WO2019134373A1 - 压缩机和制冷设备 - Google Patents

压缩机和制冷设备 Download PDF

Info

Publication number
WO2019134373A1
WO2019134373A1 PCT/CN2018/102029 CN2018102029W WO2019134373A1 WO 2019134373 A1 WO2019134373 A1 WO 2019134373A1 CN 2018102029 W CN2018102029 W CN 2018102029W WO 2019134373 A1 WO2019134373 A1 WO 2019134373A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnet motor
compressor
frequency converter
housing
Prior art date
Application number
PCT/CN2018/102029
Other languages
English (en)
French (fr)
Inventor
乔正忠
徐飞
邱小华
毛临书
刘超丛
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201820487751.4U external-priority patent/CN208028805U/zh
Priority claimed from CN201810308108.5A external-priority patent/CN108288938B/zh
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Priority to EP18897970.2A priority Critical patent/EP3687058B1/en
Priority to ES18897970T priority patent/ES2913801T3/es
Priority to JP2020526512A priority patent/JP7341136B2/ja
Publication of WO2019134373A1 publication Critical patent/WO2019134373A1/zh
Priority to US16/867,710 priority patent/US11486614B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • H02P25/184Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays wherein the motor speed is changed by switching from a delta to a star, e.g. wye, connection of its windings, or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings

Definitions

  • the present invention relates to the field of compressor manufacturing technology, and in particular to a compressor and a refrigeration device.
  • the compressor is an important and core component of the refrigeration equipment.
  • the related art proposes a winding switching scheme, that is, when the motor of the compressor is running at a low speed, the stator winding of the compressor is connected in a star shape, and the motor of the compressor is running at a high speed.
  • the stator windings of the compressor are connected in a delta shape.
  • the relevant technology design scheme of the compressor motor is not involved in the related art. If the motor scheme is improperly designed, the overall efficiency of the motor will be low, the range of speed expansion is small, and the user experience is poor.
  • the present invention aims to solve at least one of the technical problems existing in the prior art or related art.
  • a first aspect of the invention proposes a compressor.
  • a second aspect of the invention proposes a refrigeration apparatus.
  • the first aspect of the present invention provides a compressor for a refrigeration apparatus, the refrigeration apparatus including a connection assembly and a frequency converter connected to one end of the connection assembly, the compressor comprising: a first housing; a permanent magnet The motor is disposed in the first housing and connected to the other end of the connecting component; the critical speed of the permanent magnet motor is n0; the number of poles of the permanent magnet motor is P; when the winding of the permanent magnet motor is star-connected: the busbar of the inverter The voltage is Udc; the no-load back EMF of the permanent magnet motor is E0; when the preset speed of the permanent magnet motor is n1, the direct-axis inductance of the permanent magnet motor is Ld, and the output current of the inverter is I1; E0, P, The relationship of I1, Ld, n1 and Udc satisfies: (E0-P ⁇ I1 ⁇ Ld) ⁇ n1 ⁇ 0.6Udc; where n1 ⁇ n0 and n0-n1 ⁇ 1r
  • the permanent magnet motor of the compressor provided by the invention has a critical speed of n0.
  • the rotational speed of the permanent magnet motor is less than n0.
  • the speed of the magneto is greater than n0.
  • the relationship between E0, P, I1, Ld, n1 and Udc is reasonably set to satisfy (E0-P ⁇ I1 ⁇ Ld) ⁇ n1 ⁇ 0.6Udc, so that The magneto is also highly efficient in low-speed rotation and high-speed rotation, so that the product has high performance in the whole frequency band; further, by setting the preset rotation speed n1 reasonably, the rotation speed is n1 ⁇ n0, and n0- N1 ⁇ 1r / s, at a speed n1 close to the critical speed n0, the permanent magnet motor in the star connection mode has a certain weak magnetic angle, and the performance of the permanent magnet motor decreases with the increase of the rotational speed, when the permanent magnet motor When the rotational speed is greater than the critical speed n0 and is very close to the rotational speed of the critical speed n0, the winding is weakened by the permanent magnet motor in the angular connection mode, and the performance of the permanent magnet
  • the value range of n0 is: n0 ⁇ 40r/s.
  • the efficiency of the permanent magnet motor of the star-connected winding In the descending mode, the efficiency of the permanent magnet motor with the angular connection winding is in the rising mode, thereby ensuring high performance of the product in the full frequency band.
  • the connection mode of the winding of the permanent magnet motor is switched in the above region, the switching is more Smooth, can greatly reduce the impact, the transition is more stable, improve the energy efficiency of the product, improve the product performance and market competitiveness.
  • the permanent magnet motor is a three-phase permanent magnet motor.
  • the permanent magnet motor is not limited to a three-phase permanent magnet motor, and may be other multi-phase permanent magnet motors.
  • the permanent magnet motor comprises: a stator provided with a stator core and a winding wound on the stator core; a rotor disposed in the mounting cavity of the stator, the rotor is provided with a rotor core and A permanent magnet located on the rotor core.
  • the stator includes a stator core and a winding.
  • the stator is stationary while the compressor is running by winding the winding on the stator core.
  • the stator When the current passes through the winding, the stator generates a magnetic field; the rotor includes the rotor.
  • the iron core and the permanent magnet the magnetic pole of the permanent magnet does not change.
  • the windings of the stator are three-phase stator windings, and the windings of each phase stator include a first joint and a tail joint, all of the first joints are connected with one terminal of the compressor, and all the tail joints are compressed. The other terminal of the machine is connected.
  • the winding of each phase stator comprises a first joint and a tail joint, all the joints of the three-phase stator windings are connected to one terminal of the compressor, and all the tail joints of the three-phase stator windings are connected to the compressor.
  • a terminal is connected and the connection components are respectively connected to the two terminals of the compressor, so that different connection manners of the windings, such as a star connection and an angular connection, can be realized by different actions of the connection assembly.
  • the permanent magnet is a rare earth permanent magnet; or the permanent magnet is a ferrite permanent magnet.
  • the rotor core includes slots, and the number of the slots is at least one, and all the slots are distributed along the circumferential direction of the rotor core, and the permanent magnets are disposed in the slots.
  • a permanent magnet arrangement of the rotor is specifically defined.
  • By machining the slots in the rotor core it is possible to provide a mounting position for the permanent magnets, facilitating the positioning and assembly of the permanent magnets.
  • the structure has fewer processing steps, simple processing technology, low production cost, and is convenient for mass production.
  • the permanent magnet has a cylindrical shape, and the permanent magnet is sleeved on the outer wall of the rotor core.
  • a permanent magnet arrangement of the rotor is specifically defined.
  • the permanent magnet is sleeved on the outer wall of the rotor core, and the rotor core serves as a support for facilitating the positioning and assembly of the permanent magnet.
  • the structure has fewer processing steps, simple processing technology, low production cost, and is convenient for mass production.
  • a second aspect of the present invention provides a refrigeration apparatus comprising: a second housing; a frequency converter disposed in the second housing; the compressor according to any one of the first aspects, wherein the compressor is disposed in the a second housing; a connecting component disposed in the second housing, respectively connected to the frequency converter and the compressor; a controller disposed in the second housing, connecting the connecting component, the frequency converter and the compressor for controlling the frequency converter and the compressor Therefore, the relationship of E0, P, I1, Ld, n1, and Udc is satisfied: (E0 - P ⁇ I1 ⁇ Ld) ⁇ n1 ⁇ 0.6Udc.
  • the refrigeration device comprises: a second casing, a frequency converter, a compressor, a connection component and a controller.
  • the controller controls the frequency converter and the compressor so that the relationship of E0, P, I1, Ld, n1 and Udc satisfies: (E0-P ⁇ I1 ⁇ Ld) ) ⁇ n1 ⁇ 0.6Udc, so as to ensure that the permanent magnet motor has a certain weak magnetic depth when the rotational speed of the permanent magnet motor is very close to the critical speed, and the permanent magnet motor with the angular connection of the winding does not enter the In the weak magnetic region, the product has high performance in the whole frequency band, and the switching of the winding mode of the permanent magnet motor is ensured without jamming, the switching is smoother, and the smoothness of the transition is ensured.
  • the frequency converter comprises: a rectifier; an inverter connected to the rectifier.
  • the composition of the frequency converter is determined according to the characteristics of the input current of the frequency converter.
  • the frequency converter includes a rectifier and an inverter, and the input current of the frequency converter is filtered by the rectifier.
  • the alternating current is converted into direct current and the direct current is supplied to the inverter.
  • the frequency converter when the input current of the frequency converter is direct current, the frequency converter includes an inverter.
  • the composition of the frequency converter is determined according to the characteristics of the input current of the frequency converter.
  • the frequency converter includes an inverter, and the inverter converts the direct current electrical energy into alternating current.
  • the connecting component comprises: a switching switch for realizing switching of the winding of the permanent magnet motor in a star connection and an angular connection.
  • connection state of the winding of the permanent magnet motor and the frequency converter is realized by setting the switching switch, using the opening or closing of the switching switch, thereby realizing the star connection of the permanent magnet motor winding and the winding of the permanent magnet motor Angular connection.
  • the structure is easy to process, install and subsequently disassemble and replace, and has strong interchangeability.
  • the refrigeration apparatus further comprises: detecting means disposed in the second housing to connect the controller and the compressor.
  • the detecting device is used to detect the rotating speed of the permanent magnet motor in real time, and the controller determines whether the rotational speed of the permanent magnet motor reaches the preset rotational speed n1, and provides real-time data for easy control. Accurate and timely control of other components to ensure the reliability and accuracy of the product.
  • FIG. 1 is a schematic structural view of an inverter, a permanent magnet motor, and a changeover switch according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of an external connection of a permanent magnet motor according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural view of a winding of a permanent magnet motor according to a first embodiment of the present invention
  • FIG. 4 is a schematic structural view of an external connection of a permanent magnet motor according to a second embodiment of the present invention.
  • Figure 5 is a schematic structural view of a winding of a permanent magnet motor according to a second embodiment of the present invention.
  • Figure 6 is a cross-sectional view showing a permanent magnet motor according to an embodiment of the present invention.
  • Figure 7 is a cross-sectional view of a compressor of one embodiment of the present invention.
  • a compressor 1 and a refrigeration apparatus according to some embodiments of the present invention are described below with reference to FIGS. 1 through 7.
  • an embodiment of the first aspect of the present invention provides a compressor 1 for a refrigeration apparatus, the refrigeration apparatus including a connection assembly and a frequency converter 10 connected to one end of the connection assembly, the compressor 1 includes: a first housing; a permanent magnet motor 20 disposed in the first housing to connect the other end of the connection assembly; a critical speed of the permanent magnet motor 20 is n0; a pole number of the permanent magnet motor 20 is P;
  • the winding 206 of the motor 20 is connected in a star shape: the bus voltage of the inverter 10 is Udc; the no-load back EMF coefficient of the permanent magnet motor 20 is E0; when the preset rotational speed of the permanent magnet motor 20 is n1, the permanent magnet motor 20
  • the direct-axis inductance is Ld, the output current of the inverter 10 is I1; the relationship of E0, P, I1, Ld, n1 and Udc is satisfied: (E0-P ⁇ I1 ⁇ Ld) ⁇ n1 ⁇ 0.6Udc; where
  • the permanent magnet motor 20 of the compressor 1 provided by the present invention has a critical speed of n0.
  • the rotational speed of the permanent magnet motor 20 is less than n0, when the winding of the permanent magnet motor 20 When the 206 is angularly connected, the rotational speed of the permanent magnet motor 20 is greater than n0.
  • the relationship between E0, P, I1, Ld, n1 and Udc is reasonably set to satisfy (E0-P ⁇ I1 ⁇ Ld) ⁇ n1 ⁇ 0.6Udc
  • the permanent magnet motor 20 also has high efficiency performance at low speed rotation and high speed rotation, thereby achieving the purpose of high performance of the product in the whole frequency band; further, by setting the preset rotation speed n1 reasonably, the rotation speed n1 ⁇ n0, And n0-n1 ⁇ 1r/s, the permanent magnet motor 20 in the star connection mode has a certain weak magnetic angle when the rotation speed n1 is close to the critical speed n0, and the performance of the permanent magnet motor 20 decreases as the rotation speed increases.
  • the critical speed n0 is ensured, and the star connection has a certain weak magnetic depth, and when the angular connection is made, the rotational speed of the permanent magnet motor 20 rises without weakening the magnetic field, so that the winding 206 of the permanent magnet motor 20 Connection method Then switch more smoothly, it can greatly reduce the impact, the transition smoother, improve operational energy efficiency of products to enhance the performance and market competitiveness.
  • the unit of the critical speed n0 is rps
  • the unit of the bus voltage Udc is V
  • the unit of the no-load back EMF E0 is V/rps
  • the unit of the preset speed n1 is rps
  • the unit of the straight-axis inductance Ld is H
  • the unit of the output current I1 is A.
  • the number of the switch 40 is six, which are respectively S1, S2, S3, S4, S5, and S6.
  • the permanent magnet motor 20 is powered by the frequency converter 10, and six switchers 40 are provided in the connection assembly.
  • FIGS. 2 and 3 when S1, S2, and S3 are turned on, and S4, S5, and S6 are turned off, the windings 206 of the permanent magnet motor 20 are connected in a star shape.
  • FIGS. 4 and 5 when S1, S2, and S3 are turned off and S4, S5, and S6 are turned on, the windings 206 of the permanent magnet motor 20 are angularly connected.
  • n0 has a value range of: n0 ⁇ 40 r / s.
  • the permanent magnet motor of the star-connected winding 206 when the rotational speed of the permanent magnet motor 20 is within the critical speed n0, the permanent magnet motor of the star-connected winding 206 The efficiency of 20 is in a falling mode, and the efficiency of the permanent magnet motor 20 of the angularly connected winding 206 is in an ascending mode, thereby ensuring that the product has higher performance in the full frequency band, while the winding 206 of the permanent magnet motor 20 is connected in the above region. If you switch within, the switching is smoother, the impact can be greatly reduced, the transition is more stable, the energy efficiency of the product is improved, and the product performance and market competitiveness are improved.
  • the permanent magnet motor 20 is a three-phase permanent magnet motor.
  • the permanent magnet motor 20 is not limited to a three-phase permanent magnet motor, and may be other multi-phase permanent magnet motors.
  • the permanent magnet motor 20 includes: a stator 202 provided with a stator core 204 and a winding 206 wound on the stator core 204; and a rotor 208 disposed at Within the mounting cavity of the stator 202, the rotor 208 is provided with a rotor core 210 and permanent magnets 212 on the rotor core 210.
  • the stator 202 includes a stator core 204 and a winding 206.
  • the stator 202 By winding the winding 206 on the stator core 204, the stator 202 is stationary while the compressor 1 is operating, when current passes through the winding 206.
  • the stator 202 generates a magnetic field;
  • the rotor 208 includes a rotor core 210 and a permanent magnet 212.
  • the magnetic poles of the permanent magnet 212 do not change.
  • the rotor 208 is operated when the compressor 1 is in operation.
  • the stator 202 Disposed in the mounting cavity of the stator 202, the stator 202 generates a rotating magnetic field, and the rotor 208 is cut by magnetic lines in a rotating magnetic field to generate an output current, which provides power for the operation of the compressor 1.
  • the windings 206 of the stator 202 are three-phase stator windings, and the windings 206 of each phase of the stator 202 include a header 214 and a tail joint 216, all of which are connected to the compressor 1 The terminals are connected, and all of the tail joints 216 are connected to the other terminal of the compressor 1.
  • the winding 206 of each phase stator 202 includes a header 214 and a tail joint 216 that connect all of the headers 214 of the three-phase stator windings to one terminal of the compressor 1, all tails of the three-phase stator windings.
  • the joint 216 is connected to the other terminal of the compressor 1, and the connection assembly is respectively connected to the two terminals of the compressor 1, so that different connections of the winding 206 can be realized by different actions of the connection assembly, For example, star connections and angular connections.
  • the permanent magnet 212 is a rare earth permanent magnet; or the permanent magnet 212 is a ferrite permanent magnet.
  • the rotor core 210 includes slots, and the number of slots is at least one, all of the slots are spaced along the circumferential direction of the rotor core 210, and the permanent magnets 212 are disposed in the slots.
  • a permanent magnet 212 arrangement of the rotor 208 is specifically defined. By machining the slots in the rotor core 210, the permanent magnets 212 can be provided with mounting locations to facilitate positioning and assembly of the permanent magnets 212. At the same time, the structure has fewer processing steps, simple processing technology, low production cost, and is convenient for mass production.
  • the permanent magnet 212 has a cylindrical shape, and the permanent magnet 212 is sleeved on the outer wall of the rotor core 210.
  • a permanent magnet 212 arrangement of the rotor 208 is specifically defined.
  • the permanent magnet 212 is sleeved on the outer wall of the rotor core 210, and the rotor core 210 functions as a support for facilitating the positioning and assembly of the permanent magnet 212.
  • the structure has fewer processing steps, simple processing technology, low production cost, and is convenient for mass production.
  • the permanent magnet motor 20 is a 9-slot 6-pole structure.
  • each phase winding 206 has a first joint 214 and a tail joint 216, and the first joint 214 and the tail joint 216 are respectively connected to the lead wires.
  • a refrigeration apparatus including: a second housing 30; a frequency converter 10 disposed in the second housing 30;
  • the compressor 1 of any one of the technical solutions, the compressor 1 is disposed in the second housing 30;
  • the connecting component is disposed in the second housing 30, and is respectively connected to the inverter 10 and the compressor 1;
  • the controller is disposed at In the second housing 30, the connection assembly, the frequency converter 10 and the compressor 1 are connected for controlling the frequency converter 10 and the compressor 1, so that the relationship of E0, P, I1, Ld, n1 and Udc is satisfied: (E0-P ⁇ I1 ⁇ Ld) ⁇ n1 ⁇ 0.6Udc.
  • the refrigeration device comprises: a second casing 30, a frequency converter 10, a compressor 1, a connection assembly and a controller.
  • the controller controls the frequency converter 10 and the compressor 1 so that the relationship of E0, P, I1, Ld, n1 and Udc satisfies: (E0-P ⁇ I1 ⁇ Ld) ⁇ n1 ⁇ 0.6Udc, and further ensure that the rotational speed of the permanent magnet motor 20 is close to the critical speed, the permanent magnet motor 20 in which the winding 206 is star-connected has a certain weak magnetic depth, and the winding 206 is angularly connected.
  • the permanent magnet motor 20 of the method does not enter the weak magnetic region, thereby ensuring high performance of the product in the whole frequency band, and ensuring that the switching of the connection mode of the winding 206 of the permanent magnet motor 20 is not stuck, and the switching is smoother. The smoothness of the transition is guaranteed.
  • the frequency converter 10 when the input current of the frequency converter 10 is alternating current, the frequency converter 10 includes: a rectifier 102; and an inverter 104 connected to the rectifier 102.
  • the composition of the frequency converter 10 is determined according to the characteristics of the input current of the frequency converter 10.
  • the frequency converter 10 includes a rectifier 102 and an inverter 104, and the inverter 10
  • the input current is filtered by the rectifier 102 to convert the alternating current into direct current, and the direct current is supplied to the inverter 104.
  • the frequency converter 10 includes an inverter 104 when the input current to the frequency converter 10 is direct current.
  • the composition of the frequency converter 10 is determined according to the characteristics of the input current of the frequency converter 10.
  • the frequency converter 10 includes an inverter 104, and the direct current is used by the inverter 104. Can be converted into alternating current.
  • connection assembly includes a changeover switch 40 for effecting switching of the windings 206 of the permanent magnet motor 20 in a star-shaped connection and an angular connection.
  • the connection state of the winding 206 of the permanent magnet motor 20 and the frequency converter 10 is realized by the opening or closing of the changeover switch 40, thereby realizing the star connection of the winding 206 of the permanent magnet motor 20.
  • the windings 206 of the permanent magnet motor 20 are angularly connected.
  • the structure is easy to process, install and subsequently disassemble and replace, and has strong interchangeability.
  • the refrigerating apparatus further includes: detecting means disposed in the second casing 30 to connect the controller and the compressor 1.
  • the detecting device by setting the detecting device in the second casing 30, the detecting device detects the rotational speed of the permanent magnet motor 20 in real time, and determines whether the rotational speed of the permanent magnet motor 20 reaches the preset rotational speed n1 in real time.
  • the data allows the controller to accurately and timely control the movement of other components, thus ensuring the reliability and accuracy of the product.
  • the term “plurality” means two or more, unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like should be understood broadly.
  • “connecting” may be a fixed connection, a detachable connection, or an integral connection; “connected” may They are directly connected or indirectly connected through an intermediary.
  • connection may be a fixed connection, a detachable connection, or an integral connection; “connected” may They are directly connected or indirectly connected through an intermediary.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the description of the terms “one embodiment”, “some embodiments”, “specific embodiments” and the like means that the specific features, structures, materials, or characteristics described in connection with the embodiments or examples are included in the present invention. At least one embodiment or example.
  • the schematic representation of the above terms does not necessarily refer to the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Ac Motors In General (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Windings For Motors And Generators (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种压缩机和制冷设备。该压缩机(1)用于制冷设备,制冷设备包括连接组件和与连接组件的一端相连接的变频器(10),压缩机包括:第一壳体;永磁电机(20),设置在第一壳体内,连接连接组件的另一端;其中,永磁电机的临界转速为n0;永磁电机的极数为P;在永磁电机的绕组呈星形连接时:变频器的母线电压为Udc;永磁电机的空载反电势系数为E0;当永磁电机的预设转速为n1时,永磁电机的直轴电感为Ld,变频器的输出电流为I1;E0、P、I1、Ld、n1及Udc的关系满足:(E0‑P×I1×Ld)×n1≥0.6Udc;其中,n1<n0,且n0‑n1≤1r/s;永磁电机的绕组呈星形连接时,永磁电机的转速小于n0。

Description

压缩机和制冷设备
本申请要求于2018年04月08日提交中国专利局、申请号为“201810308108.5”、发明名称为“压缩机和制冷设备”的中国专利申请的优先权,及于2018年01月03日提交中国专利局、申请号为“201810005375.5”、发明名称为“压缩机和制冷设备”的中国专利申请的优先权,及于2018年04月08日提交中国专利局、申请号为“201820487751.4”、发明名称为“压缩机和制冷设备”的中国专利申请的优先权,及于2018年01月03日提交中国专利局、申请号为“201820007473.8”、发明名称为“压缩机和制冷设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及压缩机制造技术领域,具体而言,涉及一种压缩机和制冷设备。
背景技术
压缩机是制冷设备的重要且核心的部件,相关技术提出了绕组切换方案,即:压缩机的电机在低速运转时,压缩机的定子绕组呈星形连接,压缩机的电机在高速运转时,压缩机的定子绕组呈三角形连接。然而,相关技术中并未涉及压缩机电机的相关参数设计方案,若电机方案设计不当,会造成电机综合效率低,扩速范围小,用户体验差。
发明内容
本发明旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本发明的第一方面提出了一种压缩机。
本发明的第二方面提出了一种制冷设备。
有鉴于此,本发明的第一方面提出了一种压缩机,用于制冷设备,制冷 设备包括连接组件和与连接组件的一端相连接的变频器,压缩机包括:第一壳体;永磁电机,设置在第一壳体内,连接连接组件的另一端;永磁电机的临界转速为n0;永磁电机的极数为P;在永磁电机的绕组呈星形连接时:变频器的母线电压为Udc;永磁电机的空载反电势系数为E0;当永磁电机的预设转速为n1时,永磁电机的直轴电感为Ld,变频器的输出电流为I1;E0、P、I1、Ld、n1及Udc的关系满足:(E0-P×I1×Ld)×n1≥0.6Udc;其中,n1<n0,且n0-n1≤1r/s;永磁电机的绕组呈星形连接时,永磁电机的转速小于n0。
本发明提供的一种压缩机的永磁电机的临界转速为n0,当永磁电机的绕组呈星形连接时,永磁电机的转速小于n0,当永磁电机的绕组呈角形连接时,永磁电机的转速大于n0。在永磁电机的绕组呈角形连接的前提下,通过合理设置E0、P、I1、Ld、n1及Udc的关系,使之满足(E0-P×I1×Ld)×n1≥0.6Udc,使得永磁电机在低速转动和高速转动时同样具有高效率的性能,从而实现产品在全频段具有较高的性能的目的;进一步地,通过合理设置预设转速n1,使得转速n1<n0,且n0-n1≤1r/s,在接近临界转速n0的转速n1时,绕组呈星形连接模式下的永磁电机具有一定的弱磁角度,永磁电机的性能随转速上升而下降,当永磁电机的转速大于临界转速n0,且非常接近临界转速n0的转速时,绕组呈角形连接模式下的永磁电机弱磁,永磁电机的性能随转速的上升而上升,从而保证临界转速n0附近,星形连接时具有一定的弱磁深度,而在角形连接时具有一定的永磁电机的转速上升而不弱磁的范围,使得永磁电机的绕组的连接方式进行切换的话,切换更顺畅,可以极大地减小冲击,过渡更平稳,提高了产品的运行能效,提升了产品的使用性能及市场竞争力。
根据本发明上述的压缩机,还可以具有以下附加技术特征:
在上述技术方案中,优选地,n0的取值范围为:n0≥40r/s。
在该技术方案中,通过合理设置临界转速n0的取值范围,使之为n0≥40r/s,当永磁电机的转速位于临界转速n0之内时,星形连接绕组的永磁电机的效率处于下降模式,且角形连接绕组的永磁电机的效率处于上升模式,从而保证产品在全频段具有较高的性能,同时,永磁电机的绕组的连接方式在上述区域内进行切换的话,切换更顺畅,可以极大地减小冲击,过渡更平稳,提高了产品的运行能效,提升了产品的使用性能及市场竞争力。
在上述任一技术方案中,优选地,永磁电机为三相永磁电机。
在该技术方案中,永磁电机并不限于三相永磁电机,亦可为其他多相永磁电机。
在上述任一技术方案中,优选地,永磁电机包括:定子,设置有定子铁芯和缠绕在定子铁芯上的绕组;转子,设置在定子的安装腔内,转子设置有转子铁芯和位于转子铁芯上的永磁体。
在该实施例中,定子包括定子铁芯和绕组,通过将绕组缠绕在定子铁芯上,定子在压缩机运行时是静止不动的,当电流经过绕组后,定子会产生磁场;转子包括转子铁芯和永磁体,永磁体的磁极不会变化,通过将永磁体设置在转子铁芯上,使得在压缩机工作时,转子设置在定子的安装腔内,定子产生旋转磁场,转子在旋转磁场中被磁力线切割进而产生输出电流,为压缩机的运转提供了动力。
在上述任一技术方案中,优选地,定子的绕组为三相定子绕组,每相定子的绕组包括首接头和尾接头,全部首接头与压缩机的一个接线端子相连接,全部尾接头与压缩机的另一个接线端子相连接。
在该实施例中,每相定子的绕组包括首接头和尾接头,将三相定子绕组的全部首接头与压缩机的一个接线端子相连接,三相定子绕组的全部尾接头与压缩机的另一个接线端子相连接,并使得连接组件分别与压缩机的两个接线端子相连接,这样,通过连接组件的不同动作,即可实现绕组的不同连接方式,如,星形连接及角形连接。
在上述任一技术方案中,优选地,永磁体为稀土永磁体;或永磁体为铁氧永磁体。
在上述任一技术方案中,优选地,转子铁芯包括插槽,插槽的数量为至少一个,全部插槽沿转子铁芯的周向间隔分布,永磁体设置在插槽内。
在该技术方案中,具体限定了转子的一种永磁体设置方案。通过在转子铁芯上加工插槽,可以为永磁体提供安装位置,便于永磁体的定位和装配。同时,该结构设置加工工序少,加工工艺简单,生产成本低,便于量产。
在上述任一技术方案中,优选地,永磁体呈筒状,永磁体套设在转子铁芯的外壁上。
在该技术方案中,具体限定了转子的一种永磁体设置方案。通过永磁体套设在转子铁芯的外壁上,转子铁芯起到支撑的作用,便于永磁体的定位和装配。同时,该结构设置加工工序少,加工工艺简单,生产成本低,便于量产。
本发明的第二方面提出了一种制冷设备,包括:第二壳体;变频器,设置在第二壳体内;如第一方面中任一技术方案所述的压缩机,压缩机设置在第二壳体内;连接组件,设置在第二壳体内,分别连接变频器和压缩机;控制器,设置在第二壳体内,连接连接组件、变频器和压缩机,用于控制变频器和压缩机,使得E0、P、I1、Ld、n1及Udc的关系满足:(E0-P×I1×Ld)×n1≥0.6Udc。
本发明提供的制冷设备包括:第二壳体、变频器、压缩机、连接组件及控制器。通过设置控制器,使得在永磁电机的绕组呈星形连接,控制器控制变频器和压缩机,使得E0、P、I1、Ld、n1及Udc的关系满足:(E0-P×I1×Ld)×n1≥0.6Udc,进而保证永磁电机的转速在极接近临界转速时,绕组呈星形接法的永磁电机具有一定的弱磁深度,绕组呈角形接法的永磁电机不进入该弱磁区域内,从而保证产品在全频段具有较高的性能,且保证了永磁电机的绕组的连接方式的切换无卡滞,切换的更顺畅,保证了过渡的平稳性。
在上述技术方案中,优选地,当变频器的输入电流是交流电时,变频器包括:整流器;逆变器,连接整流器。
在该技术方案中,根据变频器的输入电流的特点来决定变频器的组成,当变频器的输入电流是交流电时,变频器包括整流器和逆变器,变频器的输入电流通过整流器过滤后,使得交流电转换成直流电,并将直流电供给逆变器。
在上述任一技术方案中,优选地,当变频器的输入电流是直流电时,变频器包括逆变器。
在该技术方案中,根据变频器的输入电流的特点来决定变频器的组成,当变频器的输入电流是直流电时,变频器包括逆变器,利用逆变器将直流电能转变为交流电。
在上述任一技术方案中,优选地,连接组件包括:切换开关,用于实现永磁电机的绕组呈星形连接与呈角形连接的切换。
在该技术方案中,通过设置切换开关,利用切换开关的开启或关闭来实现永磁电机的绕组与变频器的连接状态,进而实现永磁电机的绕组呈星形 连接及永磁电机的绕组呈角形连接。同时,该结构设置便于加工、安装及后续的拆卸、更换,互换性强。
在上述任一技术方案中,优选地,制冷设备还包括:检测装置,设置在第二壳体内,连接控制器和压缩机。
在该技术方案中,通过在第二壳体内设置检测装置,利用检测装置实时检测永磁电机的转速,为控制器判断永磁电机的转速是否达到预设转速n1,提供了实时数据,便于控制器准确且及时的控制其他部件动作,从而保证了产品使用的可靠性及精确性。
本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明一个实施例的变频器、永磁电机及切换开关的结构示意图;
图2是本发明第一个实施例的永磁电机的外部接线的结构示意图;
图3是本发明第一个实施例的永磁电机的绕组的结构示意图;
图4是本发明第二个实施例的永磁电机的外部接线的结构示意图;
图5是本发明第二个实施例的永磁电机的绕组的结构示意图;
图6是本发明一个实施例的永磁电机的剖视图;
图7是本发明一个实施例的压缩机的剖视图。
其中,图1至图7中附图标记与部件名称之间的对应关系为:
1压缩机,10变频器,102整流器,104逆变器,20永磁电机,202定子,204定子铁芯,206绕组,208转子,210转子铁芯,212永磁体,214首接头,216尾接头,30第二壳体,40切换开关。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附 图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图7描述根据本发明一些实施例所述压缩机1和制冷设备。
如图1至图3所示,本发明第一方面的实施例提出了一种压缩机1,用于制冷设备,制冷设备包括连接组件和与连接组件的一端相连接的变频器10,压缩机1包括:第一壳体;永磁电机20,设置在第一壳体内,连接连接组件的另一端;永磁电机20的临界转速为n0;永磁电机20的极数为P;在永磁电机20的绕组206呈星形连接时:变频器10的母线电压为Udc;永磁电机20的空载反电势系数为E0;当永磁电机20的预设转速为n1时,永磁电机20的直轴电感为Ld,变频器10的输出电流为I1;E0、P、I1、Ld、n1及Udc的关系满足:(E0-P×I1×Ld)×n1≥0.6Udc;其中,n1<n0,且n0-n1≤1r/s;永磁电机20的绕组206呈星形连接时,永磁电机20的转速小于n0。
本发明提供的一种压缩机1的永磁电机20的临界转速为n0,当永磁电机20的绕组206呈星形连接时,永磁电机20的转速小于n0,当永磁电机20的绕组206呈角形连接时,永磁电机20的转速大于n0。在永磁电机20的绕组206呈角形连接的前提下,通过合理设置E0、P、I1、Ld、n1及Udc的关系,使之满足(E0-P×I1×Ld)×n1≥0.6Udc,使得永磁电机20在低速转动和高速转动时同样具有高效率的性能,从而实现产品在全频段具有较高的性能的目的;进一步地,通过合理设置预设转速n1,使得转速n1<n0,且n0-n1≤1r/s,在接近临界转速n0的转速n1时,绕组206呈星形连接模式下的永磁电机20具有一定的弱磁角度,永磁电机20的性能随转速上升而下降,当永磁电机20的转速大于临界转速n0,且非常接近临界转速n0的转速时,绕组206呈角形连接模式下的永磁电机20弱磁,永磁电机20的性能随转速的上升而上升,从而保证临界转速n0附近,星形连接时具有一定的弱磁深度,而在角形连接时具有一定的永磁电机20的转速上升而不弱磁的范围,使得永磁电机20的绕组 206的连接方式进行切换的话,切换更顺畅,可以极大地减小冲击,过渡更平稳,提高了产品的运行能效,提升了产品的使用性能及市场竞争力。具体地,临界转速n0的单位为rps,母线电压Udc的单位为V,空载反电势系数E0的单位为V/rps,预设转速n1的单位为rps,直轴电感Ld的单位为H,输出电流I1的单位为A。
具体实施例中,如图1所示,切换开关40的数量为6个,分别为S1、S2、S3、S4、S5及S6。永磁电机20通过变频器10供电,且在连接组件中设置6个切换开关40。如图2和图3所示,当S1、S2及S3导通,S4、S5及S6断开时,永磁电机20的绕组206呈星形连接。如图4和图5所示,当S1、S2及S3断开,S4、S5及S6导通时,永磁电机20的绕组206呈角形连接。
在本发明的一个实施例中,优选地,n0的取值范围为:n0≥40r/s。
在该实施例中,通过合理设置临界转速n0的取值范围,使之为n0≥40r/s,当永磁电机20的转速位于临界转速n0之内时,星形连接绕组206的永磁电机20的效率处于下降模式,且角形连接绕组206的永磁电机20的效率处于上升模式,从而保证产品在全频段具有较高的性能,同时,永磁电机20的绕组206的连接方式在上述区域内进行切换的话,切换更顺畅,可以极大地减小冲击,过渡更平稳,提高了产品的运行能效,提升了产品的使用性能及市场竞争力。
在本发明的一个实施例中,优选地,永磁电机20为三相永磁电机。
在该实施例中,永磁电机20并不限于三相永磁电机,亦可为其他多相永磁电机。
在本发明的一个实施例中,优选地,如图6所示,永磁电机20包括:定子202,设置有定子铁芯204和缠绕在定子铁芯204上的绕组206;转子208,设置在定子202的安装腔内,转子208设置有转子铁芯210和位于转子铁芯210上的永磁体212。
在该实施例中,定子202包括定子铁芯204和绕组206,通过将绕组206缠绕在定子铁芯204上,定子202在压缩机1运行时是静止不动的,当电流经过绕组206后,定子202会产生磁场;转子208包括转子铁芯210 和永磁体212,永磁体212的磁极不会变化,通过将永磁体212设置在转子铁芯210上,使得在压缩机1工作时,转子208设置在定子202的安装腔内,定子202产生旋转磁场,转子208在旋转磁场中被磁力线切割进而产生输出电流,为压缩机1的运转提供了动力。
在本发明的一个实施例中,优选地,定子202的绕组206为三相定子绕组,每相定子202的绕组206包括首接头214和尾接头216,全部首接头214与压缩机1的一个接线端子相连接,全部尾接头216与压缩机1的另一个接线端子相连接。
在该实施例中,每相定子202的绕组206包括首接头214和尾接头216,将三相定子绕组的全部首接头214与压缩机1的一个接线端子相连接,三相定子绕组的全部尾接头216与压缩机1的另一个接线端子相连接,并使得连接组件分别与压缩机1的两个接线端子相连接,这样,通过连接组件的不同动作,即可实现绕组206的不同连接方式,如,星形连接及角形连接。
具体实施例中,永磁体212为稀土永磁体;或永磁体212为铁氧永磁体。
具体实施例中,转子铁芯210包括插槽,插槽的数量为至少一个,全部插槽沿转子铁芯210的周向间隔分布,永磁体212设置在插槽内。具体限定了转子208的一种永磁体212设置方案。通过在转子铁芯210上加工插槽,可以为永磁体212提供安装位置,便于永磁体212的定位和装配。同时,该结构设置加工工序少,加工工艺简单,生产成本低,便于量产。
具体实施例中,永磁体212呈筒状,永磁体212套设在转子铁芯210的外壁上。具体限定了转子208的一种永磁体212设置方案。通过永磁体212套设在转子铁芯210的外壁上,转子铁芯210起到支撑的作用,便于永磁体212的定位和装配。同时,该结构设置加工工序少,加工工艺简单,生产成本低,便于量产。
具体实施例中,如图6所示,永磁电机20为9槽6极结构。以每相绕组206串联为例,每相绕组206都具有首接头214和尾接头216,首接头214和尾接头216分别连接引出线。根据实际应用,每相绕组206的接头还可以是2k个(k=1,2……)。
如图7所示,根据本发明的第二方面实施例,还提出了一种制冷设备, 包括:第二壳体30;变频器10,设置在第二壳体30内;如第一方面中任一技术方案所述的压缩机1,压缩机1设置在第二壳体30内;连接组件,设置在第二壳体30内,分别连接变频器10和压缩机1;控制器,设置在第二壳体30内,连接连接组件、变频器10和压缩机1,用于控制变频器10和压缩机1,使得E0、P、I1、Ld、n1及Udc的关系满足:(E0-P×I1×Ld)×n1≥0.6Udc。
本发明提供的制冷设备包括:第二壳体30、变频器10、压缩机1、连接组件及控制器。通过设置控制器,使得在永磁电机20的绕组206呈星形连接,控制器控制变频器10和压缩机1,使得E0、P、I1、Ld、n1及Udc的关系满足:(E0-P×I1×Ld)×n1≥0.6Udc,进而保证永磁电机20的转速在极接近临界转速时,绕组206呈星形接法的永磁电机20具有一定的弱磁深度,绕组206呈角形接法的永磁电机20不进入该弱磁区域内,从而保证产品在全频段具有较高的性能,且保证了永磁电机20的绕组206的连接方式的切换无卡滞,切换的更顺畅,保证了过渡的平稳性。
在本发明的一个实施例中,优选地,如图1所示,当变频器10的输入电流是交流电时,变频器10包括:整流器102;逆变器104,连接整流器102。
在该实施例中,根据变频器10的输入电流的特点来决定变频器10的组成,当变频器10的输入电流是交流电时,变频器10包括整流器102和逆变器104,变频器10的输入电流通过整流器102过滤后,使得交流电转换成直流电,并将直流电供给逆变器104。
在本发明的一个实施例中,优选地,当变频器10的输入电流是直流电时,变频器10包括逆变器104。
在该实施例中,根据变频器10的输入电流的特点来决定变频器10的组成,当变频器10的输入电流是直流电时,变频器10包括逆变器104,利用逆变器104将直流电能转变为交流电。
在本发明的一个实施例中,优选地,如图1所示,连接组件包括:切换开关40,用于实现永磁电机20的绕组206呈星形连接与呈角形连接的切换。
在该实施例中,通过设置切换开关40,利用切换开关40的开启或关闭来实现永磁电机20的绕组206与变频器10的连接状态,进而实现永磁电机20的绕组206呈星形连接及永磁电机20的绕组206呈角形连接。同时, 该结构设置便于加工、安装及后续的拆卸、更换,互换性强。
在本发明的一个实施例中,优选地,制冷设备还包括:检测装置,设置在第二壳体30内,连接控制器和压缩机1。
在该实施例中,通过在第二壳体30内设置检测装置,利用检测装置实时检测永磁电机20的转速,为控制器判断永磁电机20的转速是否达到预设转速n1,提供了实时数据,便于控制器准确且及时的控制其他部件动作,从而保证了产品使用的可靠性及精确性。
在本发明中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种压缩机,用于制冷设备,所述制冷设备包括连接组件和与所述连接组件的一端相连接的变频器,其特征在于,所述压缩机包括:
    第一壳体;
    永磁电机,设置在所述第一壳体内,连接所述连接组件的另一端;
    所述永磁电机的临界转速为n0;
    所述永磁电机的极数为P;
    在所述永磁电机的绕组呈星形连接时:
    所述变频器的母线电压为Udc;
    所述永磁电机的空载反电势系数为E0;
    当所述永磁电机的预设转速为n1时,所述永磁电机的直轴电感为Ld,所述变频器的输出电流为I1;
    所述E0、所述P、所述I1、所述Ld、所述n1及所述Udc的关系满足:(E0-P×I1×Ld)×n1≥0.6Udc;
    其中,n1<n0,且n0-n1≤1r/s;所述永磁电机的绕组呈星形连接时,所述永磁电机的转速小于所述n0。
  2. 根据权利要求1所述的压缩机,其特征在于,
    所述n0的取值范围为:n0≥40r/s。
  3. 根据权利要求1所述的压缩机,其特征在于,
    所述永磁电机为三相永磁电机。
  4. 根据权利要求1至3中任一项所述的压缩机,其特征在于,
    所述永磁电机包括:
    定子,设置有定子铁芯和缠绕在所述定子铁芯上的所述绕组;
    转子,设置在所述定子的安装腔内,所述转子设置有转子铁芯和位于所述转子铁芯上的永磁体。
  5. 根据权利要求4所述的压缩机,其特征在于,
    所述定子的绕组为三相定子绕组,每相所述定子的绕组包括首接头和尾接头,全部所述首接头与所述压缩机的一个接线端子相连接,全部所述尾接头与 所述压缩机的另一个接线端子相连接。
  6. 一种制冷设备,其特征在于,包括:
    第二壳体;
    变频器,设置在所述第二壳体内;
    如权利要求1至5中任一项所述的压缩机,所述压缩机设置在所述第二壳体内;
    连接组件,设置在所述第二壳体内,分别连接所述变频器和所述压缩机;
    控制器,设置在所述第二壳体内,连接所述连接组件、所述变频器和所述压缩机,用于控制所述变频器和所述压缩机,使得所述E0、所述P、所述I1、所述Ld、所述n1及所述Udc的关系满足:(E0-P×I1×Ld)×n1≥0.6Udc。
  7. 根据权利要求6所述的制冷设备,其特征在于,
    当所述变频器的输入电流是交流电时,
    所述变频器包括:
    整流器;
    逆变器,连接所述整流器。
  8. 根据权利要求6所述的制冷设备,其特征在于,
    当所述变频器的输入电流是直流电时,
    所述变频器包括逆变器。
  9. 根据权利要求6至8中任一项所述的制冷设备,其特征在于,
    所述连接组件包括:
    切换开关,用于实现所述永磁电机的绕组呈星形连接与呈角形连接的切换。
  10. 根据权利要求6至8中任一项所述的制冷设备,其特征在于,还包括:
    检测装置,设置在所述第二壳体内,连接所述控制器和所述压缩机。
PCT/CN2018/102029 2018-01-03 2018-08-23 压缩机和制冷设备 WO2019134373A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18897970.2A EP3687058B1 (en) 2018-01-03 2018-08-23 Compressor and refrigeration device
ES18897970T ES2913801T3 (es) 2018-01-03 2018-08-23 Compresor y dispositivo de refrigeración
JP2020526512A JP7341136B2 (ja) 2018-01-03 2018-08-23 圧縮機及び冷却装置
US16/867,710 US11486614B2 (en) 2018-01-03 2020-05-06 Compressor and refrigeration device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201810005375.5 2018-01-03
CN201820007473.8 2018-01-03
CN201810005375 2018-01-03
CN201820007473 2018-01-03
CN201820487751.4U CN208028805U (zh) 2018-01-03 2018-04-08 压缩机和制冷设备
CN201810308108.5 2018-04-08
CN201820487751.4 2018-04-08
CN201810308108.5A CN108288938B (zh) 2018-01-03 2018-04-08 压缩机和制冷设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/867,710 Continuation US11486614B2 (en) 2018-01-03 2020-05-06 Compressor and refrigeration device

Publications (1)

Publication Number Publication Date
WO2019134373A1 true WO2019134373A1 (zh) 2019-07-11

Family

ID=67143596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102029 WO2019134373A1 (zh) 2018-01-03 2018-08-23 压缩机和制冷设备

Country Status (5)

Country Link
US (1) US11486614B2 (zh)
EP (1) EP3687058B1 (zh)
JP (1) JP7341136B2 (zh)
ES (1) ES2913801T3 (zh)
WO (1) WO2019134373A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111371372A (zh) * 2020-04-16 2020-07-03 广东美的制冷设备有限公司 电机连接电路、驱动电路、方法、介质、系统和空调器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220100352A (ko) * 2021-01-08 2022-07-15 엘지전자 주식회사 모터 구동 장치 및 이를 구비하는 공기조화기

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2233889Y (zh) * 1995-08-31 1996-08-28 大连海事大学 船用冷藏集装箱的变频调速制冷装置
JP2001037186A (ja) * 1999-07-19 2001-02-09 Toshiba Kyaria Kk 永久磁石電動機
CN102007669A (zh) * 2008-05-21 2011-04-06 东芝开利株式会社 永磁电动机、密闭式压缩机以及制冷循环装置
CN107171522A (zh) * 2017-06-30 2017-09-15 广东美芝制冷设备有限公司 永磁电机、压缩机和制冷系统
CN108288938A (zh) * 2018-01-03 2018-07-17 广东美芝制冷设备有限公司 压缩机和制冷设备
CN208028805U (zh) * 2018-01-03 2018-10-30 广东美芝制冷设备有限公司 压缩机和制冷设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2935479B2 (ja) * 1991-03-08 1999-08-16 本田技研工業株式会社 永久磁石式同期モータおよびモータシステム
JP4281383B2 (ja) 2003-03-18 2009-06-17 日産自動車株式会社 円筒部材の表面に凹部を形成する加工装置および加工方法
JP4619826B2 (ja) * 2005-03-07 2011-01-26 三菱電機株式会社 電動機駆動装置、電動機駆動方法及び圧縮機
JP4722069B2 (ja) * 2007-03-15 2011-07-13 三菱電機株式会社 電動機駆動装置および電動機駆動方法並びに冷凍空調装置
JP5428745B2 (ja) 2008-12-02 2014-02-26 パナソニック株式会社 モータ駆動装置および圧縮機および冷蔵庫
JP2016099029A (ja) * 2014-11-19 2016-05-30 シャープ株式会社 空気調和機
JP6360442B2 (ja) * 2015-01-14 2018-07-18 株式会社日立製作所 永久磁石同期モータ、巻線切替モータ駆動装置、及び、それらを用いた冷凍空調機器、電動車両
JP6345135B2 (ja) * 2015-02-25 2018-06-20 東芝キヤリア株式会社 モータ駆動装置
EP3534534B1 (en) * 2016-10-31 2021-10-20 Mitsubishi Electric Corporation Drive device, air conditioner and drive method of electric motor
KR102278117B1 (ko) * 2016-10-31 2021-07-15 미쓰비시덴키 가부시키가이샤 구동 장치, 공기 조화기 및 전동기의 구동 방법
US11101763B2 (en) * 2016-10-31 2021-08-24 Mitsubishi Electric Corporation Air conditioner and method for controlling air conditioner
EP3534529B1 (en) * 2016-10-31 2020-11-25 Mitsubishi Electric Corporation Drive device and air-conditioner, and compressor control method
CN107425625A (zh) 2017-08-31 2017-12-01 广东美芝制冷设备有限公司 一种电机及压缩机
CN107370257B (zh) 2017-08-31 2024-03-12 广东美芝制冷设备有限公司 一种永磁电机及压缩机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2233889Y (zh) * 1995-08-31 1996-08-28 大连海事大学 船用冷藏集装箱的变频调速制冷装置
JP2001037186A (ja) * 1999-07-19 2001-02-09 Toshiba Kyaria Kk 永久磁石電動機
CN102007669A (zh) * 2008-05-21 2011-04-06 东芝开利株式会社 永磁电动机、密闭式压缩机以及制冷循环装置
CN107171522A (zh) * 2017-06-30 2017-09-15 广东美芝制冷设备有限公司 永磁电机、压缩机和制冷系统
CN108288938A (zh) * 2018-01-03 2018-07-17 广东美芝制冷设备有限公司 压缩机和制冷设备
CN208028805U (zh) * 2018-01-03 2018-10-30 广东美芝制冷设备有限公司 压缩机和制冷设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111371372A (zh) * 2020-04-16 2020-07-03 广东美的制冷设备有限公司 电机连接电路、驱动电路、方法、介质、系统和空调器

Also Published As

Publication number Publication date
US11486614B2 (en) 2022-11-01
JP7341136B2 (ja) 2023-09-08
US20200263908A1 (en) 2020-08-20
ES2913801T3 (es) 2022-06-06
EP3687058B1 (en) 2022-04-27
EP3687058A1 (en) 2020-07-29
JP2021503270A (ja) 2021-02-04
EP3687058A4 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
Tian et al. A novel line-start permanent magnet synchronous motor with 6/8 pole changing stator winding
CN103441630B (zh) 一种12/4极结构的三自由度磁悬浮开关磁阻电机
WO2009055956A1 (fr) Moteur à courant continu à aimant permanent sans balai triphasé à onde carrée
JP2017198195A (ja) 冷却ファン、及びこれを備える空冷式冷却装置
CN202424445U (zh) 一种并列结构开关磁阻电机
WO2019134373A1 (zh) 压缩机和制冷设备
CN107070012B (zh) 单绕组两相无刷直流电动机
CN108306473B (zh) 一种异步起动永磁同步电机绕组的设置方法
EP1633036A1 (en) Single phase induction motor
CN208028805U (zh) 压缩机和制冷设备
CN104767336A (zh) 一种单相他励磁阻式发电机
CN108288938B (zh) 压缩机和制冷设备
CN108288939B (zh) 压缩机和制冷设备
Shriwastava et al. Literature review of permanent magnet AC motors and drive for automotive application
Tian et al. Line-start permanent magnet synchronous motor starting capability improvement using pole-changing method
Rasmussen et al. Variable speed brushless DC motor drive for household refrigerator compressor
CN207010470U (zh) 一种永磁电机的驱动电路
Rahman Modern electric motors in electronic world
CN202475211U (zh) 凸极转子单相无刷直流电机
CN210608875U (zh) 一种径向磁场复合型磁通切换电机
CN208299716U (zh) 压缩机和制冷设备
CN202889152U (zh) 一种单相交流永磁电动机
CN207150379U (zh) 一种轴向永磁辅助磁阻型复合转子高速电机
CN206585448U (zh) 双绕组两相无刷直流电动机
WO2019134375A1 (zh) 压缩机和制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018897970

Country of ref document: EP

Effective date: 20200422

ENP Entry into the national phase

Ref document number: 2020526512

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE