WO2017013875A1 - 経路切替装置、経路切替システムおよび経路切替方法 - Google Patents

経路切替装置、経路切替システムおよび経路切替方法 Download PDF

Info

Publication number
WO2017013875A1
WO2017013875A1 PCT/JP2016/003395 JP2016003395W WO2017013875A1 WO 2017013875 A1 WO2017013875 A1 WO 2017013875A1 JP 2016003395 W JP2016003395 W JP 2016003395W WO 2017013875 A1 WO2017013875 A1 WO 2017013875A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
selection
switching
input
transmission
Prior art date
Application number
PCT/JP2016/003395
Other languages
English (en)
French (fr)
Inventor
山本 哲也
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN201680043318.5A priority Critical patent/CN107925476B/zh
Priority to US15/743,299 priority patent/US10505660B2/en
Priority to EP16827442.1A priority patent/EP3327955B1/en
Priority to JP2017529461A priority patent/JP6436237B2/ja
Publication of WO2017013875A1 publication Critical patent/WO2017013875A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability

Definitions

  • the present invention relates to a path switching apparatus, a path switching system, and a path switching method, and in particular, a path switching apparatus, a path switching system, and a path switching system that transmit and receive optical signals via a first path and a second path in which redundant paths are respectively constructed.
  • the present invention relates to a route switching method.
  • Patent Document 1 when an abnormality such as communication disconnection is detected, the reception side route (A route) in the own device is switched from the working route to the redundant route, and the transmission side route (B route) A path switching device is disclosed that lowers the signal level of the optical signal output from the path and increases the signal level of the optical signal output from the redundant path.
  • the signal level of the optical signal input from the working path is low in the B route, and the signal level of the optical signal input from the redundant path is low. Since it is high, the route in the A route and the B route is automatically switched from the working route to the redundant route. Thereby, it is not necessary to install a communication function of a control system for transferring switching information in each path switching device.
  • Patent Document 1 switches from the working path to the redundant path even in the B route, although the B route has no failure.
  • the present invention has been made in view of the above problems, and in a transmission system including a first route and a second route each having a redundant route, when a failure occurs in one of the routes, a failure has occurred. It is an object to provide a path switching device, a path switching system, and a path switching method that can automatically switch only a side path from a working path to a redundant path.
  • a path switching apparatus includes: a first selection unit that selects either the first transmission unit or the second transmission unit and outputs a first main signal to the selected transmission unit; First selection means for selecting one of the first transmission means and the second transmission means, and outputting the first switching instruction signal to the selected transmission means, and the first transmission for transmitting the input signal to the opposite device Means and second transmitting means, first receiving means for dividing the signal received from the opposite apparatus and outputting it to the first monitoring means and the third selecting means, and dividing the signal received from the opposite apparatus to the second
  • the second main signal is inputted to the monitoring means and the second receiving means for outputting to the third selection means, the inputted second main signal is monitored, and if an abnormality is detected, an abnormality notification is generated
  • a first monitoring means and a second monitoring means for generating a first switching instruction notification and outputting the first switching instruction notification to the first selecting means and the second selecting means, and a second main signal obtained from the selected receiving means.
  • 3 selection means and in a normal state, the first selection means selects the first transmission means, and the second selection means selects the second transmission means and includes the first information.
  • 1 switching instruction signal is output, the third selecting means selects the first receiving means, the first selecting means switches the selection destination when the first switching instruction notification is input, and the second selecting means
  • the selection means receives the second information when the abnormality notification is input. While outputting a switching instruction signal including, when the first switching instruction notification is input to switch the selection target, the third selection means, when the abnormality notification is inputted switches the selection source.
  • a path switching system transmits the first main signal and the first switching instruction signal, and receives the second main signal and the second switching instruction signal.
  • the first path switching apparatus, the second main signal and the second switching instruction signal, and the second path switching apparatus which receives the first main signal and the first switching instruction signal, Is provided.
  • a path switching method includes a first selection unit that outputs a first main signal to a selected transmission unit, and a second selection that outputs a first switching instruction signal to a selected transmission unit.
  • a path switching method in a path switching apparatus comprising: a second monitoring unit that monitors a signal input from the second receiving unit; and a third selecting unit that acquires a second main signal from the selected receiving unit.
  • the first selection unit is made to select the first transmission unit
  • the second selection unit is made to select the second transmission unit
  • the first switching instruction signal including the first information is output
  • the first receiving unit receives the second main signal
  • the second receiving unit receives a second switching instruction signal
  • the third selecting unit selects the first receiving unit
  • the monitoring unit selects the first receiving unit
  • the second selection means outputs a first switching instruction signal including second information
  • the monitoring means changes the second switching signal.
  • the transmission system including the first route and the second route in which redundant routes are respectively constructed, when a failure occurs in one route, only the route on the side where the failure has occurred. It is possible to automatically switch from the working route to the redundant route.
  • FIG. 1 shows a block configuration diagram of the path switching apparatus according to the present embodiment.
  • the path switching apparatus 1 includes a first selection unit 10, a second selection unit 20, a first transmission unit 30, a second transmission unit 40, a first reception unit 50, a second reception unit 60, and a first monitor unit. 70, second monitor means 80 and third selection means 90.
  • the first selection means 10 selects either the first transmission means 30 or the second transmission means 40 and outputs the first main signal to the selected transmission means.
  • the first selection unit 10 selects the first transmission unit 30 and outputs the first main signal to the selected first transmission unit 30.
  • the 1st selection means 10 changes the selection destination of the 1st transmission means 30 or the 2nd transmission means 40, when the 1st switching instruction notification is input from the monitor means 70 and 80 mentioned later.
  • the second selection means 20 selects either the first transmission means 30 or the second transmission means 40, and outputs a first switching instruction signal to the selected transmission means.
  • the second selection unit 20 selects the second transmission unit 40 and outputs the first switching instruction signal including the first information to the selected second transmission unit 40.
  • the second selection unit 20 includes the second information instead of outputting the first switching instruction signal including the first information to the selected transmission unit when an abnormality notification is input from the monitor units 70 and 80 described later.
  • the first switching instruction signal is output to the selected transmission means.
  • the second selection unit 20 changes the selection destination of the first transmission unit 30 or the second transmission unit 40 when a first switching instruction notification is input from the monitoring units 70 and 80 described later.
  • the first transmission means 30 transmits the input first main signal or first switching instruction signal to the opposite device not shown in FIG.
  • the 1st transmission means 30 which concerns on this embodiment transmits the 1st main signal input from the 1st selection means 10 to an opposing apparatus in a normal state.
  • the main signal transmitted from the first transmission means 30 passes through the first path and is transmitted to the opposite device.
  • the second transmission means 40 transmits the input first main signal or first switching instruction signal to the opposite device not shown in FIG.
  • the 2nd transmission means 40 which concerns on this embodiment transmits the 1st switching instruction
  • the first switching instruction signal transmitted from the second transmission means 40 is transmitted to the opposite device through the first redundant path.
  • the first receiving means 50 divides the second main signal or the second switching instruction signal received from the opposite device (not shown in FIG. 1) into two, one to the first monitoring means 70 and the other to the third selecting means 90. Output.
  • the first receiving means 50 receives the second main signal from the opposite device, and one of the divided second main signals is sent to the first monitor means 70 and the other is the third selecting means. Output to 90.
  • the signal transmitted through the second path is input to the first receiving means 50 from the opposite device.
  • the second receiving means 60 divides the second main signal or the second switching instruction signal received from the opposite device into two, and outputs one to the second monitoring means 80 and the other to the third selecting means 90.
  • the second receiving means 60 receives the second switching instruction signal from the opposite device, and one of the divided second switching instruction signals is supplied to the second monitoring means 80 and the other is the third. It outputs to the selection means 90.
  • the signal transmitted through the second redundant path is input to the second receiving means 60 from the opposite device.
  • the first monitoring means 70 and the second monitoring means 80 monitor the second main signal or the second switching instruction signal respectively input from the first receiving means 50 and the second receiving means 60, respectively.
  • the first monitor means 70 and the second monitor means 80 detect an abnormality of the input second main signal
  • the first monitor means 70 and the second monitor means 80 generate an abnormality notification and output it to the second selection means 20 and the third selection means 90.
  • the first monitoring unit 70 and the second monitoring unit 80 generate a first switching instruction notification to generate the first switching unit 10 and the first selection unit 10 when the second information is included in the input second switching instruction signal. 2 output to the selection means 20.
  • the second main signal is input to the first monitor unit 70
  • the second switching instruction signal is input to the second monitor unit 80.
  • the third selecting means 90 selects either the first receiving means 50 or the second receiving means 60, and acquires the signal input from the selected receiving means as the second main signal.
  • the third selection unit 90 according to the present embodiment selects the first receiving unit 50 in the normal state, and acquires the signal input from the first receiving unit 50 as the second main signal. Note that the third selection unit 90 changes the selection source of the first reception unit 50 or the second reception unit 60 when an abnormality notification is input from the monitoring units 70 and 80.
  • the path switching device 1 configured as described above, when an abnormality occurs in the first path transmitting the first main signal from the path switching device 1 to the opposite device, the first redundancy is transmitted from the first route to the opposite device.
  • a second switching instruction signal that automatically switches to the path and includes the second information is input from the opposite device via the second redundant path.
  • the path switching device 1 changes the switching destination in the first selection unit 10 and the second selection unit 20. As a result, the path of the first main signal is switched from the first path to the first redundant path.
  • the path switching device 1 configured as described above notifies the abnormality from the first monitoring means 70 when an abnormality occurs in the second path transmitting the second main signal from the opposite device to the path switching device 1. Is output, the switching source of the third selection means 90 is changed, and the first switching instruction signal including the second information is transmitted to the opposing device. Thereby, in the opposite device, the second path is switched to the second redundant path, and the path of the second main signal is switched from the second path to the second redundant path.
  • the path switching device 1 has an abnormality in the first path or the second path by adding the first information or the second information to the switching instruction signal that passes the redundant path.
  • the path switching apparatus 1 according to the present embodiment has a fault in one path when the first main signal and the second main signal are transmitted using the first path and the second path in which redundant paths are respectively constructed. When this occurs, it is possible to automatically switch only the path on which the failure has occurred to the redundant path.
  • FIG. 2 shows a system configuration diagram of the route switching system according to the present embodiment.
  • the path switching system 100 includes an A station side device 200 and a B station side device 300.
  • the A-station side apparatus 200 has a first wavelength selective switch (WSS) 211, an spontaneous emission (ASE: Amplified Spontaneous Emission) dummy light source 212, a second WSS 213, and a first coupler (CPL: Coupler) as transmission side functions. ) 214 and the second CPL 215.
  • the A station side apparatus 200 includes a third CPL 221, a fourth CPL 222, a first optical channel monitor (OCM) 223, a second OCM 224, and a third WSS 225 as reception side functions.
  • the B station side device 300 is configured in the same manner as the A station side device 200. That is, the B station side apparatus 300 includes a first WSS 311, an ASE dummy light source 312, a second WSS 313, a first CPL 314, and a second CPL 315 as transmission side functions. Further, the B station side apparatus 300 includes a third CPL 321, a fourth CPL 322, a first OCM 323, a second OCM 324, and a third WSS 325 as reception side functions.
  • the transmission function of the A station side apparatus 200 will be described.
  • the transmission function of the B station side apparatus 300 functions similarly.
  • the first WSS 211 outputs the first main optical signal input from the A station side client to either the first CPL 214 or the second CPL 215.
  • a first main optical signal in which three optical signals of wavelength ⁇ 1 , wavelength ⁇ 2 , and wavelength ⁇ 3 are multiplexed is input to the first WSS 211 from the A station side client.
  • the input first main optical signal is output to the first CPL 214.
  • the first WSS 211 switches the output destination of the first main optical signal from the first CPL 214 to the second CPL 215 when a first switching request notification is input from the second OCM 224 described later. Furthermore, when the switching withdrawal notification is input from the second OCM 224 after switching the output destination of the first main optical signal, the first WSS 211 restores the output destination.
  • the ASE dummy light source 212 generates spontaneous emission light (ASE) that is the source of the dummy light and outputs it to the second WSS 213.
  • ASE spontaneous emission light
  • the second WSS 213 extracts light having a predetermined wavelength from the input ASE, and outputs dummy light for intensity adjustment and dummy light for switching instruction to the first CPL 214 and the second CPL 215.
  • the second WSS 213 according to the present embodiment extracts an optical signal having a wavelength ⁇ 4 other than the wavelengths ⁇ 1 , ⁇ 2 , and ⁇ 3 constituting the main signal from the ASE, and outputs the multiplexed signal output from the first CPL 214.
  • the optical intensity of the optical signal having the wavelength ⁇ 4 is adjusted so that the optical intensity of the optical signal becomes a predetermined P 0 , and is output to the first CPL 214 as dummy light for intensity adjustment.
  • the second WSS 213 extracts, from the ASE, optical signals having the wavelengths ⁇ 1 , ⁇ 2 , and ⁇ 3 constituting the first main optical signal input from the A station side client. Then, the first 2WSS213 imparts information of either state 0 to state 2 to the extracted wavelength lambda 2 of the optical signal, the wavelength lambda 1 so that the total light intensity is a predetermined P 0, the wavelength lambda 2, The light intensity of the optical signal having the wavelength ⁇ 3 is adjusted and output to the second CPL 215 as dummy light for switching instruction.
  • the optical signal of wavelength ⁇ 2 to which any of the information in state 0 to state 2 is given is referred to as a switching information transmission signal.
  • the second WSS 213 When a normal notification is input from the first OCM 223, which will be described later, the second WSS 213 outputs a dummy light for switching instruction including a switching information transmission signal to which information of state 0 is added to the second CPL 215.
  • the switching information transmission signal will be described later.
  • the second WSS 213 switches the output destination of the intensity adjustment dummy light from the first CPL 214 to the second CPL 215, and sets the output destination of the dummy light for switching instruction. Switch from 2CPL 215 to first CPL 214. Note that the second WSS 213 returns the switching destination to the original when a switching withdrawal notification is input from the second OCM 224 after switching the output destination of the dummy light for intensity adjustment and the dummy light for switching instruction.
  • the second WSS 213 checks whether a reception confirmation notification is input from the second OCM 224.
  • the second WSS 213 determines that the redundant path is functioning normally, and for the switching instruction including the switching information transmission signal to which the information of the state 1 is added instead of the state 0.
  • the switching instruction dummy light including the switching information transmission signal to which the information of the state 1 is added is input to the B station side device 300 via the second CPL 215.
  • the output destination of the first main light signal and the output destination of the dummy light for switching instruction are switched.
  • the switching process is performed when the switching completion notification is not input from the third WSS 225 even after a predetermined time has elapsed. Is determined to have failed.
  • the second WSS 213 outputs the dummy light for switching instruction including the switching information transmission signal with the state 2 information added thereto to the second CPL 215.
  • the switching instruction dummy light including the switching information transmission signal to which the information of the state 2 is added is input to the B station side device 300, whereby the switching instruction to the first WSS 311 and the second WSS 313 of the B station side device 300 is withdrawn. Is done.
  • the first CPL 214 has a first main optical signal (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 ) input from the first WSS 211 and an intensity adjustment dummy light (wavelength ⁇ 4 ) input from the second WSS 213. ) And a multiplexed optical signal (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 , wavelength ⁇ 4 ) is transmitted to the station B side apparatus 300 side.
  • the first main optical signal is combined with the dummy light for intensity adjustment
  • the first CPL 214 transmits a multiplexed optical signal (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 , light intensity) having a predetermined light intensity P 0 .
  • Wavelength ⁇ 4 is output.
  • FIG. 3A shows the wavelength spectrum of the multiplexed optical signal (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 , wavelength ⁇ 4 ) output from the first CPL 214 in the normal state.
  • the second CPL 215 receives the dummy light for switching instruction (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 ) input from the second WSS 213 and having a total light intensity of predetermined P 0 as it is at the B station side. Transmit to the device 300 side.
  • FIG. 3B shows the wavelength spectrum of the switching instruction dummy light (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 ) output from the second CPL 215 in the normal state.
  • the first CPL 214 and the second CPL 215 output a multiplexed optical signal whose light intensity is a predetermined P 0 and a dummy light for switching instruction.
  • the relay apparatus attached on the transmission path between the A station side apparatus 200 and the B station side apparatus 300 The operating conditions can be made uniform.
  • reception function of the A station side apparatus 200 will be described.
  • the reception function of the station B side device 300 also functions in the same manner.
  • the third CPL 221 receives the optical signal transmitted from the first CPL 314 of the station B side device 300.
  • the third CPL 221 divides the received optical signal into two and outputs it to the first OCM 223 and the third WSS 225.
  • a multiplexed optical signal (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 , wavelength ⁇ 4 ) including the second main optical signal is input to the third CPL 221.
  • the fourth CPL 222 receives the optical signal transmitted from the second CPL 315 of the station B side device 300.
  • the fourth CPL 222 splits the received optical signal into two and outputs them to the second OCM 224 and the third WSS 225.
  • dummy light (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 ) for switching instruction is input to the fourth CPL 222.
  • the first OCM 223 receives the main optical signal (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 ) from the multiplexed optical signal (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 , wavelength ⁇ 4 ) input from the third CPL 221. ) And monitor the extracted main light signal for abnormalities.
  • the first OCM 223 outputs a normal notification to the second WSS 213 when there is no main optical signal abnormality.
  • the first OCM 223 outputs an abnormality notification to the second WSS 213 when an abnormality occurs in any of the extracted optical signal with the wavelength ⁇ 1 , optical signal with the wavelength ⁇ 2 , or optical signal with the wavelength ⁇ 3 .
  • the switching instruction dummy light including the switching information transmission signal to which the information of the state 1 is added is transmitted to the station B apparatus 300.
  • the second OCM 224 extracts the switching information transmission signal having the wavelength ⁇ 2 from the switching instruction dummy light input from the fourth CPL 222, and information (state 0 to state 2) given to the switching information transmission signal To get.
  • the second OCM 224 When the acquired information indicates a state 0, the second OCM 224 generates a reception confirmation notification and outputs it to the second WSS 213.
  • the second OCM 224 when the acquired information indicates state 1, the second OCM 224 generates a first switching request notification and outputs the first switching request notification to the first WSS 211 and the second WSS 213.
  • the second OCM 224 When the first switching request notification is input to the first WSS 211 and the second WSS 213, the output destination of the main optical signal and the output destination of the dummy light for intensity adjustment and the dummy light for switching instruction are switched.
  • the switching information transmission signal indicating the state 2 is input after outputting the first switching request notification
  • the second OCM 224 When the switching information transmission signal indicating the state 2 is input after outputting the first switching request notification, the second OCM 224 generates a switching withdrawal notification and outputs it to the first WSS 211 and the second WSS 213.
  • the switch withdrawal notification is input to the first WSS 211 and the second WSS 213, the output destination of the main light signal, the dummy light for intensity adjustment, and the output destination of the dummy light for switching instruction are restored.
  • the second OCM 224 sends a second switching request notification. Output to the third WSS 225.
  • the selection target in the third WSS 225 is switched.
  • the 3WSS225 selects either of the first 3CPL221 or the 4CPL222, multiplexed optical signal input from CPL selected (wavelength lambda 1, wavelength lambda 2, the wavelength lambda 3, the wavelength lambda 4) wavelength lambda 1 from a wavelength
  • the optical signals of ⁇ 2 and wavelength ⁇ 3 are extracted and output to the A station side client as the second main optical signal received from the B station side client.
  • the third WSS 225 selects the third CPL 221.
  • the third WSS 225 switches the selection target from the third CPL 221 to the fourth CPL 222, and outputs a switching completion notification indicating that the switching is completed to the second WSS 213.
  • the WSS can select the output direction in units of wavelengths.
  • the number of input / output ports of the plurality of WSSs constituting this embodiment is set to one-to-two. However, when switching between a plurality of paths, WSS having the number of ports that can be switched between them may be applied.
  • FIG. 4 shows an example of a switching information transmission signal generated when a 37.5 GHz main optical signal is handled.
  • the switching information transmission signal of wavelength ⁇ 2 is formed by three dummy lights of a predetermined grid. Specifically, a switching information transmission signal is formed by three optical signals of wavelength ⁇ 2 ⁇ , wavelength ⁇ 2 ⁇ , and wavelength ⁇ 2 ⁇ for each 10 GHz grid. Then, by shifting the optical intensity of the optical signal of wavelength ⁇ 2 ⁇ , the optical intensity of the optical signal of wavelength ⁇ 2 ⁇ , and the optical intensity of the optical signal of wavelength ⁇ 2 ⁇ , one of states 0 to 2 can be indicated. it can.
  • state 0 when the light intensity of the three dummy lights is the same reference level, state 0 is indicated. Also, as shown in FIG. 4, state 1 is indicated when the light intensity of the dummy light of wavelength ⁇ 2 ⁇ is 5 dB smaller than the reference level and the light intensity of the dummy light of wavelength ⁇ 2 ⁇ is 5 dB larger than the reference level. Furthermore, as shown in FIG. 4, state 2 is indicated when the light intensity of the optical signal having the wavelength ⁇ 2 ⁇ is 5 dB larger than the reference level and the light intensity of the optical signal having the wavelength ⁇ 2 ⁇ is 5 dB smaller than the reference level.
  • the state 0 indicates that the path switching system 100 is operating normally.
  • the state 1 indicates a state where an abnormality has occurred in the transmission path from the own device to the opposite device.
  • the state 2 indicates a state in which switching of the transmission path from the own device to the opposite device has failed in the opposite device.
  • the dummy light grid (10 GHz) and the light intensity difference ( ⁇ 5 dB) may be determined in accordance with the capabilities of WSS and OCM, and are preferably determined in consideration of crosstalk associated with long-distance transmission. . By appropriately setting the grid, wavelength, multi-value, etc., it is possible to easily increase the number of states that the switching information transmission signal can indicate.
  • the second OCM 224 of the A station side apparatus 200 Since the switching information transmission signal indicates the state 1, the second OCM 224 of the A station side apparatus 200 generates a first switching request notification and outputs it to the first WSS 211 and the second WSS 213 (S105).
  • the first switching request notification is input to the first WSS 211 and the second WSS 213, the output destination of the first main optical signal and the output destination of the dummy light for intensity adjustment and the dummy light for switching instruction are switched. That is, the first main optical signal (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 ) input from the A station side client is combined with the dummy light for adjusting the intensity (wavelength ⁇ 4 ) in the second CPL 215 and multiplexed.
  • the optical signals (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 , wavelength ⁇ 4 ) are input to the fourth CPL 322 of the B station side apparatus 300 (S106).
  • the second OCM 324 of the station B side apparatus 300 outputs a second switching request notification to the third WSS 325 when the input optical signal is switched from the dummy light for switching instruction to the multiplexed optical signal.
  • the selection target of the third WSS 325 is switched from the third CPL 321 to the fourth CPL 322 (S107).
  • the selection target in the third WSS 325 is immediately switched to the fourth CPL 322 when an abnormality is detected in the first OCM 323, an unnecessary switching instruction dummy light is output to the B station side client. Therefore, in this embodiment, after confirming that the second OCM 324 has switched from the dummy light for switching instruction to the multiplexed optical signal, the selection target in the third WSS 325 is switched to the fourth CPL 322.
  • the third WSS 325 outputs a switching completion notification to the second WSS 313 when the switching to the fourth CPL 322 is completed. Thereby, the transmission of the multiplexed optical signal between the A station side apparatus 200 and the B station side apparatus 300 is restored.
  • the second WSS 313 of the station B side apparatus 300 outputs a switching completion notification from the third WSS 325 even after a predetermined time has elapsed after outputting the switching instruction dummy light including the switching information transmission signal with the state 1 information added thereto. If not input, it is determined that the switching process has failed. In this case, the second WSS 313 outputs dummy light for switching instruction including the switching information transmission signal to which the information of the state 2 is added.
  • the switching instruction dummy light including the switching information transmission signal to which the information of the state 2 is added is input to the A station side apparatus 200, whereby the switching instruction in the first WSS 211 and the second WSS 213 of the A station side apparatus 200 is withdrawn.
  • route switching apparatus 10 1st selection means 20 2nd selection means 30 1st transmission means 40 2nd transmission means 50 1st reception means 60 2nd reception means 70 1st monitoring means 80 2nd monitoring means 90 3rd selection means 100
  • Route switching system 200 A station side device 211 1st WSS 212 ASE dummy light source 213 2nd WSS 214 1st CPL 215 2nd CPL 221 3rd CPL 222 4th CPL 223 1st OCM 224 2nd OCM 225 3rd WSS 300 B station side device 311 1st WSS 312 ASE dummy light source 313 2nd WSS 314 1st CPL 315 2nd CPL 321 3rd CPL 322 4th CPL 323 1st OCM 324 2nd OCM 325 3rd WSS

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

それぞれ冗長経路が構築された第1経路および第2経路を備えた伝送システムにおいて、一方の経路に障害が発生した場合、障害が発生した側の経路のみを自動的に現用経路から冗長経路に切り替えることができるようにするため、本発明の経路切替装置1は、第1主信号を出力する第1選択手段10、第1切替指示信号を出力する第2選択手段20、入力された信号を対向装置へ送信する第1送信手段30、第2送信手段40、第1受信手段50、第2受信手段60、第2主信号の異常を検知した場合は異常通知を出力すると共に第2切替指示信号に第2情報が含まれていた場合は第1切替指示通知を出力する第1モニタ手段70、第2モニタ手段80、選択した受信手段から第2主信号を取得する第3選択手段90を備える。第1選択手段10および第2選択手段20は第1切替指示通知が入力された場合は選択先を切替え、第2選択手段20は異常通知が入力された場合は第2情報を含む切替指示信号を出力し、第3選択手段は異常通知が入力された場合は選択元を切替える。

Description

経路切替装置、経路切替システムおよび経路切替方法
 本発明は、経路切替装置、経路切替システムおよび経路切替方法に関し、特に、それぞれ冗長経路が構築された第1経路および第2経路を経由させて光信号を送受信する経路切替装置、経路切替システムおよび経路切替方法に関する。
 近年、海底ケーブルシステムにおいても高速大容量化が進んでいる。これに伴い、海底ケーブルシステムのシステム構成も複雑化が進み、陸上における部分的な冗長化が求められるケースなども増加している。
 一般的な海底ケーブルシステムにおいては、冗長化経路に切り替える場合、SDH(Synchronous Digital Hierarchy)オーバヘッドのK1、K2バイトを用いた自動切替制御信号をトランスポンダのデータ網(DCN:Data Communication Network)回線を利用して切替え装置間で情報の受け渡しを行うことで切替えを行う方式がとられてきた。しかしながら、ルートダイバシティのように一部区間のみが冗長構成となっているようなシステム構成においては、中間局にトランスポンダが設置されず、切替情報の転送を行うことができない。
 そこで、特許文献1には、通信断等の異常を検知した場合に、自装置における受信側ルート(Aルート)を現用経路から冗長化経路に切り替えると共に、送信側ルート(Bルート)において、現用経路から出力する光信号の信号レベルを低くすると共に冗長化経路から出力する光信号の信号レベルを高くする経路切替装置が開示されている。そして、経路切替装置との間で光信号を送受信している装置においては、Bルートにおいて現用経路から入力される光信号の信号レベルが低く、冗長化経路から入力される光信号の信号レベルが高くなっていることから、AルートおよびBルートにおける経路を、現用経路から冗長化経路に自動的に切り替える。これにより、切替情報を転送する制御系の通信機能を、各経路切替装置に搭載する必要がなくなる。
特開2012-175123号公報
 しかしながら、特許文献1の技術は、Bルートには障害が発生していないにも関わらず、Bルートにおいても現用経路から冗長化経路に切り替わる。
 本発明は上記の課題に鑑みてなされたものであり、それぞれ冗長経路が構築された第1経路および第2経路を備えた伝送システムにおいて、一方の経路に障害が発生した場合、障害が発生した側の経路のみを自動的に現用経路から冗長経路に切り替えることができる経路切替装置、経路切替システムおよび経路切替方法を提供することを目的とする。
 上記目的を達成するために本発明に係る経路切替装置は、第1送信手段または第2送信手段のいずれか一方を選択し、選択した送信手段に第1主信号を出力する第1選択手段と、第1送信手段または第2送信手段のいずれか一方を選択し、選択した送信手段に第1切替指示信号を出力する第2選択手段と、入力された信号を対向装置へ送信する第1送信手段および第2送信手段と、前記対向装置から受信した信号を分割して第1モニタ手段および第3選択手段へ出力する第1受信手段と、前記対向装置から受信した信号を分割して第2モニタ手段および前記第3選択手段へ出力する第2受信手段と、第2主信号が入力された場合、該入力された前記第2主信号をモニタし、異常を検知した場合は異常通知を生成して前記第2選択手段および前記第3選択手段へ出力すると共に、第2切替指示信号が入力された場合、該入力された前記第2切替指示信号をモニタし、該第2切替指示信号に第2情報が含まれていた場合、第1切替指示通知を生成して前記第1選択手段および前記第2選択手段へ出力する第1モニタ手段および第2モニタ手段と、選択した受信手段から前記第2主信号を取得する第3選択手段と、を備え、通常状態においては、前記第1選択手段は前記第1送信手段を選択し、前記第2選択手段は前記第2送信手段を選択して第1情報を含む前記第1切替指示信号を出力し、前記第3選択手段は前記第1受信手段を選択し、前記第1選択手段は、前記第1切替指示通知が入力された場合は選択先を切替え、前記第2選択手段は、前記異常通知が入力された場合は第2情報を含む切替指示信号を出力する一方、前記第1切替指示通知が入力された場合は選択先を切替え、前記第3選択手段は、前記異常通知が入力された場合は選択元を切替える。
 上記目的を達成するために本発明に係る経路切替システムは、前記第1主信号および前記第1切替指示信号を送信すると共に、前記第2主信号および前記第2切替指示信号を受信する、上記の第1経路切替装置と、前記第2主信号および前記第2切替指示信号を送信すると共に、前記第1主信号および前記第1切替指示信号を受信する、上記の第2経路切替装置と、を備える。
 上記目的を達成するために本発明に係る経路切替方法は、第1主信号を選択した送信手段に出力する第1選択手段と、第1切替指示信号を選択した送信手段に出力する第2選択手段と、入力された信号を対向装置へ送信する第1送信手段および第2送信手段と、前記対向装置から受信した信号を分割して第1モニタ手段および第3選択手段へ出力する第1受信手段と、前記対向装置から受信した信号を分割して第2モニタ手段および前記第3選択手段へ出力する第2受信手段と、前記第1受信手段から入力された信号をモニタする第1モニタ手段と、前記第2受信手段から入力された信号をモニタする第2モニタ手段と、選択した受信手段から第2主信号を取得する第3選択手段と、を備えた経路切替装置における経路切替方法であって、通常状態においては、前記第1選択手段に前記第1送信手段を選択させ、前記第2選択手段に前記第2送信手段を選択させて第1情報を含む前記第1切替指示信号を出力させ、前記第1受信手段に前記第2主信号を受信させ、前記第2受信手段に第2切替指示信号を受信させ、前記第3選択手段に前記第1受信手段を選択させ、前記モニタ手段において前記第2主信号の異常を検知した場合、前記第2選択手段から第2情報を含む第1切替指示信号を出力させると共に前記第3選択手段における選択を変更させ、前記モニタ手段において前記第2切替指示信号から第2情報を検出した場合、前記第1選択手段および前記第1選択手段における選択を変更させる。
 上述した本発明の態様によれば、それぞれ冗長経路が構築された第1経路および第2経路を備えた伝送システムにおいて、一方の経路に障害が発生した場合、障害が発生した側の経路のみを自動的に現用経路から冗長経路に切り替えることができる。
第1の実施形態に係る経路切替装置1のブロック構成図である。 第2の実施形態に係る経路切替システム100のシステム構成図である。 通常状態において、第1CPL214から出力される多重光信号の波長スペクトラムである。 通常状態において、第2CPL215から出力される切替指示用のダミー光の波長スペクトラムである。 第2の実施形態に係る第2WSS213において生成される切替情報伝達信号の波形の一例である。 第2の実施形態に係る経路切替システム100において、障害が発生した場合の、A局側装置200およびB局側装置300の動作手順を示す図である。
<第1の実施形態>
 本発明の第1の実施形態について説明する。本実施形態に係る経路切替装置のブロック構成図を図1に示す。図1において、経路切替装置1は、第1選択手段10、第2選択手段20、第1送信手段30、第2送信手段40、第1受信手段50、第2受信手段60、第1モニタ手段70、第2モニタ手段80および第3選択手段90を備える。
 第1選択手段10は、第1送信手段30または第2送信手段40のいずれか一方を選択し、選択した送信手段へ第1主信号を出力する。本実施形態に係る第1選択手段10は、通常状態において、第1送信手段30を選択し、第1主信号を選択した第1送信手段30へ出力する。なお、第1選択手段10は、後述するモニタ手段70、80から第1切替指示通知が入力した場合、第1送信手段30または第2送信手段40の選択先を変更する。
 第2選択手段20は、第1送信手段30または第2送信手段40のいずれか一方を選択し、選択した送信手段へ第1切替指示信号を出力する。本実施形態に係る第2選択手段20は、通常状態において、第2送信手段40を選択し、第1情報を含む第1切替指示信号を選択した第2送信手段40へ出力する。なお、第2選択手段20は、後述するモニタ手段70、80から異常通知が入力した場合、第1情報を含む第1切替指示信号を選択した送信手段へ出力する代わりに、第2情報を含む第1切替指示信号を選択した送信手段へ出力する。また、第2選択手段20は、後述するモニタ手段70、80から第1切替指示通知が入力した場合、第1送信手段30または第2送信手段40の選択先を変更する。
 第1送信手段30は、入力された第1主信号または第1切替指示信号を図1に図示されない対向装置へ送信する。本実施形態に係る第1送信手段30は、通常状態において、第1選択手段10から入力された第1主信号を対向装置へ送信する。第1送信手段30から送信された主信号は、第1経路を通過して対向装置まで伝送される。
 第2送信手段40は、入力された第1主信号または第1切替指示信号を図1に図示されない対向装置へ送信する。本実施形態に係る第2送信手段40は、通常状態において、第2選択手段20から入力された第1情報を含む第1切替指示信号を対向装置へ送信する。第2送信手段40から送信された第1切替指示信号は、第1冗長経路を通過して対向装置まで伝送される。
 第1受信手段50は、図1に図示されない対向装置から受信された第2主信号または第2切替指示信号を2分割し、一方を第1モニタ手段70へ、他方を第3選択手段90へ出力する。本実施形態に係る第1受信手段50は、通常状態において、対向装置から第2主信号を受信し、2分割した第2主信号の一方を第1モニタ手段70へ、他方を第3選択手段90へ出力する。ここで、第1受信手段50には、第2経路を伝送してきた信号が対向装置から入力される。
 第2受信手段60は、対向装置から受信された第2主信号または第2切替指示信号を2分割し、一方を第2モニタ手段80へ、他方を第3選択手段90へ出力する。本実施形態に係る第2受信手段60は、通常状態において、対向装置から第2切替指示信号を受信し、2分割した第2切替指示信号の一方を第2モニタ手段80へ、他方を第3選択手段90へ出力する。ここで、第2受信手段60には、第2冗長経路を伝送してきた信号が対向装置から入力される。
 第1モニタ手段70、第2モニタ手段80はそれぞれ、第1受信手段50、第2受信手段60からそれぞれ入力された第2主信号または第2切替指示信号をモニタする。第1モニタ手段70、第2モニタ手段80は、入力された第2主信号の異常を検知した場合、異常通知を生成して第2選択手段20および第3選択手段90へ出力する。また、第1モニタ手段70、第2モニタ手段80は、入力された第2切替指示信号に第2情報が含まれていた場合、第1切替指示通知を生成して第1選択手段10および第2選択手段20へ出力する。ここで、通常状態において、第1モニタ手段70には第2主信号が入力され、第2モニタ手段80には第2切替指示信号が入力される。
 第3選択手段90は、第1受信手段50または第2受信手段60のいずれか一方を選択し、選択した受信手段から入力された信号を第2主信号として取得する。本実施形態に係る第3選択手段90は、通常状態において、第1受信手段50を選択し、第1受信手段50から入力された信号を第2主信号として取得する。なお、第3選択手段90は、モニタ手段70、80から異常通知が入力した場合、第1受信手段50または第2受信手段60の選択元を変更する。
 上記のように構成された経路切替装置1は、経路切替装置1から対向装置まで第1主信号を伝送している第1経路に異常が発生した場合、対向装置において第1経路から第1冗長経路に自動的に切替ると共に対向装置から第2情報を含む第2切替指示信号が第2冗長経路経由で入力される。経路切替装置1は、第2切替指示信号に第2情報が含まれている場合、第1選択手段10および第2選択手段20における切替え先が変更される。これにより、第1主信号の経路が第1経路から第1冗長経路に切替る。
 一方、上記のように構成された経路切替装置1は、対向装置から経路切替装置1まで第2主信号を伝送している第2経路に異常が発生した場合、第1モニタ手段70から異常通知が出力されることにより、第3選択手段90の切替え元が変更されると共に、第2情報を含む第1切替指示信号が対向装置へ送信される。これにより対向装置において第2経路から第2冗長経路へ切り替わり、第2主信号の経路が第2経路から第2冗長経路に切替る。
 以上のように、本実施形態に係る経路切替装置1は、冗長経路を通過させる切替指示信号に第1情報または第2情報を付加することにより、第1経路または第2経路に異常が発生した場合に、異常が発生した経路のみを速やかに冗長経路に切替えることができる。すなわち、本実施形態に係る経路切替装置1は、それぞれ冗長経路が構築された第1経路および第2経路を用いて第1主信号および第2主信号を伝送させている時に一方の経路に障害が発生した場合、障害が発生した側の経路のみを自動的に冗長経路に切り替えることができる。
 <第2の実施形態>
 第2の実施形態について説明する。本実施形態に係る経路切替システムのシステム構成図を図2に示す。図2において、経路切替システム100は、A局側装置200およびB局側装置300によって構成される。
 A局側装置200は、送信側機能として、第1波長選択スイッチ(WSS:Wavelength Selective Switch)211、自然放出光(ASE:Amplified Spontaneous Emission)ダミー光源212、第2WSS213、第1カプラ(CPL:Coupler)214および第2CPL215を備える。また、A局側装置200は、受信側機能として、第3CPL221、第4CPL222、第1光チャンネルモニタ(OCM:Optical Channel Monitor)223、第2OCM224および第3WSS225を備える。
 B局側装置300は、A局側装置200と同様に構成される。すなわち、B局側装置300は、送信側機能として、第1WSS311、ASEダミー光源312、第2WSS313、第1CPL314および第2CPL315を備える。また、B局側装置300は、受信側機能として、第3CPL321、第4CPL322、第1OCM323、第2OCM324および第3WSS325を備える。
 先ず、A局側装置200の送信機能について説明する。なお、B局側装置300の送信機能も同様に機能する。
 第1WSS211は、A局側クライアントから入力された第1主光信号を第1CPL214または第2CPL215のいずれか一方へ出力する。本実施形態において、第1WSS211には、A局側クライアントから波長λ、波長λ、波長λの3つの光信号が多重化された第1主光信号が入力し、第1WSS211は、通常状態においては、入力された第1主光信号を第1CPL214へ出力する。
 そして、第1WSS211は、後述する第2OCM224から第1切替要求通知が入力された場合、第1主光信号の出力先を第1CPL214から第2CPL215へ切り替える。さらに、第1WSS211は、第1主光信号の出力先を切り替えた後に第2OCM224から切替撤回通知が入力された場合、出力先を元に戻す。
 ASEダミー光源212は、ダミー光の元となる自然放出光(ASE)を生成して第2WSS213へ出力する。
 第2WSS213は、入力されたASEから所定の波長光を抽出し、強度調整用のダミー光、切替指示用のダミー光を、第1CPL214、第2CPL215へ出力する。本実施形態に係る第2WSS213は、通常状態において、主信号を構成する波長λ、波長λ、波長λ以外の波長λの光信号をASEから抽出し、第1CPL214から出力される多重光信号の光強度が所定のPになるように波長λの光信号の光強度を調整し、強度調整用のダミー光として第1CPL214へ出力する。多重光信号の光強度を所定のPに調整することにより、光強度に応じて動作する中継装置等における増幅処理等が保証される。
 さらに、第2WSS213は、通常状態において、A局側クライアントから入力される第1主光信号を構成する波長λ、波長λ、波長λの光信号をASEから抽出する。そして、第2WSS213は抽出した波長λの光信号に状態0~状態2のいずれかの情報を付与すると共に、光強度の合計が所定のPになるように波長λ、波長λ、波長λの光信号の光強度調整し、切替指示用のダミー光として第2CPL215へ出力する。以下、状態0~状態2のいずれかの情報が付与された波長λの光信号を切替情報伝達信号と記載する。第2WSS213は、後述する第1OCM223から正常通知が入力されている場合、状態0の情報を付加した切替情報伝達信号を含む切替指示用のダミー光を第2CPL215へ出力する。切替情報伝達信号については後述する。
 そして、第2WSS213は、第2OCM224から第1切替要求通知が入力された場合、強度調整用のダミー光の出力先を第1CPL214から第2CPL215へ切り替えると共に、切替指示用のダミー光の出力先を第2CPL215から第1CPL214へ切り替える。なお、第2WSS213は、強度調整用のダミー光および切替指示用のダミー光の出力先を切替えた後に第2OCM224から切替撤回通知が入力された場合、切替先を元に戻す。
 また、第2WSS213は、第1OCM223から異常通知が入力された場合、第2OCM224から受信確認通知が入力されているか否か確認する。そして、受信確認通知が入力されている場合、第2WSS213は、冗長経路は正常に機能していると判断し、状態0の代わりに状態1の情報を付加した切替情報伝達信号を含む切替指示用のダミー光を、第2CPL215へ出力する。状態1の情報が付加された切替情報伝達信号を含む切替指示用のダミー光が第2CPL215を介してB局側装置300に入力されることにより、B局側装置300の第1WSS311および第2WSS313において、第1主光信号の出力先および切替指示用のダミー光の出力先が切替る。
 さらに、第2WSS213は、状態1の情報を付加した切替情報伝達信号を含む切替指示用のダミー光を出力した後、一定時間が経過しても第3WSS225から切替完了通知が入力されない場合、切替処理が失敗したと判定する。この場合、第2WSS213は、状態2の情報を付加した切替情報伝達信号を含む切替指示用のダミー光を第2CPL215へ出力する。状態2の情報が付加された切替情報伝達信号を含む切替指示用のダミー光がB局側装置300に入力されることにより、B局側装置300の第1WSS311および第2WSS313への切替指示が撤回される。
 第1CPL214は、通常状態において、第1WSS211から入力された第1主光信号(波長λ、波長λ、波長λ)と、第2WSS213から入力された強度調整用のダミー光(波長λ)とを合波し、多重光信号(波長λ、波長λ、波長λ、波長λ)をB局側装置300側へ送信する。第1主光信号に強度調整用のダミー光が合波されることにより、第1CPL214からは、光強度が所定のPである多重光信号(波長λ、波長λ、波長λ、波長λ)が出力される。通常状態において、第1CPL214から出力される多重光信号(波長λ、波長λ、波長λ、波長λ)の波長スペクトラムを図3Aに示す。
 第2CPL215は、通常状態において、第2WSS213から入力された、光強度の合計が所定のPである切替指示用のダミー光(波長λ、波長λ、波長λ)をそのままB局側装置300側へ送信する。通常状態において、第2CPL215から出力される切替指示用のダミー光(波長λ、波長λ、波長λ)の波長スペクトラムを図3Bに示す。
 図3A、図3Bに示すように、第1CPL214および第2CPL215からは、光強度が所定のPである多重光信号および切替指示用のダミー光が出力される。多重光信号の光強度と切替指示用のダミー光の光強度とを所定のPに調整することにより、A局側装置200-B局側装置300間の伝送経路上に付設された中継装置における動作条件を揃えることができる。
 次に、A局側装置200の受信機能について説明する。なお、B局側装置300の受信機能も同様に機能する。
 第3CPL221は、B局側装置300の第1CPL314から送信された光信号を受信する。第3CPL221は、受信した光信号を2分岐して第1OCM223および第3WSS225へ出力する。通常状態において、第3CPL221には、第2主光信号を含む多重光信号(波長λ、波長λ、波長λ、波長λ)が入力される。
 第4CPL222は、B局側装置300の第2CPL315から送信された光信号を受信する。第4CPL222は、受信した光信号を2分岐して第2OCM224および第3WSS225へ出力する。通常状態において、第4CPL222には、切替指示用のダミー光(波長λ、波長λ、波長λ)が入力される。
 第1OCM223は、通常状態において、第3CPL221から入力された多重光信号(波長λ、波長λ、波長λ、波長λ)から主光信号(波長λ、波長λ、波長λ)を抽出し、抽出した主光信号に異常がないかモニタする。第1OCM223は、主光信号異常がない場合、第2WSS213へ正常通知を出力する。一方、第1OCM223は、抽出した波長λの光信号、波長λの光信号、波長λの光信号のいずれかに異常が発生した場合、第2WSS213へ異常通知を出力する。異常通知が第2WSS213に入力されることにより、状態1の情報が付加された切替情報伝達信号を含む切替指示用のダミー光が、B局側装置300へ送信される。
 第2OCM224は、通常状態において、第4CPL222から入力された切替指示用のダミー光から波長λの切替情報伝達信号を抽出し、切替情報伝達信号に付与されている情報(状態0~状態2)を取得する。第2OCM224は、取得した情報が状態0を示す場合、受信確認通知を生成して第2WSS213へ出力する。一方、第2OCM224は、取得した情報が状態1を示す場合、第1切替要求通知を生成して第1WSS211および第2WSS213へ出力する。第1切替要求通知が第1WSS211および第2WSS213に入力されることにより、主光信号の出力先および強度調整用のダミー光・切替指示用のダミー光の出力先が切替る。また、第2OCM224は、第1切替要求通知を出力した後で状態2を示す切替情報伝達信号が入力された場合、切替撤回通知を生成して第1WSS211および第2WSS213へ出力する。切替撤回通知が第1WSS211および第2WSS213に入力されることにより、主光信号の出力先および強度調整用のダミー光・切替指示用のダミー光の出力先が元に戻る。
 さらに、第2OCM224は、入力された光信号が切替指示用のダミー光から多重光信号(波長λ、波長λ、波長λ、波長λ)に切り替わった場合、第2切替要求通知を第3WSS225へ出力する。第2切替要求通知が第3WSS225に入力されることにより、第3WSS225における選択対象が切り替わる。
 第3WSS225は、第3CPL221または第4CPL222のいずれか一方を選択し、選択したCPLから入力された多重光信号(波長λ、波長λ、波長λ、波長λ)から波長λ、波長λ、波長λの光信号を抽出し、B局側クライアントから受信した第2主光信号としてA局側クライアントへ出力する。通常状態において、第3WSS225は、第3CPL221を選択する。
 さらに、第3WSS225は、第2OCM224から第2切替要求通知が入力された場合、選択対象を第3CPL221から第4CPL222に切り替え、切り替えが完了したことを示す切替完了通知を第2WSS213へ出力する。
 本実施形態においては、上述のように、主信号またはダミー光の切り替えは、光カプラによる光分岐ではなくWSSの光スイッチ機能を用いた片側のみの入出力により行う。ここで、光スイッチと異なる点は、WSSが波長単位に出力方向を選択できることである。本実施形態においては1対1の切り替えを前提にしているため、本実施形態を構成する複数のWSSの入出力ポート数はいずれも1対2としたが、複数の経路間を切替える場合には、それらを切り替えられるポート数を有するWSSを適用すれば良い。
 次に、切替指示用のダミー光を構成する切替情報伝達信号について説明する。切替情報伝達信号の波形の一例を図4に示す。ここで、高密度波長分割多重方式(DWDM:Dense Wavelength Division Multiplexing)等が適用された光通信システムにおいては、12.5GHz~100GHzグリッドの多重光信号が送受信される。図4には、37.5GHzの主光信号を扱う場合に生成される切替情報伝達信号の一例を示した。
 図4に示すように、波長λの切替情報伝達信号は、所定グリッドの3本のダミー光によって形成される。具体的には、10GHzグリッドずつの波長λ2α、波長λ2β、波長λ2γの3本の光信号によって切替情報伝達信号が形成される。そして、波長λ2αの光信号の光強度、波長λ2βの光信号の光強度および波長λ2γの光信号の光強度を±5dBずらすことにより、状態0~状態2のいずれかを示すことができる。
 すなわち、図4に示すように、3本のダミー光の光強度が同じ基準レベルである場合、状態0を示す。また、図4に示すように、波長λ2αのダミー光の光強度が基準レベルより5dB小さく、波長λ2γのダミー光の光強度が基準レベルより5dB大きい場合、状態1を示す。さらに、図4に示すように、波長λ2αの光信号の光強度が基準レベルより5dB大きく、波長λ2γの光信号の光強度が基準レベルより5dB小さい場合、状態2を示す。
 ここで、状態0は、経路切替システム100が正常に動作していることを示す。また、状態1は、自装置から対向装置へ向かう伝送経路に異常が発生した状態を示す。さらに、状態2は、対向装置において、自装置から対向装置へ向かう伝送経路の切替えが失敗した状態を示す。なお、ダミー光のグリッド(10GHz)や光強度差(±5dB)は、WSSやOCMの能力に応じて決定すれば良く、長距離伝送に伴うクロストーク等を考慮して決定されることが望ましい。グリッド、波長、多値化等を適宜設定することにより、切替情報伝達信号が示すことができる状態の数を容易に増やすことができる。
 次に、上記のように構成された経路切替システム100において、A局側装置200からB局側装置300へ向かう現用経路に障害が発生した場合の、A局側装置200およびB局側装置300の動作を図5を用いて説明する。
 図5において、A局側装置200からB局側装置300へ向かう現用経路に障害が発生した場合(S101)、B局側装置300の第1OCM323において異常が検知される(S102)。この場合、第1OCM323は、異常通知を生成して第2WSS313へ出力する。第2WSS313は、異常通知が入力された場合、第2OCM324から受信確認通知が入力されているか否か確認する(S103)。第2WSS313は、受信確認通知が入力されている場合、A局側装置200からB局側装置300への冗長経路は正常に機能していると判断し、状態1の情報が付加された切替情報伝達信号を含む切替指示用のダミー光を第2CPL315へ出力する。状態1の情報が付加された切替情報伝達信号を含む切替指示用のダミー光は、第2CPL315を介してA局側装置200に入力される(S104)。
 A局側装置200の第2OCM224は、切替情報伝達信号が状態1を示していることから、第1切替要求通知を生成して第1WSS211および第2WSS213へ出力する(S105)。第1切替要求通知が第1WSS211および第2WSS213に入力されることにより、第1主光信号の出力先および強度調整用のダミー光・切替指示用のダミー光の出力先が切り替わる。すなわち、A局側クライアントから入力された第1主光信号(波長λ、波長λ、波長λ)は、第2CPL215において強度調整用のダミー光(波長λ)と合波され、多重光信号(波長λ、波長λ、波長λ、波長λ)がB局側装置300の第4CPL322に入力される(S106)。
 B局側装置300の第2OCM324は、入力された光信号が切替指示用のダミー光から多重光信号に切り替わった場合、第2切替要求通知を第3WSS325へ出力する。第2切替要求通知が第3WSS325に入力されることにより、第3WSS325の選択対象が第3CPL321から第4CPL322に切替る(S107)。
 ここで、第1OCM323において異常が検知された時に即時、第3WSS325における選択対象を第4CPL322に切替えてしまう場合、B局側クライアントへ不要な切替指示用のダミー光が出力されてしまう。従って、本実施形態においては、第2OCM324において切替指示用のダミー光から多重光信号へ切り替わったことを確認した後、第3WSS325における選択対象を第4CPL322へ切り替える。
 第3WSS325は、第4CPL322への切り替えが完了した時、切替完了通知を第2WSS313へ出力する。これにより、A局側装置200およびB局側装置300間の多重光信号の伝送が復旧する。
 なお、B局側装置300の第2WSS313は、状態1の情報を付加した切替情報伝達信号を含む切替指示用のダミー光を出力した後、一定時間が経過しても第3WSS325から切替完了通知が入力されない場合、切り替え処理が失敗したと判断する。この場合、第2WSS313は、状態2の情報が付加された切替情報伝達信号を含む切替指示用のダミー光を出力する。状態2の情報が付加された切替情報伝達信号を含む切替指示用のダミー光がA局側装置200に入力されることにより、A局側装置200の第1WSS211および第2WSS213における切替指示が撤回される。これにより、冗長構成を持つ経路切替システム100において、A局側装置200とB局側装置300とにおいて連動した切り替えが可能になる。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2015年7月23日に出願された日本出願特願2015-145965を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1  経路切替装置
 10  第1選択手段
 20  第2選択手段
 30  第1送信手段
 40  第2送信手段
 50  第1受信手段
 60  第2受信手段
 70  第1モニタ手段
 80  第2モニタ手段
 90  第3選択手段
 100  経路切替システム
 200  A局側装置
 211  第1WSS
 212  ASEダミー光源
 213  第2WSS
 214  第1CPL
 215  第2CPL
 221  第3CPL
 222  第4CPL
 223  第1OCM
 224  第2OCM
 225  第3WSS
 300  B局側装置
 311  第1WSS
 312  ASEダミー光源
 313  第2WSS
 314  第1CPL
 315  第2CPL
 321  第3CPL
 322  第4CPL
 323  第1OCM
 324  第2OCM
 325  第3WSS

Claims (11)

  1. 第1送信手段または第2送信手段のいずれか一方を選択し、選択した送信手段に第1主信号を出力する第1選択手段と、
    第1送信手段または第2送信手段のいずれか一方を選択し、選択した送信手段に第1切替指示信号を出力する第2選択手段と、
    入力された信号を対向装置へ送信する第1送信手段および第2送信手段と、
    前記対向装置から受信した信号を分割して第1モニタ手段および第3選択手段へ出力する第1受信手段と、
    前記対向装置から受信した信号を分割して第2モニタ手段および前記第3選択手段へ出力する第2受信手段と、
    第2主信号が入力された場合、該入力された前記第2主信号をモニタし、異常を検知した場合は異常通知を生成して前記第2選択手段および前記第3選択手段へ出力すると共に、第2切替指示信号が入力された場合、該入力された前記第2切替指示信号をモニタし、該第2切替指示信号に第2情報が含まれていた場合、第1切替指示通知を生成して前記第1選択手段および前記第2選択手段へ出力する第1モニタ手段および第2モニタ手段と、
    選択した受信手段から前記第2主信号を取得する第3選択手段と、
    を備え、
    通常状態においては、前記第1選択手段は前記第1送信手段を選択し、前記第2選択手段は前記第2送信手段を選択して第1情報を含む前記第1切替指示信号を出力し、前記第3選択手段は前記第1受信手段を選択し、
    前記第1選択手段は、前記第1切替指示通知が入力された場合は選択先を切替え、
    前記第2選択手段は、前記異常通知が入力された場合は第2情報を含む切替指示信号を出力する一方、前記第1切替指示通知が入力された場合は選択先を切替え、
    前記第3選択手段は、前記異常通知が入力された場合は選択元を切替える、
    経路切替装置。
  2. 請求項1に記載の経路切替装置において、
    前記第2選択手段は、前記第3選択手段における切替えが失敗した場合、第3情報を含む第1切替指示信号を出力する、
    経路切替装置。
  3. 請求項1または2に記載の経路切替装置において、
    前記第2モニタ手段は、前記第2切替指示信号に第3情報が含まれていた場合、切替撤回通知を生成して前記第1送信手段および前記第2選択手段へ出力し、
    前記第1選択手段および前記第2選択手段は、前記切替撤回通知が入力された場合、送信手段の選択を元に戻す、
    経路切替装置。
  4. 請求項2または3に記載の経路切替装置において、
    前記第2選択手段は、前記第1切替指示信号の波形を変化させることによって、前記切替指示信号に前記第1情報、前記第2情報または前記第3情報のいずれかを含ませる、
    経路切替装置。
  5. 請求項1乃至4のいずれか1項に記載の経路切替装置において、
    前記第1モニタ手段は、前記第2主信号のモニタ結果が正常である場合は正常通知を生成して前記第2選択手段へ出力し、
    前記第2選択手段は、前記正常通知が入力された場合、第1情報を含む第1切替指示信号を出力する、
    経路切替装置。
  6. 請求項1乃至5のいずれか1項に記載の経路切替装置において、
    前記第1モニタ手段は、前記異常通知を前記第2選択手段のみへ出力し、
    前記第2モニタ手段は、前記第2切替指示信号から前記第2主信号へ切り替わった場合、第2切替指示通知を生成して前記第3選択手段へ出力し、
    前記第3選択手段は、前記第2切替指示通知が入力された場合、選択を前記第1受信手段から前記第2受信手段に切替える、
    経路切替装置。
  7. 請求項1乃至6のいずれか1項に記載の経路切替装置において、
    前記第2選択手段は、前記第1切替指示信号の光強度を所定値Pに調整して前記選択した送信手段へ出力し、光強度調整用信号を生成して前記第1切替指示信号が出力されない方の送信手段へ出力し、
    前記光強度調整用信号は前記第1主信号と合波されて、光強度が前記所定値Pの多重化光信号として前記対向装置へ送信される、
    経路切替装置。
  8. 前記第1主信号および前記第1切替指示信号を送信すると共に、前記第2主信号および前記第2切替指示信号を受信する、請求項1乃至7のいずれか1項に記載の第1経路切替装置と、
    前記第2主信号および前記第2切替指示信号を送信すると共に、前記第1主信号および前記第1切替指示信号を受信する、請求項1乃至7のいずれか1項に記載の第2経路切替装置と、
    を備える経路切替システム。
  9. 請求項8に記載の経路切替システムにおいて、
    前記第1経路切替装置の前記第1送信手段から送信された前記第1主信号は、第1経路を通過して前記第2経路切替装置の前記第1受信手段によって受信され、
    前記第1経路切替装置の前記第2送信手段から送信された前記第1切替指示信号は、第1冗長経路を通過して前記第2経路切替装置の前記第2受信手段によって受信され、
    前記第2経路切替装置の前記第1送信手段から送信された前記第2主信号は、第2経路を通過して前記第1経路切替装置の前記第1受信手段によって受信され、
    前記第2経路切替装置の前記第2送信手段から送信された前記第2切替指示信号は、第2冗長経路を通過して前記第1経路切替装置の前記第2受信手段によって受信される、
    経路切替システム。
  10. 第1主信号を選択した送信手段に出力する第1選択手段と、
    第1切替指示信号を選択した送信手段に出力する第2選択手段と、
    入力された信号を対向装置へ送信する第1送信手段および第2送信手段と、
    前記対向装置から受信した信号を分割して第1モニタ手段および第3選択手段へ出力する第1受信手段と、
    前記対向装置から受信した信号を分割して第2モニタ手段および前記第3選択手段へ出力する第2受信手段と、
    前記第1受信手段から入力された信号をモニタする第1モニタ手段と、
    前記第2受信手段から入力された信号をモニタする第2モニタ手段と、
    選択した受信手段から第2主信号を取得する第3選択手段と、
    を備えた経路切替装置における経路切替方法であって、
    通常状態においては、前記第1選択手段に前記第1送信手段を選択させ、前記第2選択手段に前記第2送信手段を選択させて第1情報を含む前記第1切替指示信号を出力させ、前記第1受信手段に前記第2主信号を受信させ、前記第2受信手段に第2切替指示信号を受信させ、前記第3選択手段に前記第1受信手段を選択させ、
    前記モニタ手段において前記第2主信号の異常を検知した場合、前記第2選択手段から第2情報を含む第1切替指示信号を出力させると共に前記第3選択手段における選択を変更させ、
    前記モニタ手段において前記第2切替指示信号から第2情報を検出した場合、前記第1選択手段および前記第1選択手段における選択を変更させる、
    経路切替装置における経路切替方法。
  11.  対向装置から受信した複数の受信信号のいずれかに異常の検知を示す異常検知情報が含まれていると判断した場合は異常通知を出力し、所定の第2情報が含まれていると判断した場合は、第1切替指示通知を出力するモニタ手段と、
     前記モニタ手段から前記異常通知が入力された場合、前記複数の受信信号のうち前記異常検知情報を含まないものを出力する第3選択手段と、
     入力された信号を前記対向装置へ送信する複数の送信手段と、
     前記複数の送信手段のうち第1の送信手段に第1主信号を、第2の送信手段に所定の信号を出力する第1選択手段と
     を備え、
     前記第1選択手段は、前記第1切替指示通知が入力された場合は前記第1主信号の出力先を前記第1の送信手段以外の送信手段に切り替え、前記異常通知が入力された場合は前記所定の信号に第2情報を含める、
    経路切替装置。
PCT/JP2016/003395 2015-07-23 2016-07-20 経路切替装置、経路切替システムおよび経路切替方法 WO2017013875A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680043318.5A CN107925476B (zh) 2015-07-23 2016-07-20 路由切换设备、路由切换系统和路由切换方法
US15/743,299 US10505660B2 (en) 2015-07-23 2016-07-20 Route switching device, route switching system, and route switching method
EP16827442.1A EP3327955B1 (en) 2015-07-23 2016-07-20 Route switching device, route switching system, and route switching method
JP2017529461A JP6436237B2 (ja) 2015-07-23 2016-07-20 経路切替装置、経路切替システムおよび経路切替方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-145965 2015-07-23
JP2015145965 2015-07-23

Publications (1)

Publication Number Publication Date
WO2017013875A1 true WO2017013875A1 (ja) 2017-01-26

Family

ID=57834960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003395 WO2017013875A1 (ja) 2015-07-23 2016-07-20 経路切替装置、経路切替システムおよび経路切替方法

Country Status (5)

Country Link
US (1) US10505660B2 (ja)
EP (1) EP3327955B1 (ja)
JP (1) JP6436237B2 (ja)
CN (1) CN107925476B (ja)
WO (1) WO2017013875A1 (ja)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9952594B1 (en) 2017-04-07 2018-04-24 TuSimple System and method for traffic data collection using unmanned aerial vehicles (UAVs)
US9953236B1 (en) 2017-03-10 2018-04-24 TuSimple System and method for semantic segmentation using dense upsampling convolution (DUC)
US10067509B1 (en) 2017-03-10 2018-09-04 TuSimple System and method for occluding contour detection
WO2018180611A1 (ja) * 2017-03-29 2018-10-04 日本電気株式会社 通信装置、通信システム、通信機器及び通信方法
US10147193B2 (en) 2017-03-10 2018-12-04 TuSimple System and method for semantic segmentation using hybrid dilated convolution (HDC)
US10303956B2 (en) 2017-08-23 2019-05-28 TuSimple System and method for using triplet loss for proposal free instance-wise semantic segmentation for lane detection
US10303522B2 (en) 2017-07-01 2019-05-28 TuSimple System and method for distributed graphics processing unit (GPU) computation
US10311312B2 (en) 2017-08-31 2019-06-04 TuSimple System and method for vehicle occlusion detection
US10308242B2 (en) 2017-07-01 2019-06-04 TuSimple System and method for using human driving patterns to detect and correct abnormal driving behaviors of autonomous vehicles
US10360257B2 (en) 2017-08-08 2019-07-23 TuSimple System and method for image annotation
US10410055B2 (en) 2017-10-05 2019-09-10 TuSimple System and method for aerial video traffic analysis
US10474790B2 (en) 2017-06-02 2019-11-12 TuSimple Large scale distributed simulation for realistic multiple-agent interactive environments
US10471963B2 (en) 2017-04-07 2019-11-12 TuSimple System and method for transitioning between an autonomous and manual driving mode based on detection of a drivers capacity to control a vehicle
US10481044B2 (en) 2017-05-18 2019-11-19 TuSimple Perception simulation for improved autonomous vehicle control
US10493988B2 (en) 2017-07-01 2019-12-03 TuSimple System and method for adaptive cruise control for defensive driving
US10528823B2 (en) 2017-11-27 2020-01-07 TuSimple System and method for large-scale lane marking detection using multimodal sensor data
US10528851B2 (en) 2017-11-27 2020-01-07 TuSimple System and method for drivable road surface representation generation using multimodal sensor data
US10552979B2 (en) 2017-09-13 2020-02-04 TuSimple Output of a neural network method for deep odometry assisted by static scene optical flow
US10552691B2 (en) 2017-04-25 2020-02-04 TuSimple System and method for vehicle position and velocity estimation based on camera and lidar data
US10558864B2 (en) 2017-05-18 2020-02-11 TuSimple System and method for image localization based on semantic segmentation
US10649458B2 (en) 2017-09-07 2020-05-12 Tusimple, Inc. Data-driven prediction-based system and method for trajectory planning of autonomous vehicles
US10656644B2 (en) 2017-09-07 2020-05-19 Tusimple, Inc. System and method for using human driving patterns to manage speed control for autonomous vehicles
US10657390B2 (en) 2017-11-27 2020-05-19 Tusimple, Inc. System and method for large-scale lane marking detection using multimodal sensor data
US10666730B2 (en) 2017-10-28 2020-05-26 Tusimple, Inc. Storage architecture for heterogeneous multimedia data
US10671083B2 (en) 2017-09-13 2020-06-02 Tusimple, Inc. Neural network architecture system for deep odometry assisted by static scene optical flow
US10671873B2 (en) 2017-03-10 2020-06-02 Tusimple, Inc. System and method for vehicle wheel detection
US10678234B2 (en) 2017-08-24 2020-06-09 Tusimple, Inc. System and method for autonomous vehicle control to minimize energy cost
US10685244B2 (en) 2018-02-27 2020-06-16 Tusimple, Inc. System and method for online real-time multi-object tracking
US10685239B2 (en) 2018-03-18 2020-06-16 Tusimple, Inc. System and method for lateral vehicle detection
US10710592B2 (en) 2017-04-07 2020-07-14 Tusimple, Inc. System and method for path planning of autonomous vehicles based on gradient
US10739775B2 (en) 2017-10-28 2020-08-11 Tusimple, Inc. System and method for real world autonomous vehicle trajectory simulation
US10737695B2 (en) 2017-07-01 2020-08-11 Tusimple, Inc. System and method for adaptive cruise control for low speed following
US10752246B2 (en) 2017-07-01 2020-08-25 Tusimple, Inc. System and method for adaptive cruise control with proximate vehicle detection
US10762635B2 (en) 2017-06-14 2020-09-01 Tusimple, Inc. System and method for actively selecting and labeling images for semantic segmentation
US10762673B2 (en) 2017-08-23 2020-09-01 Tusimple, Inc. 3D submap reconstruction system and method for centimeter precision localization using camera-based submap and LiDAR-based global map
US10768626B2 (en) 2017-09-30 2020-09-08 Tusimple, Inc. System and method for providing multiple agents for decision making, trajectory planning, and control for autonomous vehicles
US10783381B2 (en) 2017-08-31 2020-09-22 Tusimple, Inc. System and method for vehicle occlusion detection
US10782694B2 (en) 2017-09-07 2020-09-22 Tusimple, Inc. Prediction-based system and method for trajectory planning of autonomous vehicles
US10782693B2 (en) 2017-09-07 2020-09-22 Tusimple, Inc. Prediction-based system and method for trajectory planning of autonomous vehicles
WO2020189388A1 (ja) * 2019-03-20 2020-09-24 日本電信電話株式会社 波長クロスコネクト装置及びクロスコネクト接続方法
US10796402B2 (en) 2018-10-19 2020-10-06 Tusimple, Inc. System and method for fisheye image processing
US10812589B2 (en) 2017-10-28 2020-10-20 Tusimple, Inc. Storage architecture for heterogeneous multimedia data
US10816354B2 (en) 2017-08-22 2020-10-27 Tusimple, Inc. Verification module system and method for motion-based lane detection with multiple sensors
US10839234B2 (en) 2018-09-12 2020-11-17 Tusimple, Inc. System and method for three-dimensional (3D) object detection
US10860018B2 (en) 2017-11-30 2020-12-08 Tusimple, Inc. System and method for generating simulated vehicles with configured behaviors for analyzing autonomous vehicle motion planners
US10877476B2 (en) 2017-11-30 2020-12-29 Tusimple, Inc. Autonomous vehicle simulation system for analyzing motion planners
US10942271B2 (en) 2018-10-30 2021-03-09 Tusimple, Inc. Determining an angle between a tow vehicle and a trailer
US10953881B2 (en) 2017-09-07 2021-03-23 Tusimple, Inc. System and method for automated lane change control for autonomous vehicles
US10953880B2 (en) 2017-09-07 2021-03-23 Tusimple, Inc. System and method for automated lane change control for autonomous vehicles
US10962979B2 (en) 2017-09-30 2021-03-30 Tusimple, Inc. System and method for multitask processing for autonomous vehicle computation and control
JPWO2021060124A1 (ja) * 2019-09-27 2021-04-01
US10970564B2 (en) 2017-09-30 2021-04-06 Tusimple, Inc. System and method for instance-level lane detection for autonomous vehicle control
EP3656132B1 (de) * 2018-04-12 2021-04-21 Ulrich Lohmann Verwendung eines faseroptischen kreuzverbindungssystems
US11010874B2 (en) 2018-04-12 2021-05-18 Tusimple, Inc. Images for perception modules of autonomous vehicles
US11009365B2 (en) 2018-02-14 2021-05-18 Tusimple, Inc. Lane marking localization
US11009356B2 (en) 2018-02-14 2021-05-18 Tusimple, Inc. Lane marking localization and fusion
US11029693B2 (en) 2017-08-08 2021-06-08 Tusimple, Inc. Neural network based vehicle dynamics model
US11104334B2 (en) 2018-05-31 2021-08-31 Tusimple, Inc. System and method for proximate vehicle intention prediction for autonomous vehicles
US11151393B2 (en) 2017-08-23 2021-10-19 Tusimple, Inc. Feature matching and corresponding refinement and 3D submap position refinement system and method for centimeter precision localization using camera-based submap and LiDAR-based global map
US11292480B2 (en) 2018-09-13 2022-04-05 Tusimple, Inc. Remote safe driving methods and systems
US11305782B2 (en) 2018-01-11 2022-04-19 Tusimple, Inc. Monitoring system for autonomous vehicle operation
US11312334B2 (en) 2018-01-09 2022-04-26 Tusimple, Inc. Real-time remote control of vehicles with high redundancy
US11328164B2 (en) * 2017-09-20 2022-05-10 Tusimple, Inc. System and method for vehicle taillight state recognition
US11500101B2 (en) 2018-05-02 2022-11-15 Tusimple, Inc. Curb detection by analysis of reflection images
US11587304B2 (en) 2017-03-10 2023-02-21 Tusimple, Inc. System and method for occluding contour detection
US11701931B2 (en) 2020-06-18 2023-07-18 Tusimple, Inc. Angle and orientation measurements for vehicles with multiple drivable sections
US11810322B2 (en) 2020-04-09 2023-11-07 Tusimple, Inc. Camera pose estimation techniques
US11823460B2 (en) 2019-06-14 2023-11-21 Tusimple, Inc. Image fusion for autonomous vehicle operation
US11972690B2 (en) 2018-12-14 2024-04-30 Beijing Tusen Zhitu Technology Co., Ltd. Platooning method, apparatus and system of autonomous driving platoon

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10771151B2 (en) * 2017-07-31 2020-09-08 Level 3 Communications, Llc Outside plant fiber health monitoring system
US10707958B2 (en) * 2018-08-31 2020-07-07 Adva Optical Networking Se Method and apparatus for determining a maximum transmission capacity within an optical network
WO2020179182A1 (ja) * 2019-03-04 2020-09-10 日本電気株式会社 光合分波装置、光海底ケーブルシステム、光合分波方法及び非一時的なコンピュータ可読媒体
US11245488B2 (en) * 2019-04-19 2022-02-08 Infinera Corporation Fast transient suppressor for optical transmission systems
CN112054843A (zh) * 2020-08-21 2020-12-08 武汉光迅信息技术有限公司 一种光信号的传输系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069521A (ja) * 2001-08-29 2003-03-07 Nippon Telegraph & Telephone West Corp パス切替装置、パス切替システム及びパス切替方法
JP2010161750A (ja) * 2009-01-09 2010-07-22 Sony Corp 信号送信装置、信号受信装置及び信号伝送システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592170B2 (ja) * 2000-10-18 2010-12-01 株式会社東芝 光伝送装置
JP3849770B2 (ja) * 2002-01-11 2006-11-22 日本電気株式会社 多重化通信装置の伝送路二重化システム
US7027732B2 (en) * 2002-01-18 2006-04-11 Pts Corporation WDM cross-connects for core optical networks
JP2003298633A (ja) 2002-04-05 2003-10-17 Fujitsu Ltd 制御チャネル障害時のデータチャネル障害通知機能を有する伝送装置
EP1949119A4 (en) * 2005-10-13 2017-01-18 Vello Systems, Inc. Optical ring networks using circulating optical probe in protection switching with automatic reversion
JP5326500B2 (ja) * 2008-10-31 2013-10-30 富士通株式会社 方路数拡張方法及び光ハブノード装置
RU2460223C1 (ru) * 2009-02-19 2012-08-27 Нек Корпорейшн Способ мониторинга канала связи и передающее устройство
CN102035597B (zh) * 2009-09-30 2014-12-31 华为技术有限公司 一种无源光网络的主备切换方法、装置和系统
JP2012175123A (ja) 2011-02-17 2012-09-10 Nec Corp 経路冗長切替装置及び経路冗長切替方法
JP5863565B2 (ja) * 2012-05-21 2016-02-16 三菱電機株式会社 光伝送ノードおよび経路切替方法
CN103051374B (zh) * 2013-01-07 2018-11-09 南京中兴新软件有限责任公司 保护恢复方法和装置
EP3198758B1 (en) * 2014-09-24 2020-01-22 Telefonaktiebolaget LM Ericsson (publ) Optical node

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069521A (ja) * 2001-08-29 2003-03-07 Nippon Telegraph & Telephone West Corp パス切替装置、パス切替システム及びパス切替方法
JP2010161750A (ja) * 2009-01-09 2010-07-22 Sony Corp 信号送信装置、信号受信装置及び信号伝送システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3327955A4 *

Cited By (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10671873B2 (en) 2017-03-10 2020-06-02 Tusimple, Inc. System and method for vehicle wheel detection
US9953236B1 (en) 2017-03-10 2018-04-24 TuSimple System and method for semantic segmentation using dense upsampling convolution (DUC)
US10067509B1 (en) 2017-03-10 2018-09-04 TuSimple System and method for occluding contour detection
US10147193B2 (en) 2017-03-10 2018-12-04 TuSimple System and method for semantic segmentation using hybrid dilated convolution (HDC)
US11587304B2 (en) 2017-03-10 2023-02-21 Tusimple, Inc. System and method for occluding contour detection
US11967140B2 (en) 2017-03-10 2024-04-23 Tusimple, Inc. System and method for vehicle wheel detection
US11501513B2 (en) 2017-03-10 2022-11-15 Tusimple, Inc. System and method for vehicle wheel detection
WO2018180611A1 (ja) * 2017-03-29 2018-10-04 日本電気株式会社 通信装置、通信システム、通信機器及び通信方法
US10892844B2 (en) 2017-03-29 2021-01-12 Nec Corporation Communication device, communication system, communication apparatus, and communication method
US20200244386A1 (en) * 2017-03-29 2020-07-30 Nec Corporation Communication device, communication system, communication apparatus, and communication method
JPWO2018180611A1 (ja) * 2017-03-29 2019-12-19 日本電気株式会社 通信装置及び通信機器
US10471963B2 (en) 2017-04-07 2019-11-12 TuSimple System and method for transitioning between an autonomous and manual driving mode based on detection of a drivers capacity to control a vehicle
US9952594B1 (en) 2017-04-07 2018-04-24 TuSimple System and method for traffic data collection using unmanned aerial vehicles (UAVs)
US11673557B2 (en) 2017-04-07 2023-06-13 Tusimple, Inc. System and method for path planning of autonomous vehicles based on gradient
US10710592B2 (en) 2017-04-07 2020-07-14 Tusimple, Inc. System and method for path planning of autonomous vehicles based on gradient
US11557128B2 (en) 2017-04-25 2023-01-17 Tusimple, Inc. System and method for vehicle position and velocity estimation based on camera and LIDAR data
US10552691B2 (en) 2017-04-25 2020-02-04 TuSimple System and method for vehicle position and velocity estimation based on camera and lidar data
US11928868B2 (en) 2017-04-25 2024-03-12 Tusimple, Inc. System and method for vehicle position and velocity estimation based on camera and LIDAR data
US11885712B2 (en) 2017-05-18 2024-01-30 Tusimple, Inc. Perception simulation for improved autonomous vehicle control
US10558864B2 (en) 2017-05-18 2020-02-11 TuSimple System and method for image localization based on semantic segmentation
US10481044B2 (en) 2017-05-18 2019-11-19 TuSimple Perception simulation for improved autonomous vehicle control
US10867188B2 (en) 2017-05-18 2020-12-15 Tusimple, Inc. System and method for image localization based on semantic segmentation
US10830669B2 (en) 2017-05-18 2020-11-10 Tusimple, Inc. Perception simulation for improved autonomous vehicle control
US10474790B2 (en) 2017-06-02 2019-11-12 TuSimple Large scale distributed simulation for realistic multiple-agent interactive environments
US10762635B2 (en) 2017-06-14 2020-09-01 Tusimple, Inc. System and method for actively selecting and labeling images for semantic segmentation
US10308242B2 (en) 2017-07-01 2019-06-04 TuSimple System and method for using human driving patterns to detect and correct abnormal driving behaviors of autonomous vehicles
US11958473B2 (en) 2017-07-01 2024-04-16 Tusimple, Inc. System and method for using human driving patterns to detect and correct abnormal driving behaviors of autonomous vehicles
US11040710B2 (en) 2017-07-01 2021-06-22 Tusimple, Inc. System and method for using human driving patterns to detect and correct abnormal driving behaviors of autonomous vehicles
US11753008B2 (en) 2017-07-01 2023-09-12 Tusimple, Inc. System and method for adaptive cruise control with proximate vehicle detection
US10493988B2 (en) 2017-07-01 2019-12-03 TuSimple System and method for adaptive cruise control for defensive driving
US10737695B2 (en) 2017-07-01 2020-08-11 Tusimple, Inc. System and method for adaptive cruise control for low speed following
US10303522B2 (en) 2017-07-01 2019-05-28 TuSimple System and method for distributed graphics processing unit (GPU) computation
US10752246B2 (en) 2017-07-01 2020-08-25 Tusimple, Inc. System and method for adaptive cruise control with proximate vehicle detection
US11029693B2 (en) 2017-08-08 2021-06-08 Tusimple, Inc. Neural network based vehicle dynamics model
US10360257B2 (en) 2017-08-08 2019-07-23 TuSimple System and method for image annotation
US11550329B2 (en) 2017-08-08 2023-01-10 Tusimple, Inc. Neural network based vehicle dynamics model
US10816354B2 (en) 2017-08-22 2020-10-27 Tusimple, Inc. Verification module system and method for motion-based lane detection with multiple sensors
US11573095B2 (en) 2017-08-22 2023-02-07 Tusimple, Inc. Verification module system and method for motion-based lane detection with multiple sensors
US11874130B2 (en) 2017-08-22 2024-01-16 Tusimple, Inc. Verification module system and method for motion-based lane detection with multiple sensors
US11846510B2 (en) 2017-08-23 2023-12-19 Tusimple, Inc. Feature matching and correspondence refinement and 3D submap position refinement system and method for centimeter precision localization using camera-based submap and LiDAR-based global map
US10303956B2 (en) 2017-08-23 2019-05-28 TuSimple System and method for using triplet loss for proposal free instance-wise semantic segmentation for lane detection
US10762673B2 (en) 2017-08-23 2020-09-01 Tusimple, Inc. 3D submap reconstruction system and method for centimeter precision localization using camera-based submap and LiDAR-based global map
US11151393B2 (en) 2017-08-23 2021-10-19 Tusimple, Inc. Feature matching and corresponding refinement and 3D submap position refinement system and method for centimeter precision localization using camera-based submap and LiDAR-based global map
US10678234B2 (en) 2017-08-24 2020-06-09 Tusimple, Inc. System and method for autonomous vehicle control to minimize energy cost
US11886183B2 (en) 2017-08-24 2024-01-30 Tusimple, Inc. System and method for autonomous vehicle control to minimize energy cost
US11366467B2 (en) 2017-08-24 2022-06-21 Tusimple, Inc. System and method for autonomous vehicle control to minimize energy cost
US10783381B2 (en) 2017-08-31 2020-09-22 Tusimple, Inc. System and method for vehicle occlusion detection
US10311312B2 (en) 2017-08-31 2019-06-04 TuSimple System and method for vehicle occlusion detection
US11745736B2 (en) 2017-08-31 2023-09-05 Tusimple, Inc. System and method for vehicle occlusion detection
US11892846B2 (en) 2017-09-07 2024-02-06 Tusimple, Inc. Prediction-based system and method for trajectory planning of autonomous vehicles
US11853071B2 (en) 2017-09-07 2023-12-26 Tusimple, Inc. Data-driven prediction-based system and method for trajectory planning of autonomous vehicles
US10649458B2 (en) 2017-09-07 2020-05-12 Tusimple, Inc. Data-driven prediction-based system and method for trajectory planning of autonomous vehicles
US10656644B2 (en) 2017-09-07 2020-05-19 Tusimple, Inc. System and method for using human driving patterns to manage speed control for autonomous vehicles
US10953881B2 (en) 2017-09-07 2021-03-23 Tusimple, Inc. System and method for automated lane change control for autonomous vehicles
US10953880B2 (en) 2017-09-07 2021-03-23 Tusimple, Inc. System and method for automated lane change control for autonomous vehicles
US10782693B2 (en) 2017-09-07 2020-09-22 Tusimple, Inc. Prediction-based system and method for trajectory planning of autonomous vehicles
US10782694B2 (en) 2017-09-07 2020-09-22 Tusimple, Inc. Prediction-based system and method for trajectory planning of autonomous vehicles
US11294375B2 (en) 2017-09-07 2022-04-05 Tusimple, Inc. System and method for using human driving patterns to manage speed control for autonomous vehicles
US11983008B2 (en) 2017-09-07 2024-05-14 Tusimple, Inc. System and method for using human driving patterns to manage speed control for autonomous vehicles
US10552979B2 (en) 2017-09-13 2020-02-04 TuSimple Output of a neural network method for deep odometry assisted by static scene optical flow
US10671083B2 (en) 2017-09-13 2020-06-02 Tusimple, Inc. Neural network architecture system for deep odometry assisted by static scene optical flow
US11328164B2 (en) * 2017-09-20 2022-05-10 Tusimple, Inc. System and method for vehicle taillight state recognition
US11734563B2 (en) 2017-09-20 2023-08-22 Tusimple, Inc. System and method for vehicle taillight state recognition
US10962979B2 (en) 2017-09-30 2021-03-30 Tusimple, Inc. System and method for multitask processing for autonomous vehicle computation and control
US11853883B2 (en) 2017-09-30 2023-12-26 Tusimple, Inc. System and method for instance-level lane detection for autonomous vehicle control
US11500387B2 (en) 2017-09-30 2022-11-15 Tusimple, Inc. System and method for providing multiple agents for decision making, trajectory planning, and control for autonomous vehicles
US10970564B2 (en) 2017-09-30 2021-04-06 Tusimple, Inc. System and method for instance-level lane detection for autonomous vehicle control
US10768626B2 (en) 2017-09-30 2020-09-08 Tusimple, Inc. System and method for providing multiple agents for decision making, trajectory planning, and control for autonomous vehicles
US10410055B2 (en) 2017-10-05 2019-09-10 TuSimple System and method for aerial video traffic analysis
US10739775B2 (en) 2017-10-28 2020-08-11 Tusimple, Inc. System and method for real world autonomous vehicle trajectory simulation
US10812589B2 (en) 2017-10-28 2020-10-20 Tusimple, Inc. Storage architecture for heterogeneous multimedia data
US10666730B2 (en) 2017-10-28 2020-05-26 Tusimple, Inc. Storage architecture for heterogeneous multimedia data
US11435748B2 (en) 2017-10-28 2022-09-06 Tusimple, Inc. System and method for real world autonomous vehicle trajectory simulation
US10657390B2 (en) 2017-11-27 2020-05-19 Tusimple, Inc. System and method for large-scale lane marking detection using multimodal sensor data
US10528823B2 (en) 2017-11-27 2020-01-07 TuSimple System and method for large-scale lane marking detection using multimodal sensor data
US10528851B2 (en) 2017-11-27 2020-01-07 TuSimple System and method for drivable road surface representation generation using multimodal sensor data
US11580754B2 (en) 2017-11-27 2023-02-14 Tusimple, Inc. System and method for large-scale lane marking detection using multimodal sensor data
US10877476B2 (en) 2017-11-30 2020-12-29 Tusimple, Inc. Autonomous vehicle simulation system for analyzing motion planners
US11782440B2 (en) 2017-11-30 2023-10-10 Tusimple, Inc. Autonomous vehicle simulation system for analyzing motion planners
US11681292B2 (en) 2017-11-30 2023-06-20 Tusimple, Inc. System and method for generating simulated vehicles with configured behaviors for analyzing autonomous vehicle motion planners
US10860018B2 (en) 2017-11-30 2020-12-08 Tusimple, Inc. System and method for generating simulated vehicles with configured behaviors for analyzing autonomous vehicle motion planners
US11312334B2 (en) 2018-01-09 2022-04-26 Tusimple, Inc. Real-time remote control of vehicles with high redundancy
US11305782B2 (en) 2018-01-11 2022-04-19 Tusimple, Inc. Monitoring system for autonomous vehicle operation
US11009356B2 (en) 2018-02-14 2021-05-18 Tusimple, Inc. Lane marking localization and fusion
US11740093B2 (en) 2018-02-14 2023-08-29 Tusimple, Inc. Lane marking localization and fusion
US11852498B2 (en) 2018-02-14 2023-12-26 Tusimple, Inc. Lane marking localization
US11009365B2 (en) 2018-02-14 2021-05-18 Tusimple, Inc. Lane marking localization
US10685244B2 (en) 2018-02-27 2020-06-16 Tusimple, Inc. System and method for online real-time multi-object tracking
US11295146B2 (en) 2018-02-27 2022-04-05 Tusimple, Inc. System and method for online real-time multi-object tracking
US11830205B2 (en) 2018-02-27 2023-11-28 Tusimple, Inc. System and method for online real-time multi- object tracking
US10685239B2 (en) 2018-03-18 2020-06-16 Tusimple, Inc. System and method for lateral vehicle detection
US11074462B2 (en) 2018-03-18 2021-07-27 Tusimple, Inc. System and method for lateral vehicle detection
US11610406B2 (en) 2018-03-18 2023-03-21 Tusimple, Inc. System and method for lateral vehicle detection
EP3656132B1 (de) * 2018-04-12 2021-04-21 Ulrich Lohmann Verwendung eines faseroptischen kreuzverbindungssystems
US11010874B2 (en) 2018-04-12 2021-05-18 Tusimple, Inc. Images for perception modules of autonomous vehicles
US11694308B2 (en) 2018-04-12 2023-07-04 Tusimple, Inc. Images for perception modules of autonomous vehicles
US11500101B2 (en) 2018-05-02 2022-11-15 Tusimple, Inc. Curb detection by analysis of reflection images
US11104334B2 (en) 2018-05-31 2021-08-31 Tusimple, Inc. System and method for proximate vehicle intention prediction for autonomous vehicles
US11948082B2 (en) 2018-05-31 2024-04-02 Tusimple, Inc. System and method for proximate vehicle intention prediction for autonomous vehicles
US11727691B2 (en) 2018-09-12 2023-08-15 Tusimple, Inc. System and method for three-dimensional (3D) object detection
US10839234B2 (en) 2018-09-12 2020-11-17 Tusimple, Inc. System and method for three-dimensional (3D) object detection
US11292480B2 (en) 2018-09-13 2022-04-05 Tusimple, Inc. Remote safe driving methods and systems
US11935210B2 (en) 2018-10-19 2024-03-19 Tusimple, Inc. System and method for fisheye image processing
US10796402B2 (en) 2018-10-19 2020-10-06 Tusimple, Inc. System and method for fisheye image processing
US11714192B2 (en) 2018-10-30 2023-08-01 Tusimple, Inc. Determining an angle between a tow vehicle and a trailer
US10942271B2 (en) 2018-10-30 2021-03-09 Tusimple, Inc. Determining an angle between a tow vehicle and a trailer
US11972690B2 (en) 2018-12-14 2024-04-30 Beijing Tusen Zhitu Technology Co., Ltd. Platooning method, apparatus and system of autonomous driving platoon
JP7287806B2 (ja) 2019-03-20 2023-06-06 日本電信電話株式会社 波長クロスコネクト装置及びクロスコネクト接続方法
JP2020155926A (ja) * 2019-03-20 2020-09-24 日本電信電話株式会社 波長クロスコネクト装置及びクロスコネクト接続方法
WO2020189388A1 (ja) * 2019-03-20 2020-09-24 日本電信電話株式会社 波長クロスコネクト装置及びクロスコネクト接続方法
US11823460B2 (en) 2019-06-14 2023-11-21 Tusimple, Inc. Image fusion for autonomous vehicle operation
US11855687B2 (en) 2019-09-27 2023-12-26 Nec Corporation Optical communication system, optical communication device, optical communication method, and storage medium
WO2021060124A1 (ja) * 2019-09-27 2021-04-01 日本電気株式会社 光通信システム、光通信装置、光通信方法及び記憶媒体
JPWO2021060124A1 (ja) * 2019-09-27 2021-04-01
JP7306466B2 (ja) 2019-09-27 2023-07-11 日本電気株式会社 光通信システム、光通信装置、光通信方法及びプログラム
US11810322B2 (en) 2020-04-09 2023-11-07 Tusimple, Inc. Camera pose estimation techniques
US11701931B2 (en) 2020-06-18 2023-07-18 Tusimple, Inc. Angle and orientation measurements for vehicles with multiple drivable sections

Also Published As

Publication number Publication date
US10505660B2 (en) 2019-12-10
JP6436237B2 (ja) 2018-12-12
US20180212707A1 (en) 2018-07-26
EP3327955A1 (en) 2018-05-30
EP3327955A4 (en) 2019-03-20
CN107925476A (zh) 2018-04-17
EP3327955B1 (en) 2021-11-10
CN107925476B (zh) 2020-11-10
JPWO2017013875A1 (ja) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6436237B2 (ja) 経路切替装置、経路切替システムおよび経路切替方法
US10826601B2 (en) Optical switch with path continuity monitoring for optical protection switching
US8175458B2 (en) Optical ring networks having node-to-node optical communication channels for carrying data traffic
US8305877B2 (en) System and method for distributed fault sensing and recovery
CN108781115B (zh) 光波长复用传送系统、光波长复用装置和备用系统检查方法
EP1613001A1 (en) Hybrid optical ring network
US9866345B2 (en) Device, system and method for transmitting wavelength division multiplexed optical signal
JP2008236798A (ja) リング光ネットワークで制御信号を通信する方法及びシステム
JP2008271603A (ja) 光ネットワーク及びプロテクションスイッチング方法
JP2006166037A (ja) 光伝送装置および光伝送システム
JP7035548B2 (ja) 伝送システム及び伝送方法
JP2010098547A (ja) パストレース方法及びノード装置
JP4569222B2 (ja) 光分岐挿入装置並びに光分岐挿入方法
JP6106977B2 (ja) 光伝送システム、及び光伝送方法
JP2008167306A (ja) 光クロスコネクト装置
EP1427122B1 (en) Bidirectional wavelength division multiplexing self-healing ring network
US11431433B2 (en) Optical protection switching for single fibre bidirectional WDM optical ring
JP2006186538A (ja) 光伝送装置及び光伝送路切換方法
KR100334907B1 (ko) 파장분할다중 광전송시스템에서 광채널계층의 단방향절체장치
WO2020195737A1 (ja) 光分岐挿入装置および光伝送方法
WO2022064913A1 (ja) 光分岐結合装置及びその制御方法
JP2015070421A (ja) 光伝送装置、光伝送システムおよび光伝送方法
JP5939811B2 (ja) 波長多重伝送装置
JP2009253391A (ja) 光パス切替え装置
JPH11341530A (ja) 光adm装置の監視方法並びにこれを用いた光adm装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017529461

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15743299

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016827442

Country of ref document: EP