~40の整数であり、nは0であり、k+m+nは100~1,000、特には100~600の整数である。また、分子鎖両末端のR6のいずれもアルケニル基でない場合には、kは40~1,200の整数であり、mは1~50の整数であり、nは0~50の整数であり、但しm+nは1以上の整数であり、k+m+nは40~1,200の整数である。好ましくは、kは98~1,000の整数であり、mは2~40の整数であり、nは0であり、k+m+nは100~1,000、特には100~600の整数である。なお、k+m+nで示されるジオルガノシロキサン単位の繰り返し数の合計(又は重合度)は、例えば、トルエン等を展開溶媒としてゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均重合度等として求めることができる。また、k、m、nの値は、(A)成分を製造する際の原料モノマー成分の配合比率から算出される対応する各繰り返し単位のモル比と、前記k+m+nの値(数平均重合度等)とから平均値等として算出することができる。
 上記式(1a)で表されるオルガノポリシロキサンとしては、例えば、両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・ジフェニルシロキサン共重合体、両末端ジメチルビニルシロキシ基封鎖メチルトリフルオロプロピルポリシロキサン、両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン共重合体、両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン・メチルビニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・ビニルメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・ビニルメチルシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖ビニルメチルシロキサン・メチルトリフルオロプロピルシロキサン共重合体、末端トリメチルシロキシ基・ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、末端トリメチルシロキシ基・ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、末端トリメチルシロキシ基・ジメチルビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、末端トリメチルシロキシ基・ジメチルビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン・メチルビニルシロキサン共重合体、末端トリメチルシロキシ基・ジメチルビニルシロキシ基封鎖メチルトリフルオロプロピルポリシロキサン、末端トリメチルシロキシ基・ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン共重合体、末端トリメチルシロキシ基・ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン・メチルビニルシロキサン共重合体、両末端メチルジビニルシロキシ基封鎖ジメチルポリシロキサン、両末端メチルジビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、両末端メチルジビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、両末端メチルジビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・ジフェニルシロキサン共重合体、両末端メチルジビニルシロキシ基封鎖メチルトリフルオロプロピルポリシロキサン、両末端メチルジビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン共重合体、両末端メチルジビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン・メチルビニルシロキサン共重合体、両末端トリビニルシロキシ基封鎖ジメチルポリシロキサン、両末端トリビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、両末端トリビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、両末端トリビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・ジフェニルシロキサン共重合体、両末端トリビニルシロキシ基封鎖メチルトリフルオロプロピルポリシロキサン、両末端トリビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン共重合体、両末端トリビニルシロキシ基封鎖ジメチルシロキサン・メチルトリフルオロプロピルシロキサン・メチルビニルシロキサン共重合体等が挙げられる。
