WO2017009939A1 - レーザレーダ装置 - Google Patents

レーザレーダ装置 Download PDF

Info

Publication number
WO2017009939A1
WO2017009939A1 PCT/JP2015/070077 JP2015070077W WO2017009939A1 WO 2017009939 A1 WO2017009939 A1 WO 2017009939A1 JP 2015070077 W JP2015070077 W JP 2015070077W WO 2017009939 A1 WO2017009939 A1 WO 2017009939A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
optical
wavelength
laser beam
laser
Prior art date
Application number
PCT/JP2015/070077
Other languages
English (en)
French (fr)
Inventor
石井 健二
杉原 隆嗣
英介 原口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/070077 priority Critical patent/WO2017009939A1/ja
Publication of WO2017009939A1 publication Critical patent/WO2017009939A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a laser radar device that remotely measures the wind speed or direction in space.
  • the laser radar apparatus is applied to fields related to weather observation, weather prediction, and aircraft.
  • a transmission pulse light is transmitted along a scanning optical axis, a Doppler frequency optical signal included in a reception laser light based on the transmission pulse light is converted into a Doppler frequency electric signal, and the Doppler frequency electric signal is analyzed.
  • a laser radar device is disclosed.
  • the laser radar device includes a reference light source that generates laser light, a light modulation device that pulses the laser light, and an optical amplifier that emits powerful laser light into space.
  • the optical amplifier is controlled by APC (auto power control) to keep the optical output power constant.
  • the wavelength variable light source can discretely change the wavelength of the laser light.
  • the APC-controlled optical amplifier When a wavelength tunable light source is used as a reference light source of a laser radar device, if the generation of laser light is interrupted at the time of wavelength switching, the APC-controlled optical amplifier is driven with an excessive gain. After the interruption, when laser light is input again to the optical amplifier, the optical amplifier outputs excessively amplified laser light. If excessively amplified laser light is output from the optical amplifier, there is a possibility that an element or device at the subsequent stage of the optical amplifier is destroyed.
  • the present invention has been made in view of the above, and obtains a laser radar device capable of suppressing the optical amplifier from being driven with an excessive gain at the time of wavelength switching when a wavelength tunable light source is used as a reference light source. For the purpose.
  • the present invention includes a wavelength variable light source having a laser light generator and capable of generating laser light of different wavelengths, and a laser light supplied from the wavelength variable light source.
  • An optical antenna that radiates into space; an optical amplifier that is disposed in a laser optical path between the laser light generator and the optical antenna; and a wavelength control device that controls the wavelength tunable light source.
  • a third laser beam different from the second laser beam is generated in the switching period in which the generation of the first laser beam with the wavelength is switched to the generation of the second laser beam with the second wavelength.
  • the optical amplifier when a wavelength tunable light source is used as a reference light source, it is possible to suppress the optical amplifier from being driven with an excessive gain at the time of wavelength switching.
  • FIG. 1 is a configuration diagram showing a laser radar device according to a first embodiment.
  • FIG. Functional block diagram showing the wavelength control device according to the first embodiment 1 is a flowchart showing the operation of the laser radar apparatus according to the first embodiment. Timing chart showing operation of laser radar apparatus according to first embodiment The figure which shows the light modulation apparatus which concerns on Embodiment 2.
  • FIG. 2 The figure which shows operation
  • FIG. FIG. 1 is a configuration diagram showing a laser radar apparatus 1 according to Embodiment 1 of the present invention.
  • the laser radar device 1 modulates the reference laser light output from the reference light source to generate pulse laser light, emits the pulse laser light from the optical antenna to the space, and is backscattered by the observation target existing in the space.
  • Coherent Doppler lidar method that calculates the moving speed of the observation object from the Doppler shift of the scattered light by receiving the scattered light received and optical heterodyne detection of the received scattered light and the reference laser light supplied from the reference light source This is a laser radar device.
  • the reference light source is a variable wavelength light source capable of discretely changing the wavelength of the output reference laser light.
  • the output angle of the optical antenna is changed by changing the wavelength of the reference laser beam.
  • a laser radar device 1 includes a wavelength tunable light source 2 capable of generating a reference laser beam SL having different wavelengths, a reference laser beam SL supplied from the wavelength tunable light source 2, and a transmission laser beam TL and a local laser.
  • a light separation device 3 that separates the light into the light LL, and a transmission laser light TL that is a part of the reference laser light SL supplied from the wavelength tunable light source 2 via the light separation device 3, and light-modulates the pulse laser light PL.
  • An optical modulator 4 to be generated, an optical amplifier 5 that amplifies the pulsed laser light PL supplied from the optical modulator 4, an optical circulator 6 that switches the output destination of the input laser light, and laser light of different wavelengths are combined.
  • An optical antenna 8 that radiates into the space, an observation target scattered light RL that exists in the space received by the optical antenna 8, and a local laser light LL that is a part of the reference laser light SL supplied from the variable wavelength light source 2
  • An optical heterodyne receiver 9 for detecting optical heterodyne, a control device 10 including a wavelength control device 11 and a signal processing device 12, and a display device 13 connected to the control device 10 are provided.
  • the signal processing device 12 processes the detection data of the optical heterodyne receiver 9.
  • the wavelength control device 11 controls the wavelength variable light source 2.
  • the wavelength tunable light source 2 includes ITLA (integrable tunable laser assembly) and can generate laser beams having different wavelengths.
  • the wavelength variable light source 2 outputs a reference laser beam SL which is continuous light as a laser beam.
  • the wavelength tunable light source 2 can output a first reference laser beam SL1 having a first wavelength ⁇ 1 and a second reference laser beam SL2 having a second wavelength ⁇ 2 different from the first wavelength ⁇ 1.
  • the wavelength tunable light source 2 can be switched from one of the state where the first reference laser light SL1 is generated and the state where the second reference laser light SL2 is generated to the other.
  • the wavelength tunable light source 2 can output not only reference laser light SL of two types of wavelengths but also reference laser light SL of m types (m is a natural number of 3 or more).
  • the wavelength variable light source 2 continuously oscillates a reference laser beam SL having a predetermined single wavelength (single frequency). Further, the wavelength tunable light source 2 can continuously oscillate the reference laser beams SL having a plurality of different types of wavelengths simultaneously.
  • the wavelength variable light source 2 outputs the reference laser light SL with constant polarization.
  • the reference laser light SL output from the wavelength tunable light source 2 is supplied to the light separation device 3 through the light guide path OF1.
  • the light separation device 3 includes an optical branching coupler or a separation optical element, and separates the reference laser light SL supplied from the wavelength tunable light source 2 into the transmission laser light TL and the local laser light LL.
  • Each of the transmission laser beam TL and the local laser beam LL is a part of the reference laser beam SL.
  • the transmission laser beam TL and the local laser beam LL are continuous light, like the reference laser beam SL.
  • the polarization states of the transmission laser beam TL and the local laser beam LL are the same as the polarization state of the reference laser beam SL.
  • the transmission laser light TL output from the light separation device 3 is supplied to the light modulation device 4 through the light guide OF2.
  • the local laser light LL output from the light separation device 3 is supplied to the optical heterodyne receiver 9 through the light guide OF8.
  • the light modulation device 4 modulates the transmission laser light TL, which is the reference laser light SL supplied from the wavelength tunable light source 2 via the light separation device 3, and generates the pulse laser light PL.
  • the light modulation device 4 includes an optical phase modulator and a light intensity modulator such as a Mach-Zehnder type LN modulator or an EA (electro absorption) modulator.
  • the light modulation device 4 applies an offset frequency to the transmission laser light TL and performs pulse modulation in which an on period and an off period are periodically repeated.
  • the pulsed laser light PL output from the light modulation device 4 is supplied to the optical amplifier 5 through the light guide OF3.
  • the optical amplifier 5 is disposed in the laser light path between the wavelength tunable light source 2 and the optical antenna 8.
  • the optical amplifier 5 amplifies the pulsed laser light PL supplied from the light modulation device 4 and sent to the optical antenna 8.
  • the pulsed laser light PL amplified by the optical amplifier 5 is supplied to the optical circulator 6 through the light guide OF4.
  • the optical circulator 6 switches the output light guide path based on the input light (pulse laser light PL or scattered light RL).
  • the optical circulator 6 outputs the pulse laser beam PL to the light guide OF5.
  • the pulsed laser light PL output to the light guide OF5 is supplied to the optical antenna 8 via the WDM filter 7 and the light guide OF6.
  • the optical circulator 6 outputs the scattered light RL to the light guide OF7.
  • the scattered light RL output to the light guide OF 7 is supplied to the optical heterodyne receiver 9.
  • the optical antenna 8 radiates laser light supplied from the wavelength tunable light source 2 to the space via the light separation device 3, the light modulation device 4, the optical amplifier 5, the optical circulator 6, and the WDM filter 7.
  • the optical antenna 8 radiates the pulsed laser light PL generated by the light modulation device 4 into space.
  • the optical antenna 8 expands the beam diameter of the pulsed laser light PL and radiates the pulsed laser light PL into space.
  • scattered light RL is generated in the observation target.
  • the optical antenna 8 receives, as received light, the scattered light RL of the observation target generated by irradiating the observation target with the pulsed laser light PL.
  • the scattered light RL received by the optical antenna 8 is supplied to the optical circulator 6 through the light guide OF6, the WDM filter 7, and the light guide OF5.
  • the optical circulator 6 outputs the scattered light RL supplied from the optical antenna 8 to the light guide OF7.
  • the scattered light RL output to the light guide OF 7 is supplied to the optical heterodyne receiver 9.
  • the optical heterodyne receiver 9 receives the scattered light RL, which is received light from the optical antenna 8 and is supplied from the optical antenna 8 via the optical circulator 6, and is supplied from the variable wavelength light source 2 via the optical separation device 3. Optical heterodyne detection is performed on the local laser beam LL.
  • the optical heterodyne receiver 9 outputs a beat signal having a frequency difference between the local laser light LL and the scattered light RL by optically combining the local laser light LL and the scattered light RL and performing photoelectric conversion.
  • the detection data of the optical heterodyne receiver 9 including the beat signal is output to the signal processing device 12.
  • the signal processing device 12 processes the detection data of the optical heterodyne receiver 9. Processing of the detection data by the signal processing device 12 includes analysis processing of the frequency of the beat signal supplied from the optical heterodyne receiver 9. The signal processing device 12 performs AD conversion (analog to digital conversion) on the beat signal output from the optical heterodyne receiver 9. The signal processing device 12 calculates a power spectrum by sequentially Fourier-transforming and integrating the beat signal that has been subjected to AD conversion. Further, the signal processing device 12 calculates the frequency shift amount due to the influence of wind in the space from the peak value of the power spectrum of the beat signal, and calculates the moving speed of the observation target from the peak value of the power spectrum.
  • AD conversion analog to digital conversion
  • the display device 13 displays the result of the analysis processing by the signal processing device 12.
  • the display device 13 includes a display device such as a flat panel display, and displays the analysis processing result of the signal processing device 12 on the display screen.
  • the wavelength control device 11 controls the wavelength variable light source 2.
  • the wavelength control device 11 outputs a control signal to the wavelength tunable light source 2 to control the wavelength tunable light source 2.
  • FIG. 2 is a diagram illustrating a hardware configuration of the control device 10 including the wavelength control device 11 and the signal processing device 12.
  • the wavelength controller 11 includes an arithmetic processing unit 14 including a microprocessor such as a CPU (central processing unit) and a control circuit, and a storage device 15 including a memory such as a ROM (read only memory) or a RAM (random access memory). And an input / output interface device 16.
  • the wavelength variable light source 2 is connected to the input / output interface device 16 via the signal line K1.
  • a computer program for controlling the wavelength tunable light source 2 is stored in the storage device 15.
  • the arithmetic processing unit 14 outputs a control signal for controlling the wavelength tunable light source 2 to the wavelength tunable light source 2 via the input / output interface device 16 and the signal line K1 in accordance with a computer program stored in the storage device 15. To do.
  • the signal processing device 12 includes an arithmetic processing device 17 including a microprocessor such as a CPU and a control circuit, a storage device 18 including a memory such as a ROM or a RAM, and an input / output interface device 19.
  • the optical heterodyne receiver 9 is connected to an input / output interface device 19 via an AD converter (analog to digital converter) 20 and a signal line K2.
  • the detection data including the beat signal output from the optical heterodyne receiver 9 is AD converted by the AD converter 20 and then supplied to the input / output interface device 19 through the signal line K2.
  • a computer program for processing the detection data of the optical heterodyne receiver 9 is stored in the storage device 18.
  • the arithmetic processing unit 17 processes the detection data of the optical heterodyne receiver 9 according to the computer program stored in the storage device 18.
  • the display device 13 is connected to the input / output interface device 19 through the signal line K3.
  • a computer program for controlling the display device 13 is stored in the storage device 18.
  • the arithmetic processing unit 17 outputs a display control signal for controlling the display device 13 to the display device 13 through the input / output interface device 19 and the signal line K3 according to the computer program stored in the storage device 18. .
  • the input / output interface device 16 of the wavelength control device 11 and the input / output interface device 19 of the signal processing device 12 are connected via a signal line K4.
  • the wavelength control device 11 can supply a control signal to the signal processing device 12 via the signal line K4.
  • FIG. 3 is a diagram showing the wavelength tunable light source 2.
  • the wavelength variable light source 2 includes ITLA.
  • the wavelength tunable light source 2 includes a laser light generator 21 that can generate the reference laser light SL.
  • the laser light generator 21 is a semiconductor laser (LD: laser diode).
  • the laser beam generator 21 generates the reference laser beam SL by supplying current.
  • the laser light generator 21 includes a plurality of laser light generators 21 that respectively generate reference laser light SL of different wavelengths.
  • the laser beam generator 21 generates a first laser beam generator 211 capable of generating a first reference laser beam SL1 having a first wavelength ⁇ 1, and a second reference laser beam SL2 having a second wavelength ⁇ 2 different from the first wavelength ⁇ 1.
  • a second laser beam generator 212 that can generate the laser beam.
  • the laser light generator 21 includes not only the first laser light generator 211 and the second laser light generator 212 but also an m-th laser light generator 21m that can output the m-th wavelength ⁇ m.
  • m is a natural number of 3 or more.
  • the plurality of laser light generators 21 are arranged in an array.
  • the wavelength tunable light source 2 has a current control circuit 22 that controls the current supplied to the plurality of laser light generators 21 including the first laser light generator 211 and the second laser light generator 212.
  • Control of current by the current control circuit 22 includes supply of current to the laser light generator 21, control of the amount of current supplied to the laser light generator 21, and stop of supply of current to the laser light generator 21.
  • the current control circuit 22 is an ACC (auto current control) circuit, and can adjust the amount of current supplied to each of the plurality of laser light generators 21.
  • Laser light generator 21 generates reference laser light SL when current is supplied from current control circuit 22.
  • the laser beam generator 21 generates a reference laser beam SL having an optical power and a wavelength corresponding to the amount of current supplied.
  • the supply of current to the laser light generator 21 is stopped, the generation of the reference laser light SL is stopped.
  • the first laser light generator 211 When the current is supplied to the first laser light generator 211, the first laser light generator 211 generates the first reference laser light SL1 having optical power corresponding to the amount of current supplied. When the supply of current to the first laser light generator 211 is stopped, the generation of the first reference laser light SL1 by the first laser light generator 211 is stopped.
  • the second laser light generator 212 When the current is supplied to the second laser light generator 212, the second laser light generator 212 generates the second reference laser light SL2 having optical power corresponding to the amount of current supplied. When the supply of current to the second laser light generator 212 is stopped, the generation of the second reference laser light SL2 by the second laser light generator 212 is stopped.
  • the m-th laser light generator 21m when a current is supplied to the m-th laser light generator 21m, the m-th laser light generator 21m generates an m-th reference laser light SLm having an optical power corresponding to the amount of current supplied.
  • the supply of current to the mth laser beam generator 21m is stopped, the generation of the second reference laser beam SLm by the mth laser beam generator 21m is stopped.
  • the current control circuit 22 can supply current to the plurality of laser light generators 21 simultaneously.
  • the current control circuit 22 can supply current to the second laser light generator 212 in parallel with the supply of current to the first laser light generator 211.
  • the first reference laser light SL1 and the second reference laser light SL2 are generated simultaneously.
  • the current control circuit 22 is controlled by the wavelength control device 11 including a microprocessor and a control circuit.
  • the wavelength control device 11 outputs a current control signal for controlling the current control circuit 22 to the current control circuit 22.
  • the current control signal is generated by the arithmetic processing device 14 and is output to the current control circuit 22 of the wavelength tunable light source 2 via the input / output interface device 16.
  • the wavelength control device 11 When generating the first reference laser light SL1 having the first wavelength ⁇ 1, the wavelength control device 11 controls the current control circuit 22 to supply a current to the first laser light generator 211. When outputting the second reference laser light SL2 having the second wavelength ⁇ 2, the wavelength control device 11 controls the current control circuit 22 to supply a current to the second laser light generator 212. Similarly, when outputting the mth reference laser beam SLm having the mth wavelength ⁇ m, the wavelength control device 11 controls the current control circuit 22 to supply a current to the mth laser beam generator 21m.
  • the wavelength tunable light source 2 includes an optical amplifier 23 to which the reference laser light SL generated by one or both of the first laser light generator 211 and the second laser light generator 212 is supplied.
  • the optical amplifier 23 is disposed in the laser light path between the laser light generator 21 and the optical antenna 8.
  • the reference laser light SL generated by at least one laser light generator 21 among the plurality of laser light generators 21 is supplied to an optical amplifier 23 provided in the wavelength variable light source 2.
  • the wavelength tunable light source 2 has a collective optical element 26 that collects the reference laser light SL generated by each of the plurality of laser light generators 21.
  • the reference laser light SL output from the laser light generator 21 is supplied to the optical amplifier 23 via the collective optical element 26.
  • the plurality of reference laser beams SL are combined by the collective optical element 26 and then supplied to the optical amplifier 23.
  • the optical amplifier 23 amplifies the reference laser light SL supplied from the laser light generator 21 via the collective optical element 26.
  • the optical amplifier 23 outputs the amplified reference laser light SL.
  • the reference laser light SL amplified by the optical amplifier 23 is radiated from the optical antenna 8 after being converted into the pulsed laser light PL by the light modulator 4.
  • the wavelength tunable light source 2 includes a detection device 24 that detects the optical output power of the reference laser light SL output from the optical amplifier 23, and an output control circuit 25 that controls the optical amplifier 23.
  • the detection device 24 detects the optical output power of the reference laser light SL output from the optical amplifier 23.
  • the detection device 24 monitors the optical output power of the reference laser light SL output from the optical amplifier 23 during a period in which the reference laser light SL is output from the optical amplifier 23.
  • the detection signal of the detection device 24 is output to the wavelength control device 11.
  • the detection signal of the detection device 24 is supplied to the arithmetic processing device 14 and the storage device 15 via the input / output interface device 16.
  • the output control circuit 25 is controlled by the wavelength control device 11.
  • the output control circuit 25 is an APC (auto power control) circuit, and performs APC control to make the optical output power of the reference laser light SL output from the optical amplifier 23 constant.
  • the wavelength control device 11 outputs a constant output control signal for making the optical output power of the reference laser light SL output from the optical amplifier 23 constant to the output control circuit 25 based on the detection result of the detection device 24.
  • the constant output control signal is generated by the arithmetic processing device 14 and output to the output control circuit 25 via the input / output interface device 16.
  • the output control circuit 25 By performing APC control by the output control circuit 25, even if the optical input power of the reference laser light SL input from the laser light generator 21 to the optical amplifier 23 changes, the reference laser output from the optical amplifier 23 The optical output power of the light SL is maintained at a constant value.
  • FIG. 4 is a functional block diagram showing the wavelength control device 11. In the switching period during which the wavelength control device 11 switches from generation of the first reference laser beam SL1 that is the first laser beam having the first wavelength ⁇ 1 to generation of the second reference laser beam SL2 that is the second laser beam having the second wavelength ⁇ 2. A third reference laser beam that is a third laser beam different from the second reference laser beam SL2 is generated.
  • the wavelength control device 11 includes a first laser light control unit 31 that outputs a first laser light control signal Ca that instructs generation of the first reference laser light SL1, and a first reference laser light SL1.
  • a wavelength switching control unit 32 that outputs a switching control signal Cb that instructs switching from generation to generation of the second reference laser light SL2, and a third laser light control signal Cc that instructs generation of the third reference laser light are output.
  • a third laser light control unit 33; and a second laser light control unit 34 that outputs a second laser light control signal Cd that instructs generation of the second reference laser light SL2.
  • the wavelength control device 11 keeps the optical output power of the reference laser beam SL outputted from the optical amplifier 23 and the stop control unit 35 that outputs the stop control signal Ce instructing the stop of the generation of the third reference laser beam.
  • a constant output control unit 36 for outputting a constant output control signal Cf to the output control circuit 25, and a signal processing control signal Cg for instructing to interrupt the processing of the signal processing device 12 and to discard the detection data of the optical heterodyne receiver 9.
  • a signal processing control unit 37 for outputting.
  • the wavelength switching control unit 32 generates the first reference laser light SL1 by the first laser light generator 211 while the first reference laser light SL1 having the first wavelength ⁇ 1 is generated from the first laser light generator 211.
  • a switching control signal Cb for instructing switching to generation of the second reference laser beam SL2 having the second wavelength ⁇ 2 by the second laser beam generator 212 is configured so that the current is supplied from the current control circuit 22 to the first laser light generator 211 and the second laser light generator is supplied with the current from the first laser light generator 211.
  • the current control circuit 22 is instructed to switch to supplying current to 212.
  • the third laser light control unit 33 instructs the generation of the third reference laser light during the switching period from the time when the switching control signal Cb is output to the time when the generation of the second reference laser light SL2 is completed.
  • a control signal Cc is output.
  • the third laser light control unit 33 outputs the third laser light control signal Cc after outputting the switching control signal Cb.
  • the third reference laser beam is a reference laser beam SL having a wavelength different from that of the second reference laser beam SL2.
  • Completing the generation of the second reference laser light SL2 includes the fact that the optical power of the second reference laser light SL2 generated from the second laser light generator 212 reaches a predetermined reference power. That is, the completion of the generation of the second reference laser beam SL2 includes the amount of current supplied to the second laser beam generator 212 reaching a predetermined reference amount. Further, when the generation of the second reference laser beam SL2 is completed, the optical power of the second reference laser beam SL2 reaches the reference power, and the generation of the third reference laser beam and the first reference laser beam SL1 is stopped. At a later time.
  • the third laser light control unit 33 has a third wavelength different from that of the second reference laser light SL2 in the switching period from the time when the switching control signal Cb is output to the time when the generation of the second reference laser light SL2 is completed.
  • a third laser light control signal Cc for generating the reference laser light from the laser light generator 21 different from the second laser light generator 212 is output. That is, the third laser light control unit 33 instructs the current control circuit 22 to supply a current to the laser light generator 21 different from the second laser light generator 212.
  • the second laser light control unit 34 outputs a second laser light control signal Cd instructing generation of the second reference laser light SL2 after outputting the switching control signal Cb. That is, the second laser light control unit 34 instructs the current control circuit 22 to supply current to the second laser light generator 212 during the switching period.
  • the second laser light control unit 34 outputs the second laser light control signal Cd after outputting the third laser light control signal Cc.
  • the stop control unit 35 outputs a stop control signal Ce instructing to stop the generation of the third reference laser light at a time point after the optical power of the second reference laser light SL2 reaches the reference power.
  • the stop control unit 35 instructs the current control circuit 22 to stop supplying the current to the laser light generator 21 that has generated the third reference laser light.
  • the constant output control unit 36 outputs a constant output control signal Cf that makes the optical output power of the reference laser light SL output from the optical amplifier 23 constant to the output control circuit 25 based on the detection result of the detection device 24.
  • the signal processing control unit 37 is a signal processing control indicating that the wavelength tunable light source 2 is undergoing a wavelength transition as a control signal used for interrupting processing and discarding detected data in the signal processing device 12 during the switching period.
  • the signal Cg is output to the signal processing device 12.
  • the signal processing control signal Cg is output to the signal processing device 12 through the signal line K4.
  • the arithmetic processing unit 14 of the wavelength control device 11 allows the first laser light control unit 31, the wavelength switching control unit 32, the third laser light control unit 33, the second laser light control unit 34, the stop control unit 35, and the constant output control unit. 36 and the signal processing control unit 37 are implemented.
  • the current control signal supplied from the wavelength controller 11 to the current control circuit 22 includes a first laser light control signal Ca, a switching control signal Cb, a third laser light control signal Cc, a second laser light control signal Cd, and a stop control. Contains the signal Ce.
  • the wavelength control device 11 including the first laser light control unit 31, the wavelength switching control unit 32, the third laser light control unit 33, the second laser light control unit 34, and the stop control unit 35 controls the current control circuit 22. Thus, switching control from generation of the first reference laser beam SL1 to generation of the second reference laser beam SL2 is performed.
  • FIG. 5 is a flowchart showing the operation of the laser radar device 1.
  • FIG. 6 is a timing chart showing the operation of the laser radar device 1.
  • the horizontal axis represents time.
  • the first vertical axis indicates the amount of current supplied from the current control circuit 22 to the first laser light generator 211.
  • the second vertical axis indicates the amount of current supplied from the current control circuit 22 to the second laser light generator 212.
  • the third vertical axis represents the optical input power of the reference laser beam SL input from the laser beam generator 21 to the optical amplifier 23.
  • the fourth vertical axis indicates the optical output power of the reference laser beam SL output from the optical amplifier 23.
  • the amount of current supplied to the laser light generator 21 and the optical power of the reference laser light SL output from the laser light generator 21 supplied with the current correspond one-to-one.
  • the amount of current supplied from the current control circuit 22 to the first laser light generator 211 indicated by the first vertical axis is equivalent to the optical power of the first reference laser light SL1 generated from the first laser light generator 211. It is.
  • the amount of current supplied from the current control circuit 22 to the second laser light generator 212 indicated by the second vertical axis is equivalent to the optical power of the second reference laser light SL2 generated from the second laser light generator 212. It is.
  • the first laser light control unit 31 In order to generate the first laser light SL1 from the first laser light generator 211, the first laser light control unit 31 outputs the first laser light control signal Ca to the current control circuit 22 of the wavelength tunable light source 2 (step) SP1). By outputting the first laser light control signal Ca from the first laser light control unit 31 to the current control circuit 22, a current is supplied from the current control circuit 22 to the first laser light generator 211 with a constant current amount, A first reference laser beam SL1 is generated from the first laser beam generator 211. In a state where the first reference laser beam SL1 is generated from the first laser beam generator 211, the first reference laser beam SL2 is not generated from the second laser beam generator 212. Further, in a state where the first reference laser beam SL1 is generated from the first laser beam generator 211, the reference laser beam SL is generated not only from the second laser beam generator 212 but also from other laser beam generators 21. Does not occur.
  • the first reference laser beam SL1 output from the first laser beam generator 211 is input to the optical amplifier 23 via the collective optical element 26.
  • the optical amplifier 23 amplifies the first reference laser light SL1.
  • the first reference laser light SL1 amplified by the optical amplifier 23 is output from the wavelength variable light source 2.
  • the wavelength control device 11 performs lock control for locking the output of the first reference laser beam SL1 in order to output the first reference laser beam SL1 having the first wavelength ⁇ 1 with a constant optical power.
  • the lock control of the first reference laser beam SL1 includes locking the amount of current supplied to the first laser beam generator 211 and locking the wavelength of the reference laser beam SL.
  • the first reference laser light SL1 output from the wavelength tunable light source 2 is separated into the transmission laser light TL and the local laser light LL by the light separation device 3.
  • the light separation device 3 separates the first reference laser light SL1 into the transmission laser light TL and the local laser light LL while maintaining the polarization state of the first reference laser light SL1.
  • the transmission laser light TL is supplied to the light modulation device 4.
  • the local laser beam LL is supplied to the optical heterodyne receiver 9.
  • the light modulation device 4 generates the pulse laser light PL by giving an offset frequency to the transmission laser light TL from the light separation device 3 and performing pulse modulation in which an on period and an off period are periodically repeated.
  • the offset frequency is several tens [MHz] to several hundreds [MHz] and the intensity modulation pulse width is several hundreds [nsec. ] 1 [ ⁇ sec. The following are used:
  • the pulsed laser light PL output from the light modulation device 4 is supplied to the optical amplifier 5.
  • the optical amplifier 5 amplifies the pulsed laser light PL supplied from the light modulation device 4. Similar to the optical amplifier 23, the optical amplifier 5 is controlled by APC (auto power control).
  • the APC-controlled optical amplifier 5 maintains the optical power of the output pulsed laser light PL at a constant value.
  • the pulsed laser light PL amplified by the optical amplifier 5 is supplied to the optical antenna 8 through the optical circulator 6 and the WDM filter 7.
  • the optical antenna 8 expands the beam diameter of the pulse laser beam PL supplied from the optical amplifier 5 and radiates the pulse laser beam PL to the space.
  • the pulsed laser light PL radiated into the space from the optical antenna 8 is back-scattered by an observation object such as aerosol existing in the space.
  • Scattered light RL backscattered by the observation object undergoes a Doppler shift based on the moving speed of the observation object in space.
  • the Doppler-shifted scattered light RL enters the optical antenna 8.
  • the optical antenna 8 receives the scattered light RL as received laser light.
  • the scattered light RL received by the optical antenna 8 is supplied to the optical heterodyne receiver 9 via the WDM filter 7 and the optical circulator 6.
  • the optical heterodyne receiver 9 performs optical heterodyne detection on the scattered light RL supplied from the optical antenna 8 and the local laser light LL supplied from the wavelength tunable light source 2 via the light separation device 3, and the scattered light RL and the local laser are detected.
  • a beat signal having a frequency difference from the light LL is output.
  • the optical heterodyne receiver 9 outputs detection data including a beat signal to the signal processing device 12.
  • the signal processing device 12 processes the detection data of the optical heterodyne receiver 9 and calculates the moving speed of the observation target. By calculating the moving speed of the observation object, the wind speed or direction of the space is derived.
  • the display device 13 displays the processing result of the signal processing device 12.
  • the wavelength control device 11 performs switching control from a state in which the first reference laser beam SL1 having the first wavelength ⁇ 1 is output from the wavelength variable light source 2 to a state in which the second reference laser beam SL2 having the second wavelength ⁇ 2 is output. carry out.
  • the wavelength switching control unit 32 generates the first reference laser light SL1 to the second reference laser light SL2 while the first reference laser light SL1 is generated from the first laser light generator 211.
  • a switching control signal Cb for instructing switching to is output. As shown in FIG. 6, the wavelength switching control unit 32 outputs the switching control signal Cb at the first time point T1 (step SP2).
  • the output of the switching control signal Cb includes releasing the lock control of the first reference laser beam SL1.
  • the switching control signal Cb By outputting the switching control signal Cb from the wavelength switching control unit 32, the lock control of the first reference laser light SL1 is released.
  • the signal processing control unit 37 outputs the signal processing control signal Cg at the first time point T1 when the switching control signal Cb is output (step SP3).
  • the signal processing control signal Cg output from the signal processing control unit 37 is supplied to the signal processing device 12.
  • the signal processing control signal Cg is a signal instructing to interrupt the processing of the signal processing device 12 and discard the detection data from the optical heterodyne receiver 9. Based on the received signal processing control signal Cg, the signal processing device 12 interrupts the processing of the signal processing device 12 and discards the detected data.
  • the third laser light control unit 33 After the switching control signal Cb is output from the wavelength switching control unit 32 at the first time point T1, the third laser light control unit 33 outputs the third laser light control signal Cc that instructs the output of the third reference laser light. .
  • the third laser light control unit 33 outputs the third laser light control signal Cc at the second time T2 after the first time T1 when the switching control signal Cb is output. (Step SP4).
  • the third reference laser beam is a reference laser beam SL having a wavelength different from that of the second reference laser beam SL2.
  • the third reference laser light may be the first reference laser light SL1 generated before the start of the switching control, or the reference laser light SL having a wavelength different from that of the first reference laser light SL1 and the second reference laser light SL2. But you can.
  • the third reference laser light includes the first reference laser light SL1. That is, the first reference laser light SL1 that has been generated before the start of the switching control is used as the third reference laser light. As shown in FIG. 6, after the switching control signal Cb is output, the current supply from the current control circuit 22 to the first laser light generator 211 is continued, and the first reference laser light from the first laser light generator 211 is continued.
  • the third laser light control unit 33 continues the output of the first reference laser light SL1 even after the switching control signal Cb is output.
  • a third laser light control signal Cc for output to the current control circuit 22.
  • the current control circuit 22 supplied with the third laser light control signal Cc continues to supply a constant current amount to the first laser light generator 211.
  • the second laser light control unit 34 instructs the output of the second reference laser light SL2 to be the second laser light.
  • the control signal Cd is output to the current control circuit 22.
  • the second laser light control unit 34 outputs the second laser light control signal Cd at the third time T3 after the second time T2 when the third laser light control signal Cc is output (step SP5).
  • the amount of current supplied from the current control circuit 22 to the second laser light generator 212 is gradually increased by outputting the second laser light control signal Cd at the third time point T3.
  • the optical power of the second reference laser light SL2 generated from the second laser light generator 212 gradually increases. .
  • the second laser light control unit 34 is supplied with current from the current control circuit 22 to the first laser light generator 211, and generates the first reference laser light SL1 (third reference laser light) from the first laser light generator 211. In this state, a second laser light control signal Cd that instructs generation of the second reference laser light SL2 is output. By outputting the second laser light control signal Cd, the wavelength control device 11 performs the first generation in parallel with the generation of the first reference laser light SL1 (third reference laser light) from the first laser light generator 211.
  • the second laser beam generator 212 generates the second reference laser beam SL2.
  • the second laser light control unit 34 generates the second reference laser light SL2 in parallel with the generation of the third reference laser light by outputting the second laser light control signal Cd at the third time point T3.
  • the stop control unit 35 stops the generation of the first reference laser light SL1 that is the third reference laser light.
  • An instructing stop control signal Ce is output to the current control circuit 22.
  • the stop control unit 35 outputs a stop control signal Ce at a fourth time point T4 after the third time point T3 (step SP6).
  • the current control circuit 22 A current is supplied to the laser light generator 212. That is, between the third time point T3 and the fourth time point T4, the second reference laser light SL2 is generated in parallel with the generation of the first reference laser light SL1 that is the third reference laser light.
  • the fourth time point T4 is a time point after the time point Tr when the amount of current supplied from the current control circuit 22 to the second laser beam transmitter 212 reaches the reference amount. At time Tr, the optical power of the second reference laser beam SL2 output from the second laser beam transmitter 212 reaches a predetermined reference power. The fourth time point T4 is a time point after the optical power of the second reference laser light SL2 generated from the second laser light generator 212 reaches the reference power.
  • the third laser light control unit 33 outputs the third reference laser light at least in a period from the first time T1 when the switching control signal Cb is output to the time Tr when the second reference laser light SL2 of the reference power or higher is output.
  • a third laser light control signal Cc for generation is output.
  • the third laser light control unit 33 starts from the first time point T1 when the switching control signal Cb is output, until the fourth time point T4 after the optical power of the second reference laser light SL2 reaches the reference power.
  • the third laser light control signal Cc for generating the third reference laser light is output during the period.
  • the stop control unit 35 outputs a stop control signal Ce instructing to stop the generation of the third reference laser light at the fourth time point T4 after the optical power of the second reference laser light SL2 reaches the reference power.
  • the wavelength control device 11 After the second reference laser beam SL2 is output with an optical power equal to or higher than the reference power and the stop control signal Ce is output from the stop control unit 35 at the fourth time point T4, the wavelength control device 11 performs the second operation with a constant optical power.
  • lock control is performed to lock the output of the second reference laser beam SL2 at the fifth time point T5 after the fourth time point T4 (step SP7).
  • the lock control of the second reference laser beam SL2 includes locking the amount of current supplied to the second laser beam generator 212 and locking the wavelength of the reference laser beam SL.
  • the fifth time point T5 is a time point after the optical power of the second reference laser beam SL2 reaches the reference power and the generation of the first reference laser beam SL1 (third reference laser beam) is stopped. At the fifth time point T5, the output of the first reference laser beam SL1 that is the third reference laser beam is stopped, and the second reference laser beam SL2 is output.
  • the fifth time point T5 is a time point when the generation of the second reference laser beam SL2 is completed, and a time point when the switching control from the generation of the first reference laser beam SL1 to the generation of the second reference laser beam SL2 is completed.
  • the period from the first time point T1 when the switching control signal Cb is output to the fifth time point T5 when the generation of the second reference laser beam SL2 is completed is a switching period in which the switching control is performed.
  • the processing of the signal processing device 12 is interrupted and the detection data is discarded by the signal processing control signal Cg output from the signal processing control unit 37.
  • the signal processing control unit 37 stops outputting the signal processing control signal Cg at the fifth time point T5 (step SP8).
  • the processing of the signal processing device 12 is resumed. Further, the signal processing device 12 holds the detection data supplied from the optical heterodyne receiver 9.
  • the switching period is started by outputting the switching control signal Cb at the first time T1, and the second time T2 and the second time T2 when the third laser light control signal Cc is output from the first time T1.
  • the first reference laser beam SL1 (third reference laser beam) continues to be generated during the period from the third time point T3 at which the two-laser light control signal Cd is output to the fourth time point T4 at which the stop control signal Ce is output.
  • the second laser light control signal Cd is output and the generation of the second reference laser light SL2 is started.
  • the generation of the second reference laser light SL2 is started, and the stop control signal Ce is output at the fourth time T4 after the time Tr when the optical power of the second reference laser light SL2 reaches the reference power.
  • Generation of the light SL1 (third reference laser light) is stopped.
  • the second laser light control unit 34 and the third laser light control unit 33 are the sum of the optical power of the second reference laser light SL2 and the optical power of the first reference laser light SL1 (third reference laser light) in the switching period, That is, the optical input power input to the optical amplifier 23 is set to a predetermined reference value or more.
  • the optical input power of the reference laser beam SL input to the optical amplifier 23 in the period between the third time point T3 and the fourth time point T4 is the optical amplifier 23 in the period between the first time point T1 and the third time point T3. Is higher than the optical input power of the reference laser beam SL input to the optical amplifier 23 and the optical power of the reference laser beam SL input to the optical amplifier 23 in the period between the fourth time point T4 and the fifth time point T5. Since the optical amplifier 23 is APC controlled, even if the optical input power of the reference laser light SL input to the optical amplifier 23 changes, the optical output power of the reference laser light SL output from the optical amplifier 23 becomes a constant value. Maintained.
  • the wavelength control device 11 switches from the generation of the first reference laser beam SL1 having the first wavelength ⁇ 1 to the generation of the second reference laser beam SL2 having the second wavelength ⁇ 2.
  • a third reference laser beam different from the second reference laser beam SL2 is generated. Therefore, the generation of the reference laser beam SL is suppressed from being interrupted during the switching period.
  • the laser supplied to the optical antenna 8 from the laser light generator 21 is arranged in the laser light path between the laser light generator 21 and the optical antenna 8 by suppressing the interruption of the generation of the reference laser light SL in the switching period.
  • Driving the optical amplifier 23 and the optical amplifier 5 for amplifying light with an excessive gain is suppressed.
  • the output of the excessively amplified laser light (reference laser light SL or pulsed laser light PL) from the optical amplifier 23 and the optical amplifier 5 is suppressed. Therefore, destruction of elements or devices subsequent to the optical amplifier 23 and the optical amplifier 5 is suppressed, and the laser radar device 1 can realize stable laser light output.
  • the optical amplifier 23 and the optical amplifier 5 are APC controlled. Therefore, the optical output power of the laser light output from the optical amplifier 23 and the optical amplifier 5 is maintained at a constant value.
  • the wavelength control device 11 since the wavelength control device 11 generates the second reference laser light SL2 in parallel with the generation of the third reference laser light in at least a part of the switching period, the third reference laser light and the second reference laser light are generated. Interruption of the generation of the reference laser beam SL in switching to SL2 is suppressed.
  • the wavelength control device 11 outputs a switching control signal Cb for instructing switching from the generation of the first reference laser light SL1 to the generation of the second reference laser light SL2, and the switching control signal Cb
  • a second laser light control unit 34 that outputs a second laser light control signal Cd that instructs generation of the second reference laser light SL2 after output, and a second reference laser light from the first time point T1 when the switching control signal Cb is output.
  • a third laser light control unit 33 that outputs a third laser light control signal Cc instructing the generation of the third reference laser light in the switching period up to the fifth time point T5 when the generation of SL2 is completed. Accordingly, at least one of the third reference laser light and the second reference laser light SL2 is generated in the switching period. Therefore, the generation of the reference laser beam SL is suppressed from being interrupted during the switching period.
  • the first reference laser light SL1 that continues to be generated after the output of the switching control signal Cb is used, so that the reference is generated before and after the first time point T1 when the switching control signal Cb is output. Interruption of generation of the laser beam SL is suppressed.
  • the second laser light control unit 34 and the third laser light control unit 33 are input to the optical amplifier 23 which is the sum of the optical power of the third reference laser light and the optical power of the second reference laser light SL2 in the switching period.
  • the optical input power of the reference laser beam SL is set to a predetermined reference value or more. Since the reference laser light SL is continuously input to the optical amplifier 23 with the optical input power equal to or higher than the reference value in the switching period, an increase in the gain of the optical amplifier 23 is suppressed.
  • the third laser light control unit 33 outputs the third laser light control signal Cc at the second time T2 after the output of the switching control signal Cb, and the second laser light control unit 34 outputs the third laser light control signal.
  • the second laser beam control signal Cd is output at the third time point T3 after the output of Cc, and the stop control unit 35 performs the third laser beam control at the fourth time point T4 after the optical power of the second reference laser beam SL2 reaches the reference power.
  • a stop control signal Ce instructing to stop the generation of the reference laser beam is output. Thereby, the interruption of the generation of the reference laser beam SL during the switching period is suppressed. Moreover, after the optical power of the second reference laser beam SL2 is stabilized, the generation of the third reference laser beam is stopped.
  • the laser light generator 21 includes a semiconductor laser that generates the reference laser light SL by supplying current, and includes a first laser light generator 211 that can generate the first reference laser light SL1, and a second reference laser light SL2.
  • a second laser light generator 212 capable of generating
  • the wavelength control device 11 controls the current control circuit 22 that controls the current supplied to the first laser light generator 211 and the second laser light generator 212, thereby generating the second reference laser light SL1 from the second generation. Switching control to generation of the reference laser beam SL2 can be smoothly performed.
  • the laser radar device 1 includes a detection device 24 that detects the optical output power of the reference laser light SL output from the optical amplifier 23, and an output control circuit 25 that controls the optical amplifier 23.
  • the wavelength control device 11 outputs a constant output control signal Cf that makes the optical output power of the reference laser light SL output from the optical amplifier 23 constant to the output control circuit 25 based on the detection result of the detection device 24.
  • a control unit 36 is included.
  • the optical amplifier 23 is APC-controlled based on the detection result of the detection device 24, even if the optical input power of the reference laser light SL input to the optical amplifier 23 fluctuates, the reference laser light output from the optical amplifier 23 The optical output power of SL can be maintained at a constant value.
  • the wavelength control device 11 outputs to the signal processing device 12 a signal processing control signal Cg that instructs to interrupt the processing of the signal processing device 12 and discard the detection data during the switching period.
  • the switching period since the reference laser light SL having two types of wavelengths is output, the detection data of the optical heterodyne detection becomes unstable. The accuracy of analysis processing by the signal processing device 12 based on unstable detection data may be reduced.
  • the processing of the signal processing device 12 is interrupted and the detection data is discarded, so that the result of the analysis processing with reliability is provided.
  • FIG. FIG. 7 is a diagram illustrating an optical modulation device 4B according to the second embodiment.
  • FIG. 8 is a diagram illustrating the operation of the light modulation device 4B according to the second embodiment, and is a diagram illustrating the optical power of the pulsed laser light PL output from the light modulation device 4B.
  • a light intensity modulator such as a Mach-Zehnder type LN modulator or an EA (electro absorption) modulator is used as the light intensity modulator.
  • a modulation optical amplifier 41 is used as a light intensity modulator.
  • the modulation optical amplifier 41 is, for example, an SOA (semiconductor optical amplifier).
  • the light modulation device 4B includes an optical phase modulator 40 that phase-modulates the transmission laser light TL that is the reference laser light SL supplied from the wavelength variable light source 2 via the light separation device 3, and an optical Modulation that supplies the transmission laser beam TL phase-modulated by the phase modulator 40 and generates the pulse laser beam PL by pulse-modulating the transmission laser beam TL supplied from the optical phase modulator 40 by the input of the pulse modulation drive signal.
  • Optical amplifier 41 During the switching period from the first time T1 when the switching control signal Cb is output to the fifth time T5 when the generation of the second reference laser light SL2 is completed, the input of the pulse modulation drive signal to the modulation optical amplifier 41 is maintained.
  • a saw blade drive signal is input to the optical phase modulator 40.
  • the optical phase modulator 40 performs phase modulation of the transmission laser beam TL according to the input saw blade drive signal, and gives an offset frequency to the transmission laser beam TL.
  • the transmission laser light TL phase-modulated by the optical phase modulator 40 is supplied to the modulation optical amplifier 41 via the light guide OF9.
  • the pulse modulation drive signal is input to the modulation optical amplifier 41.
  • the modulation optical amplifier 41 performs pulse modulation of the transmission laser light TL from the optical phase modulator 40 in accordance with the input pulse modulation drive signal to generate the pulse laser light PL.
  • a switching control signal Cb is output from the wavelength switching control unit 32 for switching control from generation of the first reference laser light SL1 to generation of the second reference laser light SL2 in the wavelength tunable light source 2. Even when the switching control signal Cb is output from the wavelength switching control unit 32 and the switching period is started, the input of the pulse modulation drive signal to the modulation optical amplifier 41 is maintained.
  • the input of the pulse modulation drive signal to the modulation optical amplifier 41 is maintained and the modulation optical amplifier 41 is driven, so that the output of the reference laser light SL from the wavelength tunable light source 2 is stopped.
  • the interruption of the supply of the pulsed laser light PL to the optical amplifier 5 arranged at the subsequent stage of the light modulation device 4B is suppressed. That is, even when the supply of the reference laser light SL from the wavelength tunable light source 2 is interrupted, spontaneous emission light (spontaneous emission) is output from the modulation optical amplifier 41. As shown in FIG. 8, the spontaneous emission light output from the modulation optical amplifier 41 is pulsed laser light PL.
  • the spontaneous emission light is output from the modulation optical amplifier 41 of the light modulation device 4B, so that the pulse laser light PL to the optical amplifier 5 is output.
  • the interruption of supply is suppressed.
  • the laser light generator 21 and the optical antenna 8 are arranged in the laser light path between the laser light generator 21 and the optical antenna 8. It is possible to suppress the optical amplifier 5 that amplifies the laser light supplied to 1 from being driven with an excessive gain. Therefore, destruction of the element or device at the subsequent stage of the optical amplifier 5 is suppressed.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • SYMBOLS 1 Laser radar apparatus 2 Wavelength variable light source, 3 Optical separation apparatus, 4 Optical modulation apparatus, 5 Optical amplifier, 6 Optical circulator, 7 WDM filter, 8 Optical antenna, 9 Optical heterodyne receiver, 10 Control apparatus, 11 Wavelength control apparatus , 12 signal processing device, 13 display device, 14 arithmetic processing device, 15 storage device, 16 input / output interface device, 17 arithmetic processing device, 18 storage device, 19 input / output interface device, 20 AD converter, 21 laser light generator , 22 current control circuit, 23 optical amplifier, 24 detection device, 25 output control circuit, 26 collective optical element, 31 first laser light control unit, 32 wavelength switching control unit, 33 third laser light control unit, 34 second laser Light control unit, 35 stop control unit, 36 constant output control unit, 37 signal processing Control unit, 40 optical phase modulator, 41 optical amplifier for modulation, 211 first laser light generator, 212 second laser light generator, Ca first laser light control signal, Cb switching control signal, Cc third laser

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

レーザレーダ装置(1)は、レーザ光発生器を有し、異なる波長のレーザ光を発生可能な波長可変光源(2)と、波長可変光源から供給されたレーザ光を空間に放射する光アンテナ(8)と、レーザ光発生器と光アンテナとの間のレーザ光路に配置される光増幅器と、波長可変光源を制御する波長制御装置(11)と、を備える。波長制御装置は、第1波長の第1レーザ光の発生から第2波長の第2レーザ光の発生に切り替える切替期間において、第2レーザ光とは異なる第3レーザ光を発生させる。

Description

レーザレーダ装置
 本発明は、空間における風速又は風向を遠隔計測するレーザレーダ装置に関する。
 空間にレーザ光を放射し、空間に存在する観測対象の移動に伴う散乱光のドップラーシフトから風速又は風向を算出するレーザレーダ装置が提案されている。レーザレーダ装置は、気象観測、気象予測、及び航空機に係る分野に適用される。
 特許文献1には、走査光軸に沿って送信パルス光を送信し、送信パルス光に基づく受信レーザ光に含まれるドップラー周波数光信号をドップラー周波数電気信号に変換して、ドップラー周波数電気信号を分析するレーザレーダ装置が開示されている。レーザレーダ装置は、レーザ光を発生する基準光源と、レーザ光をパルス化する光変調装置と、空間に強力なレーザ光を放射させるための光増幅器とを有する。一般的に、光増幅器は、光出力パワーを一定にするAPC(auto power control)制御される。
 また、近年では、基準光源として波長可変光源を使用する検討が行われている(例えば非特許文献1参照)。波長可変光源は、レーザ光の波長を離散的に変更可能である。
特許第4785475号公報
江尻省等、「共鳴散乱ライダーの3周波観測による送信周波数の校正」第32回レーザセンシングシンポジウム(2014年9月5日)
 レーザレーダ装置の基準光源として波長可変光源が使用される場合、波長の切り替え時においてレーザ光の発生が中断されると、APC制御されている光増幅器は過剰な利得で駆動することになる。中断後、光増幅器にレーザ光が再度入力されたとき、光増幅器は過剰に増幅されたレーザ光を出力してしまう。光増幅器から過剰に増幅されたレーザ光が出力されると、光増幅器の後段の素子又は装置が破壊される可能性がある。
 本発明は、上記に鑑みてなされたものであって、基準光源として波長可変光源を使用した場合において、波長の切り替え時において光増幅器が過剰な利得で駆動することを抑制できるレーザレーダ装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、レーザ光発生器を有し、異なる波長のレーザ光を発生可能な波長可変光源と、波長可変光源から供給されたレーザ光を空間に放射する光アンテナと、レーザ光発生器と光アンテナとの間のレーザ光路に配置される光増幅器と、波長可変光源を制御する波長制御装置と、を備え、波長制御装置は、第1波長の第1レーザ光の発生から第2波長の第2レーザ光の発生に切り替える切替期間において、第2レーザ光とは異なる第3レーザ光を発生させる、ことを特徴とする。
 本発明によれば、基準光源として波長可変光源を使用した場合において、波長の切り替え時において光増幅器が過剰な利得で駆動することを抑制できる、という効果を奏する。
実施の形態1に係るレーザレーダ装置を示す構成図 実施の形態1に係る制御装置のハードウエア構成を示す図 実施の形態1に係る波長可変光源を示す図 実施の形態1に係る波長制御装置を示す機能ブロック図 実施の形態1に係るレーザレーダ装置の動作を示すフローチャート 実施の形態1に係るレーザレーダ装置の動作を示すタイミングチャート 実施の形態2に係る光変調装置を示す図 実施の形態2に係る光変調装置の動作を示す図
 以下に、本発明の実施の形態に係るレーザレーダ装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係るレーザレーダ装置1を示す構成図である。レーザレーダ装置1は、基準光源から出力された基準レーザ光を光変調してパルスレーザ光を生成し、光アンテナから空間にパルスレーザ光を放射して、空間に存在する観測対象で後方散乱された散乱光を受光して、受光した散乱光と基準光源から供給された基準レーザ光とを光ヘテロダイン検出することにより、散乱光のドップラーシフトから観測対象の移動速度を算出する、コヒーレントドップラーライダ方式のレーザレーダ装置である。基準光源は、出力する基準レーザ光の波長を離散的に変更可能な波長可変光源である。基準レーザ光の波長が変更されることにより、光アンテナの出力角度が変更される。
 図1に示すように、レーザレーダ装置1は、異なる波長の基準レーザ光SLを発生可能な波長可変光源2と、波長可変光源2から供給された基準レーザ光SLを送信レーザ光TLと局部レーザ光LLとに分離する光分離装置3と、光分離装置3を介して波長可変光源2から供給された基準レーザ光SLの一部である送信レーザ光TLを光変調してパルスレーザ光PLを生成する光変調装置4と、光変調装置4から供給されたパルスレーザ光PLを増幅する光増幅器5と、入力されたレーザ光の出力先を切り替える光サーキュレータ6と、異なる波長のレーザ光を合分波するWDM(wavelength division multiplex)フィルタ7と、光増幅器5、光サーキュレータ6、及びWDMフィルタ7を介して光変調装置4から供給されたパルスレーザ光PLを空間に放射する光アンテナ8と、光アンテナ8で受光された空間に存在する観測対象の散乱光RLと波長可変光源2から供給された基準レーザ光SLの一部である局所レーザ光LLとを光ヘテロダイン検出する光ヘテロダイン受信機9と、波長制御装置11及び信号処理装置12を含む制御装置10と、制御装置10に接続される表示装置13とを備えている。信号処理装置12は、光ヘテロダイン受信機9の検出データを処理する。波長制御装置11は、波長可変光源2を制御する。
 波長可変光源2は、ITLA(integrable tunable laser assembly)を含み、異なる波長のレーザ光を発生可能である。波長可変光源2は、レーザ光として、連続光である基準レーザ光SLを出力する。波長可変光源2は、第1波長λ1の第1基準レーザ光SL1と、第1波長λ1とは異なる第2波長λ2の第2基準レーザ光SL2とを出力可能である。波長可変光源2は、第1基準レーザ光SL1が発生している状態及び第2基準レーザ光SL2が発生している状態の一方から他方に切り替え可能である。波長可変光源2は、2種類の波長の基準レーザ光SLのみならず、m種類(mは3以上の自然数)の波長の基準レーザ光SLを出力可能である。
 波長可変光源2は、決められた単一波長(単一周波数)の基準レーザ光SLを連続発振する。また、波長可変光源2は、異なる複数種類の波長の基準レーザ光SLを同時に連続発振することができる。波長可変光源2は、基準レーザ光SLを定偏光で出力する。波長可変光源2から出力された基準レーザ光SLは、導光路OF1を介して、光分離装置3に供給される。
 光分離装置3は、光分岐カプラ又は分離光学素子を含み、波長可変光源2から供給された基準レーザ光SLを送信レーザ光TLと局部レーザ光LLとに分離する。送信レーザ光TL及び局部レーザ光LLはそれぞれ、基準レーザ光SLの一部である。送信レーザ光TL及び局部レーザ光LLは、基準レーザ光SLと同様、連続光である。送信レーザ光TL及び局部レーザ光LLの偏光状態は、基準レーザ光SLの偏光状態と同一である。光分離装置3から出力された送信レーザ光TLは、導光路OF2を介して、光変調装置4に供給される。光分離装置3から出力された局部レーザ光LLは、導光路OF8を介して、光ヘテロダイン受信機9に供給される。
 光変調装置4は、光分離装置3を介して波長可変光源2から供給された基準レーザ光SLである送信レーザ光TLを光変調してパルスレーザ光PLを生成する。光変調装置4は、光位相変調器と、Mach-Zehnder型のLN変調器又はEA(electro absorption)変調器のような光強度変調器とを有する。光変調装置4は、送信レーザ光TLにオフセット周波数を付与し、周期的にオン期間及びオフ期間が繰り返されるパルス変調を行う。光変調装置4から出力されたパルスレーザ光PLは、導光路OF3を介して、光増幅器5に供給される。
 光増幅器5は、波長可変光源2と光アンテナ8との間のレーザ光路に配置される。光増幅器5は、光変調装置4から供給され光アンテナ8に送られるパルスレーザ光PLを増幅する。光増幅器5で増幅されたパルスレーザ光PLは、導光路OF4を介して、光サーキュレータ6に供給される。
 光サーキュレータ6は、入力される光(パルスレーザ光PL又は散乱光RL)に基づいて、出力先の導光路を切り替える。光増幅器5からパルスレーザ光PLが供給された場合、光サーキュレータ6は、パルスレーザ光PLを導光路OF5に出力する。導光路OF5に出力されたパルスレーザ光PLは、WDMフィルタ7及び導光路OF6を介して、光アンテナ8に供給される。WDMフィルタ7を介して光アンテナ8から散乱光RLが供給された場合、光サーキュレータ6は、散乱光RLを導光路OF7に出力する。導光路OF7に出力された散乱光RLは、光ヘテロダイン受信機9に供給される。
 光アンテナ8は、光分離装置3、光変調装置4、光増幅器5、光サーキュレータ6、及びWDMフィルタ7を介して波長可変光源2から供給されたレーザ光を空間に放射する。光アンテナ8は、光変調装置4で生成されたパルスレーザ光PLを空間に放射する。光アンテナ8は、パルスレーザ光PLのビーム径を拡大して、パルスレーザ光PLを空間に放射する。光アンテナ8から放射されたパルスレーザ光PLが空間に存在するエアロゾルのような観測対象に照射されると、観測対象において散乱光RLが発生する。光アンテナ8は、観測対象にパルスレーザ光PLが照射されることにより発生した観測対象の散乱光RLを受信光として受光する。
 光アンテナ8に受光された散乱光RLは、導光路OF6、WDMフィルタ7、及び導光路OF5を介して、光サーキュレータ6に供給される。光サーキュレータ6は、光アンテナ8から供給された散乱光RLを、導光路OF7に出力する。導光路OF7に出力された散乱光RLは、光ヘテロダイン受信機9に供給される。
 光ヘテロダイン受信機9は、光アンテナ8で受光され光サーキュレータ6を介して光アンテナ8から供給された受信光である散乱光RLと、光分離装置3を介して波長可変光源2から供給された局部レーザ光LLとを光ヘテロダイン検出する。光ヘテロダイン受信機9は、局部レーザ光LLと散乱光RLとを光学的に合波して光電変換を行うことによって、局部レーザ光LLと散乱光RLとの差周波数のビート信号を出力する。ビート信号を含む光ヘテロダイン受信機9の検出データは、信号処理装置12に出力される。
 信号処理装置12は、光ヘテロダイン受信機9の検出データを処理する。信号処理装置12による検出データの処理は、光ヘテロダイン受信機9から供給されたビート信号の周波数の分析処理を含む。信号処理装置12は、光ヘテロダイン受信機9から出力されたビート信号をAD変換(analog to digital conversion)する。信号処理装置12は、AD変換されたビート信号に対し逐次的にフーリエ変換及び積算することでパワースペクトルを算出する。また、信号処理装置12は、ビート信号のパワースペクトルのピーク値から空間中の風の影響による周波数シフト量を算出して、パワースペクトルのピーク値から観測対象の移動速度を算出する。
 表示装置13は、信号処理装置12による分析処理の結果を表示する。表示装置13は、フラットパネルディスプレイのような表示機器を含み、信号処理装置12の分析処理の結果を表示画面に表示する。
 波長制御装置11は、波長可変光源2を制御する。波長制御装置11は、波長可変光源2に制御信号を出力して、波長可変光源2を制御する。
 図2は、波長制御装置11及び信号処理装置12を含む制御装置10のハードウエア構成を示す図である。波長制御装置11は、CPU(central processing unit)のようなマイクロプロセッサ及び制御回路を含む演算処理装置14と、ROM(read only memory)又はRAM(random access memory)のようなメモリを含む記憶装置15と、入出力インターフェース装置16とを有する。波長可変光源2は、信号線K1を介して、入出力インターフェース装置16と接続される。波長可変光源2を制御するためのコンピュータプログラムが記憶装置15に記憶されている。演算処理装置14は、記憶装置15に記憶されているコンピュータプログラムに従って、波長可変光源2を制御するための制御信号を、入出力インターフェース装置16及び信号線K1を介して、波長可変光源2に出力する。
 信号処理装置12は、CPUのようなマイクロプロセッサ及び制御回路を含む演算処理装置17と、ROM又はRAMのようなメモリを含む記憶装置18と、入出力インターフェース装置19とを有する。光ヘテロダイン受信機9は、AD変換器(analog to digital converter)20及び信号線K2を介して、入出力インターフェース装置19と接続される。光ヘテロダイン受信機9から出力されたビート信号を含む検出データは、AD変換器20でAD変換された後、信号線K2を介して、入出力インターフェース装置19に供給される。光ヘテロダイン受信機9の検出データを処理するためのコンピュータプログラムが記憶装置18に記憶されている。演算処理装置17は、記憶装置18に記憶されているコンピュータプログラムに従って、光ヘテロダイン受信機9の検出データの処理を実施する。また、表示装置13は、信号線K3を介して、入出力インターフェース装置19と接続される。表示装置13を制御するためのコンピュータプログラムが記憶装置18に記憶されている。演算処理装置17は、記憶装置18に記憶されているコンピュータプログラムに従って、表示装置13を制御するための表示制御信号を、入出力インターフェース装置19及び信号線K3を介して、表示装置13に出力する。
 また、波長制御装置11の入出力インターフェース装置16と、信号処理装置12の入出力インターフェース装置19とは、信号線K4を介して接続される。波長制御装置11は、信号線K4を介して、信号処理装置12に制御信号を供給可能である。
 図3は、波長可変光源2を示す図である。波長可変光源2は、ITLAを含む。波長可変光源2は、基準レーザ光SLを発生可能なレーザ光発生器21を有する。レーザ光発生器21は、半導体レーザ(LD:laser diode)である。レーザ光発生器21は、電流の供給により基準レーザ光SLを発生する。
 レーザ光発生器21は、異なる波長の基準レーザ光SLをそれぞれ発生する複数のレーザ光発生器21を含む。レーザ光発生器21は、第1波長λ1の第1基準レーザ光SL1を発生可能な第1レーザ光発生器211と、第1波長λ1とは異なる第2波長λ2の第2基準レーザ光SL2を発生可能な第2レーザ光発生器212と、を含む。
 また、レーザ光発生器21は、第1レーザ光発生器211及び第2レーザ光発生器212のみならず、第m波長λmを出力可能な第mレーザ光発生器21mを含む。mは3以上の自然数である。複数のレーザ光発生器21は、アレイ状に配置される。
 波長可変光源2は、第1レーザ光発生器211及び第2レーザ光発生器212を含む複数のレーザ光発生器21に供給される電流を制御する電流制御回路22を有する。電流制御回路22による電流の制御は、レーザ光発生器21への電流の供給、レーザ光発生器21に供給される電流量の制御、及びレーザ光発生器21への電流の供給停止を含む。電流制御回路22は、ACC(auto current control)回路であり、複数のレーザ光発生器21のそれぞれに供給される電流量を調整可能である。
 レーザ光発生器21は、電流制御回路22から電流が供給されることにより、基準レーザ光SLを発生する。レーザ光発生器21は、供給される電流量に応じた光パワーと波長の基準レーザ光SLを発生する。レーザ光発生器21への電流の供給が停止されることにより、基準レーザ光SLの発生が停止される。
 第1レーザ光発生器211に電流が供給されることにより、第1レーザ光発生器211は、供給される電流量に応じた光パワーの第1基準レーザ光SL1を発生する。第1レーザ光発生器211への電流の供給が停止されることにより、第1レーザ光発生器211による第1基準レーザ光SL1の発生は停止される。
 第2レーザ光発生器212に電流が供給されることにより、第2レーザ光発生器212は、供給される電流量に応じた光パワーの第2基準レーザ光SL2を発生する。第2レーザ光発生器212への電流の供給が停止されることにより、第2レーザ光発生器212による第2基準レーザ光SL2の発生は停止される。
 同様に、第mレーザ光発生器21mに電流が供給されることにより、第mレーザ光発生器21mは、供給される電流量に応じた光パワーの第m基準レーザ光SLmを発生する。第mレーザ光発生器21mへの電流の供給が停止されることにより、第mレーザ光発生器21mによる第2基準レーザ光SLmの発生は停止される。
 電流制御回路22は、複数のレーザ光発生器21に同時に電流を供給可能である。例えば、電流制御回路22は、第1レーザ光発生器211への電流の供給と並行して、第2レーザ光発生器212に電流を供給することができる。第1レーザ光発生器211及び第2レーザ光発生器212に同時に電流が供給されることにより、第1基準レーザ光SL1と第2基準レーザ光SL2とが同時に発生する。
 電流制御回路22は、マイクロプロセッサ及び制御回路を含む波長制御装置11に制御される。波長制御装置11は、電流制御回路22を制御するための電流制御信号を電流制御回路22に出力する。電流制御信号は、演算処理装置14で生成され、入出力インターフェース装置16を介して、波長可変光源2の電流制御回路22に出力される。
 第1波長λ1の第1基準レーザ光SL1を発生させるとき、波長制御装置11は、電流制御回路22を制御して、第1レーザ光発生器211に電流を供給する。第2波長λ2の第2基準レーザ光SL2を出力させるとき、波長制御装置11は、電流制御回路22を制御して、第2レーザ光発生器212に電流を供給する。同様に、第m波長λmの第m基準レーザ光SLmを出力させるとき、波長制御装置11は、電流制御回路22を制御して、第mレーザ光発生器21mに電流を供給する。
 また、波長可変光源2は、第1レーザ光発生器211及び第2レーザ光発生器212の一方又は両方で発生した基準レーザ光SLが供給される光増幅器23を有する。光増幅器23は、レーザ光発生器21と光アンテナ8との間のレーザ光路に配置される。複数のレーザ光発生器21のうち少なくとも一つのレーザ光発生器21で発生した基準レーザ光SLは、波長可変光源2に設けられた光増幅器23に供給される。
 波長可変光源2は、複数のレーザ光発生器21のそれぞれが発生した基準レーザ光SLを集合させる集合光学素子26を有する。レーザ光発生器21から出力された基準レーザ光SLは、集合光学素子26を介して、光増幅器23に供給される。複数のレーザ光発生器21から同時に基準レーザ光SLが出力された場合、複数の基準レーザ光SLは、集合光学素子26で合波された後、光増幅器23に供給される。
 光増幅器23は、集合光学素子26を介してレーザ光発生器21から供給された基準レーザ光SLを増幅する。光増幅器23は、増幅した基準レーザ光SLを出力する。光増幅器23で増幅された基準レーザ光SLは、光変調装置4でパルスレーザ光PLに変換された後、光アンテナ8から放射される。
 また、波長可変光源2は、光増幅器23から出力される基準レーザ光SLの光出力パワーを検出する検出装置24と、光増幅器23を制御する出力制御回路25と、を有する。
 検出装置24は、光増幅器23から出力される基準レーザ光SLの光出力パワーを検出する。検出装置24は、光増幅器23から基準レーザ光SLが出力されている期間において、光増幅器23から出力された基準レーザ光SLの光出力パワーを監視する。検出装置24の検出信号は、波長制御装置11に出力される。検出装置24の検出信号は、入出力インターフェース装置16を介して、演算処理装置14及び記憶装置15に供給される。
 出力制御回路25は、波長制御装置11に制御される。出力制御回路25は、APC(auto power control)回路であり、光増幅器23から出力される基準レーザ光SLの光出力パワーを一定にするAPC制御を実施する。波長制御装置11は、検出装置24の検出結果に基づいて、光増幅器23から出力される基準レーザ光SLの光出力パワーを一定にする定出力制御信号を出力制御回路25に出力する。定出力制御信号は、演算処理装置14で生成され、入出力インターフェース装置16を介して、出力制御回路25に出力される。
 出力制御回路25によりAPC制御が実施されることにより、レーザ光発生器21から光増幅器23に入力される基準レーザ光SLの光入力パワーが変化しても、光増幅器23から出力される基準レーザ光SLの光出力パワーは一定値に維持される。
 図4は、波長制御装置11を示す機能ブロック図である。波長制御装置11は、第1波長λ1の第1レーザ光である第1基準レーザ光SL1の発生から第2波長λ2の第2レーザ光である第2基準レーザ光SL2の発生に切り替える切替期間において、第2基準レーザ光SL2とは異なる第3レーザ光である第3基準レーザ光を発生させる。
 図4に示すように、波長制御装置11は、第1基準レーザ光SL1の発生を指示する第1レーザ光制御信号Caを出力する第1レーザ光制御部31と、第1基準レーザ光SL1の発生から第2基準レーザ光SL2の発生への切り替えを指示する切替制御信号Cbを出力する波長切替制御部32と、第3基準レーザ光の発生を指示する第3レーザ光制御信号Ccを出力する第3レーザ光制御部33と、第2基準レーザ光SL2の発生を指示する第2レーザ光制御信号Cdを出力する第2レーザ光制御部34と、を有する。
 また、波長制御装置11は、第3基準レーザ光の発生の停止を指示する停止制御信号Ceを出力する停止制御部35と、光増幅器23から出力される基準レーザ光SLの光出力パワーを一定にする定出力制御信号Cfを出力制御回路25に出力する定出力制御部36と、信号処理装置12の処理の中断及び光ヘテロダイン受信機9の検出データの破棄を指示する信号処理制御信号Cgを出力する信号処理制御部37と、を有する。
 波長切替制御部32は、第1レーザ光発生器211から第1波長λ1の第1基準レーザ光SL1が発生している状態で、第1レーザ光発生器211による第1基準レーザ光SL1の発生から、第2レーザ光発生器212による第2波長λ2の第2基準レーザ光SL2の発生への切り替えを指示する切替制御信号Cbを出力する。すなわち、波長切替制御部32は、電流制御回路22から第1レーザ光発生器211に電流が供給されている状態で、第1レーザ光発生器211への電流の供給から第2レーザ光発生器212への電流の供給への切り替えを電流制御回路22に指示する。
 第3レーザ光制御部33は、切替制御信号Cbが出力された時点から第2基準レーザ光SL2の発生が完了する時点までの切替期間において第3基準レーザ光の発生を指示する第3レーザ光制御信号Ccを出力する。第3レーザ光制御部33は、切替制御信号Cbの出力後に第3レーザ光制御信号Ccを出力する。第3基準レーザ光は、第2基準レーザ光SL2とは異なる波長の基準レーザ光SLである。
 第2基準レーザ光SL2の発生が完了することは、第2レーザ光発生器212から発生する第2基準レーザ光SL2の光パワーが予め決められた基準パワーに到達することを含む。すなわち、第2基準レーザ光SL2の発生が完了することは、第2レーザ光発生器212に供給される電流量が予め決められた基準量に到達することを含む。また、第2基準レーザ光SL2の発生が完了する時点は、第2基準レーザ光SL2の光パワーが基準パワーに到達し、第3基準レーザ光及び第1基準レーザ光SL1の発生が停止された後の時点である。
 第3レーザ光制御部33は、切替制御信号Cbが出力された時点から第2基準レーザ光SL2の発生が完了する時点までの切替期間において、第2基準レーザ光SL2とは異なる波長の第3基準レーザ光を、第2レーザ光発生器212とは異なるレーザ光発生器21から発生させるための第3レーザ光制御信号Ccを出力する。すなわち、第3レーザ光制御部33は、第2レーザ光発生器212とは異なるレーザ光発生器21への電流の供給を電流制御回路22に指示する。
 第2レーザ光制御部34は、切替制御信号Cbの出力後に第2基準レーザ光SL2の発生を指示する第2レーザ光制御信号Cdを出力する。すなわち、第2レーザ光制御部34は、切替期間において第2レーザ光発生器212への電流の供給を電流制御回路22に指示する。第2レーザ光制御部34は、第3レーザ光制御信号Ccの出力後に第2レーザ光制御信号Cdを出力する。
 停止制御部35は、第2基準レーザ光SL2の光パワーが基準パワーに到達後の時点において第3基準レーザ光の発生の停止を指示する停止制御信号Ceを出力する。停止制御部35は、第3基準レーザ光を発生していたレーザ光発生器21への電流の供給停止を電流制御回路22に指示する。
 定出力制御部36は、検出装置24の検出結果に基づいて、光増幅器23から出力される基準レーザ光SLの光出力パワーを一定にする定出力制御信号Cfを出力制御回路25に出力する。
 信号処理制御部37は、切替期間において、信号処理装置12にて処理の中断及び検出データの破棄を行うために用いる制御信号として、波長可変光源2が波長遷移中であることを示す信号処理制御信号Cgを信号処理装置12に出力する。信号処理制御信号Cgは、信号線K4を介して、信号処理装置12に出力される。
 波長制御装置11の演算処理装置14により、第1レーザ光制御部31、波長切替制御部32、第3レーザ光制御部33、第2レーザ光制御部34、停止制御部35、定出力制御部36、及び信号処理制御部37の各機能が実施される。波長制御装置11から電流制御回路22に供給される電流制御信号は、第1レーザ光制御信号Ca、切替制御信号Cb、第3レーザ光制御信号Cc、第2レーザ光制御信号Cd、及び停止制御信号Ceを含む。第1レーザ光制御部31、波長切替制御部32、第3レーザ光制御部33、第2レーザ光制御部34、及び停止制御部35を含む波長制御装置11は、電流制御回路22を制御して、第1基準レーザ光SL1の発生から第2基準レーザ光SL2の発生への切り替え制御を実施する。
 次に、レーザレーダ装置1の動作について、図5及び図6を参照して説明する。図5は、レーザレーダ装置1の動作を示すフローチャートである。図6は、レーザレーダ装置1の動作を示すタイミングチャートである。図6に示すタイミングチャートにおいて、横軸は時間である。第1の縦軸は、電流制御回路22から第1レーザ光発生器211に供給される電流量を示す。第2の縦軸は、電流制御回路22から第2レーザ光発生器212に供給される電流量を示す。第3の縦軸は、レーザ光発生器21から光増幅器23に入力される基準レーザ光SLの光入力パワーを示す。第4の縦軸は、光増幅器23から出力される基準レーザ光SLの光出力パワーを示す。
 レーザ光発生器21に供給される電流量と、電流が供給されたレーザ光発生器21から出力される基準レーザ光SLの光パワーとは1対1に対応する。第1の縦軸によって示される、電流制御回路22から第1レーザ光発生器211に供給される電流量は、第1レーザ光発生器211から発生する第1基準レーザ光SL1の光パワーと等価である。第2の縦軸によって示される、電流制御回路22から第2レーザ光発生器212に供給される電流量は、第2レーザ光発生器212から発生する第2基準レーザ光SL2の光パワーと等価である。
 第1レーザ光発生器211から第1レーザ光SL1を発生させるために、第1レーザ光制御部31は、波長可変光源2の電流制御回路22に第1レーザ光制御信号Caを出力する(ステップSP1)。第1レーザ光制御部31から電流制御回路22に第1レーザ光制御信号Caが出力されることにより、電流制御回路22から第1レーザ光発生器211に一定の電流量で電流が供給され、第1レーザ光発生器211から第1基準レーザ光SL1が発生する。第1レーザ光発生器211から第1基準レーザ光SL1が発生している状態において、第2レーザ光発生器212から第1基準レーザ光SL2は発生しない。また、第1レーザ光発生器211から第1基準レーザ光SL1が発生している状態においては、第2レーザ光発生器212のみならず、他のレーザ光発生器21からも基準レーザ光SLは発生しない。
 第1レーザ光発生器211から出力された第1基準レーザ光SL1は、集合光学素子26を介して、光増幅器23に入力される。光増幅器23は、第1基準レーザ光SL1を増幅する。光増幅器23により増幅された第1基準レーザ光SL1は、波長可変光源2から出力される。
 波長制御装置11は、一定の光パワーで第1波長λ1の第1基準レーザ光SL1を出力させるために、第1基準レーザ光SL1の出力をロックするロック制御を実施する。第1基準レーザ光SL1のロック制御は、第1レーザ光発生器211に供給する電流量のロック及び基準レーザ光SLの波長のロックを含む。
 波長可変光源2から出力された第1基準レーザ光SL1は、光分離装置3で送信レーザ光TLと局部レーザ光LLとに分離される。光分離装置3は、第1基準レーザ光SL1の偏光状態を維持したまま、第1基準レーザ光SL1を送信レーザ光TLと局部レーザ光LLとに分離する。送信レーザ光TLは、光変調装置4に供給される。局部レーザ光LLは、光ヘテロダイン受信機9に供給される。
 光変調装置4は、光分離装置3からの送信レーザ光TLにオフセット周波数を付与し、かつ、周期的にオン期間及びオフ期間が繰り返されるパルス変調を行うことによって、パルスレーザ光PLを生成する。なお、代表的なレーザレーダ装置では、オフセット周波数として数10[MHz]以上数100[MHz]以下、強度変調のパルス幅として数100[nsec.]以上1[μsec.]以下が用いられる。
 光変調装置4から出力されたパルスレーザ光PLは、光増幅器5に供給される。光増幅器5は、光変調装置4から供給されたパルスレーザ光PLを増幅する。光増幅器23と同様、光増幅器5は、APC(auto power control)制御される。APC制御された光増幅器5は、出力するパルスレーザ光PLの光パワーを一定値に維持する。
 光増幅器5で増幅されたパルスレーザ光PLは、光サーキュレータ6及びWDMフィルタ7を介して、光アンテナ8に供給される。光アンテナ8は、光増幅器5から供給されたパルスレーザ光PLのビーム径を拡大して、パルスレーザ光PLを空間に放射する。
 光アンテナ8から空間に放射されたパルスレーザ光PLは、空間に存在するエアロゾルのような観測対象により後方散乱される。観測対象により後方散乱された散乱光RLは、空間の観測対象の移動速度に基づくドップラーシフトを受ける。ドップラーシフトされた散乱光RLは、光アンテナ8に入射する。光アンテナ8は、散乱光RLを受信レーザ光として受光する。
 光アンテナ8に受光された散乱光RLは、WDMフィルタ7及び光サーキュレータ6を介して光ヘテロダイン受信機9に供給される。光ヘテロダイン受信機9は、光アンテナ8から供給された散乱光RLと光分離装置3を介して波長可変光源2から供給された局部レーザ光LLとを光ヘテロダイン検出し、散乱光RLと局部レーザ光LLとの差周波数のビート信号を出力する。光ヘテロダイン受信機9は、ビート信号を含む検出データを信号処理装置12に出力する。信号処理装置12は、光ヘテロダイン受信機9の検出データを処理して、観測対象の移動速度を算出する。観測対象の移動速度の算出により、空間の風速又は風向が導出される。表示装置13は、信号処理装置12の処理の結果を表示する。
 波長制御装置11は、波長可変光源2から第1波長λ1の第1基準レーザ光SL1が出力されている状態から第2波長λ2の第2基準レーザ光SL2が出力される状態への切り替え制御を実施する。切り替え制御において、波長切替制御部32は、第1レーザ光発生器211から第1基準レーザ光SL1が発生している状態で、第1基準レーザ光SL1の発生から第2基準レーザ光SL2の発生への切り替えを指示する切替制御信号Cbを出力する。図6に示すように、波長切替制御部32は、第1時点T1において切替制御信号Cbを出力する(ステップSP2)。
 切替制御信号Cbの出力は、第1基準レーザ光SL1のロック制御の解除を含む。波長切替制御部32から切替制御信号Cbが出力されることにより、第1基準レーザ光SL1のロック制御が解除される。
 また、信号処理制御部37は、切替制御信号Cbが出力された第1時点T1において信号処理制御信号Cgを出力する(ステップSP3)。信号処理制御部37から出力された信号処理制御信号Cgは、信号処理装置12に供給される。信号処理制御信号Cgは、信号処理装置12の処理の中断及び光ヘテロダイン受信機9からの検出データの破棄を指示する信号である。信号処理装置12は、受信した信号処理制御信号Cgに基づいて、信号処理装置12の処理の中断及び検出データの破棄を実施する。
 第1時点T1において波長切替制御部32から切替制御信号Cbが出力された後、第3レーザ光制御部33は、第3基準レーザ光の出力を指示する第3レーザ光制御信号Ccを出力する。第3レーザ光制御部33は、切替制御信号Cbが出力された第1時点T1の後の第2時点T2において第3レーザ光制御信号Ccを出力する。(ステップSP4)。
 第3基準レーザ光は、第2基準レーザ光SL2とは別の波長の基準レーザ光SLである。第3基準レーザ光は、切り替え制御の開始前に発生していた第1基準レーザ光SL1でもよいし、第1基準レーザ光SL1及び第2基準レーザ光SL2とは別の波長の基準レーザ光SLでもよい。本実施の形態では、第3基準レーザ光は、第1基準レーザ光SL1を含む。すなわち、第3基準レーザ光として、切り替え制御の開始前から発生していた第1基準レーザ光SL1が使用される。図6に示すように、切替制御信号Cbの出力後、電流制御回路22から第1レーザ光発生器211への電流の供給が継続され、第1レーザ光発生器211からの第1基準レーザ光SL1の発生が継続される。第3レーザ光制御部33は、第1基準レーザ光SL1を第3基準レーザ光として使用するために、切替制御信号Cbが出力された後においても、第1基準レーザ光SL1の出力を継続させるための第3レーザ光制御信号Ccを電流制御回路22に出力する。第3レーザ光制御信号Ccが供給された電流制御回路22は、第1レーザ光発生器211に一定の電流量を供給し続ける。
 第2時点T2において第3レーザ光制御部33から第3レーザ光制御信号Ccが出力された後、第2レーザ光制御部34は、第2基準レーザ光SL2の出力を指示する第2レーザ光制御信号Cdを電流制御回路22に出力する。第2レーザ光制御部34は、第3レーザ光制御信号Ccが出力された第2時点T2の後の第3時点T3において第2レーザ光制御信号Cdを出力する(ステップSP5)。
 図6に示すように、第3時点T3において第2レーザ光制御信号Cdが出力されることにより、電流制御回路22から第2レーザ光発生器212に供給される電流量が徐々に増大する。電流制御回路22から第2レーザ光発生器212に供給される電流量が徐々に増大することにより、第2レーザ光発生器212から発生する第2基準レーザ光SL2の光パワーは徐々に増大する。
 第2レーザ光制御部34は、電流制御回路22から第1レーザ光発生器211に電流が供給され、第1レーザ光発生器211から第1基準レーザ光SL1(第3基準レーザ光)が発生している状態で、第2基準レーザ光SL2の発生を指示する第2レーザ光制御信号Cdを出力する。第2レーザ光制御信号Cdが出力されることにより、波長制御装置11は、第1レーザ光発生器211からの第1基準レーザ光SL1(第3基準レーザ光)の発生と並行して、第2レーザ光発生器212から第2基準レーザ光SL2を発生させる。第2レーザ光制御部34は、第3時点T3において第2レーザ光制御信号Cdを出力することにより、第3基準レーザ光の発生と並行して、第2基準レーザ光SL2を発生させる。
 第3時点T3において第2レーザ光制御部34から第2レーザ光制御信号Cdが出力された後、停止制御部35は、第3基準レーザ光である第1基準レーザ光SL1の発生の停止を指示する停止制御信号Ceを電流制御回路22に出力する。停止制御部35は、第3時点T3の後の第4時点T4において停止制御信号Ceを出力する(ステップSP6)。
 図6に示すように、第3時点T3と第4時点T4との間において、電流制御回路22から第1レーザ光発生器211への電流の供給と並行して、電流制御回路22から第2レーザ光発生器212への電流の供給が行われる。すなわち、第3時点T3と第4時点T4との間において、第3基準レーザ光である第1基準レーザ光SL1の発生と並行して、第2基準レーザ光SL2が発生する。
 図6に示すように、第4時点T4において停止制御信号Ceが出力されることにより、電流制御回路22から第1レーザ光発生器211に供給される電流量が徐々に低下する。電流制御回路22から第1レーザ光発生器211に供給される電流量が徐々に低下することにより、第1レーザ光発生器211から発生する第1基準レーザ光SL1の光パワーは徐々に減少する。
 第4時点T4は、電流制御回路22から第2レーザ光発信器212に供給される電流量が基準量に到達した時点Trよりも後の時点である。時点Trにおいて、第2レーザ光発信器212から出力される第2基準レーザ光SL2の光パワーは、予め決められている基準パワーに到達する。第4時点T4は、第2レーザ光発生器212から発生する第2基準レーザ光SL2の光パワーが基準パワーに到達後の時点である。
 第3レーザ光制御部33は、少なくとも、切替制御信号Cbが出力された第1時点T1から基準パワー以上の第2基準レーザ光SL2が出力される時点Trまでの期間において第3基準レーザ光を発生させるための第3レーザ光制御信号Ccを出力する。本実施の形態では、第3レーザ光制御部33は、切替制御信号Cbが出力された第1時点T1から、第2基準レーザ光SL2の光パワーが基準パワーに到達後の第4時点T4までの期間において第3基準レーザ光を発生させるための第3レーザ光制御信号Ccを出力する。
 また、停止制御部35は、第2基準レーザ光SL2の光パワーが基準パワーに到達後の第4時点T4において第3基準レーザ光の発生の停止を指示する停止制御信号Ceを出力する。
 第2基準レーザ光SL2が基準パワー以上の光パワーで出力され、第4時点T4において停止制御部35から停止制御信号Ceが出力された後、波長制御装置11は、一定の光パワーで第2波長λ2の第2基準レーザ光SL2を出力させるために、第4時点T4の後の第5時点T5において第2基準レーザ光SL2の出力をロックするロック制御を実施する(ステップSP7)。第2基準レーザ光SL2のロック制御は、第2レーザ光発生器212に供給する電流量のロック及び基準レーザ光SLの波長のロックを含む。
 第5時点T5は、第2基準レーザ光SL2の光パワーが基準パワーに到達し、第1基準レーザ光SL1(第3基準レーザ光)の発生が停止された後の時点である。第5時点T5においては、第3基準レーザ光である第1基準レーザ光SL1の出力が停止され、第2基準レーザ光SL2が出力される。第5時点T5は、第2基準レーザ光SL2の発生が完了する時点であり、第1基準レーザ光SL1の発生から第2基準レーザ光SL2の発生への切り替え制御が完了する時点である。切替制御信号Cbが出力された第1時点T1から第2基準レーザ光SL2の発生が完了する第5時点T5までの期間が、切り替え制御が実施される切替期間である。
 信号処理制御部37から出力された信号処理制御信号Cgにより、第1時点T1から第5時点T5までの切替期間において、信号処理装置12の処理の中断及び検出データの破棄が実施されている。信号処理制御部37は、第5時点T5において信号処理制御信号Cgの出力を停止する(ステップSP8)。信号処理制御信号Cgの出力が停止又は信号処理制御信号Cgが解除されることにより、信号処理装置12の処理が再開される。また、信号処理装置12は、光ヘテロダイン受信機9から供給された検出データを保持する。
 以上により、第1基準レーザ光SL1が発生している状態から第2基準レーザ光SL2が発生する状態へ切り替える切り替え制御が終了する。
 図6に示すように、第1時点T1において切替制御信号Cbが出力されることにより切替期間が開始され、第1時点T1から第3レーザ光制御信号Ccが出力される第2時点T2及び第2レーザ光制御信号Cdが出力される第3時点T3を経て停止制御信号Ceが出力される第4時点T4までの期間において、第1基準レーザ光SL1(第3基準レーザ光)が発生し続ける。切替期間が開始された第1時点T1の後の第3時点T3において第2レーザ光制御信号Cdが出力されて第2基準レーザ光SL2の発生が開始される。第2基準レーザ光SL2の発生が開始され第2基準レーザ光SL2の光パワーが基準パワーに到達した時点Trの後の第4時点T4において停止制御信号Ceが出力されることにより第1基準レーザ光SL1(第3基準レーザ光)の発生が停止する。第2レーザ光制御部34及び第3レーザ光制御部33は、切替期間において第2基準レーザ光SL2の光パワーと第1基準レーザ光SL1(第3基準レーザ光)の光パワーとの和、すなわち、光増幅器23に入力される光入力パワーを予め決められた基準値以上にする。第3時点T3と第4時点T4との間においては、第1レーザ光発生器211からの第1基準レーザ光SL1の発生と並行して第2レーザ光発生器212から第2基準レーザ光SL2が発生する。第3時点T3と第4時点T4との間の期間において光増幅器23に入力される基準レーザ光SLの光入力パワーは、第1時点T1と第3時点T3との間の期間において光増幅器23に入力される基準レーザ光SLの光入力パワー及び第4時点T4と第5時点T5との間の期間において光増幅器23に入力される基準レーザ光SLの光パワーよりも大きい。光増幅器23はAPC制御されるため、光増幅器23に入力される基準レーザ光SLの光入力パワーが変化しても、光増幅器23から出力される基準レーザ光SLの光出力パワーは一定値に維持される。
 以上のように、実施の形態1によれば、波長制御装置11は、第1波長λ1の第1基準レーザ光SL1の発生から第2波長λ2の第2基準レーザ光SL2の発生に切り替える切替期間において、第2基準レーザ光SL2とは異なる第3基準レーザ光を発生させる。そのため、切替期間において、基準レーザ光SLの発生が中断されることが抑制される。切替期間において基準レーザ光SLの発生の中断が抑制されることにより、レーザ光発生器21と光アンテナ8との間のレーザ光路に配置されレーザ光発生器21から光アンテナ8に供給されるレーザ光を増幅する光増幅器23及び光増幅器5が過剰な利得で駆動することが抑制される。そのため、光増幅器23及び光増幅器5から過剰に増幅されたレーザ光(基準レーザ光SL又はパルスレーザ光PL)が出力されることが抑制される。したがって、光増幅器23及び光増幅器5の後段の素子又は装置の破壊が抑制され、レーザレーダ装置1は、安定したレーザ光出力を実現できる。
 また、光増幅器23及び光増幅器5はAPC制御される。そのため、光増幅器23及び光増幅器5から出力されるレーザ光の光出力パワーは一定値に維持される。
 また、波長制御装置11は、切替期間の少なくとも一部において、第3基準レーザ光の発生と並行して、第2基準レーザ光SL2を発生させるので、第3基準レーザ光と第2基準レーザ光SL2との切り替えにおいて基準レーザ光SLの発生が中断されることが抑制される。
 また、波長制御装置11は、第1基準レーザ光SL1の発生から第2基準レーザ光SL2の発生への切り替えを指示する切替制御信号Cbを出力する波長切替制御部32と、切替制御信号Cbの出力後に第2基準レーザ光SL2の発生を指示する第2レーザ光制御信号Cdを出力する第2レーザ光制御部34と、切替制御信号Cbが出力された第1時点T1から第2基準レーザ光SL2の発生が完了する第5時点T5までの切替期間において第3基準レーザ光の発生を指示する第3レーザ光制御信号Ccを出力する第3レーザ光制御部33と、を有する。したがって、切替期間においては、第3基準レーザ光及び第2基準レーザ光SL2の少なくとも一方が発生する。そのため、切替期間において、基準レーザ光SLの発生が中断されることが抑制される。
 また、第3基準レーザ光として、切替制御信号Cbの出力後も発生が継続される第1基準レーザ光SL1が使用されるので、切替制御信号Cbが出力される第1時点T1の前後において基準レーザ光SLの発生が中断されることが抑制される。
 また、第2レーザ光制御部34及び第3レーザ光制御部33は、切替期間において第3基準レーザ光の光パワーと第2基準レーザ光SL2の光パワーの和である光増幅器23に入力される基準レーザ光SLの光入力パワーを予め決められた基準値以上にする。切替期間において光増幅器23に基準値以上の光入力パワーで基準レーザ光SLが入力し続けるので、光増幅器23の利得の増大が抑制される。
 また、第3レーザ光制御部33は、切替制御信号Cbの出力後の第2時点T2に第3レーザ光制御信号Ccを出力し、第2レーザ光制御部34は、第3レーザ光制御信号Ccの出力後の第3時点T3に第2レーザ光制御信号Cdを出力し、停止制御部35は、第2基準レーザ光SL2の光パワーが基準パワーに到達後の第4時点T4において第3基準レーザ光の発生の停止を指示する停止制御信号Ceを出力する。これにより、切替期間において基準レーザ光SLの発生の中断が抑制される。また、第2基準レーザ光SL2の光パワーが安定した後、第3基準レーザ光の発生が停止される。
 また、レーザ光発生器21は、電流の供給により基準レーザ光SLを発生する半導体レーザを含み、第1基準レーザ光SL1を発生可能な第1レーザ光発生器211と、第2基準レーザ光SL2を発生可能な第2レーザ光発生器212と、を含む。波長制御装置11は、第1レーザ光発生器211及び第2レーザ光発生器212に供給される電流を制御する電流制御回路22を制御することにより、第1基準レーザ光SL1の発生から第2基準レーザ光SL2の発生への切り替え制御を円滑に実施することができる。
 また、第1レーザ光発生器211及び第2レーザ光発生器212の一方又は両方で発生した基準レーザ光SLは、波長可変光源2に設けられた光増幅器23に供給される。レーザレーダ装置1は、光増幅器23から出力される基準レーザ光SLの光出力パワーを検出する検出装置24と、光増幅器23を制御する出力制御回路25と、を有する。波長制御装置11は、検出装置24の検出結果に基づいて、光増幅器23から出力される基準レーザ光SLの光出力パワーを一定にする定出力制御信号Cfを出力制御回路25に出力する定出力制御部36を有する。光増幅器23が検出装置24の検出結果に基づいてAPC制御されるので、光増幅器23に入力される基準レーザ光SLの光入力パワーが変動しても、光増幅器23から出力される基準レーザ光SLの光出力パワーを一定値に維持することができる。
 また、波長制御装置11は、切替期間において、信号処理装置12の処理の中断及び検出データの破棄を指示する信号処理制御信号Cgを信号処理装置12に出力する。切替期間においては、2種類の波長の基準レーザ光SLが出力されるため、光ヘテロダイン検出の検出データは不安定になる。不安定な検出データに基づく信号処理装置12による分析処理の精度は低下する可能性がある。切替期間においては、信号処理装置12の処理の中断及び検出データの破棄が実施されることにより、信頼性を有する分析処理の結果が提供される。
実施の形態2.
 図7は、実施の形態2に係る光変調装置4Bを示す図である。図8は、実施の形態2に係る光変調装置4Bの動作を示す図であって、光変調装置4Bから出力されたパルスレーザ光PLの光パワーを示す図である。
 実施の形態1の光変調装置4では、光強度変調器として、Mach-Zehnder型のLN変調器又はEA(electro absorption)変調器のような光強度変調器を用いた。実施の形態2の光変調装置4Bでは、光強度変調器として変調用光増幅器41を用いる。変調用光増幅器41は、例えばSOA(semiconductor optical amplifier)である。
 図7に示すように、光変調装置4Bは、光分離装置3を介して波長可変光源2から供給された基準レーザ光SLである送信レーザ光TLを位相変調する光位相変調器40と、光位相変調器40により位相変調された送信レーザ光TLが供給され、パルス変調駆動信号の入力により光位相変調器40から供給された送信レーザ光TLをパルス変調してパルスレーザ光PLを生成する変調用光増幅器41と、を有する。切替制御信号Cbが出力された第1時点T1から第2基準レーザ光SL2の発生が完了する第5時点T5までの切替期間において、変調用光増幅器41へのパルス変調駆動信号の入力が維持される。
 光位相変調器40に鋸刃駆動信号が入力される。光位相変調器40は、入力された鋸刃駆動信号に従って、送信レーザ光TLの位相変調を行い送信レーザ光TLにオフセット周波数を付与する。光位相変調器40により位相変調された送信レーザ光TLは、導光路OF9を介して、変調用光増幅器41に供給される。
 変調用光増幅器41にパルス変調駆動信号が入力される。変調用光増幅器41は、入力されたパルス変調駆動信号に従って、光位相変調器40からの送信レーザ光TLのパルス変調を行い、パルスレーザ光PLを生成する。
 波長可変光源2における第1基準レーザ光SL1の発生から第2基準レーザ光SL2の発生への切り替え制御のために、波長切替制御部32から切替制御信号Cbが出力される。波長切替制御部32から切替制御信号Cbが出力され、切替期間が開始されても、変調用光増幅器41へのパルス変調駆動信号の入力は維持される。
 切替期間においても、変調用光増幅器41へのパルス変調駆動信号の入力が維持され、変調用光増幅器41が駆動されることにより、波長可変光源2からの基準レーザ光SLの出力が停止されても、光変調装置4Bの後段に配置されている光増幅器5へのパルスレーザ光PLの供給の中断が抑制される。すなわち、波長可変光源2からの基準レーザ光SLの供給が途切れても、変調用光増幅器41から自然放出光(spontaneous emission)が出力される。図8に示すように、変調用光増幅器41から出力される自然放出光は、パルスレーザ光PLとなる。そのため、波長可変光源2からの基準レーザ光SLの出力が消失しても、光変調装置4Bの変調用光増幅器41から自然放出光が出力されることにより、光増幅器5へのパルスレーザ光PLの供給の中断が抑制される。切替期間において光増幅器5へのパルスレーザ光PLの供給の中断が抑制されることにより、レーザ光発生器21と光アンテナ8との間のレーザ光路に配置されレーザ光発生器21から光アンテナ8に供給されるレーザ光を増幅する光増幅器5が過剰な利得で駆動することが抑制される。したがって、光増幅器5の後段の素子又は装置の破壊が抑制される。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 レーザレーダ装置、2 波長可変光源、3 光分離装置、4 光変調装置、5 光増幅器、6 光サーキュレータ、7 WDMフィルタ、8 光アンテナ、9 光ヘテロダイン受信機、10 制御装置、11 波長制御装置、12 信号処理装置、13 表示装置、14 演算処理装置、15 記憶装置、16 入出力インターフェース装置、17 演算処理装置、18 記憶装置、19 入出力インターフェース装置、20 AD変換器、21 レーザ光発生器、22 電流制御回路、23 光増幅器、24 検出装置、25 出力制御回路、26 集合光学素子、31 第1レーザ光制御部、32 波長切替制御部、33 第3レーザ光制御部、34 第2レーザ光制御部、35 停止制御部、36 定出力制御部、37 信号処理制御部、40 光位相変調器、41 変調用光増幅器、211 第1レーザ光発生器、212 第2レーザ光発生器、Ca 第1レーザ光制御信号、Cb 切替制御信号、Cc 第3レーザ光制御信号、Cd 第2レーザ光制御信号、Ce 停止制御信号、Cf 定出力制御信号、Cg 信号処理制御信号、K1、K2,K3,K4 信号線、LL 局部レーザ光、OF1,OF2,OF3,OF4,OF5,OF6,OF7,OF8,OF9 導光路、PL パルスレーザ光、RL 散乱光、SL 基準レーザ光、TL 送信レーザ光。

Claims (10)

  1.  レーザ光発生器を有し、異なる波長のレーザ光を発生可能な波長可変光源と、
     前記波長可変光源から供給されたレーザ光を空間に放射する光アンテナと、
     前記レーザ光発生器と前記光アンテナとの間のレーザ光路に配置される光増幅器と、
     前記波長可変光源を制御する波長制御装置と、を備え、
     前記波長制御装置は、第1波長の第1レーザ光の発生から第2波長の第2レーザ光の発生に切り替える切替期間において、前記第2レーザ光とは異なる第3レーザ光を発生させる、
    ことを特徴とするレーザレーダ装置。
  2.  前記波長制御装置は、前記第3レーザ光の発生と並行して、前記第2レーザ光を発生させる、
    ことを特徴とする請求項1に記載のレーザレーダ装置。
  3.  前記波長制御装置は、前記第1レーザ光の発生から前記第2レーザ光の発生への切り替えを指示する切替制御信号を出力する波長切替制御部と、
     前記切替制御信号の出力後に前記第2レーザ光の発生を指示する第2レーザ光制御信号を出力する第2レーザ光制御部と、
     前記第3レーザ光の発生を指示する第3レーザ光制御信号を出力する第3レーザ光制御部と、を有し、
     前記切替期間は、前記切替制御信号が出力された時点から前記第2レーザ光の発生が完了する時点までの期間であり、
     前記第3レーザ光制御部は、前記切替期間において前記第3レーザ光制御信号を出力する、
    ことを特徴とする請求項1又は請求項2に記載のレーザレーダ装置。
  4.  前記第3レーザ光は、前記第1レーザ光を含み、
     前記切替制御信号の出力後、前記第1レーザ光の発生が継続される、
    ことを特徴とする請求項3に記載のレーザレーダ装置。
  5.  前記第2レーザ光制御部及び前記第3レーザ光制御部は、前記切替期間において前記第2レーザ光の光パワーと前記第3レーザ光の光パワーとの和を予め決められた基準値以上にする、
    ことを特徴とする請求項3又は請求項4に記載のレーザレーダ装置。
  6.  前記第3レーザ光制御部は、前記切替制御信号の出力後に前記第3レーザ光制御信号を出力し、
     前記第2レーザ光制御部は、前記第3レーザ光制御信号の出力後に前記第2レーザ光制御信号を出力し、
     前記波長制御装置は、前記第2レーザ光の光パワーが基準パワーに到達後の時点において前記第3レーザ光の発生の停止を指示する停止制御信号を出力する停止制御部をする、
    ことを特徴とする請求項3から請求項5のいずれか一項に記載のレーザレーダ装置。
  7.  前記レーザ光発生器は、電流の供給によりレーザ光を発生し、前記第1レーザ光を発生可能な第1レーザ光発生器と、前記第2レーザ光を発生可能な第2レーザ光発生器と、を含み、
     前記第1レーザ光発生器及び前記第2レーザ光発生器に供給される電流を制御する電流制御回路を有し、
     前記波長制御装置は、前記電流制御回路を制御して、前記第1レーザ光の発生から前記第2レーザ光の発生への切り替え制御を実施する、
    ことを特徴とする請求項1から請求項6のいずれか一項に記載のレーザレーダ装置。
  8.  前記光増幅器から出力されるレーザ光の光出力パワーを検出する検出装置と、
     前記光増幅器を制御する出力制御回路と、を有し、
     前記波長制御装置は、前記検出装置の検出結果に基づいて、前記光増幅器から出力されるレーザ光の光出力パワーを一定にする定出力制御信号を前記出力制御回路に出力する定出力制御部を有する、
    ことを特徴とする請求項1から請求項7のいずれか一項に記載のレーザレーダ装置。
  9.  前記光アンテナで受光されたレーザ光と前記波長可変光源から供給されたレーザ光とを光ヘテロダイン検出する光ヘテロダイン受信機と、
     前記光ヘテロダイン受信機の検出データを処理する信号処理装置と、を備え、
     前記波長制御装置は、前記切替期間において、前記信号処理装置の処理の中断及び前記検出データの破棄を指示する信号処理制御信号を出力する信号処理制御部を有する、
    ことを特徴とする請求項1から請求項8のいずれか一項に記載のレーザレーダ装置。
  10.  前記光変調装置は、前記波長可変光源から出力されたレーザ光を位相変調する光位相変調器と、
     パルス変調駆動信号の入力により前記光位相変調器から供給されたレーザ光をパルス変調する変調用光増幅器と、を有し、
     前記切替期間において、前記変調用光増幅器への前記パルス変調駆動信号の入力が維持される、
    ことを特徴とする請求項1から請求項9のいずれか一項に記載のレーザレーダ装置。
PCT/JP2015/070077 2015-07-13 2015-07-13 レーザレーダ装置 WO2017009939A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/070077 WO2017009939A1 (ja) 2015-07-13 2015-07-13 レーザレーダ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/070077 WO2017009939A1 (ja) 2015-07-13 2015-07-13 レーザレーダ装置

Publications (1)

Publication Number Publication Date
WO2017009939A1 true WO2017009939A1 (ja) 2017-01-19

Family

ID=57757119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070077 WO2017009939A1 (ja) 2015-07-13 2015-07-13 レーザレーダ装置

Country Status (1)

Country Link
WO (1) WO2017009939A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021068724A1 (zh) * 2019-10-10 2021-04-15 深圳市速腾聚创科技有限公司 数据传输装置、激光雷达及智能设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519311A (ja) * 1991-07-16 1993-01-29 Fujitsu Ltd 光増幅方式
JPH0720242A (ja) * 1993-07-02 1995-01-24 Hitachi Ltd 距離及び速度計測装置
JP2009038383A (ja) * 2008-09-08 2009-02-19 Nikon Corp レーザ光源、及び、露光方法
JP2013156448A (ja) * 2012-01-30 2013-08-15 Nikon Corp レーザ装置、露光装置及び検査装置
WO2015087842A1 (ja) * 2013-12-09 2015-06-18 三菱電機株式会社 レーザレーダ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519311A (ja) * 1991-07-16 1993-01-29 Fujitsu Ltd 光増幅方式
JPH0720242A (ja) * 1993-07-02 1995-01-24 Hitachi Ltd 距離及び速度計測装置
JP2009038383A (ja) * 2008-09-08 2009-02-19 Nikon Corp レーザ光源、及び、露光方法
JP2013156448A (ja) * 2012-01-30 2013-08-15 Nikon Corp レーザ装置、露光装置及び検査装置
WO2015087842A1 (ja) * 2013-12-09 2015-06-18 三菱電機株式会社 レーザレーダ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021068724A1 (zh) * 2019-10-10 2021-04-15 深圳市速腾聚创科技有限公司 数据传输装置、激光雷达及智能设备

Similar Documents

Publication Publication Date Title
JP5738436B2 (ja) レーザレーダ装置
US11709229B2 (en) Laser radar device
US11223420B2 (en) Free-space optical communication apparatus
US9689968B2 (en) Wholly optically controlled phased array radar transmitter
JP6005302B2 (ja) レーザレーダ装置
US20170307648A1 (en) Laser radar device
JPWO2015087564A1 (ja) レーザレーダ装置
US11543524B2 (en) Laser radar device
US7999228B2 (en) Apparatus for use in operator training with, and the testing and evaluation of, infrared sensors which are for missile detection
US11204414B2 (en) Laser radar device
US20230021576A1 (en) MULTIPLEXED COHERENT OPTICAL PHASED ARRAY IN A LIGHT DETECTION AND RANGING (LiDAR) SYSTEM
KR101329142B1 (ko) 펄스 레이저 출력 안정화 장치 및 그 방법
WO2017009939A1 (ja) レーザレーダ装置
KR101145683B1 (ko) 레이저 시스템에서 버스트 모드 발진 방법 및 이를 위한 장치
JP2007328044A (ja) 光周波数測定システム及び光周波数コムの周波数成分の決定方法
KR20180005447A (ko) 위상 변조기를 이용한 연속 테라헤르츠파 발생장치
JP2009080007A (ja) 時間分解分光システム,時間分解分光方法及びテラヘルツ波発生システム
JP7205010B1 (ja) 波長ロック機能を備えるライダ
KR20160085413A (ko) 고속 주파수 변환 연속 테라 헤르츠파 발생장치
JP2006029821A (ja) 光周波数測定システム
EP3196689B1 (en) Optical frequency control device
JP2005265427A (ja) 光パルス試験器
US9612000B2 (en) Light source device including phase matching element for measuring the degree of oxygen saturation in blood
JP6226108B1 (ja) 風計測ライダ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP