WO2017006678A1 - ラビリンスシール - Google Patents

ラビリンスシール Download PDF

Info

Publication number
WO2017006678A1
WO2017006678A1 PCT/JP2016/066773 JP2016066773W WO2017006678A1 WO 2017006678 A1 WO2017006678 A1 WO 2017006678A1 JP 2016066773 W JP2016066773 W JP 2016066773W WO 2017006678 A1 WO2017006678 A1 WO 2017006678A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure side
annular groove
labyrinth seal
low pressure
fin
Prior art date
Application number
PCT/JP2016/066773
Other languages
English (en)
French (fr)
Inventor
俊輔 森中
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to DE112016003036.3T priority Critical patent/DE112016003036B4/de
Priority to US15/740,831 priority patent/US10570768B2/en
Priority to KR1020177037196A priority patent/KR102020138B1/ko
Publication of WO2017006678A1 publication Critical patent/WO2017006678A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/447Labyrinth packings
    • F16J15/4472Labyrinth packings with axial path

Definitions

  • the present invention relates to a labyrinth seal provided in a rotating machine.
  • Patent Document 1 discloses a labyrinth seal for preventing fluid from leaking from a high pressure side to a low pressure side through a gap between a rotating body and a stationary body constituting a rotating machine.
  • This labyrinth seal is mainly composed of a staircase structure formed on the outer peripheral surface of the rotating body and fins provided on the inner peripheral surface of the stationary body.
  • FIG. 7 is a schematic cross-sectional view showing a conventional labyrinth seal.
  • the labyrinth seal of Patent Document 1 As shown in FIG. 7, between the outer peripheral surface of the rotating body 101 and the fins 103 and 104 provided on the inner peripheral surface of the stationary body 102 from the high pressure side to the low pressure side. A fluid flow P passing through the gap is generated.
  • a large vortex V1 is formed between the high-pressure fin 103 and the low-pressure fin 104, and a small vortex V2 is formed on the side of the stepped portion 101a.
  • fluid friction is generated in the vortices V1 and V2, and energy loss is generated, so that fluid leakage can be suppressed.
  • the amount of fluid leakage can be reduced by forming the vortex V2 in addition to the vortex V1.
  • the shape of the vortex V ⁇ b> 2 is a flat shape, and the flow P of the vortex V ⁇ b> 2 is not increased by actively taking in the flow P. For this reason, there is a limit to the energy loss of the fluid due to the vortex V2, and there is room for improvement in this respect.
  • the present invention has been made in view of the above problems, and an object of the present invention is to improve the effect of suppressing fluid leakage by increasing the energy loss of fluid due to vortices.
  • the present invention provides a fluid that passes through a gap between an outer peripheral surface of a rotating body that rotates around a rotating shaft and an inner peripheral surface of a stationary body that is provided outside the rotating body.
  • a labyrinth seal that suppresses leakage from a high pressure side to a low pressure side along a direction, wherein a step portion having a smaller diameter on the low pressure side than the high pressure side is formed on the outer peripheral surface of the rotating body, and the inside of the stationary body
  • a fin extending radially inward from the circumferential surface is provided at least on the low pressure side of the stepped portion, and provided on the low pressure side of the stepped portion and the stepped portion of the outer peripheral surface of the rotating body.
  • An annular groove is formed along the circumferential direction in at least a part of a region between the fins.
  • the flow of fluid from the high pressure side to the low pressure side can be drawn into the annular groove, and the flow velocity of the vortex in the annular groove can be increased.
  • the energy loss of the fluid due to the vortex in the annular groove can be increased, and the effect of suppressing fluid leakage can be improved.
  • FIG. 1 is a schematic cross-sectional view showing a labyrinth seal according to the first embodiment, and more specifically shows a cross section including a rotation shaft of a rotating body.
  • the rotating machine 1 provided with the labyrinth seal 10 of the first embodiment is configured by arranging a rotating body 11 and a stationary body 12 in a casing (not shown), and functions as a turbo compressor, for example.
  • the rotating body 11 is attached to the casing via a bearing (not shown), and is configured to be rotatable around the rotation axis.
  • the stationary body 12 is fixed to the casing in a state in which the stationary body 12 is arranged on the radially outer side of the rotating body 11 with an interval.
  • the labyrinth seal 10 is mainly composed of a staircase structure including a step portion 11 a formed on the outer peripheral surface of the rotating body 11 and fins 13 and 14 provided on the inner peripheral surface of the stationary body 12. .
  • the labyrinth seal 10 passes through a gap between the outer peripheral surface of the rotating body 11 and the inner peripheral surface of the stationary body 12, and fluid flows along the axial direction from the high pressure side (left side in FIG. 1) to the low pressure side (in FIG. 1). Suppresses leakage to the right).
  • a step portion 11a is formed on the outer peripheral surface of the rotating body 11 along the radial direction so that the high-pressure side has a larger diameter than the low-pressure side.
  • the high-pressure side from the step portion 11a is the large-diameter portion 11b
  • the low-pressure side from the step portion 11a is the small-diameter portion 11c.
  • the stationary body 12 is provided with ring-shaped fins 13 and 14 extending from the inner peripheral surface of the stationary body 12 to the vicinity of the outer peripheral surface of the rotating body 11 inward in the radial direction.
  • the fins 13 are arranged on the high pressure side in the axial direction from the stepped portion 11a, that is, in a region facing the large diameter portion 11b.
  • the fin 14 is arrange
  • An annular groove 15 is formed on the outer peripheral surface of the small diameter portion 11c of the rotating body 11 along the circumferential direction.
  • the annular groove 15 has a side surface 15a on the high pressure side substantially parallel to the radial direction, a side surface 15b on the low pressure side substantially parallel to the radial direction, and a bottom surface 15c substantially parallel to the axial direction.
  • the contour of the annular groove 15 is rectangular.
  • the high-pressure side surface 15a is flush with the step portion 11a and is in the same position as the step portion 11a in the axial direction.
  • the side surface 15b on the low pressure side is located at a position away from the side surface 15a on the high pressure side by the opening width W of the annular groove 15 from the low pressure side.
  • the fin 14 extends radially inward from the outer peripheral surface of the large-diameter portion 11b. For this reason, the fluid that has passed through the gap between the tip of the fin 13 and the outer peripheral surface of the rotating body 11 does not flow linearly along the axial direction, but as shown in FIG.
  • the main flow P bent inward in the radial direction is formed. Specifically, the main flow P passes between the high-pressure side fin 13 and the large-diameter portion 11b, and then flows along the axial direction from the high-pressure side to the low-pressure side. It goes to the inner side in the direction, and then passes through the gap between the fin 14 and the small-diameter portion 11c, and again flows along the axial direction again.
  • a relatively large vortex V1 is formed counterclockwise in the figure between the high-pressure fin 13 and the low-pressure fin 14, and the step 11a and the low-pressure fin 14 are formed.
  • a relatively small vortex V2 is formed in the clockwise direction in the figure between the space 14 and the region 14 (region including the annular groove 15). Fluid friction is generated in these vortices V1 and V2, and energy loss is generated, so that fluid leakage can be suppressed.
  • the flow velocity of the vortex V2 is increased and the vortex V2 is increased, whereby the fluid-fluid in the vortex V2 is increased.
  • the energy loss of the fluid due to the vortex V2 can be increased, and the effect of suppressing fluid leakage can be improved.
  • the annular groove 15 may be formed in at least a part of a region between the step portion 11a and the low-pressure side fin 14 in the axial direction.
  • the annular groove 15 is formed in the axial direction from the position of the step portion 11a to the low pressure side, in other words, the annular groove 15 extends to the position of the step portion 11a on the high pressure side.
  • the annular groove 15 is formed widely on the high-pressure side to the limit, so that the volume of the annular groove 15 can be increased. As a result, since the vortex V2 can be made larger, the energy loss of the fluid in the vortex V2 can be further increased.
  • the present inventor has intensively studied how far the annular groove 15 should extend to the low pressure side when the annular groove 15 is formed from the position of the step portion 11a to the low pressure side as described above. .
  • the opening width of the annular groove 15 is W and the distance in the axial direction between the step portion 11a and the low pressure side surface 14a of the low pressure side fin 14 is G, as shown in FIG.
  • the knowledge that the amount of leakage flow changes with / W was obtained.
  • the unit of leakage amount on the vertical axis is made dimensionless.
  • the opening width W of the annular groove 15 is too smaller than the distance G, that is, if the side surface 15b on the low pressure side of the annular groove 15 is too far from the fin 14, the branch flow Pa becomes difficult to enter the annular groove 15 and the vortex V2 Since it becomes difficult to increase the flow velocity, it is considered that the leakage suppressing effect is reduced.
  • the opening width W of the annular groove 15 is too larger than the distance G, that is, if the annular groove 15 extends too far beyond the fin 14 to the low pressure side, the gap between the tip end portion of the fin 14 and the small diameter portion 11c. It is considered that the gap between the two becomes wider and leakage is easily promoted.
  • G / W is about 1.0, that is, the low-pressure side surface 14a of the fin 14 and the low-pressure side surface 15b of the annular groove 15 are located at substantially the same position in the axial direction, so that the leakage suppressing effect is achieved. I was able to maximize it.
  • FIG. 3 is a schematic cross-sectional view showing a labyrinth seal according to the second embodiment.
  • the labyrinth seal 20 of the second embodiment is different from the first embodiment in that the fins 23 and 24 are inclined at an inclination angle ⁇ with respect to the radial direction, but other points are basically different from those of the first embodiment. It is the same. Therefore, the description of the configuration common to the first embodiment (the same reference numerals as those in FIG. 1) and the effects produced thereby will be omitted as appropriate.
  • both the high-pressure side fins 23 and the low-pressure side fins 24 are such that the distal end portion (the radially inner end portion) is positioned on the high pressure side relative to the proximal end portion (the radially outer end portion). Inclined by an inclination angle ⁇ from the radial direction toward the high pressure side. It is not essential that the high-pressure side fins 23 and the low-pressure side fins 24 have the same inclination angle, and the inclination angles of the two may be different. Alternatively, only the low-pressure side fins 24 may be tilted without tilting the high-pressure side fins 23.
  • the configuration for obtaining the above-described effect is not limited to inclining the low-pressure side fin 24.
  • the fin 24 may have a curved shape or a bent shape such as an L shape so that the distal end portion of the fin 24 is located on the higher pressure side than the proximal end portion.
  • the distance G is equal to that of the fin 24 as shown in FIG. It is defined as the distance in the axial direction between the tip of the low-pressure side surface 24a and the step portion 11a.
  • FIG. 4 is a schematic cross-sectional view showing a labyrinth seal according to the third embodiment.
  • the labyrinth seal 30 of the third embodiment is different from the first embodiment in that the cross-sectional shape of the annular groove 35 is an arc shape, but the other points are basically the same as in the first embodiment. Therefore, the description of the configuration common to the first embodiment (the same reference numerals as those in FIG. 1) and the effects produced thereby will be omitted as appropriate.
  • the contour of the annular groove 35 is arcuate in the cross section including the rotation axis of the rotating body 11 (the cross section shown in FIG. 4). More specifically, the cross-sectional shape of the annular groove 35 is a semicircular shape whose diameter is the opening width W of the annular groove 35. For this reason, the tangent at the opening periphery of the annular groove 35 coincides with the radial direction, and the fluid can be smoothly guided into the annular groove 35.
  • FIG. 5 is a schematic cross-sectional view showing a labyrinth seal according to the fourth embodiment.
  • the labyrinth seal 40 of the fourth embodiment is different from the first embodiment in that the low-pressure side surface 45b of the annular groove 45 is an inclined surface, but the other points are basically the same as in the first embodiment. is there. Therefore, the description of the configuration common to the first embodiment (the same reference numerals as those in FIG. 1) and the effects produced thereby will be omitted as appropriate.
  • the contour of the annular groove 45 is trapezoidal in the cross section (the cross section shown in FIG. 5) including the rotation axis of the rotating body 11. More specifically, the annular groove 45 has a side surface 45a on the high pressure side, a side surface 45b on the low pressure side, and a bottom surface 45c, and the side surface 45b on the low pressure side increases toward the high pressure side toward the bottom surface 45c side. It is an inclined surface. That is, the side surface 45b has a shape in which the end portion on the radially inner side (bottom surface side) is positioned on the high pressure side than the end portion on the radially outer side (opening side). Note that the side surface 45a on the high-pressure side is flush with the stepped portion 11a, as in the first embodiment.
  • the low-pressure side surface 45b of the annular groove 45 is positioned on the high-pressure side with respect to the radially inner end. If it is in the shape, it is possible to cause more of the radially inward branching flow Pa generated when the main flow P hits the low-pressure fin 14 to flow into the annular groove 45. For this reason, the flow velocity of the vortex V2 can be increased, and the fluid leakage suppression effect can be further improved by increasing the energy loss of the fluid in the vortex V2.
  • the configuration for obtaining the above-described effect is not limited to inclining the low-pressure side surface 45b of the annular groove 45.
  • the side surface 45b may be a curved surface that is positioned on the high pressure side toward the bottom surface 45c.
  • this invention is not limited to said each embodiment, Unless it deviates from the meaning, it is possible to combine the element of said each embodiment suitably, or to add a various change.
  • the end portions on the high pressure side of the annular grooves 15, 35, 45 are in the same position as the step portion 11a in the axial direction, but may be positioned on the low pressure side from the step portion 11a. Good.
  • the fins 13, 14, 23, and 24 have been described as members different from the stationary body 12. However, the fins 13, 14, 23, and 24 are configured integrally with the stationary body 12. Also good.
  • the staircase structure of the rotating body 11 constituting the labyrinth seal of the present invention is a two-stage structure in which only one step portion 11a is provided has been described, but as shown in FIG.
  • the labyrinth seal 50 shown in FIG. 6 mainly includes four step portions 53A to 53D formed on the outer peripheral surface of the rotating body 51 and four fins 54A to 54D formed on the inner peripheral surface of the stationary body 52. It is configured.
  • the fins 54A to 54D are provided on the low pressure side (small diameter side) of the step portions 53A to 53D.
  • annular grooves 55A to 55D are respectively formed in at least a part of the region between the step portions 53A to 53D and the fins 54A to 54D.
  • the fins 54A to 54D and the annular grooves 55A to 55D can take, for example, the forms shown in the above embodiments.
  • the plurality of step portions 53A to 53D provided on the outer peripheral surface of the rotating body 51 so that the diameter gradually decreases from the high pressure side toward the low pressure side, and at least the low pressure side of each of the step portions 53A to 53D.
  • the labyrinth seal 50 including the plurality of fins 54A to 54D and the plurality of annular grooves 55A to 55D provided between the step portions 53A to 53D and the fins 54A to 54D, fluid leakage can be reduced. The effect can be further improved.

Abstract

渦による流体のエネルギー損失を増大させることによって、流体の漏れ抑制効果を向上させる。 回転軸周りに回転する回転体(11)の外周面と、回転体(11)の外側に設けられる静止体(12)の内周面との間の隙間を通って、流体が軸方向に沿って高圧側から低圧側に漏れることを抑制するラビリンスシール(10)であって、回転体(11)の外周面に高圧側よりも低圧側が小径となる段差部(11a)が形成されるとともに、静止体(12)の内周面から径方向内側に向かって延びるフィン(14)が、段差部(11a)の少なくとも低圧側に設けられており、回転体(11)の外周面のうち、段差部(11a)と段差部(11a)よりも低圧側に設けられたフィン(14)との間の領域の少なくとも一部に、周方向に沿って環状溝(15)が形成されている。

Description

ラビリンスシール
 本発明は、回転機械に設けられるラビリンスシールに関する。
 例えば特許文献1には、回転機械を構成する回転体と静止体との間の隙間を通って、流体が高圧側から低圧側に漏れることを抑制するためのラビリンスシールが開示されている。このラビリンスシールは、主に、回転体の外周面に形成された階段構造と、静止体の内周面に設けられたフィンとから構成されている。
 図7は、従来のラビリンスシールを示す模式断面図である。特許文献1のラビリンスシールによれば、図7に示すように、高圧側から低圧側へと、回転体101の外周面と静止体102の内周面に設けられたフィン103、104との間の隙間を通過する流体の流れPが生ずる。このとき、高圧側のフィン103と低圧側のフィン104との間に大きな渦V1が形成されるとともに、段差部101aの側方に小さな渦V2が形成される。そして、渦V1、V2において流体間摩擦が発生し、エネルギー損失が生じることによって、流体の漏れを抑制できる。
日本国特開2012-72736号公報
 上述のように、従来のラビリンスシールでは、渦V1に加えて渦V2が形成されることによって、流体の漏れ量を低減することができるようになっている。しかしながら、図7に示すように、渦V2の形状は扁平状となっており、流れPを積極的に取り込んで渦V2の流速を増大させる構成とはなっていない。このため、渦V2による流体のエネルギー損失には限界があり、この点において改善の余地があった。
 本発明は、上記課題に鑑みてなされたものであり、渦による流体のエネルギー損失を増大させることによって、流体の漏れ抑制効果を向上させることを目的とする。
 上記目的を達成するため、本発明は、回転軸周りに回転する回転体の外周面と、前記回転体の外側に設けられる静止体の内周面との間の隙間を通って、流体が軸方向に沿って高圧側から低圧側に漏れることを抑制するラビリンスシールであって、前記回転体の外周面に高圧側よりも低圧側が小径となる段差部が形成されるとともに、前記静止体の内周面から径方向内側に向かって延びるフィンが、前記段差部の少なくとも低圧側に設けられており、前記回転体の外周面のうち、前記段差部と当該段差部よりも低圧側に設けられた前記フィンとの間の領域の少なくとも一部に、周方向に沿って環状溝が形成されていることを特徴とする。
 本発明によれば、後で詳細に説明するように、高圧側から低圧側へと向かう流体の流れを環状溝内に引き込むことができ、環状溝内における渦の流速を速くすることができる。その結果、環状溝内の渦による流体のエネルギー損失を増大させることができ、流体の漏れ抑制効果を向上させることが可能となる。
第1実施形態にかかるラビリンスシールを示す模式断面図である。 G/Wによる漏れ量の変化を示すグラフである。 第2実施形態にかかるラビリンスシールを示す模式断面図である。 第3実施形態にかかるラビリンスシールを示す模式断面図である。 第4実施形態にかかるラビリンスシールを示す模式断面図である。 複数の段差部を有するラビリンスシールを示す模式断面図である。 従来のラビリンスシールを示す模式断面図である。
[第1実施形態]
 本発明にかかるラビリンスシールの第1実施形態について説明する。図1は、第1実施形態にかかるラビリンスシールを示す模式断面図であり、より詳細には回転体の回転軸を含む断面を示したものである。第1実施形態のラビリンスシール10が設けられる回転機械1は、回転体11および静止体12が不図示のケーシング内に配置されて構成されており、例えばターボ圧縮機として機能する。
 回転体11は、不図示の軸受を介してケーシングに取り付けられており、回転軸周りに回転自在に構成されている。一方、静止体12は、回転体11の径方向外側に間隔を空けて配置された状態でケーシングに固定されている。ラビリンスシール10は、主に、回転体11の外周面に形成された段差部11aからなる階段構造と、静止体12の内周面に設けられたフィン13、14とから構成されるものである。ラビリンスシール10は、回転体11の外周面と静止体12の内周面との間の隙間を通って、流体が軸方向に沿って高圧側(図1において左側)から低圧側(図1において右側)に漏れることを抑制する。
 回転体11の外周面には、高圧側のほうが低圧側よりも大径となるように、径方向に沿って段差部11aが形成されている。これにより、回転体11のうち、段差部11aよりも高圧側が大径部11b、段差部11aよりも低圧側が小径部11cとなっている。
 静止体12には、静止体12の内周面から径方向内側に向かって回転体11の外周面近傍まで延びるリング状のフィン13、14が設けられている。フィン13は、段差部11aよりも軸方向において高圧側、すなわち、大径部11bに対向する領域に配置されている。一方、フィン14は、段差部11aよりも軸方向において低圧側、すなわち、小径部11cに対向する領域に配置されている。
 回転体11の小径部11cの外周面には、周方向に沿って環状溝15が形成されている。環状溝15は、径方向に略平行な高圧側の側面15a、径方向に略平行な低圧側の側面15b、および軸方向に略平行な底面15cを有して構成されており、回転体11の回転軸を含む断面(図1に示す断面)において、環状溝15の輪郭は矩形状となっている。高圧側の側面15aは、段差部11aと面一となっており、軸方向において段差部11aと同位置にある。一方、低圧側の側面15bは、高圧側の側面15aから低圧側へ環状溝15の開口幅Wだけ離れた箇所に位置する。
 ここで、フィン14は、大径部11bの外周面よりも径方向内側まで延びている。このため、フィン13の先端部と回転体11の外周面との間の隙間を通過した流体は、軸方向に沿って直線状に流れるのではなく、図1に示すように、フィン14の手前で径方向内側へ屈曲する主流Pを形成する。詳細には、主流Pは、高圧側のフィン13と大径部11bとの間を通過したあと、高圧側から低圧側へと概ね軸方向に沿って流れ、低圧側のフィン14の手前で径方向内側へ向かい、その後、フィン14と小径部11cとの間の隙間を通過しつつ、再び概ね軸方向に沿う流れとなる。
 主流Pが形成されるのに伴い、高圧側のフィン13と低圧側のフィン14との間には、図中反時計回りに比較的大きな渦V1が形成され、段差部11aと低圧側のフィン14との間(環状溝15を含む領域)には、図中時計回りに比較的小さな渦V2が形成される。これら渦V1、V2において流体間摩擦が発生し、エネルギー損失が生じることによって、流体の漏れを抑制することができる。
(効果)
 第1実施形態にかかるラビリンスシール10では、回転体11の外周面のうち、段差部11aと段差部11aよりも低圧側に設けられたフィン14との間の領域の少なくとも一部に、周方向に沿って環状の環状溝15が形成されている。このため、高圧側から低圧側へと向かう主流Pが低圧側のフィン14に当たると、その際に径方向内側に環状溝15へと向かう分岐流Paが生じ、環状溝15に形成される渦V2の流速を速くすることができる。また、環状溝15が設けられていることで、渦V2の形状が概ね円形となり、従来の扁平状の渦V2(図7参照)と比べて、渦V2を大きくすることができる。このように、渦V2の流速が速くなるとともに、渦V2が大きくなることによって、渦V2における流体間摩擦が増大する。その結果、渦V2による流体のエネルギー損失を増大させることができ、流体の漏れ抑制効果を向上させることが可能となる。
 なお、上述の効果を得るためには、環状溝15が、軸方向において段差部11aと低圧側のフィン14との間の領域の少なくとも一部に形成されていればよいが、第1実施形態のように、環状溝15が軸方向において段差部11aの位置から低圧側へと形成されている、換言すると、環状溝15が高圧側に段差部11aの位置まで延びているとより好ましい。このように、環状溝15が高圧側に限界まで広く形成されていることで、環状溝15の容積を広くすることができる。その結果、渦V2をより大きくすることができるので、渦V2における流体のエネルギー損失をより増大させることができる。
 さらに、本発明者は、上述のように環状溝15が段差部11aの位置から低圧側へと形成されている場合に、環状溝15が低圧側にどこまで延びているのが好ましいか鋭意検討した。その結果、環状溝15の開口幅をW、段差部11aと低圧側のフィン14の低圧側の面14aとの間の軸方向における距離をGとした場合に、図2に示すように、G/Wによって漏れ流れの量が変化するとの知見を得た。なお、図2においては、縦軸の漏れ量の単位を無次元化している。
 環状溝15の開口幅Wが距離Gよりも小さすぎると、すなわち、環状溝15の低圧側の側面15bがフィン14から遠ざかりすぎると、分岐流Paが環状溝15に入りにくくなり、渦V2の流速を速めにくくなるので、漏れ抑制効果が小さくなると考えられる。一方、環状溝15の開口幅Wが距離Gよりも大きすぎると、すなわち、環状溝15がフィン14を超えて低圧側まで延びすぎていると、