 (A)成分のオルガノポリシロキサンの粘度は特に限定されないが、組成物の取扱作業性、得られる硬化物の強度、及び流動性が良好となる点から、25℃における粘度が50~100,000mPa・sであることが好ましく、100~10,000mPa・sであることがより好ましい。なお、粘度は、回転粘度計(例えば、BL型、BH型、BS型、コーンプレート型、レオメータ等)により測定することができる(以下、同じ)。
 (A)成分のオルガノポリシロキサンは、(A)成分全体として一分子中にケイ素原子結合アルケニル基を平均して少なくとも1個有するという条件を満足する限りにおいて、1種単独で用いても2種以上を組み合わせて用いてもよい。例えば、本発明においては、一分子中、特には分子鎖両末端にケイ素原子に結合したアルケニル基を2個有するオルガノポリシロキサンと、一分子中、特には分子鎖片末端にケイ素原子に結合したアルケニル基を1個有するオルガノポリシロキサン又は1個未満有するオルガノポリシロキサン(例えば、平均重合度や重合度分布が同一で、分子鎖片末端にケイ素原子に結合したアルケニル基を1個有するオルガノポリシロキサンと分子中にアルケニル基を含有しないオルガノポリシロキサンとの均一な混合物等)とを、100:0~40:60、特には100:0~60:40程度の質量割合で混合して用いることが、組成物の硬化性が良好で、かつ柔軟な(針入度の大きい)シリコーンゲル硬化物を安定的に得ることができる点から好ましい。
〔(B)オルガノハイドロジェンポリシロキサン〕
 次に、本発明の(B)成分は、上記(A)成分と反応し、架橋剤(硬化剤)として作用するものである。該(B)成分は、下記平均組成式(2)
  R2 cdSiO(4-c-d)/2     (2)
(式中、R2は独立に脂肪族不飽和結合を含まない非置換又は置換の1価炭化水素基であり、cは0.7~2.2の正数であり、dは0.001~0.5の正数であり、但しc+dは0.8~3である。)
で表される、一分子中にケイ素原子に結合した水素原子(本明細書中において「ケイ素原子結合水素原子」、「SiH基」という)を少なくとも2個有するオルガノハイドロジェンポリシロキサンである。このオルガノハイドロジェンポリシロキサンが一分子中に有するケイ素原子結合水素原子の数は、通常、2~500個、好ましくは3~300個、より好ましくは5~100個、特に好ましくは10~80個である。このSiH基は分子鎖末端のケイ素原子に結合するものであっても、分子鎖非末端(分子鎖途中)のケイ素原子に結合するものであってもいずれでもよく、これらの両者であってもよい。
 上記式(2)中、R2は独立に脂肪族不飽和結合を含まない非置換又は置換の1価炭化水素基であり、その炭素原子数は、通常1~10、好ましくは1~6である。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、へキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの基の水素原子の一部又は全部を、塩素、臭素、フッ素等のハロゲン原子で置換した3,3,3-トリフルオロプロピル基等が挙げられる。中でも好ましくはアルキル基、アリール基、3,3,3-トリフルオロプロピル基であり、より好ましくはメチル基、フェニル基、3,3,3-トリフルオロプロピル基である。
 また、cは0.7~2.2の正数であり、1.0~2.1の正数であることが好ましい。dは0.001~0.5の正数であり、0.005~0.1の正数であることが好ましい。また、c+dは0.8~3であり、1.0~2.7であることが好ましく、1.5~2.5であることがより好ましい。
 (B)成分のオルガノハイドロジェンポリシロキサンの分子構造は特に制限されず、直鎖状、環状、分岐鎖状、三次元網状(樹脂状)構造のいずれであってもよく、また、一分子中のケイ素原子の数(即ち、重合度)は、通常、2~1,000個であるが、組成物の取扱作業性及び得られる硬化物の特性(低弾性率、低応力)が良好となる点から、好ましくは4~500個、より好ましくは10~100個である。なお、重合度(又は分子量)は、例えば、トルエン等を展開溶媒としてゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めることができる。
 上記式(2)で表されるオルガノハイドロジェンポリシロキサンとしては、例えば、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、メチルハイドロジェンシロキサン環状重合体、トリス(ジメチルハイドロジェンシロキシ)メチルシラン、トリス(ジメチルハイドロジェンシロキシ)フェニルシラン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェン・ジメチルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェン・ジフェニルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェン・ジメチルシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体等が挙げられる。
 (B)成分のオルガノハイドロジェンポリシロキサンは、1種単独で用いても2種以上を組み合わせて用いてもよい。本発明においては、分子鎖途中(側鎖)にケイ素原子に結合した水素原子を2個以上、特には3個以上有するオルガノハイドロジェンポリシロキサンと、分子鎖両末端にケイ素原子に結合した水素原子を2個(だけ)有するオルガノハイドロジェンポリシロキサンとを、100:0~5:95、特には100:0~8:92程度の質量割合で混合して用いることが、組成物の硬化性が良好で、かつ柔軟な(針入度の大きい)シリコーンゲル硬化物を安定的に得ることができる点から好ましい。
 (B)成分の添加量は、組成物全体(特には、上記(A)成分)中のケイ素原子に結合したアルケニル基1個に対して(B)成分中のケイ素原子に結合した水素原子(SiH基)が0.01~3個、好ましくは0.05~2個、より好ましくは0.2~1.5個となる量である。(B)成分のケイ素原子に結合した水素原子が、組成物全体中のアルケニル基1個に対して、0.01個より少なくなると、ゲル硬化物が得られなくなる。また、3個より多い場合は、ゲル硬化物の耐熱性が低下する。
〔(C)白金系触媒〕
 本発明の(C)成分は、前記(A)成分のケイ素原子結合アルケニル基と前記(B)成分中のケイ素原子結合水素原子とのヒドロシリル化付加反応を促進させるための触媒として使用されるものである。該(C)成分は白金系触媒(白金又は白金系化合物)であり、公知のものを使用することができる。その具体例としては、白金ブラック、塩化白金酸、塩化白金酸等のアルコール変性物;塩化白金酸とオレフィン、アルデヒド、ビニルシロキサン又はアセチレンアルコール類等との錯体などの白金系触媒等が好適に例示される。
 (C)成分の配合量は有効量でよく、所望の硬化速度により適宜増減することができるが、通常、(A)成分及び(B)成分の合計質量に対して、白金原子の質量換算で、通常0.1~1,000ppm、好ましくは1~300ppmの範囲である。この配合量が多すぎると得られる硬化物の耐熱性が低下する場合がある。
〔(D)ニッケルのカルボン酸塩及び/又はニオブのカルボン酸塩〕
 本発明の(D)成分は、下記式(3)で示されるニッケルのカルボン酸塩及び/又はニオブのカルボン酸塩であり、本発明のシリコーンゲル組成物に優れた耐熱性を付与するための必須成分である。
  (R3COO)fM     (3)
(式中、R3は同一又は異種の1価炭化水素基であり、Mはニッケル及びニオブから選ばれる少なくとも1種の金属であり、fは、Mがニッケルの場合は2、Mがニオブの場合は4又は5である。)
 上記式(3)中、R3は同一又は異種の好ましくは炭素原子数1~20、より好ましくは1~18の1価炭化水素基であり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ヘプタデシル基、オクタデシル基等のアルキル基;ビニル基、アリル基、プロペニル基、(Z)-8-ヘプタデセニル基等のアルケニル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの基の水素原子の一部又は全部を、塩素、臭素、フッ素等のハロゲン原子で置換したクロロメチル基、3,3,3-トリフルオロプロピル基等が挙げられ、その中でも特にオクチル基、2-エチルヘキシル基が好ましい。
 上記ニッケルのカルボン酸塩及び/又はニオブのカルボン酸塩として、具体的には、2-エチルヘキサン酸、ナフテン酸、オレイン酸、ラウリン酸、ステアリン酸などのニッケル化合物及び/又はニオブ化合物が例示できる。
 上記式(3)中、金属の価数を示すfの値は、Mがニッケルの場合は2、Mがニオブの場合は4又は5であり、ニオブの場合、より好ましいfは4である。
 (D)成分のニッケルのカルボン酸塩及び/又はニオブのカルボン酸塩の含有量は、組成物全体(特には、(A)~(D)成分の合計)の質量に対し1~1,000ppm、好ましくは100~800ppm、より好ましくは200~500ppmとなる量である。ニッケルのカルボン酸塩及び/又はニオブのカルボン酸塩の含有量が1ppm未満の場合、高温での耐熱性向上の効果が見られず、逆に1,000ppmを超えた場合、絶縁性が大幅に低下したり、硬化性が低下したりする。
〔その他の任意成分〕
 本発明のシリコーンゲル組成物には、上記(A)~(D)成分以外にも、本発明の目的を損なわない範囲で任意成分を配合することができる。この任意成分としては、例えば、反応抑制剤、無機質充填剤、ケイ素原子結合水素原子及びケイ素原子結合アルケニル基を含有しないオルガノポリシロキサン、上記(D)成分以外の耐熱性付与剤、難燃性付与剤、チクソ性付与剤、顔料、染料等が挙げられる。
 反応抑制剤は、上記組成物の反応を抑制するための成分であって、具体的には、例えば、アセチレン系、アミン系、カルボン酸エステル系、亜リン酸エステル系等の反応抑制剤が挙げられる。
