WO2017010557A1 - 酸化物粒子の製造方法 - Google Patents

酸化物粒子の製造方法 Download PDF

Info

Publication number
WO2017010557A1
WO2017010557A1 PCT/JP2016/070919 JP2016070919W WO2017010557A1 WO 2017010557 A1 WO2017010557 A1 WO 2017010557A1 JP 2016070919 W JP2016070919 W JP 2016070919W WO 2017010557 A1 WO2017010557 A1 WO 2017010557A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
temperature
oxide particles
raw material
oxide
Prior art date
Application number
PCT/JP2016/070919
Other languages
English (en)
French (fr)
Inventor
榎村眞一
本田大介
Original Assignee
エム・テクニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エム・テクニック株式会社 filed Critical エム・テクニック株式会社
Priority to CN201680041114.8A priority Critical patent/CN107848836B/zh
Priority to US15/740,132 priority patent/US10196267B2/en
Priority to KR1020177033464A priority patent/KR102525331B1/ko
Priority to EP16824537.1A priority patent/EP3323788A4/en
Priority to JP2017528729A priority patent/JP6823771B2/ja
Publication of WO2017010557A1 publication Critical patent/WO2017010557A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00177Controlling or regulating processes controlling the pH
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to a method for producing oxide particles.
  • Oxide particles are materials used in a wide range of fields such as catalysts, conductive materials, magnetic materials, secondary electron emission materials, light emitters, heat absorbers, energy storage bodies, electrode materials, and coloring materials. Depending on the purpose, the characteristics change, and oxide particles having different particle diameters and crystallinity are required depending on purposes and requirements. In particular, characteristics that are greatly different from the bulk state are expressed by making fine particles, and oxide particles will continue to be widely demanded in the future.
  • magnetite is a kind of iron oxide whose chemical composition is represented by Fe 3 O 4 (Fe (II) Fe (III) 2 O 4 ), and is a material that has been widely used for a long time.
  • magnetite particles are chemically stable and have relatively large magnetism, and are widely used for magnetic recording media, magnetic fluids in the information recording field, or magnetic toners, carriers, pigments, etc. in the field of image recording. It has been. In recent years, it is expected to be used in various fields, such as being used in the medical field such as contrast media in NMR and thermotherapy for cancer.
  • cerium oxide is a kind of oxide whose chemical composition is represented by CeO 2 (IV), and has been widely used as an abrasive for a long time.
  • CeO 2 (IV) a kind of oxide whose chemical composition is represented by CeO 2 (IV)
  • Known methods for producing oxide particles today include a sol-gel method, a coprecipitation method, and hydrothermal synthesis.
  • ferrous ions (Fe 2+ ) and ferric ions (Fe 3+ ) are co-precipitated in an alkaline solution, or ferrous hydroxide solution is oxidized with air.
  • ferrous hydroxide solution is oxidized with air.
  • the method of reducing iron oxide ( ⁇ -Fe 2 O 3 ) and iron hydroxide ( ⁇ -FeOOH) in a hydrogen atmosphere have been known for a long time, but the resulting magnetite particles tend to be coarse.
  • Patent Document 1 a step of adding an oxidant to a deoxygenated alkaline aqueous solution, and a divalent iron ion in an amount soluble in the alkaline aqueous solution to which the oxidant has been added, A method of generating magnetite particles while stirring the added alkaline aqueous solution is shown.
  • an aqueous ferric salt solution is neutralized with an aqueous alkaline solution at a temperature in the range of 5 to 40 ° C., and the produced ferric hydroxide is filtered, washed with water, dispersed in water, An amount of reducing agent sufficient to reduce one third of the ferric ion is added to form a slurry having a pH in the range of 7 to 11, and then this is hydrothermally reacted at a temperature of 120 to 200 ° C. The method is shown.
  • Patent Document 3 discloses a method of recovering single crystal magnetite from an aquatic bacterium having a plurality of single crystal magnetites (Fe 3 0 4 ) in one body and called magnetotactic bacteria. In such a method for recovering a substance from a living organism, it is difficult to stably supply single-crystal magnetite, and it is considered difficult to use in industry.
  • the cerium oxide can be produced by coprecipitation of first cerium ions (Ce 3+ ) or second cerium ions (Ce 4+ ) in an alkaline solution, or hydrothermal treatment at 200 ° C. or higher for a long time. Although synthesis is known, the obtained cerium oxide particles are likely to be coarse, and it is difficult to obtain nanometer-order cerium oxide having a primary particle diameter of 50 nm or less, as well as dry heat treatment and high temperature. There were problems such as being necessary.
  • the particles tend to aggregate due to the influence of surface energy.
  • high crystallinity is desired, and in particular, single crystal oxide particles having the most stable surface state with the average particle diameter are most desirable. Improvements in crystallinity, and hence single crystallization, are expected to improve durability, impact resistance, etc. for temperature, light, and solvents, and particle properties are also easily uniformed. A method for producing particles has been proposed.
  • Patent Document 5 discloses a method in which an alkali base is mixed with an aqueous solution of cerium (III) nitrate, and after aging, a heat treatment is performed in a range of 650 to 1000 ° C. in a dry method.
  • Patent Document 6 there is a method in which a cerium salt is precipitated in the presence of a mixed solvent of an organic solvent and water to produce cerium hydroxide, and the obtained cerium hydroxide is hydrothermally reacted at 180 ° C. to 300 ° C. It is shown.
  • Patent Document 4 a method for producing magnetic fine particles has been proposed (Patent Document 4).
  • black iron oxide (Fe 3 O 4 : magnetite) or yellow iron oxide is produced by reacting a magnetic raw material and a magnetic fine particle precipitation agent in a thin film fluid formed between the processing surfaces. (FeOOH: Goethite) and other magnetic particles are obtained.
  • the temperature uniformity is high, and the uniformity in the stirring of the reaction vessel is also very high. It is an object of the present invention to provide a method for producing magnetic fine particles which can produce monodisperse magnetic fine particles, and does not clog products due to self-discharge properties, does not require a large pressure, and has high productivity.
  • the applicant of the present application arranges a fluid containing a ceramic raw material and a fluid containing a pH adjuster so as to face each other, and a relatively rotating processing surface capable of approaching and separating.
  • a method for producing ceramic nanoparticles by introducing them in between and mixing them has been proposed (Patent Document 7).
  • the invention according to Patent Document 7 is to obtain ceramic nanoparticles by hydrolyzing a ceramic raw material in a thin film fluid formed between the processing surfaces, and the temperature uniformity is high in the thin film fluid,
  • monodispersed ceramic nanoparticles can be prepared according to the purpose, and there is no clogging of the product due to self-discharge property, and no large pressure is required, Further, the present invention provides a method for producing ceramic nanoparticles having high productivity.
  • the particle diameter and monodispersity of the magnetic fine particles obtained, and the control of crystallinity and crystallinity are controlled by the rotational speed of the processing surface, the distance between the processing surfaces, and the thin film fluid. It is shown that the flow rate, temperature, or raw material concentration of the ceramic nanoparticles can be adjusted by changing the particle size, monodispersity, and crystal type of the obtained ceramic nanoparticles. It is shown that it can be adjusted by changing the rotational speed of the working surface, the distance between the processing surfaces, the flow rate of the thin film fluid, the raw material concentration, the temperature, or the like.
  • the present inventor has continued to study to improve the crystallinity of oxide particles by controlling these conditions, and more desirably to obtain single crystal oxide particles.
  • relatively small pressure conditions (0.10 MPaG or less)
  • the temperature of each fluid introduced between the processing surfaces and the temperature at the time of mixing each fluid are set to a temperature higher than a predetermined temperature, in particular, comparison.
  • a large pressure condition greater than 0.10 MPaG
  • the inventors have found that the crystallinity of the particles can be dramatically improved, and have reached the present invention.
  • the temperature of the magnetite raw material liquid introduced between the processing surfaces is set to a temperature higher than a predetermined temperature, particularly under relatively large pressure conditions (less than 0.10 MPaG). It was found that the crystallinity of the magnetite particles can be drastically improved by setting the temperature of the magnetite raw material liquid to a temperature higher than a predetermined temperature.
  • at least one of the temperature of the cerium oxide precipitation solvent introduced between the processing surfaces and the temperature at the time of mixing the cerium oxide raw material liquid and the cerium oxide precipitation solvent are examples of the temperature of the cerium oxide precipitation solvent introduced between the processing surfaces.
  • the crystallinity of the cerium oxide particles discharged from between the processing surfaces is controlled by changing one of the two. Specifically, at least one of the temperature of the cerium oxide precipitation solvent introduced between the processing surfaces and the temperature at the time of mixing the cerium oxide raw material liquid and the cerium oxide precipitation solvent is higher than a predetermined temperature. It has been found that the crystallinity of the cerium oxide particles can be improved by adjusting the temperature.
  • the temperature of the cerium oxide precipitation solvent introduced between the processing surfaces and the temperature during mixing of the cerium oxide raw material liquid and the cerium oxide precipitation solvent It was found that the crystallinity of the cerium oxide particles can be remarkably improved by setting at least one of the temperatures higher than a predetermined temperature.
  • JP 2006-219353 A Japanese Patent Laid-Open No. 08-325098 JP 61-081778 A JP 2009-132994 A Special table 2011-511751 gazette Japanese Patent Laid-Open No. 2005-519845 International Publication No. 2009/008392 Pamphlet
  • the crystallinity of the obtained oxide particles is determined. It is an object of the present invention to provide a method for producing oxide particles which can be improved and more desirably single crystal oxide particles can be stably obtained.
  • the present invention includes at least two fluids to be processed including a first fluid and a second fluid, and one of the first fluid and the second fluid includes at least an oxide particle raw material.
  • An oxide raw material liquid mixed in a solvent, and the other of the first fluid and the second fluid is an oxide particle precipitation solvent in which at least a basic substance is mixed in the solvent, and the first fluid And the second fluid are mixed between the relatively rotating processing surfaces which are arranged opposite to each other and can be moved toward and away from each other, and the mixed fluid in which the oxide particles are deposited is discharged from between the processing surfaces.
  • a method for producing oxide particles the temperature of a first fluid introduced between the processing surfaces, the temperature of a second fluid introduced between the processing surfaces, the first fluid and the first fluid At least one selected from the group consisting of the temperature at the time of mixing with two fluids, It allows to provide a manufacturing method of the oxide particles, characterized by controlling the crystallinity of the oxide particles to be ejected from between the processing surfaces.
  • the interval between the processing surfaces is set by a pressure balance between a force applied in a direction in which the processing surfaces approach each other and a pressure of the mixed fluid.
  • the first fluid passes between the processing surfaces while forming a thin film fluid, and the second fluid is introduced between the processing surfaces.
  • the first fluid and the second fluid are introduced between the processing surfaces through an opening formed in at least one of the processing surfaces through a separate introduction path independent of the flow path. However, it can be implemented as a mixture between the processing surfaces.
  • the temperature of the first fluid passing between the processing surfaces while forming a thin film fluid, the temperature of the second fluid introduced between the processing surfaces through the opening, and the first The crystallinity of the resulting oxide particles can be controlled by changing at least one selected from the group consisting of one fluid and the temperature at the time of mixing the second fluid.
  • the first fluid refers to a fluid introduced between the processing surfaces from a first introduction part of a fluid processing apparatus to be described later, and the second fluid from a second introduction part of the fluid processing apparatus to be described later.
  • the temperature of the first fluid introduced between the processing surfaces is 50 ° C. or higher, and the temperature of the first fluid introduced between the processing surfaces is 100 ° C. It is more desirable to set a higher temperature.
  • the first fluid and the second fluid it is desirable that the temperature of the fluid having a large flow rate per unit time introduced between the processing surfaces is 50 ° C. or more, and is introduced between the processing surfaces. It is desirable that the temperature of the fluid having a large flow rate per unit time is 100 ° C. or higher.
  • the first fluid includes one or more kinds of solvents, and the temperature of the first fluid introduced between the processing surfaces is set to one or more included in the first fluid. It can implement as what is made into temperature higher than the normal boiling point of the solvent with the lowest normal boiling point among seed
  • species solvent can implement as what is made into temperature higher than the normal boiling point of the solvent with the lowest normal boiling point among seed
  • the interval between the processing surfaces may be set by a pressure balance between a force applied in a direction in which the processing surfaces approach each other and a pressure of the mixed fluid.
  • the temperature of the first fluid introduced between the processing surfaces is higher than the standard boiling point of the first fluid and the boiling point under the introduction pressure under a relatively high pressure introduction condition exceeding the standard atmospheric pressure. Lower temperature.
  • the boiling point means the temperature at which the saturated vapor and its liquid phase coexist in equilibrium under a constant pressure
  • the normal boiling point means the boiling point under a pressure of 1 atm. means.
  • a1 Introduction temperature (° C.) of the oxide raw material liquid
  • a2 Introduction flow rate of the above oxide raw material liquid (ml / min.)
  • b1 Introduction temperature (° C.) of the oxide precipitation solvent
  • b2 Introduction flow rate of the oxide precipitation solvent (ml / min.)
  • the temperature of the second fluid introduced between the processing surfaces is higher than 100 ° C.
  • the second fluid includes one or more kinds of solvents, and the temperature of the second fluid introduced between the processing surfaces is included in the second fluid. It can implement as what is set as the temperature higher than the normal boiling point of the solvent with the lowest normal boiling point among a single type or multiple types of solvent.
  • the fluid for increasing the temperature may be either the first fluid or the second fluid. However, it is desirable to increase the temperature of the fluid having a large flow rate per unit time introduced between the processing surfaces.
  • the temperature of the first fluid introduced between the processing surfaces is higher than the standard boiling point of the first fluid and the boiling point under the introduction pressure under a relatively high pressure introduction condition exceeding the standard atmospheric pressure.
  • the temperature of the second fluid introduced between the processing surfaces is higher than the normal boiling point of the second fluid and lower than the boiling point under the introduction pressure. Can be implemented.
  • the present invention also provides a ratio of an average crystallite diameter (d) obtained by X-ray diffraction measurement of the oxide particles to an average particle diameter (D) obtained by observation of the oxide particles by a transmission electron microscope. It can be carried out assuming that d / D is 0.50 or more.
  • the present invention can be implemented on the assumption that 90% or more of the obtained oxide particles are nano-sized single crystal oxide particles.
  • this invention can be implemented by setting the temperature of one of the first fluid and the second fluid medium to 175 ° C. or lower.
  • the primary particle diameter of the oxide particles is preferably 20 nm or less.
  • this invention can be implemented as the said oxide particle being what is an oxide particle which does not require the heat processing by a dry type.
  • other elements may be dissolved or combined in the oxide particles.
  • this invention can be implemented as the said oxide particle raw material being a magnetite particle raw material, and the said oxide particle being a magnetite particle.
  • the pH of the oxide raw material liquid is desirably 4 or less
  • the pH of the oxide precipitation solvent is desirably 12 or more.
  • the mixed fluid preferably has a pH of 9 or more.
  • the pH of the mixed fluid is controlled so that the shape of the magnetite particles approaches a spherical shape by reducing the pH of the mixed fluid. It has been clarified by the present inventor that the shape of the magnetite particles can be controlled to approach a square by increasing the pH of the.
  • the oxide particle raw material is a magnetite particle raw material and the oxide particle is a magnetite particle
  • the magnetite particle raw material is selected from the group consisting of iron sulfate (II) (FeSO 4 ), iron sulfate (III) (Fe 2 (SO 4 ) 3 ), or a hydrate thereof. It can be implemented as at least one.
  • this invention can be implemented as the said oxide particle raw material being a cerium oxide particle raw material, and the said oxide particle being a cerium oxide particle.
  • the present invention desirably has a pH of the oxide raw material liquid of 4 or less.
  • the pH of the precipitation solvent is desirably 10 or more.
  • the mixed fluid preferably has a pH in the range of 6.0 to 9.0.
  • the cerium oxide particle raw material is cerium (III) nitrate (Ce (NO 3 ) 3 ), cerium (IV) ammonium nitrate ((NH 4 ) 2 [Ce (NO 3 ) 6 ]), or It can be implemented as being at least one selected from the group consisting of those hydrates.
  • the oxide particle in this invention is a magnetite particle
  • this invention can be understood as follows.
  • the present invention relates to a magnetite raw material liquid in which at least a magnetite particle raw material is mixed in a solvent and a magnetite precipitation solvent in which at least a basic substance is mixed in a solvent, which are disposed to face each other and are relatively rotatable so as to be able to approach and leave.
  • a method for producing magnetite particles that is mixed between the processing surfaces and discharges the mixed fluid in which the magnetite particles are deposited from between the processing surfaces of the magnetite raw material liquid introduced between the processing surfaces.
  • the temperature is 50 ° C. or higher.
  • the interval between the processing surfaces is preferably set by a pressure balance between a force applied in a direction in which the processing surfaces approach each other and a pressure of the mixed fluid. More preferably, the temperature of the magnetite raw material liquid introduced between the processing surfaces is higher than 100 ° C.
  • the present invention also includes one or more kinds of solvents in the magnetite raw material liquid, and the temperature of the magnetite raw material liquid introduced between the processing surfaces is changed to one or more kinds of solvents contained in the magnetite raw material liquid. It can implement as what is set as temperature higher than the normal boiling point of the solvent with the lowest normal boiling point.
  • the oxide particle in this invention is a cerium oxide particle
  • this invention can be understood as follows.
  • the present invention provides a cerium oxide raw material liquid in which at least a cerium oxide particle raw material is mixed in a solvent and a cerium oxide precipitation solvent in which at least a basic substance is mixed in the solvent, and is disposed so as to face each other.
  • a method for producing cerium oxide particles, wherein a mixed fluid in which cerium oxide particles are deposited is discharged from between the processing surfaces by mixing between the rotating processing surfaces, and the cerium oxide introduced between the processing surfaces is provided.
  • the crystallinity of the cerium oxide particles discharged from between the processing surfaces is changed.
  • a method for producing cerium oxide particles characterized by controlling.
  • the interval between the processing surfaces is set by a pressure balance between a force applied in a direction in which the processing surfaces approach each other and a pressure of the mixed fluid.
  • the temperature of the cerium oxide precipitation solvent introduced between the treatment surfaces is 50 ° C. or more, and the temperature of the cerium oxide precipitation solvent introduced between the treatment surfaces is 100 ° C. It is more desirable to set a higher temperature.
  • the cerium oxide precipitation solvent includes one or more kinds of solvents, and the temperature of the cerium oxide precipitation solvent introduced between the processing surfaces is set to one or more of the cerium oxide precipitation solvents. It can implement as what is made into temperature higher than the normal boiling point of the solvent with the lowest normal boiling point among seed
  • oxide particles (especially nano-sized particles) having a relatively high purity and high crystallinity can be obtained by a method suitable for mass production without requiring complicated chemical reaction or heat treatment.
  • a production method capable of continuously and stably supplying can be provided.
  • a complex chemical reaction or heat treatment using an oxidizing agent, a reducing agent, or the like is not required, and a method suitable for mass production is substantially used except for magnetite (Fe 3 O 4 ). It has become possible to provide a production method capable of stably supplying magnetite fine particles (particularly nano-sized particles) having a relatively high purity not containing iron oxide and having a high crystallinity.
  • cerium hydroxide (Ce (OH) 2 , (Ce (OH) 3 ), (Ce () is substantially eliminated by a method suitable for mass production without requiring complicated chemical reaction or heat treatment. It is possible to provide a production method capable of continuously and stably supplying cerium oxide particles (particularly nano-sized particles) having a relatively high purity not containing OH) 4 )) and having a high crystallinity. It became so. In addition, in the manufacturing method, it has become possible to dissolve or combine other elements such as iron in the cerium oxide particles.
  • FIG. 1 is a schematic cross-sectional view of a fluid processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view of a first processing surface of the fluid processing apparatus shown in FIG. 1.
  • 4 is a TEM photograph of single crystal magnetite particles obtained in Example X1 of the present invention. It is a TEM photograph of single crystal magnetite particles obtained in Example X2 of the present invention. 4 is a TEM photograph of single crystal magnetite particles obtained in Example X3 of the present invention. It is a TEM photograph of single crystal magnetite particles obtained in Example X10 of the present invention. It is a TEM photograph of the magnetite particle obtained in Example X12 of this invention.
  • Example X1, X2, X3 and Example X12 of this invention 4 is a graph of the ratio of single crystals of magnetite particles to the introduction temperature of the magnetite raw material liquid according to Examples X1 to X10 and X12.
  • 6 is a graph of the ratio of single crystals of magnetite particles to the processing inter-surface introduction temperature (c) according to Examples X1 to X10 and X12. It is a TEM photograph of single crystal cerium oxide particles obtained in Example Y8 of the present invention. It is a TEM photograph of single crystal cerium oxide particles obtained in Example Y9 of the present invention.
  • Example Y10 of the present invention It is a TEM photograph of single crystal cerium oxide particles obtained in Example Y10 of the present invention. It is a TEM photograph of the single crystal cerium oxide particles obtained in Example Y11 of the present invention. It is a TEM photograph of cerium oxide particles obtained in Example Y15 of the present invention. It is a XRD measurement result of the cerium oxide particle obtained by Example Y8, Y9, Y10, Y15 of this invention. 4 is a graph of a single crystal ratio of cerium oxide particles with respect to an introduction temperature of a cerium oxide precipitation solvent according to Examples Y1 to Y12, Y15, and Y16.
  • Example 4 is a graph of a single crystal ratio of cerium oxide particles with respect to a processing inter-surface introduction temperature c according to Examples Y1 to Y12, Y15, and Y16. It is a TEM photograph of the cerium oxide particle obtained in Example Y17 of the present invention, in which an iron element is dissolved or combined. It is an XRD measurement result of the cerium oxide particle which obtained in Example Y17 of this invention and made the iron element a solid solution or was combined. It is a TEM photograph of cerium oxide particles obtained in Example Y6 of the present invention. It is a TEM photograph of the iron oxide fine particles obtained in Example Z1. It is a TEM photograph of the iron oxide fine particles obtained in Example Z10.
  • the single crystal oxide particles in the present invention are, for example, crystal lattices as seen in a transmission electron microscope (TEM) photograph of oxide particles obtained in the examples of the present application shown in FIG. 6 and FIG.
  • the interference fringes (atomic arrangement in the crystal; hereinafter also referred to as “lattice fringes”) are observed in one direction, and those in which the lattice fringes are disordered or grain boundaries are observed are not single crystals. .
  • the obtained oxide particles are single crystals
  • a method of directly observing with a TEM or a scanning transmission electron microscope (STEM), a TEM or STEM, or a scanning electron microscope A method of calculating the ratio d / D between the average particle diameter (D) obtained by electron microscope observation with SEM) and the average crystallite diameter (d) calculated by X-ray diffraction measurement (XRD measurement), etc. Can be confirmed.
  • the oxide in the present invention is not particularly limited, for example, a metal oxide or a nonmetal oxide represented by the formula M x O y , various solvates thereof, and a composition in which these are the main components. (Wherein x and y are each an arbitrary number).
  • the oxide includes a peroxide or a superoxide.
  • the metal elements include Ti, Fe, Ce, W, Pt, Au, Cu, Ag, Pd, Ni, Mn, Co, Ru, V, Zn, Zr, Al, Mg, Y, Cd, Cr, Mo, In, etc. are mentioned, and nonmetallic elements include B, Si, Ge, N, C and the like. Each of these elements may form an oxide alone, or a complex oxide may be formed of a plurality of elements.
  • M x O y is TiO 2 , FeO, Fe 2 O 3 , Fe 3 O 4 , CeO 2 , SnO, SnO 2 , Al 2 O 3. , SiO 2, ZnO, CoO, Co 3 O 4, Cu 2 O, CuO, Ni 2 O 3, NiO, MgO, Y 2 O 3, VO, VO 2, V 2 O 3, V 2 O 5, MnO, MnO 2, CdO, ZrO 2, PdO, PdO 2, MoO 3, MoO 2, Cr 2 O 3, CrO 3, etc. In 2 O 3, RuO 2, WO 3 and the like.
  • the oxide particle raw material according to the present invention is not particularly limited. Any method can be used as long as it becomes an oxide by a method such as reaction, crystallization, precipitation, and coprecipitation (hereinafter, this method is referred to as precipitation).
  • a metal or a non-metal simple substance or a compound such as a salt can be mentioned, and a substance that generates a metal or non-metal ion in a solution is preferable.
  • it does not specifically limit as said metal or nonmetal As an example, the same element as the above-mentioned metal or nonmetal which comprises the said oxide is mentioned.
  • the metal or nonmetal described above may be a single element, or may be an alloy composed of a plurality of elements or a substance containing a nonmetallic element in the metal element.
  • the above metal compound is referred to as a metal compound.
  • a metal compound or said nonmetallic compound For example, a metal or nonmetallic salt and oxide, hydroxide, hydroxide oxide, nitride, carbide, complex, organic salt, Organic complexes, organic compounds or their hydrates, organic solvates and the like can be mentioned.
  • the metal salt or non-metal salt is not particularly limited, but metal or non-metal nitrate or nitrite, sulfate or sulfite, formate or acetate, citrate, phosphate or phosphite, Examples thereof include hypophosphites, chlorides, oxy salts, acetylacetonate salts or hydrates thereof, and organic solvates. Examples of organic compounds include metal or nonmetal alkoxides. As described above, these metal compounds or nonmetal compounds may be used alone or as a mixture of two or more.
  • Basic substance examples of the basic substance in the present invention include metal hydroxides such as sodium hydroxide and potassium hydroxide, metal alkoxides such as sodium methoxide and sodium isopropoxide, amine compounds such as triethylamine, diethylaminoethanol and diethylamine, and ammonia. Etc.
  • acidic substances in the present invention include inorganic acids such as aqua regia, hydrochloric acid, nitric acid, fuming nitric acid, sulfuric acid and fuming sulfuric acid, and organic acids such as formic acid, acetic acid, chloroacetic acid, dichloroacetic acid, oxalic acid, trifluoroacetic acid and trichloroacetic acid. Examples include acids.
  • an oxide raw material liquid is prepared by mixing, dissolving, or molecularly dispersing at least an oxide particle raw material in a solvent, and preparing an oxide precipitation solvent by mixing, dissolving, or molecularly dispersing at least a basic substance in the solvent.
  • the solvent used for these include water, an organic solvent, or a mixed solvent composed of a plurality of them.
  • the water include tap water, ion-exchanged water, pure water, ultrapure water, and RO water.
  • the organic solvent include alcohol compound solvents, amide compound solvents, ketone compound solvents, ether compound solvents, and aromatic compounds.
  • Examples include solvents, carbon disulfide, aliphatic compound solvents, nitrile compound solvents, sulfoxide compound solvents, halogen compound solvents, ester compound solvents, ionic liquids, carboxylic acid compounds, and sulfonic acid compounds.
  • Each of the above solvents may be used alone or in combination.
  • the alcohol compound solvent include monohydric alcohols such as methanol and ethanol, polyols such as ethylene glycol and propylene glycol, and the like.
  • the introduction pressure of the oxide raw material liquid and / or oxide precipitation solvent and the boiling point of the oxide raw material liquid and / or oxide precipitation solvent when introduced between the processing surfaces are easy to adjust.
  • the oxide raw material liquid and the oxide precipitation solvent using water, or a mixed solvent of water and polyol. Furthermore, these solvents can be used after removing oxygen in the solvent by a method such as nitrogen bubbling.
  • an acidic substance may be mixed with the oxide raw material liquid as necessary within a range that does not adversely affect the precipitation of the oxide particles. This is effective when you want to increase the amount of heat generated during neutralization during precipitation.
  • a reaction of a combination of a strong acid such as nitric acid or sulfuric acid and a strong base such as metal hydroxide occurs.
  • the oxide raw material liquid or the oxide precipitation solvent is prepared by rotating a stirrer having various shapes such as a rod shape, a plate shape, or a propeller shape in a tank, or rotating relative to the stirrer. It is desirable to use a material that achieves homogeneous mixing by applying a shearing force to the fluid, such as a material having a screen.
  • a stirrer disclosed in Japanese Patent No. 5147091 can be applied.
  • the rotary disperser may be a batch type or a continuous type.
  • the supply and discharge of fluid to the stirring tank may be performed continuously, or may be performed using a continuous mixer without using the stirring tank,
  • the stirring energy can be appropriately controlled using a known stirrer or stirring means.
  • the agitation energy is described in detail in Japanese Patent Application Laid-Open No. 04-114725 by the applicant of the present application.
  • the stirring method in the present invention is not particularly limited, but can be carried out by using various shearing type, friction type, high pressure jet type, ultrasonic type stirring machines, dissolving machines, emulsifiers, dispersing machines, hosnizers and the like. .
  • Examples include Ultra Tarrax (manufactured by IKA), Polytron (manufactured by Kinematica), TK Homomixer (manufactured by Primex), Ebara Milder (manufactured by Ebara Seisakusho), TK Homomic Line Flow (manufactured by Primics), Colloid Mill (manufactured by Shinko Pan) Tech), Thrasher (Nihon Coke Kogyo), Trigonal wet pulverizer (Mitsui Miike Chemical), Cavitron (Eurotech), Fine Flow Mill (Pacific Kiko), etc. ⁇ Batch-type or continuous-use emulsifiers such as Technic), Claremix dissolver (MTechnic), and Fillmix (Primics) can be mentioned.
  • the oxide raw material liquid or the oxide precipitation solvent is prepared using a stirrer equipped with a rotating stirring blade, particularly the above-mentioned Claremix (made by M Technique) and the Claremix dissolver (made by M Technique). It is desirable.
  • various dispersants and surfactants can be used according to the purpose and necessity. Although it does not specifically limit, As a surfactant and a dispersing agent, various commercially available products generally used, products, or newly synthesized products can be used. Examples include anionic surfactants, cationic surfactants, nonionic surfactants, dispersants such as various polymers, and the like. These may be used alone or in combination of two or more.
  • the above surfactant and dispersant may be contained in either or both of the oxide raw material liquid and the oxide precipitation solvent. Moreover, said surfactant and dispersing agent may be contained in the 3rd fluid mentioned later which is different from an oxide raw material liquid and an oxide precipitation solvent.
  • the oxide raw material liquid or the oxide precipitation solvent is prepared so that the thermal energy at the time of mixing the oxide raw material liquid and the oxide precipitation solvent is increased.
  • the single crystal ratio of the oxide particles obtained by mixing the raw material liquid and the oxide precipitation solvent can be increased. For example, when the liquidity of the oxide raw material liquid is acidic and the liquidity of the oxide precipitation solvent is basic, neutralization is performed by mixing the oxide raw material liquid and the oxide precipitation solvent. Since heat generated by reaction heat such as heat is increased, it is easy to obtain oxide particles.
  • the present invention is not limited to the method for producing (X) magnetite particles and the method for producing (Y) cerium oxide particles. However, in order to enhance a more specific understanding, ) Each manufacturing method will be described in the order of (Y).
  • the oxide raw material liquid is referred to as a magnetite raw material liquid
  • the oxide precipitation solvent is referred to as a magnetite precipitation solvent
  • the oxide particle raw material is referred to as a magnetite particle raw material.
  • the single crystal magnetite particles in the present invention are interference fringes (atoms in the crystal) of the crystal lattice as seen in a transmission electron microscope (TEM) photograph of the magnetite particles obtained in Example X10 of the present application shown in FIG. (Hereinafter also referred to as “lattice fringes”) is observed in one direction, and those in which the lattice fringes are disordered or grain boundaries are observed are recognized as not being single crystals.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • Magnetic material for magnetite particles Although it does not specifically limit as a magnetite particle raw material used for preparation of the magnetite particle in this invention, It can implement using the substance which produces
  • ferrous chloride (Fe (II)) such as iron chloride (II) (FeCl 2 ), iron acetate (II) (Fe (CH 3 COO) 2 ), ferrous citrate (II) (Fe (C 6 H 5 O 7 M 2): M is an alkali metal or ammonium, etc.), and the organic salts of ferrous, such as (Fe (II)).
  • Fe (II) iron chloride
  • FeCl 2 iron acetate
  • Substances that generate Fe 2+ ions in these solutions can be carried out using hydrates or solvates thereof. Moreover, these substances may be used alone or in combination.
  • Substances that generate Fe 3+ ions in these solutions can also be carried out using hydrates or solvates thereof. Moreover, these substances may be used alone or in combination. From the viewpoint of easily improving the crystallinity of the magnetite produced, iron sulfate (II) (FeSO 4 ), iron sulfate (III) (Fe 2 (SO 4 ) 3 ), or their hydration is used as the magnetite particle raw material. It is desirable to use at least one selected from the group consisting of objects.
  • Examples of the basic substance in the present invention include metal hydroxides such as sodium hydroxide and potassium hydroxide, metal alkoxides such as sodium methoxide and sodium isopropoxide, amine compounds such as triethylamine, diethylaminoethanol and diethylamine, and ammonia. Etc. From the viewpoint of easily improving the crystallinity of the magnetite produced, it is desirable to use sodium hydroxide, potassium hydroxide, or ammonia as the basic substance.
  • acidic substances in the present invention include inorganic acids such as aqua regia, hydrochloric acid, nitric acid, fuming nitric acid, sulfuric acid and fuming sulfuric acid, and organic acids such as formic acid, acetic acid, chloroacetic acid, dichloroacetic acid, oxalic acid, trifluoroacetic acid and trichloroacetic acid. Examples include acids.
  • a magnetite raw material liquid is prepared by mixing, dissolving, and molecularly dispersing at least a magnetite particle raw material in a solvent, and preparing a magnetite precipitation solvent by mixing, dissolving, and molecularly dispersing at least a basic substance in the solvent.
  • the solvent used for these include water, an organic solvent, or a mixed solvent composed of a plurality of them.
  • the water include tap water, ion-exchanged water, pure water, ultrapure water, and RO water.
  • Examples of the organic solvent include alcohol compound solvents, amide compound solvents, ketone compound solvents, ether compound solvents, and aromatic compounds. Examples include solvents, carbon disulfide, aliphatic compound solvents, nitrile compound solvents, sulfoxide compound solvents, halogen compound solvents, ester compound solvents, ionic liquids, carboxylic acid compounds, and sulfonic acid compounds. Each of the above solvents may be used alone or in combination.
  • Examples of the alcohol compound solvent include monohydric alcohols such as methanol and ethanol, polyols such as ethylene glycol and propylene glycol, and the like.
  • a magnetite raw material liquid and a magnetite precipitation solvent using a mixed solvent of styrene and polyol. Furthermore, these solvents can be used after removing oxygen in the solvent by a method such as nitrogen bubbling.
  • the acidic substance may be mixed with the magnetite raw material liquid as necessary as long as it does not adversely affect the precipitation of the magnetite particles. This is effective when you want to increase the amount of heat generated during neutralization during precipitation.
  • the magnetite raw material liquid and the magnetite precipitation solvent are mixed to precipitate magnetite particles.
  • the total concentration of iron ions (Fe 3+ and Fe 2+ ) in the magnetite raw material liquid is measured by high frequency induction heating plasma optical emission spectrometry (ICP), and then a separate sample of the magnetite raw material liquid is added to the heavy chromium. acid was added, Fe 2+ is determined the concentration of Fe 2+ from titration volume of dichromate in terms of discoloration Fe 3+, previously of Fe 3+ by subtracting from the total concentration of the resulting iron ions by ICP measurement It is possible to calculate and obtain the concentration.
  • Method of measuring the molar ratio Fe 2+ / Fe 3+ of Fe 2+ relative to Fe 3+ is not limited to the above method, it is possible to adapt the known methods, for example, calculated by analysis or the like using the ion chromatography Also good.
  • the magnetite raw material liquid and the magnetite are prepared by preparing the magnetite raw material liquid or the magnetite precipitation solvent so that the heat energy when mixing the magnetite raw material liquid and the magnetite precipitation solvent is increased.
  • the pH of the magnetite raw material liquid is preferably 4 or less, and more preferably 3 or less.
  • the pH of the magnetite precipitation solvent is preferably 12 or more, and more preferably 14 or more.
  • the magnetite particles is a kind of iron oxide particles, as the iron oxide be magnetite particles represented by Fe 3 O 4 It may be iron (III) oxide such as ⁇ -hematite represented by Fe 2 O 3 or iron (II) oxide represented by FeO.
  • cerium oxide raw material liquid is referred to as cerium oxide raw material liquid
  • the oxide precipitation solvent is referred to as cerium oxide precipitation solvent
  • the oxide particle raw material is referred to as cerium oxide particle raw material.
  • the single-crystal cerium oxide particles in the present invention are interference fringes (in the crystal) of the crystal lattice as seen in a transmission electron microscope (TEM) photograph of the cerium oxide particles obtained in Example Y9 of the present application shown in FIG. (Hereinafter also referred to as “lattice fringes”) is observed in one direction, and those in which the lattice fringes are disturbed or grain boundaries are observed are recognized as not being single crystals.
  • TEM transmission electron microscope
  • a method for evaluating that the obtained cerium oxide particles are a single crystal a method of directly observing with a TEM or a scanning transmission electron microscope (STEM), a TEM or STEM, or a scanning electron microscope ( A method of calculating the ratio d / D between the average particle diameter (D) obtained by electron microscope observation with SEM) and the average crystallite diameter (d) calculated by X-ray diffraction measurement (XRD measurement), etc. Can be confirmed.
  • Cerium oxide particle raw material Although it does not specifically limit as a cerium oxide particle raw material in this invention, It can implement using the substance which produces
  • cerium compounds include cerium (III) nitrate (Ce ( NO 3 ) 3 ), cerium (III) chloride (CeCl 3 ), cerium (III) sulfate (Ce 2 (SO 4 ) 3 ), cerium (III) (Ce (OH) 3 ) and other first cerium ( Inorganic salts of Ce (III)), organic salts of primary cerium (Ce (III)) such as cerium acetate (Ce (CH 3 COO) 3 ) and cerium (III) citrate (C 6 H 5 CeO 7 ) Etc.
  • Examples of substances that generate Ce 4+ ions in solution include compounds such as cerium alone and salts, similar to substances that generate Ce 3+ , and cerium compounds include cerium (IV) ammonium nitrate ((NH 4 ) 2 [Ce (NO 3 ) 6 ]), cerium sulfate (IV) (Ce (SO 4 ) 2 ), ammonium cerium sulfate (IV) (Ce (NH 4 ) 4 (SO 4 ) 4 ), cerium hydroxide ( IV) Inorganic or organic salts of ceric (Ce (IV)) such as (Ce (OH) 4 ).
  • Ce 2+ such as cerium (II) diacetate (Ce (CH 3 COO) 2 ).
  • Substances that generate Ce 3+ ions, Ce 4+ ions, and Ce 2+ ions in these solutions can also be implemented using their hydrates or solvates. Moreover, these substances may be used alone or in combination.
  • cerium (III) nitrate (Ce (NO 3 ) 3 ), cerium (IV) ammonium nitrate ((NH 4 ) 2 [Ce (NO 3 ) 6 ]) or at least one selected from the group consisting of these hydrates is preferably used, and cerium (III) nitrate (Ce (NO 3 ) 3 ) is more preferably used.
  • Examples of the basic substance in the present invention include metal hydroxides such as sodium hydroxide and potassium hydroxide, metal alkoxides such as sodium methoxide and sodium isopropoxide, amine compounds such as triethylamine, diethylaminoethanol and diethylamine, and ammonia. Etc. From the viewpoint of easily improving the crystallinity of the produced cerium oxide, it is desirable to use sodium hydroxide, potassium hydroxide, or ammonia as the basic substance.
  • acidic substances in the present invention include inorganic acids such as aqua regia, hydrochloric acid, nitric acid, fuming nitric acid, sulfuric acid and fuming sulfuric acid, and organic acids such as formic acid, acetic acid, chloroacetic acid, dichloroacetic acid, oxalic acid, trifluoroacetic acid and trichloroacetic acid. Examples include acids.
  • cerium oxide raw material preparation / cerium oxide precipitation solvent preparation At least a cerium oxide particle raw material is mixed, dissolved or molecularly dispersed in a solvent to prepare a cerium oxide raw material liquid, and at least a basic substance is mixed, dissolved or molecularly dispersed in a solvent to prepare a cerium oxide precipitation solvent.
  • the solvent used for these include water, an organic solvent, or a mixed solvent composed of a plurality of them.
  • the water include tap water, ion-exchanged water, pure water, ultrapure water, and RO water.
  • the organic solvent include alcohol compound solvents, amide compound solvents, ketone compound solvents, ether compound solvents, and aromatic compounds.
  • Examples include solvents, carbon disulfide, aliphatic compound solvents, nitrile compound solvents, sulfoxide compound solvents, halogen compound solvents, ester compound solvents, ionic liquids, carboxylic acid compounds, and sulfonic acid compounds.
  • Each of the above solvents may be used alone or in combination.
  • the alcohol compound solvent include monohydric alcohols such as methanol and ethanol, polyols such as ethylene glycol and propylene glycol, and the like. As described later, the introduction pressure of the cerium oxide raw material liquid and / or the cerium oxide precipitation solvent and the boiling point of the cerium oxide raw material liquid and / or the cerium oxide precipitation solvent when introduced between the processing surfaces are easy to adjust.
  • a cerium oxide raw material liquid and a cerium oxide precipitation solvent using water, or a mixed solvent of water and polyol. Furthermore, these solvents can be used after removing oxygen in the solvent by a method such as nitrogen bubbling.
  • the acidic substance may be mixed with the cerium oxide raw material liquid as necessary as long as it does not adversely affect the precipitation of the cerium oxide particles. This is effective when you want to increase the amount of heat generated during neutralization during precipitation.
  • the cerium oxide raw material liquid is prepared by preparing the cerium oxide raw material liquid or the cerium oxide precipitating solvent so as to increase the thermal energy when mixing the cerium oxide raw material liquid and the cerium oxide precipitation solvent.
  • the pH of the cerium oxide raw material liquid is preferably 4 or less, more preferably 3 or less.
  • the pH of the cerium oxide precipitation solvent is preferably 10 or more, and more preferably 12 or more.
  • reaction method equipment
  • the microreactor will be described in detail.
  • R indicates the direction of rotation.
  • the microreactor (hereinafter also referred to as a fluid processing apparatus) in the present embodiment includes two opposing first and second processing units 10 and 20, and the first processing unit 10 rotates.
  • the opposing surfaces of both processing parts 10 and 20 are processing surfaces.
  • the first processing unit 10 includes a first processing surface 1
  • the second processing unit 20 includes a second processing surface 2.
  • Both processing surfaces 1 and 2 are connected to the flow paths d1 and d2 of the first and second fluids to be processed, and constitute a part of the sealed flow path of the fluid to be processed.
  • the distance between the processing surfaces 1 and 2 is usually adjusted to 1 mm or less, for example, a minute distance of about 0.1 ⁇ m to 50 ⁇ m. As a result, the fluid to be processed passing between the processing surfaces 1 and 2 becomes a forced thin film fluid forced by the processing surfaces 1 and 2.
  • This apparatus performs the fluid process which makes the 1st, 2nd to-be-processed fluid react between the processing surfaces 1 and 2, and precipitates an oxide particle.
  • the apparatus includes a first holder 11 that holds the first processing portion 10, a second holder 21 that holds the second processing portion 20, and a contact pressure application mechanism 43. , A rotation drive mechanism (not shown), a first introduction part d1, a second introduction part d2, and fluid pressure application mechanisms p1 and p2.
  • a compressor or other pump can be employed for the fluid pressure imparting mechanisms p1 and p2.
  • the first introduction part d1 and the second introduction path are respectively provided with a thermometer and a pressure gauge, and the introduction pressure and the temperature under the introduction pressure of the first and second fluids to be treated can be measured.
  • the first processing unit 10 and the second processing unit 20 are ring-shaped disks.
  • the materials of the first and second processing parts 10 and 20 are metal, carbon, ceramic, sintered metal, wear-resistant steel, sapphire, other metals subjected to hardening treatment, hard material lining, Those with coating, plating, etc. can be used.
  • the processing portions 10 and 20 have the first and second processing surfaces 1 and 2 facing each other mirror-polished, and the arithmetic average roughness is 0.01 to 1.0 ⁇ m. It is.
  • the second holder 21 is fixed to the apparatus, and the first holder 11 attached to the rotary shaft 50 of the rotation drive mechanism fixed to the apparatus is rotated and supported by the first holder 11.
  • the first processing unit 10 thus rotated rotates with respect to the second processing unit 20.
  • the second processing unit 20 may be rotated, or both may be rotated.
  • the rotation speed can be set to 350 to 5000 rpm, for example.
  • the second processing unit 20 approaches and separates from the first processing unit 10 in the direction of the rotation shaft 50, and the storage unit 41 provided in the second holder 21 has a second A portion of the processing portion 20 opposite to the processing surface 2 side is accommodated so as to be able to appear and disappear.
  • the first processing unit 10 may be moved closer to and away from the second processing unit 20, and both the processing units 10 and 20 moved closer to and away from each other. May be.
  • the accommodating portion 41 is a concave portion that accommodates a portion of the second processing portion 20 opposite to the processing surface 2 side, and is a groove formed in an annular shape.
  • the accommodating portion 41 accommodates the second processing portion 20 with a sufficient clearance that allows the portion of the second processing portion 20 on the side opposite to the processing surface 2 side to appear.
  • the contact surface pressure applying mechanism is a force that pushes the first processing surface 1 of the first processing portion 10 and the second processing surface 2 of the second processing portion 20 in the approaching direction (hereinafter referred to as contact surface pressure). It is a mechanism for generating. Due to the balance between the contact surface pressure and the force for separating the two processing surfaces 1 and 2 due to the fluid pressure of the magnetite raw material liquid and the magnetite precipitation solvent (hereinafter referred to as the separation force), between the two processing surfaces 1 and 2. A thin film fluid having a minute film thickness of nm to ⁇ m is generated while keeping the distance at a predetermined minute distance.
  • the contact surface pressure applying mechanism is configured such that the spring 43 provided in the second holder 21 biases the second processing member 20 toward the first processing member 10, thereby Is granted. Further, the pressure of a fluid for back pressure such as air can be applied in addition to the spring 43. The sum of all these pressures is the above-mentioned contact pressure, and this contact pressure balances with the separation force caused by the fluid pressure of the oxide raw material liquid and the oxide precipitation solvent.
  • the pressure of the back pressure fluid can be set to 0.020 to 0.050 MPaG, preferably 0.050 to 0.400 MPaG, and more preferably 0.100 to 0.350 MPaG.
  • the first fluid to be processed pressurized by the fluid pressure imparting mechanism p1 is introduced from the first introduction part d1 into the space inside both the processing parts 10 and 20.
  • the second fluid to be processed pressurized by the fluid pressure imparting mechanism p2 is formed on the second processing surface from the second introduction part d2 through the passage provided in the second processing part 20. It is introduced into the space inside both the processing parts 10 and 20 from the opened opening d20.
  • the first processed fluid and the second processed fluid merge and mix.
  • the mixed fluid to be processed becomes a thin film fluid forced by the processing surfaces 1 and 2 holding the minute gaps, and tends to move outside the annular processing surfaces 1 and 2. Since the first processing unit 10 is rotating, the mixed fluid to be processed does not move linearly from the inside to the outside of the two processing surfaces 1 and 2 in the annular shape, but in the annular radial direction. A combined vector of the movement vector and the movement vector in the circumferential direction acts on the fluid to be processed and moves in a substantially spiral shape from the inside to the outside.
  • the first processing surface 1 of the first processing portion 10 has a groove-like recess extending from the center side of the first processing portion 10 toward the outside, that is, in the radial direction. 13 may be formed.
  • the planar shape of the recess 13 is curved or spirally extending on the first processing surface 1, or is not illustrated, but extends straight outward, bent or curved in an L shape, It may be continuous, intermittent, or branched.
  • the concave portion 13 can be implemented as one formed on the second processing surface 2, and can also be implemented as one formed on both the first and second processing surfaces 1, 2.
  • the base end of the recess 13 reaches the inner periphery of the first processing portion 10.
  • the front end of the recess 13 extends toward the outer peripheral side of the first processing surface 1, and the depth gradually decreases from the base end toward the front end.
  • a flat surface 16 without the recess 13 is provided between the tip of the recess 13 and the outer peripheral surface of the first processing surface 1.
  • the opening d20 described above is preferably provided at a position facing the flat surface of the first processing surface 1.
  • the second introduction part d2 preferably has directionality.
  • the introduction direction from the opening d20 of the second processing surface 2 may be inclined at a predetermined elevation angle with respect to the second processing surface 2, or from the opening d20 of the second processing surface 2.
  • the introduction direction of the second fluid has directionality in the plane along the second processing surface 2, and the introduction direction of the second fluid is an external component away from the center in the radial component of the processing surface.
  • the forward direction may be used for the component with respect to the rotation direction of the fluid between the rotating processing surfaces.
  • the flow of the first fluid to be processed in the opening d20 is laminar, and the second introduction portion d2 has directionality, thereby generating turbulence with respect to the flow of the first fluid to be processed.
  • the second fluid to be processed can be introduced between the processing surfaces 1 and 2 while suppressing the above.
  • the mixed fluid to be processed discharged to the outside of the processing parts 10 and 20 is collected in the beaker b as a discharge liquid via the vessel v.
  • the discharge liquid contains oxide particles.
  • the number of fluids to be treated and the number of flow paths are two in the example of FIG. 1, but may be three or more.
  • the shape, size, and number of the opening for introduction provided in each processing part are not particularly limited and can be appropriately changed.
  • the shape of the opening d20 may be a concentric annular shape surrounding the central opening of the processing surface 2 which is a ring-shaped disk, and the annular opening is It may be continuous or discontinuous.
  • an opening for introduction may be provided immediately before or between the first and second processing surfaces 1 and 2 or further upstream.
  • the first treated fluid is introduced from the first introduction part d1
  • the second treated fluid is introduced from the second introduction part d2. It is possible to introduce and mix both fluids between the processing surfaces 1 and 2 to precipitate oxide particles.
  • the fluid treatment can be performed between the processing surfaces 1 and 2, the second treated fluid is introduced from the first introduction part d 1, and the first treated part is introduced from the second introduction part d 2.
  • a processing fluid may be introduced.
  • the expressions “first” and “second” in each fluid have only the meaning of identification that they are the nth of a plurality of fluids, and there are also three or more fluids as described above. Yes.
  • reaction conditions and conditions of the solution after the reaction In the present invention, the temperature of the first fluid to be treated introduced between the processing surfaces 1 and 2, the temperature of the second fluid to be treated introduced between the processing surfaces 1 and 2, and the first subject fluid.
  • the crystallinity of the oxide particles discharged from between the processing surfaces 1 and 2 is changed.
  • the temperature of the first fluid to be treated introduced between the processing surfaces 1 and 2, the temperature of the second fluid to be introduced between the processing surfaces 1 and 2, and the first By increasing at least one temperature selected from the group consisting of the fluid to be treated and the temperature at the time of mixing the second fluid to be treated, a single oxide particle discharged from between the processing surfaces 1 and 2 is used. It controls to increase the crystal ratio.
  • the temperature of the first fluid to be treated introduced between the processing surfaces 1 and 2 can be controlled to be a predetermined temperature or higher. preferable.
  • the above “predetermined ratio” and “predetermined temperature” are determined depending on the type of oxide particles to be obtained.
  • the temperature of the first fluid to be treated introduced between the processing surfaces 1 and 2 is preferably 50 ° C. or higher, and the obtained single crystal of cerium oxide particles In order to make the ratio 90% or more, it is more preferable that the temperature of the first fluid to be treated introduced between the processing surfaces 1 and 2 is higher than 100 ° C. Most preferably, the introduction temperatures of both the first fluid to be treated and the second fluid to be treated between the processing surfaces 1 and 2 are both higher than 100 ° C. At that time, it is preferable to control the pH of the mixed fluid in which oxide particles are deposited between the processing surfaces 1 and 2 to a predetermined range described later.
  • the introduction pressure of the first treated fluid when introduced between the processing surfaces 1 and 2 exceeds the standard atmospheric pressure, and the temperature of the first treated fluid introduced between the processing surfaces 1 and 2 Is a temperature higher than the normal boiling point of the first fluid to be treated and lower than the boiling point under the introduction pressure, the single crystal ratio of the obtained oxide particles is dramatically improved.
  • both the introduction pressure of the first treated fluid and the introduced pressure of the second treated fluid when introduced between the processing surfaces 1 and 2 exceed the standard pressure.
  • the temperature of the first treated fluid introduced between the processing surfaces 1 and 2 is set to a temperature higher than the normal boiling point of the first treated fluid and lower than the boiling point under the introduction pressure
  • the temperature of the second fluid to be treated introduced between the processing surfaces 1 and 2 is set to be higher than the normal boiling point of the second fluid to be treated and lower than the boiling point under the introduction pressure.
  • the standard boiling point of the oxide raw material liquid varies depending on the types of substances contained in the oxide raw material liquid such as the oxide particle raw material, solvent, and acidic substance used in the oxide raw material liquid, and the mixing ratio thereof.
  • the standard boiling point of the oxide raw material liquid may be obtained by calculation, and the temperature of the supplied oxide raw material liquid may be set to a temperature higher than the calculated value.
  • the standard boiling point of the oxide precipitation solvent varies depending on the types of substances contained in the oxide precipitation solvent such as the basic substance and the solvent used in the oxide precipitation solvent and the mixing ratio thereof. What is necessary is just to obtain
  • T (T 0 + k b ⁇ m) ⁇ 273
  • T Standard boiling point (° C)
  • T 0 standard boiling point (K) of the solvent
  • k b molar boiling point rise constant (K ⁇ kg / mol)
  • m molar concentration by mass (mol / kg)
  • the boiling point under the introduction pressure can be determined from the vapor pressure curve of each solvent and the standard boiling point calculated by the above formula.
  • the oxide raw material liquid and the oxide precipitation solvent are controlled. Since the introduction pressure can exceed the standard atmospheric pressure and be introduced between the processing surfaces 1 and 2, even if the temperature becomes higher than the standard boiling point of the fluid, it does not cause boiling and oxidizes with the oxide raw material liquid.
  • the product precipitation solvent can be mixed in a reaction space of the order of several ⁇ m formed between the processing surfaces, whereby the reaction at a temperature higher than the normal boiling point can be performed stably.
  • the inter-process introduction temperature c (° C.) for the mixed fluid obtained by the following formula is higher than 100 ° C., This is desirable from the viewpoint of improving the single crystal ratio.
  • Patent Document 4 the particle size and monodispersity of the magnetic fine particles obtained, and the control of crystallinity and crystallinity are controlled by the number of rotations of the processing surface and the distance between the processing surfaces, and It has been shown that it can be adjusted by changing the flow rate and temperature of the thin film fluid, or the raw material concentration.
  • Patent Document 7 discloses the control of the particle size, monodispersity, and crystal type of the obtained ceramic nanoparticles. It is shown that it can be adjusted by changing the rotational speed of the processing surface, the distance between the processing surfaces, the flow rate of the thin film fluid, the raw material concentration, the temperature, or the like.
  • the present inventor has continued to study to improve the crystallinity of oxide particles by controlling these conditions, and more desirably to obtain single crystal oxide particles.
  • relatively small pressure conditions (0.10 MPaG or less)
  • the temperature of each fluid introduced between the processing surfaces and the temperature at the time of mixing each fluid are set to a temperature higher than a predetermined temperature, in particular, comparison.
  • a large pressure condition greater than 0.10 MPaG
  • the present inventors have found that the crystallinity of particles can be dramatically improved and have reached the present invention.
  • it should be used as a fluid that reacts between the processing surfaces without substantially boiling the fluid above the boiling point.
  • it has become possible to control in a region having high crystallinity, which has been impossible in the past by the method for producing fine particles performed between processing surfaces.
  • the temperature of each fluid introduced between the processing surfaces, the temperature at the time of mixing each fluid, and the crystallinity of the obtained oxide particles have a relationship with each other.
  • the temperature of the first fluid to be treated introduced between the processing surfaces 1 and 2 the temperature of the second fluid to be treated introduced between the processing surfaces 1 and 2, and the first The crystal of oxide particles discharged from between the processing surfaces 1 and 2 by changing at least one selected from the group consisting of the fluid to be treated and the temperature at the time of mixing the second fluid to be treated It is thought that gender can be controlled.
  • the mixed fluid in which oxide particles are deposited between the processing surfaces 1 and 2 is discharged to the outside of the processing portions 10 and 20, and is collected in the beaker b as a discharge liquid through the vessel v. It is done.
  • the “predetermined range” is determined depending on the type of oxide particles to be obtained.
  • the crystallinity of the oxide particles contained in the discharge liquid is reduced or the yield of the oxide particles is reduced.
  • the pH of the discharge liquid is preferably 6 or more and 14 or less, and more preferably 8 or more and 12 or less.
  • the oxide raw material liquid and the oxide precipitation solvent introduced between the processing surfaces 1 and 2 are combined with a temperature control at the time of mixing them and a pH control of the discharge liquid to combine the oxide. This further improves the crystallization of the particles.
  • the pH of the discharge liquid controls the concentration of oxide particle raw materials, basic substances, acidic substances, etc. contained in the oxide raw material liquid and oxide precipitation solvent, and the flow rate of the oxide raw material liquid and oxide precipitation solvent introduced. Is possible. Further, by controlling the pH of the discharge liquid, it is possible to control the shape of the oxide particles such as a sphere or a square, and particles having a shape required according to the use of the oxide particles can be obtained.
  • the square means a square, a rhombus, or a polygon.
  • various microscopes can be used for specifying the shape of the oxide particles, and when observed with a transmission electron microscope, they are observed in a plan view.
  • the square is a shape observed in a plan view.
  • the discharge liquid may be allowed to stand until it reaches room temperature, and then the oxide particles may be recovered. The particles may be recovered. You may collect
  • the oxide particles obtained by the above-described method have a primary particle size of 100 nm or less, preferably 50 nm or less, more preferably 20 nm or less, and a CV value (standard deviation ⁇ average particle size ⁇ 100 [%]). , 40% or less, preferably 30% or less, more preferably 20% or less. Further, for the average particle diameter (D) obtained by particle size distribution measurement, transmission electron microscope observation (TEM observation), scanning electron microscope observation (SEM observation), or scanning transmission electron microscope observation (STEM observation). The ratio d / D of the average crystallite diameter (d) calculated from the XRD measurement results is 0.50 to 1.00, preferably 0.70 to 1.00.
  • the solvent contained in the oxide raw material liquid and the solvent contained in the oxide precipitation solvent may be used alone or in combination. Then, the temperature of the oxide raw material liquid introduced between the processing surfaces 1 and 2 is set to a temperature higher than the standard boiling point of the solvent having the lowest standard boiling point among the one or plural kinds of solvents contained in the oxide raw material liquid. Alternatively, the temperature of the oxide precipitation solvent introduced between the processing surfaces 1 and 2 is higher than the standard boiling point of the solvent having the lowest standard boiling point among the solvent or solvents included in the oxide precipitation solvent. You may implement as temperature.
  • the temperature of the oxide raw material liquid introduced between the processing surfaces 1 and 2 is 100 ° C., which is the standard boiling point of water. Can also be carried out at higher temperatures.
  • the standard boiling point of propylene glycol, which is a kind of polyol, is 188 ° C., and by using a mixed solvent of water and propylene glycol as a solvent contained in the oxide raw material liquid, it is 100 ° C. or higher and in a non-boiling state.
  • the oxide raw material liquid can be introduced between the processing surfaces 1 and 2 at a standard pressure or lower.
  • the introduction pressures of both the introduction pressure of the oxide raw material liquid and the introduction pressure of the oxide precipitation solvent are set.
  • the setting can also be adjusted by the type of solvent used and the combination thereof. Note that it is desirable that the temperature of either the oxide raw material liquid or the oxide precipitation solvent be 175 ° C. or lower. This makes it easier to control the reaction rate in the fluid treatment apparatus of the present embodiment, and stably produces single crystal oxide particles having a uniform particle property and a fine size (for example, a primary particle diameter of 20 nm or less). It makes a big contribution.
  • the oxide raw material liquid or the oxide precipitation solvent is different from the elements (metal or nonmetal, and oxygen) constituting the oxide particles in another solvent different from any of them. It can be carried out by mixing, dissolving or molecularly dispersing compounds containing other elements, mixing them between the processing surfaces, and precipitating other elements together with the oxide particles.
  • the other elements are not particularly limited. It is applicable to all elements on the chemical periodic table that are different from the elements constituting the oxide particles. Although it does not specifically limit as a compound containing the element different from the element which comprises the said oxide particle, The simple substance or compound of those elements is mentioned. These substances may be used in the form of hydrates or solvates. Moreover, these substances may be used alone or in combination.
  • An element different from the elements constituting the oxide particles is dissolved or combined in the oxide particles by the production method of the present invention, so that oxides or hydroxides of elements that are difficult to obtain crystallinity by the liquid phase method are obtained. Effects such as the possibility of being incorporated into the particles as crystallinity, and obtaining new characteristics other than those generated or improved when the oxide particles become single crystals can be expected.
  • a magnetite raw material liquid is introduced as a first treated fluid from the first introduction part d1
  • a magnetite as a second treated fluid is introduced from the second introduction part.
  • a precipitation solvent can be introduced, and both fluids can be mixed between the processing surfaces 1 and 2 to precipitate magnetite particles.
  • the second treated fluid is introduced from the first introduction part d1
  • the first treated part is introduced from the second introduction part d2.
  • a fluid may be introduced.
  • the expressions “first” and “second” in each fluid have only the meaning of identification that they are the nth of a plurality of fluids, and there are also three or more fluids as described above. Yes.
  • a magnetite raw material liquid is introduced as a first treatment fluid from the first introduction part d1 between the treatment surfaces 1 and 2, and a magnetite precipitation solvent is introduced as a second treatment fluid from the second introduction part d2 to the treatment surface 1,
  • the temperature of the magnetite raw material liquid when introduced between the processing surfaces 1 and 2 is set to 50 ° C. or higher so that the single crystal ratio of the obtained magnetite particles is 20% or higher.
  • the temperature of the magnetite raw material liquid when introduced between the processing surfaces 1 and 2 is set to a temperature higher than 100 ° C. More preferred.
  • the introduction temperature of the magnetite raw material liquid between the processing surfaces 1 and 2 and the introduction temperature of the magnetite precipitation solvent between the processing surfaces 1 and 2 are set. Both of these are more preferably set to a temperature higher than 100 ° C. At that time, it is preferable that the pH of the mixed fluid in which magnetite particles are deposited between the processing surfaces 1 and 2 is 8 or more.
  • the single crystal ratio is obtained by observing the obtained magnetite particles with an electron microscope, the number X of magnetite particles observed, and the number Y of magnetite particles observed as single crystals. The ratio is calculated by Y / X ⁇ 100 (%).
  • the introduction pressure of both the introduction pressure of the magnetite raw material liquid and the introduction pressure of the magnetite precipitation solvent when introduced between the treatment surfaces 1 and 2 exceeds the standard pressure, and the treatment surfaces 1 and 2 are introduced.
  • the temperature of the magnetite raw material liquid introduced between them higher than the normal boiling point of the magnetite raw material liquid and lower than the boiling point under the introduction pressure, the single crystal ratio of the obtained magnetite particles is dramatically increased.
  • the standard boiling point of this magnetite raw material liquid varies depending on the types of substances contained in the magnetite raw material liquid such as magnetite particle raw materials, solvents, acidic substances used in the magnetite raw material liquid, and the blending ratio thereof.
  • the temperature at the time of introduction of the magnetite precipitation solvent is a temperature higher than 100 ° C., and the introduction pressure of the magnetite raw material liquid and the introduction pressure of the magnetite precipitation solvent when introduced between the processing surfaces 1 and 2.
  • the pressure of the magnetite precipitation solvent introduced between the processing surfaces 1 and 2 is higher than the standard boiling point of the magnetite precipitation solvent and under the introduction pressure. More preferably, the temperature is lower than the boiling point.
  • the magnetite precipitation solvent may be obtained by calculating the standard boiling point of the magnetite precipitation solvent and setting the temperature of the magnetite precipitation solvent to be supplied at a temperature higher than the calculated value.
  • the standard boiling points of the magnetite raw material liquid and the magnetite precipitation solvent are calculated by the following formula.
  • T Standard boiling point (° C)
  • T 0 standard boiling point (K) of the solvent
  • k b molar boiling point rise constant (K ⁇ kg / mol)
  • m molar concentration by mass (mol / kg)
  • ionization and association are ignored when calculating the standard boiling point.
  • the boiling point under the introduction pressure can be determined from the vapor pressure curve of each solvent and the standard boiling point calculated by the above formula.
  • the introduction pressure of the magnetite raw material liquid and the magnetite precipitation solvent is controlled.
  • the inter-surface introduction temperature c (° C.) for treatment of the mixed fluid obtained by the following formula is higher than 100 ° C., This is desirable from the viewpoint of improving the single crystal ratio.
  • a1 Introduction temperature of magnetite raw material liquid (° C)
  • a2 Introduction flow rate of magnetite raw material liquid (ml / min.)
  • b1 Introduction temperature of magnetite precipitation solvent (° C)
  • b2 Introduction flow rate of magnetite precipitation solvent (ml / min.)
  • fever with respect to the processing surface introduction
  • the mixed fluid in which the magnetite particles are deposited between the processing surfaces 1 and 2 is discharged to the outside of the processing portions 10 and 20 and is collected in the beaker b as a discharge liquid through the vessel v. .
  • the pH of the discharge liquid is preferably 8 or more, and more preferably 9 or more.
  • the introduction temperature between the processing surfaces 1 and 2 of the magnetite raw material liquid is a temperature higher than 100 ° C, or the introduction temperature c between the processing surfaces is a temperature higher than 100 ° C, Moreover, when the pH of the discharge liquid is 9 or more, the single crystal ratio of the obtained magnetite particles is remarkably improved to 70% or more, which is desirable. In particular, when the introduction temperature between the processing surfaces 1 and 2 of the magnetite raw material liquid is 120 ° C. or higher, or the introduction temperature c between the processing surfaces is 120 ° C. or higher, and the pH of the discharge liquid is 9 or higher. All of the obtained magnetite particles are single-crystallized, which is more desirable.
  • the pH of the discharge liquid is controlled by controlling the concentration of the magnetite particle raw material, basic substance, acidic substance, etc. contained in the magnetite raw material liquid or the magnetite precipitation solvent, and the introduction flow rate of the magnetite raw material liquid or the magnetite precipitation solvent.
  • the shape of the magnetite particles can be controlled by controlling the pH of the discharge liquid. Specifically, the pH of the mixed fluid is 9 or more, and the shape of the magnetite particles is controlled to approach a sphere by decreasing the pH of the mixed fluid, and the magnetite particles are increased by increasing the pH of the mixed fluid. Can be controlled so as to approach a square, and particles having a shape required for the use of magnetite particles can be obtained.
  • the square means a square, a rhombus, or a polygon.
  • Magnetite particles are used in a wide range of fields from magnetic fluids to coloring materials and cosmetics.
  • the shape of the magnetite particles is spherical, the dispersibility of the magnetite particles in the dispersion medium is improved, and when the shape of the magnetite particles is rectangular, the concealability is improved. Therefore, when magnetite particles are used as a magnetic fluid, the shape is preferably spherical, and when magnetite particles are used as a coloring material, the shape is preferably square. Note that various types of microscopes can be used for specifying the shape of the magnetite particles. When observed with a transmission electron microscope, the shape is observed in a plan view.
  • the square is a shape observed in a plan view.
  • the discharge liquid may be allowed to stand until it reaches room temperature, and then the magnetite particles may be recovered. After the discharge liquid is rapidly cooled to room temperature, the magnetite particles are recovered. You may do it. Magnetite particles may be recovered from the discharge liquid immediately after discharge.
  • the magnetite particles obtained by the above method have a primary particle size of 100 nm or less, preferably 50 nm or less, more preferably 20 nm or less, and a CV value (standard deviation ⁇ average particle size ⁇ 100 [%]). It is 40% or less, preferably 30% or less, more preferably 20% or less. Further, for the average particle diameter (D) obtained by particle size distribution measurement, transmission electron microscope observation (TEM observation), scanning electron microscope observation (SEM observation), or scanning transmission electron microscope observation (STEM observation). The ratio d / D of the average crystallite diameter (d) calculated from the XRD measurement results is 0.50 to 1.00, preferably 0.70 to 1.00.
  • the solvent contained in the magnetite raw material liquid and the solvent contained in the magnetite precipitation solvent may be used alone or in combination. Then, the temperature of the magnetite raw material liquid introduced between the processing surfaces 1 and 2 is set to a temperature higher than the standard boiling point of the solvent having the lowest standard boiling point among the one or plural kinds of solvents contained in the magnetite raw material liquid. The temperature of the magnetite precipitation solvent introduced between the processing surfaces 1 and 2 is set to a temperature higher than the standard boiling point of the solvent having the lowest standard boiling point among the solvent or solvents included in the magnetite precipitation solvent. May be.
  • the temperature of the magnetite raw material liquid introduced between the processing surfaces 1 and 2 is higher than 100 ° C. which is the standard boiling point of water. It can be implemented as a temperature.
  • propylene glycol which is one kind of polyol, has a normal boiling point of 188 ° C., and by using a mixed solvent of water and propylene glycol as a solvent contained in the magnetite raw material liquid, the magnetite is in a non-boiling state at 100 ° C. or higher. It becomes possible to introduce the raw material liquid between the processing surfaces 1 and 2 at a standard pressure or lower.
  • both the introduction pressure of the magnetite raw material liquid and the introduction pressure of the magnetite precipitation solvent exceed the standard pressure.
  • the setting can be adjusted depending on the type of solvent used and the combination thereof. It is desirable that the temperature of either the magnetite raw material liquid or the magnetite precipitation solvent is 175 ° C. or lower.
  • a cerium oxide precipitation solvent is introduced as a first fluid to be treated from the first introduction part d1, and second from the second introduction part d2.
  • a cerium oxide raw material liquid can be introduced as a fluid to be treated, and both fluids can be mixed between the processing surfaces 1 and 2 to precipitate cerium oxide particles.
  • the fluid treatment can be performed between the processing surfaces 1 and 2, the second treated fluid is introduced from the first introduction part d 1, and the first treated part is introduced from the second introduction part d 2.
  • a processing fluid may be introduced.
  • the expressions “first” and “second” in each fluid have only the meaning of identification that they are the nth of a plurality of fluids, and there are also three or more fluids as described above. Yes.
  • a cerium oxide deposition solvent is introduced as a first treatment fluid from the first introduction part d1 between the treatment surfaces 1 and 2, and a cerium oxide raw material liquid is treated as a second treatment fluid from the second introduction part d2.
  • the temperature of the cerium oxide precipitation solvent when introduced between the processing surfaces 1 and 2 is set to 50 ° C. so that the single crystal ratio of the obtained cerium oxide particles is 10% or more.
  • the temperature of the cerium oxide precipitation solvent when introduced between the processing surfaces 1 and 2 is set to be higher than 80 ° C. so that the single crystal ratio of the obtained cerium oxide particles is 50% or more. A higher temperature is more preferable.
  • the introduction temperature of the cerium oxide precipitation solvent between the processing surfaces 1 and 2 is more preferably set to a temperature higher than 100 ° C.
  • the introduction temperature of the cerium raw material liquid between the processing surfaces 1 and 2 and the introduction temperature of the cerium oxide precipitation solvent between the processing surfaces 1 and 2 are both higher than 100 ° C.
  • the pH of the mixed fluid in which cerium oxide particles are deposited between the processing surfaces 1 and 2 is preferably in the range of 6.0 to 9.0.
  • the single crystal ratio refers to the number of cerium oxide particles observed by observing the obtained cerium oxide particles with an electron microscope, and the number Y of cerium oxide particles observed as a single crystal.
  • the single crystal ratio Y / X ⁇ 100 (%).
  • the introduction pressure of the cerium oxide precipitation solvent when introduced between the processing surfaces 1 and 2 exceeds the standard pressure, and the temperature of the cerium oxide precipitation solvent introduced between the treatment surfaces 1 and 2 is By making the temperature higher than the normal boiling point of the cerium oxide precipitation solvent and lower than the boiling point under the introduction pressure, the single crystal ratio of the obtained cerium oxide particles is dramatically improved.
  • the introduction pressure of both the introduction pressure of the cerium oxide raw material liquid and the introduction pressure of the cerium oxide precipitation solvent when introduced between the treatment surfaces 1 and 2 exceeds the standard pressure, and is used for treatment.
  • the temperature of the cerium oxide raw material liquid introduced between the surfaces 1 and 2 is higher than the normal boiling point of the cerium oxide raw material liquid and lower than the boiling point under the introduction pressure, and between the processing surfaces 1 and 2 It is preferable that the temperature of the cerium oxide precipitation solvent introduced into is higher than the normal boiling point of the cerium oxide precipitation solvent and lower than the boiling point under the introduction pressure.
  • the standard boiling point of this cerium oxide raw material liquid varies depending on the types of substances contained in the cerium oxide raw material liquid, such as cerium oxide particle raw materials, solvents, acidic substances, etc. used in the cerium oxide raw material liquid, and their blending ratio.
  • the standard boiling point of this cerium oxide precipitation solvent varies depending on the types of substances contained in the cerium oxide precipitation solvent such as the basic substance and the solvent used in the cerium oxide precipitation solvent and the mixing ratio thereof.
  • the standard boiling point of the cerium oxide precipitation solvent may be obtained by calculation, and the temperature of the supplied cerium oxide precipitation solvent may be set to a temperature higher than the calculated value.
  • T (T 0 + k b ⁇ m) ⁇ 273
  • T Standard boiling point (° C)
  • T 0 standard boiling point (K) of the solvent
  • k b molar boiling point rise constant (K ⁇ kg / mol)
  • m molar concentration by mass (mol / kg)
  • the boiling point under the introduction pressure can be determined from the vapor pressure curve of each solvent and the standard boiling point calculated by the above formula.
  • the cerium oxide raw material liquid and the cerium oxide precipitation solvent By controlling the pressure condition between the processing surfaces 1 and 2 between the processing surfaces which are disposed opposite to each other and which can be approached and separated, the cerium oxide raw material liquid and the cerium oxide precipitation solvent Since the introduction pressure can exceed the standard atmospheric pressure and be introduced between the processing surfaces 1 and 2, the cerium oxide raw material liquid and the oxidation can be obtained without causing boiling even when the temperature is higher than the standard boiling point of the fluid.
  • the cerium precipitation solvent can be mixed in a reaction space of the order of several ⁇ m formed between the processing surfaces, whereby the reaction at a temperature higher than the normal boiling point can be performed stably.
  • the inter-surface introduction temperature c (° C.) for treatment of the mixed fluid obtained by the following formula is higher than 100 ° C., This is desirable from the viewpoint of improving the single crystal ratio.
  • the mixed fluid in which cerium oxide particles are deposited between the processing surfaces 1 and 2 is discharged to the outside of the processing portions 10 and 20, and is collected in the beaker b as a discharge liquid through the vessel v. It is done.
  • the pH of the discharge liquid is preferably in the range of 6.0 to 9.0, and more preferably in the range of 6.5 to 9.0. When the pH of the discharge liquid exceeds 9.0, the crystallinity is lowered, and when it is lower than 6.0, the crystallinity is lowered and the yield is also lowered.
  • the introduction temperature of the cerium oxide precipitation solvent used as the first treatment fluid between the treatment surfaces 1 and 2 is higher than 100 ° C., or the introduction temperature c (° C.) between the treatment surfaces.
  • the temperature is higher than 100 ° C. and the pH of the discharge liquid is in the range of 6.0 to 9.0, the single crystal ratio of the obtained cerium oxide particles is remarkably as 90% or more. Improved and desirable.
  • the introduction temperature of the cerium oxide precipitation solvent between the treatment surfaces 1 and 2 is 120 ° C. or higher, or the introduction temperature c (° C.) between the treatment surfaces is 120 ° C. or more, and the pH of the discharge liquid is 6.0.
  • the pH of the discharge liquid is determined by the concentration of the cerium oxide particle raw material, basic substance, acidic substance, etc. contained in the cerium oxide raw material liquid or cerium oxide precipitation solvent, or the introduction flow rate of the cerium oxide raw material liquid or cerium oxide precipitation solvent. It is possible by controlling. Further, by controlling the pH of the discharge liquid, it is possible to control the shape of the cerium oxide particles such as a sphere or a square, and particles having a shape required according to the use of the cerium oxide particles can be obtained.
  • the square means a square, a rhombus, or a polygon.
  • the cerium oxide particles have been widely used as an abrasive for a long time, and in recent years, they are being used not only for abrasives but also for new applications such as ultraviolet absorbers, solid electrolytes, or catalyst carriers.
  • the shape of the cerium oxide particles is spherical, the dispersibility of the cerium oxide particles in the dispersion medium is improved, and when the shape of the cerium oxide particles is rectangular, the concealability is improved. Therefore, when using cerium oxide particles as an ink or the like, the shape is preferably spherical, and when using cerium oxide particles as an abrasive or the like, the shape is square. Is preferred.
  • cerium oxide particles When cerium oxide particles are used as a cocatalyst or the like, it is necessary to control the shape of the cerium oxide particles depending on the catalyst particles to be supported and the desired characteristics.
  • Various types of microscopes can be used to specify the shape of the cerium oxide particles. When observed with a transmission electron microscope, the shape is observed in a plan view. The square is a shape observed in a plan view.
  • the discharge liquid In collecting the cerium oxide particles from the discharge liquid, the discharge liquid may be allowed to stand until it reaches room temperature, and then the cerium oxide particles may be recovered, or the discharge liquid may be rapidly cooled to room temperature and then cerium oxide. The particles may be recovered. You may collect
  • the cerium oxide particles obtained by the above method have a nano size of a primary particle size of 100 nm or less, preferably 50 nm or less, more preferably 20 nm or less, and a CV value (standard deviation ⁇ average particle size ⁇ 100 [%]). , 40% or less, preferably 30% or less, more preferably 20% or less. Further, for the average particle diameter (D) obtained by particle size distribution measurement, transmission electron microscope observation (TEM observation), scanning electron microscope observation (SEM observation), or scanning transmission electron microscope observation (STEM observation). The ratio d / D of the average crystallite diameter (d) calculated from the XRD measurement results is 0.50 to 1.00, preferably 0.70 to 1.00.
  • the solvent contained in the cerium oxide raw material liquid and the solvent contained in the cerium oxide precipitation solvent may be used alone or in combination. Then, the temperature of the cerium oxide raw material liquid introduced between the processing surfaces 1 and 2 is set to a temperature higher than the standard boiling point of the solvent having the lowest standard boiling point among one or plural kinds of solvents contained in the cerium oxide raw material liquid. The temperature of the cerium oxide precipitation solvent introduced between the processing surfaces 1 and 2 is higher than the standard boiling point of the solvent having the lowest standard boiling point among the one or plural kinds of solvents contained in the cerium oxide precipitation solvent. You may implement as temperature.
  • the temperature of the cerium oxide raw material liquid introduced between the processing surfaces 1 and 2 is set to 100 ° C., which is the standard boiling point of water. Can also be carried out at higher temperatures.
  • the standard boiling point of propylene glycol, which is a kind of polyol, is 188 ° C., and by using a mixed solvent of water and propylene glycol as a solvent contained in the cerium oxide raw material liquid, it is 100 ° C. or higher and is in a non-boiling state. It becomes possible to introduce the cerium oxide raw material liquid between the processing surfaces 1 and 2 at a standard pressure or lower.
  • the introduction pressures of both the introduction pressure of the cerium oxide raw material liquid and the introduction pressure of the cerium oxide precipitation solvent are set.
  • the setting can also be adjusted by the type of solvent used and the combination thereof. It is desirable that the temperature of either the cerium oxide raw material liquid or the cerium oxide precipitation solvent is 175 ° C. or lower.
  • iron (Fe) is a compound such as a simple substance or a salt of iron.
  • iron compounds include iron (II) sulfate (FeSO 4 ) and iron (II) nitrate (Fe (NO 3 )).
  • ferrous iron (Fe (II)) such as iron (II) chloride (FeCl 2 ), iron (II) acetate (Fe (CH 3 COO) 2 ), ferrous citrate (II) ) (Fe (C 6 H 5 O 7 M 2 ): M is an alkali metal, ammonium, or the like) and an organic salt of ferrous iron (Fe (II)).
  • ferric iron (Fe (III)) such as iron (III) sulfate (Fe 2 (SO 4 ) 3 ), iron (III) nitrate (Fe (NO 3 ) 3 ), iron chloride (III) (FeCl 3 ), etc.
  • Elements other than cerium and oxygen are dissolved or combined in the cerium oxide particles by the production method of the present invention, so that oxides or hydroxides of elements that are difficult to obtain crystallinity by the liquid phase method are converted into crystallinity. It is possible to expect effects such as the possibility of being incorporated into the crystal and the generation of new characteristics other than those generated or improved by the formation of cerium oxide particles as a single crystal.
  • the A liquid refers to the first fluid to be treated introduced from the first introduction part d1 of the apparatus shown in FIG. 1, and the B liquid is also introduced from the second introduction part d2 of the apparatus.
  • the second processed fluid to be processed is not limited to the following examples.
  • the A liquid refers to the first fluid to be treated introduced from the first introduction part d1 of the apparatus shown in FIG. 1, and the B liquid is also introduced from the second introduction part d2 of the apparatus.
  • Example X1 Each of the magnetite precipitation solvent and the magnetite raw material liquid was prepared using CLEARMIX (product name: CLM-2.2S, manufactured by M Technique), which is a high-speed rotary dispersion emulsifier. Specifically, a basic substance and pure water are mixed based on the formulation of the magnetite precipitation solvent shown in Example X1 of Table 1, and the temperature is 30 ° C. with a preparation temperature of 45 ° C. and Claremix at a rotor speed of 10,000 rpm. By stirring for a minute, the mixture was homogeneously mixed to prepare a magnetite precipitation solvent.
  • CLEARMIX product name: CLM-2.2S, manufactured by M Technique
  • Example X1 of Table 1 a magnetite particle raw material and pure water are mixed, and at a preparation temperature of 50 ° C., using a CLEARMIX at a rotor rotation speed of 20000 rpm for 30 minutes.
  • the mixture was homogeneously mixed by stirring, and the magnetite particle raw material was dissolved in pure water to prepare a magnetite raw material liquid.
  • Table 1 shows the material names and concentrations of the magnetite particle raw materials that generate Fe 2+ ions in the solution, the material names and concentrations of the magnetite particle raw materials that generate Fe 3+ ions in the solution, and the magnetite used in the magnetite raw material liquid.
  • iron sulfate (II) heptahydrate (manufactured by Kanto Chemical Co., Ltd., reagent grade) is used for what is described as FeSO 4 ⁇ 7H 2 O, and Fe 2 (SO 4 ) 3 ⁇ nH 2 O and
  • iron (III) sulfate n hydrate (manufactured by Kanto Chemical Co., Ltd., special grade reagent) was used.
  • the molar ratio Fe 2+ / Fe 3+ of Fe 2+ relative to Fe 3+ of magnetite material solution is first by high-frequency induction heating plasma emission spectrometry (ICP) to measure the total concentration of iron ions (Fe 3+ and Fe 2+), then magnetite
  • ICP high-frequency induction heating plasma emission spectrometry
  • the concentration of Fe 2+ was determined from the titration amount of dichromic acid at the point where Fe 2+ was changed to Fe 3+ by adding dichromic acid to a liquid obtained by collecting a part of the raw material liquid, and obtained by ICP measurement first.
  • the concentration of Fe 3+ was calculated by subtracting from the total concentration of iron ions.
  • a magnetite raw material liquid is introduced between the processing surfaces as the first fluid to be processed (liquid A) from the first introduction part d1 of the fluid processing apparatus shown in FIG. 1, and the processing part 10 is rotated at 1700 rpm.
  • a magnetite precipitation solvent was introduced between the processing surfaces 1 and 2 as the second treated fluid (liquid B) and mixed in the thin film fluid.
  • Magnetite particles were deposited between the processing surfaces 1 and 2, and a discharge liquid containing magnetite particles (hereinafter referred to as magnetite particle dispersion) was discharged from between the processing surfaces 1 and 2 of the fluid processing apparatus.
  • the discharged magnetite particle dispersion was recovered in the beaker b via the vessel v.
  • the introduction temperature (liquid feeding temperature) and the introduction pressure (liquid feeding pressure) of the liquid A and the liquid B are sealed introduction paths (first introduction part d1 and second introduction part) that communicate between the processing surfaces 1 and 2. d2) was measured using a thermometer and a pressure gauge provided in d2, and the introduction temperature of the A liquid shown in Table 1 was the actual temperature of the A liquid under the introduction pressure in the first introduction part d1.
  • the introduction temperature of the B liquid is the actual temperature of the B liquid under the introduction pressure in the second introduction part d2.
  • a pH meter of model number D-51 manufactured by HORIBA was used for pH measurement. Before introducing each of the first and second fluids to be treated into the fluid treatment apparatus, the pH of the fluid to be treated was measured at room temperature. Further, since it is difficult to measure the pH of the mixed fluid immediately after mixing the magnetite raw material liquid and the magnetite precipitation solvent, the pH of the magnetite particle dispersion liquid discharged from the apparatus and collected in the beaker b was measured at room temperature. .
  • a dry powder and a wet cake sample were prepared from the magnetite particle dispersion liquid discharged from the fluid processing apparatus and collected in the beaker b.
  • the production method was performed according to a conventional method of this type of treatment.
  • the discharged magnetite nanoparticle dispersion was recovered, the magnetite particles were settled to remove the supernatant, and then washing and sedimentation were repeated.
  • the magnetite particles were washed by repeating the process, and a portion of the finally obtained magnetite particle wet cake was dried to obtain a dry powder.
  • the other was a wet cake sample.
  • Example preparation for TEM observation and TEM observation result A part of the wet cake sample of magnetite particles after the washing treatment obtained in Examples was dispersed in propylene glycol, and further diluted 100 times with isopropyl alcohol (IPA). The obtained diluted solution was dropped on the collodion film and dried to obtain a sample for TEM observation.
  • IPA isopropyl alcohol
  • X-ray diffraction measurement For the X-ray diffraction (XRD) measurement, a powder X-ray diffraction measurement apparatus X′Pert PROMPD (manufactured by XRD Spectris PANalytical Division) was used. The measurement conditions were as follows: measurement range: 10 to 100 [° 2 Theta] Cu counter cathode, tube voltage 45 kV, tube current 40 mA, scanning speed 0.3 ° / min. It was.
  • Example X1 XRD measurement results
  • XRD measurement was performed using the dry powder of magnetite particles obtained in each Example.
  • the XRD measurement result of Example X1 is shown in FIG.
  • a peak consistent with magnetite was observed, confirming that magnetite was produced.
  • the crystallite diameter was calculated from the Scherrer equation using the measurement result of the silicon polycrystalline plate.
  • the criterion for determining whether or not each particle is a single crystal is that a lattice stripe (atom arrangement in the crystal) is observed in one direction is recognized as a single crystal, and the lattice stripe is disturbed. It was recognized that the ones with grain boundaries were not single crystals.
  • Example X2 to X12 In the same manner as in Example X1, each of the magnetite precipitation solvent and the magnetite raw material liquid described in Table 1 was carried out at the introduction flow rate, introduction temperature, introduction pressure, and magnetite particles were deposited between the processing surfaces 1 and 2. I let you. A dry powder and a wet cake sample were prepared from the magnetite particle dispersion liquid discharged from the fluid processing apparatus and collected in the beaker b through the vessel v. When TEM observation and XRD measurement were performed in the same procedure as in Example X1, the results shown in Table 1 were obtained. The conditions not listed in Table 1 are the same as in Example X1.
  • the processing surface introduction temperature (c) described in Table 1 is the following equation using the flow rate and the introduction temperature of the magnetite raw material liquid and the magnetite precipitation solvent introduced between the processing surfaces 1 and 2.
  • C (a1 ⁇ a2 + b1 ⁇ b2) / (a2 + b2), which is a temperature obtained by calculation of a mixed fluid of the magnetite precipitation solvent and the magnetite raw material liquid to be obtained
  • each symbol indicates the following contents.
  • FIG. 9 shows a graph of the single crystal ratio with respect to the introduction temperature of the magnetite raw material liquid which is the liquid A according to Examples X1 to X10 and Example X12. Further, FIG. 10 shows a graph of the single crystal ratio with respect to the processing inter-surface introduction temperature (c) according to Examples X1 to X10 and Example X12.
  • the ratio (d / D) of (d) is improved, and the ratio (d) is increased by increasing the liquid feed temperature (introduction temperature) of the magnetite raw material liquid or the inter-surface introduction temperature for processing (c) above 100 ° C. / D) has been confirmed to be significantly improved.
  • the magnetite raw material liquid and the magnetite are controlled. Since the introduction pressure of the precipitation solvent exceeds the standard pressure and can be introduced between the processing surfaces 1 and 2, the magnetite raw material liquid does not cause boiling even when the temperature becomes higher than the standard boiling point of the fluid.
  • the magnetite precipitation solvent can be mixed in a reaction space of the order of several ⁇ m formed between the processing surfaces, whereby the reaction at a temperature higher than the normal boiling point can be stably performed.
  • a large amount of energy such as heat can be instantaneously applied to the deposited nanoparticles.
  • the present applicant believes that the effect is particularly high when obtaining particles.
  • the pressure condition between the processing surfaces can be controlled by the fluid supply pressure (introduction pressure) of the fluid, and specifically, the liquid is supplied between the processing surfaces from the first introduction part d1 of the processing surface.
  • the control can be performed by the liquid supply pressure of the first fluid to be processed and the liquid supply pressure of the second fluid to be processed fed from the second introduction part d2.
  • the feeding temperature (introduction temperature) of the magnetite raw material liquid or the introduction temperature (c) between the processing surfaces is 120 ° C. or higher and the pH of the discharge liquid is 9 or higher.
  • all observed magnetite particles were single crystals.
  • FIG. 3 shows a TEM photograph of the magnetite particles obtained in Example X1. It was found that the magnetite particles obtained in Example X1 prepared with the pH of the discharge liquid being 9.53 were single crystals and the shape was substantially circular.
  • FIG. 4 shows a TEM photograph of the magnetite particles obtained in Example X2 and FIG. 5 in Example X3.
  • Example X2 FIG. 5
  • Example X3 (FIG. 5) has a discharge liquid pH of 13.34
  • Example X10 (FIG. 6) has a discharge liquid pH of 14.00.
  • FIG. 7 shows a TEM photograph of the magnetite particles obtained in Example X12. As seen in FIG. 7, the magnetite particles obtained in Example X12 were not only single crystals, but also almost no interference fringes in the crystal lattice.
  • FIG. 7 shows a TEM photograph of the magnetite particles obtained in Example X12. As seen in FIG. 7, the magnetite particles obtained in Example X12 were not only single crystals, but also almost no interference fringes in the crystal lattice.
  • Example 8 shows the XRD measurement results of the magnetite particles obtained in Examples X1, X2, X3 and Example X12.
  • Example X11 the introduction temperature of the magnetite raw material liquid and the inter-surface introduction temperature for processing (c) are both 120 ° C. or higher, but only the introduction flow rate of the magnetite precipitation solvent that is the B liquid is changed, The pH of the discharged liquid is 4.16. It was found that the single crystal ratio was lower than in Example X in which the pH of the discharge liquid was 9 or more.
  • Example Y1 Each of the cerium oxide precipitation solvent and the cerium oxide raw material liquid was prepared using CLEARMIX (product name: CLM-2.2S, manufactured by M Technique), which is a high-speed rotary dispersion emulsifier. Specifically, based on the prescription of the cerium oxide precipitation solvent shown in Example Y1 of Table 2, a basic substance and pure water are mixed, and the temperature of the rotor is 10,000 rpm using a preparation temperature of 45 ° C. and CLEARMIX. The mixture was homogeneously mixed by stirring for 30 minutes to prepare a cerium oxide precipitation solvent.
  • CLEARMIX product name: CLM-2.2S, manufactured by M Technique
  • the cerium oxide particle raw material and pure water are mixed, the preparation temperature is 50 ° C., and the rotation speed of the rotor is 20000 rpm using CLEARMIX.
  • the mixture was homogeneously mixed by stirring for 30 minutes, and the cerium oxide particle raw material was dissolved in pure water to prepare a cerium oxide raw material liquid.
  • Ce (NO 3 ) 3 .6H 2 O represents cerium (III) nitrate hexahydrate
  • NH 3 represents ammonia
  • NaOH represents sodium hydroxide.
  • Ce (NO 3) 3 ⁇ 6H 2 O are special grade reagents manufactured by Wako Pure Chemical, NH 3 it is (28 wt% containing NH 3) special grade reagent manufactured by Kanto Chemical, NaOH was used guaranteed reagent manufactured by Kanto Kagaku.
  • a cerium oxide precipitation solvent is introduced as a first fluid to be treated (liquid A) from the first introduction part d1 of the fluid treatment apparatus shown in FIG. While operating at 1700 rpm, a cerium oxide raw material liquid is introduced between the processing surfaces 1 and 2 as a second fluid to be processed (liquid B) from the second introduction part d2 of the fluid processing apparatus shown in FIG. Mixed.
  • Cerium oxide particles were deposited between the processing surfaces 1 and 2, and a discharge liquid containing cerium oxide particles (hereinafter, cerium oxide particle dispersion) was discharged from between the processing surfaces 1 and 2 of the fluid processing apparatus.
  • the discharged cerium oxide particle dispersion was recovered in the beaker b via the vessel v.
  • the introduction temperature (liquid feeding temperature) and the introduction pressure (liquid feeding pressure) of the liquid A and the liquid B are sealed introduction paths (first introduction part d1 and second introduction part) that communicate between the processing surfaces 1 and 2. d2) is measured using a thermometer and a pressure gauge provided in d2, and the introduction temperature of the A liquid shown in Table 2 is the actual temperature of the A liquid under the introduction pressure in the first introduction part d1.
  • the introduction temperature of the B liquid is the actual temperature of the B liquid under the introduction pressure in the second introduction part d2.
  • a pH meter of model number D-51 manufactured by HORIBA was used for pH measurement. Before introducing each of the first and second fluids to be treated into the fluid treatment apparatus, the pH of the fluid to be treated and the temperature at the time of pH measurement were measured. Moreover, since it is difficult to measure the pH of the mixed fluid immediately after mixing the cerium oxide raw material liquid and the cerium oxide precipitation solvent, the pH of the cerium oxide particle dispersion liquid discharged from the apparatus and collected in the beaker b is brought to room temperature. Measured.
  • a dry powder and a wet cake sample were prepared from the cerium oxide particle dispersion liquid discharged from the fluid processing apparatus and collected in the beaker b.
  • the production method was carried out in accordance with a conventional method of this type of treatment.
  • the discharged cerium oxide nanoparticle dispersion was recovered, the cerium oxide particles were settled to remove the supernatant, and then pure water (pH 5.94).
  • the cerium oxide particles are washed by repeatedly performing washing and sedimentation with a conductivity of 0.84 ⁇ S / cm seven times, and finally drying a portion of the wet cake of the cerium oxide particles obtained. It was.
  • the other was a wet cake sample.
  • sample preparation for TEM observation A part of the wet cake sample of the cerium oxide particles after the washing treatment obtained in the example was dispersed in propylene glycol, and further diluted 100 times with isopropyl alcohol (IPA). The obtained diluted solution was dropped on the collodion film and dried to obtain a sample for TEM observation.
  • IPA isopropyl alcohol
  • X-ray diffraction measurement For the X-ray diffraction (XRD) measurement, a powder X-ray diffraction measurement apparatus X′Pert PROMPD (manufactured by XRD Spectris PANalytical Division) was used. The measurement conditions were as follows: measurement range: 10 to 100 [° 2 Theta] Cu counter cathode, tube voltage 45 kV, tube current 40 mA, scanning speed 0.3 ° / min. It was.
  • Example Y2 to Y16 As in Example Y1, Examples Y2 to Y16 are carried out under the respective formulations and processing conditions of the cerium oxide precipitation solvent and cerium oxide raw material liquid listed in Table 2, and the cerium oxide particles are treated with the processing surfaces 1 and 2. Between them. A dry powder and a wet cake sample are prepared from the cerium oxide particle dispersion liquid discharged from the fluid processing apparatus and collected in the beaker b through the vessel v, and TEM observation and XRD measurement are performed in the same procedure as in Example Y1. It was. The results of Examples Y1 to Y16 are shown in Table 2. The conditions not listed in Table 2 are the same as in Example Y1.
  • each symbol indicates the following contents.
  • a1 Introduction temperature of cerium oxide raw material liquid (° C)
  • a2 Introduction flow rate of cerium oxide raw material liquid (ml / min.)
  • b1 Introduction temperature of cerium oxide precipitation solvent (° C)
  • b2 Introduction flow rate of cerium oxide precipitation solvent (ml / min.)
  • FIG. 17 shows a graph of the single crystal ratio with respect to the introduction temperature of the cerium oxide precipitation solvent that is the liquid A according to Examples Y1 to Y12, Y15, and Y16.
  • FIG. 18 shows a graph of the single crystal ratio with respect to the processing inter-surface introduction temperature c according to Examples Y1 to Y12, Y15, and Y16.
  • the cerium oxide raw material liquid and the cerium oxide precipitation solvent can be mixed in a reaction space of the order of several ⁇ m formed between the processing surfaces, thereby stably performing the reaction at a temperature higher than the normal boiling point.
  • the pressure condition between the processing surfaces can be controlled by the fluid supply pressure (introduction pressure) of the fluid, and specifically, the first target to be supplied between the processing surfaces from the first introduction part d1. It can be controlled by the liquid feeding pressure of the processing fluid and the liquid feeding pressure of the second fluid to be treated fed between the processing surfaces from the second introduction part d2.
  • both the liquid feeding temperature (introduction temperature) of the cerium oxide precipitation solvent and the inter-surface introduction temperature c for treatment are 120 ° C. or more, and the pH of the discharge liquid is 6
  • the pH of the discharge liquid is 6
  • FIG. 11 shows a TEM photograph of the cerium oxide particles obtained in Example Y8.
  • ammonia was used as the basic substance of the cerium oxide precipitation solvent, and the pH of the discharge liquid was 8.10.
  • the cerium oxide particles obtained in Example Y8 were found to contain the single crystal particles shown in FIG. 11 and to have a substantially circular shape.
  • Example Y9 shows a TEM photograph of the cerium oxide particles obtained in Example Y9, FIG. 13 in Example Y10, and FIG. 14 in Example Y11. In FIG. 11 to FIG. 14, lattice fringes were observed in one direction.
  • Example Y9 (FIG. 12), ammonia was used as the basic substance of the cerium oxide precipitation solvent, and the pH of the discharge liquid was 7.14. It was found that the cerium oxide particles produced in Example Y9 were single crystals and the shape was rectangular (rectangular).
  • Example Y10 (FIG. 13) ammonia was used as the basic substance of the cerium oxide precipitation solvent, and the pH of the discharge liquid was 8.79.
  • Example Y10 It was found that the cerium oxide particles prepared in Example Y10 are single crystals and have a polygonal shape.
  • Example Y11 (FIG. 14), sodium hydroxide was used as the basic substance of the cerium oxide precipitation solvent, and the pH of the discharge liquid was 6.91. It was found that the cerium oxide particles produced in Example Y11 are single crystals and have a polygonal shape.
  • FIG. 21 shows a TEM photograph of the cerium oxide particles obtained in Example Y6. Although most of the cerium oxide particles produced in Example Y6 were single crystals, there were particles in which the interference fringes of the crystal lattice were partially observed in the particles, and particles in which the interference fringes of the crystal lattice were hardly observed confirmed.
  • FIG. 21 shows a TEM photograph of the cerium oxide particles obtained in Example Y6. Although most of the cerium oxide particles produced in Example Y6 were single crystals, there were particles in which the interference fringes of the crystal lattice were partially observed in the particles
  • FIG. 21 shows five cerium oxide particles, but no crystal lattice is seen in the particles between the lower three and the upper one (particles indicated by arrows in FIG. 21). However, when focusing on the particles in which the crystal lattice was not seen, lattice fringes were observed in the particles. Therefore, all the cerium oxide particles shown in FIG. 21 are single crystals. In TEM observation, in order to observe all of a plurality of particles as single crystal particles, it is necessary to align the thickness of the particles, the height during observation, and the like for all the particles. Although almost all of the cerium oxide particles produced in Example Y7 were single crystals, rare particles in which the interference fringes of the crystal lattice were partially observed in the particles were also confirmed. Next, FIG.
  • FIG. 15 shows a TEM photograph of the cerium oxide particles obtained in Example Y15.
  • the cerium oxide particles obtained in Example Y15 were not only single crystals, but also almost no interference fringes in the crystal lattice.
  • FIG. 16 shows the XRD measurement results of the cerium oxide particles obtained in Examples Y8, Y9, Y10, and Y15.
  • Examples Y1 to Y16 including Examples Y8 to Y10 and Y15 shown in FIG. 16 only peaks derived from cerium oxide were detected, but Examples Y1 to Y14 In comparison with Example 1, the peaks of Examples Y15 and Y16 were broad, confirming that the crystallinity was low and the crystallite diameter was small.
  • both the introduction temperature of the cerium oxide precipitation solvent and the introduction temperature (c) between the processing surfaces are 120 ° C. or higher, but the pH of the discharge liquid is 10.30, and 11. 84. It can be seen that the cerium oxide particles obtained in Examples Y13 and Y14 have a lower single crystal ratio than Examples Y9 to Y12 in which the pH of the discharge liquid is in the range of 6.0 to 9.0. It was.
  • Example Y17 and Y18 Cerium oxide particles were prepared under the same conditions as in Example Y1, except that the cerium oxide raw material liquid and the cerium oxide precipitation solvent formulation and the treatment conditions were set to Table 3.
  • the preparation of the cerium oxide raw material liquid is based on the formulation of the cerium oxide raw material liquid shown in Table 3, and the cerium oxide particle raw material containing a compound of an element desired to be dissolved or combined in the obtained cerium oxide particles and pure water are mixed, At a preparation temperature of 50 ° C., the mixture was homogeneously mixed by stirring for 30 minutes at a rotor rotation speed of 20000 rpm using CLEARMIX, and the cerium oxide particle raw material was dissolved in pure water to prepare a cerium oxide raw material liquid.
  • the cerium oxide precipitation solvent was prepared under the same conditions as in Example Y1.
  • Ce (NO 3 ) 3 ⁇ 6H 2 O represents cerium (III) nitrate hexahydrate
  • NH 3 represents ammonia
  • Fe (NO 3 ) 3 ⁇ 9H 2 O represents iron nitrate nonahydrate.
  • Ce (NO 3) 3 ⁇ 6H 2 O are special grade reagents manufactured by Wako Pure Chemical
  • NH 3 is (28 wt% containing NH 3) special grade reagent manufactured by Kanto Chemical
  • Fe (NO 3) 3 ⁇ 9H 2 O in Kanto Chemical A special grade reagent manufactured by the manufacturer was used.
  • FIG. 20 shows the XRD measurement results of the cerium oxide particles obtained in Example Y17.
  • FIG. 20 shows the XRD measurement results of the cerium oxide particles obtained in Example Y17.
  • FIG. 20 shows the XRD measurement result of the cerium oxide particles obtained in Example Y17.
  • the XRD measurement result of the cerium oxide particles obtained in Example Y17 only the peak derived from cerium oxide was detected, and in the XRD measurement result of the cerium oxide particles obtained in Example Y18, In addition, only peaks derived from cerium oxide were detected. Further, as a result of performing an EDS analysis on the cerium oxide particles shown in FIG.
  • Example Z1 iron oxide raw material fluid was used as liquid A, iron oxide precipitation fluid was used as liquid B, and liquid A and liquid B were mixed using a microreactor to precipitate iron oxide fine particles ( ⁇ -hematite particles).
  • the product name: ULREA manufactured by M Technique
  • the liquid A corresponds to the first fluid to be treated introduced from the first introduction part d1 of the microreactor shown in FIG. 1
  • the liquid B corresponds to the second fluid to be treated similarly introduced from the second introduction part d2.
  • the replacement of the first introduction part d1 and the second introduction part d2 is arbitrary.
  • the obtained iron oxide fine particles were analyzed under the following conditions. *
  • XRD measurement a powder X-ray diffractometer (product name: X'Pert PRO MPD, manufactured by PANalytical) was used.
  • the measurement conditions are: measurement range: 10 to 100 °, Cu counter cathode, tube voltage 45 kV, tube current 40 mA, scanning speed 16 ° / min.
  • the crystallite diameter was calculated using a peak near 44 ° and using a silicon polycrystalline plate as a reference.
  • the primary particle diameter D1 of the iron oxide fine particle of an Example is an average value (average primary particle diameter) as a result of measuring a particle diameter about 100 particles by TEM observation.
  • the criterion for determining whether or not each particle is a single crystal is that a lattice stripe (atom arrangement in the crystal) is observed in one direction is recognized as a single crystal, and the lattice stripe is disturbed. It was recognized that the ones with grain boundaries were not single crystals.
  • solution A iron (III) nitrate nonahydrate / pure water was mixed at a weight ratio of 2.0 / 98.0, and Claremix (product name: CLM-2.2S, manufactured by M Technique) was used. It was prepared by stirring at a rotation speed of 20000 rpm, a processing temperature of 24 to 60 ° C., and a processing time of 60 min, mixing and dissolving.
  • solution B sodium hydroxide / pure water is mixed at a weight ratio of 9.0 / 91.0, and the mixture is mixed and dissolved by stirring at a rotation speed of 8000 rpm, a processing temperature of 50 ° C., and a processing time of 30 minutes using CLEARMIX. Prepared.
  • Examples Z1 to Z6 Using the microreactor shown in FIG. 1, liquid A and liquid B having the formulations shown in Table 4 are introduced between the processing surfaces 1 and 2 under the processing conditions shown in Table 4, and between the processing surfaces 1 and 2. The mixture was mixed in the formed thin film fluid to precipitate iron oxide fine particles.
  • a slurry liquid containing iron oxide fine particles deposited between the processing surfaces 1 and 2 (hereinafter also referred to as a discharge liquid) was discharged from between the processing surfaces 1 and 2 and collected in the beaker b through the vessel v.
  • the rotation speed of the processing unit 10 is 1700 rpm.
  • Fe (NO 3) 3 ⁇ 9H 2 O is iron (III) nitrate nonahydrate
  • NaOH sodium hydroxide
  • Example Z1-Z6 the discharged liquid collected in the beaker b was allowed to stand until the temperature became 60 ° C. or lower, and iron oxide fine particles were allowed to settle.
  • the supernatant liquid in the beaker b is removed, pure water having a weight of 20 to 1500 times the weight of the precipitated iron oxide fine particles is added, and the number of revolutions is 6000 rpm, the treatment temperature is 25 ° C., and the treatment time is 5 minutes using Claremix.
  • the iron oxide fine particles were washed. After performing the washing operation three times, the iron oxide fine particles were settled again, and the supernatant was removed to obtain a wet cake containing iron oxide fine particles.
  • Examples Z7-Z11 Iron oxide fine particles were precipitated in the same manner as in Examples Z1-Z6 except that the formulation and treatment conditions of the iron oxide raw material fluid and the iron oxide precipitation fluid were changed to Table 4.
  • a slurry liquid containing iron oxide fine particles deposited between the processing surfaces 1 and 2 (hereinafter also referred to as a discharge liquid) was discharged from between the processing surfaces 1 and 2 and collected in the beaker b through the vessel v.
  • Example Z7 to Z11 the discharged liquid collected in the beaker b was allowed to stand until the temperature became 60 ° C. or lower, and iron oxide fine particles were allowed to settle.
  • FIG. 23 shows a TEM photograph of the iron oxide fine particles obtained in Example Z10.
  • the substantially spherical shape means a substantially spherical shape. Specifically, when the particle shape is defined by a major axis and a minor axis, the ratio of the minor axis to the major axis is 0.5 to 1. Means in the range of .0.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compounds Of Iron (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

酸化物粒子の結晶性を向上させ、より望ましくは単結晶の酸化物粒子を安定して得ることができる酸化物粒子の製造方法を提供することを課題とする。 第1の流体と第2の流体とを含む、少なくとも2つの被処理流体を備え、第1の流体と第2の流体とのうちの一方は少なくとも酸化物粒子原料を溶媒に混合させた酸化物原料液であり、第1の流体と第2の流体とのうちの他方は少なくとも塩基性物質を溶媒に混合した酸化物析出溶媒であり、対向して配設された、接近離反可能な相対的に回転する処理用面間で第1の流体と第2の流体とを混合させ、酸化物粒子が析出した混合流体を上記処理用面間から吐出させる。上記処理用面間に導入する第1の流体の温度と、上記処理用面間に導入する第2の流体の温度と、第1の流体と第2の流体との混合時の温度とからなる群から選択された少なくとも1つを変化させることで、上記処理用面間から吐出させる酸化物粒子の結晶性を制御する。

Description

酸化物粒子の製造方法
本発明は、酸化物粒子の製造方法に関する。
酸化物粒子は、触媒、導電性材料、磁性材料、二次電子放出材料、発光体、吸熱体、エネルギー貯蔵体、電極材料、色材など幅広い分野において用いられている材料であり、粒子の大きさによって、特性が変化するため、目的や要求によって、異なる粒子径や結晶性を持つ酸化物粒子が必要とされている。特に、微粒子化することによってバルクの状態とは大きく異なる特性が発現されるようになり、酸化物粒子は今後も広く求められる材料である。
例えば、マグネタイトは、化学組成をFe(Fe(II)Fe(III))で表される酸化鉄の一種であり、古くから広く使用されている材料である。特にマグネタイト粒子は、化学的に安定で比較的大きな磁性を有する粒子であり、情報記録分野における磁気記録媒体、磁性流体、あるいは画像記録分野における、磁性トナー、キャリア、あるいは顔料などの用途に広く利用されてきた。また近年では、NMRにおける造影剤や、ガンの温熱療法など医療分野でも用いられるようになってきているなど、さまざまな分野での活用が期待されている。
同様に、酸化セリウムは、化学組成をCeO(IV)で表される酸化物の一種であり、古くから研磨剤として広く使用されている材料である。近年、ナノサイズの酸化セリウム粒子の製造方法が開発されたのに伴い、研磨剤のみならず、紫外線吸収剤、固体電解質、あるいは触媒担体など新たな用途への利用が進みつつある。
今日知られている酸化物粒子の製造方法としては、ゾルゲル法や共沈法、水熱合成などが挙げられる。
例えば、マグネタイトの製造方法には、第一鉄のイオン(Fe2+)と第二鉄のイオン(Fe3+)をアルカリ溶液中において共沈させる方法や、水酸化第一鉄溶液を空気にて酸化する方法や鉄酸化物(α-Fe)や鉄水酸化物(α-FeOOH)を水素雰囲気中で還元する方法などが古くから知られているが、得られるマグネタイト粒子が粗大となり易く、一次粒子径として100nm以下であるナノメートルオーダーのマグネタイトを得ることが困難であるだけでなく、乾式の熱処理や高温が必要になる等の課題があった。
また一般的に、ナノ粒子の特性として、粒子径が小さくなるにつれて、表面エネルギーの影響により粒子は凝集しやすくなる。加えて、マグネタイト粒子は、磁気凝集性を有するため、分散性の向上が特に大きな課題となっている。分散性を向上させるためには、その平均粒子径で最も安定な表面状態を有する単結晶のマグネタイト粒子が望ましく、また温度や光、溶媒に対する耐久性や磁気特性などの向上も期待されるため、以下の様に、従来から単結晶マグネタイト粒子の製造方法が提案されている。
特許文献1においては、脱酸素処理されたアルカリ水溶液に酸化剤を添加する工程と、酸化剤の添加された上記アルカリ水溶液に可溶な量の2価鉄イオンを添加し、2価鉄イオンの添加された上記アルカリ水溶液を撹拌しながらマグネタイト粒子を生成させる方法が示されている。
特許文献2においては、第二鉄塩水溶液を5~40℃の範囲の温度でアルカリ水溶液にて中和し、生成した水酸化第二鉄を濾過し、水洗した後、水に分散させ、全第二鉄イオンの3分の1を還元するに足りる量の還元剤を添加し、pHを7~11の範囲のスラリーとし、次いで、これを120~200℃の温度にて、水熱反応させる方法が示されている。
特許文献1または特許文献2に記載されたような方法では、単結晶のマグネタイトを得るために長時間を必要とするだけでなく、バッチ法を用いているため、容器内でマグネタイトを得るために、Fe2+イオンとFe3+イオンのモル比Fe2+/Fe3+を厳密にFe2+/Fe3+=0.5に維持したまま反応させることが難しい。そのため、均一にFeナノ粒子を得ることが難しく、場合によっては、ヘマタイト(α-Fe)やゲーサイト(α―FeOOH)が混入する危険性がある。また、バッチ方式であるがゆえに、大量生産にあたっては、反応槽内の温度勾配や濃度勾配のため、粒度分布や粒子形状が揃ったナノ粒子を得るのが非常に困難である。
一方、特許文献3においては、1体内に複数の単結晶マグネタイト(Fe)を有し、走磁性菌と称される水生細菌から、単結晶マグネタイトを回収する方法が示されている。このような生物から物質を回収する方法では、安定的に単結晶のマグネタイトを供給することが難しく、産業上において利用することは困難と考えられる。
また、酸化セリウムの製造方法には、第一セリウムのイオン(Ce3+)または第二セリウムのイオン(Ce4+)をアルカリ溶液中において共沈させる方法や、200℃以上で長時間処理する水熱合成などが知られているが、得られる酸化セリウム粒子が粗大となり易く、一次粒子径として50nm以下であるナノメートルオーダーの酸化セリウムを得ることが困難であるだけでなく、乾式の熱処理や高温が必要になる等の課題があった。
また一般的に、ナノ粒子の特性として、粒子径が小さくなるにつれて、表面エネルギーの影響により粒子は凝集しやすくなる。分散性を向上させるためには、結晶性が高いことが望しく、特に、その平均粒子径で最も安定な表面状態を有する単結晶の酸化物粒子が最も望ましい。結晶性の向上、ひいては単結晶化によって、温度や光、溶媒に対する耐久性や耐衝撃性などの向上も期待され、粒子性状も均一化しやすくなるため、以下の様に、従来から単結晶酸化セリウム粒子の製造方法が提案されている。
特許文献5においては、アルカリ塩基を硝酸セリウム(III)の水溶液と混合し、熟成ののちに、乾式にて650~1000℃の範囲内で熱処理する方法が示されている。
特許文献6においては、セリウム塩を有機溶媒と水との混合溶媒の存在下で沈殿させて水酸化セリウムを製造し、得られた水酸化セリウムを180℃乃至300℃で水熱反応させる方法が示されている。
特許文献5または特許文献6に記載されたような方法では、単結晶の酸化セリウムを得るために高温で長時間の処理を必要とするだけでなく、バッチ法を用いているため、反応の均一性を確保することが難しい。また、乾式での熱処理によって粗大な粒子が生成する場合や、水熱合成における温度や濃度の不均一性によって、粒子一つ一つの結晶性を制御することが難しい。また、バッチ方式であるがゆえに、大量生産にあたっては、反応槽内の温度勾配や濃度勾配により、粒度分布や粒子形状が揃った、結晶性の高いナノ粒子を得るのが非常に困難である。
上記課題を解決するために、本願出願人によって、少なくとも2種類の被処理流体を、対向して配設された、接近離反可能な相対的に回転する処理用面間に導入して両者を混合することにより、磁性体微粒子を製造する方法が提案された(特許文献4)。この特許文献4に係る発明は、上記処理用面の間にできる薄膜流体中で、磁性体原料と磁性体微粒子析出剤を反応させて黒色酸化鉄(Fe:マグネタイト)や黄色酸化鉄(FeOOH:ゲーサイト)などの磁性体微粒子を得るものであり、その薄膜流体中では温度の均一性が高く、また反応容器の撹拌における均一性も非常に高いことに着目し、目的に応じて単分散の磁性体微粒子が作成出来、さらに自己排出性により生成物の詰まりも無く、大きな圧力を必要とせず、また生産性も高い、磁性体微粒子の製造方法を提供するものである。
また、上記課題を解決するために、本願出願人によって、セラミックス原料を含む流体とpH調整剤を含む流体とを、対向して配設された、接近離反可能な相対的に回転する処理用面間に導入して両者を混合することにより、セラミックスナノ粒子を製造する方法が提案された(特許文献7)。この特許文献7に係る発明は、上記処理用面の間にできる薄膜流体中で、セラミックス原料を加水分解させてセラミックスナノ粒子を得るものであり、その薄膜流体中では温度の均一性が高く、また反応容器の撹拌における均一性も非常に高いことに着目し、目的に応じて単分散のセラミックスナノ粒子が作成出来、さらに自己排出性により生成物の詰まりも無く、大きな圧力を必要とせず、また生産性も高い、セラミックスナノ粒子の製造方法を提供するものである。
そして、特許文献4には、得られる磁性体微粒子の粒子径や単分散度、また結晶性及び結晶化度の制御は、処理用面の回転数や処理用面間の距離、及び、薄膜流体の流速や温度、または原料濃度を変えることにより調節することができることが示されており、特許文献7には、得られるセラミックスナノ粒子の粒子径や単分散度、また結晶型の制御は、処理用面の回転数や処理用面間の距離、及び、薄膜流体の流速や原料濃度、または温度などを変えることにより調節することができることが示されている。
そこで、本願発明者は、これらの条件を制御することで、酸化物粒子の結晶性を向上させ、より望ましくは単結晶の酸化物粒子を得るべく検討を継続した。しかしながら、比較的小さな圧力条件下(0.10MPaG以下)では、単に薄膜流体の温度を制御しても、単結晶の酸化物粒子を得ることはできなかった。その後、発明者が試行錯誤の末、鋭意検討した結果、上記処理用面間に導入される各流体の温度や各流体の混合時の温度を所定温度よりも高い温度とすること、特に、比較的大きな圧力条件下(0.10MPaGよりも大きい)で、上記処理用面間に導入される各流体の温度や各流体の混合時の温度を所定温度よりも高い温度とすることで、酸化物粒子の結晶性を飛躍的に向上させることが可能であることを見出し、本発明に至った。例えば、マグネタイト粒子の製造にあっては、上記処理用面間に導入されるマグネタイト原料液の温度を所定温度よりも高い温度とすること、特に、比較的大きな圧力条件下(0.10MPaGよりも大きい)で、マグネタイト原料液の温度を所定温度よりも高い温度とすることで、マグネタイト粒子の結晶性を飛躍的に向上させることが可能であることを見出した。また、酸化セリウム粒子の製造にあっては、上記処理用面間に導入する上記酸化セリウム析出溶媒の温度と、上記酸化セリウム原料液と酸化セリウム析出溶媒との混合時の温度との、少なくとも1つを変化させることによって、上記処理用面間から吐出させる酸化セリウム粒子の結晶性を制御することを見出した。具体的には、上記処理用面間に導入する酸化セリウム析出溶媒の温度と、上記酸化セリウム原料液と酸化セリウム析出溶媒との混合時の温度との、少なくとも1つの温度を所定温度よりも高い温度とすることで、酸化セリウム粒子の結晶性を向上させることが可能であることを見出した。特に、比較的大きな圧力条件下(0.10MPaGよりも大きい)で、上記処理用面間に導入する酸化セリウム析出溶媒の温度と、上記酸化セリウム原料液と酸化セリウム析出溶媒との混合時の温度との、少なくとも何れか1つの温度を所定温度よりも高い温度とすることで、酸化セリウム粒子の結晶性を飛躍的に向上させることが可能であることを見出した。
特開2006-219353号公報 特開平08-325098号公報 特開昭61-081778号公報 特開2009-132994号公報 特表2011-511751号公報 特開2005-519845号公報 国際公開第2009/008392号パンフレット
本発明では、対向して配設された、接近離反可能な相対的に回転する処理用面の間にできる薄膜流体において酸化物粒子を析出させる製造方法において、得られる酸化物粒子の結晶性を向上させ、より望ましくは単結晶の酸化物粒子を安定して得ることができる酸化物粒子の製造方法を提供することを課題とする。
本発明は、第1の流体と第2の流体を含む、少なくとも2つの被処理流体を備えるものであり、第1の流体と第2の流体とのうちの一方は、少なくとも酸化物粒子原料を溶媒に混合させた酸化物原料液であり、第1の流体と第2の流体とのうちの他方は、少なくとも塩基性物質を溶媒に混合した酸化物粒子析出溶媒であり、上記第1の流体と第2の流体とを、対向して配設された、接近離反可能な相対的に回転する処理用面間で混合させ、酸化物粒子が析出した混合流体を上記処理用面間から吐出させる酸化物粒子の製造方法であって、上記処理用面間に導入する第1の流体の温度と、上記処理用面間に導入する第2の流体の温度と、上記第1の流体と上記第2の流体との混合時の温度とからなる群から選択された少なくとも1つを変化させることによって、上記処理用面間から吐出させる酸化物粒子の結晶性を制御することを特徴とする酸化物粒子の製造方法を提供する。
また、本発明は、上記処理用面間の間隔は、上記処理用面同士が互いに接近する方向に加えられる力と上記混合流体の圧力との圧力バランスによって、設定されることが望ましい。
また、本発明は、上記第1の流体が、薄膜流体を形成しながら上記処理用面間を通過し、上記第2の流体が、上記第1の流体が上記処理用面間に導入される流路とは独立した別途の導入路を経て、上記処理用面の少なくとも何れか一方に形成された開口部から上記処理用面間に導入され、上記第1の流体と上記第2の流体とが、上記処理用面間で混合されるものとして実施することができる。
本発明においては、薄膜流体を形成しながら上記処理用面間を通過する第1の流体の温度と、上記開口部から上記処理用面間に導入される第2の流体の温度と、上記第1の流体と上記第2の流体との混合時の温度とからなる群から選択された少なくとも1つを変化させることによって、得られる酸化物粒子の結晶性を制御するものとして実施することができ、上記第1の流体は、後述する流体処理装置の第1導入部から上記処理用面間に導入される流体を指し、上記第2の流体は、後述する流体処理装置の第2導入部から上記処理用面間に導入される流体を指す。
また、本発明は、上記処理用面間に導入する上記第1の流体の温度を50℃以上とすることが望ましく、上記処理用面間に導入する上記第1の流体の温度を100℃よりも高い温度とすることがより望ましい。ここで、第1の流体と第2の流体のうち、処理用面間に導入される単位時間当たりの流量が多い流体の温度を50℃以上とすることが望ましく、処理用面間に導入される単位時間当たりの流量が多い流体の温度を100℃以上とすることが望ましい。
また、本発明は、上記第1の流体には単数または複数種の溶媒を含み、上記処理用面間に導入する上記第1の流体の温度を、上記第1の流体に含まれる単数または複数種の溶媒のうち最も標準沸点の低い溶媒の標準沸点よりも高い温度とするものとして実施することができる。
本発明に係る製造方法にあっては、上記処理用面間の間隔は、上記処理用面同士が互いに接近する方向に加えられる力と上記混合流体の圧力との圧力バランスによって設定されることが望ましいが、上記処理用面間に導入する際の上記第1の流体の導入圧力を、標準気圧(即ち1atm=0.101325MPa)を超えるものとして実施することができる。この標準気圧を超える比較的高圧の導入条件下で、上記処理用面間に導入する上記第1の流体の温度を、上記第1の流体の標準沸点よりも高く且つ上記導入圧力下での沸点よりも低い温度とするものである。
本発明において、沸点とは、一定圧力のもとでの飽和蒸気とその液相とが平衡に共存している時の温度を意味し、標準沸点とは、圧力1atmのもとでの沸点を意味する。
酸化物析出溶媒の温度や酸化物原料液の温度、上記酸化物原料液と上記酸化物析出溶媒の流量の比率は適宜変更して実施することができるが、上記混合時の温度を次式で求められる上記混合流体の処理用面間導入温度c(℃)とし、処理用面間導入温度c(℃)が100℃よりも高いものであるとの条件を満たすものであることが望ましい。
c=(a1×a2+b1×b2)/(a2+b2)
但し、
a1:上記酸化物原料液の導入温度(℃)
a2:上記酸化物原料液の導入流量(ml/min.)
b1:上記酸化物析出溶媒の導入温度(℃)
b2:上記酸化物析出溶媒の導入流量(ml/min.)
より望ましくは、上記処理用面間に導入する上記第2の流体の温度が100℃よりも高い温度とする。
また、本発明は、上記第2の流体には単数または複数種の溶媒を含むものであり、上記処理用面間に導入する上記第2の流体の温度を、上記第2の流体に含まれる単数または複数種の溶媒のうち最も標準沸点の低い溶媒の標準沸点よりも高い温度とするものとして実施することができる。
ここで、第1の流体と第2の流体のうちの一方の流体のみの温度を高くする場合、温度を高くする流体は第1の流体と第2の流体のうちの何れであってもよいが、処理用面間に導入される単位時間当たりの流量が多い流体の温度を高くすることが望ましい。
上述の通り、本発明に係る製造方法にあっては、上記処理用面間の間隔は、上記処理用面同士が互いに接近する方向に加えられる力と上記混合流体の圧力との圧力バランスによって設定されることが望ましいが、上記処理用面間に導入する際の上記第1の流体の導入圧力と上記第2の流体の導入圧力との双方の導入圧力を、標準気圧(即ち1atm=0.101325MPa)を超えるものとして実施することができる。この標準気圧を超える比較的高圧の導入条件下で、上記処理用面間に導入する上記第1の流体の温度を、上記第1の流体の標準沸点よりも高く且つ上記導入圧力下での沸点よりも低い温度とし、かつ、上記処理用面間に導入する上記第2の流体の温度を、上記第2の流体の標準沸点よりも高く且つ上記導入圧力下での沸点よりも低い温度とするものとして実施することができる。
また、本発明は、上記酸化物粒子の透過型電子顕微鏡観察により得られた平均粒子径(D)に対する、上記酸化物粒子のX線回折測定より得られた平均結晶子径(d)の比率d/Dが、0.50以上であるものとして実施することができる。
また、本発明は、得られた上記酸化物粒子の90%以上がナノサイズの単結晶酸化物粒子であるものとして実施することができる。また本発明は、上記第1の流体と第2の流体媒との何れか一方の温度を175℃以下として実施することができる。
また、本発明は、上記酸化物粒子の一次粒子径が20nm以下であることが望ましい。また本発明は、上記酸化物粒子は、乾式での熱処理を必要としない酸化物粒子であるものとして実施することができる。また本発明は、上記酸化物粒子に他の元素を固溶または複合させてもよい。
また、本発明は、上記混合流体のpHを所定の範囲に制御することが望ましい。
また、本発明は、上記酸化物粒子原料がマグネタイト粒子原料であり、上記酸化物粒子がマグネタイト粒子であるものとして実施することができる。この場合、本発明は、上記酸化物原料液のpHが4以下であることが望ましく、上記酸化物析出溶媒のpHが12以上であることが望ましい。また、本発明は、上記混合流体のpHが9以上であることが望ましい。
本発明の実施に際しては、特に上記混合流体のpHが9以上の条件下では、上記混合流体のpHは、これを小さくすることによってマグネタイト粒子の形状が球形に近づくように制御し、上記混合流体のpHを大きくすることによってマグネタイト粒子の形状が角形に近づくように制御することができることが本発明者によって明らかにされた。
また、上記酸化物粒子原料がマグネタイト粒子原料であり、上記酸化物粒子がマグネタイト粒子である場合、本発明は、上記酸化物原料液中に含まれる、Fe2+イオンとFe3+イオンのモル比がFe2+/Fe3+=0.500±0.010であることが望ましい。
また、本発明は、上記マグネタイト粒子原料が、硫酸鉄(II)(FeSO)、硫酸鉄(III)(Fe(SO)、またはそれらの水和物からなる群から選択された少なくとも1つであるものとして実施することができる。
また、本発明は、上記酸化物粒子原料が酸化セリウム粒子原料であり、上記酸化物粒子が酸化セリウム粒子であるものとして実施することができる。また、上記酸化物粒子原料が酸化セリウム粒子原料であり、上記酸化物粒子が酸化セリウム粒子である場合、本発明は、上記酸化物原料液のpHが4以下であることが望ましく、上記酸化物析出溶媒のpHが10以上であることが望ましい。また、本発明は、上記混合流体のpHが6.0から9.0の範囲であることが望ましい。
また、本発明は、上記酸化セリウム粒子原料が、硝酸セリウム(III)(Ce(NO)、硝酸セリウム(IV)アンモニウム((NH[Ce(NO])、またはそれらの水和物からなる群から選択された少なくとも1つであるものとして実施することができる。
なお、本発明における酸化物粒子がマグネタイト粒子である場合には、本発明は次のように理解することができる。
本発明は、少なくともマグネタイト粒子原料を溶媒に混合させたマグネタイト原料液と、少なくとも塩基性物質を溶媒に混合したマグネタイト析出溶媒とを、対向して配設された、接近離反可能な相対的に回転する処理用面間で混合させ、マグネタイト粒子が析出した混合流体を上記処理用面間から吐出させるマグネタイト粒子の製造方法を提供するものであり、上記処理用面間に導入する上記マグネタイト原料液の温度を50℃以上とすることを特徴とする。
上記処理用面間の間隔は、上記処理用面同士が互いに接近する方向に加えられる力と上記混合流体の圧力との圧力バランスによって、設定されることが望ましい。
より望ましくは、上記処理用面間に導入する上記マグネタイト原料液の温度を100℃よりも高い温度とする。
また、本発明は、上記マグネタイト原料液には単数または複数種の溶媒を含み、上記処理用面間に導入する上記マグネタイト原料液の温度を、上記マグネタイト原料液に含まれる単数または複数種の溶媒のうち最も標準沸点の低い溶媒の標準沸点よりも高い温度とするものとして実施することができる。
なお、本発明における酸化物粒子が酸化セリウム粒子である場合には、本発明は次のように理解することができる。
本発明は、少なくとも酸化セリウム粒子原料を溶媒に混合させた酸化セリウム原料液と、少なくとも塩基性物質を溶媒に混合した酸化セリウム析出溶媒とを、対向して配設された、接近離反可能な相対的に回転する処理用面間で混合させ、酸化セリウム粒子が析出した混合流体を上記処理用面間から吐出させる酸化セリウム粒子の製造方法であって、上記処理用面間に導入する上記酸化セリウム析出溶媒の温度と、上記酸化セリウム原料液と上記酸化セリウム析出溶媒との混合時の温度との、少なくとも1つを変化させることによって、上記処理用面間から吐出させる酸化セリウム粒子の結晶性を制御することを特徴とする酸化セリウム粒子の製造方法を提供する。
また、本発明は、上記処理用面間の間隔は、上記処理用面同士が互いに接近する方向に加えられる力と上記混合流体の圧力との圧力バランスによって、設定されることが望ましい。
また、本発明は、上記処理用面間に導入する上記酸化セリウム析出溶媒の温度を50℃以上とすることが望ましく、上記処理用面間に導入する上記酸化セリウム析出溶媒の温度を100℃よりも高い温度とすることがより望ましい。
また、本発明は、上記酸化セリウム析出溶媒には単数または複数種の溶媒を含み、上記処理用面間に導入する上記酸化セリウム析出溶媒の温度を、上記酸化セリウム析出溶媒に含まれる単数または複数種の溶媒のうち最も標準沸点の低い溶媒の標準沸点よりも高い温度とするものとして実施することができる。
本発明によると、複雑な化学反応や熱処理を必要とせず、大量生産に適した方法で、純度が比較的高く、かつ高い結晶化度を有する酸化物の粒子(特に、ナノサイズの粒子)を、連続的に安定して供給できる製造方法を提供できたものである。また、当該製造方法にあっては、酸化物粒子に他の元素を固溶または複合させることも可能となった。
具体的には、本発明によると、酸化剤や還元剤等を用いた複雑な化学反応や熱処理を必要とせず、大量生産に適した方法で、実質的にマグネタイト(Fe)以外の酸化鉄を含まない純度が比較的高いマグネタイトの微粒子(特に、ナノサイズの粒子)であって、高い結晶化度のものを安定して供給できる製造方法を提供できるようになった。
また、本発明によると、複雑な化学反応や熱処理を必要とせず、大量生産に適した方法で、実質的に水酸化セリウム(Ce(OH)、(Ce(OH))、(Ce(OH)))を含まない純度が比較的高い酸化セリウムの粒子(特に、ナノサイズの粒子)であって、高い結晶化度のものを、連続的に安定して供給できる製造方法を提供できるようになった。また、当該製造方法にあっては、酸化セリウムの粒子に鉄などの他の元素を固溶または複合させることも可能となった。
本発明の実施の形態に係る流体処理装置の略断面図である。 図1に示す流体処理装置の第1処理用面の略平面図である。 本発明の実施例X1で得られた単結晶マグネタイト粒子のTEM写真である。 本発明の実施例X2で得られた単結晶マグネタイト粒子のTEM写真である。 本発明の実施例X3で得られた単結晶マグネタイト粒子のTEM写真である。 本発明の実施例X10で得られた単結晶マグネタイト粒子のTEM写真である。 本発明の実施例X12で得られたマグネタイト粒子のTEM写真である。 本発明の実施例X1、X2、X3及び実施例X12で得られたマグネタイト粒子のXRD測定結果である。 実施例X1~X10、X12に係るマグネタイト原料液の導入温度に対するマグネタイト粒子の単結晶比率のグラフである。 実施例X1~X10、X12に係る処理用面間導入温度(c)に対するマグネタイト粒子の単結晶比率のグラフである。 本発明の実施例Y8で得られた単結晶酸化セリウム粒子のTEM写真である。 本発明の実施例Y9で得られた単結晶酸化セリウム粒子のTEM写真である。 本発明の実施例Y10で得られた単結晶酸化セリウム粒子のTEM写真である。 本発明の実施例Y11で得られた単結晶酸化セリウム粒子のTEM写真である。 本発明の実施例Y15で得られた酸化セリウム粒子のTEM写真である。 本発明の実施例Y8、Y9、Y10、Y15で得られた酸化セリウム粒子のXRD測定結果である。 実施例Y1~Y12、Y15、Y16に係る酸化セリウム析出溶媒の導入温度に対する酸化セリウム粒子の単結晶比率のグラフである。 実施例Y1~Y12、Y15、Y16に係る処理用面間導入温度cに対する酸化セリウム粒子の単結晶比率のグラフである。 本発明の実施例Y17で得られた、鉄元素を固溶または複合させた酸化セリウム粒子のTEM写真である。 本発明の実施例Y17で得られた、鉄元素を固溶または複合させた酸化セリウム粒子のXRD測定結果である。 本発明の実施例Y6で得られた酸化セリウム粒子のTEM写真である。 実施例Z1で得られた酸化鉄微粒子のTEM写真である。 実施例Z10で得られた酸化鉄微粒子のTEM写真である。
以下、図面に基づき本発明の実施の形態の一例をとりあげて説明する。
(単結晶酸化物粒子)
本発明における単結晶酸化物粒子とは、例えば、図6や図12に示した本願の実施例において得られた酸化物の粒子の透過型電子顕微鏡(TEM)写真に見られるように、結晶格子の干渉縞(結晶中の原子配列。以下、「格子縞」ともいう。)が一方向に観測されるものであり、格子縞が乱れていたり粒界が見られたものは単結晶ではないと認定する。得られた酸化物粒子が単結晶であることを評価する方法としては、このようにTEMや走査透過型電子顕微鏡(STEM)にて直接観察する方法や、TEMやSTEM、また走査型電子顕微鏡(SEM)による電子顕微鏡観察にて得られた平均粒子径(D)と、X線回折測定(XRD測定)により算出される平均結晶子径(d)との比率d/Dを算出する方法等にて確認することが可能である。
(酸化物)
本発明における酸化物は、特に限定されないが、一例を挙げると、式Mで示される金属酸化物または非金属酸化物、これらの種々の溶媒和物、およびこれらが主成分である組成物(式中x、yはそれぞれ任意の数である)が挙げられる。上記酸化物には過酸化物または超酸化物なども含まれる。
上記酸化物を構成する金属または非金属としては特に限定されないが、好ましくは化学周期表上の全ての元素を挙げることができる。一例を挙げると、金属元素としては、Ti、Fe、Ce,W、Pt,Au、Cu、Ag、Pd、Ni、Mn、Co、Ru、V、Zn、Zr、Al、Mg、Y、Cd、Cr、Mo、In等が挙げられ、非金属元素としては、B、Si、Ge、N、C等が挙げられる。これらの元素はそれぞれ単独で酸化物を形成しても良く、複数の元素によって複合酸化物を形成しても良い。
前記式Mで示される金属酸化物または非金属酸化物の一例を挙げると、TiO、FeO、Fe、Fe、CeO、SnO、SnO、Al、SiO、ZnO、CoO、Co、CuO、CuO、Ni、NiO、MgO、Y、VO、VO、V、V、MnO、MnO、CdO、ZrO、PdO、PdO、MoO、MoO、Cr、CrO、In、RuO、WOなどが挙げられる。
(酸化物粒子原料)
本発明に係る酸化物粒子原料は、特に限定されない。反応、晶析、析出、共沈等の方法(以下、当該方法を析出と記載する。)により酸化物となるものであれば構わない。一例として、例えば金属または非金属の単体や塩などの化合物を挙げることができ、溶液中において金属や非金属のイオンを生成する物質であることが好ましい。上記金属または非金属としては特に限定されないが、一例としては、上述の、上記酸化物を構成する金属または非金属と同じ元素が挙げられる。上記の金属または非金属については、単一の元素であっても良く、複数の元素からなる合金や金属元素に非金属元素を含む物質であっても良い。また、本発明において、上記の金属の化合物を金属化合物という。金属化合物または上記の非金属の化合物としては特に限定されないが、一例を挙げると、金属または非金属の塩や酸化物、水酸化物、水酸化酸化物、窒化物、炭化物、錯体、有機塩、有機錯体、有機化合物またはそれらの水和物、有機溶媒和物などが挙げられる。金属塩または非金属の塩としては、特に限定されないが、金属または非金属の硝酸塩や亜硝酸塩、硫酸塩や亜硫酸塩、蟻酸塩や酢酸塩、クエン酸塩、リン酸塩や亜リン酸塩、次亜リン酸塩や塩化物、オキシ塩やアセチルアセトナート塩またはそれらの水和物、有機溶媒和物などが挙げられ、有機化合物としては金属または非金属のアルコキシドなどが挙げられる。以上、これらの金属化合物または非金属の化合物は単独で使用しても良く、複数以上の混合物として使用しても良い。
(塩基性物質)
本発明における塩基性物質としては、水酸化ナトリウムや水酸化カリウムなどの金属水酸化物、ナトリウムメトキシドやナトリウムイソプロポキシドのような金属アルコキシド、トリエチルアミン、ジエチルアミノエタノールやジエチルアミンなどのアミン系化合物やアンモニアなどが挙げられる。
(酸性物質)
本発明における酸性物質としては、王水、塩酸、硝酸、発煙硝酸、硫酸、発煙硫酸などの無機酸や、ギ酸、酢酸、クロロ酢酸、ジクロロ酢酸、シュウ酸、トリフルオロ酢酸、トリクロロ酢酸などの有機酸が挙げられる。
(酸化物原料液の調製・酸化物析出溶媒の調製)
本発明においては、少なくとも酸化物粒子原料を溶媒に混合、溶解又は分子分散させて酸化物原料液を調製し、少なくとも塩基性物質を溶媒に混合、溶解又は分子分散させて酸化物析出溶媒を調製することができる。それらに用いる溶媒としては、例えば水や有機溶媒、またはそれらの複数からなる混合溶媒が挙げられる。上記水としては、水道水やイオン交換水、純水や超純水、RO水などが挙げられ、有機溶媒としては、アルコール化合物溶媒、アミド化合物溶媒、ケトン化合物溶媒、エーテル化合物溶媒、芳香族化合物溶媒、二硫化炭素、脂肪族化合物溶媒、ニトリル化合物溶媒、スルホキシド化合物溶媒、ハロゲン化合物溶媒、エステル化合物溶媒、イオン性液体、カルボン酸化合物、スルホン酸化合物などが挙げられる。上記の溶媒はそれぞれ単独で使用しても良く、または複数を混合して使用しても良い。アルコール化合物溶媒としては、メタノールやエタノールなどの1価アルコールや、エチレングリコールやプロピレングリコールなどのポリオールなどが挙げられる。後述するように、処理用面間に導入する際の酸化物原料液及び/又は酸化物析出溶媒の導入圧力と酸化物原料液及び/又は酸化物析出溶媒の沸点とが調整がしやすい点から、水、又は水とポリオールとの混合溶媒を用いて酸化物原料液と酸化物析出溶媒とを調製することが好ましい。さらにこれらの溶媒は、窒素バブリング等の方法で溶媒中の酸素を除去してから使用することも出来る。また、酸化物粒子の析出に悪影響を及ぼさない範囲において、必要に応じて、酸性物質を酸化物原料液に混合しても良い。析出時の中和発熱量を増やしたいときに有効である。このように、の処理用面間において、反応熱によって更に高温での処理を目的とする場合には、硝酸や硫酸等の強酸と金属水酸化物などの強塩基との組み合わせの反応が起こるように、酸化物粒子原料や塩基性物質、酸性物質などを用いることが好ましく、上記の場合とは異なり反応熱はできるだけ抑えたい場合には、酢酸などの弱酸とジメチルアミノエタノールなどの弱塩基との組み合わせの反応が起こるように、酸化物粒子原料や塩基性物質、酸性物質などを用いることが好ましい。
(調製装置)
本発明における酸化物原料液または酸化物析出溶媒の調製は、棒状、板状、プロペラ状等の種々の形状の撹拌子を槽内で回転させるものや、撹拌子に対して相対的に回転するスクリーンを備えたものなど、流体にせん断力を加えるなどして、均質な混合を実現するものを用いることが望ましい。回転式分散機の好ましい例としては、特許第5147091号に開示されている撹拌機を適用することができる。
また、回転式分散機はバッチ式で行うものであってもよく、連続式で行うものであってもよい。連続式で行う場合には、撹拌槽に対する流体の供給と排出とを連続的に行うものであってもよく、撹拌槽を用いずに連続式のミキサーを用いて行うものであってもよく、公知の撹拌機や撹拌手段を用い、適宜撹拌エネルギーを制御することができる。なお、撹拌エネルギーに関しては、本願出願人による特開平04-114725号公報に詳述されている。本発明における撹拌の方法は特に限定されないが、各種せん断式、摩擦式、高圧ジェット式、超音波式などの撹拌機や溶解機、乳化機、分散機、ホジナイザーなどを用いて実施することができる。一例としては、ウルトラタラックス(IKA製)、ポリトロン(キネマティカ製)、TKホモミキサー(プライミクス製)、エバラマイルダー(荏原製作所製)、TKホモミックラインフロー(プライミクス製)、コロイドミル(神鋼パンテック製)、スラッシャー(日本コークス工業製)、トリゴナル湿式微粉砕機(三井三池化工機製)、キャビトロン(ユーロテック製)、ファインフローミル(太平洋機工製)などの連続式乳化機、クレアミックス(エム・テクニック製)、クレアミックスディゾルバー(エム・テクニック製)、フィルミックス(プライミクス製)などのバッチ式もしくは連続両用乳化機をあげることができる。特に、酸化物原料液または酸化物析出溶媒の調製を、回転する撹拌翼を備えた撹拌機、特に上記のクレアミックス(エム・テクニック製)やクレアミックスディゾルバー(エム・テクニック製)を用いて行うことが望ましい。
(分散剤等)
本発明においては、目的や必要に応じて各種の分散剤や界面活性剤を用いる事ができる。特に限定されないが、界面活性剤及び分散剤としては一般的に用いられる様々な市販品や、製品または新規に合成したものなどを使用できる。一例として、陰イオン性界面活性剤、陽イオン性界面活性剤、非イオン性界面活性剤や、各種ポリマーなどの分散剤などを挙げることができる。これらは単独で使用してもよく、2種以上を併用してもよい。上記の界面活性剤や分散剤は、酸化物原料液と酸化物析出溶媒のいずれか、または双方に含まれていてもよい。また、上記の界面活性剤や分散剤は、酸化物原料液とも酸化物析出溶媒とも異なる、後述する第3の流体に含まれていてもよい。
また、本発明においては上記酸化物原料液と上記酸化物析出溶媒とを混合する際の熱エネルギーが高くなるように上記酸化物原料液または上記酸化物析出溶媒を調製することで、上記酸化物原料液と上記酸化物析出溶媒とを混合して得られた酸化物粒子の単結晶比率を高くすることができる。例えば、酸化物原料液の液性が酸性であって、酸化物析出溶媒の液性が塩基性である場合には、上記酸化物原料液と酸化物析出溶媒とを混合することで、中和熱等の反応熱による発熱が大きくなるため、酸化物粒子を得ることが容易になる。
本発明は、(X)マグネタイト粒子の製造方法、(Y)酸化セリウム粒子の製造方法に限定するものではないことは、上記の通りであるが、より具体的な理解を高めるために、(X)(Y)の順に、それぞれの製造方法について説明する。
(X)マグネタイト粒子の製造方法
まず、本発明の実施の形態の一例であるマグネタイト粒子の製造方法について、具体的に説明する。以下、マグネタイト粒子の製造方法においては、酸化物原料液をマグネタイト原料液といい、酸化物析出溶媒をマグネタイト析出溶媒といい、酸化物粒子原料をマグネタイト粒子原料という。
 (単結晶マグネタイト粒子)
本発明における単結晶マグネタイト粒子とは、図6に示した本願実施例X10において得られたマグネタイト粒子の透過型電子顕微鏡(TEM)写真に見られるように、結晶格子の干渉縞(結晶中の原子配列以下、「格子縞」ともいう。)が一方向に観測されるものであり、格子縞が乱れていたり粒界が見られたものは単結晶ではないと認定する。得られたマグネタイト粒子が単結晶であることを評価する方法としては、このようにTEMや走査透過型電子顕微鏡(STEM)にて直接観察する方法や、TEMやSTEM、また走査型電子顕微鏡(SEM)による電子顕微鏡観察にて得られた平均粒子径(D)と、X線回折測定(XRD測定)により算出される平均結晶子径(d)との比率d/Dを算出する方法等にて確認することが可能である。
(マグネタイト粒子原料)
本発明におけるマグネタイト粒子の作製に用いるマグネタイト粒子原料としては、特に限定されないが、溶液中においてFe2+イオンまたはFe3+イオンを生成する物質を用いて実施することが出来る。それらの物質としては、特に限定されないが、溶液中においてFe2+イオンを生成する物質としては、鉄の単体や塩などの化合物が挙げられ、硫酸鉄(II)(FeSO)や硝酸鉄(II)(Fe(NO)、塩化鉄(II)(FeCl)などの第一鉄(Fe(II))の無機塩や、酢酸鉄(II)(Fe(CHCOO))やクエン酸第一鉄(II)(Fe(C):Mはアルカリ金属またアンモニウム等)のような第一鉄(Fe(II))の有機塩等が挙げられる。これら溶液中にておいてFe2+イオンを生成する物質は、それらの水和物や溶媒和物を用いて実施することも可能である。また、これらの物質は単独で使用しても良いし、複数を混合して実施しても良い。溶液中においてFe3+イオンを生成する物質としては、Fe2+を生成する物質と同様に、鉄の単体や塩などの化合物が挙げられ、硫酸鉄(III)(Fe(SO)や硝酸鉄(III)(Fe(NO)、塩化鉄(III)(FeCl)などの第二鉄(Fe(III))の無機塩や、酢酸鉄(III)(Fe(CHCOO)やFe(OH)(CHCOO))やクエン酸第二鉄(III)(CFeO)のような第二鉄(Fe(III))の有機塩等が挙げられる。これら溶液中にておいてFe3+イオンを生成する物質は、それらの水和物や溶媒和物を用いて実施することも可能である。また、これらの物質は単独で使用しても良いし、複数を混合して実施しても良い。作製されるマグネタイトの結晶性を向上させやすい点から、上記マグネタイト粒子原料として、硫酸鉄(II)(FeSO)、硫酸鉄(III)(Fe(SO)、またはそれらの水和物からなる群から選択された少なくとも1つを用いることが望ましい。
(塩基性物質)
本発明における塩基性物質としては、水酸化ナトリウムや水酸化カリウムなどの金属水酸化物、ナトリウムメトキシドやナトリウムイソプロポキシドのような金属アルコキシド、トリエチルアミン、ジエチルアミノエタノールやジエチルアミンなどのアミン系化合物やアンモニアなどが挙げられる。作製されるマグネタイトの結晶性を向上させやすい点から、上記塩基性物質として、水酸化ナトリウムや水酸化カリウム、アンモニアを用いることが望ましい。
(酸性物質)
本発明における酸性物質としては、王水、塩酸、硝酸、発煙硝酸、硫酸、発煙硫酸などの無機酸や、ギ酸、酢酸、クロロ酢酸、ジクロロ酢酸、シュウ酸、トリフルオロ酢酸、トリクロロ酢酸などの有機酸が挙げられる。
(マグネタイト原料液調製・マグネタイト析出溶媒調製)
本発明においては、少なくともマグネタイト粒子原料を溶媒に混合・溶解・分子分散させることでマグネタイト原料液を調製し、少なくとも塩基性物質を溶媒に混合・溶解・分子分散させてマグネタイト析出溶媒を調製することができる。それらに用いる溶媒としては、例えば水や有機溶媒、またはそれらの複数からなる混合溶媒が挙げられる。上記水としては、水道水やイオン交換水、純水や超純水、RO水などが挙げられ、有機溶媒としては、アルコール化合物溶媒、アミド化合物溶媒、ケトン化合物溶媒、エーテル化合物溶媒、芳香族化合物溶媒、二硫化炭素、脂肪族化合物溶媒、ニトリル化合物溶媒、スルホキシド化合物溶媒、ハロゲン化合物溶媒、エステル化合物溶媒、イオン性液体、カルボン酸化合物、スルホン酸化合物などが挙げられる。上記の溶媒はそれぞれ単独で使用しても良く、または複数を混合して使用しても良い。アルコール化合物溶媒としては、メタノールやエタノールなどの1価アルコールや、エチレングリコールやプロピレングリコールなどのポリオールなどが挙げられる。後述するように、処理用面間に導入する際のマグネタイト原料液及び/又はマグネタイト析出溶媒の導入圧力とマグネタイト原料液及び/又はマグネタイト析出溶媒の沸点とが調整しやすい点から、水、又は水とポリオールとの混合溶媒を用いてマグネタイト原料液とマグネタイト析出溶媒とを調製することが好ましい。さらにこれらの溶媒は、窒素バブリング等の方法で溶媒中の酸素を除去してから使用することも出来る。また、マグネタイト粒子の析出に悪影響を及ぼさない範囲において、必要に応じて、上記酸性物質をマグネタイト原料液に混合しても良い。析出時の中和発熱量を増やしたいときに有効である。
マグネタイト原料液またはマグネタイト析出溶媒の調製に用いる調整装置等については、前述の説明、より詳しくは、(調製装置)(分散剤等)に関する説明と同様であり、その記載を省略する。
(調製液条件)
本発明において、上記マグネタイト原料液と上記マグネタイト析出溶媒とを混合させることで、マグネタイト粒子を析出させるものであるが、上記マグネタイト原料液には、Fe2+とFe3+をモル比でFe2+/Fe3+=0.500±0.010、好ましくはFe2+/Fe3+=0.500±0.005、より好ましくはFe2+/Fe3+=0.500±0.003で調製されていることが好ましい。Fe2+またはFe3+の過不足は、マグネタイト以外の酸化鉄または鉄化合物の生成の要因となるため、好ましくない。先述した少なくとも塩基性物質を含むマグネタイト析出溶媒と上記マグネタイト原料液を混合した際に、マグネタイト原料液中のFe2+が過剰の場合には、水酸化鉄(II)(Fe(OH))が生成する可能性が高くなり、Fe3+が過剰の場合にはヘマタイト(α―Fe)やゲーサイト(α―FeOOH)等が生成する可能性が高くなり、本願のマグネタイト粒子の純度を低減させる可能性が高くなる。上記マグネタイト原料液中のFe3+に対するFe2+のモル比Fe2+/Fe3+の算出方法としては、特に限定されない。例えば、まず高周波誘導加熱プラズマ発光分析(ICP)によりマグネタイト原料液中の鉄イオン(Fe3+とFe2+)の合計濃度を測定し、次いで別途上記マグネタイト原料液を一部採取した液に、重クロム酸を添加して、Fe2+がFe3+に変色する点における重クロム酸の滴定量からFe2+の濃度を求め、先にICP測定により得られた鉄イオンの合計濃度から差し引くことでFe3+の濃度を算出して求めることが可能である。Fe3+に対するFe2+のモル比Fe2+/Fe3+の測定方法は上記方法に限定されるものでは無く、公知の方法を適応することができ、例えばイオンクロマトグラフィーを用いた分析等によって算出しても良い。
(マグネタイト原料液とマグネタイト析出溶媒のpH)
また、本発明においては上記マグネタイト原料液と上記マグネタイト析出溶媒とを混合する際の熱エネルギーが高くなるように上記マグネタイト原料液または上記マグネタイト析出溶媒を調製することで、上記マグネタイト原料液と上記マグネタイト析出溶媒とを混合して得られたマグネタイト粒子の単結晶比率を高くするため、上記マグネタイト原料液のpHは4以下であることが好ましく、3以下であることがより好ましい。さらに上記マグネタイト析出溶媒のpHは12以上であることが好ましく、14以上であることがより好ましい。上記マグネタイト原料液とマグネタイト析出溶媒とを混合することで、中和熱等の反応熱による発熱が大きくなるため、単結晶マグネタイト粒子を得ることが容易になる。
ここでは、本発明の実施の形態の一例として、酸化鉄粒子の一種であるマグネタイト粒子の製造方法について具体的に説明したが、酸化鉄としてはFeで示されるマグネタイト粒子であってもよく、Feで示されるα-ヘマタイトなどの酸化鉄(III)であってもよく、FeOで示される酸化鉄(II)であってもよい。
(Y)酸化セリウム粒子の製造方法
次に、本発明の他の実施の形態の一例である酸化セリウム粒子の製造方法について、具体的に説明する。以下、酸化セリウム粒子の製造方法においては、酸化物原料液を酸化セリウム原料液といい、酸化物析出溶媒を酸化セリウム析出溶媒といい、酸化物粒子原料を酸化セリウム粒子原料という。
 (単結晶酸化セリウム粒子)
本発明における単結晶酸化セリウム粒子とは、図12に示した本願実施例Y9において得られた酸化セリウム粒子の透過型電子顕微鏡(TEM)写真に見られるように、結晶格子の干渉縞(結晶中の原子配列。以下、「格子縞」ともいう。)が一方向に観測されるものであり、格子縞が乱れていたり粒界が見られたものは単結晶ではないと認定する。得られた酸化セリウム粒子が単結晶であることを評価する方法としては、このようにTEMや走査透過型電子顕微鏡(STEM)にて直接観察する方法や、TEMやSTEM、また走査型電子顕微鏡(SEM)による電子顕微鏡観察にて得られた平均粒子径(D)と、X線回折測定(XRD測定)により算出される平均結晶子径(d)との比率d/Dを算出する方法等にて確認することが可能である。
(酸化セリウム粒子原料)
本発明における酸化セリウム粒子原料としては、特に限定されないが、溶液中においてCe3+イオンまたはCe4+イオンを生成する物質を用いて実施することが出来る。それらの物質としては、特に限定されないが、溶液中においてCe3+イオンを生成する物質としては、セリウムの単体や塩などの化合物が挙げられ、セリウムの化合物としては、硝酸セリウム(III)(Ce(NO)や塩化セリウム(III)(CeCl)、硫酸セリウム(III)(Ce(SO)、水酸化セリウム(III)(Ce(OH))などの第一セリウム(Ce(III))の無機塩、酢酸セリウム(Ce(CHCOO))やクエン酸セリウム(III)(CCeO)のような第一セリウム(Ce(III))の有機塩等が挙げられる。溶液中においてCe4+イオンを生成する物質としては、Ce3+を生成する物質と同様に、セリウムの単体や塩などの化合物が挙げられ、セリウムの化合物としては、硝酸セリウム(IV)アンモニウム((NH[Ce(NO])、硫酸セリウム(IV)(Ce(SO)、硫酸アンモニウムセリウム(IV)(Ce(NH(SO)、水酸化セリウム(IV)(Ce(OH))などの第二セリウム(Ce(IV))の無機塩や有機塩等が挙げられる。さらに二酢酸セリウム(II)(Ce(CHCOO))の様なCe2+を生成する物質を用いても実施出来る。これら溶液中にておいてCe3+イオンやCe4+イオン並びにCe2+イオンを生成する物質は、それらの水和物や溶媒和物を用いて実施することも可能である。また、これらの物質は単独で使用しても良いし、複数を併用しても良い。作製される酸化セリウムの結晶性を向上させやすい点から、上記酸化セリウム粒子原料として、硝酸セリウム(III)(Ce(NO)、硝酸セリウム(IV)アンモニウム((NH[Ce(NO])、又はこれらの水和物からなる群から選択された少なくとも1つを用いることが望ましく、硝酸セリウム(III)(Ce(NO)を用いることがより望ましい。
(塩基性物質)
本発明における塩基性物質としては、水酸化ナトリウムや水酸化カリウムなどの金属水酸化物、ナトリウムメトキシドやナトリウムイソプロポキシドのような金属アルコキシド、トリエチルアミン、ジエチルアミノエタノールやジエチルアミンなどのアミン系化合物やアンモニアなどが挙げられる。作製される酸化セリウムの結晶性を向上させやすい点から、上記塩基性物質として、水酸化ナトリウムや水酸化カリウム、アンモニアを用いることが望ましい。
(酸性物質)
本発明における酸性物質としては、王水、塩酸、硝酸、発煙硝酸、硫酸、発煙硫酸などの無機酸や、ギ酸、酢酸、クロロ酢酸、ジクロロ酢酸、シュウ酸、トリフルオロ酢酸、トリクロロ酢酸などの有機酸が挙げられる。
(酸化セリウム原料液調製・酸化セリウム析出溶媒調製)
本発明においては、少なくとも酸化セリウム粒子原料を溶媒に混合、溶解又は分子分散させて酸化セリウム原料液を調製し、少なくとも塩基性物質を溶媒に混合、溶解又は分子分散させて酸化セリウム析出溶媒を調製することができる。それらに用いる溶媒としては、例えば水や有機溶媒、またはそれらの複数からなる混合溶媒が挙げられる。上記水としては、水道水やイオン交換水、純水や超純水、RO水などが挙げられ、有機溶媒としては、アルコール化合物溶媒、アミド化合物溶媒、ケトン化合物溶媒、エーテル化合物溶媒、芳香族化合物溶媒、二硫化炭素、脂肪族化合物溶媒、ニトリル化合物溶媒、スルホキシド化合物溶媒、ハロゲン化合物溶媒、エステル化合物溶媒、イオン性液体、カルボン酸化合物、スルホン酸化合物などが挙げられる。上記の溶媒はそれぞれ単独で使用しても良く、または複数を併用しても良い。アルコール化合物溶媒としては、メタノールやエタノールなどの1価アルコールや、エチレングリコールやプロピレングリコールなどのポリオールなどが挙げられる。後述するように、処理用面間に導入する際の酸化セリウム原料液及び/又は酸化セリウム析出溶媒の導入圧力と酸化セリウム原料液及び/又は酸化セリウム析出溶媒の沸点とが調整がしやすい点から、水、又は水とポリオールとの混合溶媒を用いて酸化セリウム原料液と酸化セリウム析出溶媒とを調製することが好ましい。さらにこれらの溶媒は、窒素バブリング等の方法で溶媒中の酸素を除去してから使用することも出来る。また、酸化セリウム粒子の析出に悪影響を及ぼさない範囲において、必要に応じて、上記酸性物質を酸化セリウム原料液に混合しても良い。析出時の中和発熱量を増やしたいときに有効である。
酸化セリウム原料液または酸化セリウム析出溶媒の調製に用いる調整装置等については、前述の説明、より詳しくは、(調製装置)(分散剤等)に関する説明と同様であり、その記載を省略する。
(酸化セリウム原料液と酸化セリウム析出溶媒のpH)
本発明においては上記酸化セリウム原料液と上記酸化セリウム析出溶媒とを混合する際の熱エネルギーが高くなるように上記酸化セリウム原料液または上記酸化セリウム析出溶媒を調製することで、上記酸化セリウム原料液と上記酸化セリウム析出溶媒とを混合して得られた酸化セリウム粒子の単結晶比率を高くするため、上記酸化セリウム原料液のpHは4以下であることが好ましく、3以下であることがより好ましい。さらに上記酸化セリウム析出溶媒のpHは10以上であることが好ましく、12以上であることがより好ましい。上記酸化セリウム原料液と酸化セリウム析出溶媒とを混合することで、中和熱等の反応熱による発熱が大きくなるため、単結晶の酸化セリウム粒子を得ることが容易になる。
(反応方法:装置)
本発明においては、上記酸化物原料液と酸化物析出溶媒との混合を、マイクロリアクターを用いて行うことが好ましく、その中でも図1に示す、特許文献4、7に記載の装置と同様のものを用いることが好ましい。以下、マイクロリアクターについて詳述する。図1、図2においてRは回転方向を示している。
本実施の形態におけるマイクロリアクター(以下、流体処理装置とも称する)は、対向する第1および第2の、2つの処理用部10、20を備え、第1処理用部10が回転する。両処理用部10、20の対向する面が、夫々処理用面となる。第1処理用部10は第1処理用面1を備え、第2処理用部20は第2処理用面2を備える。
両処理用面1、2は、第1、第2の被処理流体の流路d1、d2に接続され、被処理流体の密封された流路の一部を構成する。この両処理用面1、2間の間隔は、通常は、1mm以下、例えば、0.1μmから50μm程度の微小間隔に調整される。これによって、この両処理用面1、2間を通過する被処理流体は、両処理用面1、2によって強制された強制薄膜流体となる。
そして、この装置は、処理用面1、2間において、第1、第2の被処理流体を反応させて酸化物粒子を析出させる流体処理を行なう。
より具体的に説明すると、上記装置は、上記の第1処理用部10を保持する第1ホルダ11と、第2処理用部20を保持する第2ホルダ21と、接面圧付与機構43と、回転駆動機構(図示せず)と、第1導入部d1と、第2導入部d2と、流体圧付与機構p1、p2とを備える。流体圧付与機構p1、p2には、コンプレッサやその他のポンプを採用することができる。第1導入部d1と第2導入路には、それぞれ内部に温度計と圧力計と備え、第1、第2の被処理流体の導入圧力と導入圧力下での温度を測定することができる。
上記実施の形態において、第1処理用部10、第2処理用部20はリング状のディスクである。第1、第2処理用部10、20の材質は、金属の他、カーボン、セラミック、焼結金属、耐磨耗鋼、サファイア、その他金属に硬化処理を施したものや、硬質材をライニングやコーティング、メッキなどを施工したものを採用することができる。上記実施の形態において、両処理用部10、20は、互いに対向する第1、第2の処理用面1、2が鏡面研磨されており、算術平均粗さは、0.01~1.0μmである。
上記実施の形態において、第2ホルダ21が装置に固定されており、同じく装置に固定された回転駆動機構の回転軸50に取り付けられた第1ホルダ11が回転し、この第1ホルダ11に支持された第1処理用部10が第2処理用部20に対して回転する。もちろん、第2処理用部20を回転させるようにしてもよく、双方を回転させるようにしてもよい。
また、本発明において、上記回転速度は、例えば、350~5000rpmとすることができる。
上記実施の形態では、第1処理用部10に対して、第2処理用部20が回転軸50の方向に接近離反するもので、第2ホルダ21に設けられた収容部41に、第2処理用部20の処理用面2側と反対側の部位が出没可能に収容されている。ただし、これとは逆に、第1処理用部10が、第2処理用部20に対して接近離反するものであってもよく、両処理用部10、20が互いに接近離反するものであってもよい。
上記収容部41は、第2処理用部20の、処理用面2側と反対側の部位を収容する凹部であり、環状に形成された溝である。この収容部41は、第2処理用部20の処理用面2側と反対側の部位を出没させ得る十分なクリアランスを持って、第2処理用部20を収容する。
接面圧付与機構は、第1処理用部10の第1処理用面1と第2処理用部20の第2処理用面2とが接近する方向に押す力(以下、接面圧力という)を発生させるための機構である。この接面圧力と、マグネタイト原料液及びマグネタイト析出溶媒の流体圧力による両処理用面1、2間を離反させる力(以下、離反力という)との均衡によって、両処理用面1、2間の間隔を所定の微小間隔に保ちつつ、nm単位ないしμm単位の微小な膜厚を有する薄膜流体を発生させる。上記実施の形態では、接面圧付与機構は、第2ホルダ21に設けられたスプリング43によって、第2処理用部20を第1処理用部10に向けて付勢することにより、接面圧力を付与する。
さらに、空気などの背圧用の流体の圧力を、スプリング43に加えて付与することもできる。これらの全ての圧力の和が上記の接面圧力であり、この接面圧力が酸化物原料液及び酸化物析出溶媒の流体圧力による離反力と均衡する。本発明では、酸化物原料液及び酸化物析出溶媒の流体圧力を、高く設定することが好ましい。具体的には、酸化物原料液及び酸化物析出溶媒の流体圧力を標準気圧を超えるものとするものであり、これに対して均衡する接面圧力も高く設定される。具体的には、上記背圧用の流体の圧力を0.020~0.050MPaG、好ましくは0.050~0.400MPaG、より好ましくは0.100~0.350MPaGに設定可能であり、またスプリング43については、0.007~0.300MPa、好ましくは0.010~0.200MPaに設定可能である。
流体圧付与機構p1により加圧された第1の被処理流体は、第1導入部d1から、両処理用部10、20の内側の空間に導入される。
一方、流体圧付与機構p2により加圧された第2の被処理流体は、第2導入部d2から第2処理用部20の内部に設けられた通路を介して第2処理用面に形成された開口部d20から両処理用部10、20の内側の空間に導入される。
開口部d20において、第1の被処理流体と第2の被処理流体とが合流し、混合する。
その際、混合した被処理流体は、上記の微小な隙間を保持する両処理用面1、2によって強制された薄膜流体となり、環状の両処理用面1、2の外側に移動しようとする。第1処理用部10は回転しているので、混合された被処理流体は、環状の両処理用面1、2の内側から外側へ直線的に移動するのではなく、環状の半径方向への移動ベクトルと周方向への移動ベクトルとの合成ベクトルが被処理流体に作用して、内側から外側へ略渦巻き状に移動する。
ここで、図2に示すように、第1処理用部10の第1処理用面1には、第1処理用部10の中心側から外側に向けて、すなわち径方向について伸びる溝状の凹部13を形成してもかまわない。この凹部13の平面形状は、第1処理用面1上をカーブしてあるいは渦巻き状に伸びるものや、図示はしないが、真っ直ぐ外方向に伸びるもの、L字状などに屈曲あるいは湾曲するもの、連続したもの、断続するもの、枝分かれするものであってもよい。また、この凹部13は、第2処理用面2に形成するものとしても実施可能であり、第1および第2の処理用面1、2の双方に形成するものとしても実施可能である。この様な凹部13を形成することによりマイクロポンプ効果を得ることができ、被処理流体を第1および第2の処理用面1、2間に移送することができる効果がある。
上記凹部13の基端は第1処理用部10の内周に達することが望ましい。上記凹部13の先端は、第1処理用面1の外周側に向けて伸びるもので、その深さは、基端から先端に向かうにつれて、漸次減少するものとしている。この凹部13の先端と第1処理用面1の外周面との間には、凹部13のない平坦面16が設けられている。
上述の開口部d20は、第1処理用面1の平坦面と対向する位置に設けることが好ましい。特に、マイクロポンプ効果によって導入される際の第1の被処理流体の流れ方向が処理用面間で形成されるスパイラル状で層流の流れ方向に変換される点よりも下流側の平坦面16に対向する位置に開口部d20を設置することが好ましい。これによって、層流条件下にて複数の被処理流体の混合と、微粒子の析出を行うことが可能となる。
第2導入部d2には方向性を持たせることが好ましい。例えば、第2処理用面2の開口部d20からの導入方向が、第2処理用面2に対して所定の仰角で傾斜していてもよいし、第2処理用面2の開口部d20からの導入方向が、上記の第2処理用面2に沿う平面において、方向性を有し、この第2の流体の導入方向は、処理用面の半径方向の成分にあっては中心から遠ざかる外方向であって、且つ、回転する処理用面間における流体の回転方向に対しての成分にあっては順方向であってもよい。このように、開口部d20における第1の被処理流体の流れが層流であって、かつ第2導入部d2に方向性を持たせることによって、第1の被処理流体の流れに対する乱れの発生を抑制しつつ処理用面1、2間に第2の被処理流体を導入することができる。
また、両処理用部10、20の外側に吐出した混合した被処理流体は、ベッセルvを介して、吐出液としてビーカーbに集められる。本発明の実施の形態においては、後述する様に、吐出液には、酸化物粒子が含まれる。
なお、上記の被処理流体の種類とその流路の数は、図1の例では、2つとしたが、3つ以上であってもよい。また、各処理用部に設けられる導入用の開口部は、その形状や大きさや数は特に制限はなく適宜変更して実施しうる。たとえば、図1に示すように開口部d20の形状は、リング状ディスクである処理用面2の中央の開口を取り巻く同心円状の円環形状であってもよく、その円環形状の開口部は連続していてもよいし、不連続であってもよい。また、上記第1および第2の処理用面間1、2の直前あるいはさらに上流側に導入用の開口部を設けてもよい。
上記流体処理装置を用いて、酸化物粒子を作製する場合には、一例として、第1導入部d1より第1の被処理流体を導入し、第2導入部d2より第2の被処理流体を導入し、処理用面1、2間にて両流体を混合させ、酸化物粒子を析出させることが出来る。
本発明においては、処理用面1、2間にて上記流体処理を行うことができればよく、第1導入部d1より第2の被処理流体を導入し、第2導入部d2より第1の被処理流体を導入するものであってもよい。例えば、各流体における第1、第2という表現は、複数存在する流体の第n番目であるという、識別のための意味合いを持つに過ぎないものであり、上述の通り第3以上の流体も存在しうる。
(反応条件及び反応後の液の条件)
本発明においては、処理用面1、2間に導入する第1の被処理流体の温度と、処理用面1、2間に導入する第2の被処理流体の温度と、上記第1の被処理流体と上記第2の被処理流体との混合時の温度とからなる群から選択された少なくとも1つを変化させることによって、処理用面1、2間から吐出させる酸化物粒子の結晶性を制御するものであり、処理用面1、2間に導入する第1の被処理流体の温度と、処理用面1、2間に導入する第2の被処理流体の温度と、上記第1の被処理流体と上記第2の被処理流体との混合時の温度とからなる群から選択された少なくとも1つの温度を高くすることによって、処理用面1、2間から吐出させる酸化物粒子の単結晶比率が高くなるよう制御するものである。得られた酸化物粒子の単結晶比率を所定の比率以上とするために、処理用面1、2間に導入する第1の被処理流体の温度が所定の温度以上となるよう制御することが好ましい。上記の「所定の比率」と「所定の温度」は、得られる酸化物粒子の種類によって決まるものであるが、例えば、得られる酸化物粒子が酸化セリウム粒子である場合、得られた酸化セリウム粒子の単結晶比率を10%以上とするために、処理用面1、2間に導入する第1の被処理流体の温度を50℃以上とすることが好ましく、得られた酸化セリウム粒子の単結晶比率を90%以上とするために、処理用面1、2間に導入する第1の被処理流体の温度を100℃よりも高い温度とすることがより好ましい。第1の被処理流体と第2の被処理流体の双方の処理用面1、2間への導入温度を、ともに100℃よりも高い温度とすることが最も好ましい。その際、処理用面1、2間にて酸化物粒子が析出した混合流体のpHを、後述する所定の範囲に制御することが好ましい。ここで、単結晶比率とは、得られた酸化物粒子を電子顕微鏡で観察し、観察した酸化物粒子の数X(個)とそのうち単結晶として観察された酸化物粒子の数Y(個)から単結晶比率=Y/X×100(%)により算出したものである。
処理用面1、2間に導入する際の第1の被処理流体の導入圧力を、標準気圧を超えるものとすると共に、処理用面1、2間に導入する第1の被処理流体の温度を、上記第1の被処理流体の標準沸点よりも高く且つ上記導入圧力下での沸点よりも低い温度とすることによって、得られた酸化物粒子の単結晶比率が飛躍的に向上する。特に、処理用面1、2間に導入する際の上記第1の被処理流体の導入圧力と上記第2の被処理流体の導入圧力との双方の導入圧力を、標準気圧を超えるものとすると共に、処理用面1、2間に導入する第1の被処理流体の温度を、上記第1の被処理流体の標準沸点よりも高く且つ上記導入圧力下での沸点よりも低い温度とし、かつ、処理用面1、2間に導入する第2の被処理流体の温度を、上記第2の被処理流体の標準沸点よりも高く且つ上記導入圧力下での沸点よりも低い温度とすることが好ましい。酸化物原料液の標準沸点は、酸化物原料液に用いられる酸化物粒子原料、溶媒、酸性物質等の酸化物原料液に含まれる物質の種類とそれらの配合率によって変化するが、実施に際しては、酸化物原料液の標準沸点を計算で求めて、供給する酸化物原料液の温度をその計算値よりも高い温度に設定すればよい。同様に、酸化物析出溶媒の標準沸点は、酸化物析出溶媒に用いられる塩基性物質、溶媒等の酸化物析出溶媒に含まれる物質の種類とそれらの配合率によって変化するが、実施に際しては、酸化物析出溶媒の標準沸点を計算で求めて、供給する酸化物析出溶媒の温度をその計算値よりも高い温度に設定すればよい。
酸化物原料液と酸化物析出溶媒との標準沸点T(℃)は、次式にて算出される。
T=(T+k・m)-273
但し、
T :標準沸点(℃)
:溶媒の標準沸点(K)
:モル沸点上昇定数(K・kg/mol)
m :質量モル濃度(mol/kg)
なお、本願においては、標準沸点の算出に際し、電離や会合は無視することとする。
次に、導入圧力下での沸点については、各溶媒の蒸気圧曲線と上記の式にて算出した標準沸点から求めることができる。
対向して配設された、接近離反可能な相対的に回転する処理用面間においては、処理用面1、2間の圧力条件を制御することにより、酸化物原料液や酸化物析出溶媒の導入圧力を標準気圧を超えて処理用面1、2間に導入することが可能であるため、その流体の標準沸点よりも高い温度となっても沸騰を起こすこと無く、酸化物原料液と酸化物析出溶媒とを処理用面間に形成される数μmオーダーの反応空間で混合出来、それによって標準沸点以上の温度での反応を安定的に行うことができる。そのような空間では、瞬間的な混合・拡散・反応を行うことができることに加えて、析出させたナノ粒子へ熱等の多大なエネルギーを瞬時に与えることができるため、単結晶のナノ粒子を得る点で特に効果が高いと本願出願人は考えている。
また、酸化物原料液の温度と流量、酸化物析出溶媒の温度と流量を用いて、次式で求められる混合流体の処理用面間導入温度c(℃)が100℃よりも高いことが、単結晶比率の向上の点から望ましい。
c=(a1×a2+b1×b2)/(a2+b2)
但し、
a1:酸化物原料液の導入温度(℃)
a2:酸化物原料液の導入流量(ml/min.)
b1:酸化物析出溶媒の導入温度(℃)
b2:酸化物析出溶媒の導入流量(ml/min.)
なお、直接計測することはできないが、上記の圧力条件を満たしつつ、この混合流体の処理用面間導入温度c(℃)に対して前述の中和熱等の反応熱による発熱を加えた熱エネルギーが、酸化物粒子の析出から結晶の成長に影響し、単結晶比率を飛躍的に向上させたものと考えられる。
上述の通り、特許文献4には、得られる磁性体微粒子の粒子径や単分散度、また結晶性及び結晶化度の制御は、処理用面の回転数や処理用面間の距離、及び、薄膜流体の流速や温度、または原料濃度を変えることにより調節することができることが示されており、特許文献7には、得られるセラミックスナノ粒子の粒子径や単分散度、また結晶型の制御は、処理用面の回転数や処理用面間の距離、及び、薄膜流体の流速や原料濃度、または温度などを変えることにより調節することができることが示されている。
そこで、本願発明者は、これらの条件を制御することで、酸化物粒子の結晶性を向上させ、より望ましくは単結晶の酸化物粒子を得るべく検討を継続した。しかしながら、比較的小さな圧力条件下(0.10MPaG以下)では、単に薄膜流体の温度を制御しても、単結晶の酸化物粒子を得ることはできなかった。その後、発明者が試行錯誤の末、鋭意検討した結果、上記処理用面間に導入される各流体の温度や各流体の混合時の温度を所定温度よりも高い温度とすること、特に、比較的大きな圧力条件下(0.10MPaGよりも大きい)で、上記処理用面間に導入される各流体の温度や各流体の混合時の温度を所定温度よりも高い温度とすることで、酸化物粒子の結晶性を飛躍的に向上させることが可能であることを見出し、本発明に至ったものである。
このように、単に薄膜流体の温度や処理用面の回転数などの条件を変えるだけでなく、特に沸点以上の流体を実質的に沸騰させずに処理用面間で反応を行う流体として用いることで、従来、処理用面間において行われていた微粒子作製の方法で不可能であった結晶性の高い領域での制御が可能となった。この点につき、処理用面間に導入される各流体の温度や各流体の混合時の温度と得られた酸化物粒子の結晶性とが関係性を有すると考えられることから、得られる酸化物粒子の種類にかかわらず、処理用面1、2間に導入する第1の被処理流体の温度と、処理用面1、2間に導入する第2の被処理流体の温度と、上記第1の被処理流体と上記第2の被処理流体との混合時の温度とからなる群から選択された少なくとも1つを変化させることによって、処理用面1、2間から吐出させる酸化物粒子の結晶性を制御することができると考えられる。
上述のように、処理用面1、2間にて酸化物粒子が析出した混合流体は、両処理用部10、20の外側に吐出され、ベッセルvを介して、吐出液としてビーカーbに集められる。本発明においては、上記吐出液のpHを所定の範囲に制御することが好ましい。ここで「所定の範囲」とは、得られる酸化物粒子の種類によって決まるものであるが、吐出液に含まれる酸化物粒子の結晶性が低下するとか、酸化物粒子の収率が低下するなどの状態が生じないpHの範囲をいう。例えば、得られる酸化物粒子がα-ヘマタイト粒子である場合、吐出液のpHは、6以上14以下であることが好ましく、8以上12以下であることが更に好ましい。本発明においては、処理用面1、2間に導入される酸化物原料液や酸化物析出溶媒の温度や両者の混合時の温度の制御と吐出液のpH制御とを組み合わせることによって、酸化物粒子の結晶化をよりいっそう向上させるものである。上記吐出液のpHは、酸化物原料液や酸化物析出溶媒に含まれる酸化物粒子原料、塩基性物質、酸性物質等の濃度や、上記酸化物原料液や酸化物析出溶媒の導入流量を制御することで可能である。また、上記吐出液のpHを制御することで、球形や角形といった、酸化物粒子の形状についても制御可能であり、酸化物粒子の用途に応じて求められる形状の粒子を得ることができる。ここで、角形とは四角形やひし形、多角形をいう。なお、酸化物粒子の形状の特定には、各種の顕微鏡を用いることができ、透過型電子顕微鏡で観察した場合にあっては、平面視にて観察される。上記角形とは平面視で観察された形状である。
なお、上記吐出液から酸化物粒子を回収するにあたり、上記吐出液を室温になるまで静置した後で酸化物粒子を回収してもよいし、上記吐出液を室温まで急冷した後で酸化物粒子を回収してもてもよい。吐出直後の上記吐出液から酸化物粒子を回収してもよい。これらの方法を用いることによって、単結晶性酸化物の粒子を得るために、特に長時間の熟成処理を必要しないことも本発明の利点である。
(粒子の状態)
上記方法によって得られた酸化物粒子は、一次粒子径が100nm以下、好ましくは50nm以下、さらに好ましくは20nm以下のナノサイズであり、CV値(標準偏差÷平均粒子径×100[%])が、40%以下、好ましくは30%以下、更に好ましくは20%以下である。また、粒度分布測定や、透過型電子顕微鏡観察(TEM観察)や走査型電子顕微鏡観察(SEM観察)、または走査透過型電子顕微鏡観察(STEM観察)にて得られた平均粒子径(D)に対する、XRD測定結果より算出される平均結晶子径(d)の比率d/Dが0.50~1.00、好ましくは0.70~1.00である。
上述したように、酸化物原料液に含まれる溶媒や酸化物析出溶媒に含まれる溶媒は、単独で使用してもよく、複数を併用してもよい。そして、処理用面1、2間に導入する酸化物原料液の温度を、酸化物原料液に含まれる単数または複数種の溶媒のうち最も標準沸点の低い溶媒の標準沸点よりも高い温度として実施してもよく、処理用面1、2間に導入する酸化物析出溶媒の温度を、酸化物析出溶媒に含まれる単数または複数種の溶媒のうち最も標準沸点の低い溶媒の標準沸点よりも高い温度として実施してもよい。例えば、水とポリオールとの混合溶媒を酸化セリウム原料液に含まれる溶媒として用いた場合、処理用面1、2間に導入する酸化物原料液の温度を、水の標準沸点である100℃よりも高い温度として実施することができる。
また、ポリオールの1種であるプロピレングリコールの標準沸点は188℃であり、酸化物原料液に含まれる溶媒として水とプロピレングリコールとの混合溶媒を用いることによって、100℃以上でかつ非沸騰状態の酸化物原料液を標準気圧以下で処理用面1、2間に導入することが可能となる。酸化物析出溶媒に含まれる溶媒として水とプロピレングリコールとの混合溶媒を用いる場合も同様である。このように、処理用面1、2間に導入する酸化物原料液や酸化物析出溶媒の温度設定にあたり、酸化物原料液の導入圧力と酸化物析出溶媒の導入圧力との双方の導入圧力を標準気圧を超えるものとするほかに、用いる溶媒の種類やその組み合わせによっても、その設定を調整することができる。なお、酸化物原料液と酸化物析出溶媒との何れか一方の温度を175℃以下とすることが望ましい。これによって本実施の形態における流体処理装置において、反応速度の制御が一層容易となり、粒子性状が均一で微細なサイズ(例えば一次粒子径が20nm以下)の単結晶酸化物粒子を安定して製造する際に大きく寄与する。
(他の元素)
本発明の製造方法を用いることで、酸化物粒子に他の元素を固溶または複合させることが可能である。具体的には、上記酸化物原料液または酸化物析出溶媒のうちの何れか、またはそのいずれとも異なる他の溶媒に、酸化物粒子を構成する元素(金属又は非金属、と酸素)とは異なる他の元素を含む化合物を混合、溶解または分子分散させ、処理用面間においてそれらを混合して酸化物粒子と共に他の元素を析出させることで実施出来る。上記他の元素としては特に限定されない。化学周期表上における、酸化物粒子を構成する元素とは異なる全ての元素に適応可能である。上記酸化物粒子を構成する元素とは異なる元素を含む化合物としては、特に限定されないが、それらの元素の単体または化合物が挙げられる。これらの物質は、水和物や溶媒和物の形態として用いてもよい。また、これらの物質は単独で使用しても良いし、複数を併用しても良い。
上記酸化物粒子を構成する元素とは異なる元素を本発明の製造方法によって酸化物粒子に固溶または複合させることで、本来液相法では結晶性が得にくい元素の酸化物や水酸化物を結晶性として粒子内に取り込める可能性や、酸化物粒子が単結晶となることによって発生したり向上する特性以外の新規な特性が得られるなどの効果が期待できる。
以下、上記の装置を用いて行うマグネタイト粒子の製造方法の具体的な態様について、一例を説明する。
上記流体処理装置を用いて、マグネタイト粒子を作製する場合には、第1導入部d1より第1の被処理流体としてマグネタイト原料液を導入し、第2導入部より第2の被処理流体としてマグネタイト析出溶媒を導入し、処理用面1、2間にて両流体を混合させ、マグネタイト粒子を析出させることが出来る。
本発明においては、処理用面1、2間にて上記処理を行うことができればよく、第1導入部d1より第2の被処理流体を導入し、第2導入部d2より第1の被処理流体を導入するものであってもよい。例えば、各流体における第1、第2という表現は、複数存在する流体の第n番目であるという、識別のための意味合いを持つに過ぎないものであり、上述の通り第3以上の流体も存在しうる。
(反応条件及び反応後の液の条件)
第1導入部d1より第1の被処理流体としてマグネタイト原料液を処理用面1、2間に導入し、第2導入部d2より第2の被処理流体としてマグネタイト析出溶媒を処理用面1、2間に導入した場合、得られたマグネタイト粒子の単結晶比率を20%以上とするために、処理用面1、2間に導入する際の上記マグネタイト原料液の温度を50℃以上とすることが好ましく、得られたマグネタイト粒子の単結晶比率を70%以上とするために、処理用面1、2間に導入する際の上記マグネタイト原料液の温度を100℃よりも高い温度とすることがより好ましい。得られたマグネタイト粒子の単結晶比率を90%以上とするために、マグネタイト原料液の処理用面1、2間への導入温度とマグネタイト析出溶媒の処理用面1、2間への導入温度を、ともに100℃よりも高い温度とすることがさらに好ましい。その際、処理用面1、2間にてマグネタイト粒子が析出した混合流体のpHが8以上であることが好ましい。ここで、単結晶比率とは、得られたマグネタイト粒子を電子顕微鏡で観察し、観察したマグネタイト粒子の数X(個)とそのうち単結晶として観察されたマグネタイト粒子の数Y(個)から単結晶比率=Y/X×100(%)により算出したものである。
処理用面1、2間に導入する際の上記マグネタイト原料液の導入圧力と上記マグネタイト析出溶媒の導入圧力との双方の導入圧力を、標準気圧を超えるものとすると共に、処理用面1、2間に導入するマグネタイト原料液の温度を、上記マグネタイト原料液の標準沸点よりも高く且つ上記導入圧力下での沸点よりも低い温度とすることによって、得られたマグネタイト粒子の単結晶比率が飛躍的に向上する。このマグネタイト原料液の標準沸点は、マグネタイト原料液に用いられるマグネタイト粒子原料、溶媒、酸性物質等のマグネタイト原料液に含まれる物質の種類とそれらの配合率によって変化するが、実施に際しては、マグネタイト原料液の標準沸点を計算で求めて、その計算値よりも高い温度に供給するマグネタイト原料液の温度を設定すればよい。また、マグネタイト析出溶媒の導入時の温度が100℃よりも高い温度とすることが好ましく、処理用面1、2間に導入する際の上記マグネタイト原料液の導入圧力と上記マグネタイト析出溶媒の導入圧力との双方の導入圧力を、標準気圧を超えるものとすると共に、処理用面1、2間に導入するマグネタイト析出溶媒の温度を、上記マグネタイト析出溶媒の標準沸点よりも高く且つ上記導入圧力下での沸点よりも低い温度とすることがより好ましい。マグネタイト析出溶媒についても、マグネタイト原料液と同様、実施に際しては、マグネタイト析出溶媒の標準沸点を計算で求めて、その計算値よりも高い温度に供給するマグネタイト析出溶媒の温度を設定すればよい。
マグネタイト原料液及びマグネタイト析出溶媒の標準沸点は、次式にて算出される。
T=(T+k・m)-273
但し、
T :標準沸点(℃)
:溶媒の標準沸点(K)
:モル沸点上昇定数(K・kg/mol)
m :質量モル濃度(mol/kg)
なお、本願においては、標準沸点の算出に際し、電離や会合は無視することとする。
次に、導入圧力下での沸点については、各溶媒の蒸気圧曲線と上記の式にて算出した標準沸点から求めることができる。
対向して配設された、接近離反可能な相対的に回転する処理用面間においては、処理用面1、2間の圧力条件を制御することにより、マグネタイト原料液とマグネタイト析出溶媒の導入圧力を標準気圧を超えて処理用面1、2間に導入することが可能であるため、その流体の標準沸点よりも高い温度となっても沸騰を起こすこと無く、マグネタイト原料液とマグネタイト析出溶媒とを処理用面間に形成される数μmオーダーの反応空間で混合出来、それによって標準沸点以上の温度での反応を安定的に行うことができる。そのような空間では、瞬間的な混合・拡散・反応を行うことができることに加えて、析出させたナノ粒子へ熱等の多大なエネルギーを瞬時に与えることができるため、単結晶のナノ粒子を得る点で特に効果が高いと本願出願人は考えている。
また、マグネタイト原料液の温度及び流量と、マグネタイト析出溶媒の温度と流量とを用いて、次式で求められる混合流体の処理用面間導入温度c(℃)が100℃よりも高いことが、単結晶比率の向上の点から望ましい。
c=(a1×a2+b1×b2)/(a2+b2)
但し、
a1:マグネタイト原料液の導入温度(℃)
a2:マグネタイト原料液の導入流量(ml/min.)
b1:マグネタイト析出溶媒の導入温度(℃)
b2:マグネタイト析出溶媒の導入流量(ml/min.)
なお、直接計測することはできないが、上記の圧力条件を満たしつつ、この混合流体の処理用面間導入温度c(℃)に対して前述の中和熱等の反応熱による発熱を加えた熱エネルギーが、マグネタイト粒子の析出から結晶の成長に影響し、単結晶比率を飛躍的に向上させたものと考えられる。
上述のように、処理用面1、2間にてマグネタイト粒子が析出した混合流体は、両処理用部10、20の外側に吐出され、ベッセルvを介して、吐出液としてビーカーbに集められる。本発明においては、上記吐出液のpHが8以上であることが好ましく、9以上であることが更に好ましい。また、マグネタイト原料液の処理用面1、2間への導入温度が100℃よりも高い温度であるもの又は上記処理用面間導入温度cが100℃よりも高い温度であるものであって、且つ上記吐出液のpHが9以上である場合には、得られるマグネタイト粒子の単結晶比率が70%以上と著しく向上し、望ましい。特に、マグネタイト原料液の処理用面1、2間への導入温度が120℃以上又は上記処理用面間導入温度cが120℃以上で、且つ上記吐出液のpHが9以上である場合には、得られるマグネタイト粒子の全てが単結晶化されたものとなり、より望ましい。また、上記吐出液のpHは、マグネタイト原料液やマグネタイト析出溶媒に含まれるマグネタイト粒子原料、塩基性物質、酸性物質等の濃度や、上記マグネタイト原料液やマグネタイト析出溶媒の導入流量を制御することで可能である。また、上記吐出液のpHを制御することで、マグネタイト粒子の形状についても制御可能である。具体的には、混合流体のpHが9以上であって、混合流体のpHを小さくすることによってマグネタイト粒子の形状が球形に近づくように制御し、上記混合流体のpHを大きくすることによってマグネタイト粒子の形状が角形に近づくように制御することができ、マグネタイト粒子の用途に求められる形状の粒子を得ることができる。ここで、角形とは四角形やひし形、多角形をいう。マグネタイト粒子は、磁性流体や色材、化粧品に至るまで幅広い分野において使用されている。マグネタイト粒子の形状が球形である場合には、分散媒へのマグネタイト粒子の分散性が向上し、マグネタイト粒子の形状が角形である場合には、隠蔽性が向上する。そのため、マグネタイト粒子を磁性流体として用いる場合にあっては、その形状が球形であるであることが好ましく、マグネタイト粒子を色材として用いる場合にあっては、その形状が角形であることが好ましい。なお、マグネタイト粒子の形状の特定には、各種の顕微鏡を用いることができ、透過型電子顕微鏡で観察した場合にあっては、平面視にて観察される。上記角形とは平面視で観察された形状である。
なお、上記吐出液からマグネタイト粒子を回収するにあたり、上記吐出液を室温になるまで静置した後でマグネタイト粒子を回収してもよいし、上記吐出液を室温まで急冷した後でマグネタイト粒子を回収してもてもよい。吐出直後の上記吐出液からマグネタイト粒子を回収してもよい。これらの方法を用いることによって、単結晶性マグネタイト粒子を得るために、特に長時間の熟成処理を必要しないことも本発明の利点である。
(粒子の状態)
上記方法によって得られたマグネタイト粒子は、一次粒子径が100nm以下、好ましくは50nm以下、さらに好ましくは20nm以下のナノサイズであり、CV値(標準偏差÷平均粒子径×100[%])が、40%以下、好ましくは30%以下、更に好ましくは20%以下である。また、粒度分布測定や、透過型電子顕微鏡観察(TEM観察)や走査型電子顕微鏡観察(SEM観察)、または走査透過型電子顕微鏡観察(STEM観察)にて得られた平均粒子径(D)に対する、XRD測定結果より算出される平均結晶子径(d)の比率d/Dが0.50~1.00、好ましくは0.70~1.00である。
上述したように、マグネタイト原料液に含まれる溶媒やマグネタイト析出溶媒に含まれる溶媒は、単独で使用してもよく、複数を混合して使用してもよい。そして、処理用面1、2間に導入するマグネタイト原料液の温度を、マグネタイト原料液に含まれる単数または複数種の溶媒のうち最も標準沸点の低い溶媒の標準沸点よりも高い温度として実施してもよく、処理用面1、2間に導入するマグネタイト析出溶媒の温度を、マグネタイト析出溶媒に含まれる単数または複数種の溶媒のうち最も標準沸点の低い溶媒の標準沸点よりも高い温度として実施してもよい。例えば、水とポリオールとの混合溶媒をマグネタイト原料液に含まれる溶媒として用いた場合、処理用面1、2間に導入するマグネタイト原料液の温度を、水の標準沸点である100℃よりも高い温度として実施することができる。
また、ポリオールの1種であるプロピレングリコールの標準沸点は188℃であり、マグネタイト原料液に含まれる溶媒として水とプロピレングリコールとの混合溶媒を用いることによって、100℃以上でかつ非沸騰状態のマグネタイト原料液を標準気圧以下で処理用面1、2間に導入することが可能となる。マグネタイト析出溶媒に含まれる溶媒として水とプロピレングリコールとの混合溶媒を用いる場合も同様である。このように、処理用面1、2間に導入するマグネタイト原料液やマグネタイト析出溶媒の温度設定にあたり、マグネタイト原料液の導入圧力とマグネタイト析出溶媒の導入圧力との双方の導入圧力を標準気圧を超えるものとするほかに、用いる溶媒の種類やその組み合わせによっても、その設定を調整することができる。なお、マグネタイト原料液とマグネタイト析出溶媒との何れか一方の温度を175℃以下とすることが望ましい。これによって本実施の形態における流体処理装置において、反応速度の制御が一層容易となり、粒子性状が均一で微細なサイズ(例えば一次粒子径が20nm以下)の単結晶マグネタイト粒子を安定して製造する際に大きく寄与する。
次に、上記の装置を用いて行う酸化セリウム粒子の製造方法の具体的な態様について、一例を説明する。
上記流体処理装置を用いて、酸化セリウム粒子を作製する場合には、一例として、第1導入部d1より第1の被処理流体として酸化セリウム析出溶媒を導入し、第2導入部d2より第2の被処理流体として酸化セリウム原料液を導入し、処理用面1、2間にて両流体を混合させ、酸化セリウム粒子を析出させることが出来る。
本発明においては、処理用面1、2間にて上記流体処理を行うことができればよく、第1導入部d1より第2の被処理流体を導入し、第2導入部d2より第1の被処理流体を導入するものであってもよい。例えば、各流体における第1、第2という表現は、複数存在する流体の第n番目であるという、識別のための意味合いを持つに過ぎないものであり、上述の通り第3以上の流体も存在しうる。
(反応条件及び反応後の液の条件)
第1導入部d1より第1の被処理流体として酸化セリウム析出溶媒を処理用面1、2間に導入し、第2導入部d2より第2の被処理流体として酸化セリウム原料液を処理用面1、2間に導入した場合、得られた酸化セリウム粒子の単結晶比率を10%以上とするために、処理用面1、2間に導入する際の上記酸化セリウム析出溶媒の温度を50℃以上とすることが好ましく、得られた酸化セリウム粒子の単結晶比率を50%以上とするために、処理用面1、2間に導入する際の上記酸化セリウム析出溶媒の温度を80℃よりも高い温度とすることがより好ましい。得られた酸化セリウム粒子の単結晶比率を90%以上とするために、酸化セリウム析出溶媒の処理用面1、2間への導入温度を100℃よりも高い温度とすることが更に好ましく、酸化セリウム原料液の処理用面1、2間への導入温度と酸化セリウム析出溶媒の処理用面1、2間への導入温度を、ともに100℃よりも高い温度とすることが最も好ましい。その際、処理用面1、2間にて酸化セリウム粒子が析出した混合流体のpHが6.0~9.0の範囲であることが好ましい。ここで、単結晶比率とは、得られた酸化セリウム粒子を電子顕微鏡で観察し、観察した酸化セリウム粒子の数X(個)とそのうち単結晶として観察された酸化セリウム粒子の数Y(個)から単結晶比率=Y/X×100(%)により算出したものである。
処理用面1、2間に導入する際の上記酸化セリウム析出溶媒の導入圧力を、標準気圧を超えるものとすると共に、処理用面1、2間に導入する酸化セリウム析出溶媒の温度を、上記酸化セリウム析出溶媒の標準沸点よりも高く且つ上記導入圧力下での沸点よりも低い温度とすることによって、得られた酸化セリウム粒子の単結晶比率が飛躍的に向上する。特に、処理用面1、2間に導入する際の上記酸化セリウム原料液の導入圧力と上記酸化セリウム析出溶媒の導入圧力との双方の導入圧力を、標準気圧を超えるものとすると共に、処理用面1、2間に導入する酸化セリウム原料液の温度を、上記酸化セリウム原料液の標準沸点よりも高く且つ上記導入圧力下での沸点よりも低い温度とし、かつ、処理用面1、2間に導入する酸化セリウム析出溶媒の温度を、上記酸化セリウム析出溶媒の標準沸点よりも高く且つ上記導入圧力下での沸点よりも低い温度とすることが好ましい。この酸化セリウム原料液の標準沸点は、酸化セリウム原料液に用いられる酸化セリウム粒子原料、溶媒、酸性物質等の酸化セリウム原料液に含まれる物質の種類とそれらの配合率によって変化するが、実施に際しては、酸化セリウム原料液の標準沸点を計算で求めて、供給する酸化セリウム原料液の温度をその計算値よりも高い温度に設定すればよい。同様に、この酸化セリウム析出溶媒の標準沸点は、酸化セリウム析出溶媒に用いられる塩基性物質、溶媒等の酸化セリウム析出溶媒に含まれる物質の種類とそれらの配合率によって変化するが、実施に際しては、酸化セリウム析出溶媒の標準沸点を計算で求めて、供給する酸化セリウム析出溶媒の温度をその計算値よりも高い温度に設定すればよい。
酸化セリウム原料液及び酸化セリウム析出溶媒の標準沸点T(℃)は、次式にて算出される。
T=(T+k・m)-273
但し、
T :標準沸点(℃)
:溶媒の標準沸点(K)
:モル沸点上昇定数(K・kg/mol)
m :質量モル濃度(mol/kg)
なお、本願においては、標準沸点の算出に際し、電離や会合は無視することとする。
次に、導入圧力下での沸点については、各溶媒の蒸気圧曲線と上記の式にて算出した標準沸点から求めることができる。
対向して配設された、接近離反可能な相対的に回転する処理用面間においては、処理用面1、2間の圧力条件を制御することにより、酸化セリウム原料液や酸化セリウム析出溶媒の導入圧力を標準気圧を超えて処理用面1、2間に導入することが可能であるため、その流体の標準沸点よりも高い温度となっても沸騰を起こすこと無く、酸化セリウム原料液と酸化セリウム析出溶媒とを処理用面間に形成される数μmオーダーの反応空間で混合出来、それによって標準沸点以上の温度での反応を安定的に行うことができる。そのような空間では、瞬間的な混合・拡散・反応を行うことができることに加えて、析出させたナノ粒子へ熱等の多大なエネルギーを瞬時に与えることができるため、単結晶のナノ粒子を得る点で特に効果が高いと本願出願人は考えている。
また、酸化セリウム原料液の温度と流量、酸化セリウム析出溶媒の温度と流量を用いて、次式で求められる混合流体の処理用面間導入温度c(℃)が100℃よりも高いことが、単結晶比率の向上の点から望ましい。
c=(a1×a2+b1×b2)/(a2+b2)
但し、
a1:酸化セリウム原料液の導入温度(℃)
a2:酸化セリウム原料液の導入流量(ml/min.)
b1:酸化セリウム析出溶媒の導入温度(℃)
b2:酸化セリウム析出溶媒の導入流量(ml/min.)
なお、直接計測することはできないが、上記の圧力条件を満たしつつ、この混合流体の処理用面間導入温度c(℃)に対して前述の中和熱等の反応熱による発熱を加えた熱エネルギーが、酸化セリウム粒子の析出から結晶の成長に影響し、単結晶比率を飛躍的に向上させたものと考えられる。
上述のように、処理用面1、2間にて酸化セリウム粒子が析出した混合流体は、両処理用部10、20の外側に吐出され、ベッセルvを介して、吐出液としてビーカーbに集められる。本発明においては、上記吐出液のpHが6.0から9.0の範囲であることが好ましく、6.5から9.0の範囲であることがより好ましい。吐出液のpHが9.0を超えた場合には結晶性が低下し、6.0を下回った場合には結晶性の低下に加えて、収率も低下するため好ましくない。また、第1の被処理流体として用いた酸化セリウム析出溶媒の処理用面1、2間への導入温度が100℃よりも高い温度であるもの又は上記処理用面間導入温度c(℃)が100℃よりも高い温度であるものであって、且つ上記吐出液のpHが6.0から9.0の範囲である場合には、得られる酸化セリウム粒子の単結晶比率が90%以上と著しく向上し、望ましい。特に、酸化セリウム析出溶媒の処理用面1、2間への導入温度が120℃以上又は上記処理用面間導入温度c(℃)が120℃以上で、且つ上記吐出液のpHが6.0から9.0の範囲である場合には、得られる酸化セリウム粒子の全てが単結晶化されたものとなり、より望ましい。また、上記吐出液のpHは、酸化セリウム原料液や酸化セリウム析出溶媒に含まれる酸化セリウム粒子原料、塩基性物質、酸性物質等の濃度や、上記酸化セリウム原料液や酸化セリウム析出溶媒の導入流量を制御することで可能である。また、上記吐出液のpHを制御することで、球形や角形といった、酸化セリウム粒子の形状についても制御可能であり、酸化セリウム粒子の用途に応じて求められる形状の粒子を得ることができる。ここで、角形とは四角形やひし形、多角形をいう。酸化セリウム粒子は、古くから研磨剤として広く使用され、近年は、研磨剤のみならず、紫外線吸収剤、固体電解質、あるいは触媒担体など新たな用途への利用が進みつつある。酸化セリウム粒子の形状が球形である場合には、分散媒への酸化セリウム粒子の分散性が向上し、酸化セリウム粒子の形状が角形である場合には、隠蔽性が向上する。そのため、酸化セリウム粒子をインク等として用いる場合にあっては、その形状が球形であるであることが好ましく、酸化セリウム粒子を研磨剤等として用いる場合にあっては、その形状が角形であることが好ましい。また助触媒等に酸化セリウム粒子を用いる場合には、上記形状については担持させる触媒粒子や目的の特性によって酸化セリウム粒子の形状を制御する必要がある。なお、酸化セリウム粒子の形状の特定には、各種の顕微鏡を用いることができ、透過型電子顕微鏡で観察した場合にあっては、平面視にて観察される。上記角形とは平面視で観察された形状である。
なお、上記吐出液から酸化セリウム粒子を回収するにあたり、上記吐出液を室温になるまで静置した後で酸化セリウム粒子を回収してもよいし、上記吐出液を室温まで急冷した後で酸化セリウム粒子を回収してもてもよい。吐出直後の上記吐出液から酸化セリウム粒子を回収してもよい。これらの方法を用いることによって、単結晶性酸化セリウムの粒子を得るために、特に長時間の熟成処理を必要しないことも本発明の利点である。
(粒子の状態)
上記方法によって得られた酸化セリウム粒子は、一次粒子径が100nm以下、好ましくは50nm以下、さらに好ましくは20nm以下のナノサイズであり、CV値(標準偏差÷平均粒子径×100[%])が、40%以下、好ましくは30%以下、更に好ましくは20%以下である。また、粒度分布測定や、透過型電子顕微鏡観察(TEM観察)や走査型電子顕微鏡観察(SEM観察)、または走査透過型電子顕微鏡観察(STEM観察)にて得られた平均粒子径(D)に対するXRD測定結果より算出される、平均結晶子径(d)の比率d/Dが0.50~1.00、好ましくは0.70~1.00である。
上述したように、酸化セリウム原料液に含まれる溶媒や酸化セリウム析出溶媒に含まれる溶媒は、単独で使用してもよく、複数を併用してもよい。そして、処理用面1、2間に導入する酸化セリウム原料液の温度を、酸化セリウム原料液に含まれる単数または複数種の溶媒のうち最も標準沸点の低い溶媒の標準沸点よりも高い温度として実施してもよく、処理用面1、2間に導入する酸化セリウム析出溶媒の温度を、酸化セリウム析出溶媒に含まれる単数または複数種の溶媒のうち最も標準沸点の低い溶媒の標準沸点よりも高い温度として実施してもよい。例えば、水とポリオールとの混合溶媒を酸化セリウム原料液に含まれる溶媒として用いた場合、処理用面1、2間に導入する酸化セリウム原料液の温度を、水の標準沸点である100℃よりも高い温度として実施することができる。
また、ポリオールの1種であるプロピレングリコールの標準沸点は188℃であり、酸化セリウム原料液に含まれる溶媒として水とプロピレングリコールとの混合溶媒を用いることによって、100℃以上でかつ非沸騰状態の酸化セリウム原料液を標準気圧以下で処理用面1、2間に導入することが可能となる。酸化セリウム析出溶媒に含まれる溶媒として水とプロピレングリコールとの混合溶媒を用いる場合も同様である。このように、処理用面1、2間に導入する酸化セリウム原料液や酸化セリウム析出溶媒の温度設定にあたり、酸化セリウム原料液の導入圧力と酸化セリウム析出溶媒の導入圧力との双方の導入圧力を標準気圧を超えるものとするほかに、用いる溶媒の種類やその組み合わせによっても、その設定を調整することができる。なお、酸化セリウム原料液と酸化セリウム析出溶媒との何れか一方の温度を175℃以下とすることが望ましい。これによって本実施の形態における流体処理装置において、反応速度の制御が一層容易となり、粒子性状が均一で微細なサイズ(例えば一次粒子径が20nm以下)の単結晶酸化セリウム粒子を安定して製造する際に大きく寄与する。
(セリウム以外の元素)
本発明の製造方法を用いることで、酸化セリウム粒子にセリウム及び酸素以外の他の元素を固溶または複合させることが可能である。具体的には、上記酸化セリウム原料液または酸化セリウム析出溶媒の内の何れか、またはそのいずれとも異なる他の溶媒に、セリウム及び酸素とは異なる元素を含む化合物を混合、溶解または分子分散させ、処理用面間においてそれらを混合して酸化セリウム粒子と共にセリウム及び酸素以外の他の元素を析出させることで実施出来る。上記セリウム及び酸素とは異なる元素としては特に限定されない。化学周期表上における、セリウム及び酸素とは異なる全ての元素に適応可能である。上記セリウム及び酸素とは異なる元素を含む化合物としては、特に限定されないが、それらの元素の単体または化合物が挙げられる。鉄(Fe)を挙げて一例を示すと、鉄の単体や塩などの化合物が挙げられ、鉄の化合物として、硫酸鉄(II)(FeSO)や硝酸鉄(II)(Fe(NO)、塩化鉄(II)(FeCl)などの第一鉄(Fe(II))の無機塩や、酢酸鉄(II)(Fe(CHCOO))やクエン酸第一鉄(II)(Fe(C):Mはアルカリ金属またアンモニウム等)のような第一鉄(Fe(II))の有機塩等が挙げられる。さらに、硫酸鉄(III)(Fe(SO)や硝酸鉄(III)(Fe(NO)、塩化鉄(III)(FeCl)などの第二鉄(Fe(III))の無機塩や、酢酸鉄(III)(Fe(CHCOO)やFe(OH)(CHCOO))やクエン酸第二鉄(III)(CFeO)のような第二鉄(Fe(III))の有機塩等が挙げられる。これらの物質は、それらの水和物や溶媒和物を用いて実施することも可能である。また、これらの物質は単独で使用しても良いし、複数を併用しても良い。
上記セリウム及び酸素以外の元素を本発明の製造方法によって酸化セリウム粒子に固溶または複合させることで、本来液相法では結晶性が得にくい元素の酸化物や水酸化物を結晶性として粒子内に取り込める可能性や、酸化セリウム粒子が単結晶となることによって発生したり向上する特性以外の新規な特性が得られるなどの効果が期待できるものである。
以下、実施例を挙げて本発明をさらに具体的に説明する。しかし、本発明は下記の実施例に限定されるものではない。以下の実施例において、A液とは、図1に示す装置の第1導入部d1から導入される第1の被処理流体を指し、B液とは、同じく装置の第2導入部d2から導入される第2の被処理流体を指す。
(X)マグネタイト粒子の製造方法に係る実施例は、実施例の番号の前に「X」を付して、(Y)酸化セリウム粒子の製造方法に係る実施例は、実施例の番号の前に「Y」を付して、(Z)α-ヘマタイト粒子の製造方法に係る実施例は、実施例の番号の前に「Z」を付して、それぞれの実施例を特定する。但し、表1~表5、各図の凡例においては、「X」「Y」「Z」を省略する。
(X)マグネタイト粒子の製造方法
まず、マグネタイト粒子の製造方法について、実施例を挙げて具体的に説明する。
(実施例X1)
高速回転式分散乳化装置であるクレアミックス(製品名:CLM-2.2S、エム・テクニック製)を用いて、マグネタイト析出溶媒とマグネタイト原料液のそれぞれを調製した。
具体的には、表1の実施例X1に示すマグネタイト析出溶媒の処方に基づいて塩基性物質と純水とを混合し、調製温度45℃、クレアミックスを用いてローターの回転数10000rpmにて30分間撹拌することにより均質に混合し、マグネタイト析出溶媒を調製した。
また、表1の実施例X1に示すマグネタイト原料液の処方に基づいてマグネタイト粒子原料と純水とを混合し、調製温度50℃にて、クレアミックスを用いてローターの回転数20000rpmにて30分間撹拌することにより均質に混合し、マグネタイト粒子原料を純水に溶解させて、マグネタイト原料液を調製した。表1には、マグネタイト原料液に用いた、溶液中においてFe2+イオンを生成するマグネタイト粒子原料の物質名と濃度、溶液中においてFe3+イオンを生成するマグネタイト粒子原料の物質名と濃度、並びにマグネタイト原料液中のFe3+に対するFe2+のモル比Fe2+/Fe3+を記載した。また表中において、FeSO・7HOと記載したものには、硫酸鉄(II)7水和物(関東化学製、試薬特級)を用い、Fe(SO・nHOと記載したものには硫酸鉄(III)n水和物(関東化学製、試薬特級)を用いた。またマグネタイト原料液中のFe3+に対するFe2+のモル比Fe2+/Fe3+は、まず高周波誘導加熱プラズマ発光分析(ICP)により鉄イオン(Fe3+とFe2+)の合計濃度を測定し、次いでマグネタイト原料液を一部採取した液に、重クロム酸を添加して、Fe2+がFe3+に変色する点における重クロム酸の滴定量からFe2+の濃度を求め、先にICP測定により得られた鉄イオンの合計濃度から差し引くことでFe3+の濃度を算出して求めた。
次に、調製したマグネタイト析出溶媒と、調製したマグネタイト原料液とを、図1に示す流体処理装置にて混合した。具体的には、図1に示す流体処理装置の第1導入部d1から第1被処理流体(A液)としてマグネタイト原料液を処理用面間に導入し、処理用部10を回転数1700rpmで運転しながら、第2被処理流体(B液)としてマグネタイト析出溶媒を処理用面1、2間に導入し薄膜流体中で混合した。マグネタイト粒子が処理用面1、2間で析出され、マグネタイト粒子を含む吐出液(以下、マグネタイト粒子分散液)を流体処理装置の処理用面1、2間から吐出させた。吐出させたマグネタイト粒子分散液を、ベッセルvを介してビーカーbに回収した。
なお、A液並びにB液の導入温度(送液温度)と導入圧力(送液圧力)は、処理用面1、2間に通じる密封された導入路(第1導入部d1と第2導入部d2)内に設けられた温度計と圧力計とを用いて測定したものであり、表1に示すA液の導入温度は、第1導入部d1内の導入圧力下における実際のA液の温度であり、同じくB液の導入温度は、第2導入部d2内の導入圧力下における実際のB液の温度である。
pH測定には、HORIBA製の型番D-51のpHメーターを用いた。第1と第2の各被処理流体を流体処理装置に導入する前に、その被処理流体のpHを室温にて測定した。また、マグネタイト原料液とマグネタイト析出溶媒との混合直後の混合流体のpHを測定することは困難なため、同装置から吐出させ、ビーカーbに回収したマグネタイト粒子分散液のpHを室温にて測定した。
流体処理装置から吐出させ、ビーカーbに回収したマグネタイト粒子分散液から、乾燥粉体とウェットケーキサンプルを作製した。作製方法は、この種の処理の常法に従い行ったもので、吐出されたマグネタイトナノ粒子分散液を回収し、マグネタイト粒子を沈降させて上澄み液を除去し、その後、洗浄と沈降とを繰り返し7回行うことでマグネタイト粒子を洗浄し、最終的に得られたマグネタイト粒子のウェットケーキの一部を乾燥させて乾燥粉体とした。他方はウェットケーキサンプルとした。
(TEM観察用試料作製とTEM観察結果)
実施例で得られた洗浄処理後のマグネタイト粒子のウェットケーキサンプルの一部をプロピレングリコールに分散させ、さらにイソプロピルアルコール(IPA)で100倍に希釈した。得られた希釈液をコロジオン膜に滴下して乾燥させて、TEM観察用試料とした。
(透過型電子顕微鏡)
透過型電子顕微鏡(TEM)観察には、透過型電子顕微鏡、JEM-2100(JEOL製)を用いた。観察条件としては、加速電圧を80kV、観察倍率を1万倍とした。
なお、表1に記載した平均粒子径(D)は一次粒子径であり、TEM観察にて、100個の粒子について粒子径を測定した結果の平均値を示した。
(X線回折測定)
X線回折(XRD)測定には、粉末X線回折測定装置X'PertPROMPD(XRDスペクトリスPANalytical事業部製)を使用した。測定条件は、測定範囲:10~100[°2Theta] Cu対陰極、管電圧45kV、管電流40mA、走査速度0.3°/min.とした。
(XRD測定結果)
各実施例で得られたマグネタイト粒子の乾燥粉体を用いてXRD測定を行った。実施例X1のXRD測定結果を図8に示す。XRD測定の結果、マグネタイトに一致するピークが見られ、マグネタイトが作製されていることを確認した。また、得られた35°付近のピークを使用して、シリコン多結晶板の測定結果を用いたシェラーの式より結晶子径を算出した。
(単結晶であることの評価)
実施例によって得られたマグネタイト粒子が単結晶であることを評価する方法としては、得られたマグネタイト粒子をTEMにより観察し、観察したマグネタイト粒子の数X(個)とそのうち単結晶として観察されたマグネタイト粒子の数Y(個)から単結晶比率=Y/X×100(%)により算出し、その比率を評価した。なお、TEM観察に際しては、個々の粒子が、単結晶であるか否かの判断基準は、格子縞(結晶中の原子配列)が一方向に観測されるものを単結晶と認定し、格子縞が乱れていたり粒界が見られたものは単結晶ではないと認定した。
(実施例X2~X12)
実施例X1と同様に、表1に記載されているマグネタイト析出溶媒とマグネタイト原料液の各処方、導入流量、導入温度、導入圧力にて実施し、マグネタイト粒子を処理用面1、2間で析出させた。流体処理装置から吐出させ、ベッセルvを介してビーカーbに回収したマグネタイト粒子分散液から、乾燥粉体とウェットケーキサンプルを作製した。実施例X1と同様の手順でTEM観察、XRD測定を行ったところ、表1に記載の通りの結果を得た。なお、表1に記載されていない条件については実施例X1と同様である。また、表1に記載した処理用面間導入温度(c)とは、処理用面1、2間に導入されるマグネタイト原料液とマグネタイト析出溶媒の導入流量と導入温度を用いて、次式で求められるマグネタイト析出溶媒とマグネタイト原料液との混合流体の計算による温度である
c=(a1×a2+b1×b2)/(a2+b2)
ここで、各記号は、以下の内容を示す。
a1:マグネタイト原料液の導入温度
a2:マグネタイト原料液の導入流量
b1:マグネタイト析出溶媒の導入温度
b2:マグネタイト析出溶媒の導入流量
図9に、実施例X1~X10と実施例X12に係るA液であるマグネタイト原料液の導入温度に対する単結晶比率のグラフを示す。また、図10には、実施例X1~X10と実施例X12に係る処理用面間導入温度(c)に対する単結晶比率のグラフを示す。
表1及び図9、図10に示されている通り、吐出液が塩基性である実施例X1~X10、実施例X12においては、マグネタイト原料液または処理用面間導入温度(c)の上昇と共に、単結晶比率が向上することが判明した。さらに、マグネタイト原料液の送液温度(導入温度)または処理用面間導入温度(c)を100℃よりも高くすることで、単結晶比率が著しく向上することが判明した。また、吐出液が塩基性である実施例X1~X10、実施例X12においては、マグネタイト原料液または処理用面間導入温度(c)の上昇と共に、マグネタイト粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)が向上し、マグネタイト原料液の送液温度(導入温度)または処理用面間導入温度(c)を100℃よりも高くすることで、上記の比率(d/D)が著しく向上することが確認できた。上述したように、対向して配設された、接近離反可能な相対的に回転する処理用面間においては、処理用面1、2間の圧力条件を制御することにより、マグネタイト原料液とマグネタイト析出溶媒の導入圧力を標準気圧を超えて処理用面1、2間に導入することが可能であるため、その流体の標準沸点よりも高い温度となっても沸騰を起こすこと無く、マグネタイト原料液とマグネタイト析出溶媒とを処理用面間に形成される数μmオーダーの反応空間で混合出来、それによって標準沸点以上の温度での反応を安定的に行うことが出来る利点がある。そのような空間では、瞬間的な混合・拡散・反応が出来ることに加えて、析出させたナノ粒子へ熱等の多大なエネルギーを瞬時に与えることが出来るため、本願のような単結晶のナノ粒子を得る時には特に効果が高いと本願出願人は考えている。また、処理用面間の圧力条件は、流体の送液圧力(導入圧力)により制御可能であり、具体的には上記処理用面の第1導入部d1より処理用面間に送液される、第1被処理流体の送液圧力及び第2導入部d2より送液される第2被処理流体の送液圧力により制御可能である。
特に、実施例X1~X3、X10に見られる様に、マグネタイト原料液の送液温度(導入温度)または処理用面間導入温度(c)が120℃以上で且つ吐出液のpHが9以上の場合には、観察されたマグネタイト粒子全てが単結晶であった。図3に実施例X1において得られたマグネタイト粒子のTEM写真を示す。吐出液のpHが9.53として作製された実施例X1で得られたマグネタイト粒子は、単結晶であり、また形状が略円形であることがわかった。図4に実施例X2、図5に実施例X3において得られたマグネタイト粒子のTEM写真を示す。実施例X2(図4)は吐出液のpHが12.69、実施例X3(図5)は吐出液のpHが13.34、実施例X10(図6)は吐出液のpH14.00であり、吐出液のpHが高くなるほど、粒子の形状が略円形から、多角形状となった。これは、とりも直さず、吐出液(混合流体)のpHによって粒子形状を制御できることを意味する。次に、図7に実施例X12で得られたマグネタイト粒子のTEM写真を示す。図7に見られるように、実施例X12で得られたマグネタイト粒子は、単結晶でないだけでなく、結晶格子の干渉縞も殆ど確認されなかった。図8に、実施例X1、X2、X3及び実施例X12で得られたマグネタイト粒子のXRD測定結果を示す。図8に示された実施例X1、X2、X3及び実施例X12の全てにおいて、実質的にマグネタイトに由来するピークのみが検出されたが、実施例X1、X2、X3に比べて実施例X12のピークはブロードであり、結晶性が低くまた結晶子径が小さいことが確認された。また、実施例X11の条件は、マグネタイト原料液の導入温度、処理用面間導入温度(c)のどちらも120℃以上であるが、B液であるマグネタイト析出溶媒の導入流量のみを変更し、吐出液のpHが4.16となったものである。吐出液のpHが9以上である実施例Xに比べて、単結晶比率が低いものとなることがわかった。
Figure JPOXMLDOC01-appb-T000001
(Y)酸化セリウム粒子の製造方法
次に、酸化セリウム粒子の製造方法について、実施例を挙げて具体的に説明する。
(実施例Y1)
高速回転式分散乳化装置であるクレアミックス(製品名:CLM-2.2S、エム・テクニック製)を用いて、酸化セリウム析出溶媒と酸化セリウム原料液のそれぞれを調製した。
具体的には、表2の実施例Y1に示す酸化セリウム析出溶媒の処方に基づいて塩基性物質と純水とを混合し、調製温度45℃、クレアミックスを用いてローターの回転数10000rpmにて30分間撹拌することにより均質に混合し、酸化セリウム析出溶媒を調製した。
また、表2の実施例Y1に示す酸化セリウム原料液の処方に基づいて酸化セリウム粒子原料と純水とを混合し、調製温度50℃にて、クレアミックスを用いてローターの回転数20000rpmにて30分間撹拌することにより均質に混合し、酸化セリウム粒子原料を純水に溶解させて、酸化セリウム原料液を調製した。表2において、Ce(NO・6HOは硝酸セリウム(III)・6水和物、NHはアンモニア、NaOHは水酸化ナトリウムを示す。Ce(NO・6HOは和光純薬製の特級試薬、NHは関東化学製の特級試薬(NHを28wt%含有)、NaOHは関東化学製の特級試薬を用いた。
次に、調製した酸化セリウム析出溶媒と、調製した酸化セリウム原料液とを、図1に示す流体処理装置にて表2に示す処理条件にて混合した。具体的には、図1に示す流体処理装置の第1導入部d1から第1の被処理流体(A液)として酸化セリウム析出溶媒を処理用面間に導入し、処理用部10を回転数1700rpmで運転しながら、図1に示す流体処理装置の第2導入部d2から第2の被処理流体(B液)として酸化セリウム原料液を処理用面1、2間に導入し薄膜流体中で混合した。酸化セリウム粒子が処理用面1、2間で析出され、酸化セリウム粒子を含む吐出液(以下、酸化セリウム粒子分散液)を流体処理装置の処理用面1、2間から吐出させた。吐出させた酸化セリウム粒子分散液を、ベッセルvを介してビーカーbに回収した。
なお、A液並びにB液の導入温度(送液温度)と導入圧力(送液圧力)は、処理用面1、2間に通じる密封された導入路(第1導入部d1と第2導入部d2)内に設けられた温度計と圧力計とを用いて測定したものであり、表2に示すA液の導入温度は、第1導入部d1内の導入圧力下における実際のA液の温度であり、同じくB液の導入温度は、第2導入部d2内の導入圧力下における実際のB液の温度である。
pH測定には、HORIBA製の型番D-51のpHメーターを用いた。第1と第2の各被処理流体を流体処理装置に導入する前に、その被処理流体のpHと、pH測定時の温度を測定した。また、酸化セリウム原料液と酸化セリウム析出溶媒との混合直後の混合流体のpHを測定することは困難なため、同装置から吐出させ、ビーカーbに回収した酸化セリウム粒子分散液のpHを室温にて測定した。
流体処理装置から吐出させ、ビーカーbに回収した酸化セリウム粒子分散液から、乾燥粉体とウェットケーキサンプルを作製した。作製方法は、この種の処理の常法に従い行ったもので、吐出された酸化セリウムナノ粒子分散液を回収し、酸化セリウム粒子を沈降させて上澄み液を除去し、その後、純水(pH5.94、導電率 0.84μS/cm)による洗浄と沈降とを繰り返し7回行うことで酸化セリウム粒子を洗浄し、最終的に得られた酸化セリウム粒子のウェットケーキの一部を乾燥させて乾燥粉体とした。他方はウェットケーキサンプルとした。
(TEM観察用試料作製)
実施例で得られた洗浄処理後の酸化セリウム粒子のウェットケーキサンプルの一部をプロピレングリコールに分散させ、さらにイソプロピルアルコール(IPA)で100倍に希釈した。得られた希釈液をコロジオン膜に滴下して乾燥させて、TEM観察用試料とした。
(透過型電子顕微鏡)
透過型電子顕微鏡(TEM)観察には、透過型電子顕微鏡、JEM-2100(JEOL製)を用いた。観察条件としては、加速電圧を200kV、観察倍率を1万倍とした。
なお、表2、3に記載した平均粒子径(D)は一次粒子径の平均値であり、TEM観察にて、100個の粒子について粒子径を測定した結果の平均値を示した。
(X線回折測定)
X線回折(XRD)測定には、粉末X線回折測定装置X'PertPROMPD(XRDスペクトリスPANalytical事業部製)を使用した。測定条件は、測定範囲:10~100[°2Theta] Cu対陰極、管電圧45kV、管電流40mA、走査速度0.3°/min.とした。
(結晶子径の算出)
実施例で得られた酸化セリウム粒子の乾燥粉体を用いてXRD測定を行い、得られた28.5°付近のピークを使用して、シリコン多結晶板の測定結果を用いたシェラーの式より結晶子径を算出し、これを平均結晶子径(d)とした。
(単結晶であることの評価)
実施例によって得られた酸化セリウム粒子が単結晶であることを評価する方法としては、得られた酸化セリウム粒子をTEMにより観察し、観察した酸化セリウム粒子の数X(個)とそのうち単結晶として観察された酸化セリウム粒子の数Y(個)から単結晶比率=Y/X×100(%)により算出し、その比率を評価した。なお、TEM観察に際しては、個々の粒子が、単結晶であるか否かの判断基準は、格子縞(結晶中の原子配列)が一方向に観測されるものを単結晶と認定し、格子縞が乱れていたり粒界が見られたものは単結晶ではないと認定した。
(実施例Y2~Y16)
実施例Y1と同様に、表2に記載されている酸化セリウム析出溶媒と酸化セリウム原料液の各処方、処理条件にて実施例Y2~Y16を実施し、酸化セリウム粒子を処理用面1、2間で析出させた。流体処理装置から吐出させ、ベッセルvを介してビーカーbに回収した酸化セリウム粒子分散液から、乾燥粉体とウェットケーキサンプルを作製し、実施例Y1と同様の手順でTEM観察、XRD測定を行った。実施例Y1~Y16の結果を表2に示す。なお、表2に記載されていない条件については実施例Y1と同様である。また、表2に記載した処理用面間導入温度c(℃)とは、処理用面1、2間に導入される酸化セリウム原料液と酸化セリウム析出溶媒の導入流量と導入温度を用いて、次式で求められる酸化セリウム析出溶媒と酸化セリウム原料液との混合流体の計算による温度である。
c=(a1×a2+b1×b2)/(a2+b2)
ここで、各記号は、以下の内容を示す。
a1:酸化セリウム原料液の導入温度(℃)
a2:酸化セリウム原料液の導入流量(ml/min.)
b1:酸化セリウム析出溶媒の導入温度(℃)
b2:酸化セリウム析出溶媒の導入流量(ml/min.)
図17に、実施例Y1~Y12、Y15、Y16に係るA液である酸化セリウム析出溶媒の導入温度に対する単結晶比率のグラフを示す。また、図18には、実施例Y1~Y12、Y15、Y16に係る処理用面間導入温度cに対する単結晶比率のグラフを示す。
表2及び図17、図18に示されている通り、単結晶比率が0を超え、かつ吐出液のpHが6.0~9.0の範囲である実施例Y1~Y12においては、酸化セリウム析出溶媒の送液温度(導入温度)、処理用面間導入温度cの上昇と共に、単結晶比率が向上することが判明した。さらに、酸化セリウム析出溶媒の送液温度(導入温度)または処理用面間導入温度cを100℃よりも高くすることで、単結晶比率が著しく向上することが判明した。また、単結晶比率が0を超え、かつ吐出液pHが6.0~9.0の範囲である実施例Y1~Y12においては、酸化セリウム析出溶媒の送液温度(導入温度)、処理用面間導入温度cの上昇と共に、酸化セリウム粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)が向上し、酸化セリウム析出溶媒の送液温度(導入温度)または処理用面間導入温度cを100℃よりも高くすることで、上記の比率(d/D)が著しく向上することが確認できた。上述したように、対向して配設された、接近離反可能な相対的に回転する処理用面間においては、処理用面1、2間の圧力条件を制御することにより、酸化セリウム原料液と酸化セリウム析出溶媒の導入圧力を標準気圧を超えて処理用面1、2間に導入することが可能であるため、その流体の標準沸点よりも高い温度となっても沸騰を起こすこと無く、酸化セリウム原料液と酸化セリウム析出溶媒とを処理用面間に形成される数μmオーダーの反応空間で混合出来、それによって標準沸点以上の温度での反応を安定的に行うことが出来る利点がある。そのような空間では、瞬間的な混合・拡散・反応が出来ることに加えて、析出させたナノ粒子へ熱等の多大なエネルギーを瞬時に与えることが出来るため、本願のような単結晶のナノ粒子を得る時には特に効果が高いと本願出願人は考えている。また、処理用面間の圧力条件は、流体の送液圧力(導入圧力)により制御可能であり、具体的には第1導入部d1より処理用面間に送液される、第1の被処理流体の送液圧力と第2導入部d2より処理用面間に送液される第2の被処理流体の送液圧力により制御可能である。
特に、実施例Y9~Y12に見られる様に、酸化セリウム析出溶媒の送液温度(導入温度)、処理用面間導入温度cの何れもが120℃以上であり、且つ吐出液のpHが6.5から9.0の範囲にある場合には、観察された酸化セリウム粒子全てが単結晶であった。図11に実施例Y8において得られた酸化セリウム粒子のTEM写真を示す。実施例Y8においては、酸化セリウム析出溶媒の塩基性物質にアンモニアを用い、吐出液のpHが8.10であった。実施例Y8で得られた酸化セリウム粒子は、図11に示す単結晶の粒子を含み、また形状が略円形であることがわかった。図12に実施例Y9、図13に実施例Y10、図14に実施例Y11において得られた酸化セリウム粒子のTEM写真を示す。図11~図14においては、格子縞が一方向に観測された。実施例Y9(図12)においては、酸化セリウム析出溶媒の塩基性物質にアンモニアを用い、吐出液のpHが7.14であった。実施例Y9で作製された酸化セリウム粒子は単結晶であり、また形状が角形(長方形)であることがわかった。実施例Y10(図13)においては、酸化セリウム析出溶媒の塩基性物質にアンモニアを用い、吐出液のpHが8.79であった。実施例Y10で作製された酸化セリウム粒子は単結晶であり、また形状が多角形状であることがわかった。実施例Y11(図14)においては、酸化セリウム析出溶媒の塩基性物質に水酸化ナトリウムを用い、吐出液のpHが6.91であった。実施例Y11で作製された酸化セリウム粒子は単結晶であり、また形状が多角形状であることがわかった。図21に実施例Y6において得られた酸化セリウム粒子のTEM写真を示す。実施例Y6で作製された酸化セリウム粒子は大半が単結晶であったが、結晶格子の干渉縞が粒子内で一部不鮮明に観察される粒子や、結晶格子の干渉縞が殆ど観察されない粒子も確認された。なお、図21には5つの酸化セリウム粒子が写っているが、下三つと上一つの間の粒子(図21において矢印で示す粒子)には結晶格子が見られていない。しかしながら、この結晶格子が見られていない粒子にフォーカスを合わせると、この粒子には格子縞が観察された。よって、図21に写っている酸化セリウム粒子は全て単結晶である。TEM観察において、複数個の粒子全てについて単結晶の粒子として観察するには、粒子の厚み、観察時の高さ等を全ての粒子について揃える必要がある。実施例Y7で作製された酸化セリウム粒子は略全てが単結晶であったが、稀に結晶格子の干渉縞が粒子内で一部不鮮明に観察される粒子も確認された。次に、図15に実施例Y15で得られた酸化セリウム粒子のTEM写真を示す。図15に見られるように、実施例Y15で得られた酸化セリウム粒子は、単結晶でないだけでなく、結晶格子の干渉縞も殆ど確認されなかった。図16に、実施例Y8、Y9、Y10、Y15で得られた酸化セリウム粒子のXRD測定結果を示す。図16に示した実施例Y8-Y10、Y15を含め、実施例Y1~Y16の全てのXRD測定結果においては、実質的に酸化セリウムに由来するピークのみが検出されたが、実施例Y1~Y14に比べて実施例Y15、Y16のピークはブロードであり、結晶性が低くまた結晶子径が小さいことが確認された。また、実施例Y13、Y14においては、酸化セリウム析出溶媒の導入温度、処理用面間導入温度(c)のどちらもが120℃以上であるが、吐出液のpHが10.30、並びに11.84となったものである。吐出液のpHが6.0から9.0の範囲である実施例Y9~Y12に比べて、実施例Y13、Y14で得られた酸化セリウム粒子は、単結晶比率が低いものとなることがわかった。
Figure JPOXMLDOC01-appb-T000002
(実施例Y17、Y18)
酸化セリウム原料液と酸化セリウム析出溶媒の処方並びに処理条件を表3とした以外は、実施例Y1と同じ条件にて酸化セリウム粒子を作製した。
酸化セリウム原料液の調製は、表3に示す酸化セリウム原料液の処方に基づいて、得られる酸化セリウム粒子に固溶または複合したい元素の化合物を含む酸化セリウム粒子原料と純水とを混合し、調製温度50℃にて、クレアミックスを用いてローターの回転数20000rpmにて30分間撹拌することにより均質に混合し、酸化セリウム粒子原料を純水に溶解させて、酸化セリウム原料液を調製した。また、酸化セリウム析出溶媒の調製は、実施例Y1と同じ条件で行った。表3において、Ce(NO・6HOは硝酸セリウム(III)・6水和物、NHはアンモニア、Fe(NO・9HOは硝酸鉄九水和物を示す。Ce(NO・6HOは和光純薬製の特級試薬、NHは関東化学製の特級試薬(NHを28wt%含有)、Fe(NO・9HOは関東化学製の特級試薬を用いた。
実施例Y17で得られた酸化セリウム粒子のTEM写真を図19に示す。図19に見られるように、格子縞が一方向に観測されていることから、実施例Y17で得られた酸化セリウム粒子が単結晶であることがわかる。図20に実施例Y17で得られた酸化セリウム粒子のXRD測定結果を示す。図20に見られるように、実施例Y17で得られた酸化セリウム粒子のXRD測定結果では、酸化セリウムに由来するピークのみが検出され、実施例Y18で得られた酸化セリウム粒子のXRD測定結果においても酸化セリウムに由来するピークのみが検出された。また、図19に示した酸化セリウム粒子について、EDS分析を行った結果、セリウムと鉄のモル比が、Ce/Fe=97.1/2.9(mol)であり、酸化セリウム原料液中のCe/Fe(mol比)と略同じであることが分かった。同様のEDS分析を実施例Y17で得られた10個の酸化セリウム粒子について行った所、セリウムと鉄のモル比は、Ce/Fe=96.0/4.0~98.1/1.9(mol)の範囲であった。本発明を用いることで、酸化セリウムナノ粒子中に、セリウム及び酸素以外の元素を固溶または複合できることがわかった。また、実施例Y18で作製した酸化セリウム粒子についても、単結晶の酸化セリウムナノ粒子中に、セリウム及び酸素以外の元素が固溶または複合されていることを確認した。単結晶の酸化セリウム粒子を作製する際に他の元素を含む化合物を酸化セリウム粒子原料に含むことによって、単結晶の酸化セリウム粒子に他の元素を含むことが可能となるため、酸化セリウム粒子に均一に他の元素を取り込むことが可能となったと考えられる。
Figure JPOXMLDOC01-appb-T000003
(Z)α-ヘマタイト粒子の製造方法
次に、α-ヘマタイト粒子の製造方法について、実施例を挙げて具体的に説明する。
 (実施例Z1)
まず、A液として酸化鉄原料流体を、B液として酸化鉄析出流体を用い、A液とB液とをマイクロリアクターを用いて混合して酸化鉄微粒子(α-ヘマタイト粒子)を析出させた。
マイクロリアクターとして、製品名:ULREA(エム・テクニック製)を用いた。この場合、A液は、図1に示すマイクロリアクターの第1導入部d1から導入される第1被処理流体、B液は、同じく第2導入部d2から導入される第2被処理流体に相当する。第1導入部d1、第2導入部d2の入れ替えは任意である。得られた酸化鉄微粒子の分析は以下の条件で行った。 
XRD測定には、粉末X線回折測定装置(製品名:X‘PertPRO MPD、PANalytical製)を使用した。測定条件は、測定範囲:10~100°、Cu対陰極、管電圧45kV、管電流40mA、走査速度16°/minである。結晶子径は44°付近のピークを使用し、シリコン多結晶板をレファレンスとして算出した。
TEM観察には、透過型電子顕微鏡、JEM-2100(JEOL製)を用いた。観察条件としては、加速電圧を80kV、観察倍率1万倍以上とした。なお、実施例の酸化鉄微粒子の一次粒子径D1は、TEM観察にて、100個の粒子について粒子径を測定した結果の平均値(平均一次粒子径)である。
(単結晶であることの評価)
実施例によって得られたα-ヘマタイト粒子が単結晶であることを評価する方法としては、得られたα-ヘマタイト粒子をTEMにより観察し、観察したα-ヘマタイト粒子の数X(個)とそのうち単結晶として観察されたα-ヘマタイト粒子の数Y(個)から単結晶比率=Y/X×100(%)により算出し、その比率を評価した。なお、TEM観察に際しては、個々の粒子が、単結晶であるか否かの判断基準は、格子縞(結晶中の原子配列)が一方向に観測されるものを単結晶と認定し、格子縞が乱れていたり粒界が見られたものは単結晶ではないと認定した。
A液は、硝酸鉄(III)九水和物/純水を重量比2.0/98.0で混合し、クレアミックス(製品名:CLM-2.2S、エム・テクニック製)を用いて回転数20000rpm、処理温度24~60℃、処理時間60minの撹拌をし、混合・溶解させて調製した。B液は、水酸化ナトリウム/純水を重量比9.0/91.0で混合し、クレアミックスを用いて回転数8000rpm、処理温度50℃、処理時間:30minの撹拌をし、混合・溶解させて調製した。
(実施例Z1~Z6)
 図1に示すマイクロリアクターを用いて、表4に示す処方のA液とB液とを、表4の処理条件にて処理用面1、2間に導入し、処理用面1、2間に形成される薄膜流体中で混合し、酸化鉄微粒子を析出させた。処理用面1、2間にて析出した酸化鉄微粒子を含むスラリー液(以下、吐出液ともいう)が処理用面1、2間より吐出され、ベッセルvを介してビーカーbに回収した。なお、処理用部10の回転数は、1700rpmである。
 表4中における「処理用面間流体温度c」については、以下の式から算出した。
c=(a1×a2+b1×b2)/(a2+b2)
但し、
a1:酸化鉄原料流体の温度
a2:酸化鉄原料流体の単位時間当たりの流量
b1:酸化鉄析出流体の温度
b2:酸化鉄析出流体の単位時間当たりの流量
表4中における略記号は、Fe(NO・9HOは硝酸鉄(III)九水和物、NaOHは水酸化ナトリウムである。
実施例Z1-Z6にあっては、ビーカーbに回収された吐出液を60℃以下となるまで静置し、酸化鉄微粒子を沈降させた。
(酸化鉄微粒子の洗浄・回収)
ビーカーb内の上澄み液を除去し、沈降させた酸化鉄微粒子の重量に対して20~1500倍重量の純水を加え、クレアミックスを用いて回転数6000rpm、処理温度25℃、処理時間:5minの撹拌をし、酸化鉄微粒子を洗浄した。上記洗浄作業を3回行った後、酸化鉄微粒子を再度沈降させ、上澄み液を除去し、酸化鉄微粒子の含水ウェットケーキを得た。
(酸化鉄分散体の作製・各種測定試料の作製)
上記酸化鉄微粒子の含水ウェットケーキの一部をプロピレングリコールに投入し、クレアミックスを用いて20000rpm、30minの分散処理することで、酸化鉄微粒子の分散体を得た。得られた分散体をイソプロピルアルコールにて希釈し、超音波洗浄機にて分散処理した後、コロジオン膜に滴下して乾燥させることで、TEM観察試料とした。また、洗浄後に得られた酸化鉄微粒子の含水ウェットケーキを-0.10MpaG、20℃にて15時間以上乾燥させ、酸化鉄微粒子粉末を得た。結果を表5に示す。
(実施例Z7-Z11)
 酸化鉄原料流体と酸化鉄析出流体の処方、処理条件を表4とした以外は、実施例Z1-Z6の場合と同様に実施して、酸化鉄微粒子を析出させた。処理用面1、2間にて析出した酸化鉄微粒子を含むスラリー液(以下、吐出液ともいう)が処理用面1、2間より吐出され、ベッセルvを介してビーカーbに回収した。
実施例Z7-Z11にあっては、ビーカーbに回収された吐出液を60℃以下となるまで静置し、酸化鉄微粒子を沈降させた。
酸化鉄微粒子の洗浄・回収及び酸化鉄微粒子分散体の作製・各種測定の試料の作製については、実施例Z1-Z6と同様に実施した。結果を表5に示す。なお、実施例Z10、11については、TEM観察にて一次粒子径を判別できない程度に結晶性が低く、単結晶比率を算出できなかった。図23に、実施例Z10で得られた酸化鉄微粒子のTEM写真を示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
実施例Z1で得られた酸化鉄微粒子のTEM写真を図22に示す。一次粒子の形状が略球形であることがわかり、平均一次粒子径は8.40nmであった。また、実施例Z1のXRD測定の結果、α-Fe(ヘマタイト)のピークが明らかに検出された。なお、本発明において、略球形とは、実質上球形のものを言い、具体的には、粒子形状を長軸、短軸で規定した場合、長軸に対する短軸の比が0.5~1.0の範囲にあるものを意味する。
1   第1処理用面
2   第2処理用面
10  第1処理用部
11  第1ホルダ
20  第2処理用部
21  第2ホルダ
d1  第1導入部
d2  第2導入部
d20 開口部

Claims (30)

  1. 第1の流体と第2の流体を含む、少なくとも2つの被処理流体を備えるものであり、
    第1の流体と第2の流体とのうちの一方は、少なくとも酸化物粒子原料を溶媒に混合させた酸化物原料液であり、
    第1の流体と第2の流体とのうちの他方は、少なくとも塩基性物質を溶媒に混合した酸化物析出溶媒であり、
    上記第1の流体と第2の流体とを、対向して配設された、接近離反可能な相対的に回転する処理用面間で混合させ、酸化物粒子が析出した混合流体を上記処理用面間から吐出させる酸化物粒子の製造方法であって、
    上記処理用面間に導入する第1の流体の温度と、上記処理用面間に導入する第2の流体の温度と、上記第1の流体と上記第2の流体との混合時の温度とからなる群から選択された少なくとも1つを変化させることによって、上記処理用面間から吐出させる酸化物粒子の結晶性を制御することを特徴とする酸化物粒子の製造方法。
  2. 上記処理用面間の間隔は、上記処理用面同士が互いに接近する方向に加えられる力と上記混合流体の圧力との圧力バランスによって、設定されるものであることを特徴とする、請求項1に記載の酸化物粒子の製造方法。
  3. 上記第1の流体が、薄膜流体を形成しながら上記処理用面間を通過し、
    上記第2の流体が、上記第1の流体が上記処理用面間に導入される流路とは独立した別途の導入路を経て、上記処理用面の少なくとも何れか一方に形成された開口部から上記処理用面間に導入され、上記第1の流体と上記第2の流体とが、上記処理用面間で混合されることを特徴とする、請求項1又は2に記載の酸化物粒子の製造方法。
  4. 上記処理用面間に導入する上記第1の流体の温度を50℃以上とすることを特徴とする、請求項1~3の何れかに記載の酸化物粒子の製造方法。
  5. 上記処理用面間に導入する上記第1の流体の温度を100℃よりも高い温度とすることを特徴とする、請求項1~4の何れかに記載の酸化物粒子の製造方法。
  6. 上記第1の流体には単数または複数種の溶媒を含むものであり、
    上記処理用面間に導入する上記第1の流体の温度を、上記第1の流体に含まれる単数または複数種の溶媒のうち最も標準沸点の低い溶媒の標準沸点よりも高い温度とすることを特徴とする、請求項1~5の何れかに記載の酸化物粒子の製造方法。
  7. 上記処理用面間に導入する際の上記第1の流体の導入圧力を、標準気圧を超えるものとし、
    上記処理用面間に導入する上記第1の流体の温度を、上記第1の流体の標準沸点よりも高く且つ上記導入圧力下での沸点よりも低い温度とすることを特徴とする、請求項1~6の何れかに記載の酸化物粒子の製造方法。
  8. 上記混合時の温度が次式で求められる上記混合流体の処理用面間導入温度c(℃)であり、上記処理用面間導入温度c(℃)が100℃よりも高いことを特徴とする、請求項7記載の酸化物粒子の製造方法。
    c=(a1×a2+b1×b2)/(a2+b2)
    但し、
    a1:酸化物原料液の導入温度(℃)
    a2:酸化物原料液の導入流量(ml/min.)
    b1:酸化物析出溶媒の導入温度(℃)
    b2:酸化物析出溶媒の導入流量(ml/min.)
  9. 上記混合流体のpHを所定の範囲に制御することを特徴とする、請求項1~8の何れかに記載の酸化物粒子の製造方法。
  10. 上記処理用面間に導入する上記第2の流体の温度を100℃よりも高い温度とすることを特徴とする、請求項1~9の何れかに記載の酸化物粒子の製造方法。
  11. 上記第2の流体には単数または複数種の溶媒を含むものであり、
    上記処理用面間に導入する上記第2の流体の温度を、上記第2の流体に含まれる単数または複数種の溶媒のうち最も標準沸点の低い溶媒の標準沸点よりも高い温度とすることを特徴とする、請求項1~10の何れかに記載の酸化物粒子の製造方法。
  12. 上記処理用面間に導入する際の上記第1の流体の導入圧力と上記第2の流体の導入圧力との双方の導入圧力を、標準気圧を超えるものとし、
    上記処理用面間に導入する上記第1の流体の温度を、上記第1の流体の標準沸点よりも高く且つ上記導入圧力下での沸点よりも低い温度とし、かつ、上記処理用面間に導入する上記第2の流体の温度を、上記第2の流体の標準沸点よりも高く且つ上記導入圧力下での沸点よりも低い温度とすることを特徴とする、請求項1~11の何れかに記載の酸化物粒子の製造方法。
  13. 上記酸化物粒子の透過型電子顕微鏡観察により得られた平均粒子径(D)に対する、上記酸化物粒子のX線回折測定より得られた平均結晶子径(d)の比率d/Dが、0.50以上であることを特徴とする、請求項1~12の何れかに記載の酸化物粒子の製造方法。
  14. 得られた上記酸化物粒子の90%以上がナノサイズの単結晶酸化物粒子であることを、特徴とする、請求項1~13の何れかに記載の酸化物粒子の製造方法。
  15. 上記第1の流体と第2の流体との何れか一方の温度を175℃以下とすることを特徴とする、請求項1~14の何れかに記載の酸化物粒子の製造方法。
  16. 上記酸化物粒子の一次粒子径が20nm以下であることを特徴とする、請求項1~15の何れかに記載の酸化物粒子の製造方法。
  17. 上記酸化物粒子は、乾式での熱処理を必要としない酸化物粒子であることを特徴とする、請求項1~16の何れかに記載の酸化物粒子の製造方法。
  18. 上記酸化物粒子に他の元素を固溶または複合させることを特徴とする、請求項1~17の何れかに記載の酸化物の製造方法。
  19. 上記酸化物粒子原料がマグネタイト粒子原料であり、
    上記酸化物粒子がマグネタイト粒子であることを特徴する、請求項1~18の何れかに記載の酸化物粒子の製造方法。
  20. 上記酸化物粒子原料が酸化セリウム粒子原料であり、
    上記酸化物粒子が酸化セリウム粒子であることを特徴する、請求項1~18に記載の酸化物粒子の製造方法。
  21. 上記混合流体のpHが9以上であることを特徴とする、請求項19の何れかに記載の酸化物粒子の製造方法。
  22. 上記混合流体のpHを小さくすることによってマグネタイト粒子の形状が球形に近づくように制御し、上記混合流体のpHを大きくすることによってマグネタイト粒子の形状が角形に近づくように制御することを特徴とする、請求項21に記載の酸化物粒子の製造方法。
  23. 上記酸化物原料液中に含まれる、Fe2+イオンとFe3+イオンのモル比がFe2+/Fe3+=0.500±0.010であることを特徴とする、請求項19、21、22の何れかに記載の酸化物粒子の製造方法。
  24. 上記酸化物原料液のpHが4以下であることを特徴とする、請求項19、21~23の何れかに記載の酸化物粒子の製造方法。
  25. 上記酸化物析出溶媒のpHが12以上であることを特徴とする、請求項19、21~24の何れかに記載の酸化物粒子の製造方法。
  26. 上記マグネタイト粒子原料が、硫酸鉄(II)(FeSO)、硫酸鉄(III)(Fe(SO)、またはそれらの水和物からなる群から選択された少なくとも1つであることを特徴とする、請求項19、21~25の何れかに記載の酸化物粒子の製造方法。
  27. 上記混合流体のpHが6.0から9.0の範囲であることを特徴とする、請求項20の何れかに記載の酸化物粒子の製造方法。
  28. 上記酸化物原料液のpHが4以下であることを特徴とする、請求項20又は27に記載の酸化物粒子の製造方法。
  29. 上記酸化物析出溶媒のpHが10以上であることを特徴とする、請求項20、27、28の何れかに記載の酸化物粒子の製造方法。
  30. 上記酸化セリウム粒子原料が、硝酸セリウム(III)(Ce(NO)、硝酸セリウム(IV)アンモニウム((NH[Ce(NO])、またはそれらの水和物からなる群から選択された少なくとも1つであることを特徴とする、請求項20、27~29の何れかに記載の酸化物粒子の製造方法。
PCT/JP2016/070919 2015-07-14 2016-07-14 酸化物粒子の製造方法 WO2017010557A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680041114.8A CN107848836B (zh) 2015-07-14 2016-07-14 氧化物颗粒的制造方法
US15/740,132 US10196267B2 (en) 2015-07-14 2016-07-14 Method of producing oxide particles
KR1020177033464A KR102525331B1 (ko) 2015-07-14 2016-07-14 산화물 입자의 제조 방법
EP16824537.1A EP3323788A4 (en) 2015-07-14 2016-07-14 PROCESS FOR PRODUCING OXIDE PARTICLES
JP2017528729A JP6823771B2 (ja) 2015-07-14 2016-07-14 酸化物粒子の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-140772 2015-07-14
JP2015140772 2015-07-14
JP2016098844 2016-05-17
JP2016-098844 2016-05-17

Publications (1)

Publication Number Publication Date
WO2017010557A1 true WO2017010557A1 (ja) 2017-01-19

Family

ID=57757436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070919 WO2017010557A1 (ja) 2015-07-14 2016-07-14 酸化物粒子の製造方法

Country Status (6)

Country Link
US (1) US10196267B2 (ja)
EP (1) EP3323788A4 (ja)
JP (1) JP6823771B2 (ja)
KR (1) KR102525331B1 (ja)
CN (1) CN107848836B (ja)
WO (1) WO2017010557A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107523690A (zh) * 2017-07-18 2017-12-29 宁国市南方耐磨材料有限公司 高端铸件废渣回收工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108776156B (zh) * 2018-06-06 2021-05-25 常州工学院 一维α-Fe2O3纳米棒的制备方法及基于α-Fe2O3纳米棒的丙酮传感器
KR102261151B1 (ko) * 2020-02-27 2021-06-07 비드오리진(주) 표면 돌기가 형성된 구형 무기 입자 및 그 제조 방법
CN114797889B (zh) * 2022-04-12 2023-10-17 上海工程技术大学 一种Fe3O4@MnO2-CeO2纳米材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012096962A (ja) * 2010-11-02 2012-05-24 Ngk Insulators Ltd 鉛系圧電材料及びその製造方法
WO2013008706A1 (ja) * 2011-07-13 2013-01-17 エム・テクニック株式会社 結晶子径を制御された微粒子の製造方法
JP2013082621A (ja) * 2010-08-26 2013-05-09 M Technique Co Ltd 単離可能な酸化物微粒子または水酸化物微粒子の製造方法
WO2015125819A1 (ja) * 2014-02-18 2015-08-27 エム・テクニック株式会社 微粒子の製造方法
WO2016010018A1 (ja) * 2014-07-14 2016-01-21 エム・テクニック株式会社 単結晶酸化亜鉛ナノ粒子の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181778A (ja) 1984-09-28 1986-04-25 Hitachi Ltd 水生細菌の分離回収方法
JPH08325098A (ja) 1995-05-26 1996-12-10 Sakai Chem Ind Co Ltd 微粒子マグネタイト及びその製造方法
KR100477939B1 (ko) 2002-04-15 2005-03-18 주식회사 엘지화학 단결정 산화세륨 분말의 제조방법
JP4621911B2 (ja) 2005-02-10 2011-02-02 国立大学法人東京工業大学 マグネタイト微粒子の製造方法
JP2009008393A (ja) * 2007-06-26 2009-01-15 Kowa Co 光画像計測装置
CN101795772B (zh) * 2007-07-06 2013-09-18 M技术株式会社 使用强制超薄膜旋转式处理法的纳米粒子的制造方法
WO2009008392A1 (ja) 2007-07-06 2009-01-15 M.Technique Co., Ltd. セラミックスナノ粒子の製造方法
WO2009008388A1 (ja) * 2007-07-06 2009-01-15 M.Technique Co., Ltd. 強制超薄膜回転式反応法を用いた顔料ナノ微粒子の製造方法及びその顔料ナノ粒子、これを用いたインクジェット用インク
US9211510B2 (en) * 2007-07-06 2015-12-15 M. Technique Co., Ltd. Method for producing nanoparticles by forced ultrathin film rotary processing
JP4399612B2 (ja) 2007-11-09 2010-01-20 エム・テクニック株式会社 磁性体微粒子の製造方法、これにより得られた磁性体微粒子及び磁性流体、磁性体製品
EP2260013B1 (en) 2008-02-12 2018-12-19 Saint-Gobain Ceramics & Plastics, Inc. Ceria material and method of forming same
JP5990908B2 (ja) 2011-12-27 2016-09-14 日本ソリッド株式会社 横流沈殿池
US9260315B2 (en) * 2012-01-25 2016-02-16 M. Technique Co., Ltd. Methods for producing garnet precursor microparticles and microparticles having garnet structure
WO2016208715A1 (ja) * 2015-06-26 2016-12-29 エム・テクニック株式会社 紫外線防御剤組成物の製造方法及びそれによって得られた紫外線防御剤組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082621A (ja) * 2010-08-26 2013-05-09 M Technique Co Ltd 単離可能な酸化物微粒子または水酸化物微粒子の製造方法
JP2012096962A (ja) * 2010-11-02 2012-05-24 Ngk Insulators Ltd 鉛系圧電材料及びその製造方法
WO2013008706A1 (ja) * 2011-07-13 2013-01-17 エム・テクニック株式会社 結晶子径を制御された微粒子の製造方法
WO2015125819A1 (ja) * 2014-02-18 2015-08-27 エム・テクニック株式会社 微粒子の製造方法
WO2016010018A1 (ja) * 2014-07-14 2016-01-21 エム・テクニック株式会社 単結晶酸化亜鉛ナノ粒子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3323788A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107523690A (zh) * 2017-07-18 2017-12-29 宁国市南方耐磨材料有限公司 高端铸件废渣回收工艺

Also Published As

Publication number Publication date
KR20180029198A (ko) 2018-03-20
JPWO2017010557A1 (ja) 2018-04-26
JP6823771B2 (ja) 2021-02-03
CN107848836B (zh) 2020-05-15
KR102525331B1 (ko) 2023-04-25
EP3323788A1 (en) 2018-05-23
US10196267B2 (en) 2019-02-05
EP3323788A4 (en) 2019-02-20
US20180186638A1 (en) 2018-07-05
CN107848836A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
JP5794582B2 (ja) 単離可能な酸化物微粒子または水酸化物微粒子の製造方法
KR102379410B1 (ko) 규소 피복 금속 미립자, 규소 화합물 피복 금속 미립자 및 그 제조 방법
EP2896476B1 (en) Method for manufacturing metal microparticles
WO2017010557A1 (ja) 酸化物粒子の製造方法
JP2013082621A5 (ja)
JP5831821B2 (ja) 金属微粒子の製造方法
KR101988238B1 (ko) 니켈 미립자의 제조 방법
JP5598989B2 (ja) ドープ元素量を制御された析出物質の製造方法
JP6113938B1 (ja) 紫外線防御剤組成物の製造方法及びそれによって得られた紫外線防御剤組成物
JP4742202B1 (ja) ドープ元素量を制御された析出物質の製造方法
WO2016185529A1 (ja) ニッケル微粒子の改質方法およびニッケル微粒子の製造方法
JP5261780B1 (ja) 金属微粒子の製造方法
KR101823362B1 (ko) 산화철 나노입자 제조방법 및 이에 의해 제조된 산화철 나노입자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017528729

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177033464

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016824537

Country of ref document: EP