WO2017017933A1 - 高強度熱延鋼板およびその製造方法 - Google Patents

高強度熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2017017933A1
WO2017017933A1 PCT/JP2016/003396 JP2016003396W WO2017017933A1 WO 2017017933 A1 WO2017017933 A1 WO 2017017933A1 JP 2016003396 W JP2016003396 W JP 2016003396W WO 2017017933 A1 WO2017017933 A1 WO 2017017933A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
phase
steel sheet
rolled steel
hot
Prior art date
Application number
PCT/JP2016/003396
Other languages
English (en)
French (fr)
Inventor
山崎 和彦
俊介 豊田
永明 森安
健太郎 入佐
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US15/747,583 priority Critical patent/US11578375B2/en
Priority to KR1020187001646A priority patent/KR102090884B1/ko
Priority to CN202310183510.6A priority patent/CN116162857A/zh
Priority to MX2018001082A priority patent/MX2018001082A/es
Priority to CN201680044137.4A priority patent/CN107849663A/zh
Priority to JP2016567062A priority patent/JP6252692B2/ja
Priority to EP16830039.0A priority patent/EP3296415B1/en
Publication of WO2017017933A1 publication Critical patent/WO2017017933A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength hot-rolled steel sheet having a tensile strength TS of 980 MPa or more, and a method for producing the same, which are suitable as structural members of automobiles, suspension members such as skeleton members and suspensions, and truck frame parts.
  • high-strength hot-rolled steel sheets having a predetermined strength are increasing year by year as materials for automobile parts.
  • a high-strength hot-rolled steel sheet having a tensile strength TS of 980 MPa or more is highly expected as a material that can dramatically improve the fuel efficiency of automobiles.
  • Patent Document 1 includes, in mass%, C: 0.01% or more and 0.10% or less, Si: 2.0% or less, Mn: 0.5% or more and 2.5% or less, and V: 0.01% or more and 0.30% or less, Nb: One or more of 0.01% to 0.30%, Ti: 0.01% to 0.30%, Mo: 0.01% to 0.30%, Zr: 0.01% to 0.30%, W: 0.01% to 0.30%
  • Patent Document 1 a steel material having the above composition is heated and subjected to hot rolling at a finish rolling temperature of 800 ° C. or higher and 1050 ° C. or lower, and then a temperature range (500 where bainite transformation and precipitation occur simultaneously. From the range of °C to 600 °C) at a rate of 20 °C / s or more, winding at 500 to 550 °C, and holding at a cooling rate of 5 °C / hr or less (including 0 °C / hr) for 20 hours or more.
  • a method for producing a hot-rolled steel sheet having a structure has been proposed.
  • the steel sheet structure is a bainite-based structure
  • the bainite is precipitation strengthened with carbides such as V, Ti, and Nb, and the precipitate size is appropriately controlled (moderately coarsened).
  • Patent Document 2 in mass%, C: 0.01 to 0.20%, Si: 1.5% or less, Al: 1.5% or less, Mn: 0.5 to 3.5%, P: 0.2% or less, S: 0.0005 to 0.009% , N: 0.009% or less, Mg: 0.0006-0.01%, O: 0.005% or less, and Ti: 0.01-0.20%, Nb: 0.01-0.10%, one or two of them, the balance being iron and inevitable impurities Therefore, it is said that a high strength thin steel sheet excellent in hole expansibility and ductility with a tensile strength of 980 N / mm 2 or more in which the steel structure satisfying all of the following three formulas is mainly bainite phase is obtained.
  • Patent Document 4 in mass%, C: 0.05 to 0.15%, Si: 0.2 to 1.2%, Mn: 1.0 to 2.0%, P: 0.04% or less, S: 0.005% or less, Ti: 0.05 to 0.15%, A hot-rolled steel sheet having a composition containing Al: 0.005 to 0.10%, N: 0.007% or less, having a solid solution Ti content of 0.02% or more, and a bainite phase single phase with an average grain size of 5 ⁇ m or less has been proposed. Yes.
  • the tensile strength TS is 780 MPa or more and the tensile strength TS is 780 MPa or more by making the structure of the steel sheet a fine single-phase structure of a bainite phase and further making 0.02% or more of solid solution Ti present. It is said that a high-strength hot-rolled steel sheet excellent in flangeability and fatigue resistance can be obtained.
  • Patent Document 5 in mass%, C: 0.01 to 0.07%, N: 0.005% or less, S: 0.005% or less, Ti: 0.03 to 0.2%, B: 0.0002 High-strength hot-rolled steel sheet with excellent punchability, having a composition containing up to 0.002% and a structure in which ferrite or bainitic ferrite is the main phase and the hard second phase and cementite are 3% or less in area ratio Has been proposed.
  • defects in the punched end face can be prevented by maintaining B in a solid solution state.
  • JP 2009-84737 A Japanese Patent Laid-Open No. 2005-120437 JP 2002-180190 A JP 2012-12701 A JP 2004-315857 A
  • the steel sheet in order to deposit nanometer-size precipitates in the bainite phase, the steel sheet is wound at 500 to 550 ° C. and kept at a cooling rate of 5 ° C./h for 20 hours or more. Needs to be processed.
  • the hot-rolled steel sheet manufactured by this technique has a problem that excellent punchability cannot be obtained.
  • the hot-rolled steel sheet after finish rolling is air-cooled at an air cooling start temperature of 650 to 750 ° C. Produces a precipitation strengthened ferrite structure.
  • the hot-rolled steel sheet manufactured by this technique cannot obtain excellent punchability.
  • Patent Document 3 has a ferrite-bainite dual-phase structure containing 80% or more of ferrite having a grain size of 2 ⁇ m or more, so the steel sheet strength obtained is up to about 976 MPa, and the tensile strength TS: 980 MPa or more. It is difficult to further increase the strength. Moreover, even if a high-strength steel sheet having a tensile strength TS of 980 MPa or more is obtained, excellent punchability cannot be obtained.
  • Patent Document 5 strengthens a steel sheet by precipitation strengthening of ferrite or bainitic ferrite, and the steel sheet strength obtained is about 833 MPa.
  • precipitation strengthening elements such as Ti, V, Nb, and Mo.
  • a steel sheet having a tensile strength TS: 980 MPa or more and excellent punchability cannot be obtained.
  • the present invention solves the problems of the prior art, maintains a high strength of tensile strength TS: 980 MPa or more, and further has a high strength hot rolled steel sheet having excellent punchability and hole expansibility, and a method for producing the same The purpose is to provide.
  • the present inventors have intensively studied to improve the punchability and hole-expandability of a hot-rolled steel sheet while maintaining a high strength of tensile strength TS: 980 MPa or more.
  • the average aspect ratio of the prior austenite grains after completion of finish rolling and the area ratio of the prior austenite grains recrystallized after finish rolling are controlled, with the bainite phase as the main phase and martensite or the second phase structure.
  • the hole expandability is significantly improved while maintaining the high tensile strength TS of 980 MPa or more.
  • Obtained knowledge Moreover, the knowledge that the punchability is remarkably improved by controlling the precipitation amount of precipitates having a diameter of 20 nm or less precipitated in the hot-rolled steel sheet was newly obtained.
  • the bainite phase referred to here has a lath-like bainitic ferrite and Fe-based carbides between the bainitic ferrite and / or inside the bainitic ferrite (within the bainitic ferrite grains). It means the structure (including the case where there is no precipitation of Fe-based carbide). Unlike polygonal ferrite, bainitic ferrite has a lath shape and has a relatively high dislocation density inside the lath, so both use SEM (scanning electron microscope) and TEM (transmission electron microscope). Are distinguishable. Further, since the martensite or martensite-austenite mixed phase has a brighter SEM contrast than the bainite phase and polygonal ferrite, these can also be distinguished using SEM.
  • B is segregated to the prior austenite grain boundaries by adding B, and it is assumed that the ferrite transformation is suppressed by lowering the grain boundary energy, and the hole expandability is improved by forming a homogeneous bainite structure. .
  • “Punchability” as used herein refers to taking a blank plate of about 50 mm ⁇ 50 mm, punching a 20 mm ⁇ hole using a 20 mm ⁇ punch with a clearance of 20% ⁇ 2%. It is evaluated by observing the fracture surface condition of the punched hole fracture surface (also referred to as a punched end surface). In addition, “good punching” means that a blank plate of about 50mm ⁇ 50mm is collected and punched by punching a 20mm ⁇ hole using a 20mm ⁇ punch with a clearance of 20% ⁇ 2%. When observing the fracture surface condition of a hole fracture surface (also referred to as a punched end surface), it means that there is no crack, chip, brittle fracture surface, or secondary shear surface.
  • the present inventors conducted further research, and required the composition and finish rolling necessary to improve punchability and hole expansibility while maintaining a high tensile strength of TS: 980 MPa or higher.
  • the average aspect ratio of the prior austenite grains after completion, the area ratio of the former austenite grains recrystallized after finishing rolling, the area ratio and grain size of the martensite phase or martensite-austenite mixed phase, and precipitation in the hot-rolled steel sheet The amount of precipitates having a diameter of less than 20 nm was examined.
  • the Si content is 0.2% or more by mass%
  • the B content is 0.0005% or more by mass%
  • the average aspect ratio of the prior austenite grains after finishing rolling is 1.3 or more and 5.0 or less
  • the finish The area ratio of prior austenite grains recrystallized after completion of rolling is 15% or less
  • the area ratio of martensite phase or martensite-austenite mixed phase is 15% or less
  • the average of martensite phase or martensite-austenite mixed phase It has been found that it is important that the grain size is 3.0 ⁇ m or less and the precipitates having a diameter of less than 20 nm deposited in the hot-rolled steel sheet are 0.10% by mass or less.
  • the present invention has been completed on the basis of such findings and further studies. That is, the gist of the present invention is as follows.
  • the composition further contains one or two selected from Cu: 0.01% to 0.30% and Ni: 0.01% to 0.30% by mass% [1] or [ 2] A high-strength hot-rolled steel sheet according to item 2.
  • [5] A method for producing a high-strength hot-rolled steel sheet described in any one of [1] to [4] above, wherein the steel material is heated to 1150 ° C. or higher, and the finish rolling start temperature is 1000 ° C. More than 1200 ° C., finish rolling is finished at a finish rolling temperature of 830 ° C. to 950 ° C., cooling is started within 2.0 s after finishing the finish rolling of the hot rolling, 30 ° C./s or more
  • a method for producing a high-strength hot-rolled steel sheet that is cooled to a cooling stop temperature of 300 ° C. or higher and 530 ° C. or lower at an average cooling rate and wound at the cooling stop temperature.
  • the precipitate having a diameter of less than 20 nm refers to a precipitate having a size that can pass through a filter having a pore diameter of 20 nm, which will be described later.
  • a high-strength hot-rolled steel sheet having a tensile strength TS of 980 MPa or more and excellent in punchability and hole expansibility can be obtained. Moreover, such a high-strength hot-rolled steel sheet can be manufactured stably, and there is a remarkable industrial effect. If the high-strength hot-rolled steel sheet of the present invention is applied to a structural member, a skeleton member, or a truck frame member of an automobile, the weight of the vehicle body can be reduced while ensuring the safety of the automobile, and the environmental load is reduced. There is also an effect that becomes possible.
  • the present invention is extremely useful in industry.
  • the high-strength hot-rolled steel sheet of the present invention is, in mass%, C: 0.04% to 0.18%, Si: 0.2% to 2.0%, Mn: 1.0% to 3.0%, P: 0.03% or less, S: 0.005 % Or less, Al: 0.005% or more and 0.100% or less, N: 0.010% or less, Ti: 0.02% or more and 0.15% or less, Cr: 0.10% or more and 1.00% or less, B: 0.0005% or more and 0.0050% or less, remaining Fe and inevitable It has a composition consisting of impurities, the bainite phase with an area ratio of 85% or more is the main phase, the martensite phase or martensite-austenite mixed phase with an area ratio of 15% or less is the second phase, and the remainder is the ferrite phase
  • the average particle size of the second phase is 3.0 ⁇ m or less
  • the average aspect ratio of the prior austenite grains is 1.3 or more and 5.0 or less
  • % showing the following component composition shall mean the mass% unless there is particular notice.
  • C 0.04% or more and 0.18% or less C is an element that promotes the formation of bainite by improving the strength of the hot-rolled steel sheet and improving the hardenability. Therefore, in the present invention, the C content needs to be 0.04% or more. On the other hand, if the C content exceeds 0.18%, it becomes difficult to control the formation of bainite, the generation of martensite phase or martensite-austenite mixed phase increases, and both the punchability and hole-expandability of hot-rolled steel sheets, or Either one drops. Therefore, the C content is set to 0.04% or more and 0.18% or less. Preferably, the C content is 0.04% or more. Preferably, the C content is 0.16% or less. More preferably, the C content is 0.04% or more. More preferably, the C content is 0.14% or less. More preferably, it is 0.05% or more. More preferably, the C content is less than 0.12%.
  • Si 0.2% or more and 2.0% or less Si is an element that contributes to solid solution strengthening, and also improves the dislocation density of the bainite phase by lowering the stacking fault energy and contributes to improving the strength of the hot-rolled steel sheet. .
  • the Si content needs to be 0.2% or more.
  • Si is an element that suppresses the formation of carbides. By suppressing the formation of carbides during the bainite transformation, a fine martensite phase or a martensite-austenite mixed phase is formed at the lath interface of the bainite phase.
  • the martensite phase or martensite-austenite mixed phase present in the bainite phase is sufficiently fine and does not deteriorate the hole expansion property of the hot-rolled steel sheet.
  • Si is an element that promotes the formation of ferrite.
  • the Si content exceeds 2.0%, ferrite is generated, and the hole expandability of the hot-rolled steel sheet deteriorates. Therefore, the Si content is 2.0% or less.
  • the Si content is 0.3% or more.
  • the Si content is 1.8% or less. More preferably, the Si content is 0.4% or more. More preferably, the Si content is 1.6% or less.
  • Mn 1.0% or more and 3.0% or less Mn contributes to increase the strength of the hot-rolled steel sheet by solid solution, promotes the formation of bainite by improving the hardenability, and improves the hole expanding property.
  • the Mn content needs to be 1.0% or more.
  • the Mn content is 1.3% or more.
  • the Mn content is 2.5% or less. More preferably, the Mn content is 1.5% or more. More preferably, the Mn content is 2.2% or less.
  • P 0.03% or less
  • P is an element that contributes to increasing the strength of the hot-rolled steel sheet by solid solution. However, it is also an element that segregates at the grain boundaries, particularly the prior austenite grain boundaries, and causes a decrease in workability. For this reason, although it is preferable to make P content as low as possible, the content of P up to 0.03% is acceptable. Therefore, the P content is 0.03% or less. However, since an effect commensurate with the increase in the refining cost cannot be obtained even if P is excessively reduced, the P content is preferably 0.003% or more and 0.03% or less. More preferably, the P content is 0.005% or more. More preferably, the P content is 0.02% or less.
  • S 0.005% or less S combines with Ti and Mn to form coarse sulfides, and decreases the punchability of hot-rolled steel sheets. Therefore, it is preferable to reduce the S content as much as possible, but it is acceptable to contain up to 0.005%. Therefore, the S content is 0.005% or less. A preferable S content for punchability is 0.004% or less. However, since an effect commensurate with the increase in the refining cost cannot be obtained even if S is excessively reduced, the S content is preferably 0.0003% or more.
  • Al acts as a deoxidizer and is an element effective for improving the cleanliness of steel. If Al is less than 0.005%, the effect is not always sufficient. On the other hand, excessive addition of Al leads to an increase in oxide inclusions, which lowers the punchability of the hot-rolled steel sheet and causes wrinkles. Therefore, the Al content is 0.005% or more and 0.100% or less. Preferably, the Al content is 0.01% or more. Preferably, the Al content is 0.08% or less. More preferably, the Al content is 0.02% or more. More preferably, the Al content is 0.06% or less.
  • N 0.010% or less N is precipitated as a nitride by combining with a nitride-forming element and contributes to refinement of crystal grains.
  • N tends to bond to Ti at a high temperature to form coarse nitrides, thereby reducing the punchability of the hot-rolled steel sheet.
  • N content shall be 0.010% or less.
  • the N content is 0.008% or less. More preferably, the N content is 0.006% or less.
  • Ti 0.02% or more and 0.15% or less Ti forms nitrides in the high temperature range of the austenite phase (high temperature range in the austenite phase and high temperature range (casting stage) in the austenite phase). Therefore, the precipitation of BN is suppressed, and the hardenability necessary for the formation of bainite can be obtained when B is in a solid solution state, thereby improving the strength and hole expansibility of the hot-rolled steel sheet. Moreover, it has the effect of suppressing the recrystallization of prior austenite grains by forming carbides during hot rolling, and enables finish rolling in the non-recrystallization temperature range. In order to express these effects, the Ti content needs to be 0.02% or more.
  • the Ti content is set to 0.02% or more and 0.15% or less.
  • the Ti content is 0.025% or more.
  • the Ti content is 0.13% or less. More preferably, the Ti content is 0.03% or more. More preferably, the Ti content is 0.12% or less.
  • Cr 0.10% or more and 1.00% or less Cr forms carbides and contributes to increasing the strength of hot-rolled steel sheets, promotes the formation of bainite by improving hardenability, and promotes precipitation of Fe-based carbides in bainite grains. Element.
  • the Cr content is set to 0.10% or more.
  • the Cr content is 0.15% or more. More preferably, the Cr content is 0.20% or more.
  • the Cr content is 0.85% or less. More preferably, the Cr content is 0.75% or less. More preferably, the Cr content is 0.65% or less.
  • B 0.0005% or more and 0.0050% or less B is an element that segregates in the prior austenite grain boundaries, suppresses the formation and growth of ferrite, and contributes to the improvement of the strength and hole expansibility of the hot-rolled steel sheet.
  • the B content is set to 0.0005% or more.
  • the B content is 0.0006% or more.
  • the B content is 0.0040% or less. More preferably, the B content is 0.0007% or more. More preferably, the B content is in the range of 0.0030% or less.
  • the balance other than the above is Fe and inevitable impurities.
  • Inevitable impurities include Sn, Zn, etc., and these contents are acceptable if Sn: 0.1% or less and Zn: 0.01% or less.
  • the above are the basic components of the hot-rolled steel sheet of the present invention.
  • the hot-rolled steel sheet of the present invention is, for example, Nb: 0.005% or more and 0.050% or less, V: One or more selected from 0.05% to 0.30% and Mo: 0.05% to 0.30% can be contained.
  • Nb 0.005% or more and 0.050% or less
  • Nb has an effect of suppressing carbide recrystallization of austenite by forming carbide during hot rolling, and contributes to improving the strength of the hot rolled steel sheet.
  • the Nb content needs to be 0.005% or more.
  • the Nb content exceeds 0.050%, the recrystallization temperature of the prior austenite grains becomes too high, and the aspect ratio of the austenite grains after completion of finish rolling exceeds 5.0, which may deteriorate the punchability. Therefore, when Nb is contained, the Nb content is set to 0.005% or more and 0.050% or less.
  • the Nb content is 0.010% or more.
  • the Nb content is 0.045% or less. More preferably, the Nb content is 0.015% or more. More preferably, the Nb content is 0.040% or less.
  • V 0.05% or more and 0.30% or less
  • V has an effect of forming carbonitride during hot rolling to suppress recrystallization of austenite, and contributes to improving the strength of the hot rolled steel sheet.
  • the V content needs to be 0.05% or more.
  • the V content is 0.05% or more and 0.30% or less.
  • the V content is 0.07% or more.
  • the V content is 0.28% or less. More preferably, the V content is 0.10% or more. More preferably, the V content is 0.25% or less.
  • Mo 0.05% or more and 0.30% or less Mo promotes the formation of a bainite phase through improvement of hardenability and contributes to the improvement of the strength and hole expansion of the hot-rolled steel sheet.
  • the Mo content is preferably 0.05% or more.
  • the Mo content is set to 0.05% or more and 0.30% or less.
  • the Mo content is 0.10% or more.
  • the Mo content is 0.25% or less.
  • the hot-rolled steel sheet of the present invention can contain one or two selected from Cu: 0.01% to 0.30% and Ni: 0.01% to 0.30% as necessary.
  • Cu 0.01% or more and 0.30% or less
  • Cu is an element that contributes to increasing the strength of the hot-rolled steel sheet by solid solution. Moreover, Cu promotes the formation of a bainite phase through improvement of hardenability, and contributes to improvement of strength and hole expandability.
  • the Cu content is preferably set to 0.01% or more. However, if the content exceeds 0.30%, the surface properties of the hot-rolled steel sheet may be deteriorated. Therefore, when it contains Cu, Cu content shall be 0.01% or more and 0.30% or less.
  • the Cu content is 0.02% or more.
  • the Cu content is 0.20% or less.
  • Ni 0.01% or more and 0.30% or less
  • Ni is an element that contributes to increasing the strength of the hot-rolled steel sheet by solid solution. Ni also promotes the formation of a bainite phase through improved hardenability and contributes to improved strength and hole expandability.
  • the Ni content is preferably 0.01% or more. However, if the Ni content exceeds 0.30%, a martensite phase or a martensite-austenite mixed phase is likely to be formed, and either the punching property and / or the hole expanding property of the hot-rolled steel sheet may be reduced. is there. Therefore, when Ni is contained, the Ni content is set to 0.01% or more and 0.30% or less. Preferably, the Ni content is 0.02% or more. Preferably, the Ni content is 0.20% or less.