 無機質充填剤としては、例えば、ヒュームドシリカ、結晶性シリカ、沈降性シリカ、中空フィラー、シルセスキオキサン、ヒュームド二酸化チタン、酸化マグネシウム、酸化亜鉛、酸化鉄、水酸化アルミニウム、炭酸マグネシウム、炭酸カルシウム、炭酸亜鉛、層状マイカ、カーボンブラック、ケイ藻土、ガラス繊維等の無機質充填剤;これらの充填剤をオルガノアルコキシシラン化合物、オルガノクロロシラン化合物、オルガノシラザン化合物、低分子量シロキサン化合物等の有機ケイ素化合物で表面疎水化処理した充填剤等が挙げられる。また、シリコーンゴムパウダー、シリコーンレジンパウダー等を配合してもよい。
〔シリコーンゲル組成物の硬化〕
 本発明のシリコーンゲル組成物は、上記(A)~(D)成分(任意成分が配合される場合には、任意成分も含む)を常法に準じて混合することにより調製することができる。その際に、混合される成分を必要に応じて2パート又はそれ以上のパートに分割して混合してもよく、例えば、(A)成分の一部及び(C)、(D)成分からなるパートと、(A)成分の残部及び(B)成分からなるパートとに分割して混合することも可能である。
 その後、本発明のシリコーンゲル組成物を常温(25℃±10℃)もしくは用途に応じた加熱温度条件下(例えば、35~130℃、特には50~110℃程度)で、30~120分、特には40~60分程度硬化させることによりシリコーンゲル硬化物が得られる。
 本発明のシリコーンゲル組成物は、電気・電子部品の封止もしくは充填に用いることが好適である。
 本発明のシリコーンゲル組成物の硬化物(シリコーンゲル又はシリコーンゲル硬化物)は、JIS K2220で規定される1/4コーンによる針入度が10~150であることが好ましく、より好ましくは20~100、更に好ましくは30~80である。針入度が10未満になると、シリコーンゲル組成物が硬化する際の応力に耐えきれず、電子回路の一部が破断したり、シリコーンゲル内部にクラックが生成したりする場合がある。また、針入度が150を超えると、十分な形状保持能力を持ったシリコーンゲル硬化物が得られず、充填、硬化したシリコーンゲルが回路から流出する場合がある。
 また、本発明のシリコーンゲル硬化物は、25℃、剪断周波数1Hzにおける損失係数が、好ましくは0.1~1.0、より好ましくは0.12~0.8、更に好ましくは0.5~0.8であり、25℃、剪断周波数10Hzにおける損失係数が、好ましくは0.3~1.5、より好ましくは0.35~1.2、更に好ましくは0.4~1.0である。25℃、剪断周波数1Hzにおける損失係数が0.1未満となると、シリコーンゲル組成物が硬化する際の応力に耐えきれず、電子回路の一部が破断したり、シリコーンゲル内部にクラックが生成したりする場合がある。また、25℃、剪断周波数10Hzにおける損失係数が1.5を超えると、十分な形状保持能力を持ったシリコーンゲル硬化物が得られず、充填、硬化したシリコーンゲルが回路から流出する場合がある。
 以下、実施例及び比較例により本発明を具体的に説明するが、下記の実施例は本発明を何ら制限するものではない。なお、実施例中、「部」は「質量部」を表し、「%」は「質量%」を表し、「Vi」は「ビニル基」を表す。また、針入度は、JIS K2220で規定される1/4コーンによる針入度であり、離合社製自動針入度計RPM-101を用いて測定した。重合度(又は各繰り返し単位数)は、トルエンを展開溶媒としたGPC分析におけるポリスチレン換算の数平均重合度から算出したものである。
[実施例1]
 下記平均分子式(4)
Figure JPOXMLDOC01-appb-C000002
で示される25℃での粘度が1,000mPa・sの両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体を60部、下記平均分子式(5)
Figure JPOXMLDOC01-appb-C000003
で示され、25℃での粘度が700mPa・sの末端トリメチルシロキシ基・ジメチルビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体を40部、下記平均分子式(6)
Figure JPOXMLDOC01-appb-C000004
で示され、25℃での粘度が100mPa・sの両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体を0.55部、下記平均分子式(7)
Figure JPOXMLDOC01-appb-C000005
で示され、25℃での粘度が18mPa・sの両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサンを5.6部(このとき、組成物中のケイ素原子結合アルケニル基1個あたりの(B)成分中のケイ素原子結合水素原子の個数(以下、H/Viという)は1.15であった。)、及び白金原子を1%含有する塩化白金酸ビニルシロキサン錯体のジメチルポリシロキサン溶液を0.05部、エチニルシクロヘキサノールを0.02部、及び2-エチルヘキサン酸ニッケルを0.05部(組成物全体の質量に対し約500ppm)均一に混合したシリコーンゲル組成物(組成物1)を得た。得られた組成物1を80℃で60分間加熱硬化したところ、針入度45のシリコーンゲル硬化物を得た。 
[実施例2]
