WO2016185529A1 - ニッケル微粒子の改質方法およびニッケル微粒子の製造方法 - Google Patents
ニッケル微粒子の改質方法およびニッケル微粒子の製造方法 Download PDFInfo
- Publication number
- WO2016185529A1 WO2016185529A1 PCT/JP2015/064107 JP2015064107W WO2016185529A1 WO 2016185529 A1 WO2016185529 A1 WO 2016185529A1 JP 2015064107 W JP2015064107 W JP 2015064107W WO 2016185529 A1 WO2016185529 A1 WO 2016185529A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fine particles
- nickel fine
- nickel
- acid
- processing surface
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/142—Thermal or thermo-mechanical treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/145—Chemical treatment, e.g. passivation or decarburisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/15—Nickel or cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
Definitions
- the present invention relates to a method for modifying nickel fine particles and a method for producing nickel fine particles.
- Nickel fine particles are widely used for conductive materials and electrode materials in multilayer ceramic capacitors and substrates, and those with controlled crystallite size, particle size, and particle size distribution are used according to the purpose. .
- Patent Document 1 As a method for producing nickel fine particles, there are a method using a gas phase method as known in Patent Document 1 and a method using a liquid phase method as known in Patent Document 2.
- nickel fine particles produced using these methods often have a weight loss of several percent in simultaneous measurement of TG-DTA (thermogravimetry / differential thermal analysis). This is a cause of problems such as cracking during firing when a multilayer ceramic capacitor is manufactured using a slurry of fine particles.
- nickel fine particles have a problem in storage stability, and when they are stored in an air atmosphere, they often generate nickel hydroxide in several days to several weeks. In that case, they are used as nickel fine particles. There were problems such as making it difficult.
- Patent Document 3 proposes a method in which nickel powder is oxidized to some extent and then hydrogen reduction treatment is performed using hydrogen gas.
- nickel powder is introduced into an aqueous solution containing a water-soluble fatty acid salt and dispersed.
- Solvent slurry prepared by adjusting aqueous solution slurry from acidic to neutral pH, filtering nickel powder from aqueous slurry, heat treating the obtained nickel powder, and then mixing solvent, fatty acid and nickel powder A method of heat-treating the obtained nickel powder after volatilizing the solvent by heating and stirring is proposed.
- Patent Document 5 proposes a method in which nickel fine particles having a nickel hydroxide film are treated with plasma of an oxygen-containing gas generated by glow discharge to form a nickel oxide film.
- Patent Document 6 relates to a method for precipitating nickel fine particles in a thin film fluid formed between processing surfaces that can be moved toward and away from each other and rotate relatively.
- Patent Document 7 discloses a method for making the particle size of nickel fine particles more sharply distributed, a method for controlling the particle size, and a method for controlling the crystallite size. According to the methods described in Patent Documents 6 and 7, nickel fine particles having a uniform particle size distribution can be mass-produced extremely simply.
- JP 2014-189820 A JP 2014-162967 A JP 2001-073001 A JP 2003-129105 A JP 2014-173105 A JP 2009-082902 A JP 2014-023997 A
- the present invention provides a method for modifying nickel fine particles having a reduced weight loss rate in TG-DTA simultaneous measurement, and a method for producing nickel fine particles comprising the method for modifying nickel fine particles. It is.
- the present inventors have found that the above object can be achieved by the following nickel fine particle modification method and nickel fine particle production method including the nickel fine particle modification method.
- the present invention has been completed.
- the present invention relates to a method for modifying nickel fine particles, including a step of allowing an acid and / or hydrogen peroxide to act on nickel fine particles whose weight is reduced by a heat treatment such as firing.
- the present invention relates to a method for modifying nickel fine particles, characterized in that the step of allowing the acid and / or hydrogen peroxide to act reduces the weight reduction rate due to heat treatment of the nickel fine particles.
- the weight reduction rate due to heat treatment of the nickel fine particles is a weight reduction rate in simultaneous thermogravimetric measurement / differential thermal analysis measurement, and the thermogravimetric measurement / differential thermal analysis of the nickel fine particles in a nitrogen atmosphere simultaneously.
- the weight reduction rate in the measurement can be implemented as one characterized by being 1% or less in the range of 40 ° C. to 400 ° C.
- the present invention also relates to a method for modifying nickel fine particles, characterized in that nitric acid or a mixture of acids containing nitric acid is used as the acid.
- the present invention relates to a method for modifying nickel fine particles, wherein the nickel fine particles and an acid and / or hydrogen peroxide are allowed to act in a ketone solvent.
- the present invention relates to a method for modifying nickel fine particles, wherein the molar ratio of the acid to the nickel fine particles is in the range of 0.001 to 0.1.
- the present invention relates to a method for modifying nickel fine particles, wherein the molar ratio of the hydrogen peroxide to the nickel fine particles is in the range of 0.001 to 2.0.
- the present invention relates to a method for modifying nickel fine particles, characterized in that the step of reacting the acid and / or hydrogen peroxide includes ultrasonic treatment, stirring treatment or microwave treatment. Further, the present invention can be carried out as the above-described stirring treatment is performed using a stirrer equipped with a rotating stirring blade.
- the present invention relates to a method for modifying nickel fine particles, characterized in that the powder of nickel fine particles treated with the acid and / or hydrogen peroxide is stored in an air atmosphere.
- the present invention relates to a method for modifying nickel fine particles, wherein the nickel fine particles are nickel fine particles deposited in a microreactor in which at least two kinds of fluids to be treated are reacted.
- the present invention includes a step of reducing nickel hydroxide by causing a substance that reacts with nickel hydroxide to act on nickel fine particles having nickel hydroxide at least on the surface thereof, thereby modifying the nickel fine particles. Regarding the method.
- the present invention relates to a method for producing nickel fine particles provided with the above-described method for modifying nickel fine particles.
- the present invention is also a method for producing the nickel fine particles using a microreactor, wherein the microreactors are arranged to face each other so that they can approach and / or leave, and at least one is relative to the other
- a first processing surface and a second processing surface that rotate in rotation, and introducing at least two types of fluids to be processed between the first processing surface and the second processing surface;
- the first processing surface and the second processing surface are separated from each other by the introduction pressure of the at least two kinds of fluids to be processed provided between the first processing surface and the second processing surface.
- a step of generating a separating force, and the separation force keeps the at least two types of fluids to be treated while maintaining a small distance between the first processing surface and the second processing surface.
- a first processing surface kept in 2 merging between the two processing surfaces and passing between the first processing surface and the second processing surface to form a thin film fluid, and the fluids to be processed in the thin film fluid.
- the weight loss rate in the simultaneous measurement of nickel fine particles in TG-DTA can be reduced.
- a firing step Can solve problems such as cracks in
- the nickel fine particles modified by the modifying method of the present invention are excellent in long-term storage stability such as suppressing the generation of nickel hydroxide.
- the nickel fine particle modification method of the present invention is applied to nickel fine particles produced using a microreactor that reacts at least two types of fluids to be treated, the performance is fully demonstrated at low cost and mass production. It is possible to provide a method for producing nickel fine particles provided with a method for modifying nickel fine particles that meets the above requirements.
- FIG. 1 is a schematic cross-sectional view of a fluid processing apparatus according to an embodiment of the present invention.
- FIG. 2 is a schematic plan view of a first processing surface of the fluid processing apparatus shown in FIG. 1.
- It is a SEM photograph of the nickel fine particle powder obtained in Comparative Example 1 of the present invention.
- 4 is a result of simultaneous measurement of TG-DTA of nickel fine particles obtained in Comparative Example 1 of the present invention in a nitrogen atmosphere. It is a result of simultaneous measurement of TG-DTA in a nitrogen atmosphere of nickel fine particles obtained after acid treatment in Example 1 of the present invention.
- 3 is an SEM photograph of nickel fine particles obtained by storing the nickel fine particle powder obtained in Comparative Example 1 of the present invention in an air atmosphere for 2 weeks.
- nickel fine particles are fine particles mainly composed of nickel metal. Those in which at least a part of nickel fine particles are hydroxylated or oxidized are also called nickel fine particles. Further, the present invention can be carried out even if elements other than nickel are included so as not to affect the present invention.
- the particle diameter or crystallite diameter of the nickel fine particles is not particularly limited. Nickel fine particles are generally commercially available, and the modification method of the present invention may be applied. Depending on the purpose, nickel fine particles may be separately prepared and the modification method of the present invention applied. Also good.
- the nickel fine particles to which the modification method of the present invention can be applied only need to cause weight reduction by heat treatment, such as those produced by a gas phase method, those produced by a liquid phase method, etc.
- the effect is particularly great when produced by a liquid phase method.
- one of the nickel fine particles contains nickel hydroxide as one of the causes of the weight reduction.
- FIG. 7 shows the result of simultaneous measurement of TG-DTA in a nitrogen atmosphere of nickel hydroxide.
- the measurement range is 40 ° C to 400 ° C.
- the TG curve shows a weight reduction rate of about 19%, which is the ratio (theoretical value) of water contained in nickel hydroxide (Ni (OH) 2 ) from around 250 ° C., and about 20% over the entire measurement range. The rate of weight loss is shown.
- FIG. 4 shows the result of the conventional TG-DTA simultaneous measurement of nickel fine particles described in Comparative Example 1 described later.
