WO2017006703A1 - 有機半導体素子、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法 - Google Patents

有機半導体素子、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法 Download PDF

Info

Publication number
WO2017006703A1
WO2017006703A1 PCT/JP2016/067359 JP2016067359W WO2017006703A1 WO 2017006703 A1 WO2017006703 A1 WO 2017006703A1 JP 2016067359 W JP2016067359 W JP 2016067359W WO 2017006703 A1 WO2017006703 A1 WO 2017006703A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
formula
organic semiconductor
represented
Prior art date
Application number
PCT/JP2016/067359
Other languages
English (en)
French (fr)
Inventor
史子 玉國
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2017527145A priority Critical patent/JP6442057B2/ja
Publication of WO2017006703A1 publication Critical patent/WO2017006703A1/ja
Priority to US15/857,734 priority patent/US20180145258A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1414Unsaturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/144Side-chains containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/36Oligomers, i.e. comprising up to 10 repeat units
    • C08G2261/364Oligomers, i.e. comprising up to 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • C08G2261/592Stability against heat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used

Definitions

  • the present invention relates to an organic semiconductor element, a compound, an organic semiconductor composition, an organic semiconductor film, and a manufacturing method thereof.
  • organic TFT field effect transistor
  • organic EL electroluminescence
  • Patent Document 1 discloses a DA type polymer in which an alkyl group having a silane terminal is introduced as a substituent.
  • Patent Document 2 discloses a compound in which a silylethynyl group is directly connected to a conjugate plane of a DA type polymer as a DA type polymer used in a photoelectric conversion element.
  • an object of the present invention is to provide an organic semiconductor element (particularly, an organic thin film transistor) that exhibits high carrier mobility and can stably maintain carrier mobility even when stored at high temperature and high humidity for a long time. is there. Another object of the present invention is that when used in an organic semiconductor layer of an organic semiconductor element (especially an organic thin film transistor), the organic semiconductor element exhibits high carrier mobility and is stored for a long time at high temperature and high humidity. It is to provide a compound capable of stably maintaining carrier mobility, an organic semiconductor composition using the above compound, an organic semiconductor film, and a method for producing the same.
  • An organic semiconductor element comprising an organic semiconductor layer containing a compound having a molecular weight of 2,000 or more and having a repeating unit represented by the formula (1) described later.
  • A has at least one structure selected from the group consisting of structures represented by formulas (A-1) to (A-12) described later as a partial structure, (1 ) Organic semiconductor element.
  • D is a structure represented by formula (D-1) described later.
  • the repeating unit represented by the above formula (1) is a repeating unit represented by any one of the following formulas (2) to (5): The organic semiconductor element as described.
  • the formula (A1) ⁇ formula (A-12), has at least one one of R A1 and R A2, respectively, but at least one of R A1 and R A2 in the formulas,
  • the organic semiconductor element according to (2) which is a monovalent group represented by the formula (1-1).
  • the formula (2) to (5) has at least one one of R A1 and R A2, respectively, but at least one of R A1 and R A2 in the formula, the formula (1
  • An organic semiconductor composition comprising a compound having a molecular weight of 2,000 or more and having a repeating unit represented by the formula (1) described below and a solvent.
  • An organic semiconductor film comprising a compound having a molecular weight of 2,000 or more and having a repeating unit represented by the formula (1) described later.
  • (11) A method for producing an organic semiconductor film, comprising a coating step of coating the organic semiconductor composition according to (9) on a substrate.
  • the term “compound” is used to mean not only the compound itself but also its salt and its ion.
  • substituents or linking groups or the like when there are a plurality of substituents or linking groups or the like (hereinafter referred to as substituents or the like) indicated by a specific symbol, or when a plurality of substituents or the like are defined simultaneously, Means the same or different. The same applies to the definition of the number of substituents and the like.
  • substituents or the like when a plurality of substituents and the like are close (particularly adjacent), it means that they may be connected to each other or condensed to form a ring.
  • a substituent or the like that does not clearly indicate substitution / unsubstitution means that the group may further have a substituent as long as the intended effect is not impaired. This is also synonymous for compounds that do not specify substitution / non-substitution.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the organic-semiconductor element (especially organic thin-film transistor) which shows high carrier mobility and can maintain carrier mobility stably even if it preserve
  • the organic semiconductor element when used in an organic semiconductor layer of an organic semiconductor element (particularly, an organic thin film transistor), the organic semiconductor element exhibits high carrier mobility and is stored for a long time at high temperature and high humidity.
  • An organic semiconductor element (in particular, an organic thin film transistor) of the present invention includes an organic semiconductor layer (organic semiconductor film) containing a compound having a molecular weight of 2,000 or more and having a repeating unit represented by the following formula (1). It is characterized by that.
  • A is an electron acceptor unit including a partial structure having at least one of sp2 nitrogen atom, carbonyl group, and thiocarbonyl group in the ring structure
  • D is at least one N atom
  • D and / or A have at least one monovalent group represented by the formula (1-1).
  • the electron acceptor unit refers to a structural unit having electron acceptability, and examples thereof include a ⁇ -electron deficient heterocyclic unit such as phthalimide.
  • the electron donor unit refers to a structural unit having an electron donating property, and examples thereof include a ⁇ -electron rich heterocyclic unit such as thiophene.
  • n is an integer of 2 or more and 30 or less
  • R 1 , R 2, and R 3 are each independently an alkyl group, an alkoxy group, or an aryl group that may have a substituent.
  • Group or heteroaryl group, and * represents a bonding site with another structure.
  • the compound having a repeating unit represented by the above formula (1) has a silylethynyl group end represented by the above formula (1-1) in a main chain skeleton formed from an electron donor unit and an electron acceptor unit.
  • the introduction of an alkyl group having a specific number of carbons exhibits a barrier property (hydrophobicity), and at the same time has excellent solubility in an organic solvent due to steric hindrance by a Si substituent at the silylethynyl group end.
  • the concentration of the organic semiconductor compound in the organic semiconductor layer can be increased, and the crystallization of the organic semiconductor compound in the formed organic semiconductor layer is facilitated, so that the organic semiconductor element has an excellent carrier.
  • the carrier mobility can be stably maintained even when stored at high temperature and high humidity for a long time while having mobility (hereinafter also referred to as “time-dependent stability under high temperature and high humidity”).
  • time-dependent stability under high temperature and high humidity hereinafter, the configuration of the present invention will be described in detail.
  • a compound having a molecular weight of 2,000 or more and having a repeating unit represented by the formula (1) is an organic semiconductor layer (organic semiconductor) in an organic semiconductor element such as an organic thin film transistor. Film).
  • A represents an electron acceptor unit including a partial structure having at least one of sp2 nitrogen atom, carbonyl group and thiocarbonyl group in the ring structure.
  • A preferably has at least one structure selected from the group consisting of structures represented by the following formulas (A-1) to (A-12) as a partial structure, and A is represented by the following formula (A-1): A structure represented by at least one selected from the group consisting of formula (A-12) is more preferable.
  • each X independently represents an O atom, an S atom, a Se atom or NR A1
  • each Y independently represents an O atom or an S atom
  • Z a independently represents CR A2 or N atom
  • W independently represents C (R A2 ) 2 , NR A1 , N atom, CR A2 , O atom, S atom or Se atom
  • R A1 represents Each independently an alkyl group optionally containing at least one of —O—, —S—, and —NR A3 —, a monovalent group represented by the above formula (1-1), or R A2 represents a bonding site with another structure
  • each R A2 independently represents an alkyl group, a hydrogen atom, or a halogen atom, which may contain at least one of —O—, —S—, and —NR A3 —
  • each X independently represents an O atom, an S atom, a Se atom or NR A1 , preferably NR A1 .
  • Y independently represents an O atom or an S atom, and an O atom is preferred.
  • Z a each independently represents CR A2 or an N atom, preferably CR A2 .
  • Each W independently represents C (R A2 ) 2 , NR A1 , N atom, CR A2 , O atom, S atom or Se atom, preferably C (R A2 ) 2 , CR A2 or S atom.
  • R A1 independently represents an alkyl group which may contain at least one of —O—, —S—, and —NR A3 —, a monovalent group represented by the above formula (1-1) Or a monovalent group represented by the above formula (1-1), which represents a binding site with another structure.
  • R A1 represents an alkyl group
  • an alkyl group having 2 to 30 carbon atoms is preferable, and an alkyl group having 8 to 25 carbon atoms is more preferable.
  • the alkyl group may be linear or branched.
  • the alkyl group may contain at least one of —O—, —S—, and —NR A3 —.
  • the binding site with other structure in R A1 is a binding site with another structure represented by * in the above formulas (A-1) to (A-12).
  • R A2 independently represents an alkyl group, a hydrogen atom, a halogen atom, which may contain at least one of —O—, —S—, and —NR A3 —, represented by the above formula (1-1). Represents a binding site with a monovalent group or other structure, and a binding site with a hydrogen atom or another structure is preferable.
  • R A2 represents an alkyl group, an alkyl group having 2 to 30 carbon atoms is preferable, and an alkyl group having 8 to 25 carbon atoms is more preferable.
  • the alkyl group may be linear or branched.
  • the alkyl group may contain at least one of —O—, —S—, and —NR A3 —.
  • R A2 represents a halogen atom, an F atom, a Cl atom, a Br atom, or an I atom is preferable, and an F atom is more preferable.
  • the binding site with other structure in R A2 is a binding site with another structure represented by * in the above formulas (A-1) to (A-12).
  • R A3 represents a hydrogen atom or a substituent.
  • substituents examples include an alkyl group (preferably a linear or branched alkyl group having 1 to 10 carbon atoms), a halogen atom (preferably an F atom, a Cl atom, a Br atom, an I atom), or an aryl group (Preferably an aryl group having 6 to 20 carbon atoms).
  • a hydrogen atom or an alkyl group is preferable.
  • the specific compound preferably has, as a partial structure, at least one structure selected from the group consisting of structures represented by formulas (A-1) to (A-12) below: Formula (A-1), Formula (A-3), Formula (A-4), Formula (A-5), Formula (A-6), Formula (A-8), and Formula (A-12) It is more preferable to have as a partial structure at least one structure selected from the group consisting of the structures represented by formula (A-1), formula (A-3), formula (A-5), formula (A- 6) and at least one structure selected from the group consisting of structures represented by formula (A-12) is more preferred as a partial structure, represented by formula (A-1) and formula (A-3).
  • A-3 At least one structure selected from the group consisting of the structures represented by formula (A-3): Structures are most preferred. Further, in each of the above embodiments, the specific compound is represented by each formula in which A in Formula (1) is represented by each formula rather than a mode in which A in Formula (1) has a structure represented by each formula as a partial structure. The aspect which is a structure is more preferable.
  • R A1 has the same meaning as R A1 in the formula (A1) ⁇ formula (A-12), preferable embodiments thereof are also the same.
  • * Represents a binding site with another structure.
  • (Electronic donor unit) D is a divalent aromatic heterocyclic group having at least one N atom, O atom, S atom, or Se atom in the ring structure, or a divalent aromatic hydrocarbon group having a condensed structure of two or more rings. Is an electron donor unit including a partial structure.
  • the divalent aromatic heterocyclic group having at least one N atom, O atom, S atom or Se atom in the ring structure is a divalent aromatic heterocyclic group having at least one S atom in the ring structure.
  • the divalent aromatic heterocyclic group may be monocyclic or have a condensed structure of two or more rings, and a combination of two or more monocyclic divalent aromatic heterocyclic groups. Or a structure in which two or more monocyclic divalent aromatic heterocyclic groups are combined with one or more bivalent aromatic heterocyclic groups having a condensed ring structure of two or more rings. preferable.
  • the divalent aromatic heterocyclic group may further have a substituent, and preferred substituents include at least one of —O—, —S—, and —NR D3 —.
  • An alkyl group having 1 to 30 carbon atoms or an alkoxy group having 1 to 30 carbon atoms is preferable, an alkyl group having 1 to 30 carbon atoms is more preferable, and an alkyl group having 5 to 30 carbon atoms is still more preferable.
  • An alkenyl group preferably having 2 to 30 carbon atoms
  • an alkynyl group preferably having 2 to 30 carbon atoms
  • an aromatic hydrocarbon group preferably having 6 to 30 carbon atoms
  • an aromatic heterocyclic group A 5- to 7-membered ring is preferable.
  • the hetero atom is preferably an O atom, an N atom, an S atom, or an Se atom), a halogen atom (F atom, Cl atom, Br atom, or I atom), or Monovalent represented by the above formula (1-1)
  • R D3 has the same meaning as R D3 in formula (D-1) to be described later, and the preferred embodiments are also the same.
  • a hydrogen atom may be substituted.
  • the substituent is as described above (for example, an alkyl group that may contain at least one of —O—, —S—, and —NR D3 —, An alkenyl group, an alkynyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, a halogen atom, or a group represented by the above formula (1-1)).
  • R D1 has the same meaning as R D1 in formula (D-1) to be described later, and the preferred embodiments are also the same, and * represents a binding site with another structure.
  • an aromatic hydrocarbon group having 10 to 20 carbon atoms is preferable, and a fluorene group, a naphthylene group, a tricycle or a tetracycle is condensed.
  • a group obtained by removing two hydrogen atoms from an aromatic hydrocarbon is more preferred, and a group obtained by removing two hydrogen atoms from a fluorene group, naphthylene group, anthracene ring, phenanthrene ring, chrysene ring, or pyrene ring is more preferred.
  • the aromatic hydrocarbon group may further have a substituent, and preferable substituents include an alkyl that may contain at least one of —O—, —S—, and —NR D3 —.
  • Preferred examples of the alkyl group and halogen atom that may contain at least one of —O—, —S—, and —NR D3 — include those described above for the divalent aromatic heterocyclic group. It is the same.
  • R D3 has the same meaning as R D3 in formula (D-1) to be described later, and the preferred embodiments are also the same.
  • D is preferably a structure represented by Formula (D-1).
  • each repeating unit and the above M are coupled so as to be rotatable on the coupling axis. That is, for example, in the notations of the formula (D-1) and the formulas (2) to (5), p-linked 5-membered ring repeating units and q-linked 5-membered ring repeating units are opposite to each other.
  • the formula (D-1) and the formulas (2) to (5) described later also include structures in which they are oriented in the same direction.
  • X ′ each independently represents an O atom, an S atom, a Se atom, or NR D1
  • Z d each independently represents an N atom or CR D2
  • R D1 represents Each independently represents a monovalent organic group which may be a monovalent group represented by the above formula (1-1), wherein R D2 each independently represents a hydrogen atom or the above formula (1-1);
  • M has an alkyl group which may contain at least one of —O—, —S— and —NR D3 — as a substituent, or a monovalent group represented by the formula (1-1)
  • R D3 represents a hydrogen atom or a substituent.
  • each X ′ independently represents an O atom, an S atom, an Se atom, or NR D1 , preferably an O atom or an S atom, and more preferably an S atom.
  • Z d each independently represents an N atom or CR D2 , more preferably CR D2 .
  • R D1 independently represents a monovalent organic group, and may be an alkyl group (for example, having 1 to 30 carbon atoms) that may contain at least one of —O—, —S—, and —NR D3 —.
  • an alkoxy group having 1 to 30 carbon atoms more preferably an alkyl group having 1 to 30 carbon atoms, and still more preferably an alkyl group having 5 to 30 carbon atoms), an alkynyl group (having 2 to 30 carbon atoms).
  • an alkenyl group preferably having 2 to 30 carbon atoms
  • an aromatic hydrocarbon group preferably having 6 to 30 carbon atoms
  • an aromatic heterocyclic group preferably a 5- to 7-membered ring, as a hetero atom.
  • Is preferably an O atom, an N atom, an S atom, or an Se atom
  • a halogen atom F atom, Cl atom, Br atom, or I atom is preferred, an F atom or Cl atom is more preferred, and an F atom is particularly preferred.
  • Preferred or It is preferably a monovalent group represented by the above formula (1-1), an alkyl group that may contain at least one of —O—, —S—, and —NR D3 —, a halogen atom It is more preferably an atom or a monovalent group represented by the above formula (1-1).
  • R D2 independently represents a hydrogen atom or a monovalent organic group, and may be an alkyl group that may contain at least one of a hydrogen atom, —O—, —S—, and —NR D3 — (for example, An alkyl group having 1 to 30 carbon atoms or an alkoxy group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 30 carbon atoms, and still more preferably an alkyl group having 5 to 30 carbon atoms), an alkynyl group ( Preferably having 2 to 30 carbon atoms), an alkenyl group (preferably having 2 to 30 carbon atoms), an aromatic hydrocarbon group (preferably having 6 to 30 carbon atoms), an aromatic heterocyclic group (5 to 7-membered ring).
  • An alkyl group having 1 to 30 carbon atoms or an alkoxy group having 1 to 30 carbon atoms more preferably an alkyl group having 1 to 30 carbon atoms, and still more preferably an alkyl group having 5 to 30
  • an O atom, an N atom, an S atom, or an Se atom is preferable, a halogen atom (F atom, Cl atom, Br atom, or I atom is preferable, and an F atom or Cl atom is further included.
  • the F atom is Particularly preferred) or a monovalent group represented by the above formula (1-1), and preferably contains at least one of —O—, —S—, and —NR D3 —. It is more preferably an alkyl group, a hydrogen atom, a halogen atom, or a monovalent group represented by the above formula (1-1).
  • M represents a single bond, a divalent aromatic heterocyclic group, a divalent aromatic hydrocarbon group, an alkenylene group, an alkynylene group, or a divalent group formed by combining these.
  • M has an alkyl group which may contain at least one of —O—, —S— and —NR D3 — as a substituent, or a monovalent group represented by the formula (1-1) It may be.
  • R D3 represents a hydrogen atom or a substituent.
  • substituents include an alkyl group (preferably a linear or branched alkyl group having 1 to 10 carbon atoms), a halogen atom (preferably an F atom, a Cl atom, a Br atom, or an I atom), or Represents an aryl group (preferably an aryl group having 6 to 20 carbon atoms).
  • a hydrogen atom or an alkyl group is preferable.
  • the divalent aromatic heterocyclic group in M may be monocyclic or have a condensed structure of two or more rings.
  • Examples of the divalent aromatic heterocyclic group preferably used in the present invention are the same as the examples of the divalent aromatic heterocyclic group having a condensed structure of two or more rings described above.
  • As the divalent aromatic hydrocarbon group in M an aromatic hydrocarbon group having 6 to 20 carbon atoms is preferable, and a phenylene group, a biphenylene group, a fluorene group, a naphthylene group, or an aromatic group in which three or four rings are condensed.
  • a group obtained by removing two hydrogen atoms from a group hydrocarbon is more preferred, and a group obtained by removing two hydrogen atoms from a fluorene group, naphthylene group, anthracene ring, phenanthrene ring, chrysene ring or pyrene ring is more preferred.
  • the divalent aromatic heterocyclic group or the divalent aromatic hydrocarbon group in M may further have a substituent, and preferred substituents include the above-described —O—, —S—, And an alkyl group which may contain at least one of —NR D3 — (for example, an alkyl group having 1 to 30 carbon atoms or an alkoxy group having 1 to 30 carbon atoms is preferable, and an alkyl group having 1 to 30 carbon atoms)
  • a halogen atom F atom, Cl atom, Br atom, I atom.
  • F atom is particularly preferable.
  • the alkenylene group in M is preferably an alkenylene group having 2 to 10 carbon atoms, more preferably an alkenylene group having 2 to 4 carbon atoms, and still more preferably an ethenylene group.
  • the alkynylene group in M is preferably an alkynylene group having 2 to 10 carbon atoms, more preferably an alkynylene group having 2 to 4 carbon atoms, and still more preferably an ethynylene group.
  • P and q are each independently an integer of 0 to 4, preferably an integer of 1 to 3, and more preferably an integer of 1 to 2.
  • p and q are preferably the same value. Further, it is preferable that p + q is 2 to 4.
  • Examples of the structure of the formula (D-1) are shown below, but the present invention is not limited to the following examples.
  • a hydrogen atom may be substituted.
  • examples of the substituent include the above-described substituents (for example, an alkyl group that may include at least one of —O—, —S—, and —NR D3 —, or And groups represented by the above formula (1-1)).
  • R D1 has the same meaning as R D1 in formula (D-1), and the preferred embodiment is also the same, and * represents a binding site with another structure.
  • D and / or A have at least one monovalent group represented by the above formula (1-1).
  • the number of monovalent groups represented by formula (1-1) in the repeating unit represented by formula (1) is preferably 1 to 4, more preferably 1 or 2.
  • n is an integer of 2 or more and 30 or less, and is preferably an integer of 3 or more from the viewpoint of excellent carrier mobility and stability over time at high temperature and high humidity. More preferably, it is an integer of 4 or more. From the viewpoint of crystallinity of the specific compound, n is preferably 20 or less, and more preferably 15 or less.
  • R 1 , R 2 and R 3 are each independently an alkyl group, alkoxy group, aryl group or heteroaryl group which may have a substituent.
  • an alkyl group having 1 to 20 carbon atoms is preferable, an alkyl group having 1 to 10 carbon atoms is more preferable, and at least one of carrier mobility and stability over time at high temperature and high humidity is more excellent.
  • An alkyl group having 2 to 10 carbon atoms is more preferable, and an alkyl group having 3 to 8 carbon atoms is particularly preferable.
  • the alkyl group may be linear, branched or cyclic, but is preferably a linear or branched alkoxy group, and is a branched alkyl group. Is more preferable.
  • alkoxy group an alkoxy group having 1 to 20 carbon atoms is preferable, and an alkoxy group having 2 to 10 carbon atoms is more preferable.
  • the alkoxy group may be linear, branched or cyclic, but is preferably a linear or branched alkyl group, and is a branched alkoxy group. Is more preferable.
  • aryl group an aryl group having 6 to 20 carbon atoms is preferable, and an aryl group having 6 to 10 carbon atoms is more preferable.
  • heteroaryl group a heteroaryl group having 4 to 20 carbon atoms is preferable, a heteroaryl group having 4 to 10 carbon atoms is more preferable, and a heteroaryl group having 4 to 6 carbon atoms is still more preferable.
  • R 1 , R 2 , and R 3 an alkyl group, an alkoxy group, or an aryl group is preferable, and an alkyl group is more preferable.
  • R 1 , R 2 , and R 3 may have, ether, thioether, or halogen (F atom, Cl atom, Br atom, or I atom is preferable, and F atom is more preferable. ).
  • the above formula (1-1) is bonded to another structure at the position of *.
  • the number of carbon atoms contained in R 1 , R 2 , and R 3 is preferably 2 or more and more preferably 3 or more in that at least one of carrier mobility and stability over time at high temperature and high humidity is more excellent. preferable. Although an upper limit is not restrict
  • R 1 , R 2 , and R 3 are each preferably an alkyl group having 2 or more carbon atoms (preferably having 20 or less carbon atoms).
  • the monovalent group represented by the formula (1-1) preferably has A (electron acceptor unit) in the formula (1), and is bonded to the nitrogen atom present in A in the formula (1). More preferably. Further, in terms of at least one of carrier mobility and stability over time at high temperature and high humidity, the formulas (A-1) to (A-12) each represent at least one of R A1 and R A2. It is preferable that at least one of R A1 and R A2 in each formula is a monovalent group represented by formula (1-1).
  • A preferably has symmetry of C 2 , C 2v , or C 2h .
  • D preferably has C 2 , C 2v or C 2h symmetry.
  • the symmetry of A is C 2 , C 2v , or C 2h
  • the symmetry of D is C 2 , C 2v , or More preferably, it is C 2h .
  • the description of “Molecular Symmetry and Group Theory” is considered.
  • the specific compound includes the above-described formula (A-1), formula (A-3), formula (A-4), formula (A-5), formula (A-6), formula (A-8) and It has at least one structure selected from the group consisting of structures represented by formula (A-12) as a partial structure (preferably, the above-described formula (A-1), formula (A-3), formula (A -4), an electron acceptor unit having a structure represented by formula (A-5), formula (A-6), formula (A-8) and formula (A-12), and formula (D-1 It is preferable to have a structure composed of an electron donor unit represented by the formula (1-1) as the main chain skeleton (DA type polymer skeleton of the formula (1)).
  • the monovalent group is preferably introduced into A in the main chain skeleton, that is, the electron acceptor unit, and the nitrogen present in A in the main chain skeleton It is more preferably bonded to the child.
  • the monovalent group represented by the formula (1-1) is oriented so that the monovalent group represented by the formula (1-1) protrudes outward from the conjugate plane formed by the main chain skeleton represented by the formula (1).
  • the conjugate planarity of the main chain skeleton becomes more difficult to break. Thereby, the packing between the main chain molecules in the organic semiconductor layer becomes better, and the carrier mobility becomes excellent.
  • the repeating unit represented by the above formula (1) is preferably a repeating unit represented by any of the following formulas (2) to (5), and any of the following formulas (2) to (4) Is more preferably a repeating unit represented by either the following formula (2) or the following formula (3), represented by the following formula (3). Particularly preferred is a repeating unit.
  • each X independently represents an O atom, S atom, Se atom or NR A1
  • each Y independently represents an O atom or S atom
  • each Z a is independently
  • Each represents CR A2 or an N atom
  • each R A1 independently represents an alkyl group which may contain at least one of —O—, —S—, and —NR A3 —
  • the above formula (1- 1) represents a monovalent group represented by 1) or a binding site with another structure
  • R A2 independently represents at least one of —O—, —S—, and —NR A3 —.
  • An alkyl group which may be contained, a hydrogen atom, a halogen atom, a monovalent group represented by the above formula (1-1), or a bonding site with another structure, and R A3 represents a hydrogen atom or a substituent;
  • X ′ represents each independently an O atom, an S atom, a Se atom, or NR D1
  • Z d represents each independently,
  • Each represents an N atom or CR D2
  • each R D1 independently represents a monovalent organic group which may be a monovalent group represented by the above formula (1-1)
  • each R D2 independently represents Represents a monovalent organic group which may be a hydrogen atom or a monovalent group represented by the above formula (1-1)
  • M represents a single bond, a divalent aromatic heterocyclic group or a divalent aromatic group.
  • M has an alkyl group which may contain at least one of —O—, —S— and —NR D3 — as a substituent, or a monovalent group represented by the formula (1-1)
  • R D3 represents a hydrogen atom or a substituent.
  • X, Y, Z a , R A1 , R A2 , and R A3 are X, Y, Z in the above formulas (A-1) to (A-12), respectively.
  • Each of a 1 , R A1 , R A2 and R A3 has the same meaning, and the preferred embodiments are also the same.
  • X ′, Z d , R D1 , R D2 , R D3 , M, p, and q are the same as X ′, Z d , R D1 , R D2 , R D3 , M, p, and q have the same meanings, and preferred embodiments are also the same.
  • the formula (2) to the formula (5) each have at least one of R A1 and R A2 in that at least one of carrier mobility and stability over time at high temperature and high humidity is superior.
  • at least one of R A1 and R A2 is preferably a monovalent group represented by the formula (1-1).
  • the content of the repeating unit represented by the formula (1) is preferably 60 to 100% by mass, more preferably 80 to 100% by mass with respect to the total mass of the specific compound. More preferably, it is 90 to 100% by mass, and it is particularly preferable that it is formed substantially only of the repeating unit represented by the formula (1).
  • being substantially formed only from the repeating unit represented by the formula (1) means that the content of the repeating unit represented by the formula (1) is 95% by mass or more, and 97 It is preferably at least mass%, more preferably at least 99 mass%.
  • the specific compound may contain 1 type of repeating units represented by Formula (1), and may contain 2 or more types.
  • the specific compound is a compound having two or more repeating units represented by the formula (1), and may be an oligomer having a repeating unit number n of 2 to 9, and a polymer (polymer) having a repeating unit number n of 10 or more. ).
  • a polymer having a repeating unit number n of 10 or more is preferable from the viewpoint of carrier mobility and physical properties of the obtained organic semiconductor film.
  • the molecular weight of the compound having a repeating unit represented by formula (1) is 2,000 or more, preferably 5,000 or more, and more preferably 10,000 or more. Preferably, it is more preferably 20,000 or more, and particularly preferably 30,000 or more. Further, from the viewpoint of solubility, it is preferably 1,000,000 or less, more preferably 300,000 or less, still more preferably 150,000 or less, and particularly preferably 100,000 or less. preferable.
  • the molecular weight of the compound when a compound has a molecular weight distribution, the molecular weight of the compound means a weight average molecular weight.
  • the weight average molecular weight and the number average molecular weight are measured by a gel permeation chromatography method (GPC (Gel Permeation Chromatography)) and calculated by standard polystyrene.
  • GPC Gel Permeation Chromatography
  • HLC-8121 GPC manufactured by Tosoh Corporation
  • TSKgel GMH HR -H (20) HT manufactured by Tosoh Corporation, 7.8 mm ID ⁇ 30 cm
  • 1,2,4-trichlorobenzene is used as an eluent.
  • the sample concentration is 0.02% by mass
  • the flow rate is 1.0 ml / min
  • the sample injection amount is 300 ⁇ l
  • the measurement temperature is 160 ° C.
  • an IR (infrared) detector is used.
  • the calibration curve is “Standard sample TSK standard, polystyrene” manufactured by Tosoh Corporation: “F-128”, “F-80”, “F-40”, “F-20”, “F-10” It is prepared from 12 samples of “F-4”, “F-2”, “F-1”, “A-5000”, “A-2500”, “A-1000”, “A-500”.
  • the organic semiconductor layer to be described later, the organic semiconductor film to be described later or the organic semiconductor composition may contain only one kind of specific compound or two or more kinds of specific compounds. And from a viewpoint of carrier mobility, it is preferable that it is only 1 type.
  • the structure of the terminal of the specific compound is not particularly limited, and depends on the presence or absence of other structural units, the type of substrate used during synthesis, or the type of quenching agent (reaction terminator) used during synthesis. , A hydrogen atom, a hydroxy group, a halogen atom, an ethylenically unsaturated group, or an alkyl group.
  • the method for synthesizing the specific compound is not particularly limited, and may be synthesized with reference to a known method.
  • JP 2010-527327, JP 2007-516315, JP 2014-515043, JP 2014-507488, JP 2011-501451, JP 2010-18790 With reference to documents such as WO2012 / 174561, JP2011-514399, or JP2011-514913, a precursor of an electron acceptor unit and a precursor of an electron donor unit were synthesized, The precursor can be synthesized by a cross-coupling reaction such as Suzuki coupling or Stille coupling.
  • TIPS is a triisopropylsilyl group
  • Hex is a hexyl group
  • TMS is a trimethylsilyl group
  • TDPS is a tert-butyldiphenylsilyl group
  • EtO is an ethoxy group
  • TES is a triethylsilyl group
  • Ph is a phenyl group
  • Cy is a cyclohexyl group.
  • the organic semiconductor layer of the organic semiconductor element of the present invention may contain a binder polymer.
  • the organic semiconductor element of the present invention may be an organic semiconductor element having the organic semiconductor layer and a layer containing a binder polymer.
  • the kind in particular of a binder polymer is not restrict
  • the binder polymer include polystyrene, poly ( ⁇ -methylstyrene), polyvinyl cinnamate, poly (4-vinylphenyl), and poly (4-methylstyrene).
  • the weight average molecular weight of the binder polymer is not particularly limited, but is preferably 1,000 to 2,000,000, more preferably 3,000 to 1,000,000, and still more preferably 5,000 to 600,000.
  • the content of the binder polymer in the organic semiconductor layer of the organic semiconductor element of the present invention is preferably 1 to 200 parts by mass and more preferably 10 to 150 parts by mass with respect to 100 parts by mass of the specific compound.
  • the amount is preferably 20 to 120 parts by mass.
  • the resulting organic semiconductor is more excellent in carrier mobility and stability with time under high temperature and high humidity.
  • the organic semiconductor layer in the organic semiconductor element of the present invention may contain other components in addition to the specific compound and the binder polymer. As other components, known additives and the like can be used.
  • the content of the components other than the specific compound and the binder polymer in the organic semiconductor layer is preferably 10% by mass or less, preferably 5% by mass or less, and more preferably 1% by mass or less. It is particularly preferably 1% by mass or less. Within the above range, the film forming property is excellent, and the carrier mobility of the obtained organic semiconductor and the temporal stability under high temperature and high humidity are excellent.
  • the method for forming the organic semiconductor layer in the organic semiconductor element of the present invention is not particularly limited, and the organic semiconductor composition of the present invention described later is applied on a predetermined substrate (for example, on the source electrode, the drain electrode, and the gate insulating film).
  • the desired organic semiconductor layer can be formed by applying a drying treatment as necessary.
  • the organic semiconductor element of the present invention is preferably manufactured using the organic semiconductor composition of the present invention described later.
  • a method for producing an organic semiconductor film or an organic semiconductor element using the organic semiconductor composition of the present invention is not particularly limited, and a known method can be adopted.
  • a method of producing an organic semiconductor film by applying the composition onto a predetermined substrate and subjecting it to a drying treatment as necessary can be mentioned.
  • a method for applying the composition on the substrate is not particularly limited, and a known method can be adopted, for example, an inkjet printing method, a screen printing method, a flexographic printing method, a bar coating method, a spin coating method, a knife coating method, or Doctor blade method etc. are mentioned, Inkjet printing method, screen printing method, or flexographic printing method is preferred.
  • the manufacturing method of the organic-semiconductor element of this invention includes the application
  • the organic semiconductor composition of the present invention described later contains a solvent and preferably contains an organic solvent.
  • a known solvent can be used as the solvent.
  • hydrocarbons such as hexane, octane, decane, toluene, xylene, mesitylene, ethylbenzene, amylbenzene, decalin, 1-methylnaphthalene, 1-ethylnaphthalene, 1,6-dimethylnaphthalene, or tetralin
  • Solvents such as ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetophenone, propiophenone, butyrophenone, ⁇ -tetralone, or ⁇ -tetralone, such as dichloromethane, chloroform, tetrachloromethane, dichloroethane, trichloroethane, Halogen
  • a solvent may be used individually by 1 type and may be used in combination of multiple.
  • hydrocarbon solvents, ketone solvents, halogenated hydrocarbon solvents, heterocyclic solvents, halogenated heterocyclic solvents or ether solvents are preferred, and toluene, xylene, mesitylene, amylbenzene, tetralin, acetophenone , Propiophenone, butyrophenone, ⁇ -tetralone, dichlorobenzene, anisole, ethoxybenzene, propoxybenzene, isopropoxybenzene, butoxybenzene, 2-methylanisole, 3-methylanisole, 4-methylanisole, 2,3-dihydrobenzofuran , Phthalane, chromane, isochroman, 1-fluoronaphthalene, 3-chlorothiophene, or 2,5-dibromothiophene, more preferably toluene, xylene, tetralin,
  • the boiling point of a solvent is 100 degreeC or more.
  • the boiling point of the solvent is more preferably from 100 to 300 ° C, further preferably from 125 to 250 ° C, particularly preferably from 150 to 225 ° C.
  • the boiling point of the solvent with most content is 100 degreeC or more, and it is more preferable that the boiling points of all the solvents are 100 degreeC or more.
  • the content of the specific compound in the organic semiconductor composition of the present invention is preferably 0.005 to 50% by mass, and 0.01 to 25% by mass with respect to the total mass of the organic semiconductor composition. % Is more preferable, 0.05 to 15% by mass is further preferable, 0.05 to 3% by mass is particularly preferable, and 0.1 to 10% by mass is most preferable. Within the above range, the coating property is excellent and the organic semiconductor film can be easily formed.
  • the content of the binder polymer is preferably 0.01 to 50% by mass, more preferably 0.05 to 25% by mass for the same reason as described above. More preferably, the content is 0.1 to 10% by mass.
  • the drying treatment in the removing step is a treatment performed as necessary, and optimal conditions are appropriately selected depending on the type of the specific compound and the solvent used.
  • the heating temperature is preferably 30 ° C. to 100 ° C., and 40 ° C. to 80 ° C. in terms of excellent carrier mobility and stability over time under high temperature and high humidity of the organic semiconductor obtained, and excellent productivity. More preferred.
  • the heating time is preferably 10 to 300 minutes and more preferably 30 to 180 minutes for the same reason.
  • the organic semiconductor composition of the present invention may contain additives other than the polymer binder, such as a surfactant, an antioxidant, a crystallization control agent, or a crystal orientation control agent.
  • additives other than the polymer binder such as a surfactant, an antioxidant, a crystallization control agent, or a crystal orientation control agent.
  • the thickness of the formed organic semiconductor layer is not particularly limited, but is preferably 10 to 500 nm, more preferably 30 to 200 nm, from the viewpoint of carrier mobility of the organic semiconductor obtained and stability over time at high temperature and high humidity. .
  • the organic semiconductor element is not particularly limited, but is preferably an organic semiconductor element having 2 to 5 terminals, and more preferably an organic semiconductor element having 2 or 3 terminals.
  • the organic semiconductor element is preferably not a photoelectric conversion element.
  • the organic semiconductor element of the present invention is preferably a non-light emitting organic semiconductor element. Examples of the two-terminal element include a rectifying diode, a constant voltage diode, a PIN diode, a Schottky barrier diode, a surge protection diode, a diac, a varistor, or a tunnel diode.
  • Examples of the three-terminal element include a bipolar transistor, a Darlington transistor, a field effect transistor, an insulated gate bipolar transistor, a unijunction transistor, a static induction transistor, a gate turn thyristor, a triac, and a static induction thyristor.
  • a rectifying diode or transistors are preferably exemplified, and a field effect transistor is more preferably exemplified.
  • FIG. 1 shows a schematic cross-sectional view of a bottom contact type organic thin film transistor as one embodiment of an organic thin film transistor (organic TFT).
  • an organic thin film transistor 100 includes a substrate 10, a gate electrode 20 disposed on the substrate 10, a gate insulating film 30 covering the gate electrode 20, and a side of the gate insulating film 30 opposite to the gate electrode 20 side.
  • a source electrode 40 and a drain electrode 42 in contact with the surface, an organic semiconductor film 50 covering the surface of the gate insulating film 30 between the source electrode 40 and the drain electrode 42, and a sealing layer 60 covering each member are provided.
  • the organic thin film transistor 100 is a bottom gate-bottom contact type organic thin film transistor.
  • the organic semiconductor film 50 corresponds to a film formed from the above-described organic semiconductor composition of the present invention.
  • the substrate, the gate electrode, the gate insulating film, the source electrode, the drain electrode, the organic semiconductor film, the sealing layer, and the respective formation methods will be described in detail.
  • the substrate plays a role of supporting a gate electrode, a source electrode, a drain electrode, and the like, which will be described later.
  • substrate is not restrict
  • a conductive oxide such as InO 2 , SnO 2 , or indium tin oxide (ITO); a conductive polymer such as polyaniline, polypyrrole, polythiophene, polyacetylene, or polydiacetylene; silicon, germanium Or a semiconductor such as gallium arsenide; a carbon material such as fullerene, carbon nanotube, or graphite.
  • a metal is preferable, and silver or aluminum is more preferable.
  • the thicknesses of the gate electrode, the source electrode, and the drain electrode are not particularly limited, but are preferably 20 to 200 nm.
  • a method for forming the gate electrode, the source electrode, and the drain electrode is not particularly limited, and examples thereof include a method of vacuum-depositing or sputtering an electrode material on a substrate, and a method of applying or printing an electrode-forming composition.
  • examples of the patterning method include a photolithography method; a printing method such as inkjet printing, screen printing, offset printing, or relief printing; a mask vapor deposition method.
  • ⁇ Gate insulation film Materials for the gate insulating film include polymethyl methacrylate, polystyrene, polyvinyl phenol, polyimide, polycarbonate, polyester, polyvinyl alcohol, polyvinyl acetate, polyurethane, polysulfone, polybenzoxazole, polysilsesquioxane, epoxy resin, or phenol.
  • Examples thereof include polymers such as resins; oxides such as silicon dioxide, aluminum oxide, and titanium oxide; and nitrides such as silicon nitride. Of these materials, a polymer is preferable in view of compatibility with the organic semiconductor film.
  • the material for the gate insulating film When a polymer is used as the material for the gate insulating film, it is preferable to use a crosslinking agent (for example, melamine) in combination. By using a crosslinking agent in combination, the polymer is crosslinked and the durability of the formed gate insulating film is improved.
  • the thickness of the gate insulating film is not particularly limited, but is preferably 100 to 1,000 nm.
  • the method for forming the gate insulating film is not particularly limited, and examples thereof include a method of applying a composition for forming a gate insulating film on a substrate on which a gate electrode is formed, and a method of depositing or sputtering a gate insulating film material. It is done.
  • the method for applying the composition for forming a gate insulating film is not particularly limited, and a known method (bar coating method, spin coating method, knife coating method, or doctor blade method) can be used.
  • a gate insulating film forming composition When a gate insulating film forming composition is applied to form a gate insulating film, it may be heated (baked) after application for the purpose of solvent removal or crosslinking.
  • the organic semiconductor element of the present invention may have the binder polymer layer between the organic semiconductor layer and the gate insulating film, and in the case of having the binder polymer layer, the organic semiconductor element is interposed between the organic semiconductor layer and the gate insulating film. It is preferable to have the binder polymer layer.
  • the thickness of the binder polymer layer is not particularly limited, but is preferably 20 to 500 nm.
  • the said binder polymer layer should just be a layer containing the said polymer, it is preferable that it is a layer which consists of the said binder polymer.
  • a method for forming the binder polymer layer is not particularly limited, and a known method (a bar coating method, a spin coating method, a knife coating method, a doctor blade method, or an ink jet method) can be used.
  • a bar coating method, a spin coating method, a knife coating method, a doctor blade method, or an ink jet method can be used.
  • the composition for forming a binder polymer layer is applied to form a binder polymer layer, it may be heated (baked) after application for the purpose of solvent removal or crosslinking.
  • the organic semiconductor element of the present invention preferably includes a sealing layer as the outermost layer from the viewpoint of durability.
  • a well-known sealing agent can be used for a sealing layer.
  • the thickness of the sealing layer is not particularly limited, but is preferably 0.2 to 10 ⁇ m.
  • the method for forming the sealing layer is not particularly limited.
  • the composition for forming the sealing layer is applied onto the substrate on which the gate electrode, the gate insulating film, the source electrode, the drain electrode, and the organic semiconductor film are formed.
  • the method etc. are mentioned.
  • a specific example of the method of applying the sealing layer forming composition is the same as the method of applying the gate insulating film forming composition.
  • the composition for forming a sealing layer is applied to form an organic semiconductor film, it may be heated (baked) after application for the purpose of solvent removal or crosslinking.
  • FIG. 2 shows a schematic cross-sectional view of a top contact type organic thin film transistor as another embodiment of the organic thin film transistor (organic TFT).
  • the organic thin film transistor 200 includes a substrate 10, a gate electrode 20 disposed on the substrate 10, a gate insulating film 30 covering the gate electrode 20, and an organic semiconductor film 50 disposed on the gate insulating film 30.
  • a source electrode 40 and a drain electrode 42 disposed on the organic semiconductor film 50 and a sealing layer 60 covering each member are provided.
  • the source electrode 40 and the drain electrode 42 are formed using the composition of the present invention described above. That is, the organic thin film transistor 200 is a bottom gate-top contact type organic thin film transistor.
  • the substrate, gate electrode, gate insulating film, source electrode, drain electrode, organic semiconductor film, and sealing layer are as described above.
  • the embodiments of the bottom gate-bottom contact type organic thin film transistor and the bottom gate-top contact type organic thin film transistor have been described in detail.
  • the organic semiconductor element of the present invention has a top gate-bottom type. It can also be suitably used for contact type organic thin film transistors and top gate-top contact type organic thin film transistors.
  • the organic thin-film transistor mentioned above can be used conveniently for electronic paper, a display device, etc.
  • the compound of the present invention has a repeating unit represented by any one of the above formulas (2) to (5), and has a molecular weight of 2,000 or more.
  • the above formulas (2) to (5) each have at least one monovalent group represented by the above formula (1-1).
  • the compound having a repeating unit represented by any one of the above formulas (2) to (5) and having a molecular weight of 2,000 or more in the compound of the present invention is represented by the above formulas (2) to (5).
  • These are synonymous with the compound having a repeating unit represented by any of the above, and preferred embodiments are also the same.
  • the compound of this invention can be preferably used as a compound for organic semiconductors (compound for forming an organic semiconductor layer) as described above.
  • Organic semiconductor composition of the present invention contains the compound of the present invention (the above-mentioned specific compound) and a solvent. Moreover, the organic-semiconductor composition of this invention may contain a binder polymer.
  • the specific compound, binder polymer, and solvent in the organic semiconductor composition of the present invention have the same meanings as the specific compound, binder polymer, and solvent described above, and preferred embodiments are also the same.
  • the organic semiconductor composition of the present invention may contain other components in addition to the specific compound, binder polymer and solvent.
  • the method for producing the organic semiconductor composition of the present invention is not particularly limited, and a known method can be adopted.
  • a desired composition can be obtained by adding a predetermined amount of a specific compound in a solvent and appropriately stirring.
  • a specific compound and a binder polymer can be added simultaneously or sequentially, and a composition can be produced suitably.
  • the organic semiconductor film of the present invention contains a specific compound.
  • the organic semiconductor film of the present invention may contain a binder polymer.
  • the specific compound and binder polymer in the organic semiconductor film of the present invention are synonymous with the specific compound and binder polymer described above in the organic semiconductor element of the present invention, and the preferred embodiments are also the same.
  • the organic semiconductor film of the present invention may contain other components in addition to the specific compound and the binder polymer. As other components, known additives and the like can be used.
  • the content of the specific compound and components other than the binder polymer in the organic semiconductor film of the present invention is preferably 10% by mass or less, preferably 5% by mass or less, and preferably 1% by mass or less. More preferably, it is particularly preferably 0.1% by mass or less.
  • the film forming property is excellent, and the carrier mobility of the obtained organic semiconductor and the temporal stability under high temperature and high humidity are excellent.
  • solid content is the quantity of the component except volatile components, such as a solvent.
  • the film thickness of the organic semiconductor film of the present invention is not particularly limited, but is preferably 10 to 500 nm, more preferably 30 to 200 nm, from the viewpoint of carrier mobility of the obtained organic semiconductor and stability over time under high temperature and high humidity. .
  • the organic semiconductor film of the present invention can be suitably used for an organic semiconductor element, and can be particularly suitably used for an organic thin film transistor.
  • the organic semiconductor film of the present invention can be suitably produced using the organic semiconductor composition of the present invention.
  • the method for producing the organic semiconductor film of the present invention is not particularly limited, and a known method can be adopted.
  • the organic-semiconductor composition of this invention is provided on a predetermined base material, The drying process is given as needed, and the method of manufacturing an organic-semiconductor film is mentioned.
  • a method for applying the composition on the substrate is not particularly limited, and a known method can be adopted, for example, an inkjet printing method, a screen printing method, a flexographic printing method, a bar coating method, a spin coating method, a knife coating method, or Doctor blade method etc. are mentioned, Inkjet printing method, screen printing method, or flexographic printing method is preferred.
  • the manufacturing method of the organic-semiconductor film of this invention includes the application
  • substrate It is more preferable to include a removal step of removing the solvent from the applied composition.
  • Example 1 to 14 and Comparative Examples 1 to 6 ⁇ Organic semiconductor compound> The structures of Compounds 1 to 14 and Comparative Compounds 1 to 6 used for the organic semiconductor layer are shown below. Mw represents a weight average molecular weight. The weight average molecular weights of Compounds 1 to 14 and Comparative Compounds 1 to 6 were measured by the method described above.
  • the cooled reaction liquid was poured into the liquid mixture comprised by the mixing ratio of methanol (100 mL) / concentrated hydrochloric acid (5 mL), and was stirred for 2 hours.
  • the precipitate was filtered and washed with methanol, and then Soxhlet extracted with methanol, acetone and chloroform in order to remove soluble impurities.
  • methanol was added, and the precipitated solid was filtered, washed with methanol, and vacuum dried at 80 ° C. for 12 hours to obtain 130 mg of Compound 1. (Yield 77%).
  • the number average molecular weight in terms of polystyrene was 8.3 ⁇ 10 3 and the weight average molecular weight was 3.1 ⁇ 10 4 .
  • the cooled reaction liquid was poured into the liquid mixture comprised by the mixing ratio of methanol (100 mL) / concentrated hydrochloric acid (10 mL), and was stirred for 2 hours.
  • the precipitate was filtered and washed with methanol, and then Soxhlet extracted with methanol, acetone and chloroform in order to remove soluble impurities.
  • methanol was added, and the precipitated solid was filtered, washed with methanol, and vacuum-dried at 80 ° C. for 12 hours to obtain 164 mg of Compound 9. (Yield 67%).
  • the number average molecular weight in terms of polystyrene was 1.9 ⁇ 10 4 and the weight average molecular weight was 4.5 ⁇ 10 4 .
  • Comparative compound 1 is JP-T-2007-516315
  • comparative compound 2 is JP-T 2010-527327
  • comparative compound 3 is WO 2013/150005 (cited reference 1)
  • comparative compound 4 is JP-T 2009-541548.
  • No. and Comparative Compound 5 are compounds described in WO2013 / 150005 (Cited document 1).
  • Comparative compound 6 is a compound in which a silylethynyl group is directly linked to a conjugate plane formed by a main chain skeleton, and was synthesized with reference to Japanese Patent No. 5494651 (Cited document 2).
  • a silver ink (silver nanocolloid H-1, manufactured by Mitsubishi Materials Corporation) is used as a source electrode and a drain electrode (channel length 40 ⁇ m, channel width) using an ink jet apparatus DMP-2831 (manufactured by Fujifilm Dimatics). (200 ⁇ m). Thereafter, baking was performed at 180 ° C. for 30 minutes in an oven, sintering was performed, and a source electrode and a drain electrode were formed to obtain an element substrate for TFT characteristic evaluation.
  • the nitrogen glove box after spin coating the organic semiconductor composition 1 prepared above on the element substrate for TFT characteristic evaluation (after 10 seconds at 500 rpm and 30 seconds at 1,000 rpm), on a hot plate, An organic semiconductor layer was formed by drying at 180 ° C.
  • a bottom gate bottom contact type organic TFT element (hereinafter also referred to as “element”) 1.
  • the elements 2 to 14 and the comparison Elements 1 to 6 were respectively produced.
  • the obtained elements 1 to 14 and comparative elements 1 to 6 were organic TFT elements of Examples 1 to 14 and Comparative examples 1 to 6.
  • the carrier mobility ⁇ was calculated using the following equation representing the drain current I d and evaluated according to the following seven levels.
  • I d (w / 2L) ⁇ C i (V g ⁇ V th ) 2
  • L is the gate length
  • w the gate width
  • C i the capacitance per unit area of the insulating layer
  • V g the gate voltage
  • V th is the threshold voltage.
  • each organic TFT element (elements 1 to 14 and comparative elements 1 to 6) is stored at 60 ° C. and 80% humidity for 24 hours.
  • the carrier mobility maintenance rate (the following formula) when the carrier mobility was measured by the same method as in “) Carrier mobility” was evaluated in the following five stages, and used as an index of stability over time at high temperature and high humidity. The larger this value is, the higher the stability over time at high temperature and high humidity is, and it is practically necessary to be “B” or more, and more preferably “A” or more.
  • Carrier mobility maintenance ratio after storage under high temperature and high humidity ⁇ carrier mobility (after storage under high temperature and high humidity) / carrier mobility (before storage under high temperature and high humidity) ⁇ ⁇ 100 “A”: 90% or more “B”: 75% or more and less than 90% “C”: 50% or more and less than 75% “D”: 25% or more and less than 50% “E”: less than 25%
  • Comparative Examples 1, 2, and 4 when an alkyl group having no silylethynyl group terminal is introduced as a substituent, in any of carrier mobility and stability over time at high temperature and high humidity However, the desired effect was not exhibited.
  • Comparative Example 3 when an alkyl group having a silyl end directly linked without an ethynyl group was introduced, the effect of stability over time under high temperature and high humidity did not appear.
  • Comparative Example 5 when a methyl group having a silylethynyl group terminal is used (corresponding to n in formula (1-1) being 1), the effect of stability over time at high temperature and high humidity was not expressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本発明は、高いキャリア移動度を示し、且つ、高温高湿下で長時間保管されてもキャリア移動度を安定に維持できる有機半導体素子(特に、有機薄膜トランジスタ)、及び、化合物、上記化合物を用いた有機半導体組成物、並びに有機半導体膜及びその製造方法を提供することを目的とする。 本発明の有機半導体素子は、分子量2,000以上で、且つ、下記式(1)で表される繰り返し単位を有する化合物を含有する有機半導体層を備える。 式(1)中、A電子アクセプターユニットであり、Dは電子ドナーユニットであり、D及び/又はAは下記式(1-1)で表される一価の有機基を少なくとも一つ有する。 式(1-1)中、nは2以上30以下の整数であり、R、R、及びRは、それぞれ独立に、置換基を有していてもよい、アルキル基、アルコキシ基、アリール基又はヘテロアリール基であり、*は他の構造との結合部位を表す。

Description

有機半導体素子、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法
 本発明は、有機半導体素子、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法に関する。
 軽量化、低コスト化、及び柔軟化が可能であることから、液晶ディスプレイ又は有機EL(electro luminescence)ディスプレイに用いられるFET(電界効果トランジスタ)、RFID(radio frequency identifier:RFタグ)又はメモリなどの論理回路を用いる装置等に、有機半導体膜(有機半導体層)を有する有機薄膜トランジスタ(有機TFT(thin film transistor))が利用されている。
 このような有機半導体膜を形成するための化合物として、電子供与性(ドナー)ユニットと電子受容性(アクセプター)ユニットとを組み合わせたポリマー(いわゆる「D-A型ポリマー」)が有用であることが知られている。
 例えば、特許文献1には、シラン末端を有するアルキル基を置換基として導入したD-A型ポリマーが開示されている。
 一方、例えば、特許文献2では、光電変換素子に用いられるD-A型ポリマーとして、シリルエチニル基をD-A型ポリマーの共役平面に直接連結させた化合物を開示している。
国際公開第2013/150005号 特許第5494651号明細書
 ところで、近年、有機薄膜トランジスタの性能向上の観点から、有機薄膜トランジスタのキャリア移動度のより一層の向上が求められている実情がある。
 このようななか、本発明者らは、上記特許文献1に開示されるような、シラン末端を有するアルキル基を置換基として導入したD-A型ポリマーを有機半導体化合物として用いた有機薄膜トランジスタについてさらに検討を行ったところ、キャリア移動度を更に向上させる余地があることを知見するに至った。
 また、昨今、有機薄膜トランジスタの普及に伴い、これを搭載する機器の種類が多様化するとともに搭載率が上昇しており、様々な環境下、特に高温高湿下で長時間保管されてもキャリア移動度を安定に維持できる特性が求められている。
 そこで、本発明の目的は、高いキャリア移動度を示し、且つ、高温高湿下で長時間保管されてもキャリア移動度を安定に維持できる有機半導体素子(特に、有機薄膜トランジスタ)を提供することである。
 また、本発明の他の目的は、有機半導体素子(特に、有機薄膜トランジスタ)の有機半導体層に用いたときに、有機半導体素子が高いキャリア移動度を示し、且つ、高温高湿下で長時間保管されてもキャリア移動度を安定に維持できる化合物、上記化合物を用いた有機半導体組成物、並びに有機半導体膜及びその製造方法を提供することである。
 本発明者は、上記課題について鋭意検討した結果、後述する一般式(1)で表される化合物を用いることで所望の効果が得られることを見出し、本発明に至った。
 すなわち、本発明者は、以下の構成により上記課題が解決できることを見出した。
(1) 分子量2,000以上で、且つ、後述する式(1)で表される繰り返し単位を有する化合物を含有する有機半導体層を備える、有機半導体素子。
(2) 上記式(1)において、Aが後述する式(A-1)~式(A-12)で表される構造よりなる群から選ばれる少なくとも1つの構造を部分構造として有する、(1)に記載の有機半導体素子。
(3) 上記式(1)において、Dが後述する式(D-1)で表される構造である、(1)又は(2)に記載の有機半導体素子。
(4) 上記式(1)で表される繰り返し単位が、後述する式(2)~式(5)のいずれかで表される繰り返し単位である、(1)~(3)のいずれかに記載の有機半導体素子。
(5) 上記式(A-1)~式(A-12)が、それぞれRA1及びRA2のいずれかを少なくとも1つ有し、各式におけるRA1及びRA2の少なくともいずれか1つが、式(1-1)で表される一価の基である、(2)に記載の有機半導体素子。
(6) 上記式(2)~式(5)が、それぞれRA1及びRA2のいずれかを少なくとも1つ有し、各式におけるRA1及びRA2の少なくともいずれか1つが、式(1-1)で表される一価の基である、(4)に記載の有機半導体素子。
(7) 上記式(1-1)中、R、R、及びRに含まれる炭素数が、それぞれ2以上である、(1)~(6)のいずれかに記載の有機半導体素子。
(8) 分子量2,000以上で、且つ、後述する式(2)~式(5)のいずれかで表される繰り返し単位を有する、化合物。但し、式(2)~式(5)は、それぞれ、後述する式(1-1)で表される一価の基を少なくとも一つ有する。
(9) 分子量2,000以上で、且つ、後述する式(1)で表される繰り返し単位を有する化合物と、溶媒と、を含む、有機半導体組成物。
(10) 分子量2,000以上で、且つ、後述する式(1)で表される繰り返し単位を有する化合物を含む、有機半導体膜。
(11) (9)に記載の有機半導体組成物を基板上に塗布する塗布工程を含む、有機半導体膜の製造方法。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 本明細書において、化合物の表示については、その化合物そのものの他、その塩、そのイオンを含む意味に用いる。
 本明細書において、特定の符号で表示された置換基若しくは連結基等(以下、置換基等という)が複数あるとき、又は複数の置換基等を同時に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。このことは、置換基等の数の規定についても同様である。
 また、特に断らない限り、複数の置換基等が近接(特に隣接)するときには、それらが互いに連結したり縮環したりして環を形成していてもよい意味である。
 さらに、本明細書において置換・無置換を明記していない置換基等については、目的とする効果を損なわない範囲で、その基にさらに置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。
 本明細書において「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明によれば、高いキャリア移動度を示し、且つ、高温高湿下で長時間保管されてもキャリア移動度を安定に維持できる有機半導体素子(特に、有機薄膜トランジスタ)を提供するができる。
 また、本発明によれば、有機半導体素子(特に、有機薄膜トランジスタ)の有機半導体層に用いたときに、有機半導体素子が高いキャリア移動度を示し、且つ、高温高湿下で長時間保管されてもキャリア移動度を安定に維持できる化合物、上記化合物を用いた有機半導体組成物、並びに有機半導体膜及びその製造方法を提供することもできる。
本発明の一実施形態に係るボトムコンタクト型の有機薄膜トランジスタの断面模式図である。 本発明の一実施形態に係るトップコンタクト型の有機薄膜トランジスタの断面模式図である。
[有機半導体素子]
 本発明の有機半導体素子(特に、有機薄膜トランジスタ)は、分子量2,000以上で、且つ、下記式(1)で表される繰り返し単位を有する化合物を含有する有機半導体層(有機半導体膜)を備えることを特徴とする。
Figure JPOXMLDOC01-appb-C000012
 式(1)中、Aはsp2窒素原子、カルボニル基、及び、チオカルボニル基のうち少なくとも1つを環構造内に有する部分構造を含む電子アクセプターユニット、Dは少なくとも1つのN原子、O原子、S原子、若しくはSe原子を環構造内に有する二価の芳香族複素環基、又は2環以上の縮環構造からなる二価の芳香族炭化水素基を部分構造として含む電子ドナーユニットであり、D及び/又はAは式(1-1)で表される一価の基を少なくとも一つ有する。
 電子アクセプターユニットとは、電子受容性を有する構成単位をいい、例としてはフタルイミドのような、π電子不足系の複素環ユニットが挙げられる。
 電子ドナーユニットとは、電子供与性を有する構成単位をいい、例としてはチオフェンのような、π電子過剰系の複素環ユニットが挙げられる。
Figure JPOXMLDOC01-appb-C000013
 式(1-1)中、nは2以上30以下の整数であり、R、R及びRは、それぞれ独立に、置換基を有していてもよい、アルキル基、アルコキシ基、アリール基又はヘテロアリール基であり、*は他の構造との結合部位を表す。
 上記式(1)で表される繰り返し単位を有する化合物は、電子ドナーユニットと電子アクセプターユニットとから形成される主鎖骨格に上記式(1-1)で表されるシリルエチニル基末端を持つ特定炭素数のアルキル基が導入されたことによってバリア性(疎水性)を発現すると同時に、シリルエチニル基末端におけるSiの置換基による立体障害により有機溶媒に対する優れた溶解性を有する。これにより、有機半導体層中における有機半導体化合物の濃度を高めることが可能となると共に、形成される有機半導体層中での有機半導体化合物の結晶化が進行しやすくなり、有機半導体素子が優れたキャリア移動度を有しつつ、高温高湿下で長時間保管してもキャリア移動度を安定して維持できる(以下「高温高湿下での経時安定性」ともいう。)ものと推測される。
 以下、本発明の構成について詳述する。
〔分子量2,000以上で、且つ、式(1)で表される繰り返し単位を有する化合物〕
 分子量2,000以上で、且つ、上記式(1)で表される繰り返し単位を有する化合物(以下、単に「特定化合物」とも称する)は、有機薄膜トランジスタ等の有機半導体素子における有機半導体層(有機半導体膜)として使用することができる。
<式(1)で表される繰り返し単位>
(電子アクセプターユニット)
 式(1)中、Aはsp2窒素原子、カルボニル基及びチオカルボニル基のうち少なくとも1つを環構造内に有する部分構造を含む電子アクセプターユニットを表す。
 Aは下記式(A-1)~式(A-12)で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有することが好ましく、Aが下記式(A-1)~式(A-12)よりなる群から選ばれた少なくとも1つにより表される構造であることがより好ましい。
Figure JPOXMLDOC01-appb-C000014
 式(A-1)~式(A-12)中、Xはそれぞれ独立に、O原子、S原子、Se原子又はNRA1を表し、Yはそれぞれ独立に、O原子又はS原子を表し、Zaはそれぞれ独立に、CRA2又はN原子を表し、Wはそれぞれ独立に、C(RA22、NRA1、N原子、CRA2、O原子、S原子又はSe原子を表し、RA1はそれぞれ独立に、-O-、-S-、及び、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、上記式(1-1)で表される一価の基、又は、他の構造との結合部位を表し、RA2はそれぞれ独立に、-O-、-S-、及び、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、水素原子、ハロゲン原子、上記式(1-1)で表される一価の基、又は、他の構造との結合部位を表し、*はそれぞれ独立に、他の構造との結合部位を表し、RA3は水素原子又は置換基を表す。
 式(A-1)~式(A-12)中、Xはそれぞれ独立に、O原子、S原子、Se原子又はNRA1を表し、NRA1が好ましい。
 Yはそれぞれ独立に、O原子又はS原子を表し、O原子が好ましい。
 Zaはそれぞれ独立に、CRA2又はN原子を表し、CRA2が好ましい。
 Wはそれぞれ独立に、C(RA22、NRA1、N原子、CRA2、O原子、S原子又はSe原子を表し、C(RA22、CRA2又はS原子が好ましい。
 RA1はそれぞれ独立に、-O-、-S-、及び、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、上記式(1-1)で表される一価の基、又は、他の構造との結合部位を表し、上記式(1-1)で表される一価の基が好ましい。
 RA1がアルキル基を表す場合、炭素数2~30のアルキル基が好ましく、炭素数8~25のアルキル基がより好ましい。また、上記アルキル基は直鎖状でも分岐鎖状でもよい。また、アルキル基に-O-、-S-、及び、-NRA3-のうち少なくとも1つが含まれていてもよい。
 なお、RA1における他の構造との結合部位とは、上記式(A-1)~式(A-12)中の*で表される他の構造との結合部位である。
 RA2はそれぞれ独立に、-O-、-S-、及び、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、水素原子、ハロゲン原子、上記式(1-1)で表される一価の基、又は、他の構造との結合部位を表し、水素原子又は他の構造との結合部位が好ましい。
 RA2がアルキル基を表す場合、炭素数2~30のアルキル基が好ましく、炭素数8~25のアルキル基がより好ましい。また、上記アルキル基は直鎖状でも分岐鎖状でもよい。また、アルキル基に-O-、-S-、及び、-NRA3-のうち少なくとも1つが含まれていてもよい。
 RA2がハロゲン原子を表す場合、F原子、Cl原子、Br原子、又はI原子が好ましく、F原子がより好ましい。
 なお、RA2における他の構造との結合部位とは、上記式(A-1)~式(A-12)中の*で表される他の構造との結合部位である。
 RA3は水素原子又は置換基を表す。置換基としては、アルキル基(好ましくは、炭素数1~10の直鎖又は分岐鎖状のアルキル基)、ハロゲン原子(好ましくは、F原子、Cl原子、Br原子、I原子)、又はアリール基(好ましくは炭素数6~20のアリール基)を表す。これらの中でも、水素原子又はアルキル基であることが好ましい。
 特定化合物は、式(1)中のAが下記式(A-1)~式(A-12)で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有することが好ましく、式(A-1)、式(A-3)、式(A-4)、式(A-5)、式(A-6)、式(A-8)及び式(A-12)で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有することがより好ましく、式(A-1)、式(A-3)、式(A-5)、式(A-6)及び式(A-12)で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有することが更に好ましく、式(A-1)及び式(A-3)で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有することが特に好ましく、式(A-3)で表される構造が最も好ましい。
 また、特定化合物は、上記それぞれの態様において、式(1)中のAが各式により表される構造を部分構造として有する態様よりも、式(1)中のAが各式により表される構造である態様の方が好ましい。
 式(A-1)~式(A-12)で表される構造の例を以下に示すが、本発明は以下の例示により限定されるものではない。下記構造式中、RA1は式(A-1)~式(A-12)中のRA1と同義であり、好ましい態様も同様である。
 また、*は他の構造との結合部位を表す。
Figure JPOXMLDOC01-appb-C000015
(電子ドナーユニット)
 Dは少なくとも1つのN原子、O原子、S原子、若しくはSe原子を環構造内に有する二価の芳香族複素環基、又は2環以上の縮環構造からなる二価の芳香族炭化水素基を部分構造として含む電子ドナーユニットである。
 少なくとも1つのN原子、O原子、S原子又はSe原子を環構造内に有する二価の芳香族複素環基としては、少なくとも1つのS原子を環構造内に有する二価の芳香族複素環基が好ましい。
 また、上記二価の芳香族複素環基は、単環であっても、2環以上の縮環構造を有していてもよく、単環の二価の芳香族複素環基を2以上組み合わせた構造であるか、2以上の単環の二価の芳香族複素環基と、1以上の2環以上の縮環構造を有する二価の芳香族複素環基を組み合わせた構造であることが好ましい。
 上記二価の芳香族複素環基は更に置換基を有していてもよく、好ましい置換基としては、-O-、-S-、及び、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基(例えば、炭素数1~30のアルキル基又は炭素数1~30のアルコキシ基が好ましく、炭素数1~30のアルキル基がより好ましく、炭素数5~30のアルキル基が更に好ましい。)、アルケニル基(炭素数2~30が好ましい。)、アルキニル基(炭素数2~30が好ましい。)、芳香族炭化水素基(炭素数6~30が好ましい。)、芳香族複素環基(5~7員環が好ましい。ヘテロ原子としては、O原子、N原子、S原子、又はSe原子が好ましい。)、ハロゲン原子(F原子、Cl原子、Br原子、又はI原子)、又は、上記式(1-1)で表される一価の基が挙げられる。
 RD3は、後述する式(D-1)中のRD3と同義であり、好ましい態様も同様である。
 上記二価の芳香族複素環基の例を以下に示すが、本発明は以下の例示により限定されるものではない。下記構造式中、水素原子は置換されていてもよい。水素原子が置換される場合、その置換基としては上述したような置換基(例えば、-O-、-S-、及び、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基、アルケニル基、アルキニル基、芳香族炭化水素基、芳香族複素環基、ハロゲン原子、又は、上記式(1-1)により表される基)等が挙げられる。また、RD1は後述する式(D-1)中のRD1と同義であり、好ましい態様も同様であり、*は他の構造との結合部位を表す。
Figure JPOXMLDOC01-appb-C000016
 2環以上の縮環構造からなる二価の芳香族炭化水素基としては、炭素数10~20の芳香族炭化水素基が好ましく、フルオレン基、ナフチレン基、若しくは、3環又は4環が縮合した芳香族炭化水素から水素原子を2つ除いた基がより好ましく、フルオレン基、ナフチレン基、又は、アントラセン環、フェナントレン環、クリセン環、若しくはピレン環から水素原子を2つ除いた基が更に好ましい。
 上記芳香族炭化水素基は更に置換基を有していてもよく、好ましい置換基としては、-O-、-S-、及び、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基、ハロゲン原子、又は、上記式(1-1)で表される一価の基が挙げられる。-O-、-S-、及び、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基及びハロゲン原子の好ましい例は、上記の二価の芳香族複素環基で説明したものと同様である。
 RD3は、後述する式(D-1)中のRD3と同義であり、好ましい態様も同様である。
 また、式(1)において、Dは、式(D-1)で表される構造であることが好ましい。
 なお、式(D-1)及び後述する式(2)~式(5)において、各繰り返し単位及び上記Mは、結合軸において回転可能に結合している。すなわち、例えば、式(D-1)及び式(2)~式(5)の表記では、p個連結する5員環の繰り返し単位と、q個連結する5員環の繰り返し単位とが互いに逆方向を向いているが、式(D-1)及び後述する式(2)~式(5)は、これらが互いに同じ方向を向く構造体も包含する。
Figure JPOXMLDOC01-appb-C000017
 上記式(D-1)中、X’はそれぞれ独立に、O原子、S原子、Se原子、又は、NRD1を表し、Zdはそれぞれ独立に、N原子又はCRD2を表し、RD1はそれぞれ独立に、上記式(1-1)で表される一価の基であってもよい一価の有機基を表し、RD2はそれぞれ独立に、水素原子、又は、上記式(1-1)で表される一価の基であってもよい一価の有機基を表し、Mは単結合、二価の芳香族複素環基、二価の芳香族炭化水素基、アルケニレン基、アルキニレン基、又は、これらを組み合わせてなる二価の基を表し、p及びqはそれぞれ独立に、0~4の整数を表し、*はそれぞれ独立に、他の構造との結合部位を表す。Mは置換基として-O-、-S-、及び、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基又は式(1-1)で表される1価の基を有していてもよく、RD3は水素原子又は置換基を表す。
 式(D-1)中、X’はそれぞれ独立に、O原子、S原子、Se原子、又は、NRD1を表し、O原子又はS原子であることが好ましく、S原子であることがより好ましい。
 Zdはそれぞれ独立に、N原子又はCRD2を表し、CRD2であることがより好ましい。
 RD1はそれぞれ独立に、一価の有機基を表し、-O-、-S-、及び、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基(例えば、炭素数1~30のアルキル基又は炭素数1~30のアルコキシ基が好ましく、炭素数1~30のアルキル基がより好ましく、炭素数5~30のアルキル基が更に好ましい。)、アルキニル基(炭素数2~30が好ましい。)、アルケニル基(炭素数2~30が好ましい。)、芳香族炭化水素基(炭素数6~30が好ましい。)、芳香族複素環基(5~7員環が好ましい。ヘテロ原子としては、O原子、N原子、S原子、又はSe原子が好ましい。)、ハロゲン原子(F原子、Cl原子、Br原子、又はI原子が好ましく、F原子又はCl原子がより好ましく、F原子が特に好ましい。)、又は、上記式(1-1)で表される一価の基であることが好ましく、-O-、-S-、及び、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基、ハロゲン原子、又は上記式(1-1)で表される一価の基であることがより好ましい。
 RD2はそれぞれ独立に、水素原子又は一価の有機基を表し、水素原子、-O-、-S-、及び、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基(例えば、炭素数1~30のアルキル基又は炭素数1~30のアルコキシ基が好ましく、炭素数1~30のアルキル基がより好ましく、炭素数5~30のアルキル基が更に好ましい。)、アルキニル基(炭素数2~30が好ましい。)、アルケニル基(炭素数2~30が好ましい。)、芳香族炭化水素基(炭素数6~30が好ましい。)、芳香族複素環基(5~7員環が好ましい。ヘテロ原子としては、O原子、N原子、S原子、又はSe原子が好ましい。)、ハロゲン原子(F原子、Cl原子、Br原子、又はI原子が好ましく、F原子又はCl原子がさらに好ましく、F原子が特に好ましい。)、又は、上記式(1-1)で表される一価の基であることが好ましく、-O-、-S-、及び、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基、水素原子、ハロゲン原子、又は上記式(1-1)で表される一価の基であることがより好ましい。
 Mは単結合、二価の芳香族複素環基、二価の芳香族炭化水素基、アルケニレン基、アルキニレン基、又はこれらを組み合わせてなる二価の基を表す。Mは置換基として-O-、-S-、及び、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基又は式(1-1)で表される1価の基を有していてもよい。
 RD3は水素原子又は置換基を表す。置換基としては、アルキル基(好ましくは、炭素数1~10の直鎖又は分岐鎖状のアルキル基)、ハロゲン原子(好ましくは、F原子、Cl原子、Br原子、又はI原子)、又は、アリール基(好ましくは炭素数6~20のアリール基)を表す。これらの中でも、水素原子又はアルキル基であることが好ましい。
 上記Mにおける二価の芳香族複素環基は、単環であっても、2環以上の縮環構造を有していてもよい。本発明に好ましく用いられる二価の芳香族複素環基の例は、上述した2環以上の縮環構造を有する二価の芳香族複素環基の例と同様である。
 Mにおける二価の芳香族炭化水素基としては、炭素数6~20の芳香族炭化水素基が好ましく、フェニレン基、ビフェニレン基、フルオレン基、ナフチレン基、又は、3環若しくは4環が縮合した芳香族炭化水素から水素原子を2つ除いた基がより好ましく、フルオレン基、ナフチレン基、アントラセン環、フェナントレン環、クリセン環、若しくはピレン環から水素原子を2つ除いた基が更に好ましい。
 Mにおける二価の芳香族複素環基、又は、二価の芳香族炭化水素基は、更に置換基を有していてもよく、好ましい置換基としては、上述した-O-、-S-、及び、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基(例えば、炭素数1~30のアルキル基又は炭素数1~30のアルコキシ基が好ましく、炭素数1~30のアルキル基がより好ましく、炭素数5~30のアルキル基が更に好ましい。)又は上記式(1-1)で表される一価の基の他、ハロゲン原子(F原子、Cl原子、Br原子、I原子が好ましく、F原子が特に好ましい。)が挙げられる。
 Mにおけるアルケニレン基としては、炭素数2~10のアルケニレン基が好ましく、炭素数2~4のアルケニレン基がより好ましく、エテニレン基が更に好ましい。
 Mにおけるアルキニレン基としては、炭素数2~10のアルキニレン基が好ましく、炭素数2~4のアルキニレン基がより好ましく、エチニレン基が更に好ましい。
 p及びqはそれぞれ独立に、0~4の整数であり、1~3の整数であることが好ましく、1~2の整数であることがより好ましい。pとqは同じ値であることが好ましい。また、p+qが2~4であることが好ましい。
 式(D-1)の構造の例を以下に示すが、本発明は以下の例示により限定されるものではない。下記構造式中、水素原子は置換されていてもよい。水素原子が置換される場合、その置換基としては、上述した置換基(例えば、-O-、-S-、及び、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基、又は、上記式(1-1)により表される基)等が挙げられる。また、RD1は上記式(D-1)中のRD1と同義であり、好ましい態様も同様であり、*は他の構造との結合部位を表す。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 式(1)中、D及び/又はAは上記式(1-1)で表される一価の基を少なくとも一つ有する。
 式(1)で表される繰り返し単位中の、式(1-1)で表される一価の基の数は、1~4であることが好ましく、1又は2であることがより好ましい。
 式(1-1)中、nは2以上30以下の整数であり、また、優れたキャリア移動度及び高温高湿下での経時安定性の観点から、3以上の整数であることが好ましく、4以上の整数であることがより好ましい。また、特定化合物の結晶性の観点から、nは20以下であることが好ましく、15以下であることがより好ましい。
 R、R及びRは、それぞれ独立に、置換基を有していてもよい、アルキル基、アルコキシ基、アリール基又はヘテロアリール基である。
 アルキル基としては、炭素数1~20のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましく、キャリア移動度及び高温高湿下での経時安定性の少なくとも一方がより優れる点で、炭素数2~10のアルキル基がさらに好ましく、炭素数3~8のアルキル基が特に好ましい。また、上記アルキル基は直鎖状、分岐鎖状、又は環状のいずれであってもよいが、直鎖状又は分岐鎖状のアルコキシ基であることが好ましく、分岐鎖状のアルキル基であることがより好ましい。
 アルコキシ基としては、炭素数1~20のアルコキシ基が好ましく、炭素数2~10のアルコキシ基がより好ましい。また、上記アルコキシ基は直鎖状、分岐鎖状、又は環状のいずれであってもよいが、直鎖状又は分岐鎖状のアルキル基であることが好ましく、分岐鎖状のアルコキシ基であることがより好ましい。
 アリール基としては、炭素数6~20のアリール基が好ましく、炭素数6~10のアリール基がより好ましい。
 ヘテロアリール基としては、炭素数4~20のヘテロアリール基が好ましく、炭素数4~10のヘテロアリール基がより好ましく、炭素数4~6のヘテロアリール基が更に好ましい。
 中でも、R、R、及びRとしては、アルキル基、アルコキシ基、又はアリール基が好ましく、アルキル基がより好ましい。
 また、R、R、及びRが有していてもよい置換基としては、エーテル、チオエーテル、又はハロゲン(F原子、Cl原子、Br原子、又はI原子が好ましく、F原子がより好ましい)が挙げられる。
 上記式(1-1)は、*の位置で他の構造と結合する。
 なお、キャリア移動度及び高温高湿下での経時安定性の少なくとも一方がより優れる点で、R、R、及びRに含まれる炭素数は、それぞれ2以上が好ましく、3以上がより好ましい。上限は特に制限されないが、30以下が挙げられる。特に、R、R、及びRとしては、それぞれ炭素数2以上のアルキル基(炭素数20以下が好ましい)が好ましい。
 上記式(1-1)で表される一価の基は、式(1)中のA(電子アクセプターユニット)が有することが好ましく、式(1)中のAに存在する窒素原子に結合していることがより好ましい。
 また、キャリア移動度及び高温高湿下での経時安定性の少なくとも一方がより優れる点で、式(A-1)~式(A-12)が、それぞれRA1及びRA2のいずれかを少なくとも1つ有し、各式におけるRA1及びRA2の少なくともいずれか1つが、式(1-1)で表される一価の基であることが好ましい。
 特定化合物の結晶性の観点から、式(1)中、Aは、対称性がC2、C2v、又は、C2hであることが好ましい。
 また、特定化合物の結晶性の観点から、式(1)中、Dは、対称性がC2、C2v、又は、C2hであることが好ましい。
 更に、特定化合物の結晶性の観点から、式(1)中、Aの対称性がC2、C2v、又は、C2hであり、かつ、Dの対称性がC2、C2v、又は、C2hであることがより好ましい。対称性については、『分子の対称と群論』(中崎昌雄著、東京化学同人)の記載が参酌される。
 特に、特定化合物は、上述した式(A-1)、式(A-3)、式(A-4)、式(A-5)、式(A-6)、式(A-8)及び式(A-12)で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有する(好ましくは、上述した式(A-1)、式(A-3)、式(A-4)、式(A-5)、式(A-6)、式(A-8)及び式(A-12)で表される構造を有する)電子アクセプターユニットと、式(D-1)で表される電子ドナーユニットとから構成される構造を主鎖骨格(式(1)のD-A型ポリマー骨格)として有していることが好ましく、上記式(1-1)で表される一価の基は、上記主鎖骨格中のA、すなわち電子アクセプターユニットに導入されることが好ましく、上記主鎖骨格中のAに存在する窒素原子に結合していることがより好ましい。
 このような構造とすることで、式(1)で表される主鎖骨格により形成される共役平面に対し式(1-1)で表される一価の基が外側に張り出すように配向し、主鎖骨格の共役平面性をより崩し難くなる。これにより、有機半導体層における主鎖分子間のパッキングがより良好となり、キャリア移動度が優れたものとなる。
<式(2)~式(5)で表される繰り返し単位>
 上記式(1)で表される繰り返し単位は、下記式(2)~式(5)のいずれかで表される繰り返し単位であることが好ましく、下記式(2)~式(4)のいずれかで表される繰り返し単位であることがより好ましく、下記式(2)又は下記式(3)のいずれかで表される繰り返し単位であることが更により好ましく、下記式(3)で表される繰り返し単位であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000021
 式(2)~式(5)中、Xはそれぞれ独立に、O原子、S原子、Se原子又はNRA1を表し、Yはそれぞれ独立に、O原子又はS原子を表し、Zaはそれぞれ独立に、CRA2又はN原子を表し、RA1はそれぞれ独立に、-O-、-S-、及び、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、上記式(1-1)で表される一価の基、又は、他の構造との結合部位を表し、RA2はそれぞれ独立に、-O-、-S-、及び、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、水素原子、ハロゲン原子、上記式(1-1)で表される一価の基、又は、他の構造との結合部位を表し、RA3は水素原子又は置換基を表し、X’はそれぞれ独立に、O原子、S原子、Se原子、又は、NRD1を表し、Zdはそれぞれ独立に、N原子又はCRD2を表し、RD1はそれぞれ独立に、上記式(1-1)で表される一価の基であってもよい一価の有機基を表し、RD2はそれぞれ独立に、水素原子又は上記式(1-1)で表される一価の基であってもよい一価の有機基を表し、Mは単結合、二価の芳香族複素環基、二価の芳香族炭化水素基、アルケニレン基、アルキニレン基、又は、これらを組み合わせてなる二価の基を表し、p及びqはそれぞれ独立に、0~4の整数を表す。Mは置換基として-O-、-S-、及び、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基又は式(1-1)で表される1価の基を有していてもよく、RD3は水素原子又は置換基を表す。
 式(2)~式(5)中、X、Y、Za、RA1、RA2、及び、RA3は、上記式(A-1)~式(A-12)におけるX、Y、Za、RA1、RA2、及び、RA3とそれぞれ同義であり、好ましい態様も同様である。
 また、式(2)~式(5)中、X’、Zd、RD1、RD2、RD3、M、p、及び、qは上記式(D-1)におけるX’、Zd、RD1、RD2、RD3、M、p、及び、qとそれぞれ同義であり、好ましい態様も同様である。
 なお、キャリア移動度及び高温高湿下での経時安定性の少なくとも一方がより優れる点で、式(2)~式(5)が、それぞれRA1及びRA2のいずれかを少なくとも1つ有し、各式におけるRA1及びRA2の少なくともいずれか1つが、式(1-1)で表される一価の基であることが好ましい。
≪特定化合物の好ましい態様≫
 特定化合物中、式(1)で表される繰り返し単位の含有量は、特定化合物の全質量に対し、60~100質量%であることが好ましく、80~100質量%であることがより好ましく、90~100質量%であることが更に好ましく、実質的に式(1)で表される繰り返し単位のみから形成されていることが特に好ましい。なお、実質的に式(1)で表される繰り返し単位のみから形成されているとは、式(1)で表される繰り返し単位の含有量が95質量%以上であることを意味し、97質量%以上であることが好ましく、99質量%以上であることがより好ましい。
 式(1)で表される繰り返し単位の含有量が上記範囲内であると、キャリア移動度により優れる有機半導体が得られる。
 また、特定化合物は、式(1)で表される繰り返し単位を1種単独で含んでもよいし、2種以上含んでもよい。
 特定化合物は、式(1)で表される繰り返し単位を2以上有する化合物であり、繰り返し単位数nが2~9のオリゴマーであってもよく、繰り返し単位数nが10以上の高分子(ポリマー)であってもよい。これらの中でも、繰り返し単位数nが10以上の高分子であることが、キャリア移動度及び得られる有機半導体膜の物性の観点から好ましい。
 式(1)で表される繰り返し単位を有する化合物の分子量は、キャリア移動度の観点から、2,000以上であり、5,000以上であることが好ましく、10,000以上であることがより好ましく、20,000以上であることが更に好ましく、30,000以上であることが特に好ましい。また、溶解度の観点から、1,000,000以下であることが好ましく、300,000以下であることがより好ましく、150,000以下であることが更に好ましく、100,000以下であることが特に好ましい。
 本発明において、化合物が分子量分布を有する場合、その化合物の分子量とは重量平均分子量を意味する。
 本発明において、重量平均分子量及び数平均分子量は、ゲル浸透クロマトグラフィ法(GPC(Gel Permeation Chromatography))法にて測定され、標準ポリスチレンで換算して求められる。具体的には、例えば、GPCは、HLC-8121GPC(東ソー(株)製)を用い、カラムとして、TSKgel GMHHR-H(20) HT(東ソー(株)製、7.8mmID×30cm)を2本用い、溶離液として1,2,4-トリクロロベンゼンを用いる。また、条件としては、試料濃度を0.02質量%、流速を1.0ml/min、サンプル注入量を300μl、測定温度を160℃とし、IR(infrared)検出器を用いて行う。また、検量線は、東ソー(株)製「標準試料TSK standard,polystyrene」:「F-128」、「F-80」、「F-40」、「F-20」、「F-10」、「F-4」、「F-2」、「F-1」、「A-5000」、「A-2500」、「A-1000」、「A-500」の12サンプルから作製する。
 後述する有機半導体層、後述する有機半導体膜又は有機半導体組成物中には、1種のみの特定化合物が含まれていても、2種以上の特定化合物が含まれていてもよいが、配向性及びキャリア移動度の観点から、1種のみであることが好ましい。
 また、特定化合物の末端の構造は、特に制限はなく、他の構成単位の有無、合成時に使用した基質の種類、又は、合成時のクエンチ剤(反応停止剤)の種類にもよるが、例えば、水素原子、ヒドロキシ基、ハロゲン原子、エチレン性不飽和基、又はアルキル基等が挙げられる。
 特定化合物の合成方法は、特に限定されず、公知の方法を参照して合成すればよい。例えば、特表2010-527327号公報、特表2007-516315号公報、特表2014-515043号公報、特表2014-507488号公報、特表2011-501451号公報、特開2010-18790号公報、WO2012/174561号公報、特表2011-514399号公報、又は特表2011-514913号公報等の文献を参考に、電子アクセプターユニットの前駆体と電子ドナーユニットの前駆体を合成して、それぞれの前駆体を鈴木カップリング又はStilleカップリング等のクロスカップリング反応させることにより合成することができる。
 以下に、式(1)で表される繰り返し単位の好ましい具体例を示すが、本発明は以下の例示により限定されるものではない。
 尚、以下の例示化合物において、「TIPS」はトリイソプロピルシリル基であり、「Hex」はヘキシル基であり、「TMS」はトリメチルシリル基であり、「TBDPS」はtert-ブチルジフェニルシリル基であり、「EtO」はエトキシ基であり、「TES」はトリエチルシリル基であり、「Ph」はフェニル基であり、「Cy」はシクロヘキシル基である。
Figure JPOXMLDOC01-appb-C000022

Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-C000024

Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-C000026
〔バインダーポリマー〕
 本発明の有機半導体素子の有機半導体層は、バインダーポリマーを含有してもよい。
 また、本発明の有機半導体素子は、上記有機半導体層とバインダーポリマーを含む層を有する有機半導体素子であってもよい。
 バインダーポリマーの種類は特に制限されず、公知のバインダーポリマーを用いることができる。
 上記バインダーポリマーとしては、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルシンナメート、ポリ(4-ビニルフェニル)、又はポリ(4-メチルスチレン)などが挙げられる。
 バインダーポリマーの重量平均分子量は、特に制限されないが、1,000~200万が好ましく、3,000~100万がより好ましく、5,000~60万が更に好ましい。
 本発明の有機半導体素子の有機半導体層におけるバインダーポリマーの含有量は、特定化合物の含有量100質量部に対し、1~200質量部であることが好ましく、10~150質量部であることがより好ましく、20~120質量部であることが更に好ましい。上記範囲であると、得られる有機半導体のキャリア移動度及び高温高湿下での経時安定性により優れる。
〔その他の成分〕
 本発明の有機半導体素子における有機半導体層には、特定化合物及びバインダーポリマー以外に他の成分が含まれていてもよい。
 その他の成分としては、公知の添加剤等を用いることができる。
 上記有機半導体層における特定化合物及びバインダーポリマー以外の成分の含有量は、10質量%以下であることが好ましく、5質量%以下であることが好ましく、1質量%以下であることが更に好ましく、0.1質量%以下であることが特に好ましい。上記範囲であると、膜形成性に優れ、得られる有機半導体のキャリア移動度及び高温高湿下での経時安定性により優れる。
〔有機半導体層の形成方法〕
 本発明の有機半導体素子における有機半導体層の形成方法は特に制限されず、後述する本発明の有機半導体組成物を、所定の基材上(例えば、ソース電極、ドレイン電極、及び、ゲート絶縁膜上)に付与して、必要に応じて乾燥処理を施すことにより、所望の有機半導体層を形成することができる。
 本発明の有機半導体素子は、後述する本発明の有機半導体組成物を用いて製造されたものであることが好ましい。
 本発明の有機半導体組成物を用いて有機半導体膜又は有機半導体素子を製造する方法は、特に制限されず、公知の方法を採用できる。例えば、組成物を所定の基材上に付与して、必要に応じて乾燥処理を施して、有機半導体膜を製造する方法が挙げられる。
 基材上に組成物を付与する方法は特に制限されず、公知の方法を採用でき、例えば、インクジェット印刷法、スクリーン印刷法、フレキソ印刷法、バーコート法、スピンコート法、ナイフコート法、又はドクターブレード法などが挙げられ、インクジェット印刷法、スクリーン印刷法、又はフレキソ印刷法が好ましい。
 なお、フレキソ印刷法としては、フレキソ印刷版として感光性樹脂版を用いる態様が好適に挙げられる。態様によって、組成物を基板上に印刷して、パターンを容易に形成することができる。
 中でも、本発明の有機半導体素子の製造方法は、後述する本発明の有機半導体組成物を基板上に塗布する塗布工程、を含むことが好ましく、本発明の有機半導体組成物を基板上に塗布する塗布工程、及び、塗布された組成物から溶媒を除去する除去工程を含むことがより好ましい。
 後述する本発明の有機半導体組成物は、溶媒を含み、有機溶媒を含むことが好ましい。
 溶媒としては、公知の溶媒を用いることができる。
 具体的には、例えば、ヘキサン、オクタン、デカン、トルエン、キシレン、メシチレン、エチルベンゼン、アミルベンゼン、デカリン、1-メチルナフタレン、1-エチルナフタレン、1,6-ジメチルナフタレン、又はテトラリンなどの炭化水素系溶媒、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトフェノン、プロピオフェノン、ブチロフェノン、α-テトラロン、又はβ-テトラロンなどのケトン系溶媒、例えば、ジクロロメタン、クロロホルム、テトラクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、クロロベンゼン、1,2-ジクロロベンゼン、1,2,4-トリクロロベンゼン、クロロトルエン、又は1-フルオロナフタレンなどのハロゲン化炭化水素系溶媒、ピリジン、ピコリン、キノリン、チオフェン、3-ブチルチオフェン、又はチエノ[2,3-b]チオフェン等の複素環系溶媒、2-クロロチオフェン、3-クロロチオフェン、2,5-ジクロロチオフェン、3,4-ジクロロチオフェン、2-ブロモチオフェン、3-ブロモチオフェン、2,3-ジブロモチオフェン、2,4-ジブロモチオフェン、2,5-ジブロモチオフェン、3,4-ジブロモチオフェン、又は3,4-ジクロロ-1,2,5-チアジアゾール等のハロゲン化複素環系溶媒、例えば、酢酸エチル、酢酸ブチル、酢酸アミル、酢酸-2-エチルヘキシル、γ-ブチロラクトン、又は酢酸フェニルなどのエステル系溶媒、例えば、メタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、又はエチレングリコールなどのアルコール系溶媒、例えば、ジブチルエーテル、テトラヒドロフラン、ジオキサン、アニソール、エトキシベンゼン、プロポキシベンゼン、イソプロポキシベンゼン、ブトキシベンゼン、2-メチルアニソール、3-メチルアニソール、4-メチルアニソール、4-エチルアニソール、ジメチルアニソール(2,3-、2,4-、2,5-、2,6-、3,4-、3,5-、3,6-のいずれか)、1,4-ベンゾジオキサン、2,3-ジヒドロベンゾフラン、フタラン、クロマン、又はイソクロマンなどのエーテル系溶媒、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドン、1-メチル-2-イミダゾリジノン、又は1,3-ジメチル-2-イミダゾリジノン等のアミド・イミド系溶媒、ジメチルスルホキシドなどのスルホキシド系溶媒、リン酸トリメチルなどのリン酸エステル系溶媒、アセトニトリル又はベンゾニトリルなどのニトリル系溶媒、ニトロメタン又はニトロベンゼンなどのニトロ系溶媒を挙げることができる。
 溶媒は、1種単独で用いてもよく、複数組み合わせて用いてもよい。
 これらの中でも、炭化水素系溶媒、ケトン系溶媒、ハロゲン化炭化水素系溶媒、複素環系溶媒、ハロゲン化複素環系溶媒又はエーテル系溶媒が好ましく、トルエン、キシレン、メシチレン、アミルベンゼン、テトラリン、アセトフェノン、プロピオフェノン、ブチロフェノン、α-テトラロン、ジクロロベンゼン、アニソール、エトキシベンゼン、プロポキシベンゼン、イソプロポキシベンゼン、ブトキシベンゼン、2-メチルアニソール、3-メチルアニソール、4-メチルアニソール、2,3-ジヒドロベンゾフラン、フタラン、クロマン、イソクロマン、1-フルオロナフタレン、3-クロロチオフェン、又は2,5-ジブロモチオフェンがより好ましく、トルエン、キシレン、テトラリン、アセトフェノン、プロピオフェノン、ブチロフェノン、α-テトラロン、アニソール、エトキシベンゼン、プロポキシベンゼン、ブトキシベンゼン、2-メチルアニソール、3-メチルアニソール、4-メチルアニソール、2,3-ジヒドロベンゾフラン、フタラン、クロマン、イソクロマン、1-フルオロナフタレン、3-クロロチオフェン、又は2,5-ジブロモチオフェンが特に好ましい。
 溶媒の沸点が100℃以上であることが、製膜性の観点から好ましい。溶媒の沸点は、100~300℃であることがより好ましく、125~250℃であることが更に好ましく、150~225℃であることが特に好ましい。
 なお、最も含有量の多い溶媒の沸点が100℃以上であることが好ましく、全ての溶媒の沸点が100℃以上であることがより好ましい。
 溶媒を含有する場合、本発明の有機半導体組成物における特定化合物の含有量は、有機半導体組成物の全質量に対し、0.005~50質量%であることが好ましく、0.01~25質量%であることがより好ましく、0.05~15質量%であることが更に好ましく、0.05~3質量%であることが特に好ましく、0.1~10質量%であることが最も好ましい。上記範囲であると、塗布性に優れ、容易に有機半導体膜を形成することができる。また、バインダーポリマーを含有する場合、バインダーポリマーの含有量は、上記と同様の理由から、0.01~50質量%であることが好ましく、0.05~25質量%であることがより好ましく、0.1~10質量%であることが更に好ましい。
 上記除去工程における乾燥処理は、必要に応じて実施される処理であり、使用される特定化合物及び溶媒の種類により適宜最適な条件が選択される。中でも、得られる有機半導体のキャリア移動度及び高温高湿下での経時安定性により優れ、また、生産性に優れる点で、加熱温度としては30℃~100℃が好ましく、40℃~80℃がより好ましい。また、加熱時間としては、同様の理由から、10~300分が好ましく、30~180分がより好ましい。
 本発明の有機半導体組成物は、界面活性剤、酸化防止剤、結晶化制御剤、又は結晶配向制御剤等、ポリマーバインダー以外の添加剤を含有してもよい。
 形成される有機半導体層の厚さは、特に制限されないが、得られる有機半導体のキャリア移動度及び高温高湿下での経時安定性の観点から、10~500nmが好ましく、30~200nmがより好ましい。
〔有機半導体素子の構成〕
 有機半導体素子としては、特に制限はないが、2~5端子の有機半導体素子であることが好ましく、2又は3端子の有機半導体素子であることがより好ましい。
 また、有機半導体素子としては、光電変換素子でないことが好ましい。
 更に、本発明の有機半導体素子は、非発光性有機半導体素子であることが好ましい。
 2端子素子としては、整流用ダイオード、定電圧ダイオード、PINダイオード、ショットキーバリアダイオード、サージ保護用ダイオード、ダイアック、バリスタ、又はトンネルダイオード等が挙げられる。
 3端子素子としては、バイポーラトランジスタ、ダーリントントランジスタ、電界効果トランジスタ、絶縁ゲートバイポーラトランジスタ、ユニジャンクショントランジスタ、静電誘導トランジスタ、ゲートターンサイリスタ、トライアック、又は静電誘導サイリスタ等が挙げられる。
 これらの中でも、整流用ダイオード、又はトランジスタ類が好ましく挙げられ、電界効果トランジスタがより好ましく挙げられる。
 本発明の有機半導体素子の一態様である有機薄膜トランジスタ(有機TFT)について図面を参照して説明する。
 図1に、有機薄膜トランジスタ(有機TFT)の一態様としてボトムコンタクト型の有機薄膜トランジスタの断面模式図を示す。
 図1において、有機薄膜トランジスタ100は、基板10と、基板10上に配置されたゲート電極20と、ゲート電極20を覆うゲート絶縁膜30と、ゲート絶縁膜30のゲート電極20側とは反対側の表面に接するソース電極40及びドレイン電極42と、ソース電極40とドレイン電極42との間のゲート絶縁膜30の表面を覆う有機半導体膜50と、各部材を覆う封止層60とを備える。すなわち、有機薄膜トランジスタ100は、ボトムゲート-ボトムコンタクト型の有機薄膜トランジスタである。
 なお、図1においては、有機半導体膜50が、上述した本発明の有機半導体組成物より形成される膜に該当する。
 以下、基板、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、有機半導体膜及び封止層並びにそれぞれの形成方法について詳述する。
<基板>
 基板は、後述するゲート電極、ソース電極、及びドレイン電極などを支持する役割を果たす。
 基板の種類は特に制限されず、例えば、プラスチック基板、ガラス基板、又はセラミック基板などが挙げられる。中でも、各デバイスへの適用性及びコストの観点から、ガラス基板又はプラスチック基板であることが好ましい。
<ゲート電極、ソース電極、ドレイン電極>
 ゲート電極、ソース電極、ドレイン電極の材料としては、例えば、金(Au)、銀、アルミニウム(Al)、銅、クロム、ニッケル、コバルト、チタン、白金、タンタル、マグネシウム、カルシウム、バリウム、又はナトリウム等の金属;InO2、SnO2、又は酸化インジウムスズ(ITO(Tndium Tin Oxide))等の導電性の酸化物;ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、又はポリジアセチレン等の導電性高分子;シリコン、ゲルマニウム、又はガリウム砒素等の半導体;フラーレン、カーボンナノチューブ、又はグラファイト等の炭素材料などが挙げられる。中でも、金属であることが好ましく、銀又はアルミニウムであることがより好ましい。
 ゲート電極、ソース電極、及びドレイン電極の厚みは特に制限されないが、20~200nmであることが好ましい。
 ゲート電極、ソース電極、及びドレイン電極を形成する方法は特に制限されないが、例えば、基板上に、電極材料を真空蒸着又はスパッタする方法、電極形成用組成物を塗布又は印刷する方法などが挙げられる。また、電極をパターニングする場合、パターニングする方法としては、例えば、フォトリソグラフィー法;インクジェット印刷、スクリーン印刷、オフセット印刷、又は凸版印刷等の印刷法;マスク蒸着法などが挙げられる。
<ゲート絶縁膜>
 ゲート絶縁膜の材料としては、ポリメチルメタクリレート、ポリスチレン、ポリビニルフェノール、ポリイミド、ポリカーボネート、ポリエステル、ポリビニルアルコール、ポリ酢酸ビニル、ポリウレタン、ポリスルホン、ポリベンゾキサゾール、ポリシルセスキオキサン、エポキシ樹脂、又はフェノール樹脂等のポリマー;二酸化珪素、酸化アルミニウム、又は酸化チタン等の酸化物;窒化珪素等の窒化物などが挙げられる。これらの材料のうち、有機半導体膜との相性から、ポリマーであることが好ましい。
 ゲート絶縁膜の材料としてポリマーを用いる場合、架橋剤(例えば、メラミン)を併用することが好ましい。架橋剤を併用することで、ポリマーが架橋されて、形成されるゲート絶縁膜の耐久性が向上する。
 ゲート絶縁膜の膜厚は特に制限されないが、100~1,000nmであることが好ましい。
 ゲート絶縁膜を形成する方法は特に制限されないが、例えば、ゲート電極が形成された基板上に、ゲート絶縁膜形成用組成物を塗布する方法、ゲート絶縁膜材料を蒸着又はスパッタする方法などが挙げられる。ゲート絶縁膜形成用組成物を塗布する方法は特に制限されず、公知の方法(バーコート法、スピンコート法、ナイフコート法、又はドクターブレード法)を使用することができる。
 ゲート絶縁膜形成用組成物を塗布してゲート絶縁膜を形成する場合、溶媒除去又は架橋などを目的として、塗布後に加熱(ベーク)してもよい。
<バインダーポリマー層>
 本発明の有機半導体素子は、上記有機半導体層とゲート絶縁膜との間に上記バインダーポリマー層を有してもよく、バインダーポリマー層を有する場合、上記有機半導体層とゲート絶縁膜との間に上記バインダーポリマー層を有することが好ましい。上記バインダーポリマー層の膜厚は特に制限されないが、20~500nmであることが好ましい。上記バインダーポリマー層は、上記ポリマーを含む層であればよいが、上記バインダーポリマーからなる層であることが好ましい。
 バインダーポリマー層を形成する方法は特に制限されないが、公知の方法(バーコート法、スピンコート法、ナイフコート法、ドクターブレード法、又はインクジェット法)を使用することができる。
 バインダーポリマー層形成用組成物を塗布してバインダーポリマー層を形成する場合、溶媒除去又は架橋などを目的として、塗布後に加熱(ベーク)してもよい。
<封止層>
 本発明の有機半導体素子は、耐久性の観点から、最外層に封止層を備えることが好ましい。封止層には公知の封止剤を用いることができる。
 封止層の厚さは特に制限されないが、0.2~10μmであることが好ましい。
 封止層を形成する方法は特に制限されないが、例えば、ゲート電極とゲート絶縁膜とソース電極とドレイン電極と有機半導体膜とが形成された基板上に、封止層形成用組成物を塗布する方法などが挙げられる。封止層形成用組成物を塗布する方法の具体例は、ゲート絶縁膜形成用組成物を塗布する方法と同じである。封止層形成用組成物を塗布して有機半導体膜を形成する場合、溶媒除去又は架橋などを目的として、塗布後に加熱(ベーク)してもよい。
 また、図2に、有機薄膜トランジスタ(有機TFT)の別の一態様として、トップコンタクト型の有機薄膜トランジスタの断面模式図を示す。
 図2において、有機薄膜トランジスタ200は、基板10と、基板10上に配置されたゲート電極20と、ゲート電極20を覆うゲート絶縁膜30と、ゲート絶縁膜30上に配置された有機半導体膜50と、有機半導体膜50上に配置されたソース電極40及びドレイン電極42と、各部材を覆う封止層60を備える。ここで、ソース電極40及びドレイン電極42は、上述した本発明の組成物を用いて形成されたものである。すなわち、有機薄膜トランジスタ200は、ボトムゲート-トップコンタクト型の有機薄膜トランジスタである。
 基板、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極及び有機半導体膜及び封止層については、上述のとおりである。
 上記では図1及び図2において、ボトムゲート-ボトムコンタクト型の有機薄膜トランジスタ、及び、ボトムゲート-トップコンタクト型の有機薄膜トランジスタの態様について詳述したが、本発明の有機半導体素子は、トップゲート-ボトムコンタクト型の有機薄膜トランジスタ、及び、トップゲート-トップコンタクト型の有機薄膜トランジスタにも好適に使用できる。
 なお、上述した有機薄膜トランジスタは、電子ペーパー、ディスプレイデバイスなどに好適に使用できる。
[化合物]
 本発明の化合物は、上記式(2)~式(5)のいずれかで表される繰り返し単位を有し、分子量が2,000以上であることを特徴とする。上記式(2)~(5)は、それぞれ上記式(1-1)で表される一価の基を少なくとも1つ有する。
 本発明の化合物における上記式(2)~式(5)のいずれかで表される繰り返し単位を有し、分子量が2,000以上である化合物は、上述した式(2)~式(5)のいずれかで表される繰り返し単位を有する化合物と同義であり、好ましい態様も同様である。
 本発明の化合物は、上述したような有機半導体用化合物(有機半導体層を形成するための化合物)として好ましく用いることができる。
[有機半導体組成物]
 本発明の有機半導体組成物は、本発明の化合物(上記特定化合物)、及び、溶媒を含有することを特徴とする。
 また、本発明の有機半導体組成物は、バインダーポリマーを含有してもよい。
 本発明の有機半導体組成物における特定化合物、バインダーポリマー及び溶媒は、上述した特定化合物、バインダーポリマー及び溶媒と同義であり、好ましい態様も同様である。
 本発明の有機半導体組成物は、特定化合物、バインダーポリマー及び溶媒以外に他の成分を含んでいてもよい。
 本発明の有機半導体組成物の製造方法は、特に制限されず、公知の方法を採用できる。例えば、溶媒中に所定量の特定化合物を添加して、適宜撹拌処理を施すことにより、所望の組成物を得ることができる。また、バインダーポリマーを用いる場合は、特定化合物及びバインダーポリマーを同時又は逐次に添加して好適に組成物を作製することができる。
[有機半導体膜]
 本発明の有機半導体膜は、特定化合物を含有することを特徴とする。
 また、本発明の有機半導体膜は、バインダーポリマーを含有してもよい。
 本発明の有機半導体膜における特定化合物、及び、バインダーポリマーは、本発明の有機半導体素子において上述した特定化合物、及び、バインダーポリマーと同義であり、好ましい態様も同様である。
 本発明の有機半導体膜は、特定化合物、及び、バインダーポリマー以外に他の成分を含んでいてもよい。
 その他の成分としては、公知の添加剤等を用いることができる。
 本発明の有機半導体膜における特定化合物、及び、バインダーポリマー以外の成分の含有量は、10質量%以下であることが好ましく、5質量%以下であることが好ましく、1質量%以下であることが更に好ましく、0.1質量%以下であることが特に好ましい。上記範囲であると、膜形成性に優れ、得られる有機半導体のキャリア移動度及び高温高湿下での経時安定性により優れる。なお、固形分とは、溶媒等の揮発性成分を除いた成分の量である。
 本発明の有機半導体膜の膜厚は、特に制限されないが、得られる有機半導体のキャリア移動度及び高温高湿下での経時安定性の観点から、10~500nmが好ましく、30~200nmがより好ましい。
 本発明の有機半導体膜は、有機半導体素子に好適に使用することができ、有機薄膜トランジスタに特に好適に使用することができる。
 本発明の有機半導体膜は、本発明の有機半導体組成物を用いて好適に作製することができる。
〔有機半導体膜の製造方法〕
 本発明の有機半導体膜の製造方法は、特に制限されず、公知の方法を採用できる。例えば、本発明の有機半導体組成物を所定の基材上に付与して、必要に応じて乾燥処理を施して、有機半導体膜を製造する方法が挙げられる。
 基材上に組成物を付与する方法は特に制限されず、公知の方法を採用でき、例えば、インクジェット印刷法、スクリーン印刷法、フレキソ印刷法、バーコート法、スピンコート法、ナイフコート法、又はドクターブレード法などが挙げられ、インクジェット印刷法、スクリーン印刷法、又はフレキソ印刷法が好ましい。
 中でも、本発明の有機半導体膜の製造方法は、本発明の有機半導体組成物を基板上に塗布する塗布工程、を含むことが好ましく、本発明の有機半導体組成物を基板上に塗布する塗布工程、及び、塗布された組成物から溶媒を除去する除去工程を含むことがより好ましい。
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。なお、特に断りのない限り、「部」、「%」は質量基準である。
(実施例1~14及び比較例1~6)
<有機半導体化合物>
 有機半導体層に用いた化合物1~14及び比較化合物1~6の構造を以下に示す。Mwは重量平均分子量を表す。なお、化合物1~14及び比較化合物1~6の重量平均分子量は上述した方法により測定した。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
<合成例>
 化合物1~14の合成法は一般的なD-A型π共役ポリマーの合成法に従った。代表例として化合物1及び化合物9の合成法を示す。
〔化合物1の合成〕
 モノマーである中間体1は、Tetrahedron,1997,38,6635.及びOrganic Electronics,2011,12,993.を参考に、下記スキームX1に示す合成ルートにより合成した。
Figure JPOXMLDOC01-appb-C000033
 中間体1(186mg、0.20mmol)、5,5’-ビス(トリメチルスタンニル)-2,2’-ビチオフェン(98.4mg、0.20mmol)、トリ(o-トリル)ホスフィン(4.9mg、1.6×10-2mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(3.7mg、4.0×10-3mmol)、脱水クロロベンゼン(10mL)を混合し、窒素雰囲気下、130℃で24時間撹拌した。次いで、得られた反応液を室温まで冷却した。その後、冷却した反応液を、メタノール(100mL)/濃塩酸(5mL)の混合比で構成した混合液に注ぎ、2時間撹拌した。析出物をろ過、メタノール洗浄した後、メタノール、アセトン、クロロホルムで順次ソックスレー抽出し、可溶性の不純物を取り除いた。続いて、クロロベンゼンでソックスレー抽出し、得られた溶液を減圧濃縮した後、メタノールを添加し、析出した固形分をろ過、メタノール洗浄し80℃で12時間真空乾燥することで化合物1を130mg得た(収率77%)。
 ポリスチレン換算の数平均分子量は8.3×10であり、重量平均分子量は3.1×10であった。
Figure JPOXMLDOC01-appb-C000034
〔化合物9の合成〕
 モノマーである1、3-ジブロモ-5-(2-オクチルドデシル)-4H-チエノ[3,4-c]ピロール-4,6(5H)-ジオンは、J.Mater.Chem.,2012,22,14639.に記載の方法により合成し、中間体2は下記スキームX2に示す合成ルートにより合成した。
Figure JPOXMLDOC01-appb-C000035
 1,3-ジブロモ-5-(2-オクチルドデシル)-4H-チエノ[3,4-c]ピロール-4,6(5H)-ジオン(118mg、0.20mmol)、中間体2(190mg、0.20mmol)、トリ(o-トリル)ホスフィン(12.2mg,4.0×10-2mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(9.2mg,1.0×10-2mmol)、脱水トルエン(10mL)を混合し、窒素雰囲気下、100℃で60時間撹拌した。次いで、得られた反応液を室温まで冷却した。その後、冷却した反応液を、メタノール(100mL)/濃塩酸(10mL)の混合比で構成した混合液に注ぎ、2時間撹拌した。析出物をろ過、メタノール洗浄した後、メタノール、アセトン、クロロホルムで順次ソックスレー抽出し、可溶性の不純物を取り除いた。続いて、ジクロロベンゼンでソックスレー抽出し、得られた溶液を減圧濃縮した後、メタノールを添加し、析出した固形分をろ過、メタノール洗浄し80℃で12時間真空乾燥することで化合物9を164mg得た(収率67%)。
 ポリスチレン換算の数平均分子量は1.9×10であり、重量平均分子量は4.5×10であった。
Figure JPOXMLDOC01-appb-C000036
 尚、比較化合物1は特表2007-516315号公報、比較化合物2は特表2010-527327号公報、比較化合物3はWO2013/150005号公報(引用文献1)、比較化合物4は特表2009-541548号公報、比較化合物5はWO2013/150005号公報(引用文献1)に記載の化合物である。また、比較化合物6は、シリルエチニル基を主鎖骨格により形成される共役平面に直接連結させた化合物であり、特許第5494651号明細書(引用文献2)を参照して合成した。
<有機半導体組成物の調製>
 表1に記載の化合物1(0.20質量%)/1,2-ジクロロベンゼンを硝子バイヤルに秤量し、ミックスローター(アズワン(株)製)で24時間撹拌混合した後、0.5μmメンブレンフィルターでろ過することで、有機半導体組成物1を得た。
 また、化合物1の代わりに化合物2~14又は比較化合物1~6のいずれかを用いた以外は同様の方法により、有機半導体組成物2~14、比較有機半導体組成物1~6を各々調製した。
<有機薄膜トランジスタ(有機TFT)素子作製>
 ガラス基板(イーグルXG:コーニング社製)上に、ゲート電極となるAlを蒸着した(厚み:50nm)。その上にゲート絶縁膜形成用組成物(ポリビニルフェノール/メラミン=1質量部/1質量部(w/w)のPGMEA(プロピレングリコールモノメチルエーテルアセテート)溶液(固形分濃度:2質量%))をスピンコートし、150℃で60分間ベークを行うことで膜厚400nmのゲート絶縁膜を形成した。その上に銀インク(銀ナノコロイドH-1、三菱マテリアル(株)製)をインクジェット装置DMP-2831(富士フイルムダイマティクス社製)を用いてソース電極及びドレイン電極状(チャネル長40μm、チャネル幅200μm)に描画した。その後オーブンにて180℃、30分ベークを行い、焼結して、ソース電極及びドレイン電極を形成することでTFT特性評価用素子基板を得た。
 窒素グローブボックス中で、TFT特性評価用素子基板の上に上記で調製した有機半導体組成物1をスピンコート(500rpmで10秒間の後、1,000rpmで30秒間)した後、ホットプレート上で、180℃、10分間の乾燥をすることで有機半導体層を形成し、ボトムゲートボトムコンタクト型の有機TFT素子(以下「素子」ともいう。)1を得た。
 また、有機半導体組成物1の代わりに有機半導体組成物2~14又は比較有機半導体組成物1~6のいずれかを用いた以外は上記素子1の作製方法に準じて、素子2~14及び比較素子1~6を各々作製した。得られた素子1~14及び比較有素子1~6を、実施例1~14及び比較例1~6の有機TFT素子とした。
<特性評価>
 作製した各有機TFT素子(素子1~14及び比較素子1~6)について、半導体特性評価装置B2900A(アジレントテクノロジーズ社製)を用い、大気下で以下の性能評価を行った。
(a)キャリア移動度
 各有機TFT素子(素子1~14及び比較素子1~6)のソース電極-ドレイン電極間に-60Vの電圧を印加し、ゲート電圧を+10V~-60Vの範囲で変化させ、ドレイン電流Idを表わす下記式を用いてキャリア移動度μを算出し、以下の7段階で評価した。
 I=(w/2L)μC(V-Vth
 式中、Lはゲート長、wはゲート幅、Cは絶縁層の単位面積当たりの容量、Vはゲート電圧、Vthは閾値電圧を表す。
 得られた結果を下記表に示す。
 「S」 :0.25cm/Vs以上~0.30cm/Vs未満
 「AA」:0.2cm/Vs以上~0.25cm/Vs未満
 「A」 :0.1cm/Vs以上~0.2cm/Vs未満
 「B」 :0.05cm/Vs以上~0.1cm/Vs未満
 「C」 :0.02cm/Vs以上~0.05cm/Vs未満
 「D」 :10-4cm/Vs以上~0.02cm/Vs未満
 「E」 :10-5cm/Vs以下
 キャリア移動度μは高いほど好ましく、実用上は「C」以上であることが必要であり、「B」以上であることが好ましく、「A」以上であることがさらに好ましい。
(b)高温高湿下での経時安定性
 各有機TFT素子(素子1~14及び比較素子1~6)を、60℃、湿度80%の条件下で24時間保管した後、上記「(a)キャリア移動度」と同様の方法によりキャリア移動度を測定した場合のキャリア移動度維持率(下記式)を以下の5段階で評価し、高温高湿下での経時安定性の指標とした。この値が大きいほど高温高湿下での経時安定性が高く、実用上は「B」以上であることが必要であり、「A」以上であることがより好ましい。
 高温高湿下保管後のキャリア移動度維持率(%)={キャリア移動度(高温高湿下保管後)/キャリア移動度(高温高湿下保管前)}×100
 「A」:90%以上
 「B」:75%以上90%未満
 「C」:50%以上75%未満
 「D」:25%以上50%未満
 「E」:25%未満
 また、下記表の「式(2)~(5)に該当するか否か」の欄において、Aは「該当する」、Bは「該当しない」を意味する。
Figure JPOXMLDOC01-appb-T000037
 表1に示す結果から、以下のことが分かる。
 実施例1~14の有機TFT素子は、いずれも優れたキャリア移動度を有ししつつ、高温高湿下での経時安定性にも優れていることが分かった。特に、上述した式(2)~式(5)に該当する構造の化合物を用いた場合に、キャリア移動度により優れ、高温高湿下での経時安定性にもより優れていることが示された。
 また、実施例6と実施例7とを対比することにより、シリルエチニル基末端におけるSiの各置換基(R、R、R)における炭素数がそれぞれより大きくなるほど(好ましくは炭素数2以上、より好ましくは炭素数3以上)、換言すると立体障害が大きくなるほど、キャリア移動度がより向上することが明らかとなった。
 また、実施例3と実施例5とを対比することにより、式(1-1)で表されるシリルエチニル基末端を持つアルキル基を式(1)の主鎖骨格中のアクセプター側に導入することで、キャリア移動度がより向上することが明らかとなった。
 一方、比較例1、2、4から明らかなように、置換基としてシリルエチニル基末端を持たないアルキル基を導入した場合には、キャリア移動度、及び高温高湿下における経時安定性のいずれにおいても、所望の効果が発現しなかった。
 また、比較例3に示すように、エチニル基を介さずにシリル末端を直接連結させたアルキル基を導入した場合には、高温高湿下における経時安定性の効果が発現しなかった。
 比較例5に示すように、シリルエチニル基末端を有するメチル基とした場合(式(1-1)中のnが1である場合に相当)には、高温高湿下における経時安定性の効果が発現しなかった。
 比較例6に示すように、シリルエチニル基を主鎖骨格の共役平面に直接連結させた場合(式(1-1)中のnが0である場合に相当)には、キャリア移動度、及び高温高湿下における経時安定性のいずれにおいても、所望の効果が発現しなかった。
 10:基板、20:ゲート電極、30:ゲート絶縁膜、40:ソース電極、42:ドレイン電極、50:有機半導体膜、60:封止層、100、200:有機薄膜トランジスタ

Claims (11)

  1.  分子量2,000以上で、且つ、下記式(1)で表される繰り返し単位を有する化合物を含有する有機半導体層を備える、有機半導体素子。
    Figure JPOXMLDOC01-appb-C000001

     式(1)中、Aはsp2窒素原子、カルボニル基、及び、チオカルボニル基のうち少なくとも1つを環構造内に有する部分構造を含む電子アクセプターユニット、Dは少なくとも1つのN原子、O原子、S原子、若しくはSe原子を環構造内に有する二価の芳香族複素環基、又は2環以上の縮環構造からなる二価の芳香族炭化水素基を部分構造として含む電子ドナーユニットであり、D及び/又はAは下記式(1-1)で表される一価の基を少なくとも一つ有する。
    Figure JPOXMLDOC01-appb-C000002

     式(1-1)中、nは2以上30以下の整数であり、R、R、及びRは、それぞれ独立に、置換基を有していてもよい、アルキル基、アルコキシ基、アリール基又はヘテロアリール基であり、*は他の構造との結合部位を表す。
  2.  前記式(1)において、Aが下記式(A-1)~式(A-12)で表される構造よりなる群から選ばれる少なくとも1つの構造を部分構造として有する、請求項1に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000003

     式(A-1)~式(A-12)中、Xはそれぞれ独立に、O原子、S原子、Se原子又はNRA1を表し、Yはそれぞれ独立に、O原子又はS原子を表し、Zaはそれぞれ独立に、CRA2又はN原子を表し、Wはそれぞれ独立に、C(RA22、NRA1、N原子、CRA2、O原子、S原子又はSe原子を表し、RA1はそれぞれ独立に、-O-、-S-、及び、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、前記式(1-1)で表される一価の基、又は、他の構造との結合部位を表し、RA2はそれぞれ独立に、-O-、-S-、及び、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、水素原子、ハロゲン原子、前記式(1-1)で表される一価の基、又は、他の構造との結合部位を表し、*はそれぞれ独立に、他の構造との結合部位を表し、RA3は水素原子又は置換基を表す。
  3.  前記式(1)において、Dが下記式(D-1)で表される構造である、請求項1又は請求項2に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000004

     式(D-1)中、X’はそれぞれ独立に、O原子、S原子、Se原子、又は、NRD1を表し、Zdはそれぞれ独立に、N原子又はCRD2を表し、RD1はそれぞれ独立に、前記式(1-1)で表される一価の基であってもよい一価の有機基を表し、RD2はそれぞれ独立に、水素原子又は前記式(1-1)で表される一価の基であってもよい一価の有機基を表し、Mは単結合、二価の芳香族複素環基、二価の芳香族炭化水素基、アルケニレン基、アルキニレン基、又は、これらを組み合わせてなる二価の基を表し、p及びqはそれぞれ独立に、0~4の整数を表し、*はそれぞれ独立に、他の構造との結合部位を表す。Mは置換基として-O-、-S-、及び、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基又は前記式(1-1)で表される1価の基を有していてもよく、RD3は水素原子又は置換基を表す。
  4.  前記式(1)で表される繰り返し単位が、下記式(2)~式(5)のいずれかで表される繰り返し単位である、請求項1~3のいずれか1項に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000005

     式(2)~式(5)中、Xはそれぞれ独立に、O原子、S原子、Se原子又はNRA1を表し、Yはそれぞれ独立に、O原子又はS原子を表し、Zaはそれぞれ独立に、CRA2又はN原子を表し、RA1はそれぞれ独立に、-O-、-S-、及び、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、前記式(1-1)で表される一価の基、又は、他の構造との結合部位を表し、RA2はそれぞれ独立に、-O-、-S-、及び、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、水素原子、ハロゲン原子、前記式(1-1)で表される一価の基、又は、他の構造との結合部位を表し、RA3は水素原子又は置換基を表し、X’はそれぞれ独立に、O原子、S原子、Se原子、又は、NRD1を表し、Zdはそれぞれ独立に、N原子又はCRD2を表し、RD1はそれぞれ独立に、前記式(1-1)で表される一価の基であってもよい一価の有機基を表し、RD2はそれぞれ独立に、水素原子又は前記式(1-1)で表される一価の基であってもよい一価の有機基を表し、Mは単結合、二価の芳香族複素環基、二価の芳香族炭化水素基、アルケニレン基、アルキニレン基、又は、これらを組み合わせてなる二価の基を表し、p及びqはそれぞれ独立に、0~4の整数を表す。Mは置換基として-O-、-S-、及び、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基又は前記式(1-1)で表される1価の基を有していてもよく、RD3は水素原子又は置換基を表す。
  5.  前記式(A-1)~式(A-12)が、それぞれRA1及びRA2のいずれかを少なくとも1つ有し、各式におけるRA1及びRA2の少なくともいずれか1つが、前記式(1-1)で表される一価の基である、請求項2に記載の有機半導体素子。
  6.  前記式(2)~式(5)が、それぞれRA1及びRA2のいずれかを少なくとも1つ有し、各式におけるRA1及びRA2の少なくともいずれか1つが、前記式(1-1)で表される一価の基である、請求項4に記載の有機半導体素子。
  7.  前記式(1-1)中、R、R、及びRに含まれる炭素数が、それぞれ2以上である、請求項1~6のいずれか1項に記載の有機半導体素子。
  8.  分子量2,000以上で、且つ、下記式(2)~式(5)のいずれかで表される繰り返し単位を有する、化合物。但し、下記式(2)~式(5)は、それぞれ、下記式(1-1)で表される一価の基を少なくとも一つ有する。
    Figure JPOXMLDOC01-appb-C000006

     式(2)~式(5)中、Xはそれぞれ独立に、O原子、S原子、Se原子又はNRA1を表し、Yはそれぞれ独立に、O原子又はS原子を表し、Zaはそれぞれ独立に、CRA2又はN原子を表し、RA1はそれぞれ独立に、-O-、-S-、及び、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、式(1-1)で表される一価の基、又は、他の構造との結合部位を表し、RA2はそれぞれ独立に、-O-、-S-、及び、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、水素原子、ハロゲン原子、式(1-1)で表される一価の基、又は、他の構造との結合部位を表し、RA3は水素原子又は置換基を表し、X’はそれぞれ独立に、O原子、S原子、Se原子、又は、NRD1を表し、Zdはそれぞれ独立に、N原子又はCRD2を表し、RD1はそれぞれ独立に、式(1-1)で表される一価の基であってもよい一価の有機基を表し、RD2はそれぞれ独立に、水素原子又は式(1-1)で表される一価の基であってもよい一価の有機基を表し、Mは単結合、二価の芳香族複素環基、二価の芳香族炭化水素基、アルケニレン基、アルキニレン基、又は、これらを組み合わせてなる二価の基を表し、p及びqはそれぞれ独立に、0~4の整数を表す。Mは置換基として-O-、-S-、及び、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基又は式(1-1)で表される1価の基を有していてもよく、RD3は水素原子又は置換基を表す。
    Figure JPOXMLDOC01-appb-C000007

     式(1-1)中、nは2以上30以下の整数であり、R、R、及びRは、それぞれ独立に、置換基を有していてもよい、アルキル基、アルコキシ基、アリール基又はヘテロアリール基であり、*は他の構造との結合部位を表す。
  9.  分子量2,000以上で、且つ、下記式(1)で表される繰り返し単位を有する化合物と、溶媒と、を含む、有機半導体組成物。
    Figure JPOXMLDOC01-appb-C000008

     式(1)中、Aはsp2窒素原子、カルボニル基、及び、チオカルボニル基のうち少なくとも1つを環構造内に有する部分構造を含む電子アクセプターユニット、Dは少なくとも1つのN原子、O原子、S原子、若しくはSe原子を環構造内に有する二価の芳香族複素環基、又は2環以上の縮環構造からなる二価の芳香族炭化水素基を部分構造として含む電子ドナーユニットであり、D及び/又はAは下記式(1-1)で表される一価の基を少なくとも一つ有する。
    Figure JPOXMLDOC01-appb-C000009

     式(1-1)中、nは2以上30以下の整数であり、R、R、及びRは、それぞれ独立に、置換基を有していてもよい、アルキル基、アルコキシ基、アリール基又はヘテロアリール基であり、*は他の構造との結合部位を表す。
  10.  分子量2,000以上で、且つ、下記式(1)で表される繰り返し単位を有する化合物を含む、有機半導体膜。
    Figure JPOXMLDOC01-appb-C000010

     式(1)中、Aはsp2窒素原子、カルボニル基、及び、チオカルボニル基のうち少なくとも1つを環構造内に有する部分構造を含む電子アクセプターユニット、Dは少なくとも1つのN原子、O原子、S原子、若しくはSe原子を環構造内に有する二価の芳香族複素環基、又は2環以上の縮環構造からなる二価の芳香族炭化水素基を部分構造として含む電子ドナーユニットであり、D及び/又はAは下記式(1-1)で表される一価の基を少なくとも一つ有する。
    Figure JPOXMLDOC01-appb-C000011

     式(1-1)中、nは2以上30以下の整数であり、R、R、及びRは、それぞれ独立に、置換基を有していてもよい、アルキル基、アルコキシ基、アリール基又はヘテロアリール基であり、*は他の構造との結合部位を表す。
  11.  請求項9に記載の有機半導体組成物を基板上に塗布する塗布工程を含む、有機半導体膜の製造方法。
PCT/JP2016/067359 2015-07-07 2016-06-10 有機半導体素子、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法 WO2017006703A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017527145A JP6442057B2 (ja) 2015-07-07 2016-06-10 有機半導体素子、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法
US15/857,734 US20180145258A1 (en) 2015-07-07 2017-12-29 Organic semiconductor element, compound, organic semiconductor composition, organic semiconductor film, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-136447 2015-07-07
JP2015136447 2015-07-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/857,734 Continuation US20180145258A1 (en) 2015-07-07 2017-12-29 Organic semiconductor element, compound, organic semiconductor composition, organic semiconductor film, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2017006703A1 true WO2017006703A1 (ja) 2017-01-12

Family

ID=57685441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067359 WO2017006703A1 (ja) 2015-07-07 2016-06-10 有機半導体素子、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法

Country Status (4)

Country Link
US (1) US20180145258A1 (ja)
JP (1) JP6442057B2 (ja)
TW (1) TWI688135B (ja)
WO (1) WO2017006703A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115584017A (zh) * 2022-09-30 2023-01-10 武汉工程大学 一类联二噻唑类宽带隙聚合物及其在光电器件中的应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218293A1 (ja) * 2019-04-24 2020-10-29 富士フイルム株式会社 組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5494651B2 (ja) * 2009-04-03 2014-05-21 コニカミノルタ株式会社 有機光電変換素子、それを用いた太陽電池および光センサアレイ
JP2015050231A (ja) * 2013-08-30 2015-03-16 富士フイルム株式会社 有機半導体デバイス、これに用いる化合物、組成物及び塗布膜
JP2015514836A (ja) * 2012-04-04 2015-05-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ジケトピロロピロールポリマーおよび小分子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005049695A1 (en) * 2003-10-28 2005-06-02 Ciba Specialty Chemicals Holding Inc. Novel diketopyrrolopyrrole polymers
ATE502970T1 (de) * 2005-11-24 2011-04-15 Merck Patent Gmbh Verfahren zur herstellung von regioregulären polymeren
BRPI0713952A2 (pt) * 2006-06-30 2012-12-04 Ciba Holding Inc polìmeros de dicetopirrolopirrol como semicondutores orgánicos
CA2703438A1 (en) * 2007-10-25 2009-04-30 Jean-Charles Flores Ketopyrroles as organic semiconductors
CN104094435B (zh) * 2011-09-02 2017-02-22 巴斯夫欧洲公司 二酮基吡咯并吡咯低聚物和包含二酮基吡咯并吡咯低聚物的组合物
CN103975454B (zh) * 2011-12-07 2018-02-09 巴斯夫欧洲公司 用于有机半导体器件的二酮基吡咯并吡咯聚合物
WO2013149001A2 (en) * 2012-03-29 2013-10-03 Corning Incorporated Novel fused naphthalene cyclohetero ring compounds, and methods and uses thereof
WO2014002061A2 (en) * 2012-06-29 2014-01-03 Basf Se Substituted terrylene and quaterrylene derivatives and the use as semiconductors
JP6320401B2 (ja) * 2012-11-07 2018-05-09 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ナフトジオンを基礎とするポリマー

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5494651B2 (ja) * 2009-04-03 2014-05-21 コニカミノルタ株式会社 有機光電変換素子、それを用いた太陽電池および光センサアレイ
JP2015514836A (ja) * 2012-04-04 2015-05-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ジケトピロロピロールポリマーおよび小分子
JP2015050231A (ja) * 2013-08-30 2015-03-16 富士フイルム株式会社 有機半導体デバイス、これに用いる化合物、組成物及び塗布膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
B. YAMAN ET AL.: "Fabrication of a planar water gated organic field effect transistor using a hydrophilic polythiophene for improved digital inverter performance", ORGANIC ELECRONICS, vol. 15, pages 646 - 653, XP028614140 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115584017A (zh) * 2022-09-30 2023-01-10 武汉工程大学 一类联二噻唑类宽带隙聚合物及其在光电器件中的应用

Also Published As

Publication number Publication date
JP6442057B2 (ja) 2018-12-19
JPWO2017006703A1 (ja) 2018-03-15
TWI688135B (zh) 2020-03-11
US20180145258A1 (en) 2018-05-24
TW201703302A (zh) 2017-01-16

Similar Documents

Publication Publication Date Title
TWI688586B (zh) 有機半導體元件及其製造方法、化合物、有機半導體組合物和有機半導體膜及其製造方法
US20190036029A1 (en) Organic thin film transistor element, organic semiconductor film-forming composition, method of forming organic semiconductor film, and organic semiconductor film
EP2232606A1 (en) Solution processable organic semiconductors based on anthracene
WO2016031707A1 (ja) 有機半導体素子及びその製造方法、並びにトポケミカル重合性有機半導体化合物
US10636975B2 (en) Organic semiconductor element, compound, organic semiconductor composition, and method of manufacturing organic semiconductor film
JP6442057B2 (ja) 有機半導体素子、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法
JP6709275B2 (ja) 有機半導体膜、有機半導体素子、重合体及び有機半導体組成物
JP6427473B2 (ja) 有機半導体膜形成用組成物、有機半導体膜およびその製造方法、並びに有機半導体素子
JP6573983B2 (ja) 有機半導体膜形成用組成物、化合物、有機半導体膜、有機半導体素子
JP6328791B2 (ja) 有機半導体素子及び化合物
JP6328792B2 (ja) 有機半導体素子及び化合物
WO2016047391A1 (ja) 有機半導体素子及びその製造方法、化合物、有機半導体膜形成用組成物、並びに、有機半導体膜
JP6328790B2 (ja) 有機半導体素子及び化合物
JP6325128B2 (ja) 有機半導体素子及び化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527145

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821173

Country of ref document: EP

Kind code of ref document: A1