 実施例1において、2-エチルヘキサン酸ニッケルを0.05部用いる代わりに、2-エチルヘキサン酸ニオブを0.01部(組成物全体の質量に対し約100ppm)用いる以外は同様にして、組成物2を得た。この組成物2を80℃で60分間加熱硬化したところ、針入度50のシリコーンゲル硬化物を得た。
[比較例1]
 実施例1において、2-エチルヘキサン酸ニッケル0.05部を用いない以外は同様にして、組成物3(ニッケルのカルボン酸塩及び/又はニオブのカルボン酸塩含有量0ppm)を得た。この組成物を80℃で60分間加熱硬化したところ、針入度40のシリコーンゲル硬化物を得た。
[比較例2]
 実施例1において、2-エチルヘキサン酸ニッケルを0.05部用いる代わりに、鉄を主成分とする2-エチルヘキサン酸塩溶液(鉄元素含有量8%)を0.15部添加する以外は同様にして、組成物4(組成物全体の質量に対する鉄含有量120ppm)を得た。この組成物を80℃で60分間加熱硬化したところ、針入度40のシリコーンゲル硬化物を得た。
[比較例3]
 実施例1において、2-エチルヘキサン酸ニッケルを0.15部(組成物全体の質量に対し約1,500ppm)用いる以外は同様にして、組成物5を得た。この組成物5を80℃で60分間加熱硬化したところ、針入度80のシリコーンゲル硬化物を得た。
[比較例4]
 実施例2において、2-エチルヘキサン酸ニオブを0.15部(組成物全体の質量に対し約1,500ppm)用いる以外は同様にして、組成物6を得た。この組成物6を80℃で60分間加熱硬化したところ、針入度90のシリコーンゲル硬化物を得た。
[試験]
 上記実施例1,2及び比較例1~4で得られたシリコーンゲル硬化物を用いて、以下の試験を実施した。これらの結果を表1に示す。
体積抵抗率の評価:
 JIS K6249に記載される方法で、上記実施例及び比較例で得られたシリコーンゲル硬化物の体積抵抗率を測定した。
損失係数の評価:
 上記実施例及び比較例で得られた各シリコーンゲル組成物について、UBM社製RheoGelE4000にて、スリット剪断法にて80℃において60分間加熱して硬化させた。得られたシリコーンゲル硬化物を25℃に冷却後、1Hz及び10Hzでの損失係数を測定した。 
耐熱性の評価:
 上記実施例及び比較例で得られた各シリコーンゲル硬化物について、215℃×1,000時間、250℃×200時間の耐熱試験後の針入度を測定し、150を超える場合は不合格とした。また併せて215℃×1,000時間、250℃×200時間後のクラックの有無を目視にて評価した。
Figure JPOXMLDOC01-appb-T000006
[評価]
 実施例1,2の組成物は、本発明の要件を満たすものであり、良好なゴム特性を有するシリコーンゲル硬化物が得られ、215℃あるいは250℃の長期耐熱下でも針入度の低下は見られず、クラック等の異常な外観も見られず、安定性が確認された。
 これに対し、比較例1,2の組成物は、いずれも本発明の(D)成分を含まない、すなわち本発明の必須成分であるニッケルのカルボン酸塩及び/又はニオブのカルボン酸塩の含有要件を満たさないものであり、耐熱性が低下したり、絶縁性が大幅に低下することがわかる。また、比較例3,4の組成物は、いずれも本発明の(D)成分含有量が多いもの、すなわちニッケルのカルボン酸塩及び/又はニオブのカルボン酸塩含有量が本発明の要件を満たさないものであり、耐熱試験により軟化劣化が顕著に確認されることや絶縁性が低下することがわかる。
 本発明のシリコーンゲル組成物を硬化することにより得られるシリコーンゲル硬化物は、200℃の雰囲気下に長期間保持してもシリコーンゲル硬化物の特徴である低弾性率かつ低応力を維持することができるため、ICやハイブリッドIC等の電子部品の保護用途で長期耐久性の向上が期待される。

Claims (4)

  1.  (A)下記平均組成式(1)
      Ra1 bSiO(4-a-b)/2     (1)
    (式中、Rは独立にアルケニル基であり、R1は独立に脂肪族不飽和結合を含まない非置換又は置換の1価炭化水素基であり、aは0.0001~0.2の正数であり、bは1.7~2.2の正数であり、但しa+bは1.9~2.4である。)
    で表される、一分子中にケイ素原子に結合したアルケニル基を少なくとも1個有するオルガノポリシロキサン:  100質量部、
    (B)下記平均組成式(2)
      R2 cdSiO(4-c-d)/2     (2)
    (式中、R2は独立に脂肪族不飽和結合を含まない非置換又は置換の1価炭化水素基であり、cは0.7~2.2の正数であり、dは0.001~0.5の正数であり、但しc+dは0.8~3である。)
    で表される、一分子中にケイ素原子に結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン:  組成物全体中のケイ素原子に結合したアルケニル基1個あたり(B)成分中のケイ素原子に結合した水素原子が0.01~3個となる量、
    (C)白金系触媒:  有効量、
    (D)下記式(3)
      (R3COO)fM     (3)
    (式中、R3は同一又は異種の1価炭化水素基であり、Mはニッケル及びニオブから選ばれる少なくとも1種の金属であり、fは、Mがニッケルの場合は2、Mがニオブの場合は4又は5である。)
    で示されるニッケルのカルボン酸塩及び/又はニオブのカルボン酸塩:  組成物全体の質量に対し1~1,000ppm
    を含有することを特徴とするシリコーンゲル組成物。
  2.  硬化してJIS K2220で規定される針入度が10~150であるシリコーンゲル硬化物を与えるものである請求項1記載のシリコーンゲル組成物。
  3.  硬化して25℃、剪断周波数1Hz及び10Hzにおける損失係数がそれぞれ0.1~1.0及び0.3~1.5の範囲内であるシリコーンゲル硬化物を与えるものである請求項1又は2記載のシリコーンゲル組成物。
  4.  請求項1~3のいずれか1項記載のシリコーンゲル組成物を硬化してなるシリコーンゲル硬化物。
PCT/JP2016/065141 2015-07-24 2016-05-23 シリコーンゲル組成物及びシリコーンゲル硬化物 WO2017018033A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16830138.0A EP3327087B1 (en) 2015-07-24 2016-05-23 Silicone gel composition and silicone gel cured product
US15/746,509 US10662331B2 (en) 2015-07-24 2016-05-23 Silicone gel composition and silicone gel cured product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015146609A JP6409704B2 (ja) 2015-07-24 2015-07-24 シリコーンゲル組成物及びシリコーンゲル硬化物
JP2015-146609 2015-07-24

Publications (1)

Publication Number Publication Date
WO2017018033A1 true WO2017018033A1 (ja) 2017-02-02

Family

ID=57885181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065141 WO2017018033A1 (ja) 2015-07-24 2016-05-23 シリコーンゲル組成物及びシリコーンゲル硬化物

Country Status (4)

Country Link
US (1) US10662331B2 (ja)
EP (1) EP3327087B1 (ja)
JP (1) JP6409704B2 (ja)
WO (1) WO2017018033A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3725849B1 (en) 2017-12-15 2022-07-06 Shin-Etsu Chemical Co., Ltd. Room temperature moisture-curable silicone gel composition, and cured product and article therefrom
CN113677750B (zh) * 2019-04-01 2023-05-26 信越化学工业株式会社 自粘接性有机硅凝胶组合物和由其固化物构成的有机硅凝胶
CN112225853B (zh) * 2020-10-13 2022-12-23 广州市白云化工实业有限公司 一种高耐热硅凝胶及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865751A (ja) * 1981-10-14 1983-04-19 Shin Etsu Chem Co Ltd 耐燃性シリコ−ンゴム組成物
GB2403723A (en) * 2003-07-01 2005-01-12 Dow Corning Silicone room temperature vulcanizing (RTV) mould making composition with improved mould release characteristics
WO2015033979A1 (ja) * 2013-09-03 2015-03-12 東レ・ダウコーニング株式会社 硬化性シリコーン組成物、その硬化物、および光半導体装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2445567A (en) * 1948-07-20 Stabilizing organo-substituted
US2455567A (en) 1946-11-14 1948-12-07 Rowe Ind Microphone pickup and volume control
US4528313A (en) 1984-06-15 1985-07-09 Dow Corning Corporation Polydimethylsiloxanes having improved thermal stability
JP2008291148A (ja) 2007-05-25 2008-12-04 Shin Etsu Chem Co Ltd 耐熱性に優れたシリコーンゲル組成物
JP5962599B2 (ja) 2013-06-26 2016-08-03 信越化学工業株式会社 耐熱性に優れたシリコーンゲル組成物
EP3041903B1 (en) 2013-09-03 2017-08-16 Dow Corning Toray Co., Ltd. Silicone gel composition and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865751A (ja) * 1981-10-14 1983-04-19 Shin Etsu Chem Co Ltd 耐燃性シリコ−ンゴム組成物
GB2403723A (en) * 2003-07-01 2005-01-12 Dow Corning Silicone room temperature vulcanizing (RTV) mould making composition with improved mould release characteristics
WO2015033979A1 (ja) * 2013-09-03 2015-03-12 東レ・ダウコーニング株式会社 硬化性シリコーン組成物、その硬化物、および光半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3327087A4 *

Also Published As

Publication number Publication date
US10662331B2 (en) 2020-05-26
JP2017025232A (ja) 2017-02-02
EP3327087B1 (en) 2019-11-20
US20180201786A1 (en) 2018-07-19
EP3327087A1 (en) 2018-05-30
JP6409704B2 (ja) 2018-10-24
EP3327087A4 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
JP5983566B2 (ja) 付加硬化性液状シリコーンゴム組成物及びシリコーンゴム硬化物
US7829648B2 (en) Silicone gel composition
JP5594232B2 (ja) 硬化性シリコーンゲル組成物
JP5168732B2 (ja) 変位耐久性を有する硬化物を与えるシリコーンゲル組成物
JP6658428B2 (ja) シリコーンゲル組成物及びその硬化物並びにパワーモジュール
JP2008291148A (ja) 耐熱性に優れたシリコーンゲル組成物
JP5962599B2 (ja) 耐熱性に優れたシリコーンゲル組成物
EP1605020B1 (en) Curable organopolysiloxane composition
JP2005344106A (ja) シリコーンゲル組成物
JP6023894B2 (ja) シリコーンゲル組成物及びシリコーンゲル硬化物
JP6409704B2 (ja) シリコーンゲル組成物及びシリコーンゲル硬化物
JP2019001885A (ja) 自己接着性シリコーンゲル組成物及びその硬化物
JP6699569B2 (ja) 自己接着性シリコーンゲル組成物及びその硬化物、並びに封止方法及び充填方法
CN114174436B (zh) 单组分型固化性有机硅凝胶组合物和有机硅凝胶固化物
JP4439802B2 (ja) 難燃性液状シリコーンゴム組成物
JP6287907B2 (ja) 積層体の製造方法及び該方法に用いる硬化性シリコーンゲル組成物
WO2017094357A1 (ja) 自己接着性シリコーンゲル組成物及びシリコーンゲル
JP5913153B2 (ja) オルガノハイドロジェンポリシロキサンの合成方法、該オルガノハイドロジェンポリシロキサンを用いた硬化性シリコーンゲル組成物及びシリコーンゲル
JP2000169714A (ja) 硬化性シリコーン組成物
JP6520851B2 (ja) シリコーンゲル組成物
JP6245119B2 (ja) シリコーンゴム組成物及びシリコーンゴム硬化物の引裂き強度を向上させる方法
JP7152219B2 (ja) シリコーンゲル組成物、シリコーンゲル組成物の製造方法及びシリコーンゲル硬化物
JP6156256B2 (ja) 難燃性シリコーンゲル組成物及びその製造方法並びに半導体装置
EP1717274B1 (en) Silicone gel composition
JP7004936B2 (ja) シリコーンゲル組成物及びその硬化物並びにパワーモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830138

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15746509

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE