WO2021117711A1 - 熱延鋼板 - Google Patents

熱延鋼板 Download PDF

Info

Publication number
WO2021117711A1
WO2021117711A1 PCT/JP2020/045641 JP2020045641W WO2021117711A1 WO 2021117711 A1 WO2021117711 A1 WO 2021117711A1 JP 2020045641 W JP2020045641 W JP 2020045641W WO 2021117711 A1 WO2021117711 A1 WO 2021117711A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
phase
hot
steel sheet
rolled steel
Prior art date
Application number
PCT/JP2020/045641
Other languages
English (en)
French (fr)
Inventor
伊藤 大輔
翔平 藪
武 豊田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to EP20898422.9A priority Critical patent/EP4074854A4/en
Priority to MX2022004889A priority patent/MX2022004889A/es
Priority to US17/767,229 priority patent/US20220372588A1/en
Priority to KR1020227012169A priority patent/KR20220062603A/ko
Priority to JP2021563968A priority patent/JP7277833B2/ja
Priority to CN202080073404.7A priority patent/CN114599813B/zh
Publication of WO2021117711A1 publication Critical patent/WO2021117711A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to a hot-rolled steel sheet. Specifically, the present invention relates to a high-strength hot-rolled steel sheet having excellent formability and low-temperature toughness.
  • the present application claims priority based on Japanese Patent Application No. 2019-222161 filed in Japan on December 9, 2019, the contents of which are incorporated herein by reference.
  • the strength of steel sheets is increasing in order to ensure the collision safety of automobiles and reduce the environmental load. As the strength of the steel sheet increases, the formability decreases. Therefore, improvement of the formability of the high-strength (preferably 980 MPa class) steel sheet is required.
  • ductility, hole expandability and bendability are used as indicators of formability, but these characteristics are in a trade-off relationship, and a steel sheet having excellent ductility, hole expandability and bendability is required. ..
  • a bainite phase having an area ratio of 85% or more is the main phase
  • a martensite phase or a martensite-austenite mixed phase having an area ratio of 15% or less is the second phase
  • the balance is a ferrite phase.
  • the average particle size of the second phase is 3.0 ⁇ m or less
  • the average aspect ratio of the old austenite grains is 1.3 or more and 5.0 or less
  • Patent Document 2 includes a bainite phase having an area ratio of more than 90% as a main phase, or further, as a second phase, one or more of a ferrite phase, a martensite phase and a retained austenite phase.
  • the average particle size of the bainite phase is 2.5 ⁇ m or less, and the interval of Fe-based carbides precipitated in the bainite ferrite grains in the bainite phase is 600 nm or less, and the tension is high.
  • a high-strength hot-rolled steel sheet having a strength TS of 980 MPa or more is disclosed.
  • the bainite phase is more than 92% by volume, the average interval of bainite lath is 0.60 ⁇ m or less, and the number ratio of Fe-based carbides precipitated in the grains among all Fe-based carbides is 10% or more.
  • a high-strength hot-rolled steel sheet having a certain structure and having excellent mass-produced punching property is disclosed.
  • Patent Document 4 the Mn microsegregation in the range of 1/8 t to 3/8 t of the plate thickness t satisfies the formula (1) (0.10 ⁇ ⁇ / Mn), and the average carbon content in the structure is 0.
  • Patent Document 1 does not consider bendability.
  • the present inventors have found that in the high-strength hot-rolled steel plate disclosed in Patent Document 1, it may not be possible to obtain excellent bendability, and it is necessary to further improve the hole-expandability. Furthermore, the present inventors have found that the high-strength hot-rolled steel sheet disclosed in Patent Document 1 may not be able to obtain excellent low-temperature toughness.
  • Patent Document 2 does not consider hole expandability and bendability.
  • the present inventors have found that in the high-strength hot-rolled steel sheet disclosed in Patent Document 2, excellent hole-expandability and bendability may not be obtained in some cases.
  • Patent Document 3 in order to ensure mass production punching performance, the total of the martensite phase and the retained austenite phase is less than 1%, so that sufficient strength cannot be obtained.
  • Patent Document 4 air cooling is performed in cooling after hot rolling to secure 3% or more of retained austenite.
  • the steel sheet described in Patent Document 4 is a so-called TRIP steel sheet. The present inventors have found that the steel sheet described in Patent Document 4 needs to have higher strength and hole-expandability.
  • an object of the present invention is to provide a hot-rolled steel sheet having excellent strength, ductility, bendability, hole-spreading property and low-temperature toughness.
  • the hot-rolled steel sheet according to one aspect of the present invention has a chemical composition of mass%.
  • C 0.040 to 0.150%, Si: 0.50 to 1.50%, Mn: 1.00 to 2.50%, P: 0.100% or less, S: 0.010% or less, Al: 0.01 to 0.10%, N: 0.0100% or less, Ti: 0.005 to 0.150%, B: 0.0005 to 0.0050%, Cr: 0.10 to 1.00%, Nb: 0 to 0.06%, V: 0 to 0.50%, Mo: 0 to 0.50%, Cu: 0 to 0.50%, Ni: 0 to 0.50%, Sb: 0 to 0.020%, Ca: 0 to 0.010%, REM: 0 to 0.010%, and Mg: 0 to 0.010% Containing, the balance is iron and impurities, In the metal structure at the position of 1/4 of the plate thickness in the plate thickness direction from the surface,
  • the average particle size of the second phase is 1.5 ⁇ m or less. Among all the particles in the second phase, the average particle size of the particles having a particle size within the top 10% is 2.5 ⁇ m or less.
  • the extreme density of the ⁇ 112> orientation is 3.0 or less, and The polar density in the (110) ⁇ 1-11> orientation is 3.0 or less in the metal structure from the surface to the metal structure at a position 1/16 of the plate thickness in the plate thickness direction from the surface.
  • the average spacing of MC carbides having a diameter of 20 nm or less is 50 nm or more in the metal structure at a position 1/4 of the plate thickness in the plate thickness direction from the surface. May be good.
  • the hot-rolled steel sheet according to (1) or (2) above has a chemical composition of% by mass.
  • Nb 0.005 to 0.06%
  • V 0.05 to 0.50%
  • Mo 0.05-0.50%
  • Cu 0.01-0.50%
  • Ni 0.01-0.50%
  • Sb 0.0002 to 0.020%
  • Ca 0.0002 to 0.010%
  • REM 0.0002 to 0.010%
  • Mg 0.0002 to 0.010% It may contain one or more selected from the group consisting of.
  • the hot-rolled steel sheet according to the present embodiment has a chemical composition of mass%, C: 0.040 to 0.150%, Si: 0.50 to 1.50%, Mn: 1.00 to 2.50%. , P: 0.100% or less, S: 0.010% or less, Al: 0.01 to 0.10%, N: 0.0100% or less, Ti: 0.005 to 0.150%, B: 0 It contains 0005 to 0.0050%, Cr: 0.10 to 1.00%, and the balance: iron and impurities.
  • mass% C: 0.040 to 0.150%, Si: 0.50 to 1.50%, Mn: 1.00 to 2.50%.
  • P 0.100% or less
  • S 0.010% or less
  • Al 0.01 to 0.10%
  • N 0.0100% or less
  • Ti 0.005 to 0.150%
  • B 0 It contains 0005 to 0.0050%
  • Cr 0.10 to 1.00%
  • the balance iron and impurities.
  • C 0.040 to 0.150%
  • C is an element that promotes the formation of bainite by improving the strength of the hot-rolled steel sheet and improving the hardenability.
  • the C content is set to 0.040% or more.
  • the C content is 0.050% or more and 0.060% or more.
  • the C content is set to 0.150% or less.
  • the C content is preferably 0.140% or less, 0.120% or less, and 0.100% or less.
  • Si 0.50 to 1.50%
  • Si is an element that contributes to solid solution strengthening and is an element that contributes to improving the strength of hot-rolled steel sheets. Further, Si is an element that suppresses the formation of carbides in steel. By suppressing the formation of carbides during bainite transformation, a fine martensite phase or a martensite-austenite mixed phase is formed at the lath interface of the bainite phase. Since the martensite phase or the martensite-austenite mixed phase present in the bainite phase is fine, it does not deteriorate the hole expanding property of the hot-rolled steel sheet. In order to obtain the above effect due to the Si content, the Si content is 0.50% or more.
  • the Si content is 0.55% or more, 0.60% or more, and 0.65% or more.
  • Si is also an element that lowers the toughness, and when the Si content exceeds 1.50%, the toughness of the hot-rolled steel sheet is lowered. Therefore, the Si content is 1.50% or less.
  • the Si content is 1.30% or less, 1.20% or less, and 1.00% or less.
  • Mn 1.00 to 2.50% Mn dissolves in the steel and contributes to the increase in the strength of the hot-rolled steel sheet, and promotes the formation of bainite by improving the hardenability, thereby improving the hole-expanding property of the hot-rolled steel sheet.
  • the Mn content is set to 1.00% or more.
  • the Mn content is 1.30% or more and 1.50% or more.
  • the Mn content is set to 2.50% or less.
  • the Mn content is 2.00% or less and 1.95% or less.
  • P 0.100% or less
  • P is an element that dissolves in steel and contributes to increasing the strength of hot-rolled steel sheets.
  • P is also an element that segregates at the grain boundaries, particularly the former austenite grain boundaries, and promotes the grain boundary fracture due to the grain boundary segregation, thereby causing a decrease in ductility, bendability, and hole expansion property of the hot-rolled steel sheet.
  • the P content is preferably as low as possible, but a P content of up to 0.100% is acceptable. Therefore, the P content is set to 0.100% or less.
  • the P content is 0.090% or less and 0.080% or less.
  • the P content is preferably 0%, but the P content may be 0.0001% or more because the production cost increases if the P content is reduced to less than 0.0001%.
  • the P content is 0.001% or more and 0.010% or more.
  • S 0.010% or less
  • S is an element that adversely affects weldability and manufacturability during casting and hot rolling.
  • S combines with Mn to form coarse MnS. This MnS deteriorates the bendability and hole widening property of the hot-rolled steel sheet, and promotes the occurrence of delayed fracture.
  • the S content is preferably as low as possible, but the content of S up to 0.010% is acceptable. Therefore, the S content is set to 0.010% or less.
  • the S content is 0.008% or less and 0.007% or less.
  • the S content is preferably 0%, but if it is reduced to less than 0.0001%, the manufacturing cost increases and it is economically disadvantageous. Therefore, the S content may be 0.0001% or more.
  • the S content is 0.001% or more.
  • Al 0.01 to 0.10%
  • Al is an element that acts as a deoxidizer and is effective in improving the cleanliness of steel.
  • the Al content is 0.01% or more.
  • the Al content is 0.02% or more.
  • the Al content is set to 0.10% or less.
  • the Al content is 0.08% or less and 0.06% or less.
  • N 0.0100% or less
  • N is an element that forms a coarse nitride in steel. This nitride deteriorates the bendability and hole expansion property of the hot-rolled steel sheet and also deteriorates the delayed fracture resistance. Therefore, the N content is set to 0.0100% or less. Preferably, the N content is 0.0080% or less, 0.0060% or less, 0.0050% or less. Since reducing the N content to less than 0.0001% causes a significant increase in manufacturing cost, the N content may be 0.0001% or more. Preferably, the N content is 0.0005% or more and 0.0010% or more.
  • Ti 0.005 to 0.150%
  • Ti is an element that forms a nitride in the austenite phase high temperature region (the high temperature region in the austenite phase region and the higher temperature region than the austenite phase region (casting stage)).
  • B is in a solid solution state, so that the hardenability required for the formation of bainite can be obtained.
  • the strength and hole expandability of the hot-rolled steel sheet can be improved.
  • Ti forms carbides in the steel during hot rolling to suppress recrystallization of old austenite grains. In order to obtain these effects, the Ti content is set to 0.005% or more.
  • the Ti content is 0.020% or more, 0.030% or more, 0.050% or more, 0.080% or more.
  • the Ti content is set to 0.150% or less.
  • the Ti content is 0.120% or less.
  • B 0.0005 to 0.0050%
  • B is an element that segregates at the grain boundaries of the former austenite, suppresses the formation and growth of ferrite, and contributes to the improvement of the strength and hole expansion property of the hot-rolled steel sheet.
  • the B content is 0.0005% or more.
  • the B content is 0.0007% or more and 0.0010% or more.
  • the B content is set to 0.0050% or less.
  • the B content is 0.0030% or less and 0.0025% or less.
  • Cr 0.10 to 1.00% Cr is an element that forms carbides in steel and contributes to increasing the strength of hot-rolled steel sheets, promotes the formation of bainite by improving hardenability, and promotes the precipitation of Fe-based carbides in bainite grains. ..
  • the Cr content is set to 0.10% or more.
  • the Cr content is 0.30% or more, 0.40% or more, 0.50% or more.
  • the Cr content is set to 1.00% or less.
  • the Cr content is 0.80% or less and 0.70% or less.
  • the balance of the chemical composition of the hot-rolled steel sheet according to the present embodiment may be Fe and impurities.
  • the impurities mean those mixed from ore as a raw material, scrap, manufacturing environment, etc., or those allowed within a range that does not adversely affect the characteristics of the hot-rolled steel sheet according to the present embodiment. To do.
  • the hot-rolled steel sheet according to the present embodiment may contain the following elements as optional elements instead of a part of Fe.
  • the lower limit of the content when the following optional elements are not contained is 0%.
  • each arbitrary element will be described in detail.
  • Nb 0 to 0.06%
  • Nb is an element that has the effect of forming carbides during hot rolling and suppressing the recrystallization of austenite, and contributes to improving the strength of the hot-rolled steel sheet.
  • the Nb content is preferably 0.005% or more.
  • the Nb content is more preferably 0.015% or more.
  • the Nb content is set to 0.06% or less.
  • the Nb content is 0.04% or less.
  • V 0 to 0.50%
  • V is an element that has the effect of forming carbonitride during hot rolling and suppressing the recrystallization of austenite, and contributes to the improvement of the strength of the hot-rolled steel sheet.
  • the V content is preferably 0.05% or more.
  • the V content is more preferably 0.10% or more.
  • the V content is set to 0.50% or less.
  • the V content is 0.25% or less.
  • Mo is an element that promotes the formation of a bainite phase by improving hardenability and contributes to improving the strength and hole expansion of hot-rolled steel sheets.
  • the Mo content is preferably 0.05% or more.
  • the Mo content is more preferably 0.10% or more.
  • the Mo content is set to 0.50% or less.
  • the Mo content is 0.30% or less.
  • Cu 0 to 0.50%
  • Cu is an element that dissolves in steel and contributes to increasing the strength of hot-rolled steel sheets.
  • Cu is an element that promotes the formation of a bainite phase by improving the hardenability and contributes to the improvement of the strength and the hole expanding property of the hot-rolled steel sheet.
  • the Cu content is preferably 0.01% or more.
  • the Cu content is more preferably 0.02% or more.
  • the Cu content is set to 0.50% or less.
  • the Cu content is 0.20% or less.
  • Ni is an element that dissolves in steel and contributes to increasing the strength of hot-rolled steel sheets. Further, Ni is an element that promotes the formation of a bainite phase by improving the hardenability and contributes to the improvement of the strength and the hole expanding property of the hot-rolled steel sheet. In order to surely obtain these effects, the Ni content is preferably 0.01% or more. The Ni content is more preferably 0.02% or more. On the other hand, when the Ni content exceeds 0.50%, a martensite phase or a martensite-austenite mixed phase is likely to be formed, and the bendability and / or hole expansion property of the hot-rolled steel sheet are lowered. In some cases. Therefore, the Ni content is set to 0.50% or less. Preferably, the Ni content is 0.20% or less.
  • Sb 0 to 0.020%
  • Sb has the effect of suppressing nitriding of the slab surface at the slab heating stage.
  • the Sb content is preferably 0.0002% or more.
  • the Sb content is more preferably 0.001% or more.
  • the Sb content is set to 0.020% or less.
  • Ca 0 to 0.010%
  • Ca is an element that controls the shape of sulfide-based inclusions and improves the ductility and hole-expandability of hot-rolled steel sheets.
  • the Ca content is preferably 0.0002% or more.
  • the Ca content is more preferably 0.001% or more.
  • the Ca content is set to 0.010% or less.
  • the Ca content is 0.008% or less.
  • REM 0 to 0.010%
  • the REM content is preferably 0.0002% or more.
  • the REM content is more preferably 0.001% or more.
  • the REM content is set to 0.010% or less.
  • the REM content is 0.008% or less.
  • REM refers to a total of 17 elements composed of Sc, Y and lanthanoid, and the content of REM refers to the total content of these elements.
  • lanthanoids they are industrially added in the form of misch metal.
  • Mg 0 to 0.010%
  • Mg is an element whose morphology of sulfide can be controlled by containing it in a small amount.
  • the Mg content is preferably 0.0002% or more.
  • the Mg content is more preferably 0.0005% or more.
  • the Mg content is set to 0.010% or less.
  • the Mg content is 0.008% or less.
  • the chemical composition of the hot-rolled steel sheet may be measured by a general analysis method.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • C and S may be measured by using the combustion-infrared absorption method
  • N may be measured by using the inert gas melting-thermal conductivity method.
  • the hot-rolled steel plate according to the present embodiment is a bainite phase having a main phase of 90.0 to 98.0% in terms of area ratio in a metal structure at a position of 1/4 of the plate thickness in the plate thickness direction from the surface.
  • the two phases are a martensite phase of 2.0 to 10.0% or a martensite-austenite mixed phase, the average particle size of the second phase is 1.5 ⁇ m or less, and all the particles of the second phase.
  • the average particle size of the particles whose particle size is within the top 10% is 2.5 ⁇ m or less
  • the polar density in the (110) ⁇ 112> orientation is 3.0 or less
  • the surface to the surface In the metal structure at 1/16 of the plate thickness in the bainite direction, the extreme density in the (110) ⁇ 1-11> orientation is 3.0 or less.
  • the types of the main phase and the second phase at the position 1/4 of the plate thickness in the plate thickness direction from the surface, the average particle size of the second phase, and the extreme density in the (110) ⁇ 112> orientation are determined. This is specified because the metallographic structure at this position represents the typical metallic structure of the steel sheet. Further, the position defining the metal structure is preferably the center position in the plate width direction.
  • each regulation will be described.
  • Bainite phase (main phase): 90.0-98.0%
  • the hot-rolled steel sheet according to the present embodiment has a bainite phase as the main phase.
  • the area ratio of the bainite phase, which is the main phase, is 90.0% or more.
  • the main phase means that the area ratio is 90.0% or more.
  • the bainite phase means a lath-like bainitic ferrite and a structure having Fe-based carbides between and / or inside the bainitic ferrite. Unlike polygonal ferrite, bainitic ferrite has a lath-like shape and has a relatively high dislocation density inside, so it can be easily distinguished from other structures using SEM or TEM.
  • the area ratio of the bainite phase is set to 90.0% or more.
  • the area ratio of the bainite phase exceeds 98.0%, the strength may not be high (preferably the tensile strength is 980 MPa or more), so the area ratio of the bainite phase is 98.0% or less.
  • it is 96.0% or less and 95.0% or less.
  • Martensite phase or martensite-austenite mixed phase (Phase 2): 2.0-10.0%
  • the hot-rolled steel sheet according to the present embodiment has a martensite phase or a martensite-austenite mixed phase as the second phase.
  • the martensite phase is a collection of lath-shaped crystal grains, and means a structure in which iron carbides have two or more elongation directions inside the crystal grains.
  • the mixed phase of martensite-austenite is also called striped martensite (MA: Martensite-Austenite Constituent) and means a structure composed of both martensite and retained austenite.
  • the area ratio of the second phase is set to 2.0% or more. Preferably, it is 3.0% or more, 4.0% or more, and 5.0% or more.
  • the area ratio of the second phase is set to 10.0% or less. Preferably, it is 9.0% or less, 8.0% or less, 7.0% or less.
  • the hot-rolled steel sheet according to the present embodiment may contain 5% or less of ferrite in addition to the bainite phase and the second phase. However, since it is not always necessary to contain ferrite, the area ratio of ferrite may be 0%.
  • the method for measuring the area ratio of the metal structure will be described below.
  • the test piece is collected so that the region at the / 8 position, that is, the region starting from the 1/8 position in the plate thickness direction from the surface and ending at the 3/8 position in the plate thickness direction from the surface) can be observed.
  • the cross section of the test piece is mirror-polished, corroded with a repera corrosive solution, and then the structure is observed using an optical microscope.
  • the second phase appears as a white part with the Repeller corrosive liquid, and the other structures (bainite phase) are stained, so that they can be easily identified.
  • the area ratio of the white part is calculated by binarizing the white part (bright part) and the other areas. For example, by binarizing the white portion and the other region using image analysis software such as Image-J, the area ratio of the white portion and the area ratio of the other region can be obtained.
  • the observation field of view shall be three or more, and the area of each field of view shall be 300 ⁇ m ⁇ 400 ⁇ m or more.
  • the area ratio of the second phase is obtained by calculating the average value of the area ratio of the white part measured in a plurality of fields of view.
  • the area ratio of the bainite phase is obtained by calculating the average value of the area ratio of the region other than the white portion measured in a plurality of visual fields.
  • the ferrite phase is dyed white in the same manner as the bainite phase.
  • the bainite phase and the ferrite phase can be easily distinguished by observing their morphology.
  • the area ratio of the bainite phase is obtained by subtracting the area ratio of the white portion determined to be the ferrite phase from the area ratio of the region other than the white portion.
  • the bainite phase is observed as lath-shaped crystal grains, and the ferrite phase is observed as massive crystal grains containing no lath inside.
  • Average particle size of the second phase 1.5 ⁇ m or less
  • the average particle size of the second phase is small. If the average particle size of the second phase is more than 1.5 ⁇ m, the desired hole-expanding property cannot be obtained. Therefore, the average particle size of the second phase is set to 1.5 ⁇ m or less. It is preferably 1.4 ⁇ m or less, and more preferably 1.3 ⁇ m or less. Since it is technically difficult to make the average particle size of the second phase less than 0.1 ⁇ m, the average particle size of the second phase may be 0.1 ⁇ m or more.
  • Average particle size of particles having a particle size within the top 10% of all particles in the second phase 2.5 ⁇ m or less Among all particles in the second phase, the particle size is within the top 10% When the average particle size of the particles is large, the starting points of voids are increased, so that the hole expanding property of the hot-rolled steel sheet is lowered. Therefore, among all the particles in the second phase, it is preferable that the average particle size of the particles having a particle size within the top 10% is smaller.
  • the average particle size of the particles having a particle size within the top 10% of all the particles of the second phase is set to 2.5 ⁇ m or less. It is preferably 2.3 ⁇ m or less, more preferably 2.2 ⁇ m or less, and even more preferably 2.0 ⁇ m or less.
  • the lower limit of the average particle size of the particles whose particle size is within the top 10% is not particularly limited, but may be 1.5 ⁇ m or more and 1.7 ⁇ m or more.
  • the hot-rolled steel sheet it is a plate thickness cross section perpendicular to the rolling direction, and is a 1/4 position of the plate thickness in the plate thickness direction from the surface (1/8 position in the plate thickness direction from the surface to 3 in the plate thickness direction from the surface).
  • the test piece is collected so that the region at the / 8 position, that is, the region starting from the 1/8 position in the plate thickness direction from the surface and ending at the 3/8 position in the plate thickness direction from the surface) can be observed.
  • the cross section of the test piece is mirror-polished, corroded with a repera corrosive solution, and then the structure is observed using an optical microscope.
  • image analysis software image-J
  • a binarized image of the white part and the other areas is created.
  • particle analysis is performed based on the binarized image, and the area of each particle is calculated.
  • the observation field of view is set to three or more, and the average particle size of the second phase is obtained by calculating the average value of the average particle size obtained in each field of view.
  • the average particle size of the particles having a particle size within the top 10% of the total particles of the second phase is calculated, and the average value of the entire field is calculated.
  • the average particle size of the particles having a particle size within the top 10% is obtained.
  • the average particle size of the particles whose particle size is within the top 10% is, for example, 100 particles of the second phase observed in one field of view, and the particles having the smallest particle size are ordered from 1. When numbered 2, 3 ... 99, 100, it means the average value of the particle size of the 91st to 100th particles.
  • the second phase which has an area of less than 0.5 ⁇ m 2 , does not affect the hole-spreading property of the hot-rolled steel sheet. Therefore, the above-mentioned measurements (average particle size of the second phase and total particles of the second phase) are performed. Of these, the measurement of the average particle size of the particles whose particle size is within the top 10%) is excluded from the measurement target.
  • Extreme density of (110) ⁇ 112> orientation 3.0 or less
  • the extreme density of (110) ⁇ 112> orientation in the metal structure at the position of 1/4 of the plate thickness in the plate thickness direction from the surface is the degree of development of the rolled texture. It is an index to evaluate. The more the polar density of the (110) ⁇ 112> orientation develops, that is, the larger the polar density of the (110) ⁇ 112> orientation, the greater the anisotropy of the structure and the lower the hole expanding property of the hot-rolled steel sheet. If the polar density of the (110) ⁇ 112> orientation exceeds 3.0, the hole expanding property is lowered. Therefore, the polar density of the (110) ⁇ 112> orientation is set to 3.0 or less. Preferably, it is 2.8 or less, 2.5 or less, and 2.3 or less.
  • the lower limit may be 1.0.
  • the extreme density of the ⁇ 112> orientation was measured by the EBSD (Electron Backscattering Diffraction) method using a device combining a scanning electron microscope and an EBSD analyzer and an OIM Analysis (registered trademark) manufactured by AMETEK.
  • the orientation data can be obtained from the crystal orientation distribution function (ODF: Orientation Diffraction Function) that displays the three-dimensional texture calculated by calculating using the spherical harmonics.
  • the measurement range is 1/4 position of the plate thickness in the plate thickness direction from the surface (1/8 position in the plate thickness direction from the surface to 3/8 position in the plate thickness direction from the surface, that is, 1 in the plate thickness direction from the surface. A region starting from the / 8 position and ending at the 3/8 position in the plate thickness direction from the surface), and a region of 400 ⁇ m in the rolling direction. It is preferable to set the measurement pitch so that the measurement pitch is 0.5 ⁇ m / step or less.
  • the polar density of the (110) ⁇ 1-11> orientation at this position develops, that is, when the polar density of the (110) ⁇ 1-11> orientation increases, the anisotropy of the structure increases and the hot-rolled steel sheet bends. The sex is reduced. If the polar density in the (110) ⁇ 1-11> orientation exceeds 3.0, the bendability of the hot-rolled steel sheet decreases, so the polar density in the (110) ⁇ 1-11> orientation should be 3.0 or less. .. Preferably, it is 2.8 or less, 2.5 or less, and 2.2 or less.
  • the extreme density of the ⁇ 1-11> orientation is 1.0 when it does not have an texture, so the lower limit may be 1.0.
  • the extreme density of the ⁇ 1-11> orientation is determined by the EBSD (Electron Backscattering Diffraction) method using a device combining a scanning electron microscope and an EBSD analyzer and an OIM Analysis (registered trademark) manufactured by AMETEK.
  • the measured orientation data can be obtained from the crystal orientation distribution function (ODF: Orientation Diffraction Function) that displays the three-dimensional texture calculated by calculating using the spherical harmonics.
  • the measurement range is a region from the surface to the surface at a position of 1/16 of the plate thickness in the plate thickness direction (a region starting from the surface and ending at a position of 1/16 of the plate thickness in the plate thickness direction from the surface) and rolling. In the direction, a region of 400 ⁇ m or more is evaluated. It is preferable to set the measurement pitch so that the measurement pitch is 0.5 ⁇ m / step or less.
  • the hot-rolled steel sheet according to the present embodiment has a plate thickness of 1 in the plate thickness direction from the surface. / 4 position (1/8 position in the plate thickness direction from the surface to 3/8 position in the plate thickness direction from the surface, that is, 1/8 position in the plate thickness direction from the surface is the starting point, and 3 in the plate thickness direction from the surface In the metallographic structure in the region ending at the / 8 position), the average spacing of MC carbides having a diameter of 20 nm or less may be 50 nm or more.
  • the MC carbide means a metal carbide such as TiC and VC.
  • the average spacing of MC carbides with a diameter of 20 nm or less can be adjusted, in particular by more tightly controlling the cooling rate after the completion of hot rolling. Specifically, by setting the average cooling rate in cooling after hot rolling to 90 ° C./s or more, MC having a diameter of 20 nm or less in the metal structure at a position 1/4 of the plate thickness in the plate thickness direction from the surface.
  • the average spacing of carbides can be 50 nm or more.
  • the method for measuring the average interval of MC carbides having a diameter of 20 nm or less will be described below.
  • the sheet thickness is parallel to the rolling direction of the hot-rolled steel sheet, and the plate thickness is 1/4 of the plate thickness in the plate thickness direction from the surface (1/8 position in the plate thickness direction from the surface to the plate from the surface).
  • a test piece is collected so that the metallographic structure in the area at the 3/8 position in the thickness direction can be observed.
  • the cross section is electrolytically etched, and 10 fields of view are photographed with a transmission electron microscope (TEM) at a magnification of 20000 times.
  • TEM transmission electron microscope
  • MC carbides with a precipitate diameter of less than 5 nm do not affect the improvement of low temperature toughness and are difficult to observe, so they are excluded from the above-mentioned observation targets.
  • the MC carbide to be observed refers to a metal carbide such as TiC and VC.
  • a preferred method for producing a hot-rolled steel sheet according to the present embodiment includes the following steps.
  • a hot rolling process in which hot rolling is performed so that the hot rolling start temperature is 1050 to 1200 ° C. and the finish rolling completion temperature is more than 950 ° C. and 1050 ° C. or lower.
  • a cooling step in which cooling is started within 1.0 second after the completion of the hot rolling and the cooling is performed at an average cooling rate of 30 to 150 ° C./s to a cooling stop temperature of 400 to 500 ° C.
  • a winding step in which winding is performed in a temperature range of 400 to 500 ° C. after cooling to the cooling shutdown temperature.
  • the heating step the slab having the above-mentioned chemical composition is heated to 1100 ° C. or higher and lower than 1350 ° C. Since the coarse precipitates present at the slab stage cause cracks during rolling and deterioration of material properties, it is preferable to heat the steel material before hot rolling to dissolve the coarse carbides as a solid solution. Therefore, the heating temperature is preferably 1100 ° C. or higher. More preferably, it is 1150 ° C. or higher. On the other hand, even if the heating temperature becomes too high, the yield decreases due to the large amount of scale generated, so the heating temperature is preferably 1350 ° C. or lower. More preferably, it is 1300 ° C. or lower.
  • the slab to be heated is preferably produced by continuous casting from the viewpoint of manufacturing cost, but may be produced by another casting method (for example, ingot forming method).
  • Hot rolling step The temperature of the steel sheet in hot rolling affects the precipitation of carbides and nitrides of Ti and Nb in austenite. If the hot rolling start temperature is less than 1050 ° C., precipitation starts before the start of hot rolling and the precipitate becomes coarse, so that the precipitate cannot be controlled to a desired form and a homogeneous slab can be obtained. May not be possible. Therefore, the hot rolling start temperature is preferably 1050 ° C. or higher. More preferably, it is 1070 ° C. or higher. On the other hand, when the hot rolling start temperature exceeds 1200 ° C., it becomes difficult to start the precipitation of the precipitate during the hot rolling, and the precipitate may not be controlled to a desired form. Therefore, the hot rolling start temperature is preferably 1200 ° C. or lower. More preferably, it is 1170 ° C. or lower.
  • the finish rolling completion temperature is a factor that affects the texture of the former austenite grains.
  • the finish rolling completion temperature is preferably over 950 ° C. More preferably, it is 960 ° C. or higher.
  • the finish rolling completion temperature is preferably 1050 ° C. or lower. More preferably, it is 1020 ° C. or lower.
  • the slab Before hot rolling, the slab may be roughly rolled to form a rough bar and then hot rolled.
  • descaling may be performed by a conventional method, for example, so that the collision pressure of the injected water is less than 3.0 MPa. If high-pressure descaling is performed in which the collision pressure of the injected water is 3.0 MPa or more, the texture in the surface layer may not be preferably controlled.
  • the total reduction rate of the reduction rate in the final pass and the reduction rate one pass before the final pass is preferably less than 30%.
  • Cooling step in order to obtain a desired metal structure, the cooling conditions after hot rolling in the cooling step and the cooling conditions after winding into a coil in the coil cooling step are controlled in a complex and indivisible manner. Is effective.
  • the rolling since the rolling is performed at a relatively high temperature, the coarsening of the old austenite grains tends to proceed. Therefore, it is necessary to start cooling in a short time after the completion of finish rolling to suppress the coarsening of the old austenite grains. If the time from the completion of finish rolling to the start of cooling is long, the old austenite particles become coarse, and the particle size is within the top 10% of the desired average particle size of the second phase and the total particles of the second phase. It may not be possible to obtain the average particle size of the particles. The earlier the cooling start time is, the better, and in the present embodiment, it is preferable to start cooling within 1.0 second after the completion of hot rolling. More preferably, it is within 0.5 seconds, and more preferably 0 seconds.
  • the cooling start time referred to here refers to the elapsed time from the completion of finish rolling to the start of cooling (cooling having an average cooling rate of 30 to 150 ° C./s), which will be described later.
  • the cooling after hot rolling is performed at an average cooling rate of 30 to 150 ° C./s to a cooling shutdown temperature of 400 to 500 ° C. If the average cooling rate is too slow, ferrite will precipitate, making it impossible to obtain the desired amount of bainite phase, and it may not be possible to obtain the desired tensile strength and / or hole-expanding property. Further, when the average cooling rate is slow, carbide-forming elements Ti, V, Nb and the like may be bonded to carbon to form a large amount of precipitates, and the low-temperature toughness of the hot-rolled steel sheet may be lowered. Therefore, the average cooling rate of cooling after the completion of hot rolling is preferably 30 ° C./s or more.
  • the average cooling rate in cooling after hot rolling May be 90 ° C./s or higher.
  • the average cooling rate of cooling after the completion of hot rolling is preferably 150 ° C./s or less. More preferably, it is 120 ° C./s or less, and more preferably 100 ° C./s or less.
  • the average cooling rate in the present embodiment is a value obtained by dividing the temperature difference between the start point and the end point of the set range by the elapsed time from the start point to the end point. If the cooling shutdown temperature is outside the temperature range of 400 to 500 ° C., the winding step described later cannot be performed in a desired temperature range. Further, in order to obtain a desired metal structure, it is desirable not to perform air cooling in order to suppress ferrite transformation during cooling in cooling after hot rolling.
  • the winding temperature is 400 in order to suppress the ferrite transformation and promote the bainite transformation, and to control the distribution, morphology, and fraction of the second phase. It is preferable to wind the product so that the temperature range is about 500 ° C. If the winding temperature is less than 400 ° C., martensitic transformation is likely to occur, so that the area ratio of the martensite phase increases, and the desired ductility may not be obtained. Therefore, the winding temperature is preferably 400 ° C. or higher. More preferably, it is 420 ° C. or higher.
  • the winding temperature exceeds 500 ° C.
  • carbide-forming elements such as Ti, Nb and V combine with carbon to form fine MC carbides, which may deteriorate the low-temperature toughness of the hot-rolled steel sheet. Therefore, the winding temperature is preferably 500 ° C. or lower. More preferably, it is 480 ° C. or lower.
  • Coil cooling step The cooling rate after winding into a coil affects the microstructure fraction of the second phase.
  • carbon enrichment to untransformed austenite is performed.
  • Untransformed austenite is the tissue before transformation into the second phase (martensite phase, or martensite-austenite mixed phase).
  • the coil is wound and then cooled at an average cooling rate of 25 ° C./h or less, untransformed austenite may be decomposed and a desired amount of the second phase may not be obtained.
  • carbon concentration to untransformed austenite progresses excessively, the hardness of the second phase becomes excessive, and the difference in hardness between the structures of the main phase and the second phase becomes large, so that the holes in the hot-rolled steel sheet become large.
  • the average cooling rate is preferably more than 25 ° C./h. More preferably, it is 30 ° C./or higher.
  • the average cooling rate is preferably 100 ° C./h or less. More preferably, it is 80 ° C./h or less, and even more preferably 60 ° C./h or less.
  • the cooling after winding into a coil is performed up to a temperature range of 50 ° C. or lower at the above-mentioned average cooling rate.
  • the conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention.
  • the present invention is not limited to this one-condition example.
  • the present invention may adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
  • the average particle size of the second phase among the microstructure fraction at the position of 1/4 of the plate thickness in the plate thickness direction from the surface, the average particle size of the second phase, and the total particles of the second phase.
  • the average particle size of particles whose diameter is within the top 10%, the extreme density in the (110) ⁇ 112> orientation, the average spacing of deposits with a diameter of 20 nm or less, and the plate thickness from surface to surface in the plate thickness direction.
  • the extreme density of the (110) ⁇ 1-11> orientation in the metal structure at the 1/16 position of the above was determined.
  • the test No. For 18, 33, 35 and 36, the second phase was connected and the particle size could not be measured as particles.
  • the tensile strength TS, total elongation El, hole expansion ratio ⁇ , limit bending radius R, and ductile brittle transition temperature vTrs were determined by the methods described below.
  • Tensile strength TS and total elongation El were obtained by performing a tensile test using a JIS No. 5 test piece in accordance with JIS Z 2241: 2011. The crosshead speed was set to 10 mm / min. When the tensile strength TS was 980 MPa or more, it was determined to be acceptable as having excellent strength, and when it was less than 980 MPa, it was determined to be unacceptable as being inferior in strength. When the total elongation El was 13.0% or more, it was judged to be acceptable as having excellent ductility, and when it was less than 13.0%, it was judged to be rejected as being inferior in ductility.
  • Hole expansion rate ⁇ The hole expandability is obtained by punching a circular hole with a diameter of 10 mm under the condition that the clearance is 12.5% using a 60 ° conical punch, and performing a hole expansion test so that the burr is on the die side. It was evaluated by the spread ratio ⁇ . For each test number, five hole expansion tests were carried out, and the average value thereof was calculated to obtain a hole expansion rate ⁇ . When the hole expanding rate was 60% or more, it was judged to be acceptable as having excellent hole expanding property, and when it was less than 60%, it was determined to be rejected as being poor in hole expanding property.
  • Limit bending radius R The bendability was evaluated by the limit bending radius R obtained by performing a V-bending test.
  • the limit bending radius R is V-bent using the No. 1 test piece in accordance with JIS Z 2248: 2014 so that the direction perpendicular to the rolling direction is the longitudinal direction (the bending ridge line coincides with the rolling direction). Obtained by conducting a test.
  • the angle between the die and the punch was set to 60 °, and the V-bending test was performed by changing the tip radius of the punch in units of 0.1 mm to obtain the maximum value of the tip radius of the punch that could be bent without cracking. I asked.
  • the maximum value of the tip radius of the punch that could be bent without cracking was defined as the limit bending radius R.
  • the value (R / t) obtained by dividing the limit bending radius R by the plate thickness t of the test piece is 1.0 or less, it is judged to be acceptable as having excellent bendability, and is described as "Good” in Tables 7 and 8. did.
  • the value (R / t) obtained by dividing the limit bending radius R by the plate thickness t of the test piece is more than 1.0, it is judged as inferior in bendability and rejected. ".
  • Ductile brittle transition temperature vTrs The ductile brittle transition temperature vTrs was subjected to a Charpy impact test using a 2.5 mm sub-sized V-notch test piece specified in JIS Z 2242: 2018. The temperature at which the brittle fracture surface ratio was 50% was determined, and this was defined as the ductile brittle transition temperature vTrs.
  • the ductile brittle transition temperature vTrs is -40 ° C or lower (including -40 ° C, negative value from -40 ° C), it is judged to be acceptable as having excellent low temperature toughness, and it is judged to be acceptable over -40 ° C (not including -40 ° C).
  • the examples of the present invention have excellent strength, ductility, bendability, hole expandability and low temperature toughness. Further, it can be seen that the example of the present invention in which the average spacing of precipitates having a diameter of 20 nm or less is 50 nm or more has better low temperature toughness. On the other hand, it can be seen that the comparative example is inferior in one or more of strength, ductility, bendability and hole widening property.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

この熱延鋼板は、所定の化学組成を有し、表面から板厚方向に板厚の1/4位置における金属組織において、主相がベイナイト相であり、第2相がマルテンサイト相、またはマルテンサイト-オーステナイト混合相であり、前記第2相の平均粒径が1.5μm以下であり、前記第2相の全粒子のうち、粒径の大きさが上位10%以内である粒子の平均粒径が2.5μm以下であり、(110)<112>方位の極密度が3.0以下であり、前記表面~前記表面から板厚方向に板厚の1/16位置の金属組織において、(110)<1-11>方位の極密度が3.0以下である。

Description

熱延鋼板
 本発明は、熱延鋼板に関する。具体的には、本発明は、優れた成形性および低温靭性を有する高強度熱延鋼板に関する。
 本願は、2019年12月9日に、日本に出願された特願2019-222161号に基づき優先権を主張し、その内容をここに援用する。
 自動車の衝突安全性の確保および環境負荷低減のために鋼板の高強度化が進んでいる。鋼板の高強度化に伴い、成形性が低下するため、高強度(好ましくは980MPa級)鋼板においては成形性の改善が求められている。一般に、成形性の指標として、延性、穴広げ性および曲げ性が用いられるが、これらの特性はトレードオフの関係にあり、延性、穴広げ性および曲げ性の全てに優れる鋼板が求められている。
 また、足回り部品などの複雑な部品形状をプレス成型する時には、延性および穴広げ性に優れることが特に必要となる。さらに、衝撃特性を確保するためには鋼板の高強度化に加えて、低温靭性に優れることも必要とされる場合がある。
 特許文献1には、面積率で85%以上のベイナイト相を主相とし、面積率で15%以下のマルテンサイト相またはマルテンサイト-オーステナイト混合相を第2相とし、残部がフェライト相からなり、前記第2相の平均粒径が3.0μm以下であり、さらに旧オーステナイト粒の平均アスペクト比が1.3以上5.0以下であり、未再結晶旧オーステナイト粒に対する再結晶旧オーステナイト粒の面積率が15%以下である組織を有し、かつ熱延鋼板中に析出している直径20nm未満の析出物が質量%で0.10%以下であり、引張強さTSが980MPa以上である高強度熱延鋼板が開示されている。
 特許文献2には、主相として面積率で90%超のベイナイト相を含み、またはさらに、第2相としてフェライト相、マルテンサイト相および残留オーステナイト相のうちの1種または2種以上を面積率で合計10%未満含み、前記ベイナイト相の平均粒径が2.5μm以下、かつ、前記ベイナイト相中のベイニティックフェライト粒内に析出しているFe系炭化物の間隔が600nm以下であり、引張強さTSが980MPa以上であることを特徴とする高強度熱延鋼板が開示されている。
 特許文献3には、ベイナイト相が体積率で92%超、ベイナイトラスの平均間隔が0.60μm以下、かつ全Fe系炭化物のうち粒内に析出したFe系炭化物の個数比率が10%以上である組織を有することを特徴とする、量産打抜き性に優れた高強度熱延鋼板が開示されている。
 特許文献4には、板厚tの1/8t~3/8tの範囲でのMnミクロ偏析が、式(1)(0.10≧σ/Mn)を満たし、組織中に平均炭素量0.9%以上の残留オーステナイトを3%以上含有することを特徴とする、成形性に優れた高強度薄鋼板が開示されている。
国際公開第2017/017933号 国際公開第2015/129199号 日本国特開2014-205888号公報 日本国特開2007-70660号公報
 特許文献1では、曲げ性について考慮されていない。本発明者らは、特許文献1に開示された高強度熱延鋼板において、優れた曲げ性を得ることができない場合があること、また穴広げ性をより向上させる必要があることを知見した。更に、本発明者らは、特許文献1に開示された高強度熱延鋼板において、優れた低温靭性を得ることができない場合があることを知見した。
 特許文献2では、穴広げ性および曲げ性について考慮されていない。本発明者らは、特許文献2に開示された高強度熱延鋼板において、優れた穴広げ性および曲げ性を得ることができない場合があることを知見した。
 特許文献3では、量産打抜き性確保のために、マルテンサイト相、残留オーステナイト相の合計を1%未満としているため、十分な強度を得ることができない。 
 特許文献4では、熱間圧延後の冷却において空冷を行って残留オーステナイトを3%以上確保している。特許文献4に記載された鋼板はいわゆるTRIP鋼板である。本発明者らは、特許文献4に記載された鋼板においては、強度および穴広げ性をより高める必要があることを知見した。
 上記実情に鑑み、本発明は、優れた強度、延性、曲げ性、穴広げ性および低温靭性を有する熱延鋼板を提供することを目的とする。
 上記課題を解決するため本発明者らが検討した結果、本発明者らは、以下の知見(a)~(h)を得た。
(a)金属組織を単相とすることで組織間の硬度差が低減され、組織界面におけるボイドの発生を抑制できるため、熱延鋼板の穴広げ性を向上することができる。
(b)金属組織をベイナイト単相とした場合には、高強度(好ましくは980MPa以上の強度)を得ることができないため、所望量の硬質相(マルテンサイト相またはマルテンサイト―オーステナイト混合相)を含ませることで、熱延鋼板の穴広げ性を確保しつつ所望の強度を得ることができる。
(c)硬質相の全粒子のうち、粒径の大きさが上位10%以内である粒子の平均粒径を小さくすることで、熱延鋼板の穴広げ性をより向上することができる。
(d)(110)<112>方位の極密度を3.0以下とすることで、異方性を低減することができ、熱延鋼板の穴広げ性をより向上することができる。
(e)ベイナイトを主相(90%以上)とすることで、高延性(好ましくは全伸びを13.0%以上)とすることができ、所望の延性を得ることができる。
(f)低温靭性を向上するためには、析出強化による脆化を抑制することが必要であり、特に、熱間圧延後の冷却中のMC炭化物(特にTiC)の析出を抑制して、直径20nm以下のMC炭化物の平均間隔を大きくすることが、低温靭性の向上に効果的である。熱間圧延後の冷却における平均冷却速度を速くすることで、MC炭化物(特にTiC)の析出を抑制して、直径20nm以下のMC炭化物の平均間隔を大きくすることができ、熱延鋼板の低温靭性を向上することができる。
(g)表層(表面~表面から板厚方向に板厚の1/16位置)における集合組織を制御することにより、熱延鋼板の曲げ性をより向上することができる。
(h)上述の金属組織を得るためには、特に、熱間圧延後の冷却条件およびコイル状に巻取った後の冷却条件を複合的且つ不可分に制御することが効果的である。
 上記知見に基づいてなされた本発明の要旨は以下の通りである。
(1)本発明の一態様に係る熱延鋼板は、化学組成が、質量%で、
C:0.040~0.150%、
Si:0.50~1.50%、
Mn:1.00~2.50%、
P:0.100%以下、
S:0.010%以下、
Al:0.01~0.10%、
N:0.0100%以下、
Ti:0.005~0.150%、
B:0.0005~0.0050%、
Cr:0.10~1.00%、
Nb:0~0.06%、
V:0~0.50%、
Mo:0~0.50%、
Cu:0~0.50%、
Ni:0~0.50%、
Sb:0~0.020%、
Ca:0~0.010%、
REM:0~0.010%、および
Mg:0~0.010%
を含有し、残部が鉄および不純物であり、
 表面から板厚方向に板厚の1/4位置における金属組織において、
  面積率で、主相が90.0~98.0%のベイナイト相であり、第2相が2.0~10.0%のマルテンサイト相、またはマルテンサイト-オーステナイト混合相であり、
  前記第2相の平均粒径が1.5μm以下であり、
  前記第2相の全粒子のうち、粒径の大きさが上位10%以内である粒子の平均粒径が2.5μm以下であり、
  (110)<112>方位の極密度が3.0以下であり、
 前記表面~前記表面から板厚方向に板厚の1/16位置の金属組織において、(110)<1-11>方位の極密度が3.0以下である。
(2)上記(1)に記載の熱延鋼板は、前記表面から板厚方向に板厚の1/4位置における前記金属組織において、直径20nm以下のMC炭化物の平均間隔が50nm以上であってもよい。
(3)上記(1)または(2)に記載の熱延鋼板は、前記化学組成が、質量%で、
Nb:0.005~0.06%、
V:0.05~0.50%、
Mo:0.05~0.50%、
Cu:0.01~0.50%、
Ni:0.01~0.50%、
Sb:0.0002~0.020%、
Ca:0.0002~0.010%、
REM:0.0002~0.010%、および
Mg:0.0002~0.010%
からなる群から選択される1種または2種以上を含有してもよい。
 本発明に係る上記態様によれば、優れた強度、延性、曲げ性、穴広げ性および低温靭性を有する熱延鋼板を提供することができる。
 本実施形態に係る熱延鋼板(以下、単に鋼板と記載する場合がある)の化学組成および金属組織について、以下により具体的に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
 なお、以下に記載する「~」を挟んで記載される数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」、「超」と示す数値には、その値が数値範囲に含まれない。化学組成についての%は全て質量%を示す。
 本実施形態に係る熱延鋼板は、化学組成が、質量%で、C:0.040~0.150%、Si:0.50~1.50%、Mn:1.00~2.50%、P:0.100%以下、S:0.010%以下、Al:0.01~0.10%、N:0.0100%以下、Ti:0.005~0.150%、B:0.0005~0.0050%、Cr:0.10~1.00%、並びに、残部:鉄および不純物を含有する。以下、各元素について説明する。
 C:0.040~0.150%
 Cは、熱延鋼板の強度を向上させるとともに、焼入れ性を向上させることによってベイナイトの生成を促進する元素である。この効果を得るために、C含有量は0.040%以上とする。好ましくは、C含有量は0.050%以上、0.060%以上である。
 一方、C含有量が0.150%を超えると、ベイナイトの生成を制御することが困難となり、マルテンサイト相またはマルテンサイト―オーステナイト混合相が多量に生成し、熱延鋼板の延性および穴広げ性の両方、またはいずれか一方が低下する。したがって、C含有量は0.150%以下とする。C含有量は、0.140%以下、0.120%以下、0.100%以下が好ましい。
 Si:0.50~1.50%
 Siは、固溶強化に寄与する元素であり、熱延鋼板の強度向上に寄与する元素である。また、Siは鋼中に炭化物が形成されることを抑制する元素である。ベイナイト変態時の炭化物の形成を抑制することで、ベイナイト相のラス界面に微細なマルテンサイト相またはマルテンサイト―オーステナイト混合相が形成される。ベイナイト相中に存在するマルテンサイト相またはマルテンサイト―オーステナイト混合相は微細であるため、熱延鋼板の穴広げ性を劣化させることはない。Si含有による上記効果を得るために、Si含有量は0.50%以上とする。好ましくは、Si含有量は0.55%以上、0.60%以上、0.65%以上である。
 一方、Siは靭性を低下させる元素でもあり、Si含有量が1.50%を超えると、熱延鋼板の靭性が低下する。したがって、Si含有量は1.50%以下とする。好ましくは、Si含有量は1.30%以下、1.20%以下、1.00%以下である。
 Mn:1.00~2.50%
 Mnは、鋼中に固溶して熱延鋼板の強度増加に寄与するとともに、焼入れ性向上によってベイナイトの生成を促進し、熱延鋼板の穴広げ性を向上させる。このような効果を得るために、Mn含有量は1.00%以上とする。好ましくは、Mn含有量は1.30%以上、1.50%以上である。
 一方、Mn含有量が2.50%を超えると、ベイナイトの生成制御が困難となり、マルテンサイト相またはマルテンサイト―オーステナイト混合相が増加して熱延鋼板の延性および穴広げ性の両方、またはいずれか一方が低下する。そのため、Mn含有量は2.50%以下とする。好ましくは、Mn含有量は2.00%以下、1.95%以下である。
 P:0.100%以下
 Pは、鋼中に固溶して熱延鋼板の強度増加に寄与する元素である。しかし、Pは、粒界、特に旧オーステナイト粒界に偏析し、粒界偏析による粒界破壊を助長することで、熱延鋼板の延性、曲げ性および穴広げ性の低下を引き起こす元素でもある。P含有量は極力低くすることが好ましいが、0.100%までのPの含有は許容できる。そのため、P含有量は0.100%以下とする。好ましくは、P含有量は0.090%以下、0.080%以下である。
 P含有量は0%とすることが好ましいが、0.0001%未満に低減すると製造コストが上昇するため、P含有量は0.0001%以上としてもよい。好ましくは、P含有量は0.001%以上、0.010%以上である。
 S:0.010%以下
 Sは、溶接性、ならびに鋳造時および熱間圧延時の製造性に悪影響を及ぼす元素である。SはMnと結びついて粗大なMnSを形成する。このMnSは、熱延鋼板の曲げ性および穴広げ性を劣化させたり、遅れ破壊の発生を助長する。S含有量は、極力低くすることが好ましいが、0.010%までのSの含有は許容できる。そのため、S含有量は0.010%以下とする。好ましくは、S含有量は0.008%以下、0.007%以下である。
 S含有量は0%とすることが好ましいが、0.0001%未満に低減すると、製造コストが上昇して経済的に不利であることから、S含有量は0.0001%以上としてもよい。好ましくは、S含有量は0.001%以上である。
 Al:0.01~0.10%
 Alは、脱酸剤として作用し、鋼の清浄度を向上させるのに有効な元素である。この効果を得るために、Al含有量は0.01%以上とする。好ましくは、Al含有量は0.02%以上である。
 一方、Alを過剰に含有すると酸化物系介在物の増加を引き起こし、熱延鋼板の穴広げ性が低下する。そのため、Al含有量は0.10%以下とする。好ましくは、Al含有量は0.08%以下、0.06%以下である。
 N:0.0100%以下
 Nは鋼中に粗大な窒化物を形成する元素である。この窒化物は、熱延鋼板の曲げ性および穴広げ性を劣化させるとともに耐遅れ破壊特性を劣化させる。そのため、N含有量は0.0100%以下とする。好ましくは、N含有量は0.0080%以下、0.0060%以下、0.0050%以下である。
 N含有量を0.0001%未満に低減すると製造コストの大幅な増加を引き起こすため、N含有量は0.0001%以上としてもよい。好ましくは、N含有量は0.0005%以上、0.0010%以上である。
 Ti:0.005~0.150%
 Tiは、オーステナイト相高温域(オーステナイト相域中の高温域およびオーステナイト相域よりも高温域(鋳造の段階))で窒化物を形成する元素である。Tiを含有させることで、BNの析出が抑制され、Bが固溶状態になることによりベイナイトの生成に必要な焼入れ性を得ることができる。結果として、熱延鋼板の強度および穴広げ性を向上することができる。また、Tiは熱間圧延時に鋼中に炭化物を形成して旧オーステナイト粒の再結晶を抑制する。これらの効果を得るために、Ti含有量は0.005%以上とする。好ましくは、Ti含有量は0.020%以上、0.030%以上、0.050%以上、0.080%以上である。
 一方、Ti含有量が0.150%を超えると、旧オーステナイト粒が再結晶しにくくなり、圧延集合組織が発達することで、熱延鋼板の穴広げ性が低下する。そのため、Ti含有量は0.150%以下とする。好ましくは、Ti含有量は0.120%以下である。
 B:0.0005~0.0050%
 Bは、旧オーステナイト粒界に偏析し、フェライトの生成および成長を抑制し、熱延鋼板の強度および穴広げ性向上に寄与する元素である。これらの効果を得るために、B含有量は0.0005%以上とする。好ましくは、B含有量は0.0007%以上、0.0010%以上である。
 一方、0.0050%を超えてBを含有させても上記効果が飽和する。そのため、B含有量は0.0050%以下とする。好ましくは、B含有量は0.0030%以下、0.0025%以下である。
 Cr:0.10~1.00%
 Crは、鋼中に炭化物を形成して熱延鋼板の高強度化に寄与するとともに、焼入れ性向上によってベイナイトの生成を促進し、ベイナイト粒内へのFe系炭化物の析出を促進する元素である。これらの効果を得るために、Cr含有量は0.10%以上とする。好ましくは、Cr含有量は0.30%以上、0.40%以上、0.50%以上である。
 一方、Cr含有量が1.00%を超えると、マルテンサイト相またはマルテンサイト―オーステナイト混合相が生成しやすくなり、熱延鋼板の穴広げ性および延性の両方、またはいずれか一方が低下する。そのため、Cr含有量は1.00%以下とする。好ましくは、Cr含有量は0.80%以下、0.70%以下である。
 本実施形態に係る熱延鋼板の化学組成の残部は、Feおよび不純物であってもよい。本実施形態において、不純物とは、原料としての鉱石、スクラップ、または製造環境等から混入されるもの、あるいは本実施形態に係る熱延鋼板の特性に悪影響を与えない範囲で許容されるものを意味する。
 本実施形態に係る熱延鋼板は、Feの一部に代えて、下記元素を任意元素として含有してもよい。下記任意元素を含有させない場合の含有量の下限は0%である。以下、各任意元素について詳細に説明する。
 Nb:0~0.06%
 Nbは、熱間圧延時に炭化物を形成してオーステナイトの再結晶を抑制する効果があり、熱延鋼板の強度向上に寄与する元素である。この効果を確実に得るために、Nb含有量は0.005%以上とすることが好ましい。Nb含有量は、0.015%以上とすることがより好ましい。
 一方、Nb含有量が0.06%を超えると、旧オーステナイト粒の再結晶温度が高くなりすぎて、集合組織が発達してしまい、熱延鋼板の穴広げ性が低下する場合がある。そのため、Nb含有量は0.06%以下とする。好ましくは、Nb含有量は0.04%以下である。
 V:0~0.50%
 Vは、熱間圧延時に炭窒化物を形成してオーステナイトの再結晶を抑制する効果があり、熱延鋼板の強度向上に寄与する元素である。この効果を確実に得るために、V含有量は0.05%以上とすることが好ましい。V含有量は、0.10%以上とすることがより好ましい。
 一方、V含有量が0.50%を超えると、旧オーステナイト粒の再結晶温度が高くなり、仕上圧延完了後のオーステナイト粒の再結晶温度が高くなることで、集合組織が発達し、熱延鋼板の穴広げ性が低下する場合がある。そのため、V含有量は0.50%以下とする。好ましくは、V含有量は0.25%以下である。
 Mo:0~0.50%
 Moは、焼入れ性を向上することでベイナイト相の形成を促進し、熱延鋼板の強度および穴広げの向上に寄与する元素である。この効果を確実に得るために、Mo含有量は0.05%以上とすることが好ましい。Mo含有量は、0.10%以上とすることがより好ましい。
 一方、Mo含有量が0.50%を超えると、マルテンサイト相またはマルテンサイト―オーステナイト混合相が生成しやすくなり、熱延鋼板の延性および穴広げ性の両方、またはいずれか一方が低下する場合がある。そのため、Mo含有量は0.50%以下とする。好ましくは、Mo含有量は0.30%以下である。
 Cu:0~0.50%
 Cuは、鋼中に固溶して熱延鋼板の強度増加に寄与する元素である。また、Cuは、焼入れ性を向上することでベイナイト相の形成を促進し、熱延鋼板の強度および穴広げ性の向上に寄与する元素である。これらの効果を確実に得るために、Cu含有量は0.01%以上とすることが好ましい。Cu含有量は、0.02%以上とすることがより好ましい。
 一方、Cu含有量が0.50%を超えると熱延鋼板の表面性状の低下を引き起こす場合がある。そのため、Cu含有量は0.50%以下とする。好ましくは、Cu含有量は0.20%以下である。
 Ni:0~0.50%
 Niは、鋼中に固溶して熱延鋼板の強度増加に寄与する元素である。また、Niは、焼入れ性を向上することでベイナイト相の形成を促進し、熱延鋼板の強度および穴広げ性の向上に寄与する元素である。これらの効果を確実に得るために、Ni含有量は0.01%以上とすることが好ましい。Ni含有量は、0.02%以上とすることがより好ましい。
 一方、Ni含有量が0.50%を超えると、マルテンサイト相またはマルテンサイト―オーステナイト混合相が生成しやすくなり、熱延鋼板の曲げ性および穴広げ性の両方、またはいずれか一方が低下する場合がある。そのため、Ni含有量は0.50%以下とする。好ましくは、Ni含有量は0.20%以下である。
 Sb:0~0.020%
 Sbは、スラブ加熱段階でスラブ表面の窒化を抑制する効果を有する。Sbを含有することで、スラブ表層部のBNの析出が抑制される。この効果を確実に得るために、Sb含有量は0.0002%以上とすることが好ましい。Sb含有量は、0.001%以上とすることがより好ましい。
 一方、0.020%を超えてSbを含有させても上記効果は飽和するため、Sb含有量は0.020%以下とする。
 Ca:0~0.010%
 Caは、硫化物系の介在物の形状を制御し、熱延鋼板の延性および穴広げ性を向上させる元素である。この効果を確実に得るために、Ca含有量は0.0002%以上とすることが好ましい。Ca含有量は0.001%以上とすることがより好ましい。
 一方、Ca含有量が0.010%を超えると、熱延鋼板の表面欠陥を引き起こし、生産性が低下する場合がある。そのため、Ca含有量は0.010%以下とする。好ましくは、Ca含有量は0.008%以下である。
 REM:0~0.010%
 REMは、Caと同様、硫化物系の介在物の形状を制御し、熱延鋼板の延性および穴広げ性を向上させる元素である。この効果を確実に得るために、REM含有量は0.0002%以上とすることが好ましい。REM含有量は、0.001%以上とすることがより好ましい。
 一方、REM含有量が0.010%を超えると、鋼の清浄度が悪化し、熱延鋼板の穴広げ性および曲げ性の両方、またはいずれか一方が低下する。そのため、REM含有量は0.010%以下とする。好ましくは、REM含有量は0.008%以下である。
 ここで、REMは、Sc、Yおよびランタノイドからなる合計17元素を指し、上記REMの含有量は、これらの元素の含有量の合計を指す。ランタノイドの場合、工業的にはミッシュメタルの形で添加される。
 Mg:0~0.010%
 Mgは、微量に含有させることで硫化物の形態を制御できる元素である。この効果を確実に得るために、Mg含有量は0.0002%以上とすることが好ましい。Mg含有量は、0.0005%以上とすることがより好ましい。
 一方、Mg含有量が0.010%を超えると、粗大な介在物の形成による冷間成形性の低下を引き起こす。そのため、Mg含有量は0.010%以下とする。好ましくは、Mg含有量は0.008%以下である。
 熱延鋼板の化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。
 次に、本実施形態に係る熱延鋼板の金属組織について説明する。
 本実施形態に係る熱延鋼板は、表面から板厚方向に板厚の1/4位置における金属組織において、面積率で、主相が90.0~98.0%のベイナイト相であり、第2相が2.0~10.0%のマルテンサイト相、またはマルテンサイト-オーステナイト混合相であり、前記第2相の平均粒径が1.5μm以下であり、前記第2相の全粒子のうち、粒径の大きさが上位10%以内である粒子の平均粒径が2.5μm以下であり、(110)<112>方位の極密度が3.0以下であり、前記表面~前記表面から板厚方向に板厚の1/16位置の金属組織において、(110)<1-11>方位の極密度が3.0以下である。
 なお、本実施形態において、表面から板厚方向に板厚の1/4位置における主相および第2相の種類、第2相の平均粒径、並びに(110)<112>方位の極密度を規定するのは、この位置の金属組織が鋼板の代表的な金属組織を示すからである。また、金属組織を規定する位置は、板幅方向中央位置であることが好ましい。
 以下、各規定について説明する。
 ベイナイト相(主相):90.0~98.0%
 本実施形態に係る熱延鋼板は、ベイナイト相を主相とする。主相であるベイナイト相の面積率は90.0%以上である。なお、本実施形態において主相とは、面積率が90.0%以上であることを意味する。
 ベイナイト相とは、ラス状のベイニティックフェライトと、ベイニティックフェライトの間および/または内部にFe系炭化物を有する組織とを意味する。ベイニティックフェライトは、ポリゴナルフェライトとは異なり、形状がラス状でかつ内部に比較的高い転位密度を有しているため、SEMやTEMを用いて他の組織と容易に区別できる。
 高強度(好ましくは980MPa以上の引張強さ)を実現し、穴広げ性を高めるためには、ベイナイト相を主相とする必要がある。ベイナイト相の面積率が90.0%未満では、第二相との硬度差に起因する穴広げ性の低下が顕著になる。そのため、ベイナイト相の面積率は90.0%以上とする。好ましくは、92.0%以上、93.0%以上である。
 一方、ベイナイト相の面積率が98.0%超では、高強度(好ましくは引張強さが980MPa以上)とならない場合があるため、ベイナイト相の面積率は98.0%以下とする。好ましくは、96.0%以下、95.0%以下である。
 マルテンサイト相、またはマルテンサイト―オーステナイト混合相(第2相):2.0~10.0%
 本実施形態に係る熱延鋼板は、マルテンサイト相、またはマルテンサイト―オーステナイト混合相を第2相とする。マルテンサイト相とは、ラス状の結晶粒の集合であり、結晶粒の内部に鉄炭化物の伸長方向が二つ以上である組織を意味する。マルテンサイト―オーステナイトの混合相とは、縞状マルテンサイト(MA:Martensite-Austenite constituent)とも呼ばれ、マルテンサイトおよび残留オーステナイトの両方からなる組織を意味する。
 第2相の面積率が高い程、熱延鋼板の引張強さを向上することができる。第2相の面積率が2.0%未満であると、所望の引張強さを得ることができない。そのため、第2相の面積率は2.0%以上とする。好ましくは、3.0%以上、4.0%以上、5.0%以上である。
 一方、第2相の面積率が10.0%超では、所望の穴広げ性および延性を得ることができない。そのため、第2相の面積率は10.0%以下とする。好ましくは、9.0%以下、8.0%以下、7.0%以下である。
 本実施形態に係る熱延鋼板には、ベイナイト相および第2相の他に、5%以下のフェライトを含んでもよい。ただし、フェライトを必ずしも含む必要は無いので、フェライトの面積率は0%であってもよい。
 以下に、金属組織の面積率の測定方法について説明する。
 まず、熱延鋼板から、圧延方向と直行する板厚断面であり、表面から板厚方向に板厚の1/4位置(表面から板厚方向に1/8位置~表面から板厚方向に3/8位置の領域、すなわち表面から板厚方向に1/8位置を始点とし、表面から板厚方向に3/8位置を終点とする領域)を観察できるように試験片を採取する。試験片の断面を鏡面研磨し、レペラ腐食液で腐食した後、光学顕微鏡を用いて組織観察を行う。
 第2相はレペラ腐食液により白色部として現出され、その他の組織(ベイナイト相)は染色されるため、容易に判別可能である。白色部(明部)とそれ以外の領域とで2値化して、白色部の面積率を算出する。例えば、Image-Jなどの画像解析ソフトを用いて、白色部とそれ以外の領域とを二値化することで、白色部の面積率およびそれ以外の領域の面積率を得ることができる。観察視野は3か所以上とし、各視野の面積は300μm×400μm以上とする。
 複数視野において測定された白色部の面積率の平均値を算出することで、第2相の面積率を得る。複数視野において測定された白色部以外の領域の面積率の平均値を算出することで、ベイナイト相の面積率を得る。
 なお、金属組織中にフェライト相が存在する場合には、フェライト相はベイナイト相と同様に白色に染色される。しかし、ベイナイト相とフェライト相とは、それらの形態観察により容易に判別可能である。フェライト相が存在する場合には、白色部以外の領域の面積率から、フェライト相と判別された白色部の面積率を差し引くことで、ベイナイト相の面積率を得る。ベイナイト相はラス状の結晶粒として観察され、フェライト相は、内部にラスを含まない塊状の結晶粒として観察される。
 第2相の平均粒径:1.5μm以下
 第2相の平均粒径が大きくなるとボイドが発生しやすくなり、熱延鋼板の穴広げ性が低下する。ボイドの発生を抑制して穴広げ性を向上するためには、第2相の平均粒径は小さい程好ましい。第2相の平均粒径が1.5μm超であると、所望の穴広げ性を得ることができない。そのため、第2相の平均粒径は1.5μm以下とする。好ましくは、1.4μm以下であり、より好ましくは1.3μm以下である。
 第2相の平均粒径を0.1μm未満とすることは技術的に困難なため、第2相の平均粒径は0.1μm以上としてもよい。
 第2相の全粒子のうち、粒径の大きさが上位10%以内である粒子の平均粒径:2.5μm以下
 第2相の全粒子のうち、粒径の大きさが上位10%以内である粒子の平均粒径が大きい場合、ボイドの発生起点が多くなるため、熱延鋼板の穴広げ性が低下する。そのため、第2相の全粒子のうち、粒径の大きさが上位10%以内である粒子の平均粒径は小さい程好ましい。所望の穴広げ性を得るために、第2相の全粒子のうち、粒径の大きさが上位10%以内である粒子の平均粒径は2.5μm以下とする。好ましくは、2.3μm以下であり、より好ましくは2.2μm以下であり、より一層好ましくは2.0μm以下である。
 粒径の大きさが上位10%以内である粒子の平均粒径の下限は特に限定しないが、1.5μm以上、1.7μm以上としてもよい。
 以下に、第2相の平均粒径の測定方法および第2相の全粒子のうち、粒径の大きさが上位10%以内である粒子の平均粒径の測定方法について説明する。
 まず、熱延鋼板から、圧延方向と直行する板厚断面であり、表面から板厚方向に板厚の1/4位置(表面から板厚方向に1/8位置~表面から板厚方向に3/8位置の領域、すなわち表面から板厚方向に1/8位置を始点とし、表面から板厚方向に3/8位置を終点とする領域)を観察できるように試験片を採取する。試験片の断面を鏡面研磨し、レペラ腐食液で腐食した後、光学顕微鏡を用いて組織観察を行う。画像解析ソフト(Image-J)を用いて、白色部とそれ以外の領域の二値化画像を作成する。その後、二値化画像をもとに粒子解析を実施し、各々の粒子の面積を算出する。観察視野は3か所以上とし、各視野において得られた平均粒径の平均値を算出することで、第2相の平均粒径を得る。
 次に、各視野毎に、第2相の全粒子のうち、粒径の大きさが上位10%以内である粒子の平均粒径を算出し、全視野の平均値を算出することで、第2相の全粒子のうち、粒径の大きさが上位10%以内である粒子の平均粒径を得る。
 なお、粒径の大きさが上位10%以内である粒子の平均粒径とは、例えば、1視野において観察された第2相の粒子が100個であり、粒径が小さい粒子から順に1、2、3…99、100と番号を付けた場合、91~100番目の粒子の粒径の平均値のことをいう。
 なお、面積が0.5μm未満である第2相については、熱延鋼板の穴広げ性に影響を及ぼさないため、上述の測定(第2相の平均粒径、および第2相の全粒子のうち、粒径の大きさが上位10%以内である粒子の平均粒径の測定)の測定対象から除外する。
 (110)<112>方位の極密度:3.0以下
 表面から板厚方向に板厚の1/4位置における金属組織における(110)<112>方位の極密度は、圧延集合組織の発達具合を評価する指標である。(110)<112>方位の極密度が発達する程、すなわち(110)<112>方位の極密度が大きい程、組織の異方性が大きくなり、熱延鋼板の穴広げ性が低下する。(110)<112>方位の極密度が3.0を超えると、穴広げ性が低下するため、(110)<112>方位の極密度は3.0以下とする。好ましくは、2.8以下、2.5以下、2.3以下である。
 (110)<112>方位の極密度が小さい程、組織がランダム化して熱延鋼板の穴広げ性が向上するため、(110)<112>方位の極密度は小さい程好ましい。(110)<112>方位の極密度は、集合組織を持たない場合は1.0となるため、下限は1.0としてもよい。
 以下に、(110)<112>方位の極密度の測定方法について説明する。
 (110)<112>方位の極密度は、走査電子顕微鏡とEBSD解析装置とを組み合わせた装置及びAMETEK社製のOIM Analysis(登録商標)を用いて、EBSD(Electron Back Scattering Diffraction)法で測定した方位データを、球面調和関数を用いて計算して算出した3次元集合組織を表示する結晶方位分布関数(ODF:Orientation Distribution Function)から求めることができる。測定範囲は、表面から板厚方向に板厚の1/4位置(表面から板厚方向に1/8位置~表面から板厚方向に3/8位置の領域、すなわち表面から板厚方向に1/8位置を始点とし、表面から板厚方向に3/8位置を終点とする領域)とし、圧延方向においては400μmの領域とする。測定ピッチが0.5μm/step以下になるように、測定ピッチを設定することが好ましい。
 表面~表面から板厚方向に板厚の1/16位置の金属組織における(110)<1-11>方位の極密度:3.0以下
 表面~表面から板厚方向に板厚の1/16位置(表面を始点とし、表面から板厚方向に板厚の1/16の位置を終点とする領域)の金属組織における(110)<1-11>方位の極密度は、熱延鋼板の表層領域のせん断集合組織の発達具合を評価する指標である。この位置における(110)<1-11>方位の極密度が発達すると、すなわち(110)<1-11>方位の極密度が大きくなると、組織の異方性が大きくなり、熱延鋼板の曲げ性が低下する。(110)<1-11>方位の極密度が3.0を超えると、熱延鋼板の曲げ性が低下するため、(110)<1-11>方位の極密度は3.0以下とする。好ましくは、2.8以下、2.5以下、2.2以下である。
 (110)<1-11>方位の極密度が小さいほど、組織がランダム化して熱延鋼板の曲げ性が向上するため、(110)<1-11>方位の極密度は小さい程好ましい。(110)<1-11>方位の極密度は、集合組織を持たない場合は1.0となるため、下限は1.0としてもよい。
 以下に、(110)<1-11>方位の極密度の測定方法について説明する。
 (110)<1-11>方位の極密度は、走査電子顕微鏡とEBSD解析装置とを組み合わせた装置及びAMETEK社製のOIM Analysis(登録商標)を用いて、EBSD(Electron Back Scattering Diffraction)法で測定した方位データを、球面調和関数を用いて計算して算出した3次元集合組織を表示する結晶方位分布関数(ODF:Orientation Distribution Function)から求めることができる。測定範囲は、表面~表面から板厚方向に板厚の1/16位置の領域(表面を始点とし、表面から板厚方向に板厚の1/16の位置を終点とする領域)とし、圧延方向においては400μm以上の領域を評価する。測定ピッチが0.5μm/step以下になるように、測定ピッチを設定することが好ましい。
 表面から板厚方向に板厚の1/4位置における金属組織における、直径20nm以下のMC炭化物の平均間隔:50nm以上
 本実施形態に係る熱延鋼板は、表面から板厚方向に板厚の1/4位置(表面から板厚方向に1/8位置~表面から板厚方向に3/8位置の領域、すなわち表面から板厚方向に1/8位置を始点とし、表面から板厚方向に3/8位置を終点とする領域)における前記金属組織において、直径20nm以下のMC炭化物の平均間隔が50nm以上であってもよい。
 なお、本実施形態においてMC炭化物とは、TiCおよびVCなどの金属炭化物のことをいう。
 直径20nm以下のMC炭化物の平均間隔は、特に、熱間圧延完了後の冷却速度をより厳格に制御することにより、調整することができる。具体的には、熱間圧延後の冷却における平均冷却速度を90℃/s以上とすることで、表面から板厚方向に板厚の1/4位置における前記金属組織において、直径20nm以下のMC炭化物の平均間隔を50nm以上とすることができる。
 直径20nm以下のMC炭化物の平均間隔を50nm以上とすることで、熱延鋼板の低温靭性をより向上することができる。
 以下に、直径20nm以下のMC炭化物の平均間隔の測定方法について説明する。
 まず、熱延鋼板から、熱延鋼板の圧延方向に平行な板厚断面であり、表面から板厚方向に板厚の1/4位置(表面から板厚方向に1/8位置~表面から板厚方向に3/8位置の領域)における金属組織を観察できるように試験片を採取する。断面を電解エッチングし、透過型電子顕微鏡(TEM)にて倍率20000倍で10視野撮影する。撮影写真内の直径20nm以下の析出物について、画像解析により、最近接距離を求めてこれらの平均値を算出することで、直径20nm以下のMC炭化物の平均間隔を得る。
 なお、析出物の直径が5nm未満のMC炭化物は低温靭性向上に影響を及ぼさず、観察が困難であるため、上述の観察対象から除外する。また、観察対象とするMC炭化物とは、TiCおよびVCなどの金属炭化物を指す。
 次に、本実施形態に係る熱延鋼板の好ましい製造方法について説明する。
 本実施形態に係る熱延鋼板の好ましい製造方法は、以下の工程を備える。
 所定の化学組成を有するスラブを1100℃以上、1350℃未満に加熱する加熱工程、
 熱間圧延開始温度が1050~1200℃であり、仕上げ圧延完了温度が950℃超、1050℃以下となるように熱間圧延する熱間圧延工程、
 前記熱間圧延完了後、1.0秒以内に冷却を開始し、30~150℃/sの平均冷却速度で400~500℃の冷却停止温度まで冷却する冷却工程、
 前記冷却停止温度まで冷却した後、400~500℃の温度域で巻取りを行う巻取り工程、
 前記巻取り後、25℃/h超、100℃/h以下の平均冷却速度で50℃以下の温度域まで冷却するコイル冷却工程。
 以下、各工程について詳細に説明する。
 加熱工程
 加熱工程では、上述の化学組成を有するスラブを1100℃以上、1350℃未満に加熱する。スラブ段階で存在する粗大な析出物は、圧延中の割れや材料特性の低下を引き起こすため、熱間圧延前の鋼素材を加熱して、粗大な炭化物を固溶することが好ましい。そのため、加熱温度は1100℃以上とすることが好ましい。より好ましくは、1150℃以上である。一方、加熱温度が高くなりすぎても、スケール発生量が多くなることで歩留まりが低下するため、加熱温度は1350℃以下とすることが好ましい。より好ましくは、1300℃以下である。
 なお、加熱する鋳片は、製造コストの観点から連続鋳造によって生産することが好ましいが、その他の鋳造方法(例えば造塊法)で生産しても構わない。
 熱間圧延工程
 熱間圧延における鋼板温度は、オーステナイト中のTiおよびNbの炭化物や窒化物の析出に影響を与える。熱間圧延開始温度が1050℃未満では、熱間圧延開始前に析出が開始して析出物が粗大化するため、析出物を所望の形態に制御することができず、均質なスラブを得ることができない場合がある。そのため、熱間圧延開始温度は1050℃以上とすることが好ましい。より好ましくは、1070℃以上である。
 一方、熱間圧延開始温度が1200℃超では、熱間圧延中に析出物の析出を開始させることが困難となり、析出物を所望の形態に制御することができない場合がある。そのため、熱間圧延開始温度は1200℃以下とすることが好ましい。より好ましくは1170℃以下である。
 仕上げ圧延完了温度は、旧オーステナイト粒の集合組織に影響を与える因子である。仕上げ圧延完了温度が950℃以下では、旧オーステナイト粒の集合組織が発達し、鋼材特性の異方性が高くなる場合がある。そのため、仕上げ圧延完了温度は950℃超とすることが好ましい。より好ましくは、960℃以上である。
 一方、仕上げ圧延完了温度が高すぎると、旧オーステナイト粒の粗大化が顕著になり、第2相が粗大化することで、所望の穴広げ性を得ることができなくなる場合がある。そのため、仕上げ圧延完了温度は1050℃以下とすることが好ましい。より好ましくは、1020℃以下である。
 なお、熱間圧延前に、スラブを粗圧延して粗バーとした後に、熱間圧延してもよい。
 また、仕上げ圧延前は通常、鋼板表面に形成されたスケールの除去(デスケーリング)が行われる。本実施形態においてデスケーリングは常法で行えばよく、例えば、噴射する水の衝突圧が3.0MPa未満となるように行えばよい。噴射する水の衝突圧が3.0MPa以上の高圧デスケーリングを行うと、表層における集合組織を好ましく制御できない場合がある。
 また、仕上げ圧延では、集合組織を好ましく制御するために、最終パスにおける圧下率と、最終パスから1パス前における圧下率との合計圧下率は30%未満とすることが好ましい。
 冷却工程
 本実施形態では、所望の金属組織を得るためには、冷却工程における熱間圧延後の冷却条件およびコイル冷却工程におけるコイル状に巻取った後の冷却条件を複合的且つ不可分に制御することが効果的である。
 上述の熱間圧延では、比較的高温で圧延しているため、旧オーステナイト粒の粗大化が進みやすい。そのため、仕上げ圧延完了後、短時間で冷却を開始し、旧オーステナイト粒の粗大化を抑制する必要がある。仕上げ圧延完了後、冷却開始までの時間が長いと、旧オーステナイト粒が粗大化し、所望の第2相の平均粒径および第2相の全粒子のうち、粒径の大きさが上位10%以内である粒子の平均粒径を得ることができない場合がある。冷却開始時間は早ければ早いほど良く、本実施形態では、熱間圧延完了後、1.0秒以内に冷却を開始することが好ましい。より好ましくは、0.5秒以内であり、より好ましくは0秒である。
 なお、ここでいう冷却開始時間とは、仕上げ圧延完了後、後述の冷却(平均冷却速度が30~150℃/sである冷却)を開始するまでの経過時間のことをいう。
 熱間圧延後の冷却は、30~150℃/sの平均冷却速度で400~500℃の冷却停止温度まで行うことが好ましい。平均冷却速度が遅すぎると、フェライトが析出し、所望量のベイナイト相を得ることができなくなり、所望の引張強さおよび穴広げ性の両方、またはいずれか一方を得ることができない場合がある。また、平均冷却速度が遅いと、炭化物形成元素であるTi、VおよびNb等が炭素と結合し、析出物を多量に形成し、熱延鋼板の低温靭性が低下する場合がある。そのため、熱間圧延完了後の冷却の平均冷却速度は30℃/s以上とすることが好ましい。
 MC炭化物の量をより抑制するためには、平均冷却速度を高める必要がある。本実施形態では、表面から板厚方向に板厚の1/4位置における金属組織において、直径20nm以下のMC炭化物の平均間隔を50nm以上とするために、熱間圧延後の冷却における平均冷却速度は90℃/s以上としてもよい。
 一方、熱間圧延完了後の平均冷却速度が速すぎると、表面温度が低くなりすぎて、鋼板表面にマルテンサイトが生成しやすくなり、所望の延性および曲げ性、またはいずれか一方を得ることができない場合がある。そのため、熱間圧延完了後の冷却の平均冷却速度は150℃/s以下とすることが好ましい。より好ましくは、120℃/s以下であり、より好ましくは100℃/s以下である。
 なお、本実施形態における平均冷却速度とは、設定する範囲の始点と終点との温度差を、始点から終点までの経過時間で除した値とする。
 冷却停止温度が400~500℃の温度域外であると、後述の巻取り工程を所望の温度域で行うことができない。また、所望の金属組織を得るためには、熱間圧延後の冷却において冷却中のフェライト変態を抑制するため、空冷を行わないことが望ましい。
 巻取り工程
 熱間圧延後の冷却を停止した後、フェライト変態を抑制してベイナイト変態を進行させるために、また第2相の分布・形態・分率を制御するために、巻取り温度が400~500℃の温度域となるように巻取りを行うことが好ましい。巻取り温度が400℃未満であると、マルテンサイト変態が生じやすくなることで、マルテンサイト相の面積率が高まり、所望の延性を得ることができない場合がある。そのため、巻取り温度は400℃以上とすることが好ましい。より好ましくは、420℃以上である。
 一方、巻取り温度が500℃超では、Ti、NbおよびV等の炭化物形成元素が炭素と結合し、微細なMC炭化物を形成することで、熱延鋼板の低温靭性が劣化する場合がある。そのため、巻取り温度は500℃以下とすることが好ましい。より好ましくは、480℃以下である。
 コイル冷却工程
 コイル状に巻取った後の冷却速度は、第2相の組織分率に影響を及ぼす。コイル冷却工程では、未変態オーステナイトへの炭素濃化が行われる。未変態オーステナイトは第2相(マルテンサイト相、またはマルテンサイト―オーステナイト混合相)に変態する前の組織である。コイル状に巻取った後に、25℃/h以下の平均冷却速度で冷却すると、未変態オーステナイトが分解し、所望量の第2相を得ることができない場合がある。また、未変態オーステナイトへの炭素濃化が過度に進行し、第2相の硬さが過剰になり、主相と第2相との組織間硬度差が大きくなることで、熱延鋼板の穴広げ性が低下する場合がある。そのため、平均冷却速度は25℃/h超とすることが好ましい。より好ましくは、30℃/以上である。
 一方、平均冷却速度が速すぎると、コイルの内部と外部との間で冷却速度に差が生じ、均一に冷却することができない場合がある。そのため、平均冷却速度は100℃/h以下とすることが好ましい。より好ましくは、80℃/h以下であり、より一層好ましくは60℃/h以下である。
 コイル状に巻取った後の冷却は、上述した平均冷却速度で50℃以下の温度域まで行うことが好ましい。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用する一条件例である。本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。
 表1および2の鋼No.1~42に示す化学組成を有する鋼を溶製し、連続鋳造により厚みが240~300mmのスラブを製造した。得られたスラブを用いて、表3および4に示す製造条件により、熱延鋼板を得た。なお、表3および表4の「FT~CT間の平均冷却速度」は、熱間圧延後に冷却を開始した時から、巻取り(冷却停止)までの平均冷却速度を示す。また、仕上げ圧延前は常法(噴射する水の衝突圧が3.0MPa未満)によりデスケーリングを行った。No.41についてのみ、噴射する水の衝突圧が3.5MPaとなるように、デスケーリングを行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 得られた熱延鋼板に対し、上述の方法により、表面から板厚方向に板厚の1/4位置における組織分率、第2相の平均粒径、第2相の全粒子のうち、粒径の大きさが上位10%以内である粒子の平均粒径、(110)<112>方位の極密度および直径20nm以下の析出物の平均間隔、並びに、表面~表面から板厚方向に板厚の1/16位置の金属組織における(110)<1-11>方位の極密度を求めた。なお、試験No.18、33、35および36については、第二相が連結しており、粒子としてその粒径を測定できなかった。
 得られた結果を表5および6に示す。なお、ベイナイトおよび第2相の面積率の合計が100%にならない例について、金属組織の残部はフェライトであった。また、試験No.24は、直径20nm以下の析出物が観察されなかった。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 得られた熱延鋼板に対して、後述の方法により、引張強さTS、全伸びEl、穴広げ率λ、限界曲げ半径Rおよび延性脆性遷移温度vTrsを求めた。
 引張強さTSおよび全伸びEl
 JIS Z 2241:2011に準拠して、JIS5号試験片を用いて引張試験を行うことで、引張強さTSおよび全伸びElを得た。なお、クロスヘッド速度は10mm/minとした。引張強さTSが980MPa以上である場合を、強度に優れるとして合格と判定し、980MPa未満の場合を、強度に劣るとして不合格と判定した。全伸びElが13.0%以上の場合を、延性に優れるとして合格と判定し、13.0%未満の場合を、延性に劣るとして不合格と判定した。
 穴広げ率λ
 穴広げ性は、60°円錐ポンチを用いて、クリアランスが12.5%となる条件で直径10mmの円形穴を打ち抜き、かえりがダイ側となるようにした穴広げ試験を行って得られる、穴広げ率λで評価した。各試験番号について、5回の穴広げ試験を実施し、それらの平均値を算出することで、穴広げ率λを得た。穴広げ率が60%以上の場合を穴広げ性に優れるとして合格と判定し、60%未満の場合を穴広げ性に劣るとして不合格と判定した。
 限界曲げ半径R
 曲げ性は、V曲げ試験を行うことで得られる、限界曲げ半径Rにより評価した。限界曲げ半径Rは、圧延方向に対して垂直な方向が長手方向(曲げ稜線が圧延方向と一致)となるように、JIS Z 2248:2014に準拠して、1号試験片を用いてV曲げ試験を行うことで得た。
 ダイとパンチとのなす角度は60°とし、パンチの先端半径を0.1mm単位で変えてV曲げ試験を行って、亀裂が発生せずに曲げることができたパンチの先端半径の最大値を求めた。亀裂が発生せずに曲げることができたパンチの先端半径の最大値を、限界曲げ半径Rとした。限界曲げ半径Rを試験片の板厚tで除した値(R/t)が1.0以下であった場合、曲げ性に優れるとして合格と判定し、表7および8に「Good」と記載した。一方、限界曲げ半径Rを試験片の板厚tで除した値(R/t)が1.0超であった場合、曲げ性に劣るとして不合格と判定し、表7および8に「Bad」と記載した。
 延性脆性遷移温度vTrs
 延性脆性遷移温度vTrsは、JIS Z 2242:2018で規定する2.5mmサブサイズのVノッチ試験片を用いて、シャルピー衝撃試験を行った。脆性破面率が50%となる温度を求め、これを延性脆性遷移温度vTrsとした。延性脆性遷移温度vTrsが-40℃以下(-40℃を含む、-40℃より負の値)である場合を低温靭性に優れるとして合格と判定し、-40℃超(-40℃を含まない、-40℃より正の値)の場合を低温靭性に劣るとして不合格と判定した。また、延性脆性遷移温度vTrsが-70℃以下である場合を、低温靭性により優れると判断した。
 以上の試験結果を、表7および8に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表5~8を見ると、本発明例は、優れた強度、延性、曲げ性、穴広げ性および低温靭性を有することが分かる。また、直径20nm以下の析出物の平均間隔が50nm以上である本発明例は、より優れた低温靭性を有することが分かる。
 一方、比較例は、強度、延性、曲げ性および穴広げ性のうち1つ以上の特性が劣ることが分かる。
 本発明に係る上記態様によれば、優れた強度、延性、曲げ性、穴広げ性および低温靭性を有する熱延鋼板およびその製造方法を提供することができる。

Claims (3)

  1.  化学組成が、質量%で、
    C:0.040~0.150%、
    Si:0.50~1.50%、
    Mn:1.00~2.50%、
    P:0.100%以下、
    S:0.010%以下、
    Al:0.01~0.10%、
    N:0.0100%以下、
    Ti:0.005~0.150%、
    B:0.0005~0.0050%、
    Cr:0.10~1.00%、
    Nb:0~0.06%、
    V:0~0.50%、
    Mo:0~0.50%、
    Cu:0~0.50%、
    Ni:0~0.50%、
    Sb:0~0.020%、
    Ca:0~0.010%、
    REM:0~0.010%、および
    Mg:0~0.010%
    を含有し、残部が鉄および不純物であり、
     表面から板厚方向に板厚の1/4位置における金属組織において、
      面積率で、主相が90.0~98.0%のベイナイト相であり、第2相が2.0~10.0%のマルテンサイト相、またはマルテンサイト-オーステナイト混合相であり、
      前記第2相の平均粒径が1.5μm以下であり、
      前記第2相の全粒子のうち、粒径の大きさが上位10%以内である粒子の平均粒径が2.5μm以下であり、
      (110)<112>方位の極密度が3.0以下であり、
     前記表面~前記表面から板厚方向に板厚の1/16位置の金属組織において、(110)<1-11>方位の極密度が3.0以下である
    ことを特徴とする熱延鋼板。
  2.  前記表面から板厚方向に板厚の1/4位置における前記金属組織において、直径20nm以下のMC炭化物の平均間隔が50nm以上であることを特徴とする請求項1に記載の熱延鋼板。
  3.  前記化学組成が、質量%で、
    Nb:0.005~0.06%、
    V:0.05~0.50%、
    Mo:0.05~0.50%、
    Cu:0.01~0.50%、
    Ni:0.01~0.50%、
    Sb:0.0002~0.020%、
    Ca:0.0002~0.010%、
    REM:0.0002~0.010%、および
    Mg:0.0002~0.010%
    からなる群から選択される1種または2種以上を含有することを特徴とする請求項1または2に記載の熱延鋼板。
PCT/JP2020/045641 2019-12-09 2020-12-08 熱延鋼板 WO2021117711A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20898422.9A EP4074854A4 (en) 2019-12-09 2020-12-08 HOT ROLLED STEEL PLATE
MX2022004889A MX2022004889A (es) 2019-12-09 2020-12-08 Lamina de acero laminada en caliente.
US17/767,229 US20220372588A1 (en) 2019-12-09 2020-12-08 Hot-rolled steel sheet
KR1020227012169A KR20220062603A (ko) 2019-12-09 2020-12-08 열연 강판
JP2021563968A JP7277833B2 (ja) 2019-12-09 2020-12-08 熱延鋼板
CN202080073404.7A CN114599813B (zh) 2019-12-09 2020-12-08 热轧钢板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019222161 2019-12-09
JP2019-222161 2019-12-09

Publications (1)

Publication Number Publication Date
WO2021117711A1 true WO2021117711A1 (ja) 2021-06-17

Family

ID=76329843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045641 WO2021117711A1 (ja) 2019-12-09 2020-12-08 熱延鋼板

Country Status (7)

Country Link
US (1) US20220372588A1 (ja)
EP (1) EP4074854A4 (ja)
JP (1) JP7277833B2 (ja)
KR (1) KR20220062603A (ja)
CN (1) CN114599813B (ja)
MX (1) MX2022004889A (ja)
WO (1) WO2021117711A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112763A1 (ja) * 2021-12-15 2023-06-22 日本製鉄株式会社 熱延鋼板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070660A (ja) 2005-09-05 2007-03-22 Nippon Steel Corp 成形性に優れた高強度薄鋼板およびその製造方法
WO2014171063A1 (ja) * 2013-04-15 2014-10-23 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP2014205888A (ja) 2013-04-15 2014-10-30 Jfeスチール株式会社 量産打抜き性に優れた高強度熱延鋼板およびその製造方法
WO2015129199A1 (ja) 2014-02-27 2015-09-03 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2017017933A1 (ja) 2015-07-27 2017-02-02 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2018150955A1 (ja) * 2017-02-17 2018-08-23 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6135577B2 (ja) * 2014-03-28 2017-05-31 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
RU2661692C2 (ru) * 2014-04-23 2018-07-19 Ниппон Стил Энд Сумитомо Метал Корпорейшн Горячекатаный стальной лист для прокатанной заготовки переменной толщины, прокатанная заготовка переменной толщины и способы для их производства

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070660A (ja) 2005-09-05 2007-03-22 Nippon Steel Corp 成形性に優れた高強度薄鋼板およびその製造方法
WO2014171063A1 (ja) * 2013-04-15 2014-10-23 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP2014205888A (ja) 2013-04-15 2014-10-30 Jfeスチール株式会社 量産打抜き性に優れた高強度熱延鋼板およびその製造方法
WO2015129199A1 (ja) 2014-02-27 2015-09-03 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2017017933A1 (ja) 2015-07-27 2017-02-02 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2018150955A1 (ja) * 2017-02-17 2018-08-23 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112763A1 (ja) * 2021-12-15 2023-06-22 日本製鉄株式会社 熱延鋼板

Also Published As

Publication number Publication date
CN114599813A (zh) 2022-06-07
US20220372588A1 (en) 2022-11-24
CN114599813B (zh) 2023-04-11
KR20220062603A (ko) 2022-05-17
EP4074854A1 (en) 2022-10-19
JP7277833B2 (ja) 2023-05-19
EP4074854A4 (en) 2023-01-04
JPWO2021117711A1 (ja) 2021-06-17
MX2022004889A (es) 2022-05-16

Similar Documents

Publication Publication Date Title
JP6354916B2 (ja) 鋼板及びめっき鋼板
KR101531778B1 (ko) 프레스 성형성이 우수한 열연 강판 및 그 제조 방법
JP5720612B2 (ja) 成形性及び低温靭性に優れた高強度熱延鋼板及びその製造方法
JP4712838B2 (ja) 耐水素脆化特性および加工性に優れた高強度冷延鋼板
JP2005336526A (ja) 加工性に優れた高強度鋼板及びその製造方法
JP6772825B2 (ja) ラインパイプ用鋼材及びその製造方法
JP7115628B2 (ja) 熱延鋼板及びその製造方法
KR20210024135A (ko) 고강도 열연 강판 및 그의 제조 방법
WO2020179737A1 (ja) 熱間圧延鋼板およびその製造方法
JP7155703B2 (ja) ラインパイプ用厚鋼板およびその製造方法
CN114829654B (zh) 热轧钢板
JP2014224317A (ja) 冷延鋼板およびその製造方法
CN115398019A (zh) 钢板及其制造方法
JP7277833B2 (ja) 熱延鋼板
CN117568718A (zh) 厚钢板及其制造方法
WO2010109702A1 (ja) 冷延鋼板
JP2010222614A (ja) 強度・延性バランスに優れた高張力厚鋼板およびその製造方法
JP7188618B2 (ja) 熱延鋼板
JP6668662B2 (ja) 疲労特性と成形性に優れた鋼板およびその製造方法
WO2022259697A1 (ja) 鋼矢板及びその製造方法
WO2022149365A1 (ja) 鋼矢板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898422

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563968

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227012169

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020898422

Country of ref document: EP

Effective date: 20220711