  • the hot-rolled steel sheet of the present invention is one or two selected from Sb: 0.0002% or more and 0.020% or less, Ca: 0.0002% or more and 0.0050% or less, and REM: 0.0002% or more and 0.010% or less as necessary.
  • Sb 0.0002% or more and 0.020% or less
  • Ca 0.0002% or more and 0.0050% or less
  • REM 0.0002% or more and 0.010% or less as necessary.
  • Sb 0.0002% or more and 0.020% or less
  • Sb has an effect of suppressing nitriding of the slab surface in the slab heating stage, and as a result, precipitation of BN in the surface portion of the slab is suppressed.
  • the presence of the solid solution B can provide the hardenability necessary for the generation of bainite even in the surface layer portion of the hot-rolled steel sheet, thereby improving the strength and hole-expandability of the hot-rolled steel sheet.
  • the amount needs to be 0.0002% or more.
  • Sb content exceeds 0.020%, the rolling load may increase and productivity may be reduced. Therefore, when it contains Sb, Sb content shall be 0.0002% or more and 0.020% or less.
  • Ca controls the shape of sulfide inclusions and is effective in improving the punchability of hot-rolled steel sheets.
  • the Ca content is preferably 0.0002% or more.
  • the Ca content shall be 0.0002% or more and 0.0050% or less.
  • the Ca content is 0.0004% or more.
  • the Ca content is 0.0030% or less.
  • REM 0.0002% or more and 0.010% or less REM, like Ca, controls the shape of sulfide inclusions and reduces the adverse effects of sulfide inclusions on the punchability of hot-rolled steel sheets.
  • the REM content is preferably 0.0002% or more.
  • REM content shall be 0.0002% or more and 0.010% or less.
  • the REM content is 0.0004% or more.
  • the REM content is 0.0050% or less.
  • the high-strength hot-rolled steel sheet of the present invention has an average aspect ratio of old austenite grains after finish rolling of 1.3 or more and 5.0 or less, and the area ratio of recrystallized old austenite grains is larger than that of non-recrystallized old austenite grains. Less than 15%.
  • the main phase is a bainite phase having an area ratio of 85% or more in the steel sheet, the martensite or martensite-austenite mixed phase having an area ratio of 15% or less as the second phase, and the average of the second phase
  • the grain size is 3.0 ⁇ m or less
  • the remainder has a structure composed of a ferrite phase, and precipitates with a diameter of less than 20 nm deposited in the hot-rolled steel sheet are 0.10% by mass or less
  • the tensile strength TS A high-strength hot-rolled steel sheet excellent in punchability and hole expansibility, characterized by being 980 MPa or more.
  • the second phase may be 0% in area ratio.
  • the ferrite phase may also be 0%.
  • Average aspect ratio of prior austenite grains 1.3 or more and 5.0 or less Old austenite grains are austenite grains formed during heating of a steel material. The grain boundaries of the prior austenite grains formed at the time of completion of finish rolling remain without disappearing in the subsequent cooling and winding processes.
  • the high-strength hot-rolled steel sheet of the present invention has an average aspect ratio of prior austenite grains of 1.3 or more and 5.0 or less when finish rolling is completed.
  • the average aspect ratio of the prior austenite grains needs to be 1.3 or more.
  • the average aspect ratio of the prior austenite grains exceeds 5.0, separation occurs on the punched end face after the punching process, and the punchability decreases. Therefore, the average aspect ratio of the prior austenite grains is 1.3 or more and 5.0 or less.
  • the average aspect ratio of the prior austenite grains is 1.4 or more. More preferably, the average aspect ratio of the prior austenite grains is 4.0 or less. More preferably, the average aspect ratio of the prior austenite grains is 1.5 or more. More preferably, the average aspect ratio of the prior austenite grains is 3.5 or less.
  • the average aspect ratio of the prior austenite grains is adjusted by adjusting the content of C, Ti, Nb, V, adjusting the finish rolling start temperature, adjusting the finish rolling completion temperature, and adjusting the cooling between the finish rolling stands. It can be controlled to 5.0 or less.
  • Ratio of recrystallized prior austenite grains to unrecrystallized prior austenite grains 15% or less in area ratio Of the prior austenite grains, those recrystallized from the completion of finish rolling to the completion of winding are designated as recrystallized prior austenite grains.
  • the non-recrystallized prior austenite grains are those that have not been recrystallized.
  • the old austenite grains recrystallized after finishing rolling is made 15% or less in area ratio.
  • the diffusion and segregation of B to the prior austenite grain boundaries will not be in time, the desired hardenability will not be achieved and the strength will decrease, and the unrecrystallized old austenite grains and recrystallize. Since the difference in hardness is generated in the prior austenite grains, the hole expandability is also lowered.
  • the area ratio of recrystallized prior austenite grains is preferably 0%, but it is acceptable if the recrystallized prior austenite grains are 15% or less in terms of area ratio. Therefore, the area ratio of recrystallized prior austenite is set to 15% or less. Preferably, the area ratio of recrystallized prior austenite is 13% or less, more preferably 10% or less, and even more preferably 5% or less.
  • the high-strength hot-rolled steel sheet of the present invention has a bainite phase as a main phase.
  • the bainite phase means a lath-like bainitic ferrite and a structure having Fe-based carbides between and / or inside the bainitic ferrite (including a case where there is no precipitation of Fe-based carbides).
  • bainitic ferrite has a lath shape and a relatively high dislocation density inside, so it can be easily used with SEM (scanning electron microscope) or TEM (transmission electron microscope). Can be distinguished.
  • Tensile strength TS To achieve a strength of 980 MPa or more and to improve hole expansion, the bainite phase must be the main phase. If the area ratio of the bainite phase is 85% or more, the tensile strength TS: 980 MPa It can combine the above and excellent hole-expandability. Therefore, the area ratio of the bainite phase is set to 85% or more.
  • the area ratio of the bainite phase is preferably 90% or more, more preferably 95% or more.
  • the martensite phase or martensite-austenite mixed phase is 15% or less in terms of area ratio as the second phase structure and the average particle size of the structure is 3.0 ⁇ m or less, the phase interface during the hole expansion test Macro stress concentration does not occur and excellent hole expandability is obtained. Therefore, the area ratio of the martensite or martensite-austenite mixed phase is set to 15% or less, and the average particle size of the structure is set to 3.0 ⁇ m or less.
  • the area ratio of the martensite or martensite-austenite mixed phase is 10% or less, and the average particle size of the structure is 2.0 ⁇ m or less.
  • the area ratio of the martensite or martensite-austenite mixed phase is 3% or less, and the average particle size of the structure is 1.0 ⁇ m or less.
  • a ferrite phase can be contained as a structure other than the bainite phase as the main phase and the martensite phase or the martensite-austenite mixed phase as the second phase.
  • Precipitates with a diameter of less than 20 nm 0.10% or less by mass%
  • Precipitates with a diameter of less than 20 nm deposited in the high-strength hot-rolled steel sheet of the present invention are made 0.10% or less by mass%.
  • the precipitate having a diameter of less than 20 nm is 0.08% or less by mass%, more preferably 0.07% or less.
  • the precipitate of less than 20 nm in diameter it can be controlled by adjusting the content of Ti, Nb, Mo, V, and Cu, adjusting the finish rolling completion temperature, and adjusting the coiling temperature.
  • the aspect ratio of the prior austenite grains after completion of the above finish rolling the area ratio of the prior austenite grains recrystallized after completion of the finish rolling, the bainite phase, the martensite phase or the martensite-austenite mixed phase, the area ratio of the ferrite phase, and the diameter
  • the mass of the precipitate of less than 20 nm can be measured by the method described in the examples described later.
  • the steel material having the above composition is heated to 1150 ° C or higher and then subjected to rough rolling, and the finish rolling start temperature is 1000 ° C to 1200 ° C, and the finish rolling completion temperature is 830 ° C to 950 ° C.
  • finishing cooling within 2.0 s after finishing the hot rolling finish cooling to a cooling stop temperature of 300 ° C. or more and 530 ° C. or less at an average cooling rate of 30 ° C./s or more
  • the manufacturing method of the steel material is not particularly limited, and any conventional method in which the molten steel having the above-described composition is melted in a converter or the like and is made into a steel material such as a slab by a casting method such as continuous casting. Is also applicable. Note that an ingot-making / bundling method may be used.
  • Heating temperature of steel material 1150 ° C or higher
  • steel materials such as slabs
  • most of carbonitride-forming elements such as Ti are present as coarse carbonitrides.
  • the presence of this coarse and non-uniform precipitate causes deterioration of various properties (for example, strength, punchability, etc.) of the hot-rolled steel sheet. Therefore, the steel material before hot rolling is heated to dissolve coarse precipitates.
  • the heating temperature of the steel material needs to be 1150 ° C. or higher.
  • the heating temperature of the steel material becomes too high, slab flaws are generated and the yield is reduced due to scale-off, so the heating temperature of the steel material is preferably 1350 ° C. or lower.
  • the heating temperature of the steel material is 1180 ° C. or higher. More preferably, the heating temperature of the steel material is 1300 ° C. or lower. More preferably, the heating temperature of the steel material is 1200 ° C. or higher. More preferably, the heating temperature of the steel material is 1280 ° C. or less.
  • the steel material is heated to a heating temperature of 1150 ° C or higher and held for a predetermined time, but if the holding time exceeds 9000 seconds, the amount of scale generated increases, resulting in scale biting in the subsequent hot rolling process.
  • the surface quality of the hot-rolled steel sheet tends to deteriorate. Therefore, the holding time of the steel material in the temperature range of 1150 ° C. or higher is preferably 9000 seconds or less. More preferably, the holding time of the steel material in the temperature range of 1150 ° C. or higher is 7200 seconds or less.
  • the steel material holding time in the temperature range of 1150 ° C. or higher is preferably 1800 seconds or longer in view of the uniformity of slab heating.
  • finish rolling is performed. Note that descaling is preferably performed before finish rolling or during rolling between stands. Moreover, you may cool a steel plate between stands as needed.
  • the finish rolling start temperature is 1000 ° C. or more and 1200 ° C. or less
  • the finish rolling completion temperature is 830 ° C. or more and 950 ° C. or less.
  • Finish rolling start temperature 1000 ° C or more and 1200 ° C or less If the finish rolling start temperature exceeds 1200 ° C, the amount of scale generated increases and scale biting is likely to occur, so the surface quality of hot-rolled steel tends to deteriorate. It is in. In addition, when the finish rolling start temperature is less than 1000 ° C., the prior austenite grains cannot be recrystallized during finish rolling, and the average aspect ratio of the prior austenite grains after finish rolling may exceed 5.0, The punchability may be deteriorated. Therefore, the finish rolling start temperature is set to 1000 ° C. or more and 1200 ° C. or less. Preferably, the finish rolling start temperature is 1020 ° C. or higher.
  • the finishing rolling start temperature is 1160 ° C. More preferably, the finish rolling start temperature is 1050 ° C. or higher. More preferably, the finish rolling start temperature is 1140 ° C. or lower.
  • the finish rolling start temperature represents the surface temperature of the plate.
  • Finish rolling completion temperature 830 ° C or more and 950 ° C or less
  • the finish rolling completion temperature is less than 830 ° C
  • the rolling is performed at the two-phase region temperature of ferrite + austenite, so the desired bainite phase fraction cannot be obtained.
  • the hole expandability of the rolled steel sheet decreases. Further, since the amount of reduction with respect to the prior austenite grains in the non-recrystallization temperature region increases, the average aspect ratio of the prior austenite grains after completion of finish rolling may exceed 5.0, and the punchability may be deteriorated.
  • the finish rolling completion temperature is set to 830 ° C. or more and 950 ° C. or less.
  • the finish rolling completion temperature is 850 ° C. or higher.
  • the finish rolling completion temperature is 940 ° C. or lower. More preferably, the finish rolling completion temperature is 870 ° C. or higher. More preferably, the finish rolling completion temperature is 930 ° C. or lower.
  • the finish rolling completion temperature represents the surface temperature of the plate.
  • Average cooling rate 30 ° C / s or more
  • the average cooling rate is set to 30 ° C./s or more.
  • the average cooling rate is 35 ° C./s or higher.
  • the upper limit of the average cooling rate is not particularly specified, but if the average cooling rate is too large, the surface temperature becomes too low, and martensite is likely to be generated on the steel sheet surface, and the desired hole expandability may not be obtained. For this reason, the average cooling rate is preferably 120 ° C./s or less.
  • an average cooling rate be the average cooling rate in the surface of a steel plate.
  • Winding temperature (cooling stop temperature): 300 ° C or higher and 530 ° C or lower
  • the lower the winding temperature (cooling stop temperature) the more the bainite transformation is promoted and the area ratio of the bainite phase is increased, but the winding temperature is less than 300 ° C.
  • martensitic transformation occurs to form a coarse martensite phase, and the desired hole expandability cannot be obtained.
  • the coiling temperature exceeds 530 ° C., the driving force for bainite transformation is insufficient, and the bainite transformation is not completed. Therefore, since it is kept isothermally in the state of bainite and untransformed austenite, carbon is distributed to untransformed austenite.
  • the coiling temperature is set to 300 ° C or higher and 530 ° C or lower.
  • the winding temperature is 330 ° C. or higher.
  • the winding temperature is 510 ° C. or lower. More preferably, the coiling temperature is 350 ° C. or higher.
  • the winding temperature is 480 ° C. or lower.
  • electromagnetic stirring EMS
  • IBSR light pressure casting
  • an equiaxed crystal can be formed at the center of the plate thickness, and segregation can be reduced.
  • segregation at the central portion of the plate thickness can be reduced by preventing the flow of molten steel in the unsolidified portion of the continuous cast slab.
  • temper rolling may be performed according to a conventional method, or the scale formed on the surface may be removed by pickling.
  • plating treatment such as hot dip galvanization and electrogalvanization, and chemical conversion treatment may be performed.
  • Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab (steel material) by a continuous casting method.
  • EMS electromagnetic stirring
  • these steel materials were heated under the conditions shown in Table 2 and subjected to hot rolling consisting of rough rolling and finish rolling under the conditions shown in Table 2.
  • the cooling start time (the time from the end of finish rolling to the start of cooling (forced cooling)) and average cooling rate (average cooling rate from finish rolling completion temperature to winding temperature) after completion of finish rolling ), And rolled up at a winding temperature under the conditions shown in Table 2 to obtain a hot-rolled steel plate having a thickness shown in Table 2.
  • inter-stand cooling was performed for those marked with ⁇ .
  • Test specimens were collected from the hot-rolled steel sheet obtained as described above, and subjected to structure observation, precipitation determination, tensile test, hole expansion test, and punching test.
  • the tissue observation method and various test methods are as follows.
  • Aspect ratio of old austenite grains (former ⁇ grains) after finish rolling and area ratio of recrystallized grains Samples for optical microscope were taken from hot-rolled steel sheets, and after polishing the plate thickness sections parallel to the rolling direction, An old austenite structure was revealed with an aqueous solution containing picric acid, a surfactant, and oxalic acid), and five fields of view were photographed at 400 ⁇ magnification using an optical microscope at a thickness of 1/4.
  • a value obtained by arithmetically averaging the aspect ratios of the obtained prior austenite grains was defined as the average aspect ratio.
  • the prior austenite grains having an aspect ratio of 1.00 to 1.05 were designated as recrystallized prior austenite grains, and the prior austenite grains having an aspect ratio exceeding 1.05 were designated as non-recrystallized prior austenite grains.
  • the areas of recrystallized prior austenite grains and non-recrystallized prior austenite grains were determined, respectively, and the area ratio of recrystallized prior austenite grains to non-recrystallized prior austenite grains was determined.
  • the area ratio of the recrystallized prior austenite grains to the unrecrystallized prior austenite grains can be determined by electron beam reflection diffraction (Electron Back Scatter Diffraction Patterns: EBSD) using SEM. Asked. A specimen was collected from the hot-rolled steel sheet, and finish-polished using a colloidal silica solution with a cross section parallel to the rolling direction as the observation surface. After that, using an EBSD measurement device, measure the area of 500 ⁇ m ⁇ 500 ⁇ m at an electron beam acceleration voltage of 20kV and a measurement interval of 0.2 ⁇ m at three positions at a thickness of 1/4, and reconstruct old austenite grains using the rotation matrix method. did.
  • the aspect ratio was measured by approximating the reconstructed prior austenite grains to an ellipse. Old austenite grains having an aspect ratio of 1.00 to 1.05 were designated as recrystallized prior austenite grains, and prior austenite grains having an aspect ratio exceeding 1.05 were designated as non-recrystallized prior austenite grains. The areas of the recrystallized prior austenite grains and the unrecrystallized prior austenite grains were determined, respectively, and the area ratio of the recrystallized prior austenite grains to the unrecrystallized prior austenite grains was determined.
  • the weight of the precipitate having a diameter of less than 20 nm was measured and divided by the electrolytic weight, thereby obtaining the mass% of the precipitate having a diameter of less than 20 nm.
  • the electrolysis weight was calculated
  • the hot-rolled steel sheet manufactured within the scope of the present invention had a tensile strength of 980 MPa or more, and was excellent in punchability and hole expandability.
  • steel plate No. 4 the cooling start time after finishing rolling was over 2.0 s, and the tensile strength TS was less than 980 MPa.
  • Steel plate No. 5 has a finish rolling temperature of less than 830 ° C, an average aspect ratio of prior austenite grains of over 5.0, and an area ratio of bainite phase of less than 85%. And punchability could not be obtained.
  • Steel plate No. 6 has a finish rolling temperature exceeding 950 ° C., the area ratio of the recrystallized prior austenite grains exceeds 15%, and the area ratio of the bainite phase is less than 85%.
  • the tensile strength TS was less than 980 MPa, and excellent hole expandability could not be obtained.
  • Steel plate No. 7 had an average cooling rate of less than 30 ° C./s and an area ratio of the bainite phase of less than 85%, so that excellent hole expandability could not be obtained.
  • steel plate No. No. 11 has a coiling temperature (cooling stop temperature) of less than 300 ° C, an area ratio of the bainite phase of less than 85%, an area ratio of the martensite phase of more than 15%, and an average particle diameter of the martensite phase Was over 3.0 ⁇ m, it was not possible to obtain excellent hole expandability.
  • Steel plate No. In No. 13 the finish rolling start temperature was less than 1000 ° C., and the average aspect ratio of the recrystallized prior austenite grains exceeded 5.0, so excellent punchability could not be obtained.
  • Steel plate No. 23 has a coiling temperature (cooling stop temperature) of over 530 ° C., an average particle size of the martensite phase of over 3.0 ⁇ m, and precipitates with a diameter of less than 20 nm of 0.10% by mass. As a result, it was not possible to obtain excellent hole expandability and punchability.
  • Steel plate No. No. 33 had an Mn content of less than 1.0% by mass and an area ratio of the bainite phase of less than 85%. Therefore, the tensile strength TS was less than 980 MPa, and excellent hole expandability could not be obtained.
  • Steel plate No. 34 has a C content of more than 0.18% by mass, an area ratio of bainite phase of less than 85%, and an area ratio of martensite of more than 15%. could not get.
  • Steel plate No. In No. 35 since the Si content was less than 0.2% by mass, the tensile strength TS was less than 980 MPa, and excellent hole expandability could not be obtained.
  • Steel plate No. 36 had a B content of less than 0.0005% by mass and an area ratio of the bainite phase of less than 85%, so that excellent hole expandability could not be obtained.
  • Steel plate No. 37 has a Ti content of less than 0.02 mass%, an average aspect ratio of prior austenite grains of less than 1.3, an area ratio of recrystallized prior austenite grains of more than 15%, and a bainite phase. Since the area ratio was less than 85%, the tensile strength TS was less than 980 MPa, and excellent hole expandability could not be obtained.
  • Steel plate No. 38 had a Ti content of more than 0.15% by mass and an average aspect ratio of prior austenite grains of more than 5.0, so that excellent punchability could not be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

優れた打抜き性と穴広げ性を有する引張強さTS:980MPa以上の高強度熱延鋼板およびその製造方法を提供すること。 成分組成として、C、Si、Mn、P、S、Al、N、Ti、Cr、Bを特定量とし、面積率で85%以上のベイナイト相を主相とし、面積率で15%以下のマルテンサイト相またはマルテンサイト-オーステナイト混合相を第2相とし、残部がフェライト相からなり、第2相の平均粒径が3.0μm以下であり、さらに旧オーステナイト粒の平均アスペクト比が1.3以上5.0以下、未再結晶旧オーステナイト粒に対する再結晶旧オーステナイト粒の面積率が15%以下である組織を有し、直径20nm未満の析出物が質量%で0.10%以下である高強度熱延鋼板。

Description

高強度熱延鋼板およびその製造方法
 本発明は、自動車の構造部材、骨格部材やサスペンションなどの足回り部材、トラックフレーム部品として好適な、引張強さTSが980MPa以上の高強度熱延鋼板およびその製造方法に関する。
 近年、地球環境の保全の観点から、自動車排ガス規制が強化されている。そのため、自動車の燃費向上が重要な課題となっている。そして、使用する材料の一層の高強度化および薄肉化が要求されている。これに伴い、自動車部品の素材として、高強度熱延鋼板が積極的に適用されるようになっている。この高強度熱延鋼板の利用は、自動車の構造部材や骨格部材だけでなく、足回り部材やトラックフレーム部品等に対しても行われている。
 以上のように、所定の強度を備えた高強度熱延鋼板は、自動車部品の素材として年々需要が高まっている。特に、引張強さTS:980MPa以上の高強度熱延鋼板は、自動車の燃費を飛躍的に向上し得る素材として大いに期待されている。
 一方で、特に、打抜き加工とバーリング加工が多い自動車の足回り部品として、優れた打抜き性と穴広げ性を兼備した鋼板が求められている。しかしながら、鋼板の高強度化に伴い、一般的には、打抜き性や穴広げ性が低下する。そこで、優れた打抜き性と穴広げ性をも有する高強度熱延鋼板を得るべく、種々の検討がなされている。
 例えば、特許文献1には、質量%で、C:0.01%以上0.10%以下、Si:2.0%以下、Mn:0.5%以上2.5%以下を含み、更にV:0.01%以上0.30%以下、Nb:0.01%以上0.30%以下、Ti:0.01%以上0.30%以下、Mo:0.01%以上0.30%以下、Zr:0.01%以上0.30%以下、W:0.01%以上0.30%以下の1種又は2種以上を合計で0.5%以下含む組成とし、ベイナイト分率80%以上であり、析出物の平均粒径r(nm)がr≧207÷{27.4X(V)+23.5X(Nb)+31.4X(Ti)+17.6X(Mo)+25.5X(Zr)+23.5X(W)}(X(M)(M:V、Nb、Ti、Mo、Zr、W)は析出物を構成する各元素の平均原子量比であり、X(M)=(Mの質量%/Mの原子量)/(V/51+Nb/93+Ti/48+Mo/96+Zr/91+W/184)を満たし、平均粒径rと析出物分率fがr/f≦12000を満たす組織とした熱延鋼板が提案されている。
 また、特許文献1には、上記組成を有する鋼素材を、加熱し、仕上げ圧延温度を800℃以上1050℃以下とする熱間圧延を施したのち、ベイナイト変態と析出が同時に起こる温度域(500℃から600℃の範囲)まで20℃/s以上で急冷し、500~550℃で巻き取り後、冷却速度5℃/hr以下(0℃/hrを含む)で20hr以上保持することにより、上記組織を有する熱延鋼板を製造する方法が提案されている。そして、特許文献1に提案された技術では、鋼板組織をベイナイト主体組織とし、ベイナイトをV、Ti、Nb等の炭化物により析出強化し、更に析出物サイズを適切に制御(適度に粗大化)することで、伸びフランジ性と疲労特性に優れた高強度熱延鋼板が得られるとしている。
 また、特許文献2には、質量%で、C:0.01~0.20%、Si:1.5%以下、Al:1.5%以下、Mn:0.5~3.5%、P:0.2%以下、S:0.0005~0.009%、N:0.009%以下、Mg:0.0006~0.01%、O:0.005%以下、およびTi:0.01~0.20%、Nb:0.01~0.10%の1種または2種含有し、残部が鉄および不可避的不純物で、下記3式の全てを満たす鋼組織がベイナイト相を主体とする引張強度980N/mm2以上の穴広げ性と延性に優れた高強度薄鋼板が得られるとしている。
[Mg%]≧([O%]/16×0.8)×24・・・(1)
[S%]≦([Mg%]/24-[O%]/16×0.8+0.00012)×32・・・(2)
[S%]≦0.0075/[Mn%]・・・(3)
 特許文献3には、質量%で、C:0.01~0.08%、Si:0.30~1.50%、Mn:0.50~2.50%、P≦0.03%、S≦0.005%、及びTi:0.01~0.20%、Nb:0.01~0.04%の1種または2種を含む組成とし、粒径2μm以上のフェライトの割合が80%以上であるフェライト・ベイナイト二相組織とした熱延鋼板が提案されている。そして、特許文献3に提案された技術では、フェライト・ベイナイト二相組織とし、更にフェライト結晶粒を2μm以上の粒径とすることで、穴広げ性を劣化させることなく延性を改善することが可能となり、強度が690N/mm2以上であり且つ穴広げ性と延性に優れた高強度熱延鋼板が得られるとしている。
 特許文献4には、質量%で、C:0.05~0.15%、Si:0.2~1.2%、Mn:1.0~2.0%、P:0.04%以下、S:0.005%以下、Ti:0.05~0.15%、Al:0.005~0.10%、N:0.007%以下を含み、固溶Tiが0.02%以上である組成とし、平均粒径が5μm以下のベイナイト相単相からなる組織とした熱延鋼板が提案されている。そして、特許文献4に提案された技術では、鋼板の組織を微細なベイナイト相の単相組織とし、更に固溶Tiを0.02%以上存在させることで、引張強さTSが780MPa以上であり、伸びフランジ性および耐疲労特性に優れた高強度熱延鋼板が得られるとしている。
 また、打抜き性の向上については、例えば、特許文献5には、質量%で、C:0.01~0.07%、N:0.005%以下、S:0.005%以下、Ti:0.03~0.2%、B:0.0002~0.002%を含む組成と、フェライト又はベイニティックフェライトを主相とし、硬質第二相及びセメンタイトが面積率で3%以下である組織とを有し、打抜き性に優れた高強度熱延鋼板が提案されている。特許文献5に記載された技術では、Bを固溶状態に保持することにより、打抜き端面の欠陥が防止できるとしている。
特開2009-84637号公報 特開2005-120437号公報 特開2002-180190号公報 特開2012-12701号公報 特開2004-315857号公報
 しかしながら、特許文献1に提案された技術では、ベイナイト相中にナノメートルサイズの析出物を析出させるために、鋼板を500~550℃で巻取り、5℃/h以下の冷却速度で20h以上保持する処理を必要としている。この技術で製造された熱延鋼板では、優れた打抜き性を得ることができないという問題がある。
 特許文献2に開示された技術では、熱延鋼板の延性を向上させるため、仕上げ圧延後の熱延鋼板に対して650~750℃を空冷開始温度として空冷することで、20nm未満の析出物で析出強化したフェライト組織を生成する。しかし、この技術で製造された熱延鋼板も優れた打抜き性を得ることができない。
 特許文献3に提案された技術では、粒径2μm以上のフェライトを80%以上も含むフェライト・ベイナイト二相組織としているため、得られる鋼板強度は976MPa程度までであり、引張強さTS:980MPa以上という更なる高強度化が困難である。また、引張強さTS:980MPa以上という高強度鋼板が得られたとしても、優れた打抜き性が得られない。
 特許文献4に提案された技術によると、引張強さTS:780MPa以上であり且つ伸びフランジ性に優れた熱延鋼板が得られる。しかし、その強度を更に高めて引張強さTS:980MPa以上の高強度を実現しようとする場合には、C含有量を増加させる必要がある。そして、C含有量の増加に伴い、Ti炭化物の析出量の制御が困難となり、鋼板の伸びフランジ性を向上させるために必要な0.02%以上の固溶Tiを安定して残存させることが困難となる。その結果、伸びフランジ性が低下する。
 特許文献5に提案された技術は、フェライトまたはベイニティックフェライトの析出強化により鋼板を強化しており、得られる鋼板強度は833MPa程度である。この鋼板の引張強さをTS:980MPa以上とするためにはTi、V、Nb、Mo等の析出強化元素をさらに添加する必要がある。そうすると、引張強さTS:980MPa以上で、かつ優れた打抜き性を有する鋼板が得られない。
 以上のように、従来技術では、引張強さTS:980MPa以上という高強度を維持しつつ、優れた打抜き性と穴広げ性を有する熱延鋼板を得る技術は確立されていない。
 そこで、本発明は、かかる従来技術の問題を解決し、引張強さTS:980MPa以上という高強度を維持しつつ、さらに優れた打抜き性と穴広げ性を有する高強度熱延鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、上記の目的を達成するために、引張強さTS:980MPa以上という高強度を維持しつつ、熱延鋼板の打抜き性と穴広げ性を向上させるべく鋭意研究した。その結果、仕上圧延完了後の旧オーステナイト粒の平均アスペクト比と、仕上圧延完了後に再結晶した旧オーステナイト粒の面積率を制御し、ベイナイト相を主相とし、第2相組織であるマルテンサイトまたはマルテンサイト-オーステナイト混合相が存在してもその分率と粒径を制御することで、熱延鋼板の引張強さTSが980MPa以上という高強度を維持したまま穴広げ性が顕著に向上するという知見を得た。また、熱延鋼板中に析出している直径20nm以下の析出物の析出量を制御することで、打抜き性が顕著に向上するという知見を新たに得た。
 なお、ここでいうベイナイト相とは、ラス状のベイニティックフェライトと、該ベイニティックフェライトの間および/または該ベイニティックフェライトの内部(ベイニティックフェライト粒内)にFe系炭化物を有する組織(Fe系炭化物の析出を有しない場合も含む)を意味する。ベイニティックフェライトは、ポリゴナルフェライトと異なり、形状がラス状であり且つラス内部に比較的高い転位密度を有するため、両者はSEM(走査型電子顕微鏡)やTEM(透過型電子顕微鏡)を用いて区別可能である。また、マルテンサイトまたはマルテンサイト-オーステナイト混合相はベイナイト相やポリゴナルフェライトと比べSEM像のコントラストが明るいため、これらもSEMを用いて区別可能である。
 一般に、旧オーステナイト粒に歪みを加えてベイナイト変態をさせると、旧オーステナイト粒に導入された歪みがベイナイト相中に受け継がれるので、ベイナイト組織中の転位密度が増加し、鋼板の強度が高くなる。本発明者らは更なる研究を行い、SiとBを同時に添加し、旧オーステナイト粒に歪みを加え、ベイナイト変態をさせることにより、強度が飛躍的に高く、かつ優れた穴広げ性を有する鋼板が得られることを新たに知見した。このメカニズムは必ずしも明らかではないが、以下のように推測される。すなわち、Siが添加されることにより、積層欠陥エネルギーが低下し、ベイナイト変態後に転位セルを形成して高い転位密度を維持することができるため強度が高くなる。さらにBを添加することでBが旧オーステナイト粒界に偏析し、粒界エネルギーを低下させることでフェライト変態を抑制し、均質なベイナイト組織をつくることで穴広げ性が向上するものと推測される。
 また、仕上圧延完了後に旧オーステナイト粒が再結晶すると、オーステナイト粒に歪みを与えられず、変態後のベイナイト相の強度が低下する。さらに再結晶した旧オーステナイト粒界へBが偏析できず、仕上圧延完了後の冷却中にフェライト変態が起こることがあり、主相であるベイナイト相とフェライト相との強度差が生じ、穴広げ試験時にフェライト相とベイナイト相との界面にマクロ的な歪みが集中することで優れた穴広げ性が得られないことを新たに知見した。
 加えて、旧オーステナイト粒のアスペクト比が過大となると、打抜き加工時にセパレーションが生じて打抜き性が低下する。
 さらに、一般的に、主相であるベイナイト相中に硬質な第2相組織であるマルテンサイト相またはマルテンサイト-オーステナイト混合相が存在すると、穴広げ試験の際に主相と第2相との界面にマクロ的な応力集中が生じて穴広げ性が低下することが知られている。そこで、本発明者らは更なる研究を行い、第2相組織の粒径を微細に制御することで、マクロ的な応力集中が生じなくなり、穴広げ性が低下しないことを新たに知見した。
 一方、980MPa級以上の高強度熱延鋼板を得るために、一般的に微細析出物による析出強化が用いられるが、本発明者らは更なる研究を行い、熱延鋼板中の直径20nm未満の析出物が一定量を超えると、熱延鋼板の打抜き性が顕著に低下することを新たに知見した。
 なお、ここでいう「打抜き性」とは、50mm×50mm程度のブランク板を採取し、該ブランク板に対しクリアランス20%±2%以内の条件で20mmφポンチを用いて20mmφの穴を打抜き、打抜かれた穴破面(打抜き端面ともいう)の破面状況を観察することにより評価されるものである。また、「打抜き性」が良好とは、50mm×50mm程度のブランク板を採取し、該ブランク板に対しクリアランス20%±2%以内の条件で20mmφポンチを用いて20mmφの穴を打抜き、打抜かれた穴破面(打抜き端面ともいう)の破面状況を観察した場合に、割れ、欠け、脆性破面、2次せん断面が無いものをいう。
 また、「穴広げ性」とは、穴広げ試験用試験片(大きさ:t×100×100 mm)を採取し、鉄連規格JFST 1001に準拠して、10mmφポンチを用いて、クリアランス:12.5%で、ポンチ穴を打ち抜き、該ポンチ穴に60°円錐ポンチを打抜き方向から押し上げるように挿入して、亀裂が板厚を貫通した時点での穴径dmmを求め、次式
        λ(%)={(d-10)/10}×100
で定義される穴広げ率λ(%)により評価されるものである。また、「穴広げ性」が良好とは、穴広げ率λ(%)が60%以上の場合をいう。
 これらの知見を踏まえ、本発明者らは更なる研究を行い、引張強さTS:980MPa以上という高強度を維持した状態で、打抜き性および穴広げ性を向上させるために必要な組成、仕上圧延完了後の旧オーステナイト粒の平均アスペクト比、ならびに仕上圧延完了後に再結晶した旧オーステナイト粒の面積率、マルテンサイト相またはマルテンサイト-オーステナイト混合相の面積率と粒径、熱延鋼板中に析出している直径20nm未満の析出物の析出量について検討した。そして、Siの含有量を質量%で0.2%以上、Bの含有量を質量%で0.0005%以上として、仕上圧延完了後の旧オーステナイト粒の平均アスペクト比が1.3以上5.0以下であり、かつ、仕上圧延完了後に再結晶した旧オーステナイト粒面積率が15%以下で、マルテンサイト相またはマルテンサイト-オーステナイト混合相の面積率が15%以下で、かつ、マルテンサイト相またはマルテンサイト-オーステナイト混合相の平均粒径が3.0μm以下であり、さらに熱延鋼板中に析出している直径20nm未満の析出物が質量%で0.10%以下とすることが肝要であることを見出した。
 本発明は、かかる知見に基づき、更なる検討を加えて完成したものである。すなわち、本発明の要旨はつぎの通りである。
 [1]質量%で、C:0.04%以上0.18%以下、Si:0.2%以上2.0%以下、Mn:1.0%以上3.0%以下、P:0.03%以下、S:0.005%以下、Al:0.005%以上0.100%以下、N:0.010%以下、Ti:0.02%以上0.15%以下、Cr:0.10%以上1.00%以下、B:0.0005%以上0.0050%以下、残部Feおよび不可避的不純物からなる組成を有し、面積率で85%以上のベイナイト相を主相とし、面積率で15%以下のマルテンサイト相またはマルテンサイト-オーステナイト混合相を第2相とし、残部がフェライト相からなり、前記第2相の平均粒径が3.0μm以下であり、さらに旧オーステナイト粒の平均アスペクト比が1.3以上5.0以下であり、未再結晶旧オーステナイト粒に対する再結晶旧オーステナイト粒の面積率が15%以下である組織を有し、かつ熱延鋼板中に析出している直径20nm未満の析出物が質量%で0.10%以下であり、引張強さTSが980MPa以上である高強度熱延鋼板。
 [2]前記組成に加えてさらに、質量%で、Nb:0.005%以上0.050%以下、V:0.05%以上0.30%以下、Mo:0.05%以上0.30%以下のうちから選ばれた1種または2種以上を含有する[1]に記載の高強度熱延鋼板。
 [3]前記組成に加えてさらに、質量%で、Cu:0.01%以上0.30%以下、Ni:0.01%以上0.30%以下のうちから選ばれた1種または2種を含有する[1]または[2]に記載の高強度熱延鋼板。
 [4]前記組成に加えてさらに、質量%で、Sb:0.0002%以上0.020%以下、Ca:0.0002%以上0.0050%以下、REM:0.0002%以上0.010%以下のうちから選ばれた1種または2種以上を含有する[1]ないし[3]のいずれか1項に記載の高強度熱延鋼板。
 [5]前記[1]ないし[4]のいずれか1項に記載された高強度熱延鋼板の製造方法であり、鋼素材を、1150℃以上に加熱したのち、仕上圧延開始温度を1000℃以上1200℃以下、仕上圧延完了温度を830℃以上950℃以下とする熱間圧延を施し、該熱間圧延の仕上圧延を終了した後2.0s以内に冷却を開始し、30℃/s以上の平均冷却速度で300℃以上530℃以下の冷却停止温度まで冷却し、該冷却停止温度で巻き取る高強度熱延鋼板の製造方法。
 ここで、主相とは、面積率で85%以上を占める場合をいうものとする。また、直径20nm未満の析出物とは、後述する孔径20nmのフィルターを通過できる大きさの析出物を言う。
 本発明によれば、引張強さTSが980MPa以上であり、かつ打抜き性と穴広げ性に優れた高強度熱延鋼板が得られる。また、このような高強度熱延鋼板を安定して製造することができ、産業上格段の効果を奏する。そして、本発明の高強度熱延鋼板を、自動車の構造部材、骨格部材、あるいはトラックフレーム部材等に適用すれば、自動車の安全性を確保しつつ車体重量を軽減でき、環境負荷を低減することが可能になるという効果もある。
 以上のように、本発明は、産業上極めて有用な発明である。
 以下、本発明について具体的に説明する。
 本発明の高強度熱延鋼板は、質量%で、C:0.04%以上0.18%以下、Si:0.2%以上2.0%以下、Mn:1.0%以上3.0%以下、P:0.03%以下、S:0.005%以下、Al:0.005%以上0.100%以下、N:0.010%以下、Ti:0.02%以上0.15%以下、Cr:0.10%以上1.00%以下、B:0.0005%以上0.0050%以下、残部Feおよび不可避的不純物からなる組成を有し、面積率で85%以上のベイナイト相を主相とし、面積率で15%以下のマルテンサイト相またはマルテンサイト-オーステナイト混合相を第2相とし、残部がフェライト相からなり、第2相の平均粒径が3.0μm以下であり、さらに旧オーステナイト粒の平均アスペクト比が1.3以上5.0以下であり、未再結晶旧オーステナイト粒に対する再結晶旧オーステナイト粒の面積率が15%以下である組織を有し、かつ熱延鋼板中に析出している直径20nm未満の析出物が質量%で0.10%以下であり、強度として引張強さTSが980MPa以上である。
 まず、本発明の高強度熱延鋼板の成分組成の限定理由について説明する。なお、以下の成分組成を表す%は、特に断らない限り質量%を意味するものとする。
 C:0.04%以上0.18%以下
 Cは、熱延鋼板の強度を向上させ、焼入れ性を向上させることによってベイナイトの生成を促進する元素である。そのため、本発明では、C含有量を0.04%以上とする必要がある。一方、C含有量が0.18%を超えると、ベイナイトの生成制御が困難となり、マルテンサイト相またはマルテンサイト-オーステナイト混合相の生成が増加し、熱延鋼板の打抜き性と穴広げ性の両方、またはいずれか一方が低下する。したがって、C含有量を0.04%以上0.18%以下とする。好ましくは、C含有量は0.04%以上である。また、好ましくは、C含有量は0.16%以下である。より好ましくは、C含有量は0.04%以上である。また、より好ましくは、C含有量は0.14%以下である。さらに好ましくは0.05%以上である。また、さらに好ましくは、C含有量は0.12%未満である。
 Si:0.2%以上2.0%以下
 Siは、固溶強化に寄与する元素であり、また積層欠陥エネルギーを下げることでベイナイト相の転位密度を向上させ、熱延鋼板の強度向上に寄与する元素である。これらの効果を得るためにはSi含有量を0.2%以上とする必要がある。また、Siは炭化物の形成を抑制する元素である。ベイナイト変態時の炭化物の形成を抑制することで、ベイナイト相のラス界面に微細なマルテンサイト相またはマルテンサイト-オーステナイト混合相が形成される。ベイナイト相中に存在するマルテンサイト相またはマルテンサイト-オーステナイト混合相は十分に微細であり、熱延鋼板の穴広げ性を劣化させることはない。一方で、Siはフェライト生成を促進する元素であり、Si含有量が2.0%を超えると、フェライトが生成し、熱延鋼板の穴広げ性が劣化する。したがって、Si含有量は2.0%以下とする。好ましくは、Si含有量は0.3%以上である。また、好ましくは、Si含有量は1.8%以下である。より好ましくは、Si含有量は0.4%以上である。また、より好ましくは、Si含有量は1.6%以下である。
 Mn:1.0%以上3.0%以下
 Mnは、固溶して熱延鋼板の強度増加に寄与するとともに、焼入れ性向上によってベイナイトの生成を促進し、穴広げ性を向上させる。このような効果を得るためには、Mn含有量を1.0%以上とする必要がある。一方、Mn含有量が3.0%を超えると、ベイナイトの生成制御が困難となり、マルテンサイト相またはマルテンサイト-オーステナイト混合相が増加して熱延鋼板の打抜き性と穴広げ性の両方、またはいずれか一方が低下する。したがって、Mn含有量を1.0%以上3.0%以下とする。好ましくは、Mn含有量は1.3%以上である。また、好ましくは、Mn含有量は2.5%以下である。より好ましくは、Mn含有量は1.5%以上である。また、より好ましくは、Mn含有量は2.2%以下である。
 P:0.03%以下
 Pは、固溶して熱延鋼板の強度増加に寄与する元素である。しかし、粒界、特に旧オーステナイト粒界に偏析し、加工性の低下を招く元素でもある。このため、P含有量を極力低くすることが好ましいが、0.03%までのPの含有は許容できる。したがって、P含有量は0.03%以下とする。しかし、過度にPを低減しても精錬コストの増大に見合う効果が得られないため、好ましくは、P含有量は0.003%以上0.03%以下である。より好ましくは、P含有量は0.005%以上である。また、より好ましくは、P含有量は0.02%以下である。
 S:0.005%以下
 Sは、TiやMnと結合して粗大な硫化物を形成し、熱延鋼板の打抜き性を低下させる。そのため、S含有量を極力低くすることが好ましいが、0.005%まで含有することは許容できる。したがって、S含有量を0.005%以下とする。打抜き性のための好ましいS含有量は0.004%以下である。しかし、過度にSを低減しても精錬コストの増大に見合う効果が得られないため、好ましくは、S含有量は0.0003%以上である。
 Al:0.005%以上0.100%以下
 Alは、脱酸剤として作用し、鋼の清浄度を向上させるのに有効な元素である。Alが0.005%未満ではその効果が必ずしも十分ではなく、一方、Alの過剰な添加は酸化物系介在物の増加を招き、熱延鋼板の打抜き性を低下させるとともに、疵の発生原因となる。したがって、Al含有量を0.005%以上0.100%以下とする。好ましくは、Al含有量は0.01%以上である。また、好ましくは、Al含有量は0.08%以下である。より好ましくは、Al含有量は0.02%以上である。また、より好ましくは、Al含有量は0.06%以下である。
 N:0.010%以下
 Nは、窒化物形成元素と結合することにより窒化物として析出し、結晶粒微細化に寄与する。しかし、Nは、高温でTiと結合して粗大な窒化物になり易く、熱延鋼板の打抜き性を低下させる。このため、N含有量を0.010%以下とする。好ましくは、N含有量は0.008%以下である。より好ましくは、N含有量は0.006%以下である。
 Ti:0.02%以上0.15%以下
 Tiは、オーステナイト相高温域(オーステナイト相での高温の域とオーステナイト相よりも高温の域(鋳造の段階))で窒化物を形成する。そのため、BNの析出が抑制され、Bが固溶状態になることによりベイナイトの生成に必要な焼入れ性を得ることができ、熱延鋼板の強度と穴広げ性を向上させる。また熱間圧延時に炭化物を形成して旧オーステナイト粒の再結晶を抑制する効果があり、未再結晶温度域での仕上圧延を可能とする。これらの効果を発現させるためには、Ti含有量を0.02%以上とする必要がある。一方、Ti含有量が0.15%を超えると、旧オーステナイト粒の再結晶温度が高くなり、仕上圧延完了後のオーステナイト粒のアスペクト比が5.0を超えてしまい、打抜き性が低下する。したがって、Ti含有量を0.02%以上0.15%以下とする。好ましくは、Ti含有量は0.025%以上である。また、好ましくは、Ti含有量は0.13%以下である。より好ましくは、Ti含有量は0.03%以上である。また、より好ましくは、Ti含有量は0.12%以下である。
 Cr:0.10%以上1.00%以下
 Crは、炭化物を形成して熱延鋼板の高強度化に寄与するとともに、焼入れ性向上によってベイナイトの生成を促進し、ベイナイト粒内へのFe系炭化物析出を促進する元素である。これらの効果を発現させるためには、Cr含有量を0.10%以上とする。一方、Cr含有量が1.00%を超えると、マルテンサイト相またはマルテンサイト-オーステナイト混合相が生成しやすくなり、熱延鋼板の打抜き性と穴広げ性の両方、またはいずれか一方が低下する。したがって、Cr含有量を0.10%以上1.00%以下とする。好ましくは、Cr含有量は0.15%以上である。より好ましくは、Cr含有量は0.20%以上である。また、好ましくは、Cr含有量は0.85%以下である。より好ましくは、Cr含有量は0.75%以下である。さらに好ましくは、Cr含有量は0.65%以下である。
 B:0.0005%以上0.0050%以下
 Bは、旧オーステナイト粒界に偏析し、フェライトの生成・成長を抑制し、熱延鋼板の強度と穴広げ性向上に寄与する元素である。これらの効果を発現させるためには、B含有量を0.0005%以上とする。一方、B含有量が0.0050%を超えると、上記した効果が飽和する。したがって、B含有量を0.0005%以上0.0050%以下の範囲に限定する。好ましくは、B含有量は0.0006%以上である。また、好ましくは、B含有量は0.0040%以下である。より好ましくは、B含有量は0.0007%以上である。また、より好ましくは、B含有量は0.0030%以下の範囲である。
 本発明において、上記以外の残部は、Feおよび不可避的不純物である。不可避的不純物としては、Sn、Zn等が挙げられ、これらの含有量はSn:0.1%以下、Zn:0.01%以下であれば許容できる。
 以上が本発明熱延鋼板の基本成分であるが、本発明の熱延鋼板は、例えば高強度化や穴広げ性向上を目的として、必要に応じてNb:0.005%以上0.050%以下、V:0.05%以上0.30%以下、Mo:0.05%以上0.30%以下のうちから選ばれる1種または2種以上を含有することができる。
 Nb:0.005%以上0.050%以下
 Nbは、熱間圧延時に炭化物を形成してオーステナイトの再結晶を抑制する効果があり、熱延鋼板の強度向上に寄与する。この効果を発現させるためには、Nb含有量を0.005%以上とする必要がある。一方、Nb含有量が0.050%を超えると、旧オーステナイト粒の再結晶温度が高くなりすぎ、仕上圧延完了後のオーステナイト粒のアスペクト比が5.0を超えてしまい、打抜き性が低下する場合がある。したがって、Nbを含有する場合は、Nb含有量を0.005%以上0.050%以下とする。好ましくは、Nb含有量は0.010%以上である。また、好ましくは、Nb含有量は0.045%以下である。より好ましくは、Nb含有量は0.015%以上である。また、より好ましくは、Nb含有量は0.040%以下である。
 V:0.05%以上0.30%以下
 Vは、熱間圧延時に炭窒化物を形成してオーステナイトの再結晶を抑制する効果があり、熱延鋼板の強度向上に寄与する。この効果を発現させるためには、V含有量を0.05%以上とする必要がある。一方、V含有量が0.30%を超えると、旧オーステナイト粒の再結晶温度が高くなりすぎ、仕上圧延完了後のオーステナイト粒のアスペクト比が5.0を超えてしまい、打抜き性が低下する場合がある。したがって、Vを含有する場合は、V含有量を0.05%以上0.30%以下とする。好ましくは、V含有量は0.07%以上である。また、好ましくは、V含有量は0.28%以下である。より好ましくは、V含有量は0.10%以上である。また、より好ましくは、V含有量は0.25%以下である。
 Mo:0.05%以上0.30%以下
 Moは、焼入れ性の向上を通じてベイナイト相の形成を促進し、熱延鋼板の強度と穴広げの向上に寄与する。このような効果を得るためには、Mo含有量を0.05%以上とすることが好ましい。但し、Mo含有量が0.30%を超えると、マルテンサイト相またはマルテンサイト-オーステナイト混合相が生成しやすくなり、熱延鋼板の打抜き性と穴広げ性の両方、またはいずれか一方が低下する場合がある。したがって、Moを含有する場合は、Mo含有量を0.05%以上0.30%以下とする。好ましくは、Mo含有量は0.10%以上である。また、好ましくは、Mo含有量は0.25%以下である。
 また、本発明の熱延鋼板は、必要に応じてCu:0.01%以上0.30%以下、Ni:0.01%以上0.30%以下のうちから選ばれる1種または2種を含有することができる。
 Cu:0.01%以上0.30%以下
 Cuは、固溶して熱延鋼板の強度増加に寄与する元素である。また、Cuは、焼入れ性の向上を通じてベイナイト相の形成を促進し、強度と穴広げ性の向上に寄与する。これらの効果を得るためには、Cu含有量を0.01%以上とすることが好ましいが、その含有量が0.30%を超えると熱延鋼板の表面性状の低下を招く場合がある。したがって、Cuを含有する場合は、Cu含有量を0.01%以上0.30%以下とする。好ましくは、Cu含有量は0.02%以上である。また、好ましくは、Cu含有量は0.20%以下である。
 Ni:0.01%以上0.30%以下
 Niは、固溶して熱延鋼板の強度増加に寄与する元素である。また、Niは、焼入れ性の向上を通じてベイナイト相の形成を促進し、強度と穴広げ性の向上に寄与する。これらの効果を得るためには、Ni含有量を0.01%以上とすることが好ましい。但し、Ni含有量が0.30%を超えると、マルテンサイト相またはマルテンサイト-オーステナイト混合相が生成しやすくなり、熱延鋼板の打抜き性と穴広げ性の両方、またはいずれか一方が低下する場合がある。したがって、Niを含有する場合は、Ni含有量を0.01%以上0.30%以下とする。好ましくは、Ni含有量は0.02%以上である。また、好ましくは、Ni含有量は0.20%以下である。
 また、本発明の熱延鋼板は、必要に応じてSb:0.0002%以上0.020%以下、Ca:0.0002%以上0.0050%以下、REM:0.0002%以上0.010%以下のうちから選ばれる1種または2種以上を含有することができる。
 Sb:0.0002%以上0.020%以下
 Sbは、スラブ加熱段階でスラブ表面の窒化を抑制する効果を有し、その結果、スラブ表層部のBNの析出が抑制される。また、固溶Bが存在することにより熱延鋼板表層部においてもベイナイトの生成に必要な焼入れ性を得ることができ、熱延鋼板の強度と穴広げ性を向上させる。このような効果の発現のためにはその量を0.0002%以上とする必要がある。一方、Sb含有量が0.020%を超えると、圧延荷重の増大を招き、生産性を低下させる場合がある。したがって、Sbを含有する場合は、Sb含有量を0.0002%以上0.020%以下とする。
 Ca:0.0002%以上0.0050%以下
 Caは、硫化物系の介在物の形状を制御し、熱延鋼板の打抜き性の向上に有効である。これらの効果を発現させるためには、Ca含有量を0.0002%以上とすることが好ましい。但し、Ca含有量が0.0050%を超えると、熱延鋼板の表面欠陥を引き起こす場合がある。したがって、Caを含有する場合、Ca含有量を0.0002%以上0.0050%以下とする。好ましくは、Ca含有量は0.0004%以上である。また、好ましくは、Ca含有量は0.0030%以下である。
 REM:0.0002%以上0.010%以下
 REMは、Caと同様、硫化物系の介在物の形状を制御し、熱延鋼板の打抜き性に対する硫化物系介在物の悪影響を低減させる。これらの効果を発現させるためには、REM含有量を0.0002%以上とすることが好ましい。但し、REM含有量が0.010%を超えて過剰になると、鋼の清浄度が悪化し、熱延鋼板の打抜き性が低下する傾向にある。したがって、REMを含有する場合、REM含有量を0.0002%以上0.010%以下とする。好ましくは、REM含有量は0.0004%以上である。また、好ましくは、REM含有量は0.0050%以下である。
 次に、本発明の高強度熱延鋼板の組織の限定理由について説明する。
 本発明の高強度熱延鋼板は、仕上げ圧延完了後の旧オーステナイト粒の平均アスペクト比が1.3以上5.0以下であり、かつ、再結晶旧オーステナイト粒の面積率が、未再結晶旧オーステナイト粒に対して15%以下である。また、鋼板の組織が面積率で85%以上のベイナイト相を主相とし、面積率で15%以下のマルテンサイトまたはマルテンサイト-オーステナイト混合相を第2相として、かつ、該第2相の平均粒径が3.0μm以下であり、残部がフェライト相からなる組織を有し、かつ、熱延鋼板中に析出している直径20nm未満の析出物が質量%で0.10%以下であり、引張強さTS:980MPa以上であることを特徴とする打抜き性と穴広げ性に優れた高強度熱延鋼板である。第2相は面積率で0%であってもよい。フェライト相も0%であってもよい。
 旧オーステナイト粒の平均アスペクト比:1.3以上5.0以下
 旧オーステナイト粒は、鋼素材加熱時に形成されたオーステナイト粒のことである。仕上げ圧延完了時点で形成された旧オーステナイト粒の粒界は、その後の冷却、巻き取り工程でも消滅することなく残る。
 本発明の高強度熱延鋼板は、仕上げ圧延完了時点での旧オーステナイト粒の平均アスペクト比を1.3以上5.0以下とする。引張強さTS:980MPa以上という高強度と、穴広げ性に優れるベイナイト相を得るためには、ベイナイトに変態する前の旧オーステナイト粒に十分な歪みを与える必要がある。そのためには、旧オーステナイト粒の平均アスペクト比を1.3以上とする必要がある。一方、旧オーステナイト粒の平均アスペクト比が5.0を超えて過大になると、打抜き加工後の打ち抜き端面にセパレーションが生じて打ち抜き性が低下する。したがって、旧オーステナイト粒の平均アスペクト比は1.3以上5.0以下とする。より好ましくは、旧オーステナイト粒の平均アスペクト比は1.4以上である。また、より好ましくは、旧オーステナイト粒の平均アスペクト比は4.0以下である。さらに好ましくは、旧オーステナイト粒の平均アスペクト比は1.5以上である。また、さらに好ましくは、旧オーステナイト粒の平均アスペクト比は3.5以下である。
 なお、この旧オーステナイト粒の平均アスペクト比については、C、Ti、Nb、Vの含有量の調整、仕上圧延開始温度の調整、仕上圧延完了温度の調整、仕上圧延スタンド間冷却の調整により、1.3以上5.0以下に制御することができる。
 未再結晶旧オーステナイト粒に対する再結晶旧オーステナイト粒の割合:面積率で15%以下
 旧オーステナイト粒のうち、仕上げ圧延完了時点から巻取りが完了するまでに再結晶したものを再結晶旧オーステナイト粒とし、再結晶しなかったものを未再結晶旧オーステナイト粒とする。
 本発明の高強度熱延鋼板は、仕上圧延完了後に再結晶した旧オーステナイト粒を面積率で15%以下とする。仕上圧延完了後に旧オーステナイト粒が再結晶するとBの旧オーステナイト粒界への拡散・偏析が間に合わず、所望の焼入れ性を発揮できず強度が低下し、また未再結晶の旧オーステナイト粒と再結晶した旧オーステナイト粒に硬度差が生じるため穴広げ性も低下する。所望の強度の熱延鋼板を得るためには、再結晶旧オーステナイト粒の面積率を0%とすることが好ましいが、再結晶旧オーステナイト粒が面積率で15%以下であれば許容される。したがって、再結晶旧オーステナイトの面積率を15%以下とする。好ましくは、再結晶旧オーステナイトの面積率は13%以下、より好ましくは10%以下、さらに好ましくは5%以下である。
 なお、この再結晶旧オーステナイト粒の面積率については、C、Ti、Nb、Vの含有量の調整、仕上圧延開始温度の調整、仕上圧延完了温度の調整、仕上圧延スタンド間冷却の調整により、15%以下に制御することができる。
 鋼板の組織
  ベイナイト相(主相):面積率で85%以上
  マルテンサイトまたはマルテンサイト-オーステナイト混合相(第2相):面積率で15%以下、かつ、平均粒径が3.0μm以下
  残部:フェライト相
 本発明の高強度熱延鋼板は、ベイナイト相を主相とする。ベイナイト相とは、ラス状のベイニティックフェライトと、ベイニティックフェライトの間および/又は内部にFe系炭化物を有する組織(Fe系炭化物の析出が全くない場合を含む)を意味する。ベイニティックフェライトは、ポリゴナルフェライトとは異なり、形状がラス状でかつ内部に比較的高い転位密度を有するため、SEM(走査型電子顕微鏡)やTEM(透過型電子顕微鏡)を用いて容易に区別ができる。引張強さTS:980MPa以上の強度を実現し、穴広げ性を高めるためにはベイナイト相を主相とする必要があり、ベイナイト相の面積率が85%以上であれば引張強さTS:980MPa以上と優れた穴広げ性を兼備することができる。よってベイナイト相の面積率を85%以上とする。ベイナイト相の面積率は、好ましくは90%以上、より好ましくは95%以上である。また、第2相組織としてマルテンサイト相またはマルテンサイト-オーステナイト混合相が面積率で15%以下であり、かつ、該組織の平均粒径が3.0μm以下であれば、穴広げ試験時に相界面でマクロ的な応力集中が起きず、優れた穴広げ性が得られる。そのため、マルテンサイトまたはマルテンサイト-オーステナイト混合相の面積率を15%以下とし、かつ該組織の平均粒径を3.0μm以下とする。好ましくはマルテンサイトまたはマルテンサイト-オーステナイト混合相の面積率が10%以下であり、かつ該組織の平均粒径が2.0μm以下である。さらに好ましくはマルテンサイトまたはマルテンサイト-オーステナイト混合相の面積率が3%以下であり、かつ、該組織の平均粒径が1.0μm以下である。主相であるベイナイト相と第2相であるマルテンサイト相またはマルテンサイト-オーステナイト混合相以外の組織として、フェライト相を含有し得る。
 直径20nm未満の析出物:質量%で0.10%以下
 本発明の高強度熱延鋼板中に析出している直径20nm未満の析出物を、質量%で0.10%以下とする。熱延鋼板の所望の優れた打抜き性を実現するためには、直径20nm未満の析出物を質量%で0%とすることが望ましいが、0.10%までは許容できる。直径20nm未満の析出物が質量%で0.10%を超えると、打抜き加工時に脆性的な割れを生じ、打抜き性を著しく劣化させる。したがって、直径20nm未満の析出物を質量%で0.10%以下とする。好ましくは、直径20nm未満の析出物は、質量%で0.08%以下、より好ましくは0.07%以下である。
 なお、直径20nm未満の析出物については、Ti、Nb、Mo、V、Cuの含有量の調整、仕上圧延完了温度の調整、巻取り温度の調整により、制御することができる。
 また、上記仕上圧延完了後の旧オーステナイト粒のアスペクト比、仕上圧延完了後に再結晶した旧オーステナイト粒の面積率、ベイナイト相、マルテンサイト相またはマルテンサイト-オーステナイト混合相、フェライト相の面積率、直径20nm未満の析出物の質量は、後述する実施例の記載の方法で測定することができる。
 次に、本発明の高強度熱延鋼板の製造方法について説明する。
 本発明は、上記した組成の鋼素材を、1150℃以上に加熱したのち、粗圧延を施し、仕上圧延開始温度を1000℃以上1200℃以下、仕上圧延完了温度を830℃以上950℃以下とする熱間圧延を施し、該熱間圧延の仕上圧延を終了した後2.0s以内に冷却を開始し、30℃/s以上の平均冷却速度で300℃以上530℃以下の冷却停止温度まで冷却し、該冷却停止温度を巻取り温度として巻き取ることを特徴とする高強度熱延鋼板の製造方法である。
 以下、詳細に説明する。
 鋼素材の製造方法は、特に限定する必要はなく、上記した組成を有する溶鋼を、転炉等で溶製し、連続鋳造等の鋳造方法でスラブ等の鋼素材とする、常用の方法がいずれも適用できる。なお、造塊-分塊方法を用いてもよい。
 鋼素材の加熱温度:1150℃以上
 スラブ等の鋼素材中では、Tiなどの炭窒化物形成元素の殆どが、粗大な炭窒化物として存在している。この粗大で不均一な析出物の存在は、熱延鋼板の諸特性(例えば、強度、打抜き性など)の劣化を招く。そのため、熱間圧延前の鋼素材を加熱して、粗大な析出物を固溶する。この粗大な析出物を熱間圧延前に十分に固溶させるためには、鋼素材の加熱温度を1150℃以上とする必要がある。また、鋼素材の加熱温度が高くなりすぎるとスラブ疵の発生や、スケールオフによる歩留まり低下を招くため、鋼素材の加熱温度は1350℃以下とすることが好ましい。より好ましくは、鋼素材の加熱温度は1180℃以上である。また、より好ましくは、鋼素材の加熱温度は1300℃以下である。さらに好ましくは、鋼素材の加熱温度は1200℃以上である。また、さらに好ましくは、鋼素材の加熱温度は1280℃以下である。
 なお、鋼素材を1150℃以上の加熱温度に加熱して所定時間保持するが、保持時間が9000秒を超えると、スケール発生量が増大する結果、続く熱間圧延工程においてスケール噛み込み等が発生し易くなり、熱延鋼板の表面品質が劣化する傾向にある。したがって、1150℃以上の温度域における鋼素材の保持時間は、9000秒以下とすることが好ましい。より好ましくは、1150℃以上の温度域における鋼素材の保持時間は7200秒以下である。下限は特に定めないが、スラブ加熱の均一性から、1150℃以上の温度域における鋼素材の保持時間は1800秒以上が好ましい。
 鋼素材の加熱に続き、粗圧延と仕上圧延からなる熱間圧延を行う。粗圧延では、所望のシートバー寸法が確保できればよく、その条件は特に限定する必要はない。粗圧延に引き続いて、仕上圧延を行う。なお、仕上圧延の前、もしくはスタンド間の圧延途中で、デスケーリングを行うことが好ましい。また、必要に応じてスタンド間で鋼板を冷却しても良い。仕上圧延開始温度を1000℃以上1200℃以下とし、仕上圧延完了温度を830℃以上950℃以下とする。
 仕上圧延開始温度:1000℃以上1200℃以下
 仕上圧延開始温度が1200℃を超えると、スケールの発生量が多くなりスケール噛み込み等が発生し易くなるので、熱延鋼板の表面品質が劣化する傾向にある。また、仕上圧延開始温度が1000℃未満の場合は、旧オーステナイト粒が仕上圧延中に再結晶することができず、仕上圧延完了後の旧オーステナイト粒の平均アスペクト比が5.0を超えることがあり、打抜き性を劣化させることがある。そのため、仕上圧延開始温度を1000℃以上1200℃以下とする。好ましくは、仕上圧延開始温度は1020℃以上である。また、好ましくは、仕上圧延開始温度は1160℃である。より好ましくは、仕上圧延開始温度は1050℃以上である。また、より好ましくは、仕上圧延開始温度は1140℃以下である。ここで、仕上圧延開始温度は、板の表面温度を表すものとする。
 仕上圧延完了温度:830℃以上950℃以下
 仕上圧延完了温度が830℃未満の場合、圧延がフェライト+オーステナイトの二相域温度で行われるため、所望のベイナイト相分率が得られないので、熱延鋼板の穴広げ性が低下する。また、未再結晶温度域での旧オーステナイト粒に対する圧下量が多くなるので、仕上圧延完了後の旧オーステナイト粒の平均アスペクト比が5.0を超えることがあり、打抜き性を劣化させることがある。一方、仕上圧延完了温度が950℃を超えて高くなると、仕上圧延完了後に再結晶を起こす旧オーステナイト粒が多くなり、Bが旧オーステナイト粒界に偏析することができず、引張強さTS:980MPa以上が得られなくなるか、穴広げ性が劣化する。したがって、仕上圧延完了温度を830℃以上950℃以下とする。好ましくは、仕上圧延完了温度は850℃以上である。また、好ましくは、仕上圧延完了温度は940℃以下である。より好ましくは、仕上圧延完了温度は870℃以上である。また、より好ましくは、仕上圧延完了温度は930℃以下である。ここで、仕上圧延完了温度は、板の表面温度を表すものとする。
 強制冷却開始:仕上圧延終了後2.0s以内に冷却を開始
 仕上圧延が終了した後、2.0s以内に強制冷却を開始し、巻取り温度(冷却停止温度)で冷却を停止し、コイル状に巻き取る。仕上圧延終了から強制冷却を開始するまでの時間が2.0sを超えて長くなると、オーステナイトに蓄積された歪の回復が進行して、ベイナイト相の強度が低下する。そのため、引張強さTS:980MPa以上が得られなくなる。したがって、強制冷却開始時間を、仕上圧延終了後2.0s以内に限定する。好ましくは、強制冷却開始時間は仕上圧延終了後1.5s以内である。より好ましくは、強制冷却開始時間は仕上圧延終了後1.0s以内である。
 平均冷却速度:30℃/s以上
 強制冷却において、仕上圧延完了温度から巻取り温度までの平均冷却速度が30℃/s未満であると、ベイナイト変態の前にフェライト変態が起こり、所望の面積率のベイナイト相が得られない。したがって、平均冷却速度を30℃/s以上とする。好ましくは、平均冷却速度は35℃/s以上である。平均冷却速度の上限は特に規定しないが、平均冷却速度が大きくなりすぎると、表面温度が低くなりすぎて、鋼板表面にマルテンサイトが生成しやすくなり、所望の穴広げ性が得られなくなる場合があるため、平均冷却速度を120℃/s以下とすることが好ましい。なお、平均冷却速度は、鋼板の表面における平均冷却速度とする。
 巻取り温度(冷却停止温度):300℃以上530℃以下
 巻取り温度(冷却停止温度)が低いほど、ベイナイト変態が促進しベイナイト相の面積率が増加するが、巻取り温度が300℃未満の場合は、マルテンサイト変態が生じて粗大なマルテンサイト相を形成し、所望の穴広げ性が得られなくなる。一方、巻取り温度が530℃を超えると、ベイナイト変態の駆動力が不足し、ベイナイト変態が完了しない。そのため、ベイナイトと未変態オーステナイトの状態で等温保持されるので、未変態オーステナイトに炭素が分配される。そして、粗大なマルテンサイト相またはマルテンサイト-オーステナイト混合相が生成されるので、穴広げ性が低下する。また、巻取り温度が530℃を超えると、Ti、NbやV等の炭化物形成元素が炭素と結合して直径20nm未満の析出物が形成され、打抜き性も劣化する。そのため、巻取り温度は300℃以上530℃以下とする。好ましくは、巻取り温度は330℃以上である。また、好ましくは、巻取り温度は510℃以下である。より好ましくは、巻取り温度は350℃以上である。また、好ましくは、巻取り温度は480℃以下である。
 なお、本発明においては、連続鋳造時の鋼の成分偏析低減のために、電磁撹拌(EMS)、軽圧下鋳造(IBSR)等を適用することができる。電磁撹拌処理を行うことにより、板厚中心部に等軸晶を形成させ、偏析を低減させることができる。また、軽圧下鋳造を施した場合は、連続鋳造スラブの未凝固部の溶鋼の流動を防止することにより、板厚中心部の偏析を低減させることができる。これらの偏析低減処理の少なくとも1つの適用により、後述する打抜き性、穴広げ性をより優れたレベルにすることができる。
 巻取り後は、常法にしたがい、調質圧延を施してもよく、また、酸洗を施して表面に形成されたスケールを除去してもよい。或いは更に、溶融亜鉛めっき、電気亜鉛めっき等のめっき処理や、化成処理を施してもよい。
 表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法によりスラブ(鋼素材)とした。連続鋳造の際には、後述する表2、3中の熱延鋼板No.22,23(鋼K)以外のものについては、成分の偏析低減処理のため、電磁撹拌(EMS)を行った。次いで、これらの鋼素材を、表2に示す条件で加熱し、粗圧延と表2に示す条件の仕上圧延とからなる熱間圧延を施した。仕上圧延完了後、表2に示す条件の冷却開始時間(仕上圧延終了後から冷却(強制冷却)を開始するまでの時間)、平均冷却速度(仕上圧延完了温度から巻取り温度までの平均冷却速度)で冷却し、表2に示す条件の巻取り温度で巻取り、表2に示す板厚の熱延鋼板とした。なお、仕上圧延において、○を付したものにはスタンド間冷却を行った。
 以上により得られた熱延鋼板から試験片を採取し、組織観察、析出物定量、引張試験、穴広げ試験、打抜き加工試験を実施した。組織観察方法および各種試験方法は以下の通りである。
 (i)組織観察
 各組織の面積率と粒径
 熱延鋼板から走査電子顕微鏡(SEM)用試験片を採取し、圧延方向に平行な板厚断面を研磨後、腐食液(3質量%ナイタール溶液)で組織を現出させ、板厚1/4位置にて走査電子顕微鏡(SEM)を用い、3000倍の倍率で5視野撮影して画像処理により各相(ベイナイト相、MA相(マルテンサイト相またはマルテンサイト-オーステナイト混合相)、F相(フェライト相))の面積率と粒径を定量化した。
 仕上圧延後の旧オーステナイト粒(旧γ粒)のアスペクト比および再結晶粒の面積率
 熱延鋼板から光学顕微鏡用試験片を採取し、圧延方向に平行な板厚断面を研磨後、腐食液(ピクリン酸、界面活性剤、シュウ酸を含有する水溶液)で旧オーステナイト組織を現出させ、板厚1/4位置にて光学顕微鏡を用い、400倍の倍率で5視野撮影して、旧オーステナイト粒を楕円に近似し、すなわち、粒の最長部を長径とし、最短部を短径とし、(長径)/(短径)をアスペクト比として測定した。得られた各旧オーステナイト粒のアスペクト比を算術平均した値を平均アスペクト比とした。
 また、前記旧オーステナイト粒のうち、アスペクト比が1.00以上1.05以下の旧オーステナイト粒を再結晶旧オーステナイト粒とし、アスペクト比が1.05超である旧オーステナイト粒を未再結晶旧オーステナイト粒とした。画像処理により、再結晶旧オーステナイト粒と未再結晶旧オーステナイト粒の面積をそれぞれ求め、未再結晶旧オーステナイト粒に対する再結晶旧オーステナイト粒の面積率を求めた。
 光学顕微鏡による旧オーステナイト粒の同定が困難な場合は、SEMを使用した電子線反射回折(Electron Back Scatter Diffraction Patterns:EBSD)法により、未再結晶旧オーステナイト粒に対する再結晶旧オーステナイト粒の面積率を求めた。熱延鋼板から試験片を採取し、圧延方向に平行な断面を観察面として、コロイダルシリカ溶液を用いて仕上げ研磨を行った。その後EBSD測定装置によって、電子線の加速電圧20kV、測定間隔0.2μmステップで500μm×500μmの面積を、板厚1/4位置で3箇所測定し、回転マトリクス法を用いて旧オーステナイト粒を再構築した。再構築した旧オーステナイト粒を楕円に近似してアスペクト比を測定した。アスペクト比が1.00以上1.05以下の旧オーステナイト粒を再結晶旧オーステナイト粒、アスペクト比が1.05超である旧オーステナイト粒を未再結晶旧オーステナイト粒とした。再結晶旧オーステナイト粒と未再結晶旧オーステナイト粒の面積をそれぞれ求め、未再結晶旧オーステナイト粒に対する再結晶旧オーステナイト粒の面積率を求めた。
 (ii)析出物定量
 熱延鋼板から電解残渣抽出用試験片(大きさ:50mm×50mm)を採取し、10%AA系電解液(10vol%アセチルアセトン-1mass%塩化テトラメチルアンモニウム・メタノール)中で、電流密度:20mA/cm2で、試験片全厚に対して定電流電解した。得られた電解液を孔径20nmのフィルターを用いて濾過し、直径20nm以上の析出物と直径20nm未満の析出物を分離した。直径20nm未満の析出物の重量を測定し、電解重量で割ることで、直径20nm未満の析出物の質量%を求めた。なお、電解重量は、電解後の電解用試験片を洗浄し、重量を測定して、電解前の試験片重量から差し引くことにより求めた。
 (iii)引張試験
 熱延鋼板から、引張方向が圧延方向と直角方向になるようにJIS5号試験片(GL:50mm)を採取し、JIS Z 2241(2011)の規定に準拠して引張試験を行い、降伏強度(降伏点、YP)、引張強さ(TS)、全伸び(El)を求めた。
 (iv)穴広げ試験
 得られた熱延鋼板から、穴広げ試験用試験片(大きさ:t×100×100 mm)を採取し、鉄連規格JFST 1001に準拠して、試験片中央に10mmφポンチで、クリアランス:12.5%で、ポンチ穴を打ち抜いた後、該ポンチ穴に60°円錐ポンチを打抜き方向から押し上げるように挿入して、亀裂が板厚を貫通した時点での穴径d(mm)を求め、次式
        λ(%)={(d-10)/10}×100
で定義される穴広げ率λ(%)を算出した。なお、クリアランスは、板厚に対する割合(%)である。穴広げ試験で得られたλが60%以上の場合を、穴広げ性が良好と評価した。
 (v)打抜き加工試験
 熱延鋼板から、ブランク板(50mm×50mm)を10枚採取した。そして打抜きポンチを20mmφの平底型として、打抜きクリアランスを20%±2%以内となるようにダイ側の穴径を決定し、上から板押さえで固定して20mmφのポンチ穴を打ち抜いた。ブランク板10枚全てに対して打ち抜き後、ポンチ穴の全周にわたり、打抜き端面の破面状況をマイクロスコープ(倍率:50倍)で、割れ、欠け、脆性破面、2次せん断面等の有無を観察した。前記の10個のポンチ穴について、割れ、欠け、脆性破面、2次せん断面等がないポンチ穴が10個のものを◎(合格)、割れ、欠け、脆性破面、2次せん断面等がないポンチ穴が8~9個のものを○(合格)とし、それ以外(割れ、欠け、脆性破面、2次せん断面等のないポンチ穴が0~7個のもの)を×(不合格)として、打抜き性を評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 
 本発明の範囲内で製造した熱延鋼板は、980MPa以上の引張強さを有し、打抜き性と穴広げ性に優れていた。
 一方、鋼板No.4は、仕上圧延終了後の冷却開始時間が2.0sを超えており、引張強さTSが980MPa未満であった。また、鋼板No.5は、仕上圧延完了温度が830℃未満であり、旧オーステナイト粒の平均アスペクト比が5.0を超えており、ベイナイト相の面積率が85%未満であったため、優れた穴広げ性および打抜き性を得られなかった。
 また、鋼板No.6は、仕上圧延完了温度が950℃を超えており、再結晶した旧オーステナイト粒の面積率が15%を超えており、ベイナイト相の面積率が85%未満であったため、引張強さTSが980MPa未満であり、優れた穴広げ性を得られなかった。また、鋼板No.7は、平均冷却速度が30℃/s未満であり、ベイナイト相の面積率が85%未満であったため、優れた穴広げ性を得られなかった。
 また、鋼板No.11は、巻取り温度(冷却停止温度)が300℃未満であり、ベイナイト相の面積率が85%未満であり、マルテンサイト相の面積率が15%超えであり、マルテンサイト相の平均粒径が3.0μmを超えていたため、優れた穴広げ性を得られなかった。また、鋼板No.13は、仕上圧延開始温度が1000℃未満であり、再結晶した旧オーステナイト粒の平均アスペクト比が5.0を超えていたため、優れた打抜き性を得られなかった。
 また、鋼板No.23は、巻取り温度(冷却停止温度)が530℃を超えており、マルテンサイト相の平均粒径が3.0μmを超えており、直径20nm未満の析出物が0.10質量%を超えていたため、優れた穴広げ性および打抜き性を得られなかった。また、鋼板No.33は、Mn含有量が1.0質量%未満であり、ベイナイト相の面積率が85%未満であったため、引張強さTSが980MPa未満であり、優れた穴広げ性を得られなかった。
 また、鋼板No.34は、C含有量が0.18質量%を超えており、ベイナイト相の面積率が85%未満であり、マルテンサイトの面積率が15%を超えていたため、優れた穴広げ性を得られなかった。また、鋼板No.35は、Si含有量が0.2質量%未満であったため、引張強さTSが980MPa未満であり、優れた穴広げ性を得られなかった。
 また、鋼板No.36は、B含有量が0.0005質量%未満であり、ベイナイト相の面積率が85%未満であったため、優れた穴広げ性を得られなかった。また、鋼板No.37は、Ti含有量が0.02質量%未満であり、旧オーステナイト粒の平均アスペクト比が1.3未満であり、再結晶旧オーステナイト粒の面積率が15%を超えており、ベイナイト相の面積率が85%未満であったため、引張強さTSが980MPa未満であり、優れた穴広げ性を得られなかった。
 鋼板No.38は、Ti含有量が0.15質量%超えであり、旧オーステナイト粒の平均アスペクト比が5.0超えであったため、優れた打抜き性を得られなかった。

Claims (5)

  1.  質量%で、C:0.04%以上0.18%以下、Si:0.2%以上2.0%以下、Mn:1.0%以上3.0%以下、P:0.03%以下、S:0.005%以下、Al:0.005%以上0.100%以下、N:0.010%以下、Ti:0.02%以上0.15%以下、Cr:0.10%以上1.00%以下、B:0.0005%以上0.0050%以下、残部Feおよび不可避的不純物からなる組成を有し、
     面積率で85%以上のベイナイト相を主相とし、面積率で15%以下のマルテンサイト相またはマルテンサイト-オーステナイト混合相を第2相とし、残部がフェライト相からなり、
     前記第2相の平均粒径が3.0μm以下であり、
     さらに旧オーステナイト粒の平均アスペクト比が1.3以上5.0以下であり、
     未再結晶旧オーステナイト粒に対する再結晶旧オーステナイト粒の面積率が15%以下である組織を有し、
     かつ熱延鋼板中に析出している直径20nm未満の析出物が質量%で0.10%以下であり、引張強さTSが980MPa以上である高強度熱延鋼板。
  2. 前記組成に加えてさらに、質量%で、Nb:0.005%以上0.050%以下、V:0.05%以上0.30%以下、Mo:0.05%以上0.30%以下のうちから選ばれた1種または2種以上を含有する請求項1に記載の高強度熱延鋼板。
  3. 前記組成に加えてさらに、質量%で、Cu:0.01%以上0.30%以下、Ni:0.01%以上0.30%以下のうちから選ばれた1種または2種を含有する請求項1または2に記載の高強度熱延鋼板。
  4. 前記組成に加えてさらに、質量%で、Sb:0.0002%以上0.020%以下、Ca:0.0002%以上0.0050%以下、REM:0.0002%以上0.010%以下のうちから選ばれた1種または2種以上を含有する請求項1ないし3のいずれか1項に記載の高強度熱延鋼板。
  5.  請求項1ないし4のいずれか1項に記載された高強度熱延鋼板の製造方法であり、
    鋼素材を、1150℃以上に加熱したのち、仕上圧延開始温度を1000℃以上1200℃以下、仕上圧延完了温度を830℃以上950℃以下とする熱間圧延を施し、該熱間圧延の仕上圧延を終了した後2.0s以内に冷却を開始し、30℃/s以上の平均冷却速度で300℃以上530℃以下の冷却停止温度まで冷却し、該冷却停止温度で巻き取る高強度熱延鋼板の製造方法。
PCT/JP2016/003396 2015-07-27 2016-07-20 高強度熱延鋼板およびその製造方法 WO2017017933A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/747,583 US11578375B2 (en) 2015-07-27 2016-07-20 High-strength hot-rolled steel sheet and method for manufacturing the same
KR1020187001646A KR102090884B1 (ko) 2015-07-27 2016-07-20 고강도 열연 강판 및 그 제조 방법
CN202310183510.6A CN116162857A (zh) 2015-07-27 2016-07-20 高强度热轧钢板及其制造方法
MX2018001082A MX2018001082A (es) 2015-07-27 2016-07-20 Lamina de acero laminada en caliente de alta resistencia y metodo para la fabricacion de la misma.
CN201680044137.4A CN107849663A (zh) 2015-07-27 2016-07-20 高强度热轧钢板及其制造方法
JP2016567062A JP6252692B2 (ja) 2015-07-27 2016-07-20 高強度熱延鋼板およびその製造方法
EP16830039.0A EP3296415B1 (en) 2015-07-27 2016-07-20 High-strength hot-rolled steel sheet and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015147454 2015-07-27
JP2015-147454 2015-07-27
JP2016027728 2016-02-17
JP2016-027728 2016-02-17

Publications (1)

Publication Number Publication Date
WO2017017933A1 true WO2017017933A1 (ja) 2017-02-02

Family

ID=57884207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003396 WO2017017933A1 (ja) 2015-07-27 2016-07-20 高強度熱延鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US11578375B2 (ja)
EP (1) EP3296415B1 (ja)
JP (1) JP6252692B2 (ja)
KR (1) KR102090884B1 (ja)
CN (2) CN107849663A (ja)
MX (1) MX2018001082A (ja)
WO (1) WO2017017933A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109023036A (zh) * 2017-06-12 2018-12-18 鞍钢股份有限公司 一种超高强热轧复相钢板及生产方法
CN110168126A (zh) * 2017-02-16 2019-08-23 日本制铁株式会社 热轧钢板及其制造方法
KR20190109459A (ko) * 2017-02-17 2019-09-25 제이에프이 스틸 가부시키가이샤 고강도 열연 강판 및 그의 제조 방법
KR20190125397A (ko) * 2017-04-07 2019-11-06 제이에프이 스틸 가부시키가이샤 강 부재, 상기 강 부재용의 열연 강판 및 이것들의 제조 방법
KR20190125396A (ko) * 2017-04-07 2019-11-06 제이에프이 스틸 가부시키가이샤 강 부재, 상기 강 부재용의 열연 강판 및 이것들의 제조 방법
EP3553196A4 (en) * 2017-02-06 2019-12-25 JFE Steel Corporation MELTED ZINC STEEL SHEET AND MANUFACTURING METHOD THEREFOR
KR20200011458A (ko) * 2017-08-09 2020-02-03 닛폰세이테츠 가부시키가이샤 열연 강판 및 그 제조 방법
WO2020026594A1 (ja) 2018-07-31 2020-02-06 Jfeスチール株式会社 高強度熱延めっき鋼板
JP2020507007A (ja) * 2017-01-20 2020-03-05 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 主成分としてベイナイトのミクロ組織を有する複合相鋼からなる熱延平鋼生産物およびかかる平鋼生産物の製造方法
JPWO2019181130A1 (ja) * 2018-03-22 2020-04-30 日本製鉄株式会社 耐摩耗鋼及びその製造方法
JP2021505759A (ja) * 2017-12-04 2021-02-18 エスエスアーベー テクノロジー アーベー 高強度熱間圧延鋼および高強度熱間圧延鋼の製造方法
JPWO2021117705A1 (ja) * 2019-12-09 2021-06-17
WO2021117711A1 (ja) 2019-12-09 2021-06-17 日本製鉄株式会社 熱延鋼板
JP2021116476A (ja) * 2020-01-23 2021-08-10 Jfeスチール株式会社 高強度熱延鋼板の製造方法
JP2022511066A (ja) * 2018-12-18 2022-01-28 ポスコ 成形性に優れた高強度熱延鋼板及びその製造方法
JPWO2022044493A1 (ja) * 2020-08-27 2022-03-03
JPWO2022044495A1 (ja) * 2020-08-27 2022-03-03
JP2022520835A (ja) * 2019-12-18 2022-04-01 ポスコ 打抜性と材質均一性に優れた高強度熱延鋼板及びその製造方法
WO2022244707A1 (ja) * 2021-05-17 2022-11-24 Jfeスチール株式会社 高強度熱延鋼板及び高強度熱延鋼板の製造方法
WO2022244706A1 (ja) * 2021-05-17 2022-11-24 Jfeスチール株式会社 高強度熱延鋼板及び高強度熱延鋼板の製造方法
WO2024009812A1 (ja) * 2022-07-07 2024-01-11 日本製鉄株式会社 熱延鋼板
JP7569927B2 (ja) 2020-09-22 2024-10-18 ポスコ カンパニー リミテッド 衝突性能に優れた熱延鋼板及びその製造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3296415B1 (en) * 2015-07-27 2019-09-04 JFE Steel Corporation High-strength hot-rolled steel sheet and method for manufacturing the same
WO2017168436A1 (en) * 2016-03-30 2017-10-05 Tata Steel Limited A HOT ROLLED HIGH STRENGTH STEEL (HRHSS) PRODUCT WITH TENSILE STRENGTH OF 1000 -1200 MPa AND TOTAL ELONGATION OF 16%-17%
CN105925887B (zh) * 2016-06-21 2018-01-30 宝山钢铁股份有限公司 一种980MPa级热轧铁素体贝氏体双相钢及其制造方法
CN108486505B (zh) * 2018-05-14 2020-04-07 东北大学 1200MPa级硅锰铬系热轧低碳钢板及其制备方法
CN110643894B (zh) * 2018-06-27 2021-05-14 宝山钢铁股份有限公司 具有良好的疲劳及扩孔性能的超高强热轧钢板和钢带及其制造方法
KR102109272B1 (ko) * 2018-10-01 2020-05-11 주식회사 포스코 타발성 및 재질 균일성이 우수한 고강도 열연강판 및 그 제조방법
CN114008231B (zh) * 2019-06-14 2022-06-07 杰富意钢铁株式会社 高强度热轧钢板及其制造方法
JP7243854B2 (ja) * 2019-11-06 2023-03-22 日本製鉄株式会社 熱延鋼板およびその製造方法
WO2021123887A1 (en) * 2019-12-19 2021-06-24 Arcelormittal High toughness hot rolled steel sheet and method of manufacturing the same
MX2022007339A (es) * 2019-12-20 2022-09-19 Tata Steel Ijmuiden Bv Tira de acero de alta resistencia laminada en caliente que tiene una alta relación de expansión de orificio.
EP4137592A4 (en) * 2020-04-17 2023-10-25 Nippon Steel Corporation HIGH STRENGTH HOT ROLLED STEEL SHEET
CN111394661B (zh) * 2020-04-30 2021-07-27 西京学院 一种低合金高强韧性马贝复相钢的制备工艺
CN111575466B (zh) * 2020-06-29 2021-10-22 张家港联峰钢铁研究所有限公司 一种热强耐蚀钢的热处理制备方法
WO2022004112A1 (ja) * 2020-06-30 2022-01-06 株式会社神戸製鋼所 厚鋼板およびその製造方法
CN114107785B (zh) * 2020-08-27 2022-10-21 宝山钢铁股份有限公司 一种具有超高屈强比的吉帕级贝氏体钢及其制造方法
CN114107798A (zh) * 2020-08-31 2022-03-01 宝山钢铁股份有限公司 一种980MPa级贝氏体高扩孔钢及其制造方法
KR102451005B1 (ko) * 2020-10-23 2022-10-07 주식회사 포스코 열적 안정성이 우수한 고강도 강판 및 이의 제조방법
CN113106337B (zh) * 2021-03-18 2022-08-09 唐山科技职业技术学院 一种980MPa级以上高扩孔钢及其生产方法
CN115852240B (zh) * 2021-09-24 2024-03-08 宝山钢铁股份有限公司 一种屈服强度750MPa级柔性管用钢及其制造方法
KR20240082040A (ko) * 2022-12-01 2024-06-10 현대제철 주식회사 열연 강판, 차량용 부품 및 이를 제조하는 방법
KR20240098898A (ko) * 2022-12-21 2024-06-28 주식회사 포스코 열연강판 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069425A (ja) * 2006-09-15 2008-03-27 Kobe Steel Ltd 伸びフランジ性に優れた熱延鋼板
WO2011152541A1 (ja) * 2010-05-31 2011-12-08 Jfeスチール株式会社 伸びフランジ性および耐疲労特性に優れた高強度熱延鋼板およびその製造方法
WO2014051005A1 (ja) * 2012-09-26 2014-04-03 新日鐵住金株式会社 複合組織鋼板およびその製造方法
WO2014171062A1 (ja) * 2013-04-15 2014-10-23 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2015129199A1 (ja) * 2014-02-27 2015-09-03 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3440894B2 (ja) * 1998-08-05 2003-08-25 Jfeスチール株式会社 伸びフランジ性に優れる高強度熱延鋼板およびその製造方法
US6364968B1 (en) * 2000-06-02 2002-04-02 Kawasaki Steel Corporation High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
JP3947354B2 (ja) 2000-12-07 2007-07-18 新日本製鐵株式会社 穴拡げ性と延性に優れた高強度熱延鋼板及びその製造方法
JP2004315857A (ja) 2003-04-14 2004-11-11 Nippon Steel Corp 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP4317419B2 (ja) 2003-10-17 2009-08-19 新日本製鐵株式会社 穴拡げ性と延性に優れた高強度薄鋼板
JP4955496B2 (ja) 2007-09-28 2012-06-20 株式会社神戸製鋼所 疲労特性及び伸びフランジ性に優れた高強度熱延鋼板
RU2502820C1 (ru) 2009-09-30 2013-12-27 ДжФЕ СТИЛ КОРПОРЕЙШН Толстолистовая сталь, характеризующаяся низким соотношением между пределом текучести и пределом прочности, высокой прочностью и высоким равномерным относительным удлинением, и способ ее изготовления
CN103882320B (zh) * 2012-12-21 2016-09-07 鞍钢股份有限公司 延伸凸缘性和点焊性优良的高强度冷轧钢板及其制造方法
EP2987887B1 (en) 2013-04-15 2019-09-11 JFE Steel Corporation High strength hot rolled steel sheet and method for producing same
JP5783229B2 (ja) 2013-11-28 2015-09-24 Jfeスチール株式会社 熱延鋼板およびその製造方法
KR101993201B1 (ko) 2015-03-26 2019-06-26 제이에프이 스틸 가부시키가이샤 구조관용 강판, 구조관용 강판의 제조 방법 및, 구조관
EP3296415B1 (en) * 2015-07-27 2019-09-04 JFE Steel Corporation High-strength hot-rolled steel sheet and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069425A (ja) * 2006-09-15 2008-03-27 Kobe Steel Ltd 伸びフランジ性に優れた熱延鋼板
WO2011152541A1 (ja) * 2010-05-31 2011-12-08 Jfeスチール株式会社 伸びフランジ性および耐疲労特性に優れた高強度熱延鋼板およびその製造方法
WO2014051005A1 (ja) * 2012-09-26 2014-04-03 新日鐵住金株式会社 複合組織鋼板およびその製造方法
WO2014171062A1 (ja) * 2013-04-15 2014-10-23 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2015129199A1 (ja) * 2014-02-27 2015-09-03 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7216002B2 (ja) 2017-01-20 2023-01-31 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト 主成分としてベイナイトのミクロ組織を有する複合相鋼からなる熱延平鋼生産物およびかかる平鋼生産物の製造方法
JP2020507007A (ja) * 2017-01-20 2020-03-05 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 主成分としてベイナイトのミクロ組織を有する複合相鋼からなる熱延平鋼生産物およびかかる平鋼生産物の製造方法
EP3553196A4 (en) * 2017-02-06 2019-12-25 JFE Steel Corporation MELTED ZINC STEEL SHEET AND MANUFACTURING METHOD THEREFOR
US11208712B2 (en) 2017-02-06 2021-12-28 Jfe Steel Corporation Galvanized steel sheet and method for manufacturing the same
US11274355B2 (en) 2017-02-16 2022-03-15 Nippon Steel Corporation Hot rolled steel sheet and method for producing same
EP3584346A4 (en) * 2017-02-16 2020-08-05 Nippon Steel Corporation HOT ROLLED STEEL SHEET AND ITS MANUFACTURING PROCESS
CN110168126A (zh) * 2017-02-16 2019-08-23 日本制铁株式会社 热轧钢板及其制造方法
JPWO2018151273A1 (ja) * 2017-02-16 2019-11-07 日本製鉄株式会社 熱間圧延鋼板及びその製造方法
KR20190107070A (ko) * 2017-02-16 2019-09-18 닛폰세이테츠 가부시키가이샤 열간 압연 강판 및 그의 제조 방법
KR102259597B1 (ko) * 2017-02-16 2021-06-02 닛폰세이테츠 가부시키가이샤 열간 압연 강판 및 그의 제조 방법
CN110312814B (zh) * 2017-02-17 2021-10-01 杰富意钢铁株式会社 高强度热轧钢板及其制造方法
EP3584337A4 (en) * 2017-02-17 2019-12-25 JFE Steel Corporation HIGH-STRENGTH HOT ROLLED STEEL SHEET AND METHOD FOR PRODUCING IT
KR20190109459A (ko) * 2017-02-17 2019-09-25 제이에프이 스틸 가부시키가이샤 고강도 열연 강판 및 그의 제조 방법
US11603571B2 (en) 2017-02-17 2023-03-14 Jfe Steel Corporation High-strength hot-rolled steel sheet and method for producing the same
KR102258320B1 (ko) 2017-02-17 2021-05-28 제이에프이 스틸 가부시키가이샤 고강도 열연 강판 및 그의 제조 방법
CN110312814A (zh) * 2017-02-17 2019-10-08 杰富意钢铁株式会社 高强度热轧钢板及其制造方法
KR20190125396A (ko) * 2017-04-07 2019-11-06 제이에프이 스틸 가부시키가이샤 강 부재, 상기 강 부재용의 열연 강판 및 이것들의 제조 방법
KR20190125397A (ko) * 2017-04-07 2019-11-06 제이에프이 스틸 가부시키가이샤 강 부재, 상기 강 부재용의 열연 강판 및 이것들의 제조 방법
KR102319579B1 (ko) 2017-04-07 2021-10-29 제이에프이 스틸 가부시키가이샤 강 부재, 상기 강 부재용의 열연 강판 및 이것들의 제조 방법
KR102319570B1 (ko) 2017-04-07 2021-10-29 제이에프이 스틸 가부시키가이샤 강 부재, 상기 강 부재용의 열연 강판 및 이것들의 제조 방법
CN109023036A (zh) * 2017-06-12 2018-12-18 鞍钢股份有限公司 一种超高强热轧复相钢板及生产方法
KR102378147B1 (ko) 2017-08-09 2022-03-24 닛폰세이테츠 가부시키가이샤 열연 강판 및 그 제조 방법
KR20200011458A (ko) * 2017-08-09 2020-02-03 닛폰세이테츠 가부시키가이샤 열연 강판 및 그 제조 방법
JP2021505759A (ja) * 2017-12-04 2021-02-18 エスエスアーベー テクノロジー アーベー 高強度熱間圧延鋼および高強度熱間圧延鋼の製造方法
US11655528B2 (en) 2017-12-04 2023-05-23 Ssab Technology Ab High strength hot-rolled steel and method for manufacturing high strength hot-rolled steel
JPWO2019181130A1 (ja) * 2018-03-22 2020-04-30 日本製鉄株式会社 耐摩耗鋼及びその製造方法
JP7093804B2 (ja) 2018-03-22 2022-06-30 日本製鉄株式会社 耐摩耗鋼
JP2020117811A (ja) * 2018-03-22 2020-08-06 日本製鉄株式会社 耐摩耗鋼
WO2020026594A1 (ja) 2018-07-31 2020-02-06 Jfeスチール株式会社 高強度熱延めっき鋼板
US11732340B2 (en) 2018-07-31 2023-08-22 Jfe Steel Corporation High-strength hot-rolled coated steel sheet
JP6669319B1 (ja) * 2018-07-31 2020-03-18 Jfeスチール株式会社 高強度熱延めっき鋼板及びその製造方法
KR20210025086A (ko) 2018-07-31 2021-03-08 제이에프이 스틸 가부시키가이샤 고강도 열연 도금 강판
JP7291788B2 (ja) 2018-12-18 2023-06-15 ポスコ カンパニー リミテッド 成形性に優れた高強度熱延鋼板
JP2022511066A (ja) * 2018-12-18 2022-01-28 ポスコ 成形性に優れた高強度熱延鋼板及びその製造方法
JP7277833B2 (ja) 2019-12-09 2023-05-19 日本製鉄株式会社 熱延鋼板
JPWO2021117705A1 (ja) * 2019-12-09 2021-06-17
KR20220062603A (ko) 2019-12-09 2022-05-17 닛폰세이테츠 가부시키가이샤 열연 강판
KR20220066348A (ko) 2019-12-09 2022-05-24 닛폰세이테츠 가부시키가이샤 열연 강판
WO2021117705A1 (ja) 2019-12-09 2021-06-17 日本製鉄株式会社 熱延鋼板
WO2021117711A1 (ja) 2019-12-09 2021-06-17 日本製鉄株式会社 熱延鋼板
JP7188618B2 (ja) 2019-12-09 2022-12-13 日本製鉄株式会社 熱延鋼板
JPWO2021117711A1 (ja) * 2019-12-09 2021-06-17
JP7373576B2 (ja) 2019-12-18 2023-11-02 ポスコ カンパニー リミテッド 打抜性と材質均一性に優れた高強度熱延鋼板及びその製造方法
JP2022520835A (ja) * 2019-12-18 2022-04-01 ポスコ 打抜性と材質均一性に優れた高強度熱延鋼板及びその製造方法
JP2021116476A (ja) * 2020-01-23 2021-08-10 Jfeスチール株式会社 高強度熱延鋼板の製造方法
JP7226458B2 (ja) 2020-01-23 2023-02-21 Jfeスチール株式会社 高強度熱延鋼板の製造方法
WO2022044493A1 (ja) * 2020-08-27 2022-03-03 日本製鉄株式会社 熱延鋼板
WO2022044495A1 (ja) * 2020-08-27 2022-03-03 日本製鉄株式会社 熱延鋼板
JPWO2022044495A1 (ja) * 2020-08-27 2022-03-03
JPWO2022044493A1 (ja) * 2020-08-27 2022-03-03
JP7495641B2 (ja) 2020-08-27 2024-06-05 日本製鉄株式会社 熱延鋼板
JP7495640B2 (ja) 2020-08-27 2024-06-05 日本製鉄株式会社 熱延鋼板
JP7569927B2 (ja) 2020-09-22 2024-10-18 ポスコ カンパニー リミテッド 衝突性能に優れた熱延鋼板及びその製造方法
JP7239071B1 (ja) * 2021-05-17 2023-03-14 Jfeスチール株式会社 高強度熱延鋼板及び高強度熱延鋼板の製造方法
JP7239072B1 (ja) * 2021-05-17 2023-03-14 Jfeスチール株式会社 高強度熱延鋼板及び高強度熱延鋼板の製造方法
WO2022244706A1 (ja) * 2021-05-17 2022-11-24 Jfeスチール株式会社 高強度熱延鋼板及び高強度熱延鋼板の製造方法
WO2022244707A1 (ja) * 2021-05-17 2022-11-24 Jfeスチール株式会社 高強度熱延鋼板及び高強度熱延鋼板の製造方法
WO2024009812A1 (ja) * 2022-07-07 2024-01-11 日本製鉄株式会社 熱延鋼板

Also Published As

Publication number Publication date
JP6252692B2 (ja) 2017-12-27
KR20180018803A (ko) 2018-02-21
EP3296415A1 (en) 2018-03-21
US11578375B2 (en) 2023-02-14
CN116162857A (zh) 2023-05-26
EP3296415B1 (en) 2019-09-04
MX2018001082A (es) 2018-06-06
CN107849663A (zh) 2018-03-27
US20180237874A1 (en) 2018-08-23
JPWO2017017933A1 (ja) 2017-08-03
EP3296415A4 (en) 2018-03-21
KR102090884B1 (ko) 2020-03-18

Similar Documents

Publication Publication Date Title
JP6252692B2 (ja) 高強度熱延鋼板およびその製造方法
JP6394841B1 (ja) 高強度熱延鋼板およびその製造方法
JP5967311B2 (ja) 高強度熱延鋼板およびその製造方法
US10156005B2 (en) High-yield-ratio, high-strength cold rolled steel sheet and production method therefor
KR101314979B1 (ko) 가공성이 우수한 고장력 용융 아연 도금 강판 및 그 제조 방법
JP5672421B1 (ja) 高強度熱延鋼板およびその製造方法
JP6252710B2 (ja) 温間加工用高強度鋼板およびその製造方法
JP5798740B2 (ja) 成形性に優れた高強度冷延鋼板及びその製造方法
WO2014171063A1 (ja) 高強度熱延鋼板およびその製造方法
WO2011004779A1 (ja) 高強度鋼板およびその製造方法
JP4790639B2 (ja) 伸びフランジ成形性と衝突吸収エネルギー特性に優れた高強度冷延鋼板及びその製造方法
KR20120126126A (ko) 가공성이 우수한 고장력 열연 강판 및 그 제조 방법
KR20170107057A (ko) 고강도 냉연 강판 및 그의 제조 방법
JP6597938B1 (ja) 高強度冷延鋼板、高強度めっき鋼板及びそれらの製造方法
JP6056790B2 (ja) 高強度熱延鋼板およびその製造方法
JP5867444B2 (ja) 靭性に優れた高強度熱延鋼板およびその製造方法
JP2018003062A (ja) 高強度高加工性熱延鋼板およびその製造方法
KR20210024135A (ko) 고강도 열연 강판 및 그의 제조 방법
JP5915412B2 (ja) 曲げ性に優れた高強度熱延鋼板およびその製造方法
JP2011214073A (ja) 冷延鋼板およびその製造方法
JP5533143B2 (ja) 冷延鋼板およびその製造方法
JP5776761B2 (ja) 冷延鋼板およびその製造方法
JP5776764B2 (ja) 冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016567062

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830039

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016830039

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187001646

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15747583

Country of ref document: US

Ref document number: MX/A/2018/001082

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE