WO2017012508A1 - 光纤切割方法和光纤切割设备 - Google Patents

光纤切割方法和光纤切割设备 Download PDF

Info

Publication number
WO2017012508A1
WO2017012508A1 PCT/CN2016/090140 CN2016090140W WO2017012508A1 WO 2017012508 A1 WO2017012508 A1 WO 2017012508A1 CN 2016090140 W CN2016090140 W CN 2016090140W WO 2017012508 A1 WO2017012508 A1 WO 2017012508A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
bare
lateral
bare fiber
switching mechanism
Prior art date
Application number
PCT/CN2016/090140
Other languages
English (en)
French (fr)
Inventor
童朝阳
夏江珍
金健雄
Original Assignee
爱德奇电讯国际贸易(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 爱德奇电讯国际贸易(上海)有限公司 filed Critical 爱德奇电讯国际贸易(上海)有限公司
Publication of WO2017012508A1 publication Critical patent/WO2017012508A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/25Preparing the ends of light guides for coupling, e.g. cutting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/245Removing protective coverings of light guides before coupling

Definitions

  • the present invention relates to an optical fiber cutting method and an optical fiber cutting device.
  • fiber optic cables and fiber optic cables, fiber optic cables and fiber optic connectors (especially field-mounted fiber optic connectors), and fiber optic cables are connected (either cold or hot-spliced) to passive/active fiber optic devices.
  • the butt-paired fiber pairs are precisely cut to achieve high-quality splicing; if the fiber is cut, a large cutting deviation angle (offset from the target cutting angle) is formed at the end face or a sharp protrusion is formed at the edge of the cut fiber end face. Starting or missing, that is, the cutting quality is not high, which will lead to large fiber loss and thus affect the signal transmission quality. In some cases, although the initial performance test indicators can be passed, the long-term reliability may be greatly reduced.
  • the widely used fiber-optic cutting knives are based on the technology of cutting in the air.
  • the deviation angle of the cutting end face easily exceeds the specified specification value, and the distribution of the deviation angle is also loose, which leads to the need for rework of the cutting. This results in high splice losses, which can lead to component scrapping, resulting in unnecessary time and component cost increases; in particular, for applications where high quality fiber optic cutting is growing, such as splice fiber optic connectors or field mounted fiber optic connectors
  • innovative fiber-cutting techniques must be used to reduce the fiber-cutting angle and reduce the probability of bulging or missing edges of the cut end face.
  • a fiber cutting method comprising the steps of: stripping a coating layer on an optical fiber and cleaning the exposed bare fiber; cutting a slit in the bare fiber; coating the bare fiber A predetermined amount of damping medium is applied such that a length of bare fiber comprising the slit is wrapped by a coated damping medium; and the bare fiber is broken along the slit by applying a lateral or lateral pressure.
  • a fiber cutting method comprising the steps of: stripping a coating layer on an optical fiber and cleaning the exposed bare fiber; applying a predetermined amount of damping medium on the bare fiber to cause coating of The damper medium encases a length of bare fiber; a slit is cut in a length of bare fiber wrapped by the damper medium; and the bare fiber is broken along the slit by applying a lateral or lateral pressure.
  • the damping medium is a substance in a fluid form.
  • the damping medium is a liquid, a gas having a density greater than air, a gel, a powdered solid, or a combination thereof.
  • the optical fiber cutting method further includes the step of cleaning a section of the disconnected bare fiber for splicing after the bare fiber is disconnected along the slit. .
  • the fiber cutting method further includes the step of fixing the optical fiber and the bare fiber with a jig before cutting the slit on the bare fiber.
  • an optical fiber cutting apparatus comprising: a cutting blade adapted to cut a slit in a cleaned bare fiber of the optical fiber; and a lateral force applying mechanism adapted to the Applying a lateral pulling force or a lateral pressure to the bare fiber to break the bare fiber along the slit, wherein the fiber cutting device further comprises: a damping medium coating mechanism adapted to be coated on the bare fiber A predetermined amount of damping medium is applied such that a length of bare fiber comprising the slit is wrapped by a coated damping medium.
  • the damping medium is a substance in a fluid form.
  • the damping medium is a liquid, a gas having a density greater than air, a gel, a powdered solid, or a combination thereof.
  • the fiber optic cutting apparatus further includes: a fiber optic clamp adapted to clamp the optical fiber and the bare fiber prior to cutting the bare fiber with the cutting blade.
  • the damping medium coating mechanism includes a delivery tube adapted to deliver the damping medium to the bare fiber.
  • the damping medium applying mechanism further includes: a container adapted to receive the damping medium; and a pump adapted to pass the damping medium in the container through the conveying pipe Pumped onto the bare fiber.
  • the lateral force applying mechanism includes a lateral pressure block adapted to laterally urge the bare fiber to break the bare fiber along the slit.
  • the lateral urging mechanism includes first and second convex portions that are anteriorly opposed in an axial direction of the optical fiber; and the first convex portion The raised portion and the second raised portion are adapted to simultaneously urge the bare fiber on the front and rear sides of the slit of the bare fiber to break the bare fiber along the slit.
  • the fiber cutting device further includes: a first spring for holding the delivery tube at a position away from the bare fiber; and a second spring for The lateral clamps are held away from the bare fiber.
  • the fiber cutting device further includes: a position switching mechanism adapted to control a position of the conveying pipe and the lateral pressing block, wherein when the position switching mechanism is first Positioning, the position switching mechanism is not in contact with the conveying pipe and the lateral pressing block, such that the conveying pipe and the lateral pressing block are at a position away from the bare optical fiber; wherein, when the position When the switching mechanism is switched from the first position to the second position, the position switching mechanism drives the conveying pipe to a position close to the bare fiber, and the position switching mechanism does not contact the lateral pressing block, Having the lateral clamp still in a position away from the bare fiber; wherein the position switching mechanism pushes the lateral clamp when the position switching mechanism is switched from the second position to the third position Pressing onto the bare fiber, and the position switching mechanism is not in contact with the conveying pipe, so that the conveying pipe is automatically restored to a position away from the bare fiber under the action of the first spring; and wherein When the position switching mechanism is first Positioning, the position
  • the position switching mechanism includes: a rack; a gear that meshes with the rack; a rotating shaft on which the gear is mounted; and a cam that is mounted on the a rotating shaft including a first cam portion for controlling a position of the conveying pipe and a second cam portion for controlling a position of the lateral pressing block, wherein when the position switching mechanism is in the first position, The first cam portion and the second cam portion are not in contact with the conveying pipe and the lateral pressing block, such that the conveying pipe and the lateral pressing block are at a position away from the bare optical fiber; When the position switching mechanism is switched from the first position to the second position, the first cam portion drives the delivery tube to a position close to the bare fiber, and the second cam portion and the lateral direction The clamp is not in contact such that the lateral clamp is still in a position away from the bare fiber; wherein the second cam portion is when the position switching mechanism is switched from the second position to the third position Pushing the lateral clamp to the bare fiber
  • the position switching mechanism further includes: a third spring for holding the rack in an initial position, wherein when the rack is held at the initial position The position switching mechanism is in the first position; wherein the position switching mechanism is in the second position when the rack is driven from an initial position to a first working position; and wherein, when The position switching mechanism is in the third position when the rack is driven from the first working position to the second working position.
  • the fiber cutting device further includes: a guiding mechanism for guiding the conveying pipe and the lateral pressing block to move in a predetermined direction.
  • the guiding mechanism includes: a bottom plate; and a first side plate, a second side plate, and a third side plate connected to the bottom plate, the conveying pipe is located at the Between the first side panel and the second side panel, moving along a limiting passage defined between the first side panel and the second side panel; and the lateral direction At least a portion of the compact is positioned between the second side panel and the third side panel and moves along a limit passage defined between the second side panel and the third side panel.
  • the first spring is installed at one end in a receiving hole on the bottom plate of the guiding mechanism, the other end is adapted to push the conveying pipe; and the second spring end
  • the receiving hole is mounted in the receiving hole on the bottom plate of the guiding mechanism, and the other end is adapted to push the lateral pressing block.
  • the guiding mechanism further includes a side wing connected to an outer wall surface of the third side panel; and one end of the third spring is adapted to be mounted on the guiding mechanism The other end of the receiving hole on the side flap is adapted to push the rack.
  • a first spacer is disposed between the first spring and the delivery tube for protecting the delivery tube; and in the second spring and the A second spacer is disposed between the lateral pressure blocks for protecting the lateral pressure blocks.
  • a protective block is disposed on the conveying pipe, and the first cam portion indirectly drives the conveying pipe to move by pushing the protective block.
  • the cam has a first flange, a second flange, and a third flange respectively corresponding to the first side panel, the second side panel, and the third side panel
  • the transfer tube is located between the first flange and the second flange, moves along a limit passage defined between the first flange and the second flange; and the lateral direction At least a portion of the compact is positioned between the second flange and the third flange and moves along a limit passage defined between the second flange and the third flange.
  • an additional layer of damping medium is applied to the surface of the fiber to cut the fracture, thereby alleviating the stress distribution of the fiber end face during the cutting fracture and better resisting the sporadic factors from the outside.
  • the effect of the end face cutting quality of the cut fiber is achieved, that is, the minimization of the end face cutting angle deviation and the integrity of the cut end face structure are improved.
  • FIG. 1 shows a schematic view of an optical fiber according to an exemplary embodiment of the present invention, in which a length of a coating layer on an optical fiber is stripped to expose a bare fiber of a predetermined length;
  • Figure 2 is a schematic view showing a minute slit cut in the bare fiber shown in Figure 1;
  • FIG. 3 is a schematic view showing a coating of a damping medium on a bare fiber including a slit of the bare fiber shown in FIG. 2;
  • FIG. 4a and 4b are schematic views showing the bare fiber being broken along the slit by applying a lateral pulling force or a lateral pressure on the bare fiber shown in FIG. 3;
  • Figure 5 shows a schematic view of a fiber optic cutting apparatus in accordance with an exemplary embodiment of the present invention
  • Figure 6 is a partially enlarged schematic view showing the optical fiber cutting device shown in Figure 5;
  • Figure 7 is an enlarged schematic view showing the damping medium applying mechanism, the lateral urging mechanism, and the position switching mechanism shown in Figure 6;
  • Figure 8 is a schematic view showing the position switching mechanism in the first position
  • Figure 9 is a schematic view showing the position switching mechanism in the second position
  • Figure 10 is a schematic view showing the position switching mechanism in a third position
  • Figure 11 shows another schematic view of the position switching mechanism in the second position
  • Figure 12 shows another schematic view of the position switching mechanism in the third position
  • Figure 13 shows an enlarged schematic view of the guiding mechanism, the first spring and the second spring shown in Figure 6;
  • Figure 14 shows the fiber end face inclination (cutting knife I) cut directly in air
  • Figure 15 shows the fiber end face inclination angle (cutter I) loaded with damping medium
  • Figure 16 shows the fiber end face angle (cutting knife II) cut directly in air
  • Figure 17 shows the fiber end face tilt angle (cutter II) loaded with damping medium
  • Figure 18 shows the statistical analysis of the end face angle of the 35 samples directly cut in air (cutting knife I);
  • Figure 19 shows a statistical analysis of the end face angle of cutting 35 samples in a damping medium (cutting blade I);
  • Figure 20 shows a statistical analysis of the end face angle of cutting 10 samples directly in air (cutting knife II);
  • Figure 21 shows a statistical analysis of the end face angle of the 10 samples cut in the damping medium (cutting knife II).
  • a fiber cutting method comprising the steps of: stripping a coating layer on an optical fiber and cleaning the exposed bare fiber; cutting a slit in the bare fiber; A predetermined amount of damping medium is applied thereon such that a length of bare fiber comprising the slit is wrapped by a coated damping medium; and the bare fiber is broken along the slit by applying a lateral or lateral pressure.
  • a fiber cutting method comprising the steps of: stripping a coating layer on an optical fiber and cleaning the exposed bare fiber; applying a predetermined amount of damping medium on the bare fiber, such that The coated damping medium envelops a length of bare fiber; a slit is cut in a length of bare fiber wrapped by the damping medium; and the bare fiber is broken along the slit by applying lateral or lateral pressure .
  • an optical fiber cutting apparatus comprising: a cutting blade adapted to cut a slit on a cleaned bare fiber of the optical fiber; and a lateral force applying mechanism adapted to Applying a lateral tensile force or lateral pressure to the bare fiber to break the bare fiber along the slit, wherein the fiber cutting device further comprises: a damping medium coating mechanism adapted to be in the bare fiber A predetermined amount of damping medium is applied thereon such that a length of bare fiber containing the slit is wrapped by the coated damping medium.
  • FIGS. 1 through 4 An optical fiber cutting method according to an exemplary embodiment of the present invention will be described in detail below with reference to FIGS. 1 through 4, which mainly includes the following steps:
  • a slit 111 is cut in the bare fiber 110
  • a predetermined amount of damping medium 200 is applied to bare fiber 110 such that a length of bare fiber comprising slit 111 is wrapped by coated damping medium 200;
  • the bare fiber 110 is broken along the slit 111 by applying a lateral tensile force or a lateral pressure F.
  • the bare fiber 110 is broken along the slit 111 by applying a lateral pulling force or a lateral pressure F.
  • the aforementioned damping medium 200 may be a substance in a fluid form.
  • the damping medium 200 should not contaminate, etch the bare fiber, and will not chemically react with the material of the bare fiber.
  • the aforementioned damping medium 200 may be a liquid, a gas having a density greater than air, a gel, a powdered solid, or a combination thereof.
  • the foregoing method may further include the step of cleaning the cross section of the disconnected bare fiber 110a after the bare fiber 110 is disconnected along the slit 111.
  • the foregoing method may further include the step of fixing the optical fiber and the bare optical fiber 110 with the jigs 300, 400 (see FIG. 5) before the slit 111 is cut on the bare fiber 110.
  • a fiber cutting device according to an exemplary embodiment of the present invention will be described in detail below with reference to FIGS. 5 through 13.
  • the fiber cutting device mainly includes a cutting blade 600, a lateral urging mechanism 800, and a damper medium coating mechanism 700.
  • the cutting blade 600 is adapted to cut a slit 111 in the cleaned bare fiber 110 of the optical fiber 100.
  • the lateral force applying mechanism 800 is adapted to apply a lateral or lateral pressure F to the bare fiber 110 to break the bare fiber 110 along the slit 111.
  • Damping medium coating mechanism 700 is suitable for bare light A predetermined amount of damping medium 200 is applied to the fiber 110 such that a length of bare fiber comprising the slit 111 is wrapped by the applied damping medium 200.
  • the fiber cutting device further includes a pair of first fiber holders 300 and a second fiber holder 400, a pair of first fiber holders 300 and a second fiber holder 400. It is suitable to hold the optical fiber 100 and the bare optical fiber 110 before cutting the bare optical fiber 110 with the dicing blade 600. As shown in FIGS. 4a and 4b, a pair of first fiber holders 300 are clamped on the front and rear sides of the slit 111 of the bare fiber 110 for fixing the bare fiber 110. The second fiber holder 400 is clamped to the optical fiber 100 for holding the optical fiber 100.
  • the damper medium coating mechanism 700 primarily includes a delivery tube 700, a container, and a pump.
  • the container is adapted to receive the damping medium 200.
  • the pump is adapted to pump the damping medium 200 in the vessel through the delivery tube 700 onto the bare fiber 110.
  • the lateral force applying mechanism 800 includes a lateral pressure block 800 adapted to laterally push the bare fiber 110 to make it bare.
  • the optical fiber 110 is broken along the slit 111.
  • the lateral urging mechanism 800 includes first and second bosses 810 and 221 that are anteriorly opposed in the axial direction of the optical fiber 100. Raised portion 820. The first raised portion 810 and the second raised portion 820 are adapted to simultaneously push the bare fiber 110 down on the front and rear sides of the slit 111 of the bare fiber 110 to break the bare fiber 110 along the slit 111.
  • the fiber cutting device further includes a first spring 710 and a second spring 810.
  • the first spring 710 is used to hold the delivery tube 700 away from the bare fiber 110.
  • the second spring 810 is used to hold the lateral clamp 800 away from the bare fiber 110.
  • the fiber optic cutting apparatus further includes a position switching mechanism 500 adapted to control the position of the delivery tube 700 and the lateral compression block 800.
  • the position switching mechanism 500 when the position switching mechanism 500 is in the first position, the position switching mechanism 500 is not in contact with the delivery tube 700 and the lateral pressure block 800, such that the delivery tube 700 and the lateral pressure block 800 are located away from the bare fiber 110. position.
  • the position switching mechanism 500 When the position switching mechanism 500 is switched from the first position as shown in FIG. 8 to the second position as shown in FIG. 9, the position switching mechanism 500 drives the delivery tube 700 downward to a position close to the bare optical fiber 110, and the position The switching mechanism 500 is not in contact with the lateral clamp 800 such that the lateral clamp 800 is still in a position away from the bare fiber 110.
  • the position switching mechanism 500 When the position switching mechanism 500 is switched from the second position as shown in FIG. 9 to the third position as shown in FIG. 10, the position switching mechanism 500 pushes the lateral pressing block 800 down onto the bare fiber 110, and The position switching mechanism 500 is not in contact with the delivery tube 700, so that the delivery tube 700 is automatically restored to a position away from the bare optical fiber 110 by the action of the first spring 710.
  • the position switching mechanism 500 When the position switching mechanism 500 is switched from the third position as shown in FIG. 10 to the first position as shown in FIG. 8, the position switching mechanism 500 does not contact the delivery tube 700 and the lateral pressure block 800, so that the lateral direction
  • the pressure block 800 is automatically restored to a position away from the bare optical fiber 110 by the action of the second spring 810, and the delivery tube 700 is still at Keep away from the location of the bare fiber 110.
  • the position switching mechanism 500 mainly includes: a rack 510; a gear 520 that meshes with the rack 510; a rotating shaft 540 on which the gear 520 is mounted; and a cam 530, mounted on the rotating shaft 540, includes a first cam portion 530a for controlling the position of the conveying pipe 700 and a second cam portion 530b for controlling the position of the lateral pressing block 800.
  • the first cam portion 530a and the second cam portion 530b are not in contact with the delivery tube 700 and the lateral pressure block 800, so that the delivery tube 700 and the lateral pressure block 800 is in a position away from the bare fiber 110.
  • the first cam portion 530a drives the delivery tube 700 to a position close to the bare optical fiber 110, and the second The cam portion 530b is not in contact with the lateral clamp 800 such that the lateral clamp 800 is still in a position away from the bare fiber 110.
  • the second cam portion 530b pushes the lateral pressing block 800 onto the bare optical fiber 110, and A cam portion 530a is not in contact with the delivery tube 700, so that the delivery tube 700 is automatically restored to a position away from the bare optical fiber 110 by the action of the first spring 710.
  • the first cam portion 530a and the second cam portion 530b are coupled to the delivery tube 700 and the lateral pressure block 800. Without contact, the lateral clamp 800 is automatically restored to a position away from the bare fiber 110 under the action of the second spring 810, and the delivery tube 700 is still in a position away from the bare fiber 110.
  • FIGS. 11 and 12 show another schematic view of the position switching mechanism in the second position and the third position, respectively.
  • the position switching mechanism shown in FIGS. 11 and 12 differs from the position switching mechanism shown in FIGS. 8 to 10 only in the arrangement of the rack 510.
  • the rack 510 is disposed on one side of the gear 520.
  • the rack 510 is disposed on the other side of the gear 520.
  • the position switching mechanism 500 further includes a third spring 511 for holding the rack 510 in the initial position.
  • the position switching mechanism 500 is in the first position shown in FIG.
  • the position switching mechanism 500 is in the second position shown in FIG. 9 or FIG.
  • the position switching mechanism 500 is in the third position shown in FIG. 10 or FIG.
  • the fiber cutting apparatus further includes a guiding mechanism for guiding the conveying pipe 700 and the lateral pressing block 800 to move in a predetermined direction.
  • the guiding mechanism includes: a bottom plate 940; and a first side plate 910, a second side plate 920, and a third side plate 930 connected to the bottom plate 940.
  • the conveying pipe 700 is located between the first side plate 910 and the second side plate 920, moves along a limit passage defined between the first side plate 910 and the second side plate 920; and at least a portion of the lateral pressing block 800 is located at the Between the two side panels 920 and the third side panel 930 along the second side panel 920 The limit passage defined between the third side plate 930 moves.
  • one end of the first spring 710 is mounted in a receiving hole in the bottom plate 940 of the guiding mechanism, the other end is adapted to push the conveying pipe 700; and one end of the second spring 810 It is mounted in a receiving hole in the bottom plate 940 of the guiding mechanism, and the other end is adapted to push the lateral pressing block 800.
  • the guiding mechanism further includes a side wing 950 connected to the outer wall surface of the third side plate 930; and one end of the third spring 511 is adapted to be mounted on the side of the guiding mechanism The other end of the receiving hole 951 on the 950 is adapted to push the rack 510.
  • a first spacer 720 is disposed between the first spring 710 and the delivery tube 700 for protecting the delivery tube 700; and at the second spring 810 and the side A second spacer 820 is disposed between the pressure blocks 800 for protecting the lateral pressure blocks 800.
  • a protective block 730 is provided on the conveying pipe 700, and the first cam portion 530a indirectly drives the conveying pipe 700 to move by pushing the protective block 730.
  • the cam 530 has a first flange 531 and a second flange corresponding to the first side plate 910, the second side plate 920, and the third side plate 930, respectively. 532 and a third flange 533.
  • the delivery tube 700 is located between the first flange 531 and the second flange 532, moves along a limit passage defined between the first flange 531 and the second flange 532; and at least a portion of the lateral pressure block 800 is located at Between the second flange 532 and the third flange 533, the limit passage is defined along the second flange 532 and the third flange 533.
  • Figure 14 and Figure 15 show the angle of inclination of the end face obtained by direct cutting in air and loading of the damping medium, that is, the angle between the end face of the fiber and the plane perpendicular to the mandrel of the fiber.
  • Figure 14 shows the fiber end face inclination (cutting blade I) cut directly in air
  • Figure 15 shows the fiber section inclination angle (cutting blade I) loaded with damping medium.
  • Figure 16 shows the fiber end face tilt angle (cutting knife II) cut directly in air using another cutting blade
  • Figure 17 is a fiber cross-sectional angle (cutting knife II) cut with another cutting blade loaded with a damping medium.
  • Table 1 shows the test data of using the cutting knife I in the air and loading the damping medium.
  • Table 1 Average and standard deviation of fiber end faces for each 35 samples of direct cutting and loading of damping media in air (cutting knife I)
  • Undamped medium Damping medium Mean 0.272° 0.178° standard deviation 0.104° 0.098°
  • Undamped medium Damping medium Mean 1.252° 0.600° standard deviation 0.278° 0.115°

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

一种光纤切割方法,包括:剥除光纤(10)上的被覆层并清洁露出的裸光纤(110);在所述裸光纤(110)上切割出一个切口(111);在所述裸光纤(110)上涂敷预定量的阻尼介质(200),使得包含所述切口(111)的一段裸光纤被涂敷的阻尼介质(200)包裹住;和通过施加侧向拉力或侧向压力(F)使所述裸光纤(110)沿所述切口(111)断开。通过在光纤(10)表面施加了一层阻尼介质(200),从而缓和了光纤端面在切割断裂时的应力分布且能较好地抵御来自外部的偶发因素的影响,从而达到了提高被切割光纤的端面切割品质,即获得了端面切割角偏差的极小化以及改善了切割端面结构的完整性。

Description

光纤切割方法和光纤切割设备
本申请要求于2015年7月17日递交中国专利局的、申请号为201510420888.9的中国专利申请的权益,该申请的全部公开内容以引用方式并入本文。
技术领域
本发明涉及一种光纤切割方法和光纤切割设备。
背景技术
在光纤通信系统中,光纤缆与光纤缆、光纤缆与光纤连接器(特别是现场安装光纤连接器)以及光纤缆与无源/有源光纤器件接续(冷接或热熔接)时,均须将对接的光纤对进行精密切割处理以实现高品质的接续;如果光纤切割处理时,在其端面形成较大的切割偏差角(偏离目标切割角)或被切割的光纤端面边缘出现较明显的凸起或缺失,即切割品质不高,会导致光纤接续损耗大从而影响信号的传输质量,在某些情形下,虽然能通过初始性能测试指标,但是其长期可靠性可能大打折扣。
现有被广泛商用的光纤切割刀都是基于在空气中进行切割的技术,切割端面的偏差角容易超出规定的规范值,并且偏差角的分布也比较松散,导致切割需要返工,如果勉强接续会导致接续损耗高,严重的会导致元件报废,造成不必要的时间和元件成本增加;特别地,对于那些高品质光纤切割日趋成长的应用而言,如接续型光纤连接器或现场安装光纤连接器,为了达成高品质的光纤接续,必须要有创新的光纤切割技术手段来降低光纤切割偏差角、同时降低被切割的光线端面边缘出现凸起或缺失的概率。
发明内容
本发明的目的旨在解决现有技术中存在的上述问题和缺陷的至少一个方面。
本发明的一个目的在于提供一种光纤切割方法和光纤切割设备,其能够提高被切割光纤的端面切割品质。
根据本发明的一个方面,提供一种光纤切割方法,包括以下步骤:剥除光纤上的被覆层并清洁露出的裸光纤;在所述裸光纤上切割出一个切口;在所述裸光纤上涂敷预定量的阻尼介质,使得包含所述切口的一段裸光纤被涂敷的阻尼介质包裹住;和通过施加侧向拉力或侧向压力使所述裸光纤沿所述切口断开。
根据本发明的另一个方面,提供一种光纤切割方法,包括以下步骤:剥除光纤上的被覆层并清洁露出的裸光纤;在所述裸光纤上涂敷预定量的阻尼介质,使得涂敷的 阻尼介质包裹住一段裸光纤;在被所述阻尼介质包裹住的一段裸光纤上切割出一个切口;和通过施加侧向拉力或侧向压力使所述裸光纤沿所述切口断开。
根据本发明的一个实例性的实施例,所述阻尼介质为流体形态的物质。
根据本发明的另一个实例性的实施例,所述阻尼介质为液体、密度比空气大的气体、胶状体、粉末状固体或它们的组合。
根据本发明的另一个实例性的实施例,所述光纤切割方法还包括步骤:在所述裸光纤沿所述切口断开之后,对断开的、用于接续的裸光纤的断面进行清洁处理。
根据本发明的另一个实例性的实施例,所述光纤切割方法还包括步骤:在所述裸光纤上切割出所述切口之前,利用夹具固定住所述光纤和所述裸光纤。
根据本发明的另一个方面,提供一种光纤切割设备,包括:切割刀,适于在所述光纤的被清洁过的裸光纤上切割出一个切口;和侧向施力机构,适于向所述裸光纤施加侧向拉力或侧向压力,以使所述裸光纤沿所述切口断开,其中,所述光纤切割设备还包括:阻尼介质涂敷机构,适于在所述裸光纤上涂敷预定量的阻尼介质,使得包含所述切口的一段裸光纤被涂敷的阻尼介质包裹住。
根据本发明的一个实例性的实施例,所述阻尼介质为流体形态的物质。
根据本发明的另一个实例性的实施例,所述阻尼介质为液体、密度比空气大的气体、胶状体、粉末状固体或它们的组合。
根据本发明的另一个实例性的实施例,所述光纤切割设备还包括:光纤夹具,适于在利用所述切割刀切割所述裸光纤之前夹持住所述光纤和所述裸光纤。
根据本发明的另一个实例性的实施例,所述阻尼介质涂敷机构包括:输送管,适于将所述阻尼介质输送至所述裸光纤上。
根据本发明的另一个实例性的实施例,所述阻尼介质涂敷机构还包括:容器,适于容纳所述阻尼介质;和泵,适于通过所述输送管将所述容器中的阻尼介质泵送至所述裸光纤上。
根据本发明的另一个实例性的实施例,所述侧向施力机构包括:侧向压块,适于侧向推压所述裸光纤,以使所述裸光纤沿所述切口断开。
根据本发明的另一个实例性的实施例,所述侧向施力机构包括在所述光纤的轴向方向上前后相对的第一凸起部和第二凸起部;并且所述第一凸起部和第二凸起部适于在所述裸光纤的所述切口的前、后两侧同时推压所述裸光纤,以使所述裸光纤沿所述切口断开。
根据本发明的另一个实例性的实施例,所述光纤切割设备还包括:第一弹簧,用于将所述输送管保持在远离所述裸光纤的位置;和第二弹簧,用于将所述侧向压块保持在远离所述裸光纤的位置。
根据本发明的另一个实例性的实施例,所述光纤切割设备还包括:位置切换机构,适于控制所述输送管和所述侧向压块的位置,其中,当所述位置切换机构处于第一位 置时,所述位置切换机构与所述输送管和所述侧向压块不接触,使得所述输送管和所述侧向压块处于远离所述裸光纤的位置;其中,当所述位置切换机构被从第一位置切换至第二位置时,所述位置切换机构将所述输送管驱动至靠近所述裸光纤的位置,并且所述位置切换机构与所述侧向压块不接触,使得所述侧向压块仍处于远离所述裸光纤的位置;其中,当所述位置切换机构被从第二位置切换至第三位置时,所述位置切换机构将所述侧向压块推压到所述裸光纤上,并且所述位置切换机构与所述输送管不接触,使得所述输送管在所述第一弹簧的作用下自动恢复至远离所述裸光纤的位置;并且其中,当所述位置切换机构被从第三位置切换至第一位置时,所述位置切换机构与所述输送管和所述侧向压块不接触,使得所述侧向压块在所述第二弹簧的作用下自动恢复至远离所述裸光纤的位置,并且使得所述输送管仍处于远离所述裸光纤的位置。
根据本发明的另一个实例性的实施例,所述位置切换机构包括:齿条;齿轮,与所述齿条啮合;转轴,所述齿轮安装在所述转轴上;和凸轮,安装在所述转轴上,包括用于控制所述输送管的位置的第一凸轮部和用于控制所述侧向压块的位置的第二凸轮部,其中,当所述位置切换机构处于第一位置时,所述第一凸轮部和第二凸轮部与所述输送管和所述侧向压块不接触,使得所述输送管和所述侧向压块处于远离所述裸光纤的位置;其中,当所述位置切换机构被从第一位置切换至第二位置时,所述第一凸轮部将所述输送管驱动至靠近所述裸光纤的位置,并且所述第二凸轮部与所述侧向压块不接触,使得所述侧向压块仍处于远离所述裸光纤的位置;其中,当所述位置切换机构被从第二位置切换至第三位置时,所述第二凸轮部将所述侧向压块推压到所述裸光纤上,并且所述第一凸轮部与所述输送管不接触,使得所述输送管在所述第一弹簧的作用下自动恢复至远离所述裸光纤的位置;并且其中,当所述位置切换机构被从第三位置切换至第一位置时,所述第一凸轮部和所述第二凸轮部与所述输送管和所述侧向压块不接触,使得所述侧向压块在所述第二弹簧的作用下自动恢复至远离所述裸光纤的位置,并且使得所述输送管仍处于远离所述裸光纤的位置。
根据本发明的另一个实例性的实施例,所述位置切换机构还包括:第三弹簧,用于将所述齿条保持在初始位置,其中,当所述齿条保持在所述初始位置时,所述位置切换机构处于所述第一位置;其中,当所述齿条被从初始位置驱动至第一工作位置时,所述位置切换机构处于所述第二位置;并且其中,当所述齿条被从第一工作位置驱动至第二工作位置时,所述位置切换机构处于所述第三位置。
根据本发明的另一个实例性的实施例,所述光纤切割设备还包括:引导机构,用于引导所述输送管和所述侧向压块沿预定的方向移动。
根据本发明的另一个实例性的实施例,所述引导机构包括:底板;和连接到所述底板上的第一侧板、第二侧板和第三侧板,所述输送管位于所述第一侧板和所述第二侧板之间,沿所述第一侧板和所述第二侧板之间限定的限位通道移动;并且所述侧向 压块的至少一部分位于所述第二侧板和所述第三侧板之间,沿所述第二侧板和所述第三侧板之间限定的限位通道移动。
根据本发明的另一个实例性的实施例,所述第一弹簧一端安装在所述引导机构的底板上的容纳孔中,另一端适于推压所述输送管;并且所述第二弹簧一端安装在所述引导机构的底板上的容纳孔中,另一端适于推压所述侧向压块。
根据本发明的另一个实例性的实施例,所述引导机构还包括连接到所述第三侧板的外壁面上的侧翼;并且所述第三弹簧的一端适于安装在所述引导机构的侧翼上的容纳孔中,另一端适于推压所述齿条。
根据本发明的另一个实例性的实施例,在所述第一弹簧和所述输送管之间设置有第一垫块,用于保护所述输送管;并且在所述第二弹簧和所述侧向压块之间设置有第二垫块,用于保护所述侧向压块。
根据本发明的另一个实例性的实施例,在所述输送管上设置有保护块,所述第一凸轮部通过推压所述保护块来间接地驱动所述输送管移动。
根据本发明的另一个实例性的实施例,所述凸轮具有与所述第一侧板、第二侧板和第三侧板分别对应的第一凸缘、第二凸缘和第三凸缘;所述输送管位于所述第一凸缘和所述第二凸缘之间,沿所述第一凸缘和所述第二凸缘之间限定的限位通道移动;并且所述侧向压块的至少一部分位于所述第二凸缘和所述第三凸缘之间,沿所述第二凸缘和所述第三凸缘之间限定的限位通道移动。
在本发明前述各个实例性的实施例中,通过在光纤表面切割断裂处额外施加了一层阻尼介质,从而缓和了光纤端面在切割断裂时的应力分布且能较好地抵御来自外部的偶发因素的影响,从而达到了提高被切割光纤的端面切割品质,即获得了端面切割角偏差的极小化以及改善了切割端面结构的完整性。
通过下文中参照附图对本发明所作的描述,本发明的其它目的和优点将显而易见,并可帮助对本发明有全面的理解。
附图说明
图1显示根据本发明的一个实例性的实施例的光纤的示意图,其中,光纤上的一段被覆层被剥除、露出了预定长度的裸光纤;
图2显示在图1所示的裸光纤上切割出一个微小的切口的示意图;
图3显示在图2所示的裸光纤的包含切口的一段裸光纤上涂敷一层阻尼介质的示意图;
图4a和图4b显示通过在图3所示的裸光纤上施加侧向拉力或侧向压力使裸光纤沿切口断开的示意图;
图5显示根据本发明的一个实例性的实施例的光纤切割设备的示意图;
图6显示图5所示的光纤切割设备的局部放大示意图;
图7显示图6中所示的阻尼介质涂敷机构、侧向施力机构和位置切换机构的放大示意图;
图8显示位置切换机构位于第一位置时的示意图;
图9显示位置切换机构位于第二位置时的示意图;
图10显示位置切换机构位于第三位置时的示意图;
图11显示位置切换机构位于第二位置时的另一种示意图;
图12显示位置切换机构位于第三位置时的另一种示意图;
图13显示图6中所示的引导机构、第一弹簧和第二弹簧的放大示意图;
图14显示直接在空气中切割的光纤端面倾角(切割刀I);
图15显示加载阻尼介质的光纤端面倾角(切割刀I);
图16显示直接在空气中切割的光纤端面倾角(切割刀II)
图17显示加载阻尼介质的光纤端面倾角(切割刀II)
图18显示在空气中直接切割35个样本的端面角度统计分布图(切割刀I);
图19显示在阻尼介质中切割35个样本的端面角度统计分布图(切割刀I);
图20显示在空气中直接切割10个样本的端面角度统计分布图(切割刀II);和
图21显示在阻尼介质中切割10个样本的端面角度统计分布图(切割刀II)。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以图示的方式体现以简化附图。
根据本发明的一个总体技术构思,提供一种光纤切割方法,包括以下步骤:剥除光纤上的被覆层并清洁露出的裸光纤;在所述裸光纤上切割出一个切口;在所述裸光纤上涂敷预定量的阻尼介质,使得包含所述切口的一段裸光纤被涂敷的阻尼介质包裹住;和通过施加侧向拉力或侧向压力使所述裸光纤沿所述切口断开。
根据本发明的另一个总体技术构思,提供一种光纤切割方法,包括以下步骤:剥除光纤上的被覆层并清洁露出的裸光纤;在所述裸光纤上涂敷预定量的阻尼介质,使得涂敷的阻尼介质包裹住一段裸光纤;在被所述阻尼介质包裹住的一段裸光纤上切割出一个切口;和通过施加侧向拉力或侧向压力使所述裸光纤沿所述切口断开。
根据本发明的另一个总体技术构思,提供一种光纤切割设备,包括:切割刀,适于在所述光纤的被清洁过的裸光纤上切割出一个切口;和侧向施力机构,适于向所述裸光纤施加侧向拉力或侧向压力,以使所述裸光纤沿所述切口断开,其中,所述光纤切割设备还包括:阻尼介质涂敷机构,适于在所述裸光纤上涂敷预定量的阻尼介质,使得包含所述切口的一段裸光纤被涂敷的阻尼介质包裹住。
下面将根据图1至图4来详细说明根据本发明的一个实例性的实施例的光纤切割方法,该光纤切割方法主要包括以下步骤:
如图1所示,剥除光纤10上的被覆层并清洁露出的裸光纤110;
如图2所示,在裸光纤110上切割出一个切口111;
如图3所示,在裸光纤110上涂敷预定量的阻尼介质200,使得包含切口111的一段裸光纤被涂敷的阻尼介质200包裹住;和
如图4a和图4b所示,通过施加侧向拉力或侧向压力F使裸光纤110沿切口111断开。
下面将说明根据本发明的另一个实例性的实施例的光纤切割方法,该光纤切割方法主要包括以下步骤:
剥除光纤10上的被覆层并清洁露出的裸光纤110;
在裸光纤110上涂敷预定量的阻尼介质200,使得涂敷的阻尼介质200包裹住一段裸光纤;
在被阻尼介质200包裹住的一段裸光纤上切割出一个切口111;和
通过施加侧向拉力或侧向压力F使裸光纤110沿切口111断开。
在本发明的一个实例性的实施例中,前述阻尼介质200可以为流体形态的物质。该阻尼介质200应当不会污染、腐蚀裸光纤、并且不会与裸光纤的材料起化学反应。
在本发明的一个实例性的实施例中,前述阻尼介质200可以为液体、密度比空气大的气体、胶状体、粉末状固体或它们的组合。
在本发明的一个实例性的实施例中,前述方法还可以包括步骤:在裸光纤110沿切口111断开之后,对断开的、用于接续的裸光纤110a的断面进行清洁处理。
在本发明的一个实例性的实施例中,前述方法还可以包括步骤:在裸光纤110上切割出切口111之前,利用夹具300、400(参见图5)固定住光纤和裸光纤110。
下面将借助图5至图13来详细说明根据本发明的一个实例性的实施例的光纤切割设备。
如图1至图6所示,在图示的实施例中,光纤切割设备主要包括切割刀600、侧向施力机构800和阻尼介质涂敷机构700。切割刀600适于在光纤100的被清洁过的裸光纤110上切割出一个切口111。侧向施力机构800适于向裸光纤110施加侧向拉力或侧向压力F,以使裸光纤110沿切口111断开。阻尼介质涂敷机构700适于在裸光 纤110上涂敷预定量的阻尼介质200,使得包含切口111的一段裸光纤被涂敷的阻尼介质200包裹住。
如图1至图6所示,在图示的实施例中,光纤切割设备还包括一对第一光纤夹具300和一个第二光纤夹具400,一对第一光纤夹具300和第二光纤夹具400适于在利用切割刀600切割裸光纤110之前夹持住光纤100和裸光纤110。如图4a和图4b所示,一对第一光纤夹具300夹持在裸光纤110的切口111的前后两侧,用于固定住裸光纤110。第二光纤夹具400夹持在光纤100上,用于固定住光纤100。
如图5和图6所示,在图示的实施例中,阻尼介质涂敷机构700主要包括输送管700、容器和泵。容器适于容纳阻尼介质200。泵适于通过输送管700将容器中的阻尼介质200泵送至裸光纤110上。
如图5和图6所示,在图示的实施例中,侧向施力机构800包括侧向压块800,该侧向施力机构800适于侧向推压裸光纤110,以使裸光纤110沿切口111断开。
如图4、图5、图6和图7所示,在图示的实施例中,侧向施力机构800包括在光纤100的轴向方向上前后相对的第一凸起部810和第二凸起部820。第一凸起部810和第二凸起部820适于在裸光纤110的切口111的前、后两侧同时向下推压裸光纤110,以使裸光纤110沿切口111断开。
如图5、图6和图13所示,光纤切割设备还包括第一弹簧710和第二弹簧810。第一弹簧710用于将输送管700保持在远离裸光纤110的位置。第二弹簧810用于将侧向压块800保持在远离裸光纤110的位置。
如图5至图12所示,在图示的实施例中,光纤切割设备还包括位置切换机构500,该位置切换机构500适于控制输送管700和侧向压块800的位置。
如图8所示,当位置切换机构500处于第一位置时,位置切换机构500与输送管700和侧向压块800不接触,使得输送管700和侧向压块800处于远离裸光纤110的位置。
当位置切换机构500被从如图8所示的第一位置切换至如图9所示的第二位置时,位置切换机构500将输送管700向下驱动至靠近裸光纤110的位置,并且位置切换机构500与侧向压块800不接触,使得侧向压块800仍处于远离裸光纤110的位置。
当位置切换机构500被从如图9所示的第二位置切换至如图10所示的第三位置时,位置切换机构500将侧向压块800向下推压到裸光纤110上,并且位置切换机构500与输送管700不接触,使得输送管700在第一弹簧710的作用下自动恢复至远离裸光纤110的位置。
当位置切换机构500被从如图10所示的第三位置切换至从如图8所示的第一位置时,位置切换机构500与输送管700和侧向压块800不接触,使得侧向压块800在第二弹簧810的作用下自动恢复至远离裸光纤110的位置,并且使得输送管700仍处于 远离裸光纤110的位置。
如图7至图10所示,在图示的实施例中,位置切换机构500主要包括:齿条510;齿轮520,与齿条510啮合;转轴540,齿轮520安装在转轴540上;和凸轮530,安装在转轴540上,包括用于控制输送管700的位置的第一凸轮部530a和用于控制侧向压块800的位置的第二凸轮部530b。
当位置切换机构500处于如图8所示的第一位置时,第一凸轮部530a和第二凸轮部530b与输送管700和侧向压块800不接触,使得输送管700和侧向压块800处于远离裸光纤110的位置。
当位置切换机构500被从如图8所示的第一位置切换至如图9所示的第二位置时,第一凸轮部530a将输送管700驱动至靠近裸光纤110的位置,并且第二凸轮部530b与侧向压块800不接触,使得侧向压块800仍处于远离裸光纤110的位置。
当位置切换机构500被从如图9所示的第二位置切换至如图10所示的第三位置时,第二凸轮部530b将侧向压块800推压到裸光纤110上,并且第一凸轮部530a与输送管700不接触,使得输送管700在第一弹簧710的作用下自动恢复至远离裸光纤110的位置.
当位置切换机构500被从如图10所示的第三位置切换至如图8所示的第一位置时,第一凸轮部530a和第二凸轮部530b与输送管700和侧向压块800不接触,使得侧向压块800在第二弹簧810的作用下自动恢复至远离裸光纤110的位置,并且使得输送管700仍处于远离裸光纤110的位置。
图11和图12分别显示位置切换机构位于第二位置和第三位置时的另一种示意图。图11和图12所示的位置切换机构与图8至图10所示的位置切换机构区别仅在于齿条510的设置不同。在图8至图10所示的位置切换机构中,齿条510设置在齿轮520的一侧。在图11至图12所示的位置切换机构中,齿条510设置在齿轮520的另一侧。
如图6至图13所示,在图示实施例中,位置切换机构500还包括:第三弹簧511,用于将齿条510保持在初始位置。当齿条510保持在初始位置时,位置切换机构500处于图8所示的第一位置。当齿条510被从初始位置驱动至第一工作位置时,位置切换机构500处于图9或图11所示的第二位置。当齿条510被从第一工作位置驱动至第二工作位置时,位置切换机构500处于图10或图12所示的第三位置。
如图6至图13所示,在图示实施例中,光纤切割设备还包括:引导机构,用于引导输送管700和侧向压块800沿预定的方向移动。
如图6至图13所示,在图示实施例中,引导机构包括:底板940;和连接到底板940上的第一侧板910、第二侧板920和第三侧板930。输送管700位于第一侧板910和第二侧板920之间,沿第一侧板910和第二侧板920之间限定的限位通道移动;并且侧向压块800的至少一部分位于第二侧板920和第三侧板930之间,沿第二侧板920 和第三侧板930之间限定的限位通道移动。
如图6至图13所示,在图示实施例中,第一弹簧710一端安装在引导机构的底板940上的容纳孔中,另一端适于推压输送管700;并且第二弹簧810一端安装在引导机构的底板940上的容纳孔中,另一端适于推压侧向压块800。
如图6至图13所示,在图示实施例中,引导机构还包括连接到第三侧板930的外壁面上的侧翼950;并且第三弹簧511的一端适于安装在引导机构的侧翼950上的容纳孔951中,另一端适于推压齿条510。
如图6至图13所示,在图示实施例中,在第一弹簧710和输送管700之间设置有第一垫块720,用于保护输送管700;并且在第二弹簧810和侧向压块800之间设置有第二垫块820,用于保护侧向压块800。
如图6至图13所示,在图示实施例中,在输送管700上设置有保护块730,第一凸轮部530a通过推压保护块730来间接地驱动输送管700移动。
如图6至图13所示,在图示实施例中,凸轮530具有与第一侧板910、第二侧板920和第三侧板930分别对应的第一凸缘531、第二凸缘532和第三凸缘533。输送管700位于第一凸缘531和第二凸缘532之间,沿第一凸缘531和第二凸缘532之间限定的限位通道移动;并且侧向压块800的至少一部分位于第二凸缘532和第三凸缘533之间,沿第二凸缘532和第三凸缘533之间限定的限位通道移动。
该方案的示例性实验结果参见附图14至图21以及下面的表1和表2。
图14和图15分别为空气中直接切割以及加载阻尼介质后得到的端面倾角,也即光纤端面和垂直于光纤芯轴的平面之间的夹角。图14所示为直接在空气中切割的光纤端面倾角(切割刀I);图15为加载阻尼介质的光纤断面倾角(切割刀I)。图16所示为采用另一切割刀直接在空气中切割的光纤端面倾角(切割刀II);图17为所示为采用另一切割刀加载阻尼介质切割的光纤断面倾角(切割刀II)。表1所示为采用切割刀I在空气中和加载阻尼介质的试验数据,在这两种试验条件下分别做了35个样本;表2所示为采用切割刀II在空气中和加载阻尼介质的试验数据,在这两种试验条件下分别做了10个样本。从表I和表II可以看出阻尼介质有效地改善了光纤的端面的切割角度和标准偏差。图18和图19为采用切割刀I在空气中直接切割和加载阻尼介质各35个样本的统计分布图;图20和图21为采用切割刀II在空气中直接切割和加载阻尼介质各10个样本的统计分布图。可以看出阻尼介质的参与有效地改善了光纤端面切割品质。
表1:空气中直接切割和加载阻尼介质各35个样本的光纤端面均值和标准偏差(切割刀I)
  无阻尼介质 阻尼介质
均值 0.272° 0.178°
标准偏差 0.104° 0.098°
表2:空气中直接切割和加载阻尼介质各10个样本的光纤端面均值和标准偏差(切割刀II)
  无阻尼介质 阻尼介质
均值 1.252° 0.600°
标准偏差 0.278° 0.115°
本领域的技术人员可以理解,上面所描述的实施例都是示例性的,并且本领域的技术人员可以对其进行改进,各种实施例中所描述的结构在不发生结构或者原理方面的冲突的情况下可以进行自由组合。
虽然结合附图对本发明进行了说明,但是附图中公开的实施例旨在对本发明优选实施方式进行示例性说明,而不能理解为对本发明的一种限制。
虽然本总体发明构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。
应注意,措词“包括”不排除其它元件或步骤,措词“一”或“一个”不排除多个。另外,权利要求的任何元件标号不应理解为限制本发明的范围。

Claims (25)

  1. 一种光纤切割方法,包括以下步骤:
    剥除光纤(10)上的被覆层并清洁露出的裸光纤(110);
    在所述裸光纤(110)上切割出一个切口(111);
    在所述裸光纤(110)上涂敷预定量的阻尼介质(200),使得包含所述切口(111)的一段裸光纤被涂敷的阻尼介质(200)包裹住;和
    通过施加侧向拉力或侧向压力(F)使所述裸光纤(110)沿所述切口(111)断开。
  2. 一种光纤切割方法,包括以下步骤:
    剥除光纤(10)上的被覆层并清洁露出的裸光纤(110);
    在所述裸光纤(110)上涂敷预定量的阻尼介质(200),使得涂敷的阻尼介质(200)包裹住一段裸光纤;
    在被所述阻尼介质(200)包裹住的一段裸光纤上切割出一个切口(111);和
    通过施加侧向拉力或侧向压力(F)使所述裸光纤(110)沿所述切口(111)断开。
  3. 根据权利要求1或2所述的光纤切割方法,其特征在于:所述阻尼介质(200)为流体形态的物质。
  4. 根据权利要求3所述的光纤切割方法,其特征在于:
    所述阻尼介质(200)为液体、密度比空气大的气体、胶状体、粉末状固体或它们的组合。
  5. 根据权利要求1或2所述的光纤切割方法,还包括步骤:
    在所述裸光纤(110)沿所述切口(111)断开之后,对断开的、用于接续的裸光纤(110a)的断面进行清洁处理。
  6. 根据权利要求1或2所述的光纤切割方法,还包括步骤:
    在所述裸光纤(110)上切割出所述切口(111)之前,利用夹具(300、400)固定住所述光纤和所述裸光纤(110)。
  7. 一种光纤切割设备,包括:
    切割刀(600),适于在所述光纤(100)的被清洁过的裸光纤(110)上切割出一个切口(111);和
    侧向施力机构(800),适于向所述裸光纤(110)施加侧向拉力或侧向压力(F),以使所述裸光纤(110)沿所述切口(111)断开,
    其特征在于,所述光纤切割设备还包括:
    阻尼介质涂敷机构(700),适于在所述裸光纤(110)上涂敷预定量的阻尼介质(200),使得包含所述切口(111)的一段裸光纤被涂敷的阻尼介质(200)包裹住。
  8. 根据权利要求7所述的光纤切割设备,其特征在于:所述阻尼介质(200)为流体形态的物质。
  9. 根据权利要求8所述的光纤切割设备,其特征在于:
    所述阻尼介质(200)为液体、密度比空气大的气体、胶状体、粉末状固体或它们的组合。
  10. 根据权利要求7所述的光纤切割设备,还包括:
    光纤夹具(300、400),适于在利用所述切割刀(600)切割所述裸光纤(110)之前夹持住所述光纤(100)和所述裸光纤(110)。
  11. 根据权利要求7所述的光纤切割设备,其特征在于,所述阻尼介质涂敷机构(700)包括:
    输送管(700),适于将所述阻尼介质(200)输送至所述裸光纤(110)上。
  12. 根据权利要求11所述的光纤切割设备,其特征在于,所述阻尼介质涂敷机构(700)还包括:
    容器,适于容纳所述阻尼介质(200);和
    泵,适于通过所述输送管(700)将所述容器中的阻尼介质(200)泵送至所述裸光纤(110)上。
  13. 根据权利要求11所述的光纤切割设备,其特征在于,所述侧向施力机构(800)包括:
    侧向压块(800),适于侧向推压所述裸光纤(110),以使所述裸光纤(110)沿所述切口(111)断开。
  14. 根据权利要求13所述的光纤切割设备,其特征在于:
    所述侧向施力机构(800)包括在所述光纤(100)的轴向方向上前后相对的第一 凸起部(810)和第二凸起部(820);并且
    所述第一凸起部(810)和第二凸起部(820)适于在所述裸光纤(110)的所述切口(111)的前、后两侧同时推压所述裸光纤(110),以使所述裸光纤(110)沿所述切口(111)断开。
  15. 根据权利要求14所述的光纤切割设备,其特征在于,所述光纤切割设备还包括:
    第一弹簧(710),用于将所述输送管(700)保持在远离所述裸光纤(110)的位置;和
    第二弹簧(810),用于将所述侧向压块(800)保持在远离所述裸光纤(110)的位置。
  16. 根据权利要求15所述的光纤切割设备,其特征在于,所述光纤切割设备还包括:
    位置切换机构(500),适于控制所述输送管(700)和所述侧向压块(800)的位置,
    其中,当所述位置切换机构(500)处于第一位置时,所述位置切换机构(500)与所述输送管(700)和所述侧向压块(800)不接触,使得所述输送管(700)和所述侧向压块(800)处于远离所述裸光纤(110)的位置;
    其中,当所述位置切换机构(500)被从第一位置切换至第二位置时,所述位置切换机构(500)将所述输送管(700)驱动至靠近所述裸光纤(110)的位置,并且所述位置切换机构(500)与所述侧向压块(800)不接触,使得所述侧向压块(800)仍处于远离所述裸光纤(110)的位置;
    其中,当所述位置切换机构(500)被从第二位置切换至第三位置时,所述位置切换机构(500)将所述侧向压块(800)推压到所述裸光纤(110)上,并且所述位置切换机构(500)与所述输送管(700)不接触,使得所述输送管(700)在所述第一弹簧(710)的作用下自动恢复至远离所述裸光纤(110)的位置;并且
    其中,当所述位置切换机构(500)被从第三位置切换至第一位置时,所述位置切换机构(500)与所述输送管(700)和所述侧向压块(800)不接触,使得所述侧向压块(800)在所述第二弹簧(810)的作用下自动恢复至远离所述裸光纤(110)的位置,并且使得所述输送管(700)仍处于远离所述裸光纤(110)的位置。
  17. 根据权利要求16所述的光纤切割设备,其特征在于,所述位置切换机构(500)包括:
    齿条(510);
    齿轮(520),与所述齿条(510)啮合;
    转轴(540),所述齿轮(520)安装在所述转轴(540)上;和
    凸轮(530),安装在所述转轴(540)上,包括用于控制所述输送管(700)的位置的第一凸轮部(530a)和用于控制所述侧向压块(800)的位置的第二凸轮部(530b),
    其中,当所述位置切换机构(500)处于第一位置时,所述第一凸轮部(530a)和第二凸轮部(530b)与所述输送管(700)和所述侧向压块(800)不接触,使得所述输送管(700)和所述侧向压块(800)处于远离所述裸光纤(110)的位置;
    其中,当所述位置切换机构(500))被从第一位置切换至第二位置时,所述第一凸轮部(530a)将所述输送管(700)驱动至靠近所述裸光纤(110)的位置,并且所述第二凸轮部(530b)与所述侧向压块(800)不接触,使得所述侧向压块(800)仍处于远离所述裸光纤(110)的位置;
    其中,当所述位置切换机构(500))被从第二位置切换至第三位置时,所述第二凸轮部(530b)将所述侧向压块(800)推压到所述裸光纤(110)上,并且所述第一凸轮部(530a)与所述输送管(700)不接触,使得所述输送管(700)在所述第一弹簧(710)的作用下自动恢复至远离所述裸光纤(110)的位置;并且
    其中,当所述位置切换机构(500)被从第三位置切换至第一位置时,所述第一凸轮部(530a)和所述第二凸轮部(530b)与所述输送管(700)和所述侧向压块(800)不接触,使得所述侧向压块(800)在所述第二弹簧(810)的作用下自动恢复至远离所述裸光纤(110)的位置,并且使得所述输送管(700)仍处于远离所述裸光纤(110)的位置。
  18. 根据权利要求17所述的光纤切割设备,其特征在于,所述位置切换机构(500)还包括:
    第三弹簧(511),用于将所述齿条(510)保持在初始位置,
    其中,当所述齿条(510)保持在所述初始位置时,所述位置切换机构(500)处于所述第一位置;
    其中,当所述齿条(510)被从初始位置驱动至第一工作位置时,所述位置切换机构(500)处于所述第二位置;并且
    其中,当所述齿条(510)被从第一工作位置驱动至第二工作位置时,所述位置切换机构(500)处于所述第三位置。
  19. 根据权利要求18所述的光纤切割设备,其特征在于,所述光纤切割设备还包括:
    引导机构,用于引导所述输送管(700)和所述侧向压块(800)沿预定的方向移动。
  20. 根据权利要求19所述的光纤切割设备,其特征在于,所述引导机构包括:
    底板(940);和
    连接到所述底板(940)上的第一侧板(910)、第二侧板(920)和第三侧板(930),
    所述输送管(700)位于所述第一侧板(910)和所述第二侧板(920)之间,沿所述第一侧板(910)和所述第二侧板(920)之间限定的限位通道移动;并且
    所述侧向压块(800)的至少一部分位于所述第二侧板(920)和所述第三侧板(930)之间,沿所述第二侧板(920)和所述第三侧板(930)之间限定的限位通道移动。
  21. 根据权利要求20所述的光纤切割设备,其特征在于:
    所述第一弹簧(710)一端安装在所述引导机构的底板(940)上的容纳孔中,另一端适于推压所述输送管(700);并且
    所述第二弹簧(810)一端安装在所述引导机构的底板(940)上的容纳孔中,另一端适于推压所述侧向压块(800)。
  22. 根据权利要求21所述的光纤切割设备,其特征在于:
    所述引导机构还包括连接到所述第三侧板(930)的外壁面上的侧翼(950);并且
    所述第三弹簧(511)的一端适于安装在所述引导机构的侧翼(950)上的容纳孔(951)中,另一端适于推压所述齿条(510)。
  23. 根据权利要求22所述的光纤切割设备,其特征在于:
    在所述第一弹簧(710)和所述输送管(700)之间设置有第一垫块(720),用于保护所述输送管(700);并且
    在所述第二弹簧(810)和所述侧向压块(800)之间设置有第二垫块(820),用于保护所述侧向压块(800)。
  24. 根据权利要求23所述的光纤切割设备,其特征在于:
    在所述输送管(700)上设置有保护块(730),所述第一凸轮部(530a)通过推压所述保护块(730)来间接地驱动所述输送管(700)移动。
  25. 根据权利要求24所述的光纤切割设备,其特征在于:
    所述凸轮(530)具有与所述第一侧板(910)、第二侧板(920)和第三侧板(930) 分别对应的第一凸缘(531)、第二凸缘(532)和第三凸缘(533);
    所述输送管(700)位于所述第一凸缘(531)和所述第二凸缘(532)之间,沿所述第一凸缘(531)和所述第二凸缘(532)之间限定的限位通道移动;并且
    所述侧向压块(800)的至少一部分位于所述第二凸缘(532)和所述第三凸缘(533)之间,沿所述第二凸缘(532)和所述第三凸缘(533)之间限定的限位通道移动。
PCT/CN2016/090140 2015-07-17 2016-07-15 光纤切割方法和光纤切割设备 WO2017012508A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510420888.9 2015-07-17
CN201510420888.9A CN106338796A (zh) 2015-07-17 2015-07-17 光纤切割方法和光纤切割设备

Publications (1)

Publication Number Publication Date
WO2017012508A1 true WO2017012508A1 (zh) 2017-01-26

Family

ID=57826807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090140 WO2017012508A1 (zh) 2015-07-17 2016-07-15 光纤切割方法和光纤切割设备

Country Status (2)

Country Link
CN (1) CN106338796A (zh)
WO (1) WO2017012508A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6542834B2 (ja) * 2017-05-15 2019-07-10 株式会社フジクラ ファイバカッタ
WO2019036888A1 (zh) * 2017-08-22 2019-02-28 四川灼识科技股份有限公司 一种光纤切割方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004271637A (ja) * 2003-03-05 2004-09-30 Fujikura Ltd 光ファイバ切断機
US20120286013A1 (en) * 2011-05-11 2012-11-15 Fujitsu Telecom Networks Limited Optical fiber cutting device
CN102798948A (zh) * 2012-08-03 2012-11-28 无锡爱沃富光电科技有限公司 单模光纤尾纤的毛细管封装结构
CN202771029U (zh) * 2012-08-03 2013-03-06 无锡爱沃富光电科技有限公司 单模光纤尾纤的毛细管封装结构
WO2014168758A1 (en) * 2013-04-08 2014-10-16 3M Innovative Properties Company Low cost, disposable optical fiber cleaver and a method to cleave an optical fiber
CN104330849A (zh) * 2014-10-20 2015-02-04 大豪信息技术(威海)有限公司 一种短距离光纤切割刀

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR840000255B1 (ko) * 1979-09-05 1984-03-08 다쓰오까 스에오 피라졸계 인산 에스테르류의 제조방법
JPH0824981B2 (ja) * 1986-09-29 1996-03-13 日本電信電話株式会社 線材の端末処理装置
CN2439040Y (zh) * 2000-09-04 2001-07-11 中国科学院长春光学精密机械与物理研究所 可调式变径光导纤维端面制备装置
JP2004131323A (ja) * 2002-10-09 2004-04-30 Nippon Telegr & Teleph Corp <Ntt> 光ファイバの切断方法
JP4466202B2 (ja) * 2004-05-31 2010-05-26 住友電気工業株式会社 光ファイバの切断装置および光ファイバの切断方法
JP4775084B2 (ja) * 2006-04-10 2011-09-21 住友電気工業株式会社 コネクタの組立方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004271637A (ja) * 2003-03-05 2004-09-30 Fujikura Ltd 光ファイバ切断機
US20120286013A1 (en) * 2011-05-11 2012-11-15 Fujitsu Telecom Networks Limited Optical fiber cutting device
CN102798948A (zh) * 2012-08-03 2012-11-28 无锡爱沃富光电科技有限公司 单模光纤尾纤的毛细管封装结构
CN202771029U (zh) * 2012-08-03 2013-03-06 无锡爱沃富光电科技有限公司 单模光纤尾纤的毛细管封装结构
WO2014168758A1 (en) * 2013-04-08 2014-10-16 3M Innovative Properties Company Low cost, disposable optical fiber cleaver and a method to cleave an optical fiber
CN104330849A (zh) * 2014-10-20 2015-02-04 大豪信息技术(威海)有限公司 一种短距离光纤切割刀

Also Published As

Publication number Publication date
CN106338796A (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
WO2008041748A1 (fr) Appareil et procédé de coupe de fibre optique
US4029390A (en) Optical fiber group splicing technique and apparatus employing unique foldable holder
US7899284B2 (en) Process for producing optical connector, apparatus for producing the same, and process for forming polymer coating
WO2017012508A1 (zh) 光纤切割方法和光纤切割设备
US10107967B1 (en) Fiber array assemblies for multifiber connectorized ribbon cables and methods of forming same
EP0271721A2 (en) Optical connector and process for producing the same
CN101342639A (zh) 借助于激光将由易脆裂的材料制成的平面板分割成多个单块板的方法和设备
US4643520A (en) Method of terminating fiber optic connector without polishing optical fiber
US4473942A (en) Precision cleaving of optical fibers
TWI689416B (zh) 玻璃載體組件及用於處理撓性玻璃片的方法
US9791637B2 (en) Methods of terminating one or more optical fibers
US9791657B2 (en) Methods of removing coating material from optical fibers
JP2013500509A (ja) 液体金属クランプと同クランプを用いたファイバ開裂
CN106646745A (zh) 一种光纤切割方法
EP2631689A1 (en) Optical fiber connector and optical fiber adaptor
JPH0516561B2 (zh)
TW200405052A (en) Optical fiber core, method of removing coating from optical fiber core and process for producing optical fiber part
US7583884B2 (en) Refractive index matching tape adhering device
US20200278511A1 (en) Ribbonizing methods and assemblies
US20120018481A1 (en) Commercial packaging of disposable cleaver
US9753233B2 (en) Method and apparatus for making an optical fiber array
US20120195557A1 (en) Connected optical fiber and method for assembling same
WO2017083070A2 (en) Systems and methods for scribing and cleaving an optical fiber held by a ferrule
JP2005148580A (ja) 光学接続構造および光学接続方法
JP2008242225A (ja) 光ファイバー実装システム及び方法及び端面形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (11.05.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16827199

Country of ref document: EP

Kind code of ref document: A1