WO2017008439A1 - 高速无霍尔三相吸尘器电机 - Google Patents

高速无霍尔三相吸尘器电机 Download PDF

Info

Publication number
WO2017008439A1
WO2017008439A1 PCT/CN2015/097549 CN2015097549W WO2017008439A1 WO 2017008439 A1 WO2017008439 A1 WO 2017008439A1 CN 2015097549 W CN2015097549 W CN 2015097549W WO 2017008439 A1 WO2017008439 A1 WO 2017008439A1
Authority
WO
WIPO (PCT)
Prior art keywords
end cover
hallless
speed
impeller
vacuum cleaner
Prior art date
Application number
PCT/CN2015/097549
Other languages
English (en)
French (fr)
Inventor
倪祖根
Original Assignee
莱克电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 莱克电气股份有限公司 filed Critical 莱克电气股份有限公司
Priority to CA2984821A priority Critical patent/CA2984821C/en
Priority to JP2017558558A priority patent/JP2018521614A/ja
Priority to AU2015402113A priority patent/AU2015402113B2/en
Priority to US15/575,985 priority patent/US20180152077A1/en
Priority to EP15898164.7A priority patent/EP3324520B1/en
Publication of WO2017008439A1 publication Critical patent/WO2017008439A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • A47L9/2831Motor parameters, e.g. motor load or speed
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2889Safety or protection devices or systems, e.g. for prevention of motor over-heating or for protection of the user
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings

Definitions

  • the invention relates to a high speed Hallless three-phase vacuum cleaner motor.
  • vacuum cleaners are used in thousands of households. More and more Chinese households are using vacuum cleaners.
  • Conventional vacuum cleaner motors are generally divided into series vacuum cleaner motors and small DC vacuum cleaner motors.
  • Brush motors are often used, and the speed is between 20000-40000 rpm. Minutes; however, brush motors are bulky, low in performance, inconvenient to carry, limited in use, and short in life, while brushless motors require higher hardware and circuit control to achieve, most of which are used for Hall detection.
  • Hall element Magnetic position to achieve magnetic field orientation control, Hall element often has the following problems in use: 1, high price, not easy for customers to accept; 2, difficult to install, if improperly installed, it is easy to damage Hall caused by failure or poor start; Increase the interface and connection between the motor and the control system, easily introduce interference and reduce reliability; 4.
  • the environment is demanding, and it is highly susceptible to high temperature, high humidity, high vibration, dust or harmful chemicals. Damage; 5, increase the size of the motor, the demand for motor space.
  • Hall-free technology in place of Hall-like structures.
  • the speed of the Hall-free motor currently on the market is not high, usually less than 40,000 rpm. Minutes, and the number of commutation times is large, the commutation loss is large, the stator structure is complicated, and it is not convenient to wind.
  • the object of the invention is to provide a high-speed Hallless three-phase vacuum cleaner motor, which realizes the structure of the motor without Hall sensor, the motor speed is more than 80,000 rpm, and is applied to the vacuum cleaner, and the invention can be obtained. Ultra-high vacuum performance.
  • the first technical solution of the present invention is: a high-speed Hallless three-phase vacuum cleaner motor having a Hallless sensor circuit cooled by a motor outlet, and the motor rotation speed controlled by the Hall sensor circuit is greater than 80,000 rpm.
  • the Hallless sensor circuit uses an analog electronic circuit to detect the motor back electromotive force, and the back electromotive force is used as a feedback signal of the rotor magnetic pole position.
  • the method further includes: a core having a center circle, a rotor passing through the center circle, a first end cover for fixing one end of the core, a second end cover engaging with the first end cover and fixing the other end of the core a movable impeller on one side of the second end cover and driven by the rotor, an impeller cover that houses the impeller and is fixed to the second end cover, a fixed impeller between the second end cover and the impeller, and the first end
  • the outside of the cover has a circuit board without a Hall sensor circuit.
  • a second technical solution of the present invention is: a high speed Hallless three-phase vacuum cleaner motor comprising an iron core having a center circle, a rotor passing through a center circle, a first end cover for fixing one end of the iron core, and a second end cover that engages and fixes the other end of the iron core, a movable impeller that is driven by the rotor on one side of the second end cover, and an impeller cover that accommodates the impeller and is fixed to the second end cover at the second end a fixed impeller between the cover and the impeller, and a circuit board located outside the first end cover, the circuit board having a Hallless sensor circuit cooled by the air of the motor, and the motor speed controlled by the Hall sensor circuit is greater than 80000 Transfer / minute.
  • the iron core comprises a circular outer core of a core, and a plurality of protrusions extending radially from the inner wall of the outer edge of the core, and each of the protrusions is formed with a pole at the center end.
  • Boots, and the pole shoe angle a of each of the pole pieces is in the range of 90-100°.
  • each of the pole pieces has an arc length on the same center circle, the center circle has a diameter ranging from 10 to 15 mm, and each of the pole pieces and the rotor has a one-sided air gap of 0.5 mm.
  • the outer wall of the outer edge of the core protrudes outwardly with a plurality of flanges, wherein the flange corresponds to the corresponding protrusion, and is provided with a positioning hole and a screw hole adjacent to the positioning hole, wherein the positioning hole and the screw The center of the hole is on the same circle.
  • the first end cover comprises an outer edge of the end cover, a support portion connected to the outer edge of the end cover, and a plurality of heat dissipation gaps between the outer edge of the end cover and the support portion, wherein the support portion includes the shaft The center of the hole, and the plurality of arms connected to the center at one end and the outer edge of the end cap at the other end, the heat dissipation gap and the arc gap are at least partially aligned in the axial direction.
  • the circuit board includes a plurality of Morse tubes disposed in the heat dissipation gap.
  • the Hallless sensor circuit comprises a controller, a power supply unit that supplies power to the controller, a front drive unit connected to the controller output, a three-phase bridge power connected to the output of the front drive unit and connected to the motor. a circuit unit, and a current sampling unit disposed between the controller and the three-phase bridge power circuit unit.
  • the invention adopts the structure of the Hallless motor and the motor outlet cooling circuit board, has the advantages of simple structure, beautiful appearance and high reliability, and the number of commutation times of the electronic components is reduced, the commutation loss of the electronic components is reduced, and the stator structure is Simple, convenient winding, improved production efficiency, and high speed, small size, high performance, easy to carry, energy saving, long life, etc., applied to the vacuum cleaner, can get super high vacuum performance.
  • Figure 1 is an exploded perspective view of the present invention
  • Figure 2 is an assembled cross-sectional view of the present invention
  • Figure 3 is a plan view of the iron core of the present invention.
  • Figure 4 is a perspective view of another perspective of the present invention, wherein the circuit board is removed;
  • Figure 5 is similar to Figure 4, showing a perspective view of the present invention
  • Figure 6 is a perspective view of a circuit board of the present invention.
  • FIG. 7 is a circuit schematic diagram of a Hall sensorless circuit in the present invention.
  • Figure 8 is a graph showing experimental data of a pole piece angle of a core of 85 degrees in the present invention.
  • Figure 9 is a graph showing experimental data of a pole piece angle of a core of 92 degrees in the present invention.
  • Figure 10 is a graph showing experimental data of a core angle of a core of 98 degrees in the present invention.
  • Figure 11 is a graph showing experimental data of a pole piece angle of a core of 105 degrees in the present invention.
  • the present invention provides a specific embodiment of a high speed Hallless three-phase vacuum cleaner motor, preferably a brushless DC motor comprising an iron core 1 having a center circle 18 a rotor 2 of the center circle 18, a first end cover 3 for fixing one end of the iron core 1, a second end cover 4 for engaging the first end cover 3 and fixing the other end of the iron core 1, and a second end cover 4 a movable impeller 5 driven by the rotor 2, an impeller cover 7 accommodating the impeller 5 and fixed to the second end cover 4, a fixed impeller 8 between the second end cover 4 and the movable impeller 5, and a first end
  • the circuit board 6 on the outer side of the cover 3 has a Hallless sensor circuit cooled by the air outlet of the motor, and the motor speed controlled by the Hall sensor circuit is greater than 80,000 rpm.
  • the center circle 18 has a diameter ranging from 10 to 15 mm, and the single-sided air gap of each of the pole pieces 120 and the rotor 2 is
  • the iron core 1 includes a circular outer core 10 having a circular shape, a plurality of projections 12 extending radially from the inner wall of the outer core 10 of the core, and an outer wall of the outer edge 10 of the core. a plurality of flanges 14 projecting outwardly, wherein one end of the projection 12 is formed with pole pieces 120, the pole piece angle a of each pole piece 120 is in the range of 90-100°, and the arc of each pole piece 120 The lengths are all on the same center circle 18 to reduce the commutation loss of the electronic components.
  • An arcuate gap 16 is formed between the adjacent protrusions 12, and the flange 14 is provided with a screw hole 140 and a positioning hole 142 adjacent to the screw hole 140, wherein the screw hole 140 and the center of the positioning hole 142 are on the same circle .
  • the number of the projections 12 is preferably three, and the central angle between the adjacent two projections 12 in the circumferential direction is 120 degrees, and the number of the flanges 14 is preferably three, and the center line of the flange 14 is The center lines of the corresponding projections 12 are on the same straight line.
  • the screw hole 140 and the positioning hole 142 are used for iron core installation and positioning, and the screw hole 140 is independent of the core magnetic circuit, does not affect the magnetic circuit, and does not affect the loss of the iron core.
  • the applicant has selected the 85 degree angle, the 92 degree angle and the 98 degree angle according to the experimental method of the IEC standard 60312-2000. Compared with the 105 degree angle, the corresponding experimental data table is shown in Figure 8-11.
  • the maximum efficiency of the obtained motor is 45.49, 48.03, 47.29, 44.16, which indicates that the pole shoe angle a is in the range of 90-100°. The efficiency of the motor is better.
  • the first end cap 3 includes a circular end cap outer edge 30, a support portion 32 that is coupled to the end cap outer edge 30, and a plurality of portions between the end cap outer edge 30 and the support portion 32.
  • Heat dissipation gap 34 The support portion 32 includes a center 320 having a shaft bore 322, and a plurality of arms 324 having one end coupled to the center 320 and the other end coupled to the end cap outer edge 30, wherein the shaft bore 322 allows passage of the rotor 2.
  • Two adjacent arms 324 are spaced apart by a heat dissipation gap 34.
  • Each arm 324 is wired
  • the plate screw hole 326 and the end cover screw hole 322 have a step between the circuit board screw hole 326 and the end cover screw hole 322, and the screw hole 140 and the end cover screw hole 322 are in the same direction and pass through Screws are used to achieve a fixed connection of the first and second end caps 3, 4 and the core 1.
  • the number of the arms 324 is preferably three, and the axial direction substantially corresponds to the protruding portion 12 of the core 1, the heat dissipation gap 34 is the air outlet of the motor, and the heat dissipation gap 34 and the arc gap 16 are in the axial direction.
  • the alignment is upward, thereby avoiding the cooling wind blowing on the circuit board 6 due to the blocking of the arm 324, thereby affecting heat dissipation, and the structure is simple, and the volume of the motor is reduced without increasing the cost.
  • the circuit board 6 includes a plurality of MOS (MOS) tubes 60 disposed in the heat dissipation gap 34, one or more heat sinks 62 overlying the Morse tube 60, and a fixed circuit.
  • MOS MOS
  • the plate 6 is attached to the first end cap 3 and secured to the screw 64 of the end cap screw hole 322.
  • a heat generating component such as a Moss tube is arranged on the air outlet of the motor for cooling, and a 2 mm thick heat sink 62 is added to the Morse tube for better cooling.
  • the Hallless sensor circuit also called the motor control circuit, uses the analog electronic control circuit to detect the motor back electromotive force, and replaces the Hall by the back electromotive force as the feedback signal of the rotor magnetic pole position, thereby realizing the motor without Hall sensor structure. It includes a controller 510, a power supply unit 520 that supplies power to the controller 510, a pre-drive unit 520 that is connected to the output of the controller 510, a three-phase bridge power circuit that is connected to the output of the pre-drive unit 520 and is connected to the motor BLDC.
  • the controller 510 is bidirectionally coupled to the motor control unit 516 and a temperature sampling unit 516 bidirectionally coupled to the controller 510.
  • the three-phase bridge power circuit unit 530 includes a plurality of Morse tubes 60.
  • the power supply unit 520 also supplies power to the forward driving unit 520 and the three-phase bridge power circuit unit 530, respectively, wherein the input DC voltage is 21.6V, and the pre-drive unit 520 converts the PWM signal output by the controller 510 into a driving capability.
  • the three-phase bridge power circuit unit 530 is a power conversion unit controlled by the pre-drive unit 520, and the drive motor BLDC operates normally.
  • the controller 510 is a core unit of the motor controller, and receives UI input circuit signals (speed control, start-stop control, etc.), detects a working environment (operating current, operating voltage, ambient temperature, etc.), and outputs according to UI input and environmental input conditions. Suitable PWM control signal.
  • the current sampling unit 511 detects the entire circuit operating current in real time to implement overcurrent protection and load short circuit protection.
  • the voltage sampling unit 512 detects the entire circuit working power in real time. Pressure to achieve overvoltage/undervoltage protection.
  • the speed control unit 514 is a UI control circuit that controls the motor to operate in a high speed or low speed mode.
  • the motor control unit 516 is a UI control circuit that controls the motor to start and stop.
  • the temperature sampling unit 516 detects the ambient operating temperature in real time to achieve temperature protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Brushless Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Electric Suction Cleaners (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种高速无霍尔三相吸尘器电机,包括:具有中心圆的铁芯(1)、穿过中心圆的转子(2)、用于固定铁芯一端的第一端盖(3)、与第一端盖配合并固定铁芯另一端的第二端盖(4)、位于第二端盖的一侧且由转子驱动的动叶轮(5)、收容动叶轮且与第二端盖固定的叶轮罩(7)、位于第二端盖和动叶轮之间的定叶轮(8)、以及位于第一端盖外侧的电路板(6),该电路板具有由电机出风冷却的无霍尔传感器电路,且无霍尔传感器电路控制的电机转速大于80000转/ 分钟。由于采用了无霍尔和电机出风冷却的电路板结构,结构简单,外形美观,可靠性高,同时电子元器件的换相次数减小,减小了电子元器件的换相损耗,而且定子结构简单,方便绕线,生产效率提高,并具有转速高、体积小、性能高、携带方便、节能、寿命长等优点,应用于吸尘器上,可得到超高的吸尘性能。

Description

高速无霍尔三相吸尘器电机
本申请要求于2015年07月16日提交中国专利局、申请号为201510416438.2、发明名称为“高速无霍尔三相吸尘器电机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种高速无霍尔三相吸尘器电机。
背景技术
目前吸尘器走进千家万户,越来越多的中国家庭在使用吸尘器,常规吸尘器电机中,一般分为串激吸尘器电机和小直流吸尘器电机,常采用有刷电机,转速在20000-40000转/分钟;然而有刷电机体积大,性能低,携带不方便,使用范围有限制,且寿命短,而采用无刷电机则需要较高的硬件和电路控制来实现,大部分采用的霍尔来检测磁位置以实现磁场定向控制,霍尔元件在使用中经常出现以下问题:1、价格高,不易为客户接受;2、安装困难,若安装不当,则容易损坏霍尔造成故障或启动不良;3、增加了电机与控制系统的接口和连线,容易引入干扰,降低可靠性;4、使用环境要求苛刻,在高温、高湿、振动大、有尘埃或有害化学物质的环境中,极易受到损坏;5、增大了电机体积、对电机空间要求苛刻。基于以上缺点,业内也有采用无霍尔的技术来替代有霍尔的结构,但是由于无霍尔技术的难度,目前市场上出现的无霍尔的电机转速都不高,通常低于40000转/分钟,而且换相次数多,换相损耗大,定子结构复杂,不便于绕线。
而且市场上目前无刷电机的电路板大多有两种冷却方式,一种是采用大的散热片进行冷却;一种是采用冷却风叶对电路板进行冷却,两种冷却方式都对无刷电机的结构限制较多,而且成本较高。
发明内容
本发明目的是:提供一种高速无霍尔三相吸尘器电机,以实现电机无霍尔传感器结构,电机转速大于8万转/分钟,且应用于吸尘器上,可得到 超高的吸尘性能。
本发明的第一技术方案是:一种高速无霍尔三相吸尘器电机,其具有由电机出风冷却的无霍尔传感器电路,且无霍尔传感器电路控制的电机转速大于80000转/分钟。
在第一技术方案的基础上,进一步包括如下附属技术方案:
优选地,所述无霍尔传感器电路采用模拟电子电路检测电机反电动势,通过反电动势作为转子磁极位置的反馈信号。
优选地,其还包括:具有中心圆的铁芯、穿过中心圆的转子、用于固定铁芯一端的第一端盖、与第一端盖配合并固定铁芯另一端的第二端盖、位于第二端盖的一侧且由转子驱动的动叶轮、收容动叶轮且与第二端盖固定的叶轮罩、位于第二端盖和动叶轮之间的定叶轮、以及位于第一端盖外侧且具有无霍尔传感器电路的电路板。
本发明的第二技术方案是:一种高速无霍尔三相吸尘器电机,其包括具有中心圆的铁芯、穿过中心圆的转子、用于固定铁芯一端的第一端盖、与第一端盖配合并固定铁芯另一端的第二端盖、位于第二端盖的一侧且由转子驱动的动叶轮、收容动叶轮且与第二端盖固定的叶轮罩、位于第二端盖和动叶轮之间的定叶轮、以及位于第一端盖外侧的电路板,所述电路板具有由电机出风冷却的无霍尔传感器电路,且无霍尔传感器电路控制的电机转速大于80000转/分钟。
在第二技术方案的基础上,进一步包括如下附属技术方案:
优选地,所述铁芯包括呈圆形的铁芯外缘、以及由铁芯外缘内壁向中心径向延伸而成的若干个凸出部,而每个凸出部靠中心一端形成有极靴,且所述每个极靴的极靴角a在90-100°范围内。
优选地,所述每个极靴的弧长均在同一中心圆上,所述中心圆的直径范围为10-15毫米,每个极靴与转子的单边气隙为0.5毫米。
优选地,所述铁芯外缘外壁向外凸出有若干个凸缘,其中凸缘与相应的凸出部对应,并设置有定位孔、和与定位孔相邻的螺钉孔,其中定位孔与螺钉孔的圆心在同一圆上。
优选地,所述第一端盖包括端盖外缘、与端盖外缘相连的支撑部、以及位于端盖外缘和支撑部之间的若干个散热间隙,其中支撑部包括具有轴 孔的中心、以及一端与中心相连而另一端则与端盖外缘相连的若干个支臂,散热间隙与弧形间隙在轴向方向上至少部分对齐。
优选地,所述电路板包括设置在散热间隙中的若干个摩斯管。
优选地,所述无霍尔传感器电路包括控制器、向控制器提供电源的电源单元、与控制器输出相连的前置驱动单元、与前置驱动单元输出相连并与电机相连的三相桥功率电路单元、以及设置在控制器和三相桥功率电路单元之间的电流采样单元。
本发明优点是:
本发明采用无霍尔和电机出风冷却电路板结构,结构简单,外形美观,可靠性高,同时电子元器件的换相次数减小,减小了电子元器件的换相损耗,而且定子结构简单,方便绕线,生产效率提高,并具有转速高、体积小、性能高、携带方便、节能、寿命长等优点,应用于吸尘器上,可得到超高的吸尘性能。
附图说明
下面结合附图及实施例对本发明作进一步描述:
图1为本发明的立体分解图;
图2为本发明的组装剖视图;
图3为本发明中铁芯的俯视图;
图4为本发明另一视角下的立体图,其中电路板被移除;
图5与图4类似,为本发明的立体图;
图6为本发明中电路板的立体图;
图7为本发明中无霍尔传感器电路的电路原理图;
图8为本发明中铁芯的极靴角为85度角的实验数据图;
图9为本发明中铁芯的极靴角为92度角的实验数据图;
图10为本发明中铁芯的极靴角为98度角的实验数据图;
图11为本发明中铁芯的极靴角为105度角的实验数据图。
具体实施方式
实施例:如图1-5所示,本发明提供了一种高速无霍尔三相吸尘器电机的具体实施例,优选为无刷直流电机,其包括具有中心圆18的铁芯1、穿过中心圆18的转子2、用于固定铁芯1一端的第一端盖3、与第一端盖3配合并固定铁芯1另一端的第二端盖4、位于第二端盖4的一侧且由转子2驱动的动叶轮5、收容动叶轮5且与第二端盖4固定的叶轮罩7、位于第二端盖4和动叶轮5之间的定叶轮8、以及位于第一端盖3外侧的电路板6,电路板6具有由电机出风冷却的无霍尔传感器电路,且无霍尔传感器电路控制的电机转速大于80000转/分钟。其中中心圆18的直径范围为10-15毫米,每个极靴120与转子2的单边气隙为0.5毫米。
结合图3所示,铁芯1包括呈圆形的铁芯外缘10、由铁芯外缘10内壁向中心径向延伸而成的若干个凸出部12、以及由铁芯外缘10外壁向外凸出的若干个凸缘14,其中凸出部12的一端形成有极靴120,每个极靴120的极靴角a在90-100°范围内,而且每个极靴120的弧长均在同一中心圆18上,以减小电子元器件的换相损耗。相邻凸出部12之间形成有弧形间隙16,凸缘14设置有螺钉孔140、和与螺钉孔140相邻的定位孔142,其中螺钉孔140与定位孔142的圆心在同一圆上。凸出部12的个数优选为3个,且相邻两个凸出部12圆周方向的中心夹角为120度,凸缘14的个数优选为3个,且凸缘14的中心线与相对应的凸出部12中心线在同一直线上。螺钉孔140与定位孔142用于铁芯安装和定位,而螺钉孔140独立于铁芯磁路,不影响磁路,不影响铁芯的损耗。
为进一步论证极靴120的极靴角a在90-100°范围内的有效性和进步性,申请人参照IEC标准60312-2000的实验方法,选择了85度角、92度角、98度角和105度角进行对比实验,相应的实验数据表如图8-11所示,所获得电机最大效率分别为45.49、48.03、47.29、44.16,由此表明极靴角a在90-100°范围内,电机的效率更优。
结合图4所示,第一端盖3包括呈圆形的端盖外缘30、与端盖外缘30相连的支撑部32、以及位于端盖外缘30和支撑部32之间的若干个散热间隙34。支撑部32包括具有轴孔322的中心320、以及一端与中心320相连而另一端则与端盖外缘30相连的若干个支臂324,其中轴孔322允许转子2的穿过。相邻两支臂324间隔有一散热间隙34。每个支臂324设置有线 路板螺钉孔326、和端盖螺钉孔322,其中线路板螺钉孔326和端盖螺钉孔322所在平面之间存在一台阶,而螺钉孔140和端盖螺钉孔322在同一方向上并通过长螺钉来实现第一、二端盖3、4和铁芯1的固定连接。支臂324的个数优选为3个,且轴向方向与铁芯1的凸出部12大致相对应,散热间隙34为电机的出风口,同时散热间隙34与弧形间隙16在轴向方向上对齐,由此避免因支臂324阻挡而导致冷却风吹不到电路板6上的摩斯管而影响散热,结构简单,缩小了电机体积,又不增加成本。
结合图5-6所示,电路板6包括设置在散热间隙34中的若干个摩斯(MOS)管60、覆盖在摩斯管60上的一个或多个散热片62、以及用于固定电路板6到第一端盖3上并固定到端盖螺钉孔322的螺钉64。由此把摩斯管等发热元器件排布在电机的出风口上进行冷却,并通过在摩斯管上加2MM厚的散热片62,进行更好的冷却。
如图7所示,无霍尔传感器电路又称电机控制电路,采用模拟电子控制电路检测电机反电动势,通过反电动势作为转子磁极位置的反馈信号替代霍尔,由此实现电机无霍尔传感器结构,其包括控制器510、向控制器510提供电源的电源单元520、与控制器510输出相连的前置驱动单元520、与前置驱动单元520输出相连并与电机BLDC相连的三相桥功率电路单元530、设置在控制器510和三相桥功率电路单元530之间的电流采样单元511、与控制器510双向相连的电压采样单元512、与控制器510双向相连的调速控制单元514、与控制器510双向相连的电机控制单元516、以及与控制器510双向相连的温度采样单元516。其中三相桥功率电路单元530包括若干个摩斯管60。电源单元520也分别向前置驱动单元520、三相桥功率电路单元530提供电源,其中输入直流电压21.6V,前置驱动单元520将控制器510输出的PWM信号转换为有足够驱动能力的、适合于驱动三相桥的信号。三相桥功率电路单元530为功率转换单元,受控于前置驱动单元520,驱动电机BLDC正常工作。控制器510为电机控制器核心单元,接受UI输入电路信号(调速控制、启停控制等)、检测工作环境(工作电流、工作电压、环境温度等)、根据UI输入及环境输入条件,输出适合的PWM控制信号。电流采样单元511实时检测整个电路工作电流,以实现过电流保护、负载短路保护。电压采样单元512实时检测整个电路工作电 压,以实现过压/欠压保护。调速控制单元514为UI控制电路,控制电机运行于高速或低速模式。电机控制单元516为UI控制电路,控制电机启动、停止。温度采样单元516实时检测环境工作温度,以实现温度保护。
当然上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明主要技术方案的精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种高速无霍尔三相吸尘器电机,其特征在于:其具有由电机出风冷却的无霍尔传感器电路,且无霍尔传感器电路控制的电机转速大于80000转/分钟。
  2. 如权利要求1所述的一种高速无霍尔三相吸尘器电机,其特征在于:所述无霍尔传感器电路采用模拟电子电路检测电机反电动势,通过反电动势作为转子磁极位置的反馈信号。
  3. 如权利要求2所述的一种高速无霍尔三相吸尘器电机,其特征在于还包括:具有中心圆的铁芯、穿过中心圆的转子、用于固定铁芯一端的第一端盖、与第一端盖配合并固定铁芯另一端的第二端盖、位于第二端盖的一侧且由转子驱动的动叶轮、收容动叶轮且与第二端盖固定的叶轮罩、位于第二端盖和动叶轮之间的定叶轮、以及位于第一端盖外侧且具有无霍尔传感器电路的电路板。
  4. 一种高速无霍尔三相吸尘器电机,其特征在于其包括:具有中心圆的铁芯、穿过中心圆的转子、用于固定铁芯一端的第一端盖、与第一端盖配合并固定铁芯另一端的第二端盖、位于第二端盖的一侧且由转子驱动的动叶轮、收容动叶轮且与第二端盖固定的叶轮罩、位于第二端盖和动叶轮之间的定叶轮、以及位于第一端盖外侧的电路板,所述电路板具有由电机出风冷却的无霍尔传感器电路,且无霍尔传感器电路控制的电机转速大于80000转/分钟。
  5. 如权利要求4所述的一种高速无霍尔三相吸尘器电机,其特征在于:所述铁芯包括呈圆形的铁芯外缘、以及由铁芯外缘内壁向中心径向延伸而成的若干个凸出部,而每个凸出部靠中心一端形成有极靴,且所述每个极靴的极靴角a在90-100°范围内,相邻凸出部之间形成有弧形间隙。
  6. 如权利要求5所述的一种高速无霍尔三相吸尘器电机,其特征在于:所述每个极靴的弧长均在同一中心圆上,所述中心圆的直径范围为10-15毫米,每个极靴与转子的单边气隙为0.5毫米。
  7. 如权利要求5或6所述的一种高速无霍尔三相吸尘器电机,其特征在于:所述铁芯外缘外壁向外凸出有若干个凸缘,其中凸缘与相应的凸出 部对应,并设置有定位孔、和与定位孔相邻的螺钉孔,其中定位孔与螺钉孔的圆心在同一圆上。
  8. 如权利要求5所述的一种高速无霍尔三相吸尘器电机,其特征在于:所述第一端盖包括端盖外缘、与端盖外缘相连的支撑部、以及位于端盖外缘和支撑部之间的若干个散热间隙,其中支撑部包括具有轴孔的中心、以及一端与中心相连而另一端则与端盖外缘相连的若干个支臂,散热间隙与弧形间隙在轴向方向上至少部分对齐。
  9. 如权利要求8所述的一种高速无霍尔三相吸尘器电机,其特征在于:所述电路板包括设置在散热间隙中的若干个摩斯管。
  10. 如权利要求4或5或6或8或9所述的一种高速无霍尔三相吸尘器电机,其特征在于:所述无霍尔传感器电路包括控制器、向控制器提供电源的电源单元、与控制器输出相连的前置驱动单元、与前置驱动单元输出相连并与电机相连的三相桥功率电路单元、以及设置在控制器和三相桥功率电路单元之间的电流采样单元。
PCT/CN2015/097549 2015-07-16 2015-12-16 高速无霍尔三相吸尘器电机 WO2017008439A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2984821A CA2984821C (en) 2015-07-16 2015-12-16 High-speed hall-less three-phase vacuum cleaner motor
JP2017558558A JP2018521614A (ja) 2015-07-16 2015-12-16 高速ホールレス3相掃除機モータ
AU2015402113A AU2015402113B2 (en) 2015-07-16 2015-12-16 High-speed hall-less three-phase vacuum cleaner motor
US15/575,985 US20180152077A1 (en) 2015-07-16 2015-12-16 High-speed hall sensor-less three-phase vacuum cleaner motor
EP15898164.7A EP3324520B1 (en) 2015-07-16 2015-12-16 High-speed hall-less three-phase vacuum cleaner motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510416438.2 2015-07-16
CN201510416438.2A CN104967253B (zh) 2015-07-16 2015-07-16 高速无霍尔三相吸尘器电机