- the measurement range is 40 ° C to 400 ° C.
- the TG curve shows a weight decrease from around 250 ° C., and finally shows a weight reduction rate of about 1.25% over the entire measurement range. It is an approximation. That is, a weight decrease of about 250 ° C. or more may cause a reaction including dehydration from nickel hydroxide, and when manufacturing a multilayer ceramic capacitor, it leads to cracks and poor quality in the firing process. I believe.
- the inventor of the present application is a nickel for reducing the weight reduction rate in TG-DTA simultaneous measurement of nickel fine particles, particularly the weight reduction rate from 40 ° C to 400 ° C to 1.0% or less.
- the modification treatment of the fine particles it was found that nickel fine particles that do not cause cracks or poor quality in the firing process during the production of the multilayer ceramic capacitor can be produced even when stored for a long time.
- Examples of the acid that acts on the nickel fine particles include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, aqua regia and mixed acids, and organic acids such as acetic acid and citric acid. A mixture of two or more acids may be used.
- inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, aqua regia and mixed acids
- organic acids such as acetic acid and citric acid.
- a mixture of two or more acids may be used.
- an acid capable of dissolving nickel hydroxide or an acid capable of oxidizing nickel is preferable, and among them, an oxidizing acid or a mixture of acids containing an oxidizing acid is preferable, and nitric acid or nitric acid is more preferable. It is preferable to use a mixture of acids containing. At that time, it is preferable to add nickel fine particles to a solvent containing an acid, and to perform a stirring process for a certain time using an ultrasonic treatment or various stirrers, or to perform a microwave treatment.
- the molar ratio of the acid to the nickel fine particles is preferably in the range of 0.001 to 0.1, more preferably 0.005 to 0.05. It is a range. When the ratio is less than 0.001, there is a high possibility that the effect of the present invention cannot be obtained. When the ratio is more than 0.1, problems such as dissolution of nickel fine particles may occur.
- the hydrogen peroxide that acts on the nickel fine particles a commercially available hydrogen peroxide solution can be used.
- nickel hydroxide present on the surface of the particles is the same as in the case where an acid is acted on the nickel fine particles. It is thought that this is due to dissolution of nickel or the like, oxidation of nickel, and further oxidation of nickel hydroxide.
- the molar ratio of the hydrogen peroxide to the nickel fine particles is preferably in the range of 0.001 to 2.0, and more preferably in the range of 0.001 to 1.0.
- Hydrogen peroxide is less likely to dissolve nickel fine particles than the acid, but in view of the effect of reducing weight loss, the molar ratio of hydrogen peroxide to the nickel fine particles is preferably 1.0 or less.
- the hydrogen peroxide in the present invention can be replaced with ozone.
- the above-described treatment with acid (acid treatment) and treatment with hydrogen peroxide (hydrogen peroxide treatment) may be carried out independently or both.
- the weight reduction rate in the TG-DTA simultaneous measurement can be greatly reduced by treating the nickel fine particles subjected to acid treatment with hydrogen peroxide.
- the same effect can be obtained by acid treatment of nickel fine particles that have been subjected to hydrogen peroxide treatment.
- the acid treatment and / or hydrogen peroxide treatment is preferably carried out in various solvents.
- these solvents include water (tap water, RO water, pure water, etc.), organic solvents (alcohol solvents, ketone solvents, ether solvents, aromatic solvents, carbon disulfide, aliphatic solvents, Nitrile solvent, sulfoxide solvent, halogen solvent, ester solvent, ionic solution). From these solvents, a mixed solvent in which one or two or more solvents are mixed can be selected according to the purpose.
- a ketone solvent such as acetone, methyl ethyl ketone, and cyclohexanone, particularly acetone, as at least one kind of solvent.
- the stirring treatment in the reforming method of the present invention can appropriately control the stirring energy using a known stirrer or stirring means.
- the agitation energy is described in detail in Japanese Patent Application Laid-Open No. 04-114725 by the present applicant.
- the stirring method in the present invention is not particularly limited, but can be carried out by using various shearing type, friction type, high pressure jet type, ultrasonic type stirring machines, dissolvers, emulsifiers, dispersing machines, hosnizers and the like.
- Examples include Ultra Tarrax (manufactured by IKA), Polytron (manufactured by Kinematica), TK Homomixer (manufactured by Primex), Ebara Milder (manufactured by Ebara Seisakusho), TK Homomic Line Flow (manufactured by Primics), Colloid Mill (manufactured by Shinko Pan) Tech), Thrasher (Nihon Coke Kogyo), Trigonal wet pulverizer (Mitsui Miike Chemical), Cavitron (Eurotech), Fine Flow Mill (Pacific Kiko), etc. ⁇ Batch-type or continuous-use emulsifiers such as Technic), Claremix dissolver (MTechnic), and Fillmix (Primics) can be mentioned. Further, the stirring treatment is desirably performed using a stirrer equipped with a rotating stirring blade, particularly the above-mentioned Claremix (made by M Technique) or Claremix dissolver (made by M Technique).
- Nickel-containing fluid in which nickel metal or a nickel compound is dissolved or dispersed in a solvent and a reducing agent fluid containing a reducing agent are prepared.
- Nickel compounds are not particularly limited, but nickel inorganic salts such as nickel nitrates, sulfates, chlorides and hydroxides and their hydrates, organic salts such as nickel acetate and acetylacetonate salts, and those Of organic solvates. These may be used alone or in combination.
- the reducing agent is not particularly limited as long as it is a reducing agent that is reducible to nickel ions, and examples thereof include hydrides such as sodium borohydride, hydrazines, and polyhydric alcohols such as ethylene glycol. These may be used alone, or may be used by a method of mixing a plurality of these.
- the nickel-containing fluid and the reducing agent fluid can be used by mixing or dissolving or dispersing the nickel metal, nickel compound, or reducing agent in various solvents.
- various solvents the same solvents as those used in the acid treatment and / or hydrogen peroxide treatment can be used, and a pH adjusting agent is added to adjust the pH of the nickel-containing fluid and the reducing agent fluid. May be.
- pH adjusting agents include hydrochloric acid, sulfuric acid, nitric acid, aqua regia, trichloroacetic acid, trifluoroacetic acid, phosphoric acid, citric acid, ascorbic acid, and other acidic substances, such as sodium hydroxide, Examples thereof include alkali substances such as potassium hydroxide, basic substances such as amines such as triethylamine and dimethylaminoethanol, and salts of the above acidic substances and basic substances.
- a pH adjuster may be used independently and may use 2 or more types together.
- Various stirrers can be used to prepare the nickel-containing fluid and the reducing agent fluid. The prepared fluid is mixed and the nickel component and the reducing agent component in the fluid are reacted to precipitate nickel fine particles. The case where the above-mentioned fluid is mixed using a microreactor to deposit nickel fine particles is shown below.
- R indicates the direction of rotation.
- the microreactor (hereinafter also referred to as an apparatus) in the present embodiment includes two opposing first and second processing units 10 and 20, and the first processing unit 10 rotates.
- the opposing surfaces of both processing parts 10 and 20 are processing surfaces.
- the first processing unit 10 includes a first processing surface 1
- the second processing unit 20 includes a second processing surface 2.
- Both processing surfaces 1 and 2 are respectively connected to the flow paths d1 and d2 of the fluid to be processed, and constitute a part of the flow path of the fluid to be processed.
- the distance between the processing surfaces 1 and 2 is usually adjusted to 1 mm or less, for example, a minute distance of about 0.1 ⁇ m to 50 ⁇ m. As a result, the fluid to be processed passing between the processing surfaces 1 and 2 becomes a forced thin film fluid forced by the processing surfaces 1 and 2.
- This apparatus performs the fluid process which makes the 1st, 2nd to-be-processed reaction react between the processing surfaces 1 and 2, and precipitates nickel particulates.
- the apparatus includes a first holder 11 that holds the first processing portion 10, a second holder 21 that holds the second processing portion 20, and a contact pressure application mechanism 43. , A rotation drive mechanism (not shown), a first introduction part d1, a second introduction part d2, and fluid pressure application mechanisms p1 and p2.
- a compressor or other pump can be employed for the fluid pressure imparting mechanisms p1 and p2.
- the first processing unit 10 and the second processing unit 20 are ring-shaped disks.
- the materials of the first and second processing parts 10 and 20 are metal, carbon, ceramic, sintered metal, wear-resistant steel, sapphire, other metals subjected to hardening treatment, hard material lining, Those with coating, plating, etc. can be used.
- the processing portions 10 and 20 have the first and second processing surfaces 1 and 2 facing each other mirror-polished, and the arithmetic average roughness is 0.01 to 1.0 ⁇ m. It is.
- the second holder 21 is fixed to the apparatus, and the first holder 11 attached to the rotary shaft 50 of the rotation drive mechanism fixed to the apparatus is rotated and supported by the first holder 11.
- the first processing unit 10 thus rotated rotates with respect to the second processing unit 20.
- the second processing unit 20 may be rotated, or both may be rotated.
- the rotation speed can be set to 350 to 5000 rpm, for example.
- the second processing unit 20 approaches and separates from the first processing unit 10 in the direction of the rotation shaft 50, and the storage unit 41 provided in the second holder 21 has the first 2 A portion of the processing portion 20 opposite to the processing surface 2 side is accommodated so that it can appear and disappear.
