WO2017014278A1 - 成膜装置 - Google Patents

成膜装置 Download PDF

Info

Publication number
WO2017014278A1
WO2017014278A1 PCT/JP2016/071438 JP2016071438W WO2017014278A1 WO 2017014278 A1 WO2017014278 A1 WO 2017014278A1 JP 2016071438 W JP2016071438 W JP 2016071438W WO 2017014278 A1 WO2017014278 A1 WO 2017014278A1
Authority
WO
WIPO (PCT)
Prior art keywords
film forming
film
film formation
plasma
chamber
Prior art date
Application number
PCT/JP2016/071438
Other languages
English (en)
French (fr)
Inventor
尚久 北見
酒見 俊之
山本 哲也
淳一 野本
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016046649A external-priority patent/JP6584982B2/ja
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN201680045499.5A priority Critical patent/CN107849690B/zh
Priority to KR1020237029223A priority patent/KR20230129601A/ko
Priority to CN202010216059.XA priority patent/CN111364008B/zh
Priority to KR1020207008153A priority patent/KR102573358B1/ko
Priority to KR1020187003080A priority patent/KR102565020B1/ko
Publication of WO2017014278A1 publication Critical patent/WO2017014278A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • C23C14/566Means for minimising impurities in the coating chamber such as dust, moisture, residual gases using a load-lock chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Definitions

  • the present invention relates to a film forming apparatus.
  • ions that diffuse the evaporated film formation material particles in the vacuum chamber and attach the film formation material particles to the surface of the film formation target A film forming apparatus using a plating method is known (see Patent Document 1).
  • an object of the present invention is to provide a film forming apparatus that can suppress deterioration of film quality in a film forming object.
  • a film formation apparatus is a film formation apparatus that forms a film formation material on a film formation target, and stores the film formation target and performs a film formation process. It is characterized by comprising a vacuum chamber, a film forming part for attaching particles of film forming material to a film forming object in the vacuum chamber, and a negative ion generating part for generating negative ions in the vacuum chamber.
  • negative ions are generated in the vacuum chamber by the negative ion generation unit. Therefore, the negative ions are applied to the surface of the film formed on the film formation target by the film formation process. Can be attached. Thus, even if the film formation target after the film formation process is taken out into the atmosphere, negative ions are attached to the surface of the film formed on the film formation target. It is possible to suppress deterioration in film quality due to adhesion of oxygen in the atmosphere. As described above, it is possible to suppress the deterioration of the film quality in the film formation target.
  • the negative ion generation unit intermittently generates plasma, a plasma gun that generates plasma in the vacuum chamber, a source gas supply unit that supplies source gas of negative ions into the vacuum chamber, and And a control unit for controlling the plasma gun.
  • plasma is intermittently generated in the vacuum chamber, when the generation of plasma in the vacuum chamber is stopped, the electron temperature of the plasma in the vacuum chamber rapidly decreases and is supplied into the vacuum chamber. Electrons easily adhere to the negative ion source gas particles. Thereby, negative ions can be efficiently generated in the vacuum chamber. As a result, negative ions can be efficiently attached to the surface of the film formed on the film formation target.
  • the negative ion generation unit further includes a switching unit that switches between supply and interruption of plasma into the vacuum chamber, and the control unit generates plasma intermittently by switching the switching unit.
  • the plasma gun may be controlled. In this case, plasma can be generated intermittently simply by switching the switching unit.
  • the vacuum chamber includes a transfer chamber for transferring a film formation target and a film formation chamber for diffusing the film formation material, and a magnetic force line in a direction intersecting the direction from the film formation chamber toward the transfer chamber.
  • a magnetic field generating coil that suppresses electrons in the film forming chamber from flowing into the transfer chamber by generating a magnetic field having In this case, the magnetic field generated by the magnetic field generating coil can suppress the electrons in the film forming chamber from flowing into the transfer chamber, so that negative ions can be generated more efficiently in the film forming chamber. . As a result, negative ions can be more efficiently attached to the surface of the film formed on the film formation target.
  • the magnetic field generating coil may be provided in the vacuum chamber and between the film forming chamber and the transfer chamber. In this case, it is possible to suitably generate a magnetic field having magnetic lines of force in a direction that suppresses electrons in the film formation chamber from flowing into the transfer chamber.
  • the film forming unit has a plasma gun, and particles of the film forming material are attached to the film forming object by an ion plating method.
  • the plasma gun in the film forming unit is a negative ion generating unit. It may also be used as a plasma gun.
  • the negative ion generator can be configured. Therefore, it is possible to provide the negative ion generation unit while suppressing the influence on the film forming conditions. Furthermore, since the plasma gun is also used, the apparatus configuration can be simplified.
  • the film forming apparatus may further include a voltage applying unit that applies a positive bias voltage to the film forming target after the film forming process by the film forming unit.
  • a positive bias voltage is applied to the film formation target after the film formation process by the voltage application unit.
  • the negative ion generation unit intermittently generates plasma in the vacuum chamber, and the voltage application unit applies a positive bias voltage to the film formation target after the generation of plasma by the negative ion generation unit is stopped. May be applied. Thereby, many negative oxygen ions are irradiated to the film formation target. As a result, it is possible to further suppress deterioration in film quality due to adhesion of atmospheric oxygen to the film surface of the film formation target.
  • the film forming apparatus includes a vacuum load lock chamber that is disposed adjacent to the vacuum chamber and carries a film forming object in and out, and the vacuum load lock chamber carries the film forming object after the film forming process from the vacuum chamber.
  • the film formation target that has been carried in may be carried out to the vacuum chamber after the negative ions are generated by the negative ion generator.
  • the film-forming target is carried into the vacuum chamber at an appropriate timing when oxygen negative ions are generated without being exposed to the atmosphere.
  • the film forming apparatus includes a holding member that holds an object to be formed.
  • the trolley wire is extended in the vacuum chamber, and the holding member is provided with a power feeding unit that receives power from the trolley wire. It may be.
  • power is supplied from a trolley wire provided in the vacuum chamber to the power supply unit provided in the holding member that holds the film formation target. Thereby, a positive voltage can be easily applied to the film formation target through the power feeding portion of the holding member.
  • the film forming apparatus may include a tension applying unit that applies tension to the trolley wire.
  • tension is applied to the trolley wire by the tension applying unit.
  • the present invention it is possible to provide a film forming apparatus capable of suppressing the deterioration of the film quality in the film forming object.
  • FIG. 7 is a cross-sectional view taken along line VII-VII in FIG. 6.
  • FIG. 7 is a cross-sectional view taken along line VIII-VIII in FIG. 6.
  • FIGS. 1 and 2 are schematic cross-sectional views showing the configuration of the film forming apparatus according to this embodiment.
  • FIG. 1 shows an operation state in the film forming process mode
  • FIG. 2 shows an operation state in the oxygen negative ion generation mode. Details of the generation processing mode and the oxygen negative ion generation mode will be described later.
  • the film forming apparatus 1 of the present embodiment is an ion plating apparatus used in a so-called ion plating method.
  • FIGS. 1 and 2 show an XYZ coordinate system.
  • the Y-axis direction is a direction in which a film formation target to be described later is conveyed.
  • the X-axis direction is a position where a film formation target and a hearth mechanism described later face each other.
  • the Z-axis direction is a direction orthogonal to the Y-axis direction and the X-axis direction.
  • the film forming apparatus 1 is in a state where the film forming target 11 is tilted from an upright state or an upright state so that the thickness direction of the film forming target 11 is a horizontal direction (X-axis direction in FIGS. 1 and 2).
  • the film forming object 11 is a so-called vertical film forming apparatus in which the film forming object 11 is arranged and transported in the vacuum chamber 10.
  • the X-axis direction is the horizontal direction and the thickness direction of the film formation target 11
  • the Y-axis direction is the horizontal direction
  • the Z-axis direction is the vertical direction.
  • the film forming apparatus is a so-called horizontal type device in which the film formation target is arranged and transported in a vacuum chamber so that the plate thickness direction of the film formation target is substantially vertical. It may be a membrane device.
  • the Z-axis and Y-axis directions are horizontal directions
  • the X-axis direction is the vertical direction and the plate thickness direction.
  • a vertical film forming apparatus will be described as an example.
  • the film forming apparatus 1 includes a vacuum chamber 10, a transport mechanism 3, a film forming unit 14, a negative ion generating unit 24, and a magnetic field generating coil 30.
  • the vacuum chamber 10 accommodates the film formation object 11 and performs film formation processing.
  • the vacuum chamber 10 includes a transfer chamber 10a for transferring a film formation target 11 on which a film of the film formation material Ma is formed, a film formation chamber 10b for diffusing the film formation material Ma, and a beam from the plasma source 7.
  • a plasma port 10c for receiving the irradiated plasma P in the vacuum chamber 10;
  • the transfer chamber 10a, the film forming chamber 10b, and the plasma port 10c communicate with each other.
  • the transfer chamber 10a is set along a predetermined transfer direction (arrow A in the drawing) (along the Y axis).
  • the vacuum chamber 10 is made of a conductive material and connected to the ground potential.
  • the film forming chamber 10b includes a pair of side walls along the transport direction (arrow A) and a pair of side walls 10h and 10i along the direction intersecting the transport direction (arrow A) (Z-axis direction). , And a bottom wall 10j disposed so as to intersect the X-axis direction.
  • the transport mechanism 3 transports the film-forming target holding member 16 that holds the film-forming target 11 in a state of facing the film-forming material Ma in the transport direction (arrow A).
  • the film formation target holding member 16 is a frame that holds the outer peripheral edge of the film formation target 11.
  • the transport mechanism 3 includes a plurality of transport rollers 15 installed in the transport chamber 10a.
  • the conveyance rollers 15 are arranged at equal intervals along the conveyance direction (arrow A), and convey the film formation target holding member 16 in the conveyance direction (arrow A).
  • the film formation target 11 is a plate-like member such as a glass substrate or a plastic substrate.
  • the film forming unit 14 attaches the particles of the film forming material Ma to the film forming target 11 by an ion plating method.
  • the film forming unit 14 includes a plasma source 7, a steering coil 5, a hearth mechanism 2, and a wheel hearth 6.
  • the plasma source 7 is, for example, a pressure gradient type plasma gun, and its main body is connected to the film forming chamber 10b through a plasma port 10c provided on the side wall of the film forming chamber 10b.
  • the plasma source 7 generates plasma P in the vacuum chamber 10.
  • the plasma P generated in the plasma source 7 is emitted in the form of a beam from the plasma port 10c into the film forming chamber 10b. Thereby, plasma P is generated in the film forming chamber 10b.
  • the plasma source 7 is closed at one end by the cathode 60.
  • a first intermediate electrode (grid) 61 and a second intermediate electrode (grid) 62 are concentrically disposed between the cathode 60 and the plasma port 10c.
  • An annular permanent magnet 61 a for converging the plasma P is built in the first intermediate electrode 61.
  • An electromagnet coil 62 a is also incorporated in the second intermediate electrode 62 in order to converge the plasma P.
  • the plasma source 7 also has a function as a negative ion generation unit 24 described later. Details of this will be described later in the description of the negative ion generator 24.
  • the steering coil 5 is provided around the plasma port 10c to which the plasma source is mounted.
  • the steering coil 5 guides the plasma P into the film forming chamber 10b.
  • the steering coil 5 is excited by a power source (not shown) for the steering coil.
  • the hearth mechanism 2 holds the film forming material Ma.
  • the hearth mechanism 2 is provided in the film forming chamber 10 b of the vacuum chamber 10 and is disposed in the negative direction in the X-axis direction when viewed from the transport mechanism 3.
  • the hearth mechanism 2 has a main hearth 17 that is a main anode that guides the plasma P emitted from the plasma source 7 to the film forming material Ma or a main anode that guides the plasma P emitted from the plasma source 7.
  • the main hearth 17 has a cylindrical filling portion 17a that is filled with the film forming material Ma and extends in the positive direction of the X-axis direction, and a flange portion 17b that protrudes from the filling portion 17a. Since the main hearth 17 is maintained at a positive potential with respect to the ground potential of the vacuum chamber 10, the main hearth 17 sucks the plasma P. A through hole 17c for filling the film forming material Ma is formed in the filling portion 17a of the main hearth 17 on which the plasma P is incident. And the front-end
  • Examples of the film forming material Ma include transparent conductive materials such as ITO and ZnO, and insulating sealing materials such as SiON.
  • transparent conductive materials such as ITO and ZnO
  • insulating sealing materials such as SiON.
  • the film forming material Ma is made of a conductive material
  • the plasma P is directly incident on the film forming material Ma, and the tip portion of the film forming material Ma is heated and evaporated.
  • the film forming material particles Mb that are sublimated and ionized by the plasma P diffuse into the film forming chamber 10b.
  • the film forming material particles Mb diffused into the film forming chamber 10b move in the positive X-axis direction of the film forming chamber 10b and adhere to the surface of the film forming object 11 in the transfer chamber 10a.
  • the film forming material Ma is a solid material formed into a cylindrical shape having a predetermined length, and a plurality of film forming materials Ma are filled into the hearth mechanism 2 at a time. Then, according to the consumption of the film forming material Ma, the film forming material Ma becomes the X of the hearth mechanism 2 so that the front end portion of the film forming material Ma on the most advanced side maintains a predetermined positional relationship with the upper end of the main hearth 17. Extruded sequentially from the negative direction side.
  • the ring hearth 6 is an auxiliary anode having an electromagnet for inducing the plasma P.
  • the ring hearth 6 is disposed around the filling portion 17a of the main hearth 17 that holds the film forming material Ma.
  • the ring hearth 6 has an annular coil 9, an annular permanent magnet part 20, and an annular container 12, and the coil 9 and the permanent magnet part 20 are accommodated in the container 12.
  • the coil 9 and the permanent magnet unit 20 are installed in this order in the X negative direction as viewed from the transport mechanism 3, but the permanent magnet unit 20 and the coil 9 may be installed in the X negative direction in this order.
  • the ring hearth 6 controls the direction of the plasma P incident on the film forming material Ma or the direction of the plasma P incident on the main hearth 17 according to the magnitude of the current flowing in the coil 9.
  • the negative ion generation unit 24 includes a plasma source 7, a source gas supply unit 40, a control unit 50, and a circuit unit 34. Note that some functions included in the control unit 50 and the circuit unit 34 also belong to the film forming unit 14 described above.
  • the plasma source 7 is the same as the plasma source 7 included in the film forming unit 14 described above. That is, in the present embodiment, the plasma source 7 of the film forming unit 14 is also used as the plasma source 7 of the negative ion generation unit 24.
  • the plasma source 7 functions as the film forming unit 14 and also functions as the negative ion generation unit 24.
  • the film forming unit 14 and the negative ion generating unit 24 may have different plasma sources.
  • the plasma source 7 intermittently generates plasma P in the film forming chamber 10b. Specifically, the plasma source 7 is controlled so as to intermittently generate plasma P in the film forming chamber 10b by the control unit 50 described later. This control will be described in detail in the description of the control unit 50 described later.
  • the source gas supply unit 40 is disposed outside the vacuum chamber 10.
  • the source gas supply unit 40 supplies oxygen gas, which is a source gas of oxygen negative ions, into the vacuum chamber 10 through a gas supply port 41 provided on the side wall (for example, the side wall 10 h) of the film forming chamber 10 b.
  • oxygen gas which is a source gas of oxygen negative ions
  • the source gas supply unit 40 is switched from the film forming process mode to the oxygen negative ion generation mode, the supply of the oxygen gas is started.
  • the source gas supply unit 40 may continue to supply oxygen gas in both the film forming process mode and the oxygen negative ion generation mode.
  • the position of the gas supply port 41 is preferably a position near the boundary between the film forming chamber 10b and the transfer chamber 10a.
  • oxygen gas from the source gas supply unit 40 can be supplied near the boundary between the film forming chamber 10b and the transfer chamber 10a, oxygen negative ions described later are generated near the boundary. Accordingly, the generated oxygen negative ions can be suitably attached to the film formation target 11 in the transfer chamber 10a.
  • the position of the gas supply port 41 is not limited to the vicinity of the boundary between the film forming chamber 10b and the transfer chamber 10a.
  • the control unit 50 is disposed outside the vacuum chamber 10.
  • the control unit 50 switches the switching unit included in the circuit unit 34. The switching of the switching unit by the control unit 50 will be described in detail together with the description of the circuit unit 34 below.
  • the circuit unit 34 includes a variable power supply 80, a first wiring 71, a second wiring 72, resistors R1 to R4, and short-circuit switches SW1 and SW2.
  • the variable power supply 80 applies a negative voltage to the cathode 60 of the plasma source 7 and a positive voltage to the main hearth 17 of the hearth mechanism 2 across the vacuum chamber 10 at the ground potential. Thereby, the variable power source 80 generates a potential difference between the cathode 60 of the plasma source 7 and the main hearth 17 of the hearth mechanism 2.
  • the first wiring 71 electrically connects the cathode 60 of the plasma source 7 to the negative potential side of the variable power source 80.
  • the second wiring 72 electrically connects the main hearth 17 (anode) of the hearth mechanism 2 to the positive potential side of the variable power source 80.
  • the resistor R1 has one end electrically connected to the first intermediate electrode 61 of the plasma source 7 and the other end electrically connected to the variable power source 80 via the second wiring 72. That is, the resistor R1 is connected in series between the first intermediate electrode 61 and the variable power source 80.
  • the resistor R2 has one end electrically connected to the second intermediate electrode 62 of the plasma source 7 and the other end electrically connected to the variable power source 80 via the second wiring 72. That is, the resistor R ⁇ b> 2 is connected in series between the second intermediate electrode 62 and the variable power source 80.
  • the resistor R3 has one end electrically connected to the wall portion 10w of the film forming chamber 10b and the other end electrically connected to the variable power source 80 via the second wiring 72. That is, the resistor R3 is connected in series between the wall 10w of the film forming chamber 10b and the variable power source 80.
  • Resistor R 4 has one end electrically connected to wheel hearth 6 and the other end electrically connected to variable power supply 80 via second wiring 72. That is, the resistor R4 is connected in series between the wheel hearth 6 and the variable power source 80.
  • the short-circuit switches SW1 and SW2 are switching units that are switched to the ON / OFF state by receiving the command signal from the control unit 50, respectively.
  • the short-circuit switch SW1 is connected in parallel to the resistor R2.
  • the short-circuit switch SW1 is switched on and off by the control unit 50 depending on whether the film forming process mode or the oxygen negative ion mode is selected.
  • the short-circuit switch SW1 is turned off in the film forming process mode.
  • the second intermediate electrode 62 and the variable power source 80 are electrically connected to each other via the resistor R2, and therefore, between the second intermediate electrode 62 and the variable power source 80. It is difficult for current to flow through.
  • the plasma P from the plasma source 7 is emitted into the vacuum chamber 10 and enters the film forming material Ma (see FIG. 1).
  • the control unit 50 switches the ON / OFF state at predetermined intervals.
  • the short-circuit switch SW1 is switched to the ON state, the electrical connection between the second intermediate electrode 62 and the variable power source 80 is short-circuited, so that a current flows between the second intermediate electrode 62 and the variable power source 80. Flowing. That is, a short circuit current flows through the plasma source 7. As a result, the plasma P from the plasma source 7 is not emitted into the vacuum chamber 10.
  • the short-circuit switch SW1 When the short-circuit switch SW1 is switched to the OFF state, the second intermediate electrode 62 and the variable power source 80 are electrically connected to each other via the resistor R2, so that the second intermediate electrode 62 and the variable power source 80 are connected to each other. Current hardly flows between them. As a result, the plasma P from the plasma source 7 is emitted into the vacuum chamber 10. As described above, the ON / OFF state of the short-circuit switch SW1 is switched at predetermined intervals by the control unit 50, whereby the plasma P from the plasma source 7 is intermittently generated in the vacuum chamber 10. That is, the short-circuit switch SW1 is a switching unit that switches between supply and interruption of the plasma P into the vacuum chamber 10.
  • the short-circuit switch SW2 is connected in parallel to the resistor R4.
  • the short-circuit switch SW2 is turned ON / OFF by the control unit 50 depending on whether it is the standby mode or the film forming process mode before the film forming object 11 is transferred before entering the film forming process mode, for example. Is switched.
  • the short-circuit switch SW2 is turned on in the standby mode.
  • the short-circuit switch SW2 is turned off in the film forming process mode.
  • the wheel hearth 6 and the variable power source 80 are electrically connected via the resistor R4, so that it is easier for the current to flow to the main hearth 17 than the wheel hearth 6 and the film P is emitted in a suitable direction. Can be directed to the material Ma.
  • the short-circuit switch SW2 may be in an ON state or an OFF state in the oxygen negative ion generation mode.
  • the magnetic field generating coil 30 is provided in the vacuum chamber 10 and between the film forming chamber 10b and the transfer chamber 10a.
  • the magnetic field generating coil 30 is disposed between the hearth mechanism 2 and the transport mechanism 3, for example. More specifically, the magnetic field generating coil 30 is positioned so as to be interposed between the end portion of the film forming chamber 10b on the transfer chamber 10a side and the end portion of the transfer chamber 10a on the film forming chamber 10b side.
  • the magnetic field generating coil 30 has a pair of coils 30a and 30b facing each other. The coils 30a and 30b are opposed to each other in a direction intersecting, for example, a direction from the film forming chamber 10b to the transfer chamber 10a (a direction from the hearth mechanism 2 to the transfer mechanism 3).
  • the magnetic field generating coil 30 is not excited in the film forming process mode, and is excited by a power source (not shown) for the magnetic field generating coil 30 in the oxygen negative ion generating mode.
  • the film forming process mode is a mode in which a film forming process is performed on the film forming object 11 in the vacuum chamber 10.
  • the oxygen negative ion generation mode is a mode in which oxygen negative ions for attaching to the surface of the film formed on the film formation target 11 in the vacuum chamber 10 are generated.
  • the magnetic field generating coil 30 has a magnetic field line extending in a direction intersecting with a direction from the film forming chamber 10b toward the transfer chamber 10a (a direction toward the transfer mechanism 3 from the hearth mechanism 2) when excited in the oxygen negative ion generation mode.
  • a sealing magnetic field M is formed in the vacuum chamber 10 (see FIG. 2).
  • the magnetic field generating coil 30 suppresses the electrons in the film forming chamber 10b from flowing into the transfer chamber 10a by generating such a sealing magnetic field M.
  • the magnetic field lines that the sealing magnetic field M has may have, for example, a portion that extends in a direction substantially parallel to the transport direction (arrow A) of the film formation target 11. Note that switching of the ON / OFF state of the power supply for the magnetic field generating coil 30 may be controlled by the control unit 50 described later.
  • the magnetic field generating coil 30 is covered with a case 31 so that the film forming material Ma is not deposited.
  • the magnetic field generating coil 30 may not be covered with the case 31.
  • FIG. 3 is a flowchart showing a film forming method in the film forming apparatus 1.
  • the film forming apparatus 1 when the control unit 50 switches to the film forming process mode, a film of the film forming material Ma is formed on the film forming target 11 (S1: film forming step). .
  • the short-circuit switch SW1 is turned off by the controller 50.
  • the steering coil 5 In the film forming process mode, the steering coil 5 is excited, while the magnetic field generating coil 30 is not excited. Thereby, plasma P is generated in the film forming chamber 10b by the plasma source 7, and the main hearth 17 is irradiated with the plasma P (see FIG. 1).
  • the film forming material Ma in the main hearth 17 is ionized by the plasma P to form film forming material particles Mb, diffuses into the film forming chamber 10b, and adheres to the surface of the film forming target 11 in the transfer chamber 10a. In this way, a film of the film forming material Ma is formed on the film forming target 11, and the film forming process S1 is completed.
  • the film forming apparatus 1 generates oxygen negative ions in the oxygen negative ion mode (S2: oxygen negative ion generation step).
  • the oxygen negative ion generation step S2 will be specifically described.
  • the source gas supply unit 40 supplies oxygen gas into the film forming chamber 10b (S21: source gas supply step).
  • the plasma source 7 is controlled by the controller 50 so that the plasma P from the plasma source 7 is intermittently generated in the film forming chamber 10b (S22: plasma generation step).
  • the control unit 50 switches the ON / OFF state of the short-circuit switch SW1 at a predetermined interval, so that the plasma P from the plasma source 7 is intermittently generated in the film forming chamber 10b.
  • the short-circuit switch SW1 When the short-circuit switch SW1 is in the ON state, the plasma P from the plasma source 7 is not emitted into the film forming chamber 10b, so that the electron temperature of the plasma P in the film forming chamber 10b rapidly decreases. For this reason, the electrons of the plasma P easily adhere to the oxygen gas particles supplied into the film forming chamber 10b in the above-described source gas supply step S21. Thereby, oxygen negative ions are efficiently generated in the film forming chamber 10b.
  • a sealing magnetic field M is formed in the vacuum chamber 10 by the control unit 50 (S23: sealing magnetic field forming step).
  • the sealing magnetic field M is formed so as to be interposed between the film forming chamber 10b and the transfer chamber 10a in the vacuum chamber 10 (see FIG. 2).
  • the sealing magnetic field M has lines of magnetic force extending in a direction crossing a direction from the film forming chamber 10b to the transfer chamber 10a (a direction from the hearth mechanism 2 to the transfer mechanism 3).
  • Electrons of the plasma P generated in the film formation chamber 10b generated in the plasma generation step S22 are inhibited by the magnetic lines of force of the sealing magnetic field M formed in the sealing magnetic field formation step S23, and the inflow into the transfer chamber 10a is suppressed. Is done. Thereby, the electrons of the plasma P are easily attached to the oxygen gas particles in the film forming chamber 10b, and oxygen negative ions can be generated more efficiently. Then, the oxygen negative ions generated in the plasma generation step S22 move in the positive X-axis direction of the film formation chamber 10b, and in the transfer chamber 10a, on the surface of the film formed on the film formation target 11 by the film formation process. Adhere to. Note that oxygen negative ions may be more actively attached to the surface of the film formed on the film formation target 11 by applying a positive bias voltage to the film formation target 11.
  • oxygen negative ions are generated in the vacuum chamber 10 by the negative ion generation unit 24. It can be attached to the surface of the film formed on the surface. Thereby, even if the film formation target 11 after the film formation process is taken out into the atmosphere, oxygen negative ions are attached to the surface of the film formed on the film formation target 11. It is possible to suppress deterioration in film quality due to adhesion of atmospheric oxygen to the surface of the film. From the above, it is possible to suppress the deterioration of the film quality in the film formation target 11.
  • the plasma in the vacuum chamber 10 is stopped when the generation of the plasma P in the vacuum chamber 10 is stopped.
  • the electron temperature of P is rapidly lowered, and the electrons are easily attached to the oxygen gas particles supplied into the vacuum chamber 10.
  • oxygen negative ions can be efficiently generated in the vacuum chamber 10.
  • negative ions can be efficiently attached to the surface of the film formed on the film formation target 11.
  • the plasma P can be easily generated intermittently by simply switching the short-circuit switch SW1.
  • the plasma source 7 is a pressure gradient type plasma gun
  • the film forming apparatus 1 since the magnetic lines of the sealing magnetic field M generated by the magnetic field generating coil 30 can suppress the electrons in the film forming chamber 10b from flowing into the transfer chamber 10a, the film forming chamber 10b. Thus, negative ions can be generated more efficiently. As a result, negative ions can be more efficiently attached to the surface of the film formed on the film formation target.
  • the magnetic field generating coil 30 is provided between the film forming chamber 10b and the transfer chamber 10a, the direction in which electrons in the film forming chamber 10b are prevented from flowing into the transfer chamber 10a.
  • the sealing magnetic field M having the magnetic field lines can be suitably generated.
  • the plasma source 7 of the film forming unit 14 and the plasma source 7 of the negative ion generating unit 24 are used together.
  • the negative ion generator 24 can be configured without greatly changing the provided structure. Therefore, it is possible to provide the negative ion generator 24 while suppressing the influence on the film forming conditions. Furthermore, since the plasma source 7 is also used, the apparatus configuration can be simplified.
  • the film forming apparatus 1A includes the same elements and structures as the film forming apparatus 1 according to the first embodiment. For this reason, the same elements and structures as those of the film forming apparatus 1 according to the first embodiment are denoted by the same reference numerals, detailed description thereof will be omitted, and portions different from the first embodiment will be described.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of the film forming apparatus 1A according to the present embodiment, and is a view showing an operating state in the oxygen negative ion generation mode.
  • the figure which shows the operation state in the film-forming process mode of the film-forming apparatus 1A which concerns on 2nd Embodiment is a short circuit switch SW1 in an OFF state compared with FIG. 4, and the film-forming material particle Mb is the film-forming chamber 10b. The difference is only in that it is diffused in, and the other points are the same, so the illustration is omitted.
  • the film forming target 11 is vacuumed so that the plate thickness direction of the film forming target 11 is substantially vertical (the Z-axis direction in FIG. 4).
  • This is a so-called horizontal type film forming apparatus which is arranged and transported in the chamber 10.
  • the film forming apparatus according to this embodiment may be the above-described vertical film forming apparatus.
  • a horizontal film forming apparatus will be described as an example.
  • the film forming apparatus 1 ⁇ / b> A includes the vacuum chamber 10, the transport mechanism 3, the film forming unit 14, and the negative ion generating unit 24, as with the film forming apparatus 1.
  • the film forming apparatus 1A does not include the magnetic field generating coil 30 and the case 31 thereof.
  • the direction in which the film formation target 11 is conveyed is not one direction but bidirectional (arrow B in the figure), and the film formation target holding member 16 that holds the film formation target 11 is used.
  • a film-forming object holding member 16A holding member that holds the film-forming object 11 is provided. That is, in the present embodiment, the transport mechanism 3 transports the film formation target holding member 16A in the transport direction (arrow B).
  • the film formation target holding member 16A for example, a tray or the like that holds and transports the film formation target 11 with the film formation target surface of the film formation target 11 exposed. The detailed configuration of the film formation target holding member 16A will be described later.
  • the film forming apparatus 1A includes a bias circuit unit 35 for applying a positive bias voltage to the film formation target 11 after film formation, a trolley wire 18 provided in the vacuum chamber 10, and a trolley wire 18.
  • the film forming apparatus 1 is different from the film forming apparatus 1 in that a tension applying unit 25 that applies tension and a load lock chamber 26 (vacuum load lock chamber) disposed adjacent to the vacuum chamber 10 are provided.
  • a tension applying unit 25 that applies tension
  • a load lock chamber 26 vacuum load lock chamber
  • the film forming apparatus 1 according to the first embodiment may include the load lock chamber 26.
  • the transport direction of the film forming target 11 in the film forming apparatus 1 according to the first embodiment may be bidirectional instead of unidirectional.
  • the bias circuit unit 35 electrically connects a bias power source 27 (voltage application unit) that applies a positive bias voltage (hereinafter also simply referred to as “bias voltage”) to the film formation target 11, and the bias power source 27 and the trolley wire 18.
  • bias voltage positive bias voltage
  • a third wiring 73 connected to the second wiring 73 and a short-circuit switch SW3 provided in the third wiring 73.
  • the bias power supply 27 applies a voltage signal (periodic electrical signal) that is a rectangular wave that periodically increases and decreases as the bias voltage.
  • the bias power supply 27 is configured to be able to change the frequency of the bias voltage to be applied under the control of the control unit 50.
  • the third wiring 73 has one end connected to the positive potential side of the bias power supply 27 and the other end connected to the pulley 25 b of the tension applying unit 25. As a result, the third wiring 73 electrically connects the trolley wire 18 and the bias power supply 27 via the pulley 25b.
  • the short-circuit switch SW3 is connected in series between the pulley 25b and the positive potential side of the bias power source 27 by the third wiring 73.
  • the short-circuit switch SW3 is a switching unit that switches whether to apply a bias voltage to the trolley wire 18.
  • the ON / OFF state of the short-circuit switch SW3 is switched by the control unit 50.
  • the short-circuit switch SW3 is turned on at a predetermined timing in the oxygen negative ion generation mode. When the short-circuit switch SW3 is turned on, the trolley line 18 and the positive potential side of the bias power supply 27 are electrically connected to each other, and a bias voltage is applied to the trolley line 18.
  • the short-circuit switch SW3 is turned off in the film forming process mode and at a predetermined timing in the oxygen negative ion generation mode.
  • the short-circuit switch SW3 is turned off, the trolley line 18 and the bias power supply 27 are electrically disconnected from each other, and no bias voltage is applied to the trolley line 18. Details of the timing for applying the bias voltage will be described later.
  • the trolley wire 18 is an overhead wire that supplies power to the film formation target holding member 16A.
  • the trolley wire 18 supplies power to the film formation target holding member 16 ⁇ / b> A through the power supply brush 42 by contacting a power supply brush 42 described later provided on the film formation target holding member 16 ⁇ / b> A.
  • the trolley wire 18 is made of, for example, a stainless steel wire.
  • the trolley wire 18 is provided in the transfer chamber 10a so as to extend in the transfer direction (arrow B).
  • One end side of the trolley wire 18 is fixed to an upper end inner wall 10d in the transfer chamber 10a by a trolley wire fixing portion 28.
  • a tension applying portion 25 is provided on the other end side of the trolley wire 18. The detailed configuration of the trolley wire fixing unit 28 will be described later.
  • the tension applying section 25 includes a pulley support section 25a fixed to the lower end inner wall 10e in the transfer chamber 10a, a pulley 25b supported by the pulley support section 25a, and a weight member 25c connected to the other end of the trolley wire 18. have.
  • the pulley support portion 25a extends from the lower end inner wall 10e of the transfer chamber 10a toward the upper end inner wall 10d and is connected to the shaft of the pulley 25b.
  • the pulley 25b receives the trolley wire 18 and converts the direction of the trolley wire 18 extending in the transport direction (arrow B) into the negative Z-axis direction.
  • the weight member 25c has a predetermined weight, and pulls the trolley wire 18 in the negative Z-axis direction by the weight. As a result, tension is applied to the trolley wire 18 so that the trolley wire 18 does not bend even when the trolley wire 18 expands or contracts due to heat or the like.
  • the load lock chamber 26 is connected to one end of the transfer chamber 10a in the transfer direction (arrow B) through a gate 29 that can be opened and closed.
  • the load lock chamber 26 is not limited to one end of the transfer chamber 10a, and may be connected to the other end or may be connected to both one end and the other end.
  • the vacuum state of the load lock chamber 26 is controlled independently of the transfer chamber 10a and the film forming chamber 10b.
  • the load lock chamber 26 carries the film formation target 11 in and out of the transfer chamber 10 a through the gate 29.
  • the load lock chamber 26 carries the film formation target 11 after the film formation process by the film formation unit 14 from the transfer chamber 10 a of the vacuum chamber 10.
  • the film formation target 11 after the film formation process is accommodated in the load lock chamber 26.
  • an operation of the power supply terminal portion 51 (see FIGS. 6 and 8) in the film formation target holding member 16A described later is performed.
  • the power supply terminal portion 51 is operated so as to come into contact with the back surface of the film formation target 11 (the surface on the side on which film formation is performed). By this operation, a bias voltage can be applied to the back surface of the film formation target 11 through the power supply terminal portion 51.
  • the load lock chamber 26 moves the film formation target 11 to the transfer chamber 10a. Carry out.
  • the load lock chamber 26 carries the film formation target 11 that has been loaded into the transfer chamber 10 a of the vacuum chamber 10 after negative ions are generated by the negative ion generator 24.
  • FIG. 5A is a schematic front view of the trolley wire fixing portion 28, and FIG. 5B is a schematic side view of the trolley wire fixing portion 28.
  • the trolley wire fixing portion 28 includes a mounting member 32 attached to a peripheral structure (here, the upper end inner wall 10d) and a fixing portion 33 that fixes the trolley wire 18. And a brush guide portion 37 for guiding the power supply brush 42 (see FIGS. 7 and 9) to the trolley wire 18.
  • the mounting member 32 is a bracket made of, for example, a U-shaped plate member.
  • the attachment member 32 includes an upper end fixing portion 32a fixed to the upper end inner wall 10d (see FIG. 4) in the transfer chamber 10a by a bolt 32f and the like, an extension portion 32b extending from the upper end fixing portion 32a in the negative Z-axis direction,
  • the extending portion 32b has a seat surface portion 32c provided at the distal end portion in the negative Z-axis direction.
  • the fixing portion 33 includes a screw support portion 33a provided at an end of the attachment member 32 in the negative direction of the Z-axis, an attachment screw 33b protruding from the screw support portion 33a, and a crimp terminal attached to the attachment screw 33b. 33c.
  • the screw support portion 33a is, for example, a rectangular parallelepiped metal block.
  • the screw support portion 33a is fixed to the extension portion 32b of the attachment member 32 by a bolt 32f or the like via an insulating member 33g such as porcelain or glass.
  • the screw support portion 33a is provided so as to protrude in the Y-axis positive direction from the extending portion 32b.
  • the mounting screw 33b protrudes in the positive direction of the X axis from the side surface of the screw support portion 33a.
  • the crimp terminal 33c is fixed to the mounting screw 33b by a nut 33e or the like.
  • One end of the trolley wire 18 is connected to the crimp terminal 33c.
  • the brush guide portion 37 includes an extension portion 37a extending from the seating surface portion 32c of the mounting member 32 in the X-axis positive direction and a mountain-shaped guide portion 37b bent in the Z-axis positive direction.
  • the extension portion 37 a is formed integrally with the seat surface portion 32 c of the attachment member 32, and protrudes in the positive direction of the X axis from the attachment screw 33 b of the fixing portion 33.
  • the guide portion 37b has a mountain-shaped edge 37e that rises in the positive Z-axis direction when viewed from the X-axis direction.
  • the portion located substantially in the center in the Y-axis direction is the widest, and the wide portion corresponds to the position of the crimp terminal 33 c of the fixed portion 33.
  • the guide portion 37b has a function of guiding the power supply brush 42 of the film formation target holding member 16A, which has been unloaded from the load lock chamber 26 and loaded into the transfer chamber 10a, to be placed on the trolley wire 18 (FIG. 9). reference).
  • FIG. 6 is a schematic plan view showing the configuration of the film formation target holding member 16A of FIG.
  • FIG. 7 is a sectional view taken along line VII-VII in FIG.
  • FIG. 8 is a sectional view taken along line VIII-VIII in FIG. 6 to 8, a rectangular plate-shaped film forming object 11 is illustrated.
  • the back surface 11 b (the surface on the side on which film formation is performed) of the film formation target 11 is the back surface of the paper
  • the surface 11 a of the film formation target 11 is the front surface of the paper.
  • the film formation target holding member 16 ⁇ / b> A has a tray 63 and a holder 66 for placing and transporting the film formation target 11.
  • the tray 63 and the holder 66 are made of a conductive metal material such as stainless steel.
  • the tray 63 is a frame-like container on which the holder 66 holding the film formation target 11 is placed.
  • the tray 63 has a pedestal portion 64 on which the holder 66 is placed, and an edge portion 65 that rises corresponding to the outer diameter of the holder 66.
  • the pedestal portion 64 protrudes from the inner side surface 65 a of the edge portion 65, and supports the back surface (surface on the back side in FIG. 6) side of the holder 66.
  • the pedestal portion 64 has an opening 64c having an outer diameter corresponding to the film formation target 11 at the center.
  • the holder 66 is a frame-shaped holding unit that holds the film formation target 11.
  • the holder 66 includes a holder main body portion 67, a plurality of claw portions 68 provided on the back surface 67b of the holder main body portion 67 (the back surface in FIG. 6), and an insulator 70 on the back surface 67b side of the holder main body portion 67. (See FIG. 7 and FIG. 8), and a mounting portion 69 provided through the cover 70 and an anti-stain cover 75 for the insulator 70.
  • the holder main body 67 is a plate having a substantially rectangular outer shape, and has an opening 67c corresponding to the outer shape of the film formation target 11 at the center. Further, the holder main body 67 has a substantially Y-shaped opening 67d at a position corresponding to a power supply terminal 51 described later.
  • the holder main body 67 is provided with a power supply brush 42 and a power supply terminal portion 51 as power supply units that are supplied with power from the trolley wire 18.
  • the power supply brush 42 and the power supply terminal portion 51 are made of a conductive material. Details of functions and configurations of the power supply brush 42 and the power supply terminal portion 51 will be described later with reference to FIGS.
  • two power supply brushes 42 and two power supply terminal portions 51 are provided at positions that are point-symmetric in plan view. Thereby, even when the film formation target 11 is transported with the holder 66 rotated 180 degrees, power can be supplied from the trolley wire 18 to the power supply brush 42 and the power supply terminal portion 51. In addition, since the film formation target 11 has only to be positioned at a position where it can come into contact with any one of the two power supply terminal portions 51 that are shifted so as to be point-symmetric, The degree of freedom of the size and position of the film formation target 11 can be improved.
  • the claw portion 68 protrudes inward from the opening portion 67 c in a plan view, and has a portion exposed without overlapping the holder main body portion 67.
  • claw part 68 is supporting the back surface 11b of the film-forming target object 11 in this exposed part.
  • claw part 68 has overlapped the part which the nail
  • the placing portion 69 is placed on the pedestal portion 64 of the tray 63.
  • the mounting portion 69 is fixed to the back surface 67b side of the holder main body 67 with bolts 69f and the like.
  • the mounting portion 69 is fixed away from the back surface 67 b side of the holder main body portion 67 and is not in contact with the back surface 67 b of the holder main body portion 67.
  • An insulator 70 is provided between the mounting portion 69 and the bolt 69f, and the mounting portion 69 is electrically insulated from the holder main body 67.
  • the insulator 70 is made of an insulating material such as porcelain or glass.
  • the tray 63 is electrically insulated from the holder main body 67 because the mounting portion 69 electrically insulated from the holder main body 67 is interposed between the holder main body 67 and the tray 63. Therefore, even when a bias voltage is applied to the holder main body 67, the tray 63 is in an electrically insulated state.
  • the cover 75 protects the insulator 70 so that a conductive film does not adhere to the insulator 70 during film formation.
  • the cover 75 includes a cylindrical member 75a and a disk member 75b.
  • the cylindrical member 75 a is not in contact with the back surface 67 b of the holder main body portion 67, and surrounds the insulator 70 between the back surface 67 b of the holder main body portion 67 and the mounting portion 69.
  • the disc member 75b is provided at the lower end portion (end portion in the negative Z-axis direction) of the insulator 70 and covers the entire lower end portion. In this way, the insulator 70 is protected by the cover 75, and as a result, it is possible to suppress a decrease in insulation of the insulator 70.
  • the power supply brush 42 supplies power to the holder main body 67 from the trolley wire 18 by making contact with the trolley wire 18 to which a bias voltage is applied. That is, the power supply brush 42 has a function of applying a bias voltage from the trolley wire 18 to the holder main body 67. Further, as described above, even when a bias voltage is applied to the holder main body 67, power is not supplied from the claw portion 68 to the back surface 11 b of the film formation target 11. Therefore, the power supply terminal portion 51 supplies power from the holder main body portion 67 to the back surface 11 b of the film formation target 11 by contacting the back surface 11 b of the film formation target 11.
  • the power supply terminal portion 51 has a function of applying a bias voltage from the holder main body portion 67 to the back surface 11 b of the film formation target 11.
  • a bias voltage from the holder main body portion 67 to the back surface 11 b of the film formation target 11.
  • the power supply brush 42 will be described with reference to FIGS. 6, 7 and 9.
  • the power supply brush 42 includes a plate-like brush body 43, a brush shaft portion 44 that supports the brush body 43, a shaft support portion 45 that supports the brush shaft portion 44, and a shaft support. And a brush fixing portion 46 for fixing the portion 45 to the surface 67 a of the holder main body portion 67.
  • the brush body 43 has a substantially rectangular shape, and the plate thickness direction is along the Y-axis direction.
  • One end side in the longitudinal direction of the brush body 43 is a free end, and a circular base end portion 43d is formed on the other end side in the longitudinal direction.
  • the base end portion 43d is rotatably supported by a brush shaft portion 44 that extends along the Y-axis direction via a joint portion (not shown) or the like.
  • the brush body 43 is rotatable around the brush shaft portion 44, and in a state where the brush body 43 extends along the X-axis direction, the free end of the brush body 43 extends in the direction along the Z-axis direction ( It can move to the arrow C) in FIG.
  • the edge 43e of the brush body 43 is placed on the trolley wire 18 extending along the Y-axis direction. Thereby, the brush body 43 contacts the trolley wire 18. As a result, power is supplied from the trolley wire 18 to the holder main body 67 through the brush body 43.
  • FIG. 9 is a view for explaining the operation of the brush body 43 guided by the brush guide portion 37.
  • the brush body 43 moves on the guide portion 37b of the brush guide portion 37 along the Y-axis direction that is the transport direction.
  • the edge 43e of the brush body 43 and the edge 37e of the guide portion 37b are in contact with each other.
  • the brush body 43 moves along the Y-axis direction so as to straddle the crimp terminal 33d, and is placed on the trolley wire 18 connected to the crimp terminal 33d, so that the brush body 43 contacts the trolley wire 18.
  • the brush shaft portion 44 extends in the Y-axis direction, and one end and the other end thereof are fixed to the shaft support portion 45.
  • the shaft support portion 45 is located at one end and the other end of the brush shaft portion 44.
  • the shaft support portion 45 is a substantially L-shaped plate member, and has a side surface portion 45a extending along the Z-axis direction and a bottom surface portion 45b extending along the X-axis direction and the Y-axis direction.
  • the side surface portion 45 a is fixed to the brush shaft portion 44, and the bottom surface portion 45 b is fixed to the brush fixing portion 46.
  • the brush fixing portion 46 is disposed between the shaft support portion 45 and the holder main body portion 67.
  • the brush fixing portion 46 is a substantially L-shaped plate member, and has a side surface portion 46a extending along the Z-axis direction and a bottom surface portion 46b extending along the Z-axis direction and the Y-axis direction.
  • the side surface portion 46 a can receive the edge 43 e of the brush body 43 so that the brush body 43 does not rotate in the negative direction of the Z axis with respect to the holder main body portion 67.
  • the bottom surface portion 46 b is fixed to the bottom surface portion 45 b of the shaft support portion 45 and the surface 67 a of the holder main body portion 67.
  • FIG. 10 is a diagram for explaining the operation of the power feeding terminal portion 51.
  • 10A is an enlarged view of the power supply terminal portion 51 of FIG. 6, and
  • FIG. 10B is a cross-sectional view taken along the line bb of FIG. 10A. .
  • the power supply terminal portion 51 includes a lead terminal 52 that can contact the back surface 11 b of the film formation target 11, a lead shaft portion 56 that supports the lead terminal 52, and a lead shaft portion 56. It has a shaft support part 57 to support, and a rotation restricting part 58 that restricts the rotation of the lead terminal 52.
  • the lead terminal 52 is rotatably supported by a lead shaft portion 56 extending along the Y-axis direction through a joint portion (not shown). That is, the lead terminal 52 can rotate around the lead shaft portion 56.
  • the lead terminal 52 has a plate-like member bent, and includes a contact portion 53 that contacts the rotation restricting portion 58, a bent portion 54 that is bent in a V shape from the contact portion 53, and a bent portion 54. It has the front-end
  • the back surface 53 b of the abutting portion 53 is supported by the rotation restricting portion 58 by abutting against the front surface 58 a of the rotation restricting portion 58. Thereby, the rotation of the lead terminal 52 with the lead shaft portion 56 as the rotation center is restricted.
  • a weight member 53 c is joined to the surface 53 a of the contact portion 53.
  • the bent portion 54 is bent from the contact portion 53 in the negative Z-axis direction in a state where the contact portion 53 is supported by the rotation restricting portion 58, that is, in a state where the contact portion 53 extends along the X-axis direction. ing.
  • the bent portion 54 extends so as to form an obtuse angle with respect to the contact portion 53.
  • the tip protrusion 55 is bent from the bent portion 54 in the positive Z-axis direction in a state where the contact portion 53 is supported by the rotation restricting portion 58, that is, in a state where the contact portion 53 extends along the X-axis direction. ing.
  • the tip protrusion 55 extends toward the back surface 11 b of the film formation target 11 at a substantially right angle to the bent portion 54.
  • the tip protrusion 55 can come into contact with the back surface 11 b of the film formation target 11 by the rotation of the lead terminal 52.
  • the lead shaft portion 56 extends in the Y-axis direction, and one end and the other end thereof are fixed to the shaft support portion 57.
  • the shaft support portion 57 is located at one end and the other end of the lead shaft portion 56.
  • the shaft support portion 57 is a substantially L-shaped plate member, and has a side surface portion 57a extending along the Z-axis direction and a bottom surface portion 57b extending along the X-axis direction and the Y-axis direction.
  • the side surface portion 57 a hangs from the opening 67 d of the holder main body portion 67 toward the back surface 67 b of the holder main body portion 67, and is fixed to the lead shaft portion 56.
  • the bottom surface portion 57 b is fixed to the surface 67 a of the holder main body portion 67.
  • the rotation restricting portion 58 is a substantially rectangular plate-like member, and is provided on the back surface 67 b of the holder main body portion 67.
  • the rotation restricting portion 58 is supported by a bolt 58f or the like so as to be rotatable along the back surface 67b of the holder main body portion 67.
  • the rotation restricting portion 58 is rotatable in the direction of arrow E shown in FIG. 10A from the position where the lead terminal 52 shown by the solid line is supported, and can move to the position shown by the two-dot chain line. It has become.
  • the rotation restricting portion 58 rotates in the arrow E direction shown in FIG. 10A, the front surface 58 a of the rotation restricting portion 58 does not come into contact with the back surface 53 b of the contact portion 53. Thereby, the rotation restriction of the lead terminal 52 by the rotation restricting portion 58 is released, and the lead terminal 52 rotates in the direction of arrow D shown in FIG. 10B by the weight of the weight member 53c and the like.
  • the lead terminal 52 moves from the position indicated by the solid line to the position indicated by the two-dot chain line, and the tip protrusion 55 of the lead terminal 52 contacts the back surface 11 b of the film formation target 11.
  • power is supplied from the holder main body 67 to the back surface 11 b of the film formation target 11 through the tip protrusion 55.
  • the rotation restricting portion 58 is provided with an operation portion 58d for operating the above rotational movement.
  • the operation portion 58d is configured by, for example, a bolt or the like, and penetrates from the back surface 58b side of the rotation restricting portion 58 to the front surface 58a side and protrudes on the front surface 58a.
  • the operation of the power supply terminal portion 51 is performed at the timing when the film formation target object holding member 16 ⁇ / b> A is carried into the load lock chamber 26. That is, the operation unit 58 d of the power supply terminal unit 51 is operated in the load lock chamber 26, and the power supply terminal unit 51 comes into contact with the back surface 11 b of the film formation target 11.
  • the operation unit 58d is operated by, for example, an actuator (not shown) that operates when a predetermined operating condition is satisfied.
  • the operation of the operation unit 58d is not limited to an operation using an actuator or the like, and any other operation method including manual operation may be used.
  • timing of applying the bias voltage to the film formation target 11 is not limited to the timing described below, and for example, the bias voltage may be applied at an arbitrary timing in the negative ion generation mode.
  • FIG. 11 is a graph showing changes in the flux of ions existing in the vacuum chamber 10 over time.
  • the horizontal axis of FIG. 11 represents the processing time [sec] in the oxygen negative ion generation mode, and the vertical axis of FIG. 11 represents the ion flux intensity [a. u. ] Is shown.
  • the graph G1 is a graph showing the time change of the flux of argon positive ions
  • the graph G2 is a graph showing the time change of the flux of oxygen positive ions
  • the graph G3 is a graph showing the time change of the flux of oxygen negative ions. It is a graph.
  • FIG. 11 is a graph showing changes in the flux of ions existing in the vacuum chamber 10 over time.
  • the horizontal axis of FIG. 11 represents the processing time [sec] in the oxygen negative ion generation mode
  • the vertical axis of FIG. 11 represents the ion flux intensity [a. u. ] Is shown.
  • the graph G1 is a graph showing the time change of
  • FIG. 11 shows the relationship between the timing for generating the plasma P and the ions present in the vacuum chamber 10.
  • the period T1 for generating the plasma P and the period T2 for stopping the generation of the plasma P are repeated, and the plasma P is generated intermittently.
  • the plasma P is stopped, there are many argon positive ions and oxygen positive ions for about 0.001 to 0.0015 seconds, and there are also electrons corresponding thereto.
  • argon positive ions and oxygen positive ions disappear and electrons disappear, while the ratio of oxygen negative ions increases.
  • a bias voltage is applied to the film forming target 11.
  • the bias power supply 27 applies a bias voltage to the film formation target 11 at a timing several milliseconds after the generation of the plasma P is stopped in the oxygen negative ion generation mode. More specifically, while the generation of the plasma P is being performed, the short-circuit switch SW3 is turned off by the control unit 50, and the control unit 50 is several milliseconds after the generation of the plasma P is stopped. As a result, the short-circuit switch SW3 is turned on. When the short-circuit switch SW3 is turned on, the trolley line 18 and the bias power supply 27 are electrically connected to each other, and a bias voltage is applied to the trolley line 18.
  • a bias voltage is applied to the film formation target 11 at a timing at which oxygen negative ions greatly increase several milliseconds after the generation of the plasma P is stopped. Thereby, a lot of oxygen negative ions are attracted to the back surface 11 b side of the film formation target 11 and irradiated onto the film formed on the film formation target 11.
  • the application of the bias voltage to the film formation target 11 is continued until immediately before the next generation of the plasma P by the negative ion generation unit 24 is started. Specifically, immediately before the next plasma generation in the negative ion generation unit 24 is started, the short-circuit switch SW3 is turned off by the control unit 50, and the trolley wire 18 and the bias power supply 27 are not electrically connected to each other. It is said. As described above, the timing for applying the bias voltage to the film formation target 11 is alternately repeated with the generation period of the plasma P in the negative ion generation mode.
  • FIG. 12 is a graph showing the relationship between the presence or absence of oxygen negative ion irradiation and the carrier density.
  • the horizontal axis of FIG. 12 indicates the oxygen gas flow rate (Oxgen Flow Rate: OFR) [sccm], and the vertical axis of FIG. 12 indicates the carrier density [cm ⁇ 3 ].
  • a graph G4 in FIG. 12 is a graph showing the carrier density corresponding to the oxygen gas flow rate when the film formation target 11 is irradiated with oxygen negative ions in the oxygen negative ion generation mode.
  • a graph G5 in FIG. 12 is a graph showing the carrier density corresponding to the oxygen gas flow rate when the film formation target 11 is not irradiated with oxygen negative ions in the oxygen negative ion generation mode.
  • FIG. 13 is a graph showing the relationship between the presence or absence of oxygen negative ion irradiation and the optical mobility.
  • the horizontal axis in FIG. 13 represents the oxygen gas flow rate [sccm], and the vertical axis in FIG. 13 represents the optical mobility ( ⁇ opt) [cm 2 / Vs].
  • a graph G6 in FIG. 13 is a graph showing the optical mobility corresponding to the oxygen gas flow rate when the film formation target 11 is irradiated with oxygen negative ions in the oxygen negative ion generation mode.
  • a graph G7 in FIG. 13 is a graph showing the optical mobility corresponding to the oxygen gas flow rate when the film formation target 11 is not irradiated with oxygen negative ions in the oxygen negative ion generation mode.
  • the optical mobility is obtained by measuring the mobility in the crystal grains of the film formation target 11.
  • the current value is 150 A
  • the oxygen gas flow rate is 10 sccm, 15 sccm, 20 sccm, or 25 sccm.
  • a ZnO film was formed.
  • a discharge current value was set to 12 A
  • an oxygen gas flow rate was set to 10 sccm, a frequency of 60 Hz, and a rectangular wave 15 V bias voltage was applied to the film formation target 11 for 10 minutes. .
  • the case where the film formation target 11 is irradiated with oxygen negative ions is more carriers than the case where the film formation target 11 is not irradiated with oxygen negative ions.
  • Density is decreasing. Specifically, when the oxygen gas flow rate is 10 sccm, 15 sccm, and 20 sccm, the carrier density is reduced by about 20%, and when the oxygen gas flow rate is 25 sccm, the carrier density is reduced by about 7%.
  • the decrease in carrier density indicates that carriers (electrons) are trapped by grain boundaries or impurities, or oxygen vacancies are decreased.
  • the film formation target 11 is irradiated with oxygen negative ions rather than the film formation target 11 not irradiated with oxygen negative ions.
  • the optical mobility is increasing. An increase in optical mobility indicates that the oxygen vacancies in the crystal are reduced and the mobility in the grains is improved. This result is consistent with the decrease in carrier density. From the above, it can be confirmed that the film formed on the film formation target 11 after film formation has been modified by irradiation with oxygen negative ions.
  • FIG. 14 is a graph showing the relationship between the presence or absence of oxygen negative ion irradiation and the hydrogen gas sensor characteristics.
  • the horizontal axis of FIG. 14 represents the response time [sec] of the hydrogen gas sensor, and the vertical axis of FIG. 14 represents the current value [A] flowing through the hydrogen gas sensor.
  • (A) of FIG. 14 is a graph which shows the electric current value with respect to the response time of a hydrogen gas sensor when the film-forming target 11 is irradiated with oxygen negative ions in the oxygen negative ion generation mode.
  • FIG. 14B is a graph showing the current value with respect to the response time of the hydrogen gas sensor when the film formation target 11 is not irradiated with oxygen negative ions in the oxygen negative ion generation mode.
  • the bias power source 27 applies a positive bias voltage to the film forming target 11 after the film forming process.
  • oxygen negative ions generated by the negative ion generation unit 24 are attracted to the film formation target 11 side and irradiated onto the surface of the film formed on the film formation target 11.
  • the power supply brush 42 and the power supply terminal portion 51 provided on the film formation target holding member 16 ⁇ / b> A that holds the film formation target 11 are provided in the vacuum chamber 10. Power is supplied from the trolley wire 18 provided. Accordingly, a positive voltage can be easily applied to the film formation target 11 through the power supply brush 42 and the power supply terminal portion 51 of the film formation target holding member 16A.
  • the tension is applied to the trolley wire 18 by the tension applying unit 25. Therefore, even when the trolley wire 18 expands and contracts due to heat generated in the vacuum chamber 10, it is possible to suppress bending.
  • the oxygen negative ions existing in the vacuum chamber 10 increase after the generation of the plasma P by the negative ion generator 24 is stopped.
  • a positive bias voltage is applied to the film forming target 11 at the timing when the oxygen negative ions increase after the generation of the plasma P is stopped.
  • many oxygen negative ions are irradiated to the film-forming target 11.
  • the film forming target 11 after the film forming process is carried into the load lock chamber 26 from the transfer chamber 10a of the vacuum chamber 10, and the carried film formation is performed.
  • the object 11 is carried out from the load lock chamber 26 to the transfer chamber 10 a of the vacuum chamber 10 after the negative ion generation unit 24 generates oxygen negative ions.
  • the film-forming target 11 is carried into the transfer chamber 10a at an appropriate timing at which oxygen negative ions are generated without being exposed to the atmosphere.
  • the plasma source 7 is a pressure gradient type plasma gun.
  • the plasma source 7 is not limited to the pressure gradient type plasma gun as long as it can generate plasma in the vacuum chamber 10.
  • plasma is generated intermittently when negative ions are generated.
  • the present invention is not limited to this.
  • a constant current may be supplied to the second intermediate electrode 62 to generate a steady discharge.
  • the plasma source 7 and the hearth mechanism 2 are provided in the vacuum chamber 10, but a plurality of sets may be provided. Further, the plasma P may be supplied from a plurality of plasma sources 7 to one material.
  • the ring hearth 6 is provided, but the ring hearth 6 may be omitted by devising the direction of the plasma source 7 and the position and direction of the material in the hearth mechanism 2.
  • the steering coil 5 does not necessarily have to be excited in the oxygen negative ion generation mode.
  • the source gas supply step S21, the plasma generation step S22, and the sealing magnetic field formation step S23 included in the negative ion generation step S2 do not necessarily have to be performed in this order.
  • S21 to S23 These processes may be performed simultaneously.
  • the film formation process S1 may be terminated and the process may proceed to the negative ion generation process S2.
  • the film forming apparatuses 1 and 1A may include a counter coil disposed outside the vacuum chamber 10, for example, at a position facing the plasma source 7 (for example, on the side wall 10i side of the film forming chamber 10b).
  • a magnetic field extending in a direction from the plasma source 7 toward the counter coil may be formed in the vacuum chamber 10.
  • the electrons of the plasma P in the vacuum chamber 10 are restrained by this magnetic field, and the flow of the electrons into the film formation target 11 is suppressed. Accordingly, the negative ions generated in the vacuum chamber 10 can be easily diffused toward the film formation target 11, and the negative ions are efficiently attached to the surface of the film formed on the film formation target 11. be able to.
  • the film forming apparatuses 1 and 1A may include, for example, a counter electrode that is disposed on the inner wall 10k of the side wall 10i of the film forming chamber 10b and functions as an anode.
  • the counter electrode can converge the magnetic field formed in the vacuum chamber 10 when the counter coil is provided.
  • the electron of plasma P can be suitably stopped along the magnetic field converged in this way, and the flow of the electron into the film formation target 11 can be further suppressed.
  • the oxygen negative ions generated in the vacuum chamber 10 can be more easily diffused toward the film formation target 11, and the surface of the film in which the oxygen negative ions are more efficiently formed on the film formation target. Can be attached to.
  • the film forming apparatuses 1 and 1A according to the above embodiment are apparatuses that perform film formation using the ion plating method, the present invention is not limited thereto.
  • a sputtering method or a chemical vapor deposition method may be used.
  • the film forming apparatus 1A according to the second embodiment does not include the magnetic field generating coil 30 and the case 31 thereof, the present invention is not limited thereto, and may include the magnetic field generating coil 30 and the case 31 thereof.
  • the film formation target 11 is irradiated with oxygen negative ions by applying a bias voltage to the film formation target 11, but the present invention is not limited to this.
  • the application of a bias voltage to the film formation target 11 can be used when the film formation material particles Mb are deposited (film formation) on the film formation target 11.
  • the film formation target 11 since a negative bias voltage is applied to the film formation target 11, the film formation target 11 has a negative charge, so electrons existing in the film formation chamber 10b enter the transfer chamber 10a side.
  • the ionized film forming material particles Mb existing in the film forming chamber 10b can be promoted to enter the transfer chamber 10a side.
  • SYMBOLS 1 ... Film-forming apparatus, 7 ... Plasma source (plasma gun), 10 ... Vacuum chamber, 10a ... Transfer chamber, 10b ... Film-forming chamber, 11 ... Film-forming object, 14 ... Film-forming part, 16A ... Film-forming object Holding member, 18 ... trolley wire, 24 ... negative ion generating unit, 25 ... tension applying unit, 26 ... load lock chamber (vacuum load lock chamber), 27 ... bias power supply (voltage applying unit), 30 ... magnetic field generating coil, 40 ... Raw material gas supply unit, 42 ... Power supply brush (power supply unit), 50 ... Control unit, 51 ... Power supply terminal unit (power supply unit), Ma ... Film forming material, Mb ... Film forming material particle, P ... Plasma, SW1 ... Short circuit Switch (switching unit), M: sealing magnetic field.
  • Plasma source plasma gun
  • 10 Vacuum chamber
  • 10a Transfer chamber
  • 10b Film-forming chamber
  • 11 Film-forming object Holding member
  • 18

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

成膜対象物に成膜材料を成膜する成膜装置であって、前記成膜対象物を収納し成膜処理を行う真空チャンバーと、前記真空チャンバー内において前記成膜材料の粒子を前記成膜対象物に付着させる成膜部と、前記真空チャンバー内に負イオンを生成する負イオン生成部と、を備える、成膜装置。

Description

成膜装置
 本発明は、成膜装置に関する。
 成膜対象物の表面に膜を形成する成膜装置として、例えば蒸発させた成膜材料の粒子を真空チャンバー内に拡散させて、成膜対象物の表面に成膜材料の粒子を付着させるイオンプレーティング法による成膜装置が知られている(特許文献1参照)。
特開2000-282226号公報
 上記従来の成膜装置において膜が形成された成膜対象物を大気中に取り出すと、成膜対象物における膜の表面に大気中の酸素が付着する。このように酸素が膜に付着すると、膜質が低下する可能性がある。
 より詳細には、例えば、成膜対象物に形成されたZnO膜を半導体式水素ガスセンサのガスを検知するための膜として利用する場合、ZnO膜の表面に大気中の酸素がO2-の形で付着することにより、水素の検出レスポンスが低下するという問題がある。
 そこで本発明は、成膜対象物における膜質の低下を抑制することができる成膜装置を提供することを課題とする。
 上記課題を解決するため、本発明の一側面に係る成膜装置は、成膜対象物に成膜材料を成膜する成膜装置であって、成膜対象物を収納し成膜処理を行う真空チャンバーと、真空チャンバー内において成膜材料の粒子を成膜対象物に付着させる成膜部と、真空チャンバー内に負イオンを生成する負イオン生成部と、を備えることを特徴とする。
 本発明の一側面に係る成膜装置では、負イオン生成部により真空チャンバー内に負イオンが生成されるので、当該負イオンを、成膜処理によって成膜対象物に形成された膜の表面に付着させることができる。これにより、成膜処理後の成膜対象物を大気中に取り出しても、成膜対象物に形成された膜の表面には負イオンが付着しているので、成膜対象物における膜の表面に大気中の酸素が付着することによる膜質の低下を抑制することができる。以上より、成膜対象物における膜質の低下を抑制することができる。
 成膜装置において、負イオン生成部は、真空チャンバー内でプラズマを生成するプラズマガンと、真空チャンバー内へ負イオンの原料ガスを供給する原料ガス供給部と、プラズマを間欠的に生成するようにプラズマガンを制御する制御部と、を有してもよい。この場合、プラズマが真空チャンバー内に間欠的に生成されるので、真空チャンバー内のプラズマの生成が停止されているときには真空チャンバー内におけるプラズマの電子温度が急激に低下し、真空チャンバー内へ供給された負イオンの原料ガスの粒子に電子が付着し易くなる。これにより、真空チャンバー内で負イオンを効率的に生成することができる。その結果、成膜対象物に形成された膜の表面に、負イオンを効率良く付着させることができる。以上によって、成膜対象物における膜質の低下を確実に抑制することができる。
 成膜装置において、負イオン生成部は、真空チャンバー内へのプラズマの供給と遮断とを切り替える切替部を更に有し、制御部は、切替部を切り替えることによってプラズマを間欠的に生成するようにプラズマガンを制御してもよい。この場合、切替部を切り替えるだけで容易にプラズマを間欠的に生成することができる。
 成膜装置において、真空チャンバーは、成膜対象物を搬送する搬送室と、成膜材料を拡散させる成膜室と、を有し、成膜室から搬送室へ向かう方向と交差する方向の磁力線を有する磁場を発生させることにより、成膜室内の電子が搬送室へ流入するのを抑制する磁場発生コイルを更に備えてもよい。この場合、磁場発生コイルによって発生した磁場により、成膜室内の電子が搬送室へ流入するのを抑制することができるため、成膜室内で負イオンをより効率的に生成することが可能となる。その結果、成膜対象物に形成された膜の表面に、負イオンをより効率良く付着させることができる。
 成膜装置において、磁場発生コイルは、真空チャンバー内であって、成膜室と搬送室との間に設けられていてもよい。この場合、成膜室内の電子が搬送室へ流入するのを抑制する方向の磁力線を有する磁場を好適に発生させることができる。
 成膜装置において、成膜部は、プラズマガンを有し、イオンプレーティング法により成膜材料の粒子を成膜対象物に付着させており、成膜部のプラズマガンは、負イオン生成部のプラズマガンと兼用されていてもよい。この場合、成膜部のプラズマガンと負イオン生成部のプラズマガンとが兼用されているため、成膜処理のために必要な構成として真空チャンバー内に本来備えられている構造を大きく変えることなく、負イオン生成部を構成することができる。よって、成膜条件へ与える影響を抑制しつつ負イオン生成部を設けることが可能となる。さらに、プラズマガンが兼用されていることで装置構成を簡略化することができる。
 成膜装置において、成膜部による成膜処理後の成膜対象物に正のバイアス電圧を印加する電圧印加部を更に備えてもよい。この場合、電圧印加部によって、成膜処理後の成膜対象物に正のバイアス電圧が印加される。これにより、負イオン生成部で生成された負イオンが成膜対象物側に引き寄せられ、成膜対象物に形成された膜の表面に照射される。その結果、成膜対象物における膜の表面に大気中の酸素が付着することによる膜質の低下をより抑制することができる。
 成膜装置において、負イオン生成部は、真空チャンバー内で間欠的にプラズマを生成し、電圧印加部は、負イオン生成部によるプラズマの生成が停止された後に成膜対象物に正のバイアス電圧を印加してよい。これにより、多くの酸素負イオンが成膜対象物に照射される。その結果、成膜対象物における膜の表面に大気中の酸素が付着することによる膜質の低下を更に抑制することができる。
 成膜装置において、真空チャンバーに隣接して配置され、成膜対象物を搬入出する真空ロードロックチャンバーを備え、真空ロードロックチャンバーは、成膜処理後の成膜対象物を真空チャンバーから搬入すると共に、搬入された成膜対象物を負イオン生成部による負イオン生成後に真空チャンバーへ搬出してよい。これにより、成膜対象物は、大気中に曝されることなく、酸素負イオンが生成された適切なタイミングで真空チャンバーへ搬入される。その結果、酸素負イオンを好適に成膜対象物に照射することができる。
 成膜装置において、成膜対象物を保持する保持部材を備え、真空チャンバー内には、トロリ線が延伸して設けられており、保持部材には、トロリ線から給電される給電部が設けられていてもよい。この場合、成膜対象物を保持する保持部材に設けられた給電部が、真空チャンバー内に設けられたトロリ線から給電される。これにより、保持部材の給電部を通して成膜対象物に正の電圧を容易に印加することができる。
 成膜装置において、トロリ線に張力を付与する張力付与部を備えてもよい。この場合、張力付与部によってトロリ線に張力が付与される。これにより、真空チャンバー内で生じる熱等によってトロリ線が伸び縮みした場合にも撓んでしまうことを抑制することができる。
 本発明によれば、成膜対象物における膜質の低下を抑制することができる成膜装置を提供するができる。
本発明の第1実施形態に係る成膜装置の構成を示す概略断面図であって、成膜処理モードにおける動作状態を示す図である。 図1の成膜装置の構成を示す概略断面図であって、酸素負イオン生成モードにおける動作状態を示す図である。 本発明の第1実施形態に係る成膜装置における成膜方法を示すフローチャートである。 本発明の第2実施形態に係る成膜装置の構成を示す概略断面図であって、酸素負イオン生成モードにおける動作状態を示す図である。 図4のトロリ線固定端部の構成を示す概略正面図及び概略側面図である。 図4の成膜対象物保持部材の構成を示す概略平面図である。 図6のVII-VII線に沿った断面図である。 図6のVIII-VIII線に沿った断面図である。 ブラシ用ガイドによりガイドされるブラシ体の動作を説明する図である。 給電端子部の動作を説明する図である。 真空チャンバー内に存在するイオンのフラックスの時間変化を示すグラフである。 バイアス電圧の印加の有無とキャリア密度との関係を示すグラフである。 バイアス電圧の印加の有無と光学的移動度との関係を示すグラフである。 酸素負イオン照射の有無と水素ガスセンサ特性との関係を示すグラフである。
 以下、添付図面を参照しながら本発明の一実施形態に係る成膜装置について説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
(第1実施形態)
 まず、図1及び図2を参照して、本発明の第1実施形態に係る成膜装置の構成について説明する。図1及び図2は、本実施形態に係る成膜装置の構成を示す概略断面図である。図1は、成膜処理モードにおける動作状態を示し、図2は、酸素負イオン生成モードにおける動作状態を示している。なお、生成処理モード及び酸素負イオン生成モードの詳細については後述する。
 図1及び図2に示すように、本実施形態の成膜装置1は、いわゆるイオンプレーティング法に用いられるイオンプレーティング装置である。なお、説明の便宜上、図1及び図2には、XYZ座標系を示す。Y軸方向は、後述する成膜対象物が搬送される方向である。X軸方向は、成膜対象物と後述するハース機構とが対向する位置である。Z軸方向は、Y軸方向とX軸方向とに直交する方向である。
 成膜装置1は、成膜対象物11の板厚方向が水平方向(図1及び図2ではX軸方向)となるように、成膜対象物11を直立又は直立させた状態から傾斜した状態で、成膜対象物11が真空チャンバー10内に配置されて搬送される、いわゆる縦型の成膜装置である。この場合には、X軸方向は水平方向且つ成膜対象物11の板厚方向であり、Y軸方向は水平方向であり、Z軸方向は鉛直方向となる。なお、本発明の一実施形態に係る成膜装置は、成膜対象物の板厚方向が略鉛直方向となるように成膜対象物が真空チャンバー内に配置されて搬送されるいわゆる横型の成膜装置であってもよい。この場合には、Z軸及びY軸方向は水平方向であり、X軸方向は鉛直方向且つ板厚方向となる。以下、縦型の成膜装置を例として説明する。
 成膜装置1は、真空チャンバー10、搬送機構3、成膜部14、負イオン生成部24、及び磁場発生コイル30を備えている。
 真空チャンバー10は、成膜対象物11を収納し成膜処理を行う。真空チャンバー10は、成膜材料Maの膜が形成される成膜対象物11を搬送するための搬送室10aと、成膜材料Maを拡散させる成膜室10bと、プラズマ源7からビーム状に照射されるプラズマPを真空チャンバー10に受け入れるプラズマ口10cとを有している。搬送室10a、成膜室10b、及びプラズマ口10cは互いに連通している。搬送室10aは、所定の搬送方向(図中の矢印A)に(Y軸に)沿って設定されている。また、真空チャンバー10は、導電性の材料からなり接地電位に接続されている。
 成膜室10bは、壁部10wとして、搬送方向(矢印A)に沿った一対の側壁と、搬送方向(矢印A)と交差する方向(Z軸方向)に沿った一対の側壁10h,10iと、X軸方向と交差して配置された底面壁10jと、を有する。
 搬送機構3は、成膜材料Maと対向した状態で成膜対象物11を保持する成膜対象物保持部材16を搬送方向(矢印A)に搬送する。例えば成膜対象物保持部材16は、成膜対象物11の外周縁を保持する枠体である。搬送機構3は、搬送室10a内に設置された複数の搬送ローラ15によって構成されている。搬送ローラ15は、搬送方向(矢印A)に沿って等間隔に配置され、成膜対象物保持部材16を支持しつつ搬送方向(矢印A)に搬送する。なお、成膜対象物11は、例えばガラス基板やプラスチック基板などの板状部材が用いられる。
 続いて、成膜部14の構成について詳細に説明する。成膜部14は、イオンプレーティング法により成膜材料Maの粒子を成膜対象物11に付着させる。成膜部14は、プラズマ源7と、ステアリングコイル5と、ハース機構2と、輪ハース6とを有している。
 プラズマ源7は、例えば圧力勾配型のプラズマガンであり、その本体部分が成膜室10bの側壁に設けられたプラズマ口10cを介して成膜室10bに接続されている。プラズマ源7は、真空チャンバー10内でプラズマPを生成する。プラズマ源7において生成されたプラズマPは、プラズマ口10cから成膜室10b内へビーム状に出射される。これにより、成膜室10b内にプラズマPが生成される。
 プラズマ源7は、陰極60により一端が閉塞されている。陰極60とプラズマ口10cとの間には、第1の中間電極(グリッド)61と、第2の中間電極(グリッド)62とが同心的に配置されている。第1の中間電極61内にはプラズマPを収束するための環状永久磁石61aが内蔵されている。第2の中間電極62内にもプラズマPを収束するため電磁石コイル62aが内蔵されている。なお、プラズマ源7は、後述する負イオン生成部24としての機能も有する。この詳細については、負イオン生成部24の説明において後述する。
 ステアリングコイル5は、プラズマ源が装着されたプラズマ口10cの周囲に設けられている。ステアリングコイル5は、プラズマPを成膜室10b内に導く。ステアリングコイル5は、ステアリングコイル用の電源(不図示)により励磁される。
 ハース機構2は、成膜材料Maを保持する。ハース機構2は、真空チャンバー10の成膜室10b内に設けられ、搬送機構3から見てX軸方向の負方向に配置されている。ハース機構2は、プラズマ源7から出射されたプラズマPを成膜材料Maに導く主陽極又はプラズマ源7から出射されたプラズマPが導かれる主陽極である主ハース17を有している。
 主ハース17は、成膜材料Maが充填されたX軸方向の正方向に延びた筒状の充填部17aと、充填部17aから突出したフランジ部17bとを有している。主ハース17は、真空チャンバー10が有する接地電位に対して正電位に保たれているため、プラズマPを吸引する。このプラズマPが入射する主ハース17の充填部17aには、成膜材料Maを充填するための貫通孔17cが形成されている。そして、成膜材料Maの先端部分が、この貫通孔17cの一端において成膜室10bに露出している。
 成膜材料Maには、ITOやZnOなどの透明導電材料や、SiONなどの絶縁封止材料が例示される。成膜材料Maが絶縁性物質からなる場合、主ハース17にプラズマPが照射されると、プラズマPからの電流によって主ハース17が加熱され、成膜材料Maの先端部分が蒸発又は昇華し、プラズマPによりイオン化された成膜材料粒子(蒸発粒子)Mbが成膜室10b内に拡散する。また、成膜材料Maが導電性物質からなる場合、主ハース17にプラズマPが照射されると、プラズマPが成膜材料Maに直接入射し、成膜材料Maの先端部分が加熱されて蒸発又は昇華し、プラズマPによりイオン化された成膜材料粒子Mbが成膜室10b内に拡散する。成膜室10b内に拡散した成膜材料粒子Mbは、成膜室10bのX軸正方向へ移動し、搬送室10a内において成膜対象物11の表面に付着する。なお、成膜材料Maは、所定長さの円柱形状に成形された固体物であり、一度に複数の成膜材料Maがハース機構2に充填される。そして、最先端側の成膜材料Maの先端部分が主ハース17の上端との所定の位置関係を保つように、成膜材料Maの消費に応じて、成膜材料Maがハース機構2のX負方向側から順次押し出される。
 輪ハース6は、プラズマPを誘導するための電磁石を有する補助陽極である。輪ハース6は、成膜材料Maを保持する主ハース17の充填部17aの周囲に配置されている。輪ハース6は、環状のコイル9と環状の永久磁石部20と環状の容器12とを有し、コイル9及び永久磁石部20は容器12に収容されている。本実施形態では、搬送機構3から見てX負方向にコイル9、永久磁石部20の順に設置されているが、X負方向に永久磁石部20、コイル9の順に設置されていてもよい。輪ハース6は、コイル9に流れる電流の大きさに応じて、成膜材料Maに入射するプラズマPの向き、または、主ハース17に入射するプラズマPの向きを制御する。
 続いて、負イオン生成部24の構成について詳細に説明する。負イオン生成部24は、プラズマ源7と、原料ガス供給部40と、制御部50と、回路部34とを有している。なお、制御部50及び回路部34に含まれる一部の機能は、前述の成膜部14にも属する。
 プラズマ源7は、前述の成膜部14が有するプラズマ源7と同様のものが用いられる。すなわち、本実施形態において、成膜部14のプラズマ源7は、負イオン生成部24のプラズマ源7と兼用されている。プラズマ源7は、成膜部14として機能すると共に、負イオン生成部24としても機能する。なお、成膜部14と負イオン生成部24とで、互いに異なる別箇のプラズマ源を有していてもよい。
 プラズマ源7は、成膜室10b内において間欠的にプラズマPを生成する。具体的には、プラズマ源7は、後述の制御部50によって成膜室10b内において間欠的にプラズマPを生成するように制御されている。この制御については、後述の制御部50の説明において詳述する。
 原料ガス供給部40は、真空チャンバー10の外部に配置されている。原料ガス供給部40は、成膜室10bの側壁(例えば、側壁10h)に設けられたガス供給口41を通し、真空チャンバー10内へ酸素負イオンの原料ガスである酸素ガスを供給する。原料ガス供給部40は、例えば成膜処理モードから酸素負イオン生成モードに切り替わると、酸素ガスの供給を開始する。また、原料ガス供給部40は、成膜処理モード及び酸素負イオン生成モードの両方において酸素ガスの供給を行い続けてもよい。
 ガス供給口41の位置は、成膜室10bと搬送室10aとの境界付近の位置が好ましい。この場合、原料ガス供給部40からの酸素ガスを、成膜室10bと搬送室10aとの境界付近に供給することができるので、当該境界付近において後述する酸素負イオンの生成が行われる。よって、生成した酸素負イオンを、搬送室10aにおける成膜対象物11に好適に付着させることができる。なお、ガス供給口41の位置は、成膜室10bと搬送室10aとの境界付近に限られない。
 制御部50は、真空チャンバー10の外部に配置されている。制御部50は、回路部34が有する切替部を切り替える。この制御部50による切替部の切り替えについては、以下、回路部34の説明と併せて詳述する。
 回路部34は、可変電源80と、第1の配線71と、第2の配線72と、抵抗器R1~R4と、短絡スイッチSW1,SW2と、を有している。
 可変電源80は、接地電位にある真空チャンバー10を挟んで、負電圧をプラズマ源7の陰極60に、正電圧をハース機構2の主ハース17に印加する。これにより、可変電源80は、プラズマ源7の陰極60とハース機構2の主ハース17との間に電位差を発生させる。
 第1の配線71は、プラズマ源7の陰極60を、可変電源80の負電位側と電気的に接続している。第2の配線72は、ハース機構2の主ハース17(陽極)を、可変電源80の正電位側と電気的に接続している。
 抵抗器R1は、一端がプラズマ源7の第1の中間電極61と電気的に接続されていると共に、他端が第2の配線72を介して可変電源80と電気的に接続されている。すなわち、抵抗器R1は、第1の中間電極61と可変電源80との間において直列接続されている。
 抵抗器R2は、一端がプラズマ源7の第2の中間電極62と電気的に接続されていると共に、他端が第2の配線72を介して可変電源80と電気的に接続されている。すなわち、抵抗器R2は、第2の中間電極62と可変電源80との間において直列接続されている。
 抵抗器R3は、一端が成膜室10bの壁部10wと電気的に接続されていると共に、他端が第2の配線72を介して可変電源80と電気的に接続されている。すなわち、抵抗器R3は、成膜室10bの壁部10wと可変電源80との間において直列接続されている。
 抵抗器R4は、一端が輪ハース6と電気的に接続されていると共に、他端が第2の配線72を介して可変電源80と電気的に接続されている。すなわち、抵抗器R4は、輪ハース6と可変電源80との間において直列接続されている。
 短絡スイッチSW1,SW2は、それぞれ前述の制御部50からの指令信号を受信することにより、ON/OFF状態に切り替えられる切替部である。
 短絡スイッチSW1は、抵抗器R2に並列接続されている。短絡スイッチSW1は、成膜処理モードであるか酸素負イオンモードであるかに応じて、制御部50によってON/OFF状態が切り替えられる。短絡スイッチSW1は、成膜処理モードにおいてはOFF状態とされる。これにより、成膜処理モードにおいては、第2の中間電極62と可変電源80とが抵抗器R2を介して互いに電気的に接続されるので、第2の中間電極62と可変電源80との間には電流が流れにくい。その結果、プラズマ源7からのプラズマPが真空チャンバー10内に出射され、成膜材料Maに入射する(図1参照)。
 一方、短絡スイッチSW1は、酸素負イオン生成モードにおいては、プラズマ源7からのプラズマPを真空チャンバー10内で間欠的に生成するため、制御部50によってON/OFF状態が所定間隔で切り替えられる。短絡スイッチSW1がON状態に切り替えられると、第2の中間電極62と可変電源80との間の電気的な接続が短絡するので、第2の中間電極62と可変電源80との間に電流が流れる。すなわち、プラズマ源7に短絡電流が流れる。その結果、プラズマ源7からのプラズマPが真空チャンバー10内に出射されなくなる。
 短絡スイッチSW1がOFF状態に切り替えられると、第2の中間電極62と可変電源80とが抵抗器R2を介して互いに電気的に接続されるので、第2の中間電極62と可変電源80との間には電流が流れにくい。その結果、プラズマ源7からのプラズマPが真空チャンバー10内に出射される。このように、短絡スイッチSW1のON/OFF状態が制御部50によって所定間隔で切り替えられることにより、プラズマ源7からのプラズマPが真空チャンバー10内において間欠的に生成される。すなわち、短絡スイッチSW1は、真空チャンバー10内へのプラズマPの供給と遮断とを切り替える切替部である。
 短絡スイッチSW2は、抵抗器R4に並列接続されている。短絡スイッチSW2は、例えば成膜処理モードになる前の成膜対象物11の搬送前の状態であるスタンバイモードであるか成膜処理モードであるかに応じて、制御部50によってON/OFF状態が切り替えられる。短絡スイッチSW2は、スタンバイモードではON状態とされる。これにより、輪ハース6と可変電源80との間の電気的な接続が短絡するので、主ハース17よりも輪ハース6に電流を流しやすくなり、成膜材料Maの無駄な消費を防ぐことができる。
 一方、短絡スイッチSW2は、成膜処理モードではOFF状態とされる。これにより、輪ハース6と可変電源80が抵抗器R4を介して電気的に接続されるので、輪ハース6よりも主ハース17に電流を流しやすくなり、プラズマPの出射方向を好適に成膜材料Maに向けることができる。なお、短絡スイッチSW2は、酸素負イオン生成モードではON状態又はOFF状態のいずれの状態とされてもよい。
 磁場発生コイル30は、真空チャンバー10内であって、成膜室10bと搬送室10aとの間に設けられている。磁場発生コイル30は、例えばハース機構2と搬送機構3との間に配置されている。より具体的には、磁場発生コイル30は、成膜室10bの搬送室10a側の端部と、搬送室10aの成膜室10b側の端部とに介在するように位置している。磁場発生コイル30は、互いに対向する一対のコイル30a,30bを有している。各コイル30a,30bは、例えば成膜室10bから搬送室10aへ向かう方向(ハース機構2から搬送機構3へ向かう方向)に交差する方向で互いに対向している。
 磁場発生コイル30は、成膜処理モードにおいては励磁されず、酸素負イオン生成モードにおいて磁場発生コイル30用の電源(不図示)により励磁される。ここで、成膜処理モードとは、真空チャンバー10内で成膜対象物11に対して成膜処理を行うモードである。酸素負イオン生成モードは、真空チャンバー10内で成膜対象物11に形成された膜の表面に付着させるための酸素負イオンの生成を行うモードである。磁場発生コイル30は、酸素負イオン生成モードにおいて励磁されることにより、成膜室10bから搬送室10aへ向かう方向(ハース機構2から搬送機構3へ向かう方向)と交差する方向に伸びる磁力線を有する封止磁場Mを真空チャンバー10内に形成する(図2参照)。磁場発生コイル30は、このような封止磁場Mを発生させることにより、成膜室10b内の電子が搬送室10a内へ流入するのを抑制する。封止磁場Mが有する磁力線は、例えば成膜対象物11の搬送方向(矢印A)に略平行な方向に伸びる部分を有していてもよい。なお、磁場発生コイル30用の電源のON/OFF状態の切り替えは、後述する制御部50によって制御されてもよい。磁場発生コイル30は、成膜材料Maが堆積しないようケース31で覆われている。なお、磁場発生コイル30はケース31で覆われていなくてもよい。
 次に、図3を参照して、成膜装置1における成膜方法について詳細に説明する。図3は、成膜装置1における成膜方法を示すフローチャートである。
 図3に示すように、まず、成膜装置1では、制御部50によって成膜処理モードに切り替えられると、成膜対象物11に成膜材料Maの膜を形成する(S1:成膜工程)。このとき、制御部50によって短絡スイッチSW1がOFF状態とされている。また、成膜処理モードにおいて、ステアリングコイル5が励磁されている一方、磁場発生コイル30は励磁されていない。これにより、プラズマ源7によって成膜室10b内でプラズマPが生成され、当該プラズマPが主ハース17に照射される(図1参照)。その結果、主ハース17における成膜材料MaがプラズマPによりイオン化されて成膜材料粒子Mbとなり、成膜室10b内に拡散し、搬送室10a内の成膜対象物11の表面に付着する。このようにして、成膜対象物11に成膜材料Maの膜が形成され、成膜工程S1が終了する。
 続いて、成膜装置1では、酸素負イオンモードにおいて、酸素負イオンを生成する(S2:酸素負イオン生成工程)。以下、酸素負イオン生成工程S2について具体的に説明する。まず、原料ガス供給部40によって、成膜室10b内に酸素ガスが供給される(S21:原料ガス供給工程)。
 続いて、制御部50によって、プラズマ源7からのプラズマPを成膜室10b内で間欠的に生成するようにプラズマ源7が制御される(S22:プラズマ生成工程)。例えば、制御部50によって、短絡スイッチSW1のON/OFF状態が所定間隔で切り替えられることにより、プラズマ源7からのプラズマPが成膜室10b内で間欠的に生成される。
 短絡スイッチSW1がON状態とされているときは、プラズマ源7からのプラズマPが成膜室10b内に出射されないので成膜室10b内におけるプラズマPの電子温度が急激に低下する。このため、前述の原料ガス供給工程S21において成膜室10b内に供給された酸素ガスの粒子に、プラズマPの電子が付着し易くなる。これにより、成膜室10b内には、酸素負イオンが効率的に生成される。
 続いて、制御部50によって、真空チャンバー10内に封止磁場Mが形成される(S23:封止磁場形成工程)。例えば、磁場発生コイル30が励磁されることにより、真空チャンバー10内で成膜室10bと搬送室10aとの間に介在するように封止磁場Mが形成される(図2参照)。封止磁場Mは、成膜室10bから搬送室10aへ向かう方向(ハース機構2から搬送機構3へ向かう方向)に交差する方向に伸びる磁力線を有している。
 前述のプラズマ生成工程S22において生成された成膜室10b内におけるプラズマPの電子は、封止磁場形成工程S23において形成された封止磁場Mの磁力線に阻害され、搬送室10aへの流入が抑制される。これにより、成膜室10b内の酸素ガスの粒子に、プラズマPの電子が付着し易くなり、より効率的に酸素負イオンを生成することができる。そして、プラズマ生成工程S22において生成された酸素負イオンが成膜室10bのX軸正方向へ移動し、搬送室10a内において、成膜処理によって成膜対象物11に形成された膜の表面に付着する。なお、成膜対象物11に正のバイアス電圧をかけることによって、より積極的に酸素負イオンを成膜対象物11に形成された膜の表面に付着させてもよい。以上のようにして、酸素負イオン生成工程S2が終了すると、図3に示す成膜方法が終了する。
 以上、本実施形態に係る成膜装置1によれば、負イオン生成部24により真空チャンバー10内に酸素負イオンが生成されるので、当該酸素負イオンを、成膜処理によって成膜対象物11に形成された膜の表面に付着させることができる。これにより、成膜処理後の成膜対象物11を大気中に取り出しても、成膜対象物11に形成された膜の表面には酸素負イオンが付着しているので、成膜対象物11における膜の表面に大気中の酸素が付着することによる膜質の低下を抑制することができる。以上より、成膜対象物11における膜質の低下を抑制することができる。
 本実施形態に係る成膜装置1によれば、プラズマPが真空チャンバー10内に間欠的に生成されるので、真空チャンバー10内のプラズマPの生成が停止されているときには真空チャンバー10内におけるプラズマPの電子温度が急激に低下し、真空チャンバー10内へ供給された酸素ガスの粒子に電子が付着し易くなる。これにより、真空チャンバー10内で酸素負イオンを効率的に生成することができる。その結果、成膜対象物11に形成された膜の表面に、負イオンを効率良く付着させることができる。以上によって、成膜対象物11における膜質の低下を確実に抑制することができる。
 成膜装置1によれば、短絡スイッチSW1を切り替えるだけで容易にプラズマPを間欠的に生成することができる。例えばプラズマ源7が圧力勾配型のプラズマガンである場合には、プラズマPの生成を直接停止させることが難しいが、本実施形態に係る成膜装置1によれば短絡スイッチSW1を切り替えるだけで容易にプラズマPの生成を停止させることができ好適である。
 成膜装置1によれば、磁場発生コイル30によって発生した封止磁場Mの磁力線により、成膜室10b内の電子が搬送室10aへ流入するのを抑制することができるため、成膜室10b内で負イオンをより効率的に生成することが可能となる。その結果、成膜対象物に形成された膜の表面に、負イオンをより効率良く付着させることができる。
 成膜装置1によれば、磁場発生コイル30が成膜室10bと搬送室10aとの間に設けられているため、成膜室10b内の電子が搬送室10aへ流入するのを抑制する方向の磁力線を有する封止磁場Mを好適に発生させることができる。
 成膜装置1によれば、成膜部14のプラズマ源7と負イオン生成部24のプラズマ源7とが兼用されているため、成膜処理のために必要な構成として真空チャンバー10内に本来備えられている構造を大きく変えることなく負イオン生成部24を構成することができる。よって、成膜条件へ与える影響を抑制しつつ負イオン生成部24を設けることが可能となる。さらに、プラズマ源7が兼用されていることで装置構成を簡略化することができる。
(第2実施形態)
 次に、図4を参照して、本発明の第2実施形態に係る成膜装置1Aの構成について説明する。成膜装置1Aは、第1実施形態に係る成膜装置1と同様の要素や構造を備えている。そのため、第1実施形態に係る成膜装置1と同様の要素や構造には同一の符号を付して詳細な説明は省略し、第1実施形態と異なる部分について説明する。
 図4は、本実施形態に係る成膜装置1Aの構成を示す概略断面図であって、酸素負イオン生成モードにおける動作状態を示す図である。なお、第2実施形態に係る成膜装置1Aの成膜処理モードにおける動作状態を示す図は、図4と比べて、短絡スイッチSW1がOFF状態であり、成膜材料粒子Mbが成膜室10b内に拡散している点でのみ異なり、その他の点は同様であるため、図示を省略する。
 図4に示すように、本実施形態の成膜装置1Aは、成膜対象物11の板厚方向が略鉛直方向(図4ではZ軸方向)となるように、成膜対象物11が真空チャンバー10内に配置されて搬送されるいわゆる横型の成膜装置である。なお、本実施形態に係る成膜装置は、上述したいわゆる縦型の成膜装置であってもよい。以下、横型の成膜装置を例として説明する。
 成膜装置1Aは、成膜装置1と同様、真空チャンバー10、搬送機構3、成膜部14、及び負イオン生成部24を備えている。その一方で、成膜装置1Aは、成膜装置1と異なり、磁場発生コイル30及びそのケース31を備えていない。
 また、成膜装置1Aでは、成膜対象物11の搬送方向が一方向ではなく双方向(図中の矢印B)となっており、成膜対象物11を保持する成膜対象物保持部材16に代えて、成膜対象物11を保持する成膜対象物保持部材16A(保持部材)を備えている。すなわち、本実施形態において、搬送機構3は、成膜対象物保持部材16Aを搬送方向(矢印B)に搬送する。成膜対象物保持部材16Aは、例えば成膜対象物11の被成膜面を露出させた状態で成膜対象物11を保持して搬送するトレイ等が用いられる。なお、成膜対象物保持部材16Aの詳細な構成については後述する。
 さらに、成膜装置1Aは、成膜後の成膜対象物11に正のバイアス電圧を印加するためのバイアス回路部35と、真空チャンバー10内に設けられたトロリ線18と、トロリ線18に張力を付与する張力付与部25と、真空チャンバー10に隣接して配置されたロードロック室26(真空ロードロックチャンバー)とを備えている点で、成膜装置1とは異なっている。なお、第1実施形態では、ロードロック室26の図示及び説明を省略しているが、第1実施形態に係る成膜装置1がロードロック室26を備えていてもよい。また、第1実施形態に係る成膜装置1における成膜対象物11の搬送方向が一方向でなく双方向であってもよい。
 バイアス回路部35は、成膜対象物11に正のバイアス電圧(以下、単に「バイアス電圧」ともいう)を印加するバイアス電源27(電圧印加部)と、バイアス電源27とトロリ線18とを電気的に接続する第3の配線73と、第3の配線73に設けられた短絡スイッチSW3とを有している。バイアス電源27は、バイアス電圧として、周期的に増減する矩形波である電圧信号(周期的電気信号)を印加する。バイアス電源27は、印加するバイアス電圧の周波数を制御部50の制御によって変更可能に構成されている。第3の配線73は、一端がバイアス電源27の正電位側に接続されていると共に、他端が張力付与部25のプーリ25bに接続されている。これにより、第3の配線73は、プーリ25bを介してトロリ線18とバイアス電源27とを電気的に接続する。
 短絡スイッチSW3は、第3の配線73によって、プーリ25bとバイアス電源27の正電位側との間において直列に接続されている。短絡スイッチSW3は、トロリ線18へのバイアス電圧の印加の有無を切り替える切替部である。短絡スイッチSW3は、制御部50によってそのON/OFF状態が切り替えられる。短絡スイッチSW3は、酸素負イオン生成モードにおける所定のタイミングでON状態とされる。短絡スイッチSW3がON状態とされると、トロリ線18とバイアス電源27の正電位側とが互いに電気的に接続され、トロリ線18にバイアス電圧が印加される。
 一方、短絡スイッチSW3は、成膜処理モードのとき、及び、酸素負イオン生成モードにおける所定のタイミングにおいてOFF状態とされる。短絡スイッチSW3がOFF状態とされると、トロリ線18とバイアス電源27とが互いに電気的に切断され、トロリ線18にはバイアス電圧が印加されない。なお、バイアス電圧を印加するタイミングの詳細は、後述する。
 トロリ線18は、成膜対象物保持部材16Aへの給電を行う架線である。トロリ線18は、成膜対象物保持部材16Aに設けられた後述の給電ブラシ42と接触することで、給電ブラシ42を通して成膜対象物保持部材16Aへの給電を行う。トロリ線18は、例えばステンレス製の針金等により構成されている。
 トロリ線18は、搬送室10a内に搬送方向(矢印B)に延伸して設けられている。トロリ線18の一端側は、トロリ線固定部28によって搬送室10a内における上端内壁10dに固定されている。トロリ線18の他端側には、張力付与部25が設けられている。なお、トロリ線固定部28の詳細な構成は、後述する。
 張力付与部25は、搬送室10a内における下端内壁10eに固定されたプーリ支持部25aと、プーリ支持部25aに支持されたプーリ25bと、トロリ線18の他端に接続された錘部材25cとを有している。プーリ支持部25aは、搬送室10aの下端内壁10eから上端内壁10dに向かって延在し、プーリ25bの軸に接続されている。プーリ25bは、トロリ線18を受けており、搬送方向(矢印B)に延伸しているトロリ線18の方向を、Z軸負方向へと変換する。錘部材25cは、所定の重さを有しており、その重さによってトロリ線18をZ軸負方向へ引っ張る。これにより、トロリ線18に張力が与えられ、トロリ線18が熱等によって伸び縮みした場合にも、トロリ線18が撓まないようになっている。
 ロードロック室26は、搬送方向(矢印B)における搬送室10aの一端に開閉可能なゲート29を介して繋がっている。なお、ロードロック室26は、搬送室10aの一端に限られず、その他端に繋がっていてもよく、その一端及び他端の両方に繋がっていてもよい。ロードロック室26は、搬送室10a及び成膜室10bとは独立して真空状態が制御されている。ロードロック室26は、ゲート29を通して、搬送室10aとの間で成膜対象物11を搬入出する。
 ロードロック室26は、成膜部14による成膜処理後の成膜対象物11を真空チャンバー10の搬送室10aから搬入する。これにより、ロードロック室26内には、成膜処理後の成膜対象物11が収容される。ロードロック室26内では、後述する成膜対象物保持部材16Aにおける給電端子部51(図6及び図8参照)の操作が行われる。例えば、給電端子部51は、成膜対象物11の裏面(成膜処理される側の面)に接触するように操作される。この操作により、給電端子部51を通して成膜対象物11の裏面へバイアス電圧が印加可能となる。
 また、ロードロック室26は、ロードロック室26内において給電端子部51の上記操作が行われ、成膜対象物11の裏面へバイアス電圧が印加可能となると、成膜対象物11を搬送室10aへ搬出する。例えば、ロードロック室26は、搬入された成膜対象物11を、負イオン生成部24による負イオン生成後に、真空チャンバー10の搬送室10aへ搬出する。
 次に、図5を参照して、トロリ線固定部28の詳細な構成について説明する。図5の(a)は、トロリ線固定部28の概略正面図であり、図5の(b)は、トロリ線固定部28の概略側面図である。図5の(a)及び(b)に示すように、トロリ線固定部28は、周辺構造物(ここでは、上端内壁10d)に取り付けられる取付部材32と、トロリ線18を固定する固定部33と、給電ブラシ42(図7及び図9参照)をトロリ線18にガイドするブラシ用ガイド部37とを有している。
 取付部材32は、例えばコ字状の板状部材によって構成されるブラケットである。取付部材32は、搬送室10aにおける上端内壁10d(図4参照)にボルト32f等によって固定される上端固定部32aと、上端固定部32aからZ軸負方向に延びている延在部32bと、延在部32bにおけるZ軸負方向での先端部に設けられた座面部32cとを有している。
 固定部33は、取付部材32におけるZ軸方向の負方向での端部に設けられたねじ支持部33aと、ねじ支持部33aから突出した取付ねじ33bと、取付ねじ33bに取り付けられた圧着端子33cとを有している。ねじ支持部33aは、例えば直方体状の金属ブロック等である。ねじ支持部33aは、取付部材32の延在部32bに対し、磁器又はガラス等の絶縁部材33gを介して、ボルト32f等によって固定されている。ねじ支持部33aは、延在部32bからY軸正方向に突出するように設けられている。取付ねじ33bは、ねじ支持部33aの側面からX軸正方向に突出している。圧着端子33cは、取付ねじ33bにナット33e等によって固定されている。圧着端子33cには、トロリ線18の一端が接続されている。
 ブラシ用ガイド部37は、取付部材32の座面部32cからX軸正方向へ延長する延長部37aと、Z軸正方向へ屈曲する山なりのガイド部37bとを有している。延長部37aは、取付部材32の座面部32cと一体的に形成されており、固定部33の取付ねじ33bよりもX軸正方向に突出している。
 ガイド部37bは、X軸方向から見て、Z軸正方向に立ち上がる山なり形状の縁37eを有している。ガイド部37bは、Y軸方向で略中央に位置する部分が最も幅広となっており、当該幅広の部分が固定部33の圧着端子33cの位置に対応している。ガイド部37bは、ロードロック室26から搬出されて搬送室10aへ搬入されてきた成膜対象物保持部材16Aの給電ブラシ42が、トロリ線18上に載るようにガイドする機能を有する(図9参照)。
 次に、図6~図8を参照して、成膜対象物保持部材16Aの詳細な構成について説明する。図6は、図4の成膜対象物保持部材16Aの構成を示す概略平面図である。図7は、図6のVII-VII線に沿った断面図である。図8は、図6のVIII-VIII線に沿った断面図である。図6~図8においては、矩形板状の成膜対象物11を例示している。図6において、成膜対象物11の裏面11b(成膜処理される側の面)は紙面奥側の面であって、成膜対象物11の表面11aは紙面手前側の面である。
 図6に示すように、成膜対象物保持部材16Aは、成膜対象物11を載置して搬送するためのトレイ63及びホルダ66を有している。トレイ63及びホルダ66は、例えばステンレス鋼等の導電性金属材料によって形成されている。
 トレイ63は、成膜対象物11が保持されたホルダ66を載置する枠状の容器である。トレイ63は、ホルダ66を載置する台座部64と、ホルダ66の外径に対応して立ち上がっている縁部65とを有している。台座部64は、縁部65の内側側面65aから突出しており、ホルダ66の裏面(図6の紙面奥側の面)側を支持している。台座部64は、中央部に成膜対象物11に応じた外径の開口部64cを有している。
 ホルダ66は、成膜対象物11を保持する枠状の保持部である。ホルダ66は、ホルダ本体部67と、ホルダ本体部67の裏面67b(図6の紙面奥側の面)に設けられた複数の爪部68と、ホルダ本体部67の裏面67b側に絶縁碍子70(図7及び図8参照)を介して設けられた載置部69と、絶縁碍子70に対する汚れ防止用のカバー75とを有している。
 ホルダ本体部67は、略矩形状の外形を有する板状であって、中央部に成膜対象物11の外形に応じた開口部67cを有している。また、ホルダ本体部67は、後述する給電端子部51に対応する位置に、略Y字状の開口部67dを有している。
 また、ホルダ本体部67には、トロリ線18から給電される給電部として、給電ブラシ42と、給電端子部51とが設けられている。給電ブラシ42及び給電端子部51は、導電性材料で形成されている。なお、給電ブラシ42及び給電端子部51の機能及び構成の詳細は、図7~図10を参照して後述する。
 本実施形態では、平面視において、給電ブラシ42及び給電端子部51が、それぞれ点対称となる位置に二つずつ設けられている。これにより、ホルダ66を180度回転させた状態で成膜対象物11を搬送させた場合でも、トロリ線18から給電ブラシ42及び給電端子部51への給電が可能となっている。また、点対称となるようにずれて位置した二つの給電端子部51のうち、何れかの給電端子部51と接触可能な位置に成膜対象物11を位置させればよいため、ホルダ66上での成膜対象物11の大きさ及び位置の自由度を向上させることができる。
 爪部68は、平面視で開口部67cよりも内側に突出しており、ホルダ本体部67と重ならずに露出した部分を有している。爪部68は、この露出した部分において、成膜対象物11の裏面11bを支持している。なお、成膜対象物11の裏面11bのうち、爪部68が支持している部分は、爪部68が重なっているため、成膜処理後においても成膜されていない状態が維持されている。すなわち、爪部68と成膜対象物11の裏面11bとの間は絶縁状態となっており、ホルダ本体部67にバイアス電圧が印加された場合でも、爪部68から成膜対象物11の裏面11bには給電されない。
 図7及び図8に示すように、載置部69は、トレイ63の台座部64に載置されている。載置部69は、ボルト69f等によって、ホルダ本体部67の裏面67b側に固定されている。載置部69は、ホルダ本体部67の裏面67b側から離間して固定されており、ホルダ本体部67の裏面67bに非接触となっている。
 載置部69とボルト69fとの間には、絶縁碍子70が設けられており、載置部69は、ホルダ本体部67と電気的に絶縁されている。絶縁碍子70は、例えば、磁器又はガラス等の絶縁材料によって形成されている。ホルダ本体部67と電気的に絶縁された載置部69がホルダ本体部67とトレイ63との間に介在していることにより、トレイ63はホルダ本体部67と電気的に絶縁されている。よって、ホルダ本体部67にバイアス電圧が印加された場合でも、トレイ63は電気的に絶縁された状態となっている。
 カバー75は、成膜時に絶縁碍子70に導電性の膜が付着しないように絶縁碍子70を保護している。カバー75は、筒部材75a及び円板部材75bを含んでいる。筒部材75aは、ホルダ本体部67の裏面67bに非接触となっており、ホルダ本体部67の裏面67bと載置部69との間において、絶縁碍子70の周囲を取り囲んでいる。円板部材75bは、絶縁碍子70の下端部(Z軸負方向での端部)に設けられ、当該下端部の全体を覆っている。このように、カバー75によって絶縁碍子70が保護されており、その結果、絶縁碍子70の絶縁低下を抑制することが可能となっている。
 次に、給電ブラシ42及び給電端子部51の構成について詳細に説明する。
 給電ブラシ42は、バイアス電圧が印加されたトロリ線18と接触することにより、トロリ線18からホルダ本体部67への給電を行う。すなわち、給電ブラシ42は、ホルダ本体部67へトロリ線18からのバイアス電圧を印加する機能を有する。また、上述したように、ホルダ本体部67へバイアス電圧が印加された場合でも、爪部68から成膜対象物11の裏面11bには給電されない。そこで、給電端子部51は、成膜対象物11の裏面11bと接触することにより、ホルダ本体部67から成膜対象物11の裏面11bへの給電を行う。すなわち、給電端子部51は、成膜対象物11の裏面11bへホルダ本体部67からのバイアス電圧を印加する機能を有する。以下、給電ブラシ42及び給電端子部51の各構成についてより具体的に説明する。
 まず、図6、図7及び図9を参照して、給電ブラシ42について説明する。図6及び図7に示すように、給電ブラシ42は、板状のブラシ体43と、ブラシ体43を支持するブラシ軸部44と、ブラシ軸部44を支持する軸支持部45と、軸支持部45をホルダ本体部67の表面67aに固定するブラシ固定部46とを有している。
 ブラシ体43は、略矩形状を呈しており、その板厚方向がY軸方向に沿っている。ブラシ体43は、長手方向での一端側が自由端となっており、長手方向での他端側には円形状の基端部43dが形成されている。基端部43dは、不図示の継手部等を介して、Y軸方向に沿って延びるブラシ軸部44に回転可能に支持されている。つまり、ブラシ体43は、ブラシ軸部44周りに回転可能となっており、ブラシ体43がX軸方向に沿って延びた状態において、ブラシ体43の自由端はZ軸方向に沿った方向(図7中の矢印C)に移動可能となっている。ブラシ体43の縁43eは、Y軸方向に沿って延びているトロリ線18上に載る。これにより、ブラシ体43は、トロリ線18と接触する。その結果、ブラシ体43を通し、トロリ線18からホルダ本体部67へ給電される。
 ブラシ体43は、ブラシ用ガイド部37によってトロリ線18に載るようガイドされる。図9は、ブラシ用ガイド部37によりガイドされるブラシ体43の動作を説明する図である。図9に示すように、成膜対象物保持部材16Aの搬送時において、ブラシ体43は、搬送方向であるY軸方向に沿って、ブラシ用ガイド部37のガイド部37b上を移動する。この際、ブラシ体43の縁43eとガイド部37bの縁37eとが当接された状態となる。これにより、ブラシ体43は、圧着端子33dを跨ぐようにY軸方向に沿って移動し、圧着端子33dに接続されたトロリ線18上に載り、ブラシ体43がトロリ線18と接触する。
 再び図6及び図7を参照し、ブラシ軸部44は、Y軸方向に延在しており、その一端及び他端が軸支持部45に固定されている。軸支持部45は、ブラシ軸部44の一端及び他端に位置している。軸支持部45は、略L字状の板部材であり、Z軸方向に沿って延びる側面部45aと、X軸方向及びY軸方向に沿って延びる底面部45bとを有している。側面部45aは、ブラシ軸部44と固定されており、底面部45bは、ブラシ固定部46と固定されている。
 ブラシ固定部46は、軸支持部45とホルダ本体部67との間に配置されている。ブラシ固定部46は、略L字状の板部材であり、Z軸方向に沿って延びる側面部46aと、Z軸方向及びY軸方向に沿って延びる底面部46bとを有している。側面部46aは、ブラシ体43がホルダ本体部67よりもZ軸負方向に回転してしまわないよう、ブラシ体43の縁43eを受けることができる。底面部46bは、軸支持部45の底面部45bと、ホルダ本体部67の表面67aとに固定されている。
 続いて、図8及び図10を参照して、給電端子部51について説明する。図10は、給電端子部51の動作を説明する図である。図10の(a)は、図6の給電端子部51を拡大して示す図であり、図10の(b)は、図10の(a)のb-b線に沿った断面図である。
 図8及び図10に示すように、給電端子部51は、成膜対象物11の裏面11bに接触可能なリード端子52と、リード端子52を支持するリード軸部56と、リード軸部56を支持する軸支持部57と、リード端子52の回転を規制する回転規制部58とを有している。
 リード端子52は、不図示の継手部等を介して、Y軸方向に沿って延びるリード軸部56に回転可能に支持されている。つまり、リード端子52は、リード軸部56周りに回転可能となっている。
 リード端子52は、板状部材が折り曲げられてなり、回転規制部58に当接する当接部53と、当接部53からV字状に折り曲げられた折曲部54と、折曲部54が折り曲げられた方向とは反対側に向かって折曲部54から折り曲げられた先端突起部55とを有している。
 当接部53の裏面53bは、回転規制部58の表面58aに当接することにより、回転規制部58に支持される。これにより、リード軸部56を回転中心としたリード端子52の回転が規制される。当接部53の表面53aには、錘部材53cが接合されている。
 折曲部54は、当接部53が回転規制部58に支持された状態、すなわち当接部53がX軸方向に沿って延びた状態において、当接部53からZ軸負方向に折り曲げられている。折曲部54は、当接部53に対して鈍角をなすように延びている。先端突起部55は、当接部53が回転規制部58に支持された状態、すなわち当接部53がX軸方向に沿って延びた状態において、折曲部54からZ軸正方向に折り曲げられている。先端突起部55は、折曲部54に対して略直角に、成膜対象物11の裏面11bに向かって延びている。先端突起部55は、リード端子52の回転によって成膜対象物11の裏面11bに接触可能となっている。
 リード軸部56は、Y軸方向に延在しており、その一端及び他端が軸支持部57に固定されている。軸支持部57は、リード軸部56の一端及び他端に位置している。軸支持部57は、略L字状の板部材であり、Z軸方向に沿って延びる側面部57aと、X軸方向及びY軸方向に沿って延びる底面部57bとを有している。側面部57aは、ホルダ本体部67の開口部67dからホルダ本体部67の裏面67b側へ垂れ下がっており、リード軸部56と固定されている。底面部57bは、ホルダ本体部67の表面67aに固定されている。
 回転規制部58は、略矩形状の板状部材であり、ホルダ本体部67の裏面67bに設けられている。回転規制部58は、ボルト58f等によって、ホルダ本体部67の裏面67bに沿って回転可能に支持されている。
 具体的に、回転規制部58は、実線で示すリード端子52を支持する位置から、図10の(a)に示す矢印E方向へ回転可能となっており、二点鎖線で示す位置へ移動可能となっている。回転規制部58が図10の(a)に示す矢印E方向へ回転すると、回転規制部58の表面58aが当接部53の裏面53bに当接しなくなる。これにより、回転規制部58によるリード端子52の回転規制が解除され、錘部材53c等の重みによってリード端子52が図10の(b)に示す矢印D方向へと回転する。そして、リード端子52が実線で示す位置から二点鎖線で示す位置へ移動し、リード端子52の先端突起部55が成膜対象物11の裏面11bへ接触する。その結果、先端突起部55を通して、ホルダ本体部67から成膜対象物11の裏面11bへ給電される。
 また、回転規制部58には、上記の回転移動を操作する操作部58dが設けられている。操作部58dは、例えばボルト等によって構成されており、回転規制部58の裏面58b側から表面58a側へ貫通して表面58a上に突出している。上述したように、給電端子部51の操作は、成膜対象物保持部材16Aがロードロック室26内に搬入されたタイミングで行われる。すなわち、ロードロック室26内において給電端子部51の操作部58dが操作されて、給電端子部51が成膜対象物11の裏面11bに接触するようになる。操作部58dは、例えば所定の作動条件が成立した場合に作動するアクチュエータ(不図示)等によって操作される。なお、操作部58dの操作はアクチュエータ等による操作に限られず、手動等を含めその他のどのような操作方法であってもよい。
 次に、図11を参照し、成膜対象物11にバイアス電圧を印加する好適なタイミングについて説明する。なお、成膜対象物11にバイアス電圧を印加するタイミングは、以下に説明するタイミングに限られず、例えば負イオン生成モードにおける任意のタイミングでバイアス電圧を印加してもよい。
 図11は、真空チャンバー10内に存在するイオンのフラックスの時間変化を示すグラフである。図11の横軸は、酸素負イオン生成モードにおける処理時間[sec]を示し、図11の縦軸は、真空チャンバー10内におけるイオンのフラックス強度[a.u.]を示している。グラフG1は、アルゴン正イオンのフラックスの時間変化を示すグラフであり、グラフG2は、酸素正イオンのフラックスの時間変化を示すグラフであり、グラフG3は、酸素負イオンのフラックスの時間変化を示すグラフである。また、図11において、期間T1はプラズマPの生成が行われている期間を示し、期間T2は、プラズマPの生成が停止されている期間を示している。すなわち、図11は、プラズマPを生成するタイミングと真空チャンバー10内に存在するイオンとの関係を示している。
 図11に示されるように、プラズマPを生成する期間T1とプラズマPの生成を停止する期間T2とは繰り返されており、プラズマPが間欠的に生成されている。プラズマPの生成が停止された後、約0.001~0.0015秒程度の間は、アルゴン正イオン及び酸素正イオンが多く存在し、これに対応する電子も存在している。そして、プラズマPの生成が停止された後、約0.002秒程度以降は、アルゴン正イオン及び酸素正イオンが消失すると共に電子が消失する一方で、酸素負イオンの比率が増加する。
 そこで、本実施形態に係る成膜装置1Aでは、負イオン生成部24によるプラズマPの生成が停止された後に、成膜対象物11にバイアス電圧を印加する。例えば、バイアス電源27は、酸素負イオン生成モードにおいて、プラズマPの生成が停止されてから数ミリ秒後のタイミングで、成膜対象物11にバイアス電圧を印加する。より具体的には、プラズマPの生成が行われている間は、制御部50によって短絡スイッチSW3がOFF状態とされており、プラズマPの生成が停止されてから数ミリ秒後に、制御部50によって短絡スイッチSW3がON状態とされる。短絡スイッチSW3がON状態とされると、トロリ線18とバイアス電源27とが互いに電気的に接続され、トロリ線18にバイアス電圧が印加される。
 そして、トロリ線18からブラシ体43を通してホルダ本体部67へ給電され、ホルダ本体部67から先端突起部55を通して成膜対象物11の裏面11bへ給電される。このようにして成膜対象物11の裏面11bに正のバイアス電圧が印加される結果、酸素負イオン生成モードにおいて生成された酸素負イオンが成膜対象物11の裏面11b側に引き寄せられる。
 特に、本実施形態では、プラズマPの生成が停止されてから数ミリ秒後の酸素負イオンが大幅に増加したタイミングで成膜対象物11にバイアス電圧を印加する。これにより、多くの酸素負イオンが、成膜対象物11の裏面11b側に引き寄せられ、成膜対象物11に形成された膜に照射される。
 また、成膜対象物11へのバイアス電圧の印加は、負イオン生成部24による次回のプラズマPの生成が開始される直前まで続行する。具体的には、負イオン生成部24における次回のプラズマ生成が開始される直前において、制御部50によって短絡スイッチSW3がOFF状態とされ、トロリ線18とバイアス電源27とが互いに電気的に非接続とされる。このように、成膜対象物11へバイアス電圧を印加するタイミングは、負イオン生成モードにおいてプラズマPの生成期間と交互に繰り返される。
 次に、図12~図14を参照して、成膜処理後の成膜対象物11に対し、バイアス電圧を印加して酸素負イオンを照射したことによる作用効果について説明する。
 まず、図12及び図13を参照して、成膜対象物11に形成された膜の電気的特性に対する酸素負イオン照射の効果を説明する。図12は、酸素負イオン照射の有無とキャリア密度との関係を示すグラフである。図12の横軸は、酸素ガス流量(Oxgen Flow Rate:OFR)[sccm]を示し、図12の縦軸は、キャリア密度[cm-3]を示している。図12のグラフG4は、酸素負イオン生成モードにおいて成膜対象物11に酸素負イオンを照射した場合における、酸素ガス流量に対応したキャリア密度を示すグラフである。図12のグラフG5は、酸素負イオン生成モードにおいて成膜対象物11に酸素負イオンを照射しなかった場合における、酸素ガス流量に対応したキャリア密度を示すグラフである。
 また、図13は、酸素負イオンの照射の有無と光学的移動度との関係を示すグラフである。図13の横軸は、酸素ガス流量[sccm]を示し、図13の縦軸は、光学的移動度(μopt)[cm/Vs]を示している。図13のグラフG6は、酸素負イオン生成モードにおいて成膜対象物11に酸素負イオンを照射した場合における、酸素ガス流量に対応した光学的移動度を示すグラフである。図13のグラフG7は、酸素負イオン生成モードにおいて成膜対象物11に酸素負イオンを照射しなかった場合における、酸素ガス流量に対応した光学的移動度を示すグラフである。なお、光学的移動度は、成膜対象物11の結晶粒内の移動度を測定したものである。
 成膜処理モードにおける成膜条件としては、電流値を150Aとし、酸素ガス流量を10sccm、15sccm、20sccm、又は25sccmとすることで、成膜対象物11にGaが4.0wt%で50nm厚のZnO膜を形成した。酸素負イオン生成モードにおける酸素負イオン照射条件としては、放電電流値を12Aとし、酸素ガス流量を10sccmとし、周波数が60Hzで矩形波の15Vのバイアス電圧を成膜対象物11に10分間印加した。
 図12に示すように、全ての酸素ガス流量について、成膜対象物11に酸素負イオンを照射しなかった場合よりも、成膜対象物11に酸素負イオンを照射した場合の方が、キャリア密度が低下している。具体的に、酸素ガス流量が10sccm、15sccm、20sccmの場合には約20%のキャリア密度の低下が見られ、酸素ガス流量が25sccmの場合には約7%のキャリア密度の低下が見られる。キャリア密度の低下は、キャリア(電子)が粒界や不純物等にトラップされた、又は、酸素空孔が減少したことを示している。
 また、図13に示すように、全ての酸素ガス流量について、成膜対象物11に酸素負イオンを照射しなかった場合よりも、成膜対象物11に酸素負イオンを照射した場合の方が、光学的移動度が増加している。光学的移動度の増加は、結晶内の酸素空孔が減少して粒内の移動度が向上したことを示している。この結果は、キャリア密度の減少とも整合している。以上より、成膜後の成膜対象物11に形成された膜が、酸素負イオンの照射によって改質されたことが確認できる。
 よって、成膜処理後の成膜対象物11に酸素負イオンを照射することで、成膜対象物11の膜における酸素空孔を少なくする調整を行い、膜を改質することができる。したがって、膜が形成された成膜対象物11を大気中に取り出した場合にも、成膜対象物11における膜の表面に大気中の酸素が付着することを抑制することができ、ひいては膜質の低下を抑制することができる。
 続いて、図14を参照して、成膜対象物11における膜を水素ガスセンサに用いた場合の水素ガスセンサ特性に対する酸素負イオン照射の効果を説明する。図14は、酸素負イオン照射の有無と水素ガスセンサ特性との関係を示すグラフである。図14の横軸は、水素ガスセンサの応答時間[sec]を示し、図14の縦軸は水素ガスセンサに流れる電流値[A]を示す。図14の(a)は、酸素負イオン生成モードにおいて成膜対象物11に酸素負イオンを照射した場合における、水素ガスセンサの応答時間に対する電流値を示すグラフである。図14の(b)は、酸素負イオン生成モードにおいて成膜対象物11に酸素負イオンを照射しなかった場合における、水素ガスセンサの応答時間に対する電流値を示すグラフである。
 図14の(b)に示すように、成膜対象物11に酸素負イオンを照射しなかった場合には、水素ガスセンサの電流値のグランドレベルが安定せず、水素ガスセンサの動作が不安定となっている。これに対し、図14の(a)に示すように、成膜対象物11に酸素負イオンを照射した場合には、水素ガスセンサの電流値のグランドレベルが安定し、水素ガスセンサの動作安定性が向上していることが確認できる。
 以上、本実施形態に係る成膜装置1Aによれば、バイアス電源27によって、成膜処理後の成膜対象物11に正のバイアス電圧が印加される。これにより、負イオン生成部24で生成された酸素負イオンが成膜対象物11側に引き寄せられ、成膜対象物11に形成された膜の表面に照射される。その結果、成膜対象物11における膜の表面に大気中の酸素が付着することによる膜質の低下をより抑制することができる。
 また、本実施形態に係る成膜装置1Aによれば、成膜対象物11を保持する成膜対象物保持部材16Aに設けられた給電ブラシ42及び給電端子部51が、真空チャンバー10内に設けられたトロリ線18から給電される。これにより、成膜対象物保持部材16Aの給電ブラシ42及び給電端子部51を通して成膜対象物11に正の電圧を容易に印加することができる。
 また、本実施形態に係る成膜装置1Aによれば、張力付与部25によってトロリ線18に張力が付与される。これにより、真空チャンバー10内で生じる熱等によってトロリ線18が伸び縮した場合にも撓んでしまうことを抑制することができる。
 また、真空チャンバー10内に存在する酸素負イオンは、負イオン生成部24によるプラズマPの生成が停止された後に増加する。本実施形態に係る成膜装置1Aによれば、このようなプラズマPの生成が停止された後の酸素負イオンが増加したタイミングで成膜対象物11に正のバイアス電圧が印加される。これにより、多くの酸素負イオンが成膜対象物11に照射される。その結果、成膜対象物11における膜の表面に大気中の酸素が付着することによる膜質の低下を更に抑制することができる。
 また、本実施形態に係る成膜装置1Aによれば、成膜処理後の成膜対象物11が真空チャンバー10の搬送室10aからロードロック室26へ搬入されると共に、当該搬入された成膜対象物11が負イオン生成部24による酸素負イオン生成後にロードロック室26から真空チャンバー10の搬送室10aへ搬出される。これにより、成膜対象物11は、大気中に曝されることなく、酸素負イオンが生成された適切なタイミングで搬送室10aへ搬入される。その結果、酸素負イオンを好適に成膜対象物11に照射することができる。
 以上、本実施形態の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用したものであってもよい。
 例えば、上記実施形態では、プラズマ源7を圧力勾配型のプラズマガンとしたが、プラズマ源7は、真空チャンバー10内にプラズマを生成できればよく、圧力勾配型のプラズマガンには限られない。
 また、上記実施形態では、負イオンの生成時に、間欠的にプラズマを生成するとしたが、これに限られない。例えば、負イオンの生成時に、定常的に電流を第2の中間電極62へ供給し、定常放電を発生させてもよい。
 また、上記実施形態では、プラズマ源7とハース機構2の組が真空チャンバー10内に一組だけ設けられていたが、複数組設けてもよい。また、一の材料に対して複数のプラズマ源7からプラズマPを供給してもよい。上記実施形態では、輪ハース6が設けられていたが、プラズマ源7の向きとハース機構2における材料の位置や向きを工夫することで、輪ハース6を省略してもよい。
 ステアリングコイル5は、酸素負イオン生成モードにおいては、必ずしも励磁されなくてもよい。
 図3に示す成膜方法において、負イオン生成工程S2に含まれる原料ガス供給工程S21、プラズマ生成工程S22、及び封止磁場形成工程S23は、必ずしもこの順に処理されなくてもよく、S21~S23の処理を同時に行ってもよい。また、成膜工程S1において成膜処理が完全に終了する前に成膜工程S1を終了して負イオン生成工程S2に進んでもよい。
 成膜装置1,1Aは、真空チャンバー10の外部において、例えばプラズマ源7に対向する位置(例えば、成膜室10bの側壁10i側)に配置された対向コイルを備えていてもよい。この場合、真空チャンバー10内にはプラズマ源7から対向コイルに向かう方向に伸びる磁場が形成されていてもよい。このような磁場が形成されていると、真空チャンバー10内におけるプラズマPの電子がこの磁場に拘束され、当該電子の成膜対象物11への流入が抑制される。これにより、真空チャンバー10内で生成された負イオンを成膜対象物11に向かって拡散させ易くすることができ、効率良く負イオンを成膜対象物11に形成された膜の表面に付着させることができる。
 また、成膜装置1,1Aは、例えば成膜室10bの側壁10iの内壁10kに配置され、陽極として機能する対向電極を備えていてもよい。対向電極は、上記の対向コイルを設けた場合に真空チャンバー10内に形成されている磁場を収束することができる。そして、このように収束された磁場に沿ってプラズマPの電子を好適に留め、当該電子の成膜対象物11への流入をより抑制することができる。これにより、真空チャンバー10内で生成された酸素負イオンを成膜対象物11に向かって一層拡散させ易くすることができ、より効率良く酸素負イオンを成膜対象物に形成された膜の表面に付着させることができる。
 上記実施形態に係る成膜装置1,1Aは、イオンプレーティング法を用いて成膜を行う装置であるとしたが、これに限られない。例えば、スパッタリング法、又は化学蒸着法等を用いてもよい。
 上記第2実施形態に係る成膜装置1Aは、磁場発生コイル30及びそのケース31を備えていないとしたが、これに限られず、磁場発生コイル30及びそのケース31を備えていてもよい。
 また、上記実施形態では、成膜対象物11にバイアス電圧を印加することにより、成膜対象物11に酸素負イオンを照射するとしたが、これに限られない。例えば、成膜対象物11にバイアス電圧を印加することを、成膜対象物11に成膜材料粒子Mbを堆積(成膜)させる際に利用することができる。この場合、成膜対象物11には負のバイアス電圧を印加することで、成膜対象物11は負の電荷を帯びるため、成膜室10b内に存在する電子が搬送室10a側へ進入することを抑制すると共に、成膜室10b内に存在するイオン化した成膜材料粒子Mbが搬送室10a側へ進入するように促進することが可能となる。
 1…成膜装置、7…プラズマ源(プラズマガン)、10…真空チャンバー、10a…搬送室、10b…成膜室、11…成膜対象物、14…成膜部、16A…成膜対象物保持部材、18…トロリ線、24…負イオン生成部、25…張力付与部、26…ロードロック室(真空ロードロックチャンバー)、27…バイアス電源(電圧印加部)、30…磁場発生コイル、40…原料ガス供給部、42…給電ブラシ(給電部)、50…制御部、51…給電端子部(給電部)、Ma…成膜材料、Mb…成膜材料粒子、P…プラズマ、SW1…短絡スイッチ(切替部)、M…封止磁場。

Claims (11)

  1.  成膜対象物に成膜材料を成膜する成膜装置であって、
     前記成膜対象物を収納し成膜処理を行う真空チャンバーと、
     前記真空チャンバー内において前記成膜材料の粒子を前記成膜対象物に付着させる成膜部と、
     前記真空チャンバー内に負イオンを生成する負イオン生成部と、を備える、成膜装置。
  2.  前記負イオン生成部は、
     前記真空チャンバー内でプラズマを生成するプラズマガンと、
     前記真空チャンバー内へ前記負イオンの原料ガスを供給する原料ガス供給部と、
     前記プラズマを間欠的に生成するように前記プラズマガンを制御する制御部と、を有する、請求項1に記載の成膜装置。
  3.  前記負イオン生成部は、前記真空チャンバー内への前記プラズマの供給と遮断とを切り替える切替部を更に有し、
     前記制御部は、前記切替部を切り替えることによって前記プラズマを間欠的に生成するように前記プラズマガンを制御する、請求項2に記載の成膜装置。
  4.  前記真空チャンバーは、前記成膜対象物を搬送する搬送室と、前記成膜材料を拡散させる成膜室と、を有し、
     前記成膜室から前記搬送室へ向かう方向と交差する方向の磁力線を有する磁場を発生させることにより、前記成膜室内の電子が前記搬送室へ流入するのを抑制する磁場発生コイルを更に備える、請求項1~3の何れか一項に記載の成膜装置。
  5.  前記磁場発生コイルは、前記真空チャンバー内であって、前記成膜室と前記搬送室との間に設けられている、請求項4に記載の成膜装置。
  6.  前記成膜部は、プラズマガンを有し、イオンプレーティング法により前記成膜材料の粒子を前記成膜対象物に付着させており、
     前記成膜部の前記プラズマガンは、前記負イオン生成部の前記プラズマガンと兼用されている、請求項2又は3に記載の成膜装置。
  7.  前記成膜部による成膜処理後の前記成膜対象物に正のバイアス電圧を印加する電圧印加部を更に備える、請求項1~6の何れか一項に記載の成膜装置。
  8.  前記負イオン生成部は、前記真空チャンバー内で間欠的にプラズマを生成し、
     前記電圧印加部は、前記負イオン生成部によるプラズマの生成が停止された後に前記成膜対象物に前記正のバイアス電圧を印加する、請求項7に記載の成膜装置。
  9.  前記真空チャンバーに隣接して配置され、前記成膜対象物を搬入出する真空ロードロックチャンバーを備え、
     前記真空ロードロックチャンバーは、成膜処理後の前記成膜対象物を前記真空チャンバーから搬入すると共に、搬入された前記成膜対象物を前記負イオン生成部による負イオン生成後に前記真空チャンバーへ搬出する、請求項7又は8に記載の成膜装置。
  10.  前記成膜対象物を保持する保持部材を備え、
     前記真空チャンバー内には、トロリ線が延伸して設けられており、
     前記保持部材には、前記トロリ線から給電される給電部が設けられている、請求項7~9の何れか一項に記載の成膜装置。
  11.  前記トロリ線に張力を付与する張力付与部を備える、請求項10に記載の成膜装置。
PCT/JP2016/071438 2015-07-21 2016-07-21 成膜装置 WO2017014278A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680045499.5A CN107849690B (zh) 2015-07-21 2016-07-21 成膜装置
KR1020237029223A KR20230129601A (ko) 2015-07-21 2016-07-21 음이온생성장치
CN202010216059.XA CN111364008B (zh) 2015-07-21 2016-07-21 负离子生成装置
KR1020207008153A KR102573358B1 (ko) 2015-07-21 2016-07-21 음이온생성장치
KR1020187003080A KR102565020B1 (ko) 2015-07-21 2016-07-21 성막장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-143798 2015-07-21
JP2015143798 2015-07-21
JP2016046649A JP6584982B2 (ja) 2015-07-21 2016-03-10 成膜装置
JP2016-046649 2016-03-10

Publications (1)

Publication Number Publication Date
WO2017014278A1 true WO2017014278A1 (ja) 2017-01-26

Family

ID=57834844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071438 WO2017014278A1 (ja) 2015-07-21 2016-07-21 成膜装置

Country Status (3)

Country Link
KR (2) KR20230129601A (ja)
CN (1) CN111364008B (ja)
WO (1) WO2017014278A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020013878A (ja) * 2018-07-18 2020-01-23 住友重機械工業株式会社 負イオン照射装置、及び負イオン照射装置の制御方法
CN112144020A (zh) * 2019-06-26 2020-12-29 住友重机械工业株式会社 负离子照射装置
CN112226734A (zh) * 2019-07-15 2021-01-15 住友重机械工业株式会社 负离子生成装置
TWI770733B (zh) * 2019-12-27 2022-07-11 日商住友重機械工業股份有限公司 負離子生成裝置及負離子生成方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102599027B1 (ko) * 2021-09-17 2023-11-06 한국원자력연구원 다중 펄싱을 이용한 플라즈마 균일도 제어 시스템 및 그 제어 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149591A (ja) * 1974-05-22 1975-11-29
JPH0417669A (ja) * 1990-05-08 1992-01-22 Jeol Ltd プラズマを用いた成膜方法およびrfイオンプレーティング装置
JPH06128732A (ja) * 1992-10-15 1994-05-10 Ricoh Co Ltd 薄膜形成装置および薄膜形成方法
JPH0980200A (ja) * 1995-09-08 1997-03-28 Nissin Electric Co Ltd イオン発生装置
JPH09263933A (ja) * 1996-03-28 1997-10-07 Chugai Ro Co Ltd 蒸着装置におけるるつぼ部機構
JPH11273894A (ja) * 1998-03-23 1999-10-08 Jeol Ltd 薄膜形成装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674767B2 (ja) * 1984-07-18 1994-09-21 富士重工業株式会社 エンジンのアイドル回転数制御方法
JP2842344B2 (ja) * 1995-11-14 1999-01-06 日本電気株式会社 中性粒子ビーム処理装置
JPH11354067A (ja) * 1998-06-11 1999-12-24 Nissin Electric Co Ltd 酸素負イオンビーム注入方法及び注入装置
JP2000068227A (ja) * 1998-08-24 2000-03-03 Nissin Electric Co Ltd 表面処理方法および装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149591A (ja) * 1974-05-22 1975-11-29
JPH0417669A (ja) * 1990-05-08 1992-01-22 Jeol Ltd プラズマを用いた成膜方法およびrfイオンプレーティング装置
JPH06128732A (ja) * 1992-10-15 1994-05-10 Ricoh Co Ltd 薄膜形成装置および薄膜形成方法
JPH0980200A (ja) * 1995-09-08 1997-03-28 Nissin Electric Co Ltd イオン発生装置
JPH09263933A (ja) * 1996-03-28 1997-10-07 Chugai Ro Co Ltd 蒸着装置におけるるつぼ部機構
JPH11273894A (ja) * 1998-03-23 1999-10-08 Jeol Ltd 薄膜形成装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020013878A (ja) * 2018-07-18 2020-01-23 住友重機械工業株式会社 負イオン照射装置、及び負イオン照射装置の制御方法
CN110735116A (zh) * 2018-07-18 2020-01-31 住友重机械工业株式会社 负离子照射装置及负离子照射装置的控制方法
JP7412074B2 (ja) 2018-07-18 2024-01-12 住友重機械工業株式会社 負イオン照射装置、及び負イオン照射装置の制御方法
CN112144020A (zh) * 2019-06-26 2020-12-29 住友重机械工业株式会社 负离子照射装置
CN112226734A (zh) * 2019-07-15 2021-01-15 住友重机械工业株式会社 负离子生成装置
TWI770733B (zh) * 2019-12-27 2022-07-11 日商住友重機械工業股份有限公司 負離子生成裝置及負離子生成方法

Also Published As

Publication number Publication date
CN111364008A (zh) 2020-07-03
KR102573358B1 (ko) 2023-08-30
KR20200032276A (ko) 2020-03-25
KR20230129601A (ko) 2023-09-08
CN111364008B (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
JP6584982B2 (ja) 成膜装置
WO2017014278A1 (ja) 成膜装置
US11393729B2 (en) Systems and methods for controlling plasma instability in semiconductor fabrication
KR100239818B1 (ko) 기초재의 반응코팅을 위한 방법과 장치
US7164571B2 (en) Wafer stage with a magnet
JP2007324186A (ja) プラズマ処理装置
JP7412074B2 (ja) 負イオン照射装置、及び負イオン照射装置の制御方法
JP7313929B2 (ja) 負イオン照射装置
JP7336863B2 (ja) 負イオン生成装置
JP7120540B2 (ja) イオン照射装置、イオン照射方法、成膜装置、及び成膜方法
JP2001295031A (ja) 成膜装置及び方法
JP7209572B2 (ja) 負イオン生成装置
KR20190056521A (ko) 전자석을 구비한 스퍼터링 장치
JP2022025333A (ja) プラズマガン、成膜装置、及び負イオン生成装置
US20180282869A1 (en) Shower plate, substrate processing apparatus and method for processing substrate
JP2020190028A (ja) 成膜装置
JP2010126749A (ja) イオンプレーティング装置
JP2010150595A (ja) イオンプレーティング装置
JP2020068290A (ja) 基板処理装置及び基板処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187003080

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16827838

Country of ref document: EP

Kind code of ref document: A1