Publications (1)

Publication Number Publication Date
WO2017008439A1 true WO2017008439A1 (zh) 2017-01-19

Family

ID=54221243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097549 WO2017008439A1 (zh) 2015-07-16 2015-12-16 高速无霍尔三相吸尘器电机

Country Status (7)

Country Link
US (1) US20180152077A1 (zh)
EP (1) EP3324520B1 (zh)
JP (1) JP2018521614A (zh)
CN (1) CN104967253B (zh)
AU (1) AU2015402113B2 (zh)
CA (1) CA2984821C (zh)
WO (1) WO2017008439A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018234724A1 (en) * 2017-06-19 2018-12-27 Tti (Macao Commercial Offshore) Limited SURFACE CLEANING APPARATUS AND SUCTION SOURCE THEREFOR

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104967253B (zh) * 2015-07-16 2018-03-30 莱克电气股份有限公司 高速无霍尔三相吸尘器电机
CN105406634B (zh) * 2015-12-17 2017-05-17 宁波纽新克电机股份有限公司 一种微型数码吸风电机
CN105846609B (zh) * 2016-05-18 2018-11-30 苏州爱普电器有限公司 真空电机
CN106602832A (zh) * 2016-12-29 2017-04-26 深圳拓邦股份有限公司 无刷无齿槽风机
WO2018170906A1 (en) * 2017-03-24 2018-09-27 Tti (Macao Commercial Offshore) Limited Power tools with integrated circuit boards
CN108390518A (zh) * 2018-04-28 2018-08-10 江苏凯迪航控系统股份有限公司 集成式带电子控制的电机
CN114151371A (zh) * 2022-01-07 2022-03-08 肇庆晟辉电子科技有限公司 一种负50度低温运行的直流无刷风机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201307782Y (zh) * 2008-11-06 2009-09-09 宁波普尔机电制造有限公司 吸尘器永磁直流无刷电机
CN201355796Y (zh) * 2009-01-23 2009-12-02 东明机电(深圳)有限公司 用于吸尘器的直流无刷电机
CN101686784A (zh) * 2007-05-31 2010-03-31 阿莫泰克有限公司 高效薄式真空吸入设备和使用该设备的机器人清洁器
CN203691303U (zh) * 2014-01-22 2014-07-02 哈尔滨理工大学 吸尘器用无位置传感器无刷直流电机控制器
CN204206039U (zh) * 2014-07-18 2015-03-11 周海涛 一种二相逆变三相无刷永磁电动机系统
CN104967253A (zh) * 2015-07-16 2015-10-07 莱克电气股份有限公司 高速无霍尔三相吸尘器电机

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB269374A (en) * 1926-07-13 1927-04-21 Michelangelo Maria Cardellino Improvements in or relating to ignition magnetos for internal-combustion engines
US2464320A (en) * 1941-06-28 1949-03-15 Hartford Nat Bank & Trust Co Structure of dynamoelectric machines
US5155392A (en) * 1990-11-05 1992-10-13 Motorola, Inc. Low di/dt BiCMOS output buffer with improved speed
JPH0588163U (ja) * 1992-04-24 1993-11-26 株式会社明電舎 フレームレス回転電機
GB9219167D0 (en) * 1992-09-10 1992-10-28 Derivative Technology Limited Compressor
SE470563B (sv) * 1993-01-08 1994-08-29 Electrolux Ab Dammsugare
JP3486326B2 (ja) * 1997-06-23 2004-01-13 トヨタ自動車株式会社 同期モータの運転制御方法およびその装置
JP3832257B2 (ja) * 2001-02-26 2006-10-11 株式会社日立製作所 同期モータの起動制御方法と制御装置
JP2005051841A (ja) * 2003-07-30 2005-02-24 Hitachi Ltd 電動機,圧縮機及び空気調和機
JP4626405B2 (ja) * 2005-06-01 2011-02-09 株式会社デンソー ブラシレスモータ
JP4121093B2 (ja) * 2005-12-16 2008-07-16 三菱電機株式会社 車両用電動発電機
JP2008160950A (ja) * 2006-12-22 2008-07-10 Matsushita Electric Ind Co Ltd モータ駆動装置およびこれを具備した冷蔵庫
JP4927521B2 (ja) * 2006-12-27 2012-05-09 シャープ株式会社 電気掃除機
JP4804381B2 (ja) * 2007-02-28 2011-11-02 三菱電機株式会社 電動機駆動制御装置及び電動機
EP1978631A1 (en) * 2007-04-05 2008-10-08 Fem B.V. Brushless 3-phase motor, electrical power tool and method of driving the brushless 3-phase motor
KR100903519B1 (ko) * 2007-09-18 2009-06-19 주식회사 아모텍 영구자석 매입형 모터 및 이를 이용한 공기흡입장치
TW200917626A (en) * 2007-10-12 2009-04-16 Sunonwealth Electr Mach Ind Co Magnetic pole structure of stator with radial winding
CN102017373B (zh) * 2008-05-08 2013-03-13 三菱电机株式会社 旋转电动机及采用该旋转电动机的送风机
GB2469137B (en) * 2009-04-04 2014-06-04 Dyson Technology Ltd Control of an electric machine
US8143759B2 (en) * 2009-04-30 2012-03-27 Hamilton Sundstrand Corporation Laminated stator assembly
WO2011017763A1 (en) * 2009-08-11 2011-02-17 Resmed Motor Technologies Inc. Single stage, axial symmetric blower and portable ventilator
JP5230682B2 (ja) * 2010-04-26 2013-07-10 三菱電機株式会社 同期電動機の制御装置
US8853985B2 (en) * 2010-09-17 2014-10-07 Marvell World Trade Ltd. Back-EMF detection for motor control
JP5452460B2 (ja) * 2010-12-17 2014-03-26 三菱電機株式会社 電動過給機の制御装置
JP5431384B2 (ja) * 2011-02-14 2014-03-05 株式会社三井ハイテック 固定子積層鉄心の製造方法及びそれを用いて製造した固定子積層鉄心
JP6106660B2 (ja) * 2011-04-04 2017-04-05 コロンビア・パワー・テクノロジーズ・インコーポレーテッドColumbia Power Technologies,Inc. 電気機械エネルギー変換器のステータとロータとの間の空隙を維持する機械組立体
JP5751623B2 (ja) * 2011-05-18 2015-07-22 セイコーインスツル株式会社 小型発電装置、及び携帯型電子機器
JP2013019327A (ja) * 2011-07-12 2013-01-31 Panasonic Corp 電動送風機およびそれを用いた電気掃除機
CN103321922B (zh) * 2012-03-22 2016-11-23 德昌电机(深圳)有限公司 风机及具有该风机的真空吸尘器和干手机
CN104485858B (zh) * 2014-12-11 2017-03-15 惠州市蓝微电子有限公司 无刷无霍尔传感器直流电机控制电路
CN204992936U (zh) * 2015-07-16 2016-01-20 莱克电气股份有限公司 高速无霍尔三相吸尘器电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101686784A (zh) * 2007-05-31 2010-03-31 阿莫泰克有限公司 高效薄式真空吸入设备和使用该设备的机器人清洁器
CN201307782Y (zh) * 2008-11-06 2009-09-09 宁波普尔机电制造有限公司 吸尘器永磁直流无刷电机
CN201355796Y (zh) * 2009-01-23 2009-12-02 东明机电(深圳)有限公司 用于吸尘器的直流无刷电机
CN203691303U (zh) * 2014-01-22 2014-07-02 哈尔滨理工大学 吸尘器用无位置传感器无刷直流电机控制器
CN204206039U (zh) * 2014-07-18 2015-03-11 周海涛 一种二相逆变三相无刷永磁电动机系统
CN104967253A (zh) * 2015-07-16 2015-10-07 莱克电气股份有限公司 高速无霍尔三相吸尘器电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3324520A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018234724A1 (en) * 2017-06-19 2018-12-27 Tti (Macao Commercial Offshore) Limited SURFACE CLEANING APPARATUS AND SUCTION SOURCE THEREFOR

Also Published As

Publication number Publication date
EP3324520B1 (en) 2022-09-28
AU2015402113A1 (en) 2017-11-23
CN104967253A (zh) 2015-10-07
AU2015402113B2 (en) 2019-09-12
EP3324520A4 (en) 2019-04-03
EP3324520A1 (en) 2018-05-23
US20180152077A1 (en) 2018-05-31
JP2018521614A (ja) 2018-08-02
CA2984821A1 (en) 2017-01-19
CN104967253B (zh) 2018-03-30
CA2984821C (en) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2017008439A1 (zh) 高速无霍尔三相吸尘器电机
US10033242B2 (en) Electrical machines and methods of assembling the same
WO2014173232A1 (zh) 排水泵用无刷电动机及排水泵
WO2008041353A1 (fr) Moteur de ventilateur
US10432073B2 (en) Medical pump
US20170276412A1 (en) Cooling fan and air-cooled refrigerator comprising same
WO2011109984A1 (zh) 两台永磁同步电机的同轴驱动系统
JP3307386B2 (ja) 電動送風機及びそれを用いた電気掃除機
WO2010121407A1 (zh) 洗碗机专用电机及使用该电机的水泵总成
CN204992936U (zh) 高速无霍尔三相吸尘器电机
TWI495793B (zh) 循環扇及其扇葉組
KR101312721B1 (ko) 냉각팬의 팬 구조를 개선한 모터 장치
CN109687622B (zh) 一种防漏电永磁同步电机
WO2019119803A1 (zh) 风机组件及家用电器
KR101659581B1 (ko) 드라이버 일체형 ec모터
CN105827079B (zh) 采用轴向磁通无刷电机的吸尘器风机
CN205622447U (zh) 采用轴向磁通无刷电机的吸尘器风机
CN201332325Y (zh) 一种节能的负压产生装置
WO2019134373A1 (zh) 压缩机和制冷设备
TWI441417B (zh) 風扇直流馬達之圓弧形磁石轉子結構
CN216216372U (zh) 一种具有高效散热结构的微型电机
CN208918825U (zh) 一种变频齿轮泵
CN216929708U (zh) 吸尘器电机及吸尘器
KR20140100280A (ko) 팬쉬라우드 조립체
CN211039110U (zh) 一种单相无刷直流电风机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898164

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2984821

Country of ref document: CA

Ref document number: 2017558558

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15575985

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015402113

Country of ref document: AU

Date of ref document: 20151216

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE