WO2017016175A1 - 一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法 - Google Patents

一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法 Download PDF

Info

Publication number
WO2017016175A1
WO2017016175A1 PCT/CN2015/100037 CN2015100037W WO2017016175A1 WO 2017016175 A1 WO2017016175 A1 WO 2017016175A1 CN 2015100037 W CN2015100037 W CN 2015100037W WO 2017016175 A1 WO2017016175 A1 WO 2017016175A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyridine
organic solvent
reaction
water
mmol
Prior art date
Application number
PCT/CN2015/100037
Other languages
English (en)
French (fr)
Inventor
李晓凤
赖学能
赵光磊
吴晖
余以刚
赖富饶
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2017016175A1 publication Critical patent/WO2017016175A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/60Preparation of O-glycosides, e.g. glucosides having an oxygen of the saccharide radical directly bound to a non-saccharide heterocyclic ring or a condensed ring system containing a non-saccharide heterocyclic ring, e.g. coumermycin, novobiocin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas

Definitions

  • the invention belongs to the field of biocatalysis and biomedical synthesis and control, and particularly relates to a method for protecting a hydroxysyl group of a quercetin based on Pseudomonas stutzer cells.
  • Flavonoids are a series of important polyphenolic compounds formed by the interconnection of two benzene rings through three carbon atoms. They are widely found in almost all plants, especially vegetables and fruits; they are very good in medicine, food and cosmetics. Great application value. Flavonoids have a variety of biological activities including antioxidant activity, anti-inflammatory, anti-cancer, antibacterial, anti-allergic and anti-viral, however, due to their polyhydroxy structure, most of the flavonoid biological activity is limited by its low fat solubility or Water soluble. Hydroxyl groups located on the phenyl ring or glycoside backbone have an important effect on the biological and chemical activity of the flavonoids.
  • Esterification of flavonoids is considered a promising method for increasing the solubility of flavonoids, thereby allowing flavonoids to exhibit more physiological activity.
  • selective modification of flavonoid structure can not only improve physical and chemical properties, such as thermal stability and fat solubility; but also enhance its biological activity, such as antioxidant activity; antibacterial activity; cell penetration ability; weight loss and lowering Blood lipid function.
  • Qinpi A hydrate is a kind of flavonoid, which has anti-inflammatory, antibacterial, anti-coagulation, analgesic and other activities. It is a growth inhibitor of Bacillus subtilis and also inhibits chemical carcinogenesis.
  • the object of the present invention is to develop a protective quercetin hydrate 6'.
  • the method of hydroxyl Optimum organic solvent, acyl donor, acyl donor and quercetin hydrate molar ratio, initial water content, Pseudomonas stutzer cell catalyst for Pseudomonas stutzeri cell acylation
  • the amount, reaction temperature and oscillation speed are respectively 50% (v/v) isooctane-pyridine, vinyl propionate (VP), 20:1, 0% (v/v), 20g / L, 40°C and 180rpm
  • the reaction yield can reach 98.9%.
  • the reaction conditions had little effect on the regioselectivity of Pseudomonas stutzeri cells in the propionylation of quercetin hydrate, and the 6'-regional selectivity remained above 94%.
  • the catalyst used in the method is simple and easy to operate, the reaction condition is mild, the yield is high, the initial velocity is fast, the selectivity of the hydroxyl protection region can be controlled, the selectivity of the conventional chemical method is low, the substrate utilization rate is low, and the product purity is low. , easy to generate by-products and other shortcomings.
  • a method for hydroxyprotection of quercetin based on Pseudomonas stutzer cells comprising the following steps:
  • the volume of the stoppered triangular flask of step 2) may be appropriately changed to enlarge or reduce the volume of the reaction system; 10mL ;
  • the organic solvent is a single type of organic solvent or a mixed organic solvent, wherein a single type of organic solvent is pyridine, and the mixed organic solvent is acetonitrile - pyridine, tert-butanol - pyridine, tert-amyl alcohol - pyridine, tetrahydrofuran-pyridine, n-hexane-pyridine, isopropyl ether-pyridine, petroleum ether-pyridine or isooctane-pyridine; step 2) the organic solvent is 2 mL by volume 1:1 Isooctane-pyridine;
  • the amount of the flavonoid hydrate in the step 3) is 10 mmol/L-90 mmol. Quercetin hydrate;
  • the acyl donor is a vinyl propionate in an amount of 60 to 2400 mmol
  • step 5 The water used is ultrapure water or double distilled water;
  • the reaction temperature control method is a water bath shaker constant temperature oscillator water bath or a constant temperature shake flask air bath;
  • reaction temperature in the step 7) is from 20 ° C to 50 ° C.
  • the method specifically includes the following steps:
  • reaction temperature range of Qinpi A hydrate hydroxy protection is 20 ° C ⁇ 50 ° C, water bath constant temperature oscillator reaction;
  • reaction is oscillated in a water bath thermostat with a speed of 100 to 260 rpm.
  • the volume of the triangular flask used in the reaction in step 2) is not limited to 10 mL.
  • the reaction system may be appropriately enlarged or reduced; the organic solvent is a single type of organic solvent such as pyridine or a mixed organic solvent such as acetonitrile-pyridine, tert-butanol-pyridine, tert-amyl alcohol-pyridine, tetrahydrofuran-pyridine, n-hexane.
  • the constant temperature oscillator is not limited to a water bath shaker, such as a gas bath condition such as a constant temperature shake flask.
  • the Pseudomonas stutzer cell catalyst is used as a biocatalyst, and the reaction conditions are milder and more environmentally friendly than the chemical catalyst; the cost is lower than that of the enzyme catalyst.
  • the catalyst preparation is simple and easy to operate, and the acyl donor vinyl propionate is commonly purchased, the initial speed is fast, the yield is high, the regional selectivity is high, and the low selectivity of the conventional chemical method is overcome, resulting in low substrate utilization.
  • the product has low purity and is easy to produce by-products.
  • the culture method of the strain slant medium, nutrient broth medium; the seed solution was cultured for 24 hours, and then inoculated into the fermentation medium, the inoculum amount was 2% (v/v), 180r/m, 30 °C, and cultured for 48 hours.
  • Seed medium (w/v) was 1% glucose, 1% beef extract, 1% peptone, 0.5% K 2 HPO 4 , 0.02% MgSO 4 ⁇ 7H 2 O , 0.5% NaCl, pH 7.0 ⁇ 0.1; fermentation culture
  • the base (w/v) is 0.5% soybean oil, 0.1% yeast extract, 0.5% (NH 4 ) 2 SO 4 , 0.1% K 2 HPO 4 , 0.02% MgSO 4 ⁇ 7H 2 O .
  • Reaction conditions 2 mL of mixed organic solvent, 80 m of Pseudomonas stutzer cell catalyst, 60 mmol of quercetin hydrate, 1200 mmol of vinyl propionate, 40 ° C, 180 rpm, reaction for 24 h. a volume fraction, v/v.
  • Reaction conditions 2 mL mixed organic solvent, 80 mg of Pseudomonas stutzer cell catalyst, 60 mmol quercetin hydrate , 1200 mmol of vinyl propionate, 40 ° C, 180 rpm, reaction for 24 h.
  • Pseudomonas stutzer cell catalyst mixed evenly, placed in a water bath thermostat oscillator reaction (40 °C, 180r/min), timed 20 ⁇ l, diluted with 60% methanol-water mixed solution 50 times, mix well, centrifuge (15,000 r/min) for 15 min, take the supernatant 20 ⁇ L from the autosampler For high performance liquid chromatography analysis.
  • the reaction results show that when the concentration of quercetin hydrate is low (5 ⁇ 250mmol/L) ), increasing the amount of substrate, the reaction rate is significantly increased; continue to increase the concentration of quercetin hydrate, the reaction rate tends to increase slowly; within the concentration range of the experimental investigation, the reaction rate has not been borne by a constant value, can be inferred 40
  • the total cell catalyst input of mg/mL is still not saturated with the substrate in the reaction system.
  • the reaction yield showed a slow downward trend and the regioselectivity decreased, but this concentration was always above 94%.
  • the yield is up to 65% at the maximum; in the propionylation reaction, when the amount of the catalyst is more than 40 mg/mL, the amount of the catalyst is continuously increased, and the yield is hardly increased, and the maximum value is 98.6%. And the regioselectivity has changed little, always above 95%.
  • the reaction results show that when the amount of distilled water added is small, the initial rate and yield of the acylation reaction decrease with the increase of the amount of distilled water added. After reaching a certain value, the amount of distilled water increases little, but the area does not change much.
  • the selectivity is basically the same, always in More than 93%, it is considered that the amount of distilled water added to the reaction system is preferably 0%. At this time, the maximum yield is 96.3%.
  • reaction results show that at 20 ⁇ 45 °C In the temperature range, with the increase of reaction temperature, the initial rate of propionylation of Pseudomonas stutzers whole cell quercetin hydrate increased. However, the yield of the reaction showed a typical first rise and then fall compared to the initial velocity. The optimum temperature is At 40 °C, the yield was 96.3%, respectively. Before the reaction temperature reached 40 °C, the yield increased with the increase of temperature, and when the temperature was higher than 40 °C, the yield decreased significantly, 6' - The effect of regioselectivity is small, both greater than 95%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

公开了一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法,步骤如下:分别加入有机溶剂、秦皮甲素水合物、酰化底物和施氏假单胞菌细胞催化剂,混合均匀,置于水浴恒温振荡器反应。

Description

一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法
技术领域
本发明属于生物催化及生物医药合成与控制领域,具体涉及一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法。
背景技术
黄酮类化合物是两个苯环通过三个碳原子相互连接而形成的一系列重要的多酚类化合物,广泛存在于几乎所有的植物,尤其是蔬菜和水果;在医药、食品和化妆品上有很大的应用价值。黄酮有多种生物活性包括抗氧化活性,抗炎,抗癌的,抗菌,抗过敏和抗病毒等,然而,由于其多羟基结构的特点,大部分黄酮生物活性受限于其低脂溶性或水溶性。位于苯环或配糖体骨架上的羟基对黄酮的生物和化学活性有重要的影响。黄酮的酯化被认为一种很有前景的方法用于提高黄酮的溶解度,从而使黄酮展示出更多的生理活性。已有研究表明,有选择地修饰黄酮类化合物结构不仅可以提高物理化学属性,例如,热稳定性和脂溶性;而且增强其生物活性,如抗氧化活性;抗菌活性;细胞渗透能力;减肥和降血脂功能。
秦皮甲素水合物是黄酮的一种,具有抗炎、抗菌、抗血凝、镇痛等活性,是枯草杆菌的生长抑制剂,同时对化学性致癌亦有抑制作用。秦皮甲素水合物有5个羟基,分布在苯环或者糖环上。环上的羟基对其活性有重要的影响,因此选择性的对秦皮甲素水合物的羟基进行酯化具有重要的意思,即可以保持其活性又可以增加其溶解度来增加其他方面的活性。
发明内容
利用传统的化学方法通常难以对特定的羟基进行保护,本发明目的在于开发一种保护秦皮甲素水合物 6' 羟基的方法。施氏假单胞菌细胞促秦皮甲素水合物酰化反应的最适有机溶剂、酰基供体、酰基供体与秦皮甲素水合物摩尔比、初始水含量、施氏假单胞菌细胞催化剂用量、反应温度和振荡速度分别为 50% ( v/v )异辛烷 - 吡啶、丙酸乙烯酯( VP )、 20:1 、 0% ( v/v )、 20g /L 、 40℃ 和 180rpm ,反应产率可达 98.9% 。反应条件对施氏假单胞菌细胞在秦皮甲素水合物丙酰化反应中的区域选择性影响不大, 6' - 区域选择性保持在 94% 以上。
该方法所用的催化剂制备简单易操作,反应条件温和,产率高,初速度快,羟基保护区域选择性可控制,克服了传统化学方法的选择性低而导致底物利用率低,产物纯度低,易生成副产物等缺点。
本发明目的通过以下技术方案来实现:
一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法,包括以下步骤:
1 )制作施氏假单胞菌细胞催化剂:将细菌种子液接种至含产酶诱导剂的液体培养基中,接种量为 0.5%~20% ( v/v ),培养条件为 30 ℃ ~50℃,培养时间为12~144h ;离心后收集菌体,蒸馏水洗涤两次,经真空冷冻干燥 12h-36h ,收获菌体干粉,即为细菌细胞催化剂;
2 )在带塞三角瓶中加入有机溶剂;
3 )加入黄酮类水合物;
4 )加入酰基供体,形成有机溶剂反应体系;
5 )在有机溶剂反应体系中加入 0~160μL 水;
6 )加入施氏假单胞菌细胞催化剂使整个反应体系最终质量为 20~160mg ,混合均匀;
7 )置于水浴恒温振荡器反应,震荡速度为100~260rpm 。
进一步地,可适当改变 步骤 2 )所述带塞 三角瓶的体积来放大或缩小反应体系体积; 带塞 三角瓶体积为 10mL ; 步骤 2 )所述 有机溶剂是单一种类有机溶剂或混合有机溶剂,其中单一种类有机溶剂是吡啶,混合有机溶剂是乙腈 - 吡啶、叔丁醇 - 吡啶、叔戊醇 - 吡啶、四氢呋喃 - 吡啶、正己烷 - 吡啶、异丙醚 - 吡啶、石油醚 - 吡啶或异辛烷 - 吡啶;步骤 2 )所述有机溶剂为 2mL 体积比为 1:1 的异辛烷 - 吡啶;
进一步地,步骤 3 )所述 黄酮类水合物用量为 10mmol/L-90mmol 的秦皮甲素水合物;
进一步地,步骤 4 )所述 酰基供体为用量为 60 ~2400 mmol 的丙酸乙烯酯;
进一步地,步骤 5 ) 所使用水为超纯水或双蒸水;反应温度控制方法为水浴摇床恒温震荡器水浴或恒温摇瓶柜气浴等;
进一步地,步骤 7 )所述 反应温度为 20 ℃ ~50℃ 。
进一步优化地,所述方法具体包括以下步骤:
1 )制作施氏假单胞菌细胞催化剂;
2 )在 10mL 带塞三角瓶中加入 2mL 有机溶剂,可为纯机溶剂或混合有机溶剂;
3 )加入秦皮甲素水合物;
4 )加入酰基供体丙酸乙烯酯,用量为 60 ~2400 mmol ;
5 )在 2mL50% (v/v) 异辛烷 - 吡啶反应体系中加入 0-160μL 水;
6 )在 2mL 50% (v/v) 异辛烷 - 吡啶( VP )反应体系中加入施氏假单胞菌细胞催化剂使整个反应体系最终质量为 20~160mg ;
8 )秦皮甲素水合物羟基保护时反应温度范围为 20℃ ~50℃ , 水浴恒温振荡器反应;
9 )在水浴恒温振荡器振荡反应,速度为 100~260rpm 。
步骤 2 )中反应所使用的三角瓶体积不限于 10mL ,反应体系可适当放大或缩小;有机溶剂是单一种类有机溶剂如吡啶或是混合有机溶剂,如乙腈 - 吡啶、叔丁醇 - 吡啶、叔戊醇 - 吡啶、四氢呋喃 - 吡啶、正己烷 - 吡啶、异丙醚 - 吡啶、石油醚 - 吡啶或异辛烷 - 吡啶;最佳混合有机溶剂为异辛烷 - 吡啶,所有混合有机溶剂最佳配比均为 1 : 1 ( v/v ),但不限于此配比。
步骤 7 )恒温震荡器不限于水浴摇床,如恒温摇瓶柜等气浴条件也可。
本发明与现有的技术相比具有如下的优点:
1. 利用施氏假单胞菌细胞催化剂作为生物催化剂,较之化学催化剂反应条件温和、环境友好;较之酶催化剂成本低。
2.该方法催化剂制备简单易操作,酰基供体丙酸乙烯酯常用易购买,初速度快,产率高,区域选择性高,克服了传统化学方法的选择性低导致底物利用率低,产物纯度低,易生成副产物等缺点。
具体实施方式
下面结合具体实施例对本发明作进一步说明,但本发明的实施和保护范围不限于此。
实施例 1
在 10mL 带塞三角瓶中加入 2mL 吡啶、 60 mmol 秦皮甲素水合物、 1200mmol 丙酸乙烯酯和 80mg 施氏假单胞菌细胞催化剂,混合均匀,置于水浴恒温振荡器反应( 40 ℃ 、 180r/min ),定时取样 20μl ,用 60% (体积分数,下同)甲醇 - 水混合溶液稀释 50 倍,混合均匀后离心( 15,000r/min ) 15min ,自动进样器取上清液 20μl ,供高效液相色谱分析。在纯溶剂吡啶中施氏假单胞菌细胞可以催化秦皮甲素水合物发生酰化反应, 24 后产率为 16.7% , 6' 区域选择性为 98.6%.
菌种培养方法:斜面培养基,营养肉汤培养基;种子液培养 24h 后接种到发酵培养基中,接种量为 2% ( v/v ) , 180r/m , 30 ℃ ,培养 48h 。种子液培养基( w/v )为 1% 葡萄糖, 1% 牛肉膏, 1% 蛋白胨, 0.5% K2HPO4, 0.02% MgSO4·7H2O , 0.5%NaCl , pH 7.0±0.1 ;发酵培养基( w/v )为 0.5% 大豆油, 0.1% 酵母浸膏, 0.5% (NH4)2SO4 , 0.1% K2HPO4, 0.02% MgSO4·7H2O 。
实施例 2
在 8 个 10mL 带塞三角瓶中均加入 60 mmol 秦皮甲素水合物和 1200mmol 丙酸乙烯酯,再向 8 个带塞三角瓶中分别加入 2mL 混合有机溶剂(体积分数为 25% 的乙腈 - 吡啶、体积分数为 25% 的叔丁醇 - 吡啶、体积分数为 25% 的叔戊醇 - 吡啶、体积分数为 25% 的四氢呋喃 - 吡啶、体积分数为 25% 的正己烷 - 吡啶、体积分数为 25% 的异丙醚 - 吡啶、体积分数为 25% 的石油醚 - 吡啶,体积分数为 25% 的异辛烷 - 吡啶),最后向每个带塞三角瓶中均加入 80mg 施氏假单胞菌细胞催化剂,混合均匀,置于水浴恒温振荡器反应( 40 ℃ 、 180r/min ),定时取样 10μl ,用 40% 甲醇 - 水混合溶液稀释 100 倍,混合均匀后离心( 15,000r/min ) 15min ,自动进样器取上清液 20μl ,供高效液相色谱分析。反应结果如表 1 。
表 1 含吡啶混合有机溶剂对施氏假单胞菌细胞促秦皮甲素水合物丙酰化反应的影响
有机溶剂 a V 0 (mmol/L·h) 产率 (%) 6' - 区域选择性 (%)
乙腈 - 吡啶 (1:3) 1.40 18.21 96.40
叔丁醇 - 吡啶 (1:3) 0.20 8.64 100
叔戊醇 - 吡啶 (1:3) 0.83 31.04 97.02
四氢呋喃 - 吡啶 (1:3) 1.26 39.99 97.63
正己烷 - 吡啶 (1:3) 0.81 45.97 97.19
异丙醚 - 吡啶 (1:3) 1.28 42.99 96.59
石油醚 - 吡啶 (1:3) 0.53 49.09 96.63
异辛烷 - 吡啶 (1:3) 1.67 58.04 98.80
反应条件: 2mL 混合有机溶剂, 80m 施氏假单胞菌细胞催化剂, 60 mmol 秦皮甲素水合物 , 1200 mmol 丙酸乙烯酯, 40℃ , 180 rpm ,反应 24h 。 a 体积分数 , v/v 。
实施例 3
在 9 个 10mL 带塞三角瓶中均加入 60 mmol 秦皮甲素水合物和 1200mmol 丙酸乙烯酯( VA ),再向 10 个带塞三角瓶中分别加入 2mL 不同体积分数的混合有机溶剂异辛烷 - 吡啶( 0% 、 5% 、 10% 、 15% 、 20% 、 30% , 35% , 40% , 50% ),最后向每个带塞三角瓶中均加入 100mg 施氏假单胞菌细胞催化剂,混合均匀,置于水浴恒温振荡器反应( 40 ℃ 、 180r/min ),定时取样 20μL ,用 60% 甲醇 - 水混合溶液稀释 50 倍,混合均匀后离心( 15,000r/min ) 15min ,自动进样器取上清液 20μL ,供高效液相色谱分析。反应结果如表 2 。
表 2 混合有机溶剂中两组分的体积比对施氏假单胞菌细胞促秦皮甲素水合物丙酰化反应的影响
不同比例的异辛烷 - 吡啶 V0 (mmol/L·h) 转化率 (%) 6' 区域选择性 (%)
0 16.23 97.78 0.97
10 36.52 97.95 1.45
15 44.79 98.65 1.96
20 54.99 98.74 2.43
25 57.57 99.92 2.71
30 73.66 97.82 3.59
35 86.20 97.91 3.91
40 90.53 97.53 4.09
45 91.98 97.64 5.87
50 97.02 96.92 6.43
反应条件: 2mL 混合有机溶剂, 80mg 施氏假单胞菌细胞催化剂, 60 mmol 秦皮甲素水合物 , 1200 mmol 丙酸乙烯酯, 40℃ , 180 rpm ,反应 24h 。
实施例 4
在 9 个 10mL 带塞三角瓶中均加入 2mL 30% ( v/v )正己烷 - 吡啶混合有机溶剂,再向 8 个带塞三角瓶中分别加入不同用量秦皮甲素水合物( 10mmol 、 20mmol 、 30mmol 、 40mmol 、 50mmol 、 60mmol 、 70mmol 、 80mmol 、 90mmol ),最后向每个带塞三角瓶中均加入 600mmol 丙酸乙烯酯和 80mg 施氏假单胞菌细胞催化剂,混合均匀,置于水浴恒温振荡器反应( 40 ℃ 、 180r/min ),定时取样 20μl ,用 60% 甲醇 - 水混合溶液稀释 50 倍,混合均匀后离心( 15,000 r/min ) 15min ,自动进样器取上清液 20μL ,供高效液相色谱分析。反应结果表明,当秦皮甲素水合物浓度较低时( 5~250mmol/L ),增加底物的量,反应速度显著增加;继续增大秦皮甲素水合物的浓度,反应速度增加趋于缓慢;在实验考察的浓度范围内,反应速度尚未催于恒定值,可推知 40 mg/mL 的全细胞催化剂投入量在反应体系中仍未被底物饱和。然而,随着秦皮甲素水合物浓度的增大( >30mmol/L ),反应产率呈缓慢下降趋势,区域选择性有所下降,但此浓度内始终在 94% 以上。
实施例 5
在 8 个 10mL 带塞三角瓶中均加入 2mL 50% ( v/v )异辛烷 - 吡啶混合有机溶剂、 60mmol 秦皮甲水合物和 1200mmol 丙酸乙烯酯,再向 8 个带塞三角瓶中分别加入不同质量施氏假单胞菌细胞催化剂( 10mg 、 20mg 、 30mg 、 40mg 、 50mg 、 60mg 、 700mg 、 80mg ),混合均匀,置于水浴恒温振荡器反应( 30 ℃ 、 140r/min ),定时取样 20μL ,用 60% 甲醇 - 水混合溶液稀释 50 倍,混合均匀后离心( 15,000 r/min ) 15min ,自动进样器取上清液 20μL ,供高效液相色谱分析。反应结果表明,在秦皮甲素水合物的丙酰化反应中,催化剂用量大于 20 mg/mL 时产率趋于平稳,且在用量为 20 mg/mL 时产率达最大值 65% ;在丙酰化反应中,催化剂用量大于 40 mg/mL 时,继续增大催化剂用量,产率几乎不再增长,最大值为 98.6% ;而区域选择性变化不大,始终在 95% 以上。
实施例 6
在9个10mL带塞三角瓶中均加入2mL混合有机溶剂 50%(v/v)异辛烷-吡啶 和60mmol秦皮甲素水合物,再向9个带塞三角瓶中分别加入不同用量的丙酸乙烯酯(60 mmol、300 mmol、600mmol、900 mmol、1200 mmol、1500 mmol、1800 mmol、2100 mmol、2400 mmol ),最后向每个带塞三角瓶中均加入40mg 施氏假单胞菌细胞催化剂 ,混合均匀,置于水浴恒温振荡器反应(40℃、180r/min),定时取样20μL,用40% 甲醇-水混合溶液稀释100倍,混合均匀后离心(15,000 r/min)15min,自动进样器取上清液20μL,供高效液相色谱分析。反应结果表明, 施氏假单胞菌细胞催化 秦皮甲素水合物的丙酰化反应的初速度均随着羧酸丙烯酯与秦皮甲素水合物摩尔比的增加而增大,但6'-区域选择性变化不大,始终高于94%。
综合考虑,认为施氏假单胞菌细胞催化秦皮甲素水合物乙酰化反应中,丙酸乙烯酯与秦皮甲素水合物的最适比例为 20:1 ,此时产率为 94.9% 。
实施例 7
在 9 个 10mL 带塞三角瓶中均加入 2mL 混合有机溶剂 50% ( v/v )异辛烷 - 吡啶、 60mmol 秦皮甲素水合物和丙酸乙烯酯 1200 mmol ,再向 9 个带塞三角瓶中分别加入不同体积的蒸馏水( 0μL 、 20μL 、 40μL 、 60μL 、 80μL 、 100μL 、 120μL 、 140μL 、 160μL ),最后向每个带塞三角瓶中均加入 40mg 施氏假单胞菌细胞催化剂,混合均匀,置于水浴恒温振荡器反应( 40 ℃ 、 180r/min ),定时取样 20μl ,用 60% 甲醇 - 水混合溶液稀释 50 倍,混合均匀后离心( 15,000 r/min ) 15min ,自动进样器取上清液 20μL ,供高效液相色谱分析。反应结果表明,当加入的蒸馏水很少时,酰化反应的初速度和产率随加入蒸馏水的量的增加而降低,达到一定的值后又随加入蒸馏水的量的增加变化不大,但区域选择性随基本不变,始终在 93% 以上,故认为反应体系的加入蒸馏水的量以 0% 为宜,此时,最大产率分别是 96.3% 。
实施例 8
在 7 个 10mL 带塞三角瓶中均加入 2mL 混合有机溶剂 50% ( v/v )异辛烷 - 吡啶、 0μL 蒸馏水、 60mmol 秦皮甲素水合物、 1200 mmol 丙酸乙烯酯和 40mg 施氏假单胞菌细胞催化剂,混合均匀,置于不同温度( 20 ℃ 、 25 ℃ 、 30 ℃ 、 35 ℃ 、 40 ℃ 、 45 ℃ 、 50 ℃ ) 下水浴恒温振荡器反应(
180r/min ),定时取样 20μl ,用 60% 甲醇 - 水混合溶液稀释 50 倍,混合均匀后离心( 15,000 r/min ) 15min ,自动进样器取上清液 20μl ,供高效液相色谱分析。反应结果表明,在 20~45 ℃ 温度范围内,随着反应温度的升高,施氏假单胞菌全细胞促秦皮甲素水合物丙酰化反应的初速度均随之增大。然而,与初速度相比,反应的产率表现出典型的先升后降的趋势。最适温度为 40 ℃ ,此时,产率分别为 96.3% ,在反应温度达到 40℃ 之前,产率随温度的上升而上升,而当温度高于 40℃ 后,产率下降明显, 6' - 区域选择性的影响不大,均大于 95% 。

Claims (9)

  1. 一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法,其特征在于,包括以下步骤:
    1)制作施氏假单胞菌细胞催化剂;
    2)在带塞三角瓶中加入有机溶剂;
    3)加入黄酮类水合物;
    4)加入酰基供体,形成有机溶剂反应体系;
    5)在有机溶剂反应体系中加入0~160μL水;
    6)加入施氏假单胞菌细胞催化剂使整个反应体系最终质量为20~160mg,混合均匀;
    7)置于水浴恒温振荡器反应,震荡速度为100~260rpm。
  2. 根据权利要求1所述的一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法,其特征在于步骤2)所述带塞三角瓶体积为10mL。
  3. 根据权利要求1所述的一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法,其特征在于步骤2)所述有机溶剂是单一种类有机溶剂或混合有机溶剂,其中单一种类有机溶剂是吡啶,混合有机溶剂是乙腈-吡啶、叔丁醇-吡啶、叔戊醇-吡啶、四氢呋喃-吡啶、正己烷-吡啶、异丙醚-吡啶、石油醚-吡啶或异辛烷-吡啶。
  4. 根据权利要求1所述的一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法,其特征在于步骤2)所述有机溶剂为2mL 体积比为1:1的异辛烷-吡啶。
  5. 根据权利要求1所述的一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法,其特征在于步骤3)所述黄酮类水合物为摩尔用量为10mmol-90mmol的秦皮甲素水合物。
  6. 根据权利要求1所述的一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法,其特征在于步骤4)所述酰基供体为60 ~2400 mmol的丙酸乙烯酯。
  7. 根据权利要求1中所述的一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法,其特征在于步骤5)所使用水为超纯水或双蒸水。
  8. 根据权利要求1中所述的一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法,其特征在于反应温度控制方法为水浴摇床恒温震荡器水浴或恒温摇瓶柜气浴。
  9. 根据权利要求1所述的一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法,其特征在于步骤7)所述反应温度为20℃~50℃。
PCT/CN2015/100037 2015-07-28 2015-12-31 一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法 WO2017016175A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510449759.2A CN105063137A (zh) 2015-07-28 2015-07-28 一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法
CN201510449759.2 2015-07-28

Publications (1)

Publication Number Publication Date
WO2017016175A1 true WO2017016175A1 (zh) 2017-02-02

Family

ID=54492644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/100037 WO2017016175A1 (zh) 2015-07-28 2015-12-31 一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法

Country Status (2)

Country Link
CN (1) CN105063137A (zh)
WO (1) WO2017016175A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105063137A (zh) * 2015-07-28 2015-11-18 华南理工大学 一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法
CN107164423B (zh) * 2017-05-27 2021-02-19 华南理工大学 一种全细胞催化制备曲克芦丁酯的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104726374A (zh) * 2015-03-18 2015-06-24 华南理工大学 催化柚皮苷酯合成反应的细菌细胞催化剂的制备方法
CN104726375A (zh) * 2015-03-18 2015-06-24 华南理工大学 催化秦皮甲素酯交换反应的细菌细胞催化剂的制备方法
CN105063137A (zh) * 2015-07-28 2015-11-18 华南理工大学 一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104726374A (zh) * 2015-03-18 2015-06-24 华南理工大学 催化柚皮苷酯合成反应的细菌细胞催化剂的制备方法
CN104726375A (zh) * 2015-03-18 2015-06-24 华南理工大学 催化秦皮甲素酯交换反应的细菌细胞催化剂的制备方法
CN105063137A (zh) * 2015-07-28 2015-11-18 华南理工大学 一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法

Also Published As

Publication number Publication date
CN105063137A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
CN102250990B (zh) 用β-半乳糖苷酶催化水解甜菊糖苷制备悬钩子苷的方法
DK172094B1 (da) 1,4-Dihydropyridin-forbindelser, farmaceutiske præparater indeholdende disse og deres anvendelse til deres fremstilling af lægemidler samt beskyttede derivater deraf til anvendelse som udgangsmateriale ved deres fremstilling
Chen et al. Production and characterization of ectoine using a moderately halophilic strain Halomonas salina BCRC17875
KR101415995B1 (ko) 녹차 사포닌 21-o-안젤로일티아사포제놀 e3의 제조방법
Khoufi et al. Enzymatic hydrolysis of olive wastewater for hydroxytyrosol enrichment
CN103589702B (zh) 一种耐热性β-葡萄糖苷酶及其突变体的应用
BR112018000550B1 (pt) Método para preparar uma composição de glicosídeo de esteviol
WO2017016175A1 (zh) 一种基于施氏假单胞菌细胞催化的秦皮甲素羟基保护反应方法
Dong et al. Production of a new tetracyclic triterpene sulfate metabolite sambacide by solid-state cultivated Fusarium sambucinum B10. 2 using potato as substrate
CN101914595A (zh) 一种酶法合成阿魏酸糖酯衍生物的方法
Yang et al. Improving whole-cell biocatalysis for helicid benzoylation by the addition of ionic liquids
BR112018000298B1 (pt) Método para reduzir o teor de ácido caurenóico de uma composição de glicosídeo de esteviol
Madej et al. Improved oxidation of naringenin to carthamidin and isocarthamidin by Rhodotorula marina
Bartmańska et al. Transformation of isoxanthohumol by fungi
CN103290087A (zh) 一种制备色普龙中间体17а-羟基孕甾-1,4,6-三烯-3,20-二酮的方法
CN113481275A (zh) 一种酶催化半合成制备罗汉果赛门苷的方法
Abdel-Kader et al. New microbial source of the antifungal allylamine “Terbinafine”
Ma et al. Efficient bioconversion of quercetin into a novel glycoside by Streptomyces rimosus subsp. rimosus ATCC 10970
CN103014076B (zh) 一种利用棘孢曲霉制备甜菊醇和纯化莱鲍迪苷a的方法
Cassani et al. Comparative esterification of phenylpropanoids versus hydrophenylpropanoids acids catalyzed by lipase in organic solvent media
Shimoda et al. Glycosylation of quercetin with cultured plant cells and cyclodextrin glucanotransferase
CN105002238A (zh) 一种基于施氏假单胞菌细胞催化的柚皮苷羟基保护反应方法
US11286511B2 (en) Method for preparing troxerutin ester using whole-cell catalysis
Yanase et al. Isolation of N, N-dimethyl and N-methylserotonin 5-O-β-glucosides from immature Zanthoxylum piperitum seeds
US20160081380A1 (en) Enzyme modification of sweet blackberry leaves

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05.04.18)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.05.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15899521

Country of ref document: EP

Kind code of ref document: A1