- the first processing unit 10 may approach or separate from the second processing unit 20, and both processing units 10 and 20 may approach or separate from each other. It may be.
- the accommodating portion 41 is a recess that accommodates a portion of the second processing portion 20 on the side opposite to the processing surface 2 side, and is a groove formed in an annular shape.
- the accommodating portion 41 accommodates the second processing portion 20 with a sufficient clearance that allows the portion of the second processing portion 20 on the side opposite to the processing surface 2 side to appear.
- the contact surface pressure applying mechanism is a force that pushes the first processing surface 1 of the first processing portion 10 and the second processing surface 2 of the second processing portion 20 in the approaching direction (hereinafter referred to as contact surface pressure). It is a mechanism for generating. The balance between the contact surface pressure and the force that separates the processing surfaces 1 and 2 due to the fluid pressure keeps the distance between the processing surfaces 1 and 2 at a predetermined minute distance while maintaining the unit of nm to ⁇ m. A thin film fluid having a minute film thickness is generated.
- the contact surface pressure applying mechanism is configured such that the spring 43 provided in the second holder 21 biases the second processing member 20 toward the first processing member 10, thereby Is granted.
- the first fluid to be treated pressurized by the fluid pressure imparting mechanism p1 is introduced from the first introduction part d1 into the space inside both the processing parts 10 and 20.
- the second fluid to be processed pressurized by the fluid pressure imparting mechanism p2 is formed on the second processing surface from the second introduction part d2 through the passage provided in the second processing part 20. It is introduced into the space inside both the processing parts 10 and 20 from the opened opening d20.
- the first fluid to be treated and the second fluid to be treated merge and mix.
- the mixed fluid to be processed becomes a thin film fluid forced by both processing surfaces 1 and 2 holding the above-mentioned minute gaps, and tries to move to the outside of both annular processing surfaces 1 and 2. Since the first processing unit 10 is rotating, the mixed fluid to be processed does not move linearly from the inside to the outside of the two processing surfaces 1 and 2 in the annular shape, but in the annular radial direction. A combined vector of the movement vector and the movement vector in the circumferential direction acts on the fluid to be processed and moves in a substantially spiral shape from the inside to the outside.
- the first processing surface 1 of the first processing portion 10 has a groove-like recess extending from the center side of the first processing portion 10 toward the outside, that is, in the radial direction. 13 may be formed.
- the planar shape of the recess 13 is curved or spirally extending on the first processing surface 1, or is not illustrated, but extends straight outward, bent or curved in an L shape, It may be continuous, intermittent, or branched.
- the concave portion 13 can be implemented as one formed on the second processing surface 2, and can also be implemented as one formed on both the first and second processing surfaces 1, 2.
- the base end of the recess 13 reaches the inner periphery of the first processing unit 10.
- the front end of the concave portion 13 extends toward the outer peripheral surface of the first processing surface 1, and the depth gradually decreases from the base end toward the front end.
- a flat surface 16 without the recess 13 is provided between the tip of the recess 13 and the outer peripheral surface of the first processing surface 1.
- the opening d20 described above is preferably provided at a position facing the flat surface of the first processing surface 1.
- the introduction direction from the opening d20 of the second processing surface 2 may be inclined at a predetermined elevation angle with respect to the second processing surface 2, or from the opening d20 of the second processing surface 2.
- the introduction direction of the second fluid has directionality in the plane along the second processing surface 2, and the introduction direction of the second fluid is an outward direction away from the center in the radial component of the processing surface.
- the component in the direction of rotation of the fluid between the rotating processing surfaces may be the forward direction.
- the flow of the first fluid to be processed in the opening d20 is laminar, and the second introduction portion d2 has directionality, thereby generating turbulence with respect to the flow of the first fluid to be processed.
- the second fluid to be processed can be introduced between the processing surfaces 1 and 2 while suppressing the above.
- the fluid discharged to the outside of the processing parts 10 and 20 is collected in the beaker b as a discharge liquid via the vessel v.
- the discharge liquid contains nickel fine particles.
- the number of the fluids to be processed and the number of the flow paths are two in the example of FIG. 1, they may be three or more.
- the shape, size, and number of the opening for introduction provided in each processing part are not particularly limited and can be appropriately changed.
- the shape of the opening d20 may be a concentric annular shape surrounding the central opening of the processing surface 2 which is a ring-shaped disk, and the annular opening is It may be continuous or discontinuous.
- an opening for introduction may be provided immediately before or between the first and second processing surfaces 1 and 2 or further upstream.
- the above processing can be performed between the processing surfaces 1 and 2, and the second treated fluid is introduced from the first introduction part d1 and the first treated fluid is introduced from the second introduction part d2. It may be introduced.
- the expressions “first” and “second” in each fluid have only the meaning of identification that they are the nth of a plurality of fluids, and there are also three or more fluids as described above. Yes.
- the weight loss in simultaneous TG-DTA measurement is reduced for uniform and homogeneous nickel fine particles.
- the effect of reducing weight loss seen from around 250 ° C., and long-term storage stability such as suppression of nickel hydroxide generation can be imparted.
- the nickel fine particles are fine particles mainly composed of nickel metal.
- the origin of the nickel fine particles is not limited.
- the modification method of the present invention may be applied to nickel fine particles that are generally commercially available, or the modification method of the present invention may be applied to nickel fine particles separately produced according to the purpose. .
- the nickel fine particles to which the modification method of the present invention can be applied only need to cause weight reduction by heat treatment, and the production method is not limited.
- the modification method of the present invention can be applied to all the nickel fine particles whose weight is reduced by the heat treatment, and the nickel fine particles produced by the liquid phase method are particularly modified. The effect is great.
- the nickel fine particles modified by the modification method of the present invention do not require heat treatment.
- nickel fine particles particularly nickel fine particles produced by depositing nickel fine particles using a liquid phase method
- the modification method of the present invention is applied to the nickel fine particle powder that has been subjected to the treatment, that is, the nickel fine particle powder that has been washed and dried is subjected to an acid treatment and / or a hydrogen peroxide treatment.
- various substances used for the precipitation reaction such as a reducing agent or a decomposition product thereof remain on the surface of the unwashed nickel fine particles.
- Acid treatment and / or hydrogen peroxide treatment is performed using the unwashed nickel fine particles.
- the said substance may have a bad influence, such as the quantity of the acid used for an acid treatment and / or hydrogen peroxide treatment, and / or hydrogen peroxide increasing.
- a nickel-containing fluid is prepared as the liquid A
- a reducing agent fluid is prepared as the liquid B.
- the liquid A and the liquid B are mixed using a microreactor to deposit nickel fine particles.
- a method for producing nickel fine particles by applying the modification method of the invention will be described.
- the liquid A corresponds to the first fluid to be treated introduced from the first introduction part d1 of the microreactor shown in FIG. 1
- the liquid B corresponds to the second fluid to be treated similarly introduced from the second introduction part d2.
- the replacement of the first introduction part d1 and the second introduction part d2 is arbitrary.
- the obtained nickel fine particles were analyzed under the following conditions.
- XRD measurement a powder X-ray diffraction measurement device (product name: Empirean, manufactured by PANalytical) was used.
- the measurement conditions are: measurement range: 10 to 100 °, Cu counter cathode, tube voltage 45 kV, tube current 40 mA, Bragg-Brentano HD (BBHD) is used for the optical system, and scanning speed is 9 ° / min.
- the crystallite diameter D was calculated using Scherrer's formula using a peak near 44 ° and using a silicon polycrystalline plate as a reference.
- JFM-7500F manufactured by JEOL
- the acceleration voltage was 5 kV and the observation magnification was 50000 times.
- the average particle diameter an average value of values obtained by measuring the particle diameter of 100 particles was used.
- TG / DTA 6300 (manufactured by Hitachi) was used for simultaneous measurement of TG-DTA.
- alumina was used as a reference, and the temperature was increased at a rate of 5 ° C./minute, the measurement range was 40 to 400 ° C., and the measurement was performed in a nitrogen atmosphere. The weight reduction rate from 40 ° C. to 400 ° C. at the start of measurement was confirmed. The weight of the sample was 45 mg ( ⁇ 2 mg).
- Liquid A is nickel sulfate hexahydrate / concentrated sulfuric acid / ethylene glycol / pure water (weight ratio 2.33 / 0.86 / 83.54 / 13.27), CLEARMIX, which is a high-speed rotary dispersion emulsifier. (Product name: CLM-2.2S, manufactured by M Technique) was stirred for 60 minutes at a rotational speed of 20000 rpm and a processing temperature of 24 to 60 ° C., and each was mixed and dissolved.
- Liquid B is hydrazine monohydrate / sodium hydroxide / pure water (weight ratio 70/5/25), Claremix (product name: CLM-2.2S, M. In the technique), each was mixed and dissolved by stirring for 30 minutes at a rotational speed of 20000 rpm and a treatment temperature of 25 ° C.
- the liquid A is introduced between the treatment surfaces 1 and 2 from the first introduction part d1 of the microreactor shown in FIG. 1 at 165 ° C. and 600 ml / min, and the treatment part 10 is rotated at 1700 rpm while the second introduction.
- the liquid B was introduced from the part d2 between the processing surfaces 1 and 2 at 60 ° C. and 65 ml / min, and the liquids A and B were mixed between the processing surfaces 1 and 2 to precipitate nickel fine particles. .
- the slurry liquid containing the nickel fine particles deposited between the processing surfaces 1 and 2 was discharged from between the processing surfaces 1 and 2 and collected in the beaker b through the vessel v.
- the discharged liquid collected in the beaker b was allowed to stand and cooled to 60 ° C. or lower to precipitate nickel fine particles.
- the pH of the discharged liquid was 8.45 (measurement temperature: 42.5 ° C.).
- the supernatant liquid in the beaker b is removed, 20 to 1500 times the pure water is added to the weight of the precipitated nickel fine particles, and the mixture is stirred for 5 minutes at Claremix 2.2S at a rotation speed of 6000 rpm and a processing temperature of 25 ° C. Then, the nickel fine particles were washed. After the above washing operation was performed three times, the nickel fine particles were settled again, and the supernatant was removed to obtain a wet wet cake (1) of nickel fine particles.
- the nickel-containing water-containing wet cake (1) was dried at ⁇ 0.10 MpaG at 20 ° C. for 15 hours or longer to obtain nickel fine particle powder.
- the amount of water contained in the nickel fine particle powder was 89 ⁇ g / g.
- the amount of water contained in the nickel fine particle powder is preferably 1000 ⁇ g / g or less, preferably 500 ⁇ g / g or less, more preferably 100 ⁇ g / g or less.
- an SEM photograph of the nickel fine particle powder after drying is shown in FIG. 3
- the XRD measurement result is shown in FIG. 10A
- an enlarged view of the main part of the XRD measurement result is shown in FIG. 11 (spectrum (A)).
- FIG. 8 Shown in From the SEM observation result, the average particle diameter of the nickel fine particles was 86.4 nm, and from the XRD measurement result, the crystallite diameter was 41.5 nm.
- a dispersion in which the nickel fine particle powder after drying was dispersed in acetone was dropped onto a collodion film to prepare a TEM observation sample.
- a TEM photograph is shown in FIG.
- FIG. 11 In addition to the peak derived from nickel, a peak derived from nickel hydroxide was detected, and it was confirmed that the nickel powder contained 3.4 wt% nickel hydroxide. did.
- subjected the black circle is a peak of nickel hydroxide.
- FIG. 4 shows the result of simultaneous TG-DTA measurement of the nickel fine particle powder after drying. In the measurement range, a weight loss of 1.256% was confirmed.
- FIG. 6 shows an SEM photograph of the nickel fine particles after the nickel fine particle powder of Comparative Example 1 was stored for 2 weeks in an air atmosphere
- FIG. 10B shows the XRD measurement result
- FIG. 11 spectrum (B)
- the weight reduction rate in the simultaneous measurement of TG-DTA increased to 1.692%. From the above, it is presumed that by storing for 2 weeks in the air atmosphere, a part of the nickel fine particles changed to nickel hydroxide, and the weight reduction rate increased due to the change.
- Example 1 Acid treatment
- the 0.15 g of the nickel fine particle powder of Comparative Example 1 was put into 14.85 g of a mixture of nitric acid / water / acetone in a weight ratio of 0.005 / 0.003 / 99.992, and an ultrasonic disperser (Heelscher).
- the nickel fine particles were acid-treated by stirring for 15 minutes at a treatment temperature of 20 ° C. using UP200S). After the acid treatment, the nickel fine particles in the solution were allowed to settle, the supernatant liquid was removed, pure water 20 to 1500 times the weight of the nickel fine particles was added, and the mixture was washed with the above-described ultrasonic cleaner.
- the above washing operation is repeated three times to prepare a wet wet cake (2) of nickel fine particles obtained after washing, and then the wet wet cake (2) is dried at ⁇ 0.10 MpaG at 20 ° C. for 15 hours or more.
- a nickel fine particle powder was obtained.
- the amount of water contained in the nickel fine particle powder was 36 ⁇ g / g.
- the amount of water contained in the nickel fine particle powder is preferably 1000 ⁇ g / g or less, preferably 500 ⁇ g / g or less, more preferably 100 ⁇ g / g or less.
- the weight reduction rate in the simultaneous measurement of TG-DTA could be reduced as compared with Comparative Example 1.
- the XRD measurement result of the nickel fine particle powder obtained in Example 1 is shown in FIG. As shown in FIG. 12A, no peak derived from nickel hydroxide was detected.
- Example 1 The nickel fine particles not subjected to the acid treatment of the present invention (Comparative Example 1) increased the weight loss rate in the simultaneous measurement of TG-DTA by storage for 2 weeks in the air atmosphere, whereas the acid treatment of the present invention was performed. It was found that even if the nickel fine particles (Example 1) were stored in an air atmosphere, the weight reduction rate was reduced compared to before storage.
- the nickel fine particles subjected to the acid treatment of Example 1 were not confirmed to have a precipitate-like substance as observed in the SEM photograph of FIG. 6 even when stored for 1 month in an air atmosphere, and XRD measurement was performed. Also in the result, the peak derived from nickel hydroxide was not detected as it was immediately after the acid treatment. Therefore, by applying the acid treatment of the present invention to the nickel fine particles, the weight loss rate in the simultaneous measurement of TG-DTA can be reduced, and further, the generation of nickel hydroxide can be suppressed during long-term storage. I understood that.
- Example 2 Treatment of acid on nickel fine particles using a stirrer equipped with a rotating stirring blade
- Cleamix which is a high-speed rotary dispersion emulsifier, is charged into 1585 g of the nickel fine particle powder of Comparative Example 1 above by mixing nitric acid / water / acetone at a weight ratio of 0.005 / 0.003 / 99.992.
- the nickel fine particles were acid-treated by stirring for 15 minutes at a treatment temperature of 20 ° C. (product name: CLM-2.2S, manufactured by M Technique).
- the nickel fine particles in the solution were allowed to settle, the supernatant liquid was removed, and 20 to 700 times as much pure water as the weight of the nickel fine particles was added, followed by washing with CLEARMIX.
- the washing operation is repeated three times to prepare a wet wet cake (3) of nickel fine particles obtained after washing, and then the wet wet cake (3) is dried at ⁇ 0.10 MpaG at 20 ° C. for 15 hours or more.
- a nickel fine particle powder was obtained.
- Examples 3 to 7 and Examples 16 to 19 in which the nickel fine particle precipitation method or the molar ratio of acid to nickel fine particles during acid treatment was changed. Will be described later.
- the molar ratio of the acid to the nickel fine particles is such that the nickel fine particle powder (ultrasonic disperser: 0.15 g, stirrer: 15 g) subjected to the acid treatment is a solution (ultrasonic disperser) used for the acid treatment. : 14.85 g, stirrer: 1485 g), by changing the weight ratio of nitric acid / water / acetone.
- Example 8 Hydrogen peroxide treatment
- a process in which an acid is changed to hydrogen peroxide in the process of causing an acid to act on the nickel fine particles of Example 1 will be described.
- 0.15 g of the nickel fine particles of Comparative Example 1 were put into 14.85 g of a solution obtained by mixing hydrogen peroxide / water / acetone at a weight ratio of 0.005 / 0.012 / 99.983, and an ultrasonic disperser ( A treatment for causing hydrogen peroxide to act on the nickel fine particles was performed by stirring for 15 minutes at a treatment temperature of 20 ° C. using UP200S manufactured by Heelscher.
- the nickel fine particles in the above solution are settled, the supernatant liquid is removed, pure water 20 to 1500 times the nickel fine particles is added, and the ultrasonic wave described above is added. Washed with a washing machine. The above washing was repeated 3 times to prepare a wet wet cake (4) of nickel fine particles obtained after washing, and then the wet wet cake (4) was dried at ⁇ 0.10 MpaG at 20 ° C. for 15 hours or more, Nickel fine particle powder was obtained.
- the amount of water contained in the nickel fine particle powder was 42 ⁇ g / g.
- the amount of water contained in the nickel fine particle powder is preferably 1000 ⁇ g / g or less, preferably 500 ⁇ g / g or less, more preferably 100 ⁇ g / g or less.
- the nickel fine particles subjected to the hydrogen peroxide treatment of Example 8 are similar to the nickel fine particles subjected to the acid treatment of Example 1, even when stored for one month in the atmosphere, as shown in FIG. A substance that appeared to be a precipitate as observed in the SEM photograph was not confirmed, and the XRD measurement result was the same as that immediately after the hydrogen peroxide treatment, and no peak derived from nickel hydroxide was detected. Therefore, by applying the hydrogen peroxide treatment of the present invention to the nickel fine particles, the weight loss rate in the simultaneous measurement of TG-DTA can be reduced, and further, the generation of nickel hydroxide can be suppressed during long-term storage. I found it possible.
- the molar ratio of hydrogen peroxide to nickel fine particles when performing the hydrogen peroxide treatment is that for the nickel fine particle powder (ultrasonic disperser: 0.15 g, stirrer: 15 g) subjected to the hydrogen peroxide treatment. It was changed by adjusting the weight ratio of hydrogen peroxide / water / acetone in the solution used in the above (ultrasonic disperser: 14.85 g, stirrer: 1485 g).
- Example 15 Treatment for causing both acid and hydrogen peroxide to act on nickel fine particles
- Example 15 in which both the acid treatment and the hydrogen peroxide treatment were performed on the nickel fine particles will be described.
- the 0.15 g of the nickel fine particle powder of Comparative Example 1 was charged into 14.85 g of a mixture of nitric acid / water / acetone in a weight ratio of 0.010 / 0.007 / 999.983, and an ultrasonic disperser (Hielscher The nickel fine particles were acid-treated by stirring for 15 minutes at a treatment temperature of 20 ° C. using UP200S).
- the nickel fine particles contained in the above solution are allowed to settle, the supernatant liquid is removed, pure water is added 20 to 1500 times the weight of the nickel fine particles, and the nickel fine particles are washed with the above-described ultrasonic cleaner. did.
- the washing operation is repeated three times to prepare a wet wet cake (5) of nickel fine particles obtained after washing, and then the wet wet cake (5) is dried at ⁇ 0.10 MpaG at 20 ° C. for 15 hours or more. A nickel fine particle powder was obtained.
- Nitadium 0.010 / 0.023 / 99.967 0.15 g of the obtained nickel fine particle powder was charged into 14.85 g of a solution obtained by mixing hydrogen peroxide / water / acetone at a weight ratio of 0.010 / 0.023 / 99.967, and the above-described ultrasonic disperser.
- the nickel fine particles were treated with hydrogen peroxide by stirring at a treatment temperature of 20 ° C. for 15 minutes. After the hydrogen peroxide treatment, the nickel fine particles contained in the above solution are allowed to settle, the supernatant liquid is removed, the pure water is added 20 to 1500 times the weight of the nickel fine particles, and the nickel fine particles are washed with an ultrasonic cleaner. did.
- the above washing operation is repeated three times to prepare a wet wet cake (6) of nickel fine particles obtained after washing, and then the wet wet cake (6) is dried at ⁇ 0.10 MpaG at 20 ° C. for 15 hours or more. A nickel fine particle powder was obtained.
- the TG-DTA simultaneous measurement was performed again.
- the weight reduction rate in the measurement range was reduced to 0.492%.
- the nickel fine particles of Comparative Example 1 increased in the weight loss rate in the simultaneous measurement of TG-DTA by storage for 2 weeks in the air atmosphere, whereas nickel subjected to both acid treatment and hydrogen peroxide treatment of the present invention It was found that the fine particles have an effect of reducing the weight reduction rate when stored in an air atmosphere as compared to before storage.
- the nickel fine particles produced by changing the molar ratio of nitric acid or hydrogen peroxide to the nickel fine particles during the treatment, the treatment conditions and results of the acid treatment or hydrogen peroxide treatment It is shown in the following Table 1 together with Examples 1, 2, 8, and 15. The work procedure not described is the same as described above.
- the molar ratio of the acid to the nickel fine particles during the acid treatment is such that the nickel fine particle powder (ultrasonic disperser: 0.15 g, stirrer: 15 g) subjected to the acid treatment is a solution (ultrasonic wave) used for the acid treatment.
- the molar ratio of hydrogen peroxide to nickel fine particles during the hydrogen peroxide treatment was changed by adjusting the weight ratio of nitric acid / water / acetone in the disperser: 14.85 g and the stirrer: 1485 g).
- FIG. 12D shows the XRD measurement result of the nickel fine particle powder obtained in Example 4
- FIG. 12E shows the XRD measurement result of the nickel fine particle powder obtained in Example 10.
- no peak derived from nickel hydroxide was detected in the XRD measurement results, and even when stored for 1 month in an air atmosphere, as observed in the SEM photograph of FIG. A substance that appeared to be a precipitate was not confirmed, and no peak derived from nickel hydroxide was detected in the XRD measurement results.
- the crystallite diameter is satisfactory for application to a multilayer ceramic capacitor or the like in any of the examples.
- Example by batch method the same solution as Comparative Example 1 was used as solution A and solution B, and the acid treatment and / or hydrogen peroxide treatment of the present invention was applied to the nickel fine particles precipitated in the beaker.
- Table 2 shows treatment conditions and results of acid treatment and / or hydrogen peroxide treatment.
- 65 ml of liquid B is charged at 90 ° C. over 1 minute, and then at 60 ° C. at 150 ° C. and 150 rpm.
- Nickel fine particles were precipitated by stirring using a magnetic stirrer.
- the nickel fine particle obtained in Comparative Example 2 was applied to an ultrasonic disperser (manufactured by Hielscher, UP200S). ), Or Claremix (product name: CLM-2.2S, manufactured by M Technique), which is a high-speed rotary dispersion emulsifier, was used for acid treatment and / or hydrogen peroxide treatment.
- the processing conditions not described in the table are the same as those in Examples 1 to 15. From the SEM observation result, the average particle diameter of the nickel fine particles of Comparative Example 2 was 116 nm, and from the XRD measurement result, the crystallite diameter of Comparative Example 2 was 14.1 nm.
- FIG. 12F shows the XRD measurement result of the nickel fine particle powder obtained in Example 17
- FIG. 12G shows the XRD measurement result of the nickel fine particle powder obtained in Example 24.
- no peak derived from nickel hydroxide was detected in the XRD measurement results, and even when stored for 1 month in an air atmosphere, as observed in the SEM photograph of FIG.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本願発明者らは、上記課題を解決するため鋭意検討した結果、以下に示すニッケル微粒子の改質方法および当該ニッケル微粒子の改質方法を備えたニッケル微粒子の製造方法により上記目的を達成できることを見出して、本発明を完成するに至った。
また、本発明は、上記ニッケル微粒子の熱処理による重量減少率が、熱重量測定・示差熱分析同時測定における重量減少率であり、上記ニッケル微粒子の窒素雰囲気下での熱重量測定・示差熱分析同時測定における重量減少率が、40℃~400℃の範囲において1%以下であることを特徴とするものとして実施し得る。
また、本発明は、上記撹拌処理は、回転する撹拌翼を備えた撹拌機を用いて行われることを特徴とするものとして実施し得る。
また、本発明は、上記ニッケル微粒子をマイクロリアクターを用いて製造する方法であって、上記マイクロリアクターは、接近および/または離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する第1処理用面と第2処理用面とを備えたものであり、第1処理用面と第2処理用面との間に少なくとも2種類の被処理流体を導入するステップと、第1処理用面と第2処理用面との間に付与される上記少なくとも2種類の被処理流体の導入圧力により、第1処理用面と第2処理用面とを離反させる方向に作用する離反力を発生させるステップと、上記離反力によって、第1処理用面と第2処理用面との間を微小な間隔に保ちつつ、上記少なくとも2種類の被処理流体を、上記微小な間隔に保たれた第1処理用面と第2処理用面との間で合流させ、上記第1処理用面と第2処理用面との間を通過させることによって、薄膜流体を形成させるステップと、上記薄膜流体中で被処理流体同士を反応させ、当該反応によりニッケル微粒子を析出させるステップを含むことを特徴とする、ニッケル微粒子の製造方法に関する。
原因は定かではないが、上記TG-DTA同時測定における重量減少率が、1.0%を超えるニッケル微粒子は、僅か数日間で水酸化ニッケルを生じ、TG-DTA同時測定における重量減少率がさらに増加したことを本願発明者は確認している。
まず、ニッケル金属やニッケル化合物を溶媒に溶解または分散させたニッケル含有流体と、還元剤を含む還元剤流体を調製する。ニッケル化合物としては特に限定されないが、ニッケルの硝酸塩や硫酸塩、塩化物、水酸化物等のニッケルの無機塩やそれらの水和物、ニッケルの酢酸塩やアセチルアセトナート塩等の有機塩やそれらの有機溶媒和物が挙げられる。これらは単独で使用しても良いし、複数を使用しても良い。還元剤としては、ニッケルイオンに還元性を示す還元剤であれば特に限定されないが、水素化ホウ素ナトリウム等の水素化物や、ヒドラジン類、またはエチレングリコール等の多価アルコールが挙げられる。これらについても単独で使用しても良いし、複数を混合するなどの方法で使用しても良い。
また、本発明の改質方法が適用できるニッケル微粒子は、熱処理により重量減少が生じるものでありさえすれば良く、その製法は問わない。世の中に存在するニッケル微粒子のうち、熱処理により重量減少が生じる全てのニッケル微粒子に本発明の改質方法を適用することができ、液相法で作製されたニッケル微粒子にあっては、特に改質効果は大きい。
さらに、本発明の改質方法により改質されたニッケル微粒子は、熱処理を要しない。
未洗浄のニッケル微粒子の表面には、例えば還元剤やその分解物などの析出反応に用いた各種物質などが残っており、未洗浄のニッケル微粒子を用いて酸処理および/または過酸化水素処理を行うと、当該物質によって酸処理および/または過酸化水素処理に用いられる酸および/または過酸化水素の量が増えるなどの悪影響を与える恐れがある。
D=K・λ/(β・cosθ) ・・・Scherrerの式
ここで、KはScherrer定数であり、K=0.9とし、λは使用したX線管球の波長、βは半値幅、θは回折角である。
A液は、硫酸ニッケル六水和物/濃硫酸/エチレングリコール/純水(重量比2.33/0.86/83.54/13.27)を、高速回転式分散乳化装置であるクレアミックス(製品名:CLM-2.2S、エム・テクニック製)を用いて、回転数20000rpm、処理温度24~60℃で60分間撹拌し、それぞれを混合・溶解させて調製した。B液は、ヒドラジン一水和物/水酸化ナトリウム/純水(重量比70/5/25)を、同じく高速回転式分散乳化装置であるクレアミックス(製品名:CLM-2.2S、エム・テクニック製)にて、回転数20000rpm、処理温度25℃で30分間撹拌させることで、それぞれを混合・溶解させて調製した。
ビーカーbに回収された吐出液を静置して60℃以下まで冷却し、ニッケル微粒子を沈降させた。吐出液のpHは8.45(測定温度:42.5℃)であった。ビーカーb内の上澄み液を除去し、沈降させたニッケル微粒子の重量に対して20~1500倍の純水を加え、クレアミックス2.2Sを用いて回転数6000rpm、処理温度25℃で5分間撹拌し、ニッケル微粒子を洗浄した。上記洗浄作業を3回行った後、ニッケル微粒子を再度沈降させ、上澄み液を除去し、ニッケル微粒子の含水ウェットケーキ(1)を得た。
上記ニッケル微粒子の含水ウェットケーキ(1)を-0.10MpaG、20℃にて15時間以上乾燥させ、ニッケル微粒子粉体を得た。ニッケル微粒子粉体に含まる水分量は89μg/gであった。上記ニッケル微粒子粉体に含まれる水分量は1000μg/g以下、好ましくは500μg/g以下、更に好ましくは100μg/g以下まで乾燥することが好ましい。本願の比較例1として、乾燥後のニッケル微粒子粉体のSEM写真を図3に、XRD測定結果を図10(A)に、XRD測定結果の要部拡大図を図11(スペクトル(A))に示す。SEM観察結果より、ニッケル微粒子の平均粒子径は86.4nmであり、XRD測定結果より、結晶子径は41.5nmであった。また、上記乾燥後のニッケル微粒子粉体をアセトンに分散させた分散液をコロジオン膜に滴下し、TEM観察試料とした。TEM写真を図8に示す。図8に見られるように、ニッケル微粒子の表面に薄い膜状の物質が観察された。また、XRD測定結果(図11)においては、ニッケルに由来するピーク以外に、水酸化ニッケルに由来するピークが検出され、ニッケル粉末に3.4wt%の水酸化ニッケルが含まれていることを確認した。なお、図11において、黒丸を付したピークが水酸化ニッケルのピークである。さらに、上記乾燥後のニッケル微粒子粉体のTG-DTA同時測定の結果を図4に示す。上記測定範囲において、1.256%の重量減少が確認された。
上記比較例1のニッケル微粒子粉体を大気雰囲気下で2週間保存した後のニッケル微粒子のSEM写真を図6に、XRD測定結果を図10(B)に、XRD測定結果の要部拡大図を図11(スペクトル(B))に示す。図3と比較すると分かるように、図6では、ニッケル微粒子間に、経時変化による析出物らしき物質が観察された。
また、大気雰囲気下で2週間保存した後のXRD測定結果(図10(B)、図11)では、保存の際の経時変化によって、水酸化ニッケルは16.2wt%にまで増加していることがわかった。また、測定範囲において、TG-DTA同時測定における重量減少率は、1.692%にまで増加していた。以上から、大気雰囲気下で2週間保存することによって、ニッケル微粒子の一部分が水酸化ニッケルに変化し、その変化によって重量減少率が増加したことが推測される。
上記比較例1のニッケル微粒子粉体0.15gを硝酸/水/アセトンを重量比で0.005/0.003/99.992で混合した溶液14.85gに投入し、超音波分散機(ヒールッシャー製、UP200S)にて処理温度20℃で15分間攪拌処理を行うことで、ニッケル微粒子に対して酸処理を行った。酸処理後、上記溶液中のニッケル微粒子を沈降させ、上澄み液を除去し、ニッケル微粒子の重量に対して20~1500倍の純水を加えて上述の超音波洗浄機にて洗浄した。上記洗浄作業を3回繰り返して、洗浄後に得られたニッケル微粒子の含水ウェットケーキ(2)を作製し、その後、含水ウェットケーキ(2)を-0.10MpaG、20℃にて15時間以上乾燥させ、ニッケル微粒子粉体を得た。ニッケル微粒子粉体に含まる水分量は36μg/gであった。上記ニッケル微粒子粉体に含まれる水分量は1000μg/g以下、好ましくは500μg/g以下、更に好ましくは100μg/g以下まで乾燥することが好ましい。
上記酸処理によって得られたニッケル微粒子粉体をアセトンに分散させた分散液をコロジオン膜に滴下しTEM観察試料とした。TEM写真を図9に示す。上記酸処理前のTEM写真、すなわち比較例1で得られたニッケル微粒子のTEM写真(図8)とは異なり、ニッケル微粒子表面の薄い膜状の物質は観察されなかった。ニッケル微粒子表面の薄い膜状の物質は、ニッケルの水酸化物であり、酸処理によってこの薄い膜状の物質が溶解されたと考えられる。上記酸処理後のニッケル微粒子粉体のTG-DTA同時測定の結果を図5に示す。重量減少率は、0.793%であった。このように硝酸を含むアセトン溶液でニッケル微粒子を酸処理することによって、比較例1に比べて、TG-DTA同時測定における重量減少率を低減することができた。また、実施例1で得られたニッケル微粒子粉体のXRD測定結果を図12(A)に示す。図12(A)に示すように、水酸化ニッケルに由来するピークは検出されなかった。
上記比較例1のニッケル微粒子粉体15gを硝酸/水/アセトンを重量比で0.005/0.003/99.992で混合した溶液1485gに投入し、高速回転式分散乳化装置であるクレアミックス(製品名:CLM-2.2S、エム・テクニック製)にて処理温度20℃で15分間撹拌させることで、ニッケル微粒子に対して酸処理を行った。酸処理後、上記溶液中のニッケル微粒子を沈降させ、上澄み液を除去し、ニッケル微粒子の重量に対して20~700倍の純水を加えてクレアミックスを用いて洗浄した。上記洗浄作業を3回繰り返して、洗浄後に得られたニッケル微粒子の含水ウェットケーキ(3)を作製し、その後、含水ウェットケーキ(3)を-0.10MpaG、20℃にて15時間以上乾燥させ、ニッケル微粒子粉体を得た。
上記酸処理後のTG-DTA同時測定の結果より、重量減少率は、0.644%であり、比較例1と比べて、TG-DTA同時測定における重量減少率を低減することができた。また、実施例2で得られたニッケル微粒子粉体のXRD測定結果を図12(C)に示す。図12(C)に示すように、水酸化ニッケルに由来するピークは検出されなかった。また上記ニッケル微粒子を大気雰囲気下にて2週間保存した後に、再度TG-DTA同時測定を行った結果、上記測定範囲における重量減少率は、0.533%にまで低減していた。この様に、回転する撹拌翼を備えた撹拌機を用いて酸処理を行うことにより、より一層、重量減少低減に対して効果的であることが分かる。
なお、ニッケル微粒子の析出方法、または酸処理を行う際のニッケル微粒子に対する酸のモル比を変更した、酸処理の他の実施例、実施例3~実施例7、実施例16~実施例19に関しては後述する。酸処理を行う際のニッケル微粒子に対する酸のモル比は、酸処理を行うニッケル微粒子粉体(超音波分散機:0.15g、攪拌機:15g)に対し、酸処理に用いる溶液(超音波分散機:14.85g、攪拌機:1485g)中の硝酸/水/アセトンの重量比を調整することによって変更した。
実施例1のニッケル微粒子に対して酸を作用させる処理において、酸を過酸化水素に変更した処理(過酸化水素処理)について説明する。上記比較例1のニッケル微粒子0.15gを、過酸化水素/水/アセトンを重量比で0.005/0.012/99.983で混合した溶液14.85gに投入し、超音波分散機(ヒールッシャー製、UP200S)にて処理温度20℃で15分間撹拌させることで、ニッケル微粒子に対して過酸化水素を作用させる処理を行った。酸処理の場合と同様に、過酸化水素処理後、上記溶液中のニッケル微粒子を沈降させ、上澄み液を除去し、ニッケル微粒子に対して20~1500倍の純水を加えて、上述の超音波洗浄機にて洗浄した。上記洗浄を3回繰り返して、洗浄後に得られたニッケル微粒子の含水ウェットケーキ(4)を作製し、その後、含水ウェットケーキ(4)を-0.10MpaG、20℃にて15時間以上乾燥させ、ニッケル微粒子粉体を得た。酸処理の場合と同様、ニッケル微粒子粉体に含まる水分量は42μg/gであった。上記ニッケル微粒子粉体に含まれる水分量は1000μg/g以下、好ましくは500μg/g以下、更に好ましくは100μg/g以下まで乾燥することが好ましい。
実施例8で得られたニッケル微粒子粉体を比較例1と同様の方法でTEM観察したところ、比較例1で得られたニッケル微粒子の表面に観察された薄い膜状の物質は観察されなかった。過酸化水素処理後のニッケル微粒子粉体のTG-DTA同時測定の結果より、測定範囲における重量減少率は、0.989%であった。このように過酸化水素を含むアセトン溶液でニッケル微粒子を過酸化水素処理することによって、比較例1に比べて、TG-DTA同時測定における重量減少率を低減することができた。また、実施例8で得られたニッケル微粒子粉体のXRD測定結果を図12(B)に示す。図12(B)に示すように、水酸化ニッケルに由来するピークは検出されなかった。また上記ニッケル微粒子粉体を大気雰囲気下にて2週間保存した後に、再度TG-DTA同時測定を行った結果、上記測定範囲における重量減少率は、さらに0.741%にまで低減していた。本発明の過酸化水素処理を行っていないニッケル微粒子(比較例1)が、大気雰囲気下での2週間の保存によってTG-DTA同時測定における重量減少率が増加したのに対し、本発明の過酸化水素処理を行ったニッケル微粒子(実施例8)は、大気雰囲気下において保存しても、保存前に比べて重量減少率を低減させる効果を奏することがわかった。
ニッケル微粒子に対して上記酸処理と過酸化水素処理の両方を施した実施例15について説明する。
上記比較例1のニッケル微粒子粉体0.15gを硝酸/水/アセトンを重量比で0.010/0.007/99.983で混合した溶液14.85gに投入し、超音波分散機(ヒールッシャー製 UP200S)にて処理温度20℃で15分間撹拌させることで、ニッケル微粒子に対して酸処理を行った。
酸処理後、上記溶液に含まれるニッケル微粒子を沈降させ、上澄み液を除去し、ニッケル微粒子の重量に対して20~1500倍の純水を加え、上述の超音波洗浄機にてニッケル微粒子を洗浄した。上記洗浄作業を3回繰り返して、洗浄後に得られたニッケル微粒子の含水ウェットケーキ(5)を作製し、その後、含水ウェットケーキ(5)を-0.10MpaG、20℃にて15時間以上乾燥させ、ニッケル微粒子粉体を得た。
得られたニッケル微粒子粉体0.15gを過酸化水素/水/アセトンを重量比で0.010/0.023/99.967で混合した溶液14.85gに投入し、上述の超音波分散機にて処理温度20℃で15分間撹拌させることで、ニッケル微粒子に対して過酸化水素処理を行った。
過酸化水素処理後、上記溶液に含まれるニッケル微粒子を沈降させ、上澄み液を除去し、ニッケル微粒子の重量に対して20~1500倍の純水を加えて超音波洗浄機にてニッケル微粒子を洗浄した。上記洗浄作業を3回繰り返して、洗浄後に得られたニッケル微粒子の含水ウェットケーキ(6)を作製し、その後、含水ウェットケーキ(6)を-0.10MpaG、20℃にて15時間以上乾燥させ、ニッケル微粒子粉体を得た。
上記ニッケル微粒子粉体の過酸化水素処理後のTG-DTA同時測定の結果より、上記測定範囲における重量減少は、0.598%であった。上記酸処理と過酸化水素の両方を行うことによって、酸処理、過酸化水素処理を単独で実施する場合(実施例3、実施例10)に比べて、TG-DTA同時測定における重量減少率を、更に低減することができた。また、実施例15で得られたニッケル微粒子粉体のXRD測定結果からは、水酸化ニッケルに由来するピークは検出されなかった。また、酸処理と過酸化水素処理の両方を実施したニッケル微粒子についても、大気雰囲気下にて1か月間保存した場合でも、上記図6のSEM写真で観察されたような析出物らしき物質は確認されず、またXRD測定結果においても水酸化ニッケルに由来するピークは検出されなかった。このことから、酸処理と過酸化水素処理の両方をニッケル微粒子に施すことによって、TG-DTA同時測定における重量減少量を低減でき、更に長期間の保存に際し、水酸化ニッケルの発生を抑制することが可能であることが分かる。
上記酸処理または過酸化水素処理について、処理を行う際のニッケル微粒子に対する硝酸または過酸化水素のモル比を変更して製造したニッケル微粒子について、酸処理または過酸化水素処理の処理条件と結果を、実施例1,2,8,15とともに以下の表1に示す。なお、記載なき作業手順は上記と同様である。また、酸処理を行う際のニッケル微粒子に対する酸のモル比は、酸処理を行うニッケル微粒子粉体(超音波分散機:0.15g、攪拌機:15g)に対し、酸処理に用いる溶液(超音波分散機:14.85g、攪拌機:1485g)中の硝酸/水/アセトンの重量比を調整することによって変更し、過酸化水素処理を行う際のニッケル微粒子に対する過酸化水素のモル比は、過酸化水素処理を行うニッケル微粒子粉体(超音波分散機:0.15g、攪拌機:15g)に対し、過酸化水素処理に用いる溶液(超音波分散機:14.85g、攪拌機:1485g)中の過酸化水素/水/アセトンの重量比を調整することによって変更した。
また、図12(D)に実施例4で得られたニッケル微粒子粉体のXRD測定結果を示し、図12(E)に実施例10で得られたニッケル微粒子粉体のXRD測定結果を示す。何れの実施例においても、XRD測定結果において水酸化ニッケルに由来するピークは検出されず、大気雰囲気下にて1か月間保存した場合であっても、図6のSEM写真で観察されたような析出物らしき物質は確認されず、XRD測定結果において水酸化ニッケルに由来するピークは検出されなかった。
さらに、表1より、何れの例にあっても、積層セラミックコンデンサなどへの適用に問題のない結晶子径であった。
次に、バッチ法としてA液およびB液は比較例1と同じ溶液を使用し、ビーカー内で析出させたニッケル微粒子に対して、本発明の酸処理および/または過酸化水素処理を適用した。酸処理および/または過酸化水素処理の処理条件と結果を表2に示す。
上記バッチ法においては、A液600mlをビーカー内で100℃、マグネチックスターラーを用いて150rpmで撹拌しながら、B液65mlを90℃で1分かけて投入し、その後60分間100℃、150rpmでマグネチックスターラーを用いて撹拌してニッケル微粒子を析出させた。その後、比較例1と同様に、洗浄、乾燥を行ない、得られたニッケル微粒子粉体を比較例2とし、比較例2で得られたニッケル微粒子に対して、超音波分散機(ヒールッシャー製、UP200S)、または高速回転式分散乳化装置であるクレアミックス(製品名:CLM‐2.2S、エム・テクニック製)を用いて、酸処理および/または過酸化水素処理を実施した。なお、表中、記載なき処理条件に関しては、実施例1~15と同じである。SEM観察結果より、比較例2のニッケル微粒子の平均粒子径は116nmであり、XRD測定結果より、比較例2の結晶子径は14.1nmであった。
また、図12(F)に実施例17で得られたニッケル微粒子粉体のXRD測定結果を示し、図12(G)に実施例24で得られたニッケル微粒子粉体のXRD測定結果を示す。何れの実施例においても、XRD測定結果において水酸化ニッケルに由来するピークは検出されず、大気雰囲気下にて1か月間保存した場合であっても、図6のSEM写真で観察されたような析出物らしき物質は確認されず、XRD測定結果において水酸化ニッケルに由来するピークは検出されなかった。
さらに、表2より、何れの例にあっても、積層セラミックコンデンサなどへの適用に問題のない結晶子径であった。
以上の結果から、本発明の酸処理および/または過酸化水素処理をニッケル微粒子に施すことによって、TG-DTA同時測定における重量減少率を低減でき、更に長期間の保存に際し、水酸化ニッケルの発生を抑制することが可能であることが分かった。
2 第2処理用面
10 第1処理用部
11 第1ホルダ
20 第2処理用部
21 第2ホルダ
d1 第1導入部
d2 第2導入部
d20 開口部
Claims (14)
- 焼成等の熱処理により重量減少が生じるニッケル微粒子に対して酸および/または過酸化水素を作用させる工程を含むことを特徴とする、ニッケル微粒子の改質方法。
- 上記酸および/または過酸化水素を作用させる工程が上記ニッケル微粒子の熱処理による重量減少率を低減させるものであることを特徴とする、請求項1に記載のニッケル微粒子の改質方法。
- 上記ニッケル微粒子の熱処理による重量減少率が、熱重量測定・示差熱分析同時測定における重量減少率であり、
上記ニッケル微粒子の窒素雰囲気下での熱重量測定・示差熱分析同時測定における重量減少率が、40℃~400℃の範囲において1%以下であることを特徴とする、請求項2に記載のニッケル微粒子の改質方法。 - 上記酸として硝酸または硝酸を含む酸の混合物を用いることを特徴とする、請求項1~3の何れかに記載のニッケル微粒子の改質方法。
- 上記ニッケル微粒子と酸および/または過酸化水素を、ケトン系溶媒中で作用させることを特徴とする、請求項1~4の何れかに記載のニッケル微粒子の改質方法。
- 上記酸の上記ニッケル微粒子に対するモル比が0.001~0.1の範囲であることを特徴とする、請求項1~5の何れかに記載のニッケル微粒子の改質方法。
- 上記過酸化水素の上記ニッケル微粒子に対するモル比が0.001~2.0の範囲であることを特徴とする、請求項1~6の何れかに記載のニッケル微粒子の改質方法。
- 上記酸および/または過酸化水素を作用させる工程が、超音波処理、撹拌処理またはマイクロウェーブ処理を含むことを特徴とする、請求項1~7の何れかに記載のニッケル微粒子の改質方法。
- 上記撹拌処理は、回転する撹拌翼を備えた撹拌機を用いて行われることを特徴とする、請求項8に記載のニッケル微粒子の改質方法。
- 上記酸および/または過酸化水素を作用させたニッケル微粒子の粉末を、大気雰囲気下で保存することを特徴とする、請求項1~9の何れかに記載のニッケル微粒子の改質方法。
- 上記ニッケル微粒子が、少なくとも2種類の被処理流体を反応させるマイクロリアクターで析出されたニッケル微粒子であることを特徴とする、請求項1~10のいずれかに記載のニッケル微粒子の改質方法。
- 少なくとも表面に水酸化ニッケルが存在するニッケル微粒子に対して、水酸化ニッケルと反応する物質を作用させ、水酸化ニッケルを減少させる工程を含むことを特徴とする、ニッケル微粒子の改質方法。
- 請求項1~12の何れかに記載の改質方法を備えたニッケル微粒子の製造方法。
- 上記ニッケル微粒子をマイクロリアクターを用いて製造する方法であって、
上記マイクロリアクターは、
接近および/または離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する第1処理用面と第2処理用面とを備えたものであり、
第1処理用面と第2処理用面との間に少なくとも2種類の被処理流体を導入するステップと、
第1処理用面と第2処理用面との間に付与される上記少なくとも2種類の被処理流体の導入圧力により、第1処理用面と第2処理用面とを離反させる方向に作用する離反力を発生させるステップと、
上記離反力によって、第1処理用面と第2処理用面との間を微小な間隔に保ちつつ、上記少なくとも2種類の被処理流体を、上記微小な間隔に保たれた第1処理用面と第2処理用面との間で合流させ、上記第1処理用面と第2処理用面との間を通過させることによって、薄膜流体を形成させるステップと、
上記薄膜流体中で被処理流体同士を反応させ、当該反応によりニッケル微粒子を析出させるステップを含むことを特徴とする、請求項13に記載のニッケル微粒子の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/320,022 US20170129008A1 (en) | 2015-05-15 | 2015-05-15 | Method for modifying nickel microparticles and method for producing nickel microparticles |
KR1020167034179A KR20180005589A (ko) | 2015-05-15 | 2015-05-15 | 니켈 미립자의 개질 방법 및 니켈 미립자의 제조 방법 |
CN201580012915.7A CN106660115A (zh) | 2015-05-15 | 2015-05-15 | 镍微粒的改性方法及镍微粒的制造方法 |
JP2017518638A JPWO2016185529A1 (ja) | 2015-05-15 | 2015-05-15 | ニッケル微粒子の改質方法およびニッケル微粒子の製造方法 |
EP15892529.7A EP3296040A4 (en) | 2015-05-15 | 2015-05-15 | METHOD FOR MODIFICATION OF NICKEL POWDER AND PROCESS FOR PRODUCTION THEREOF |
PCT/JP2015/064107 WO2016185529A1 (ja) | 2015-05-15 | 2015-05-15 | ニッケル微粒子の改質方法およびニッケル微粒子の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/064107 WO2016185529A1 (ja) | 2015-05-15 | 2015-05-15 | ニッケル微粒子の改質方法およびニッケル微粒子の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016185529A1 true WO2016185529A1 (ja) | 2016-11-24 |
Family
ID=57319687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/064107 WO2016185529A1 (ja) | 2015-05-15 | 2015-05-15 | ニッケル微粒子の改質方法およびニッケル微粒子の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20170129008A1 (ja) |
EP (1) | EP3296040A4 (ja) |
JP (1) | JPWO2016185529A1 (ja) |
KR (1) | KR20180005589A (ja) |
CN (1) | CN106660115A (ja) |
WO (1) | WO2016185529A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021020522A1 (ja) * | 2019-07-31 | 2021-02-04 | 住友金属鉱山株式会社 | ニッケル粉末、ニッケル粉末の製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3903924A4 (en) * | 2018-12-26 | 2022-06-22 | M. Technique Co., Ltd. | FLUID TREATMENT DEVICE |
CN116426951B (zh) * | 2023-03-17 | 2023-10-27 | 湘南学院 | 一种叶状阵列非晶相镍氧化物/镍泡沫电极及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009144250A (ja) * | 2007-07-06 | 2009-07-02 | M Technique Co Ltd | 金属微粒子の製造方法及びその金属微粒子を含む金属コロイド溶液 |
WO2012014530A1 (ja) * | 2010-07-28 | 2012-02-02 | エム・テクニック株式会社 | 粒子径を制御された微粒子の製造方法 |
JP5376483B1 (ja) * | 2012-09-12 | 2013-12-25 | エム・テクニック株式会社 | ニッケル微粒子の製造方法 |
JP2014162967A (ja) * | 2013-02-26 | 2014-09-08 | Nippon Steel & Sumikin Chemical Co Ltd | ニッケル微粒子、その使用方法及びニッケル微粒子の製造方法 |
JP2014173105A (ja) * | 2013-03-07 | 2014-09-22 | Nippon Steel & Sumikin Chemical Co Ltd | ニッケルナノ粒子の表面改質方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1543902A4 (en) * | 2002-08-28 | 2007-06-27 | Toho Titanium Co Ltd | METAL NICKEL POWDER AND PROCESS FOR PRODUCING THE SAME |
KR100709822B1 (ko) * | 2004-12-15 | 2007-04-23 | 삼성전기주식회사 | 산 용액을 이용한 니켈 입자의 표면 처리 방법 |
WO2009008393A1 (ja) * | 2007-07-06 | 2009-01-15 | M.Technique Co., Ltd. | 強制超薄膜回転式処理法を用いたナノ粒子の製造方法 |
JP4737249B2 (ja) * | 2008-08-12 | 2011-07-27 | ソニー株式会社 | 薄膜の製造方法及びその装置、並びに電子装置の製造方法 |
CN103038159B (zh) * | 2010-08-26 | 2016-10-12 | M技术株式会社 | 可分离的氧化物微粒或氢氧化物微粒的制造方法 |
US9744594B2 (en) * | 2012-09-12 | 2017-08-29 | M. Technique Co., Ltd. | Method for producing nickel microparticles |
-
2015
- 2015-05-15 WO PCT/JP2015/064107 patent/WO2016185529A1/ja active Application Filing
- 2015-05-15 CN CN201580012915.7A patent/CN106660115A/zh active Pending
- 2015-05-15 JP JP2017518638A patent/JPWO2016185529A1/ja active Pending
- 2015-05-15 US US15/320,022 patent/US20170129008A1/en not_active Abandoned
- 2015-05-15 KR KR1020167034179A patent/KR20180005589A/ko unknown
- 2015-05-15 EP EP15892529.7A patent/EP3296040A4/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009144250A (ja) * | 2007-07-06 | 2009-07-02 | M Technique Co Ltd | 金属微粒子の製造方法及びその金属微粒子を含む金属コロイド溶液 |
WO2012014530A1 (ja) * | 2010-07-28 | 2012-02-02 | エム・テクニック株式会社 | 粒子径を制御された微粒子の製造方法 |
JP5376483B1 (ja) * | 2012-09-12 | 2013-12-25 | エム・テクニック株式会社 | ニッケル微粒子の製造方法 |
JP2014162967A (ja) * | 2013-02-26 | 2014-09-08 | Nippon Steel & Sumikin Chemical Co Ltd | ニッケル微粒子、その使用方法及びニッケル微粒子の製造方法 |
JP2014173105A (ja) * | 2013-03-07 | 2014-09-22 | Nippon Steel & Sumikin Chemical Co Ltd | ニッケルナノ粒子の表面改質方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3296040A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021020522A1 (ja) * | 2019-07-31 | 2021-02-04 | 住友金属鉱山株式会社 | ニッケル粉末、ニッケル粉末の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016185529A1 (ja) | 2018-03-01 |
CN106660115A (zh) | 2017-05-10 |
KR20180005589A (ko) | 2018-01-16 |
US20170129008A1 (en) | 2017-05-11 |
EP3296040A4 (en) | 2019-01-23 |
EP3296040A1 (en) | 2018-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5590639B2 (ja) | 金属微粒子の製造方法 | |
JP5213292B2 (ja) | 単離可能な酸化物微粒子または水酸化物微粒子の製造方法 | |
JP2017113751A (ja) | 結晶子径を制御された微粒子の製造方法 | |
JP6661083B2 (ja) | 単結晶酸化亜鉛ナノ粒子の製造方法 | |
KR101876767B1 (ko) | 금속 미립자의 제조 방법 | |
JP2013082621A5 (ja) | ||
JP5831821B2 (ja) | 金属微粒子の製造方法 | |
JP6823771B2 (ja) | 酸化物粒子の製造方法 | |
WO2012147209A1 (ja) | 酸化物・水酸化物の製造方法 | |
WO2016185529A1 (ja) | ニッケル微粒子の改質方法およびニッケル微粒子の製造方法 | |
KR101988238B1 (ko) | 니켈 미립자의 제조 방법 | |
WO2018142943A1 (ja) | 高結晶銀微粒子の製造方法 | |
JP5598989B2 (ja) | ドープ元素量を制御された析出物質の製造方法 | |
JP5376483B1 (ja) | ニッケル微粒子の製造方法 | |
JP4742202B1 (ja) | ドープ元素量を制御された析出物質の製造方法 | |
JP5261780B1 (ja) | 金属微粒子の製造方法 | |
JP2013231226A (ja) | 微粒子の製造方法 | |
JP6123054B2 (ja) | 微粒子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20167034179 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015892529 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15320022 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15892529 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017518638 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015892529 Country of ref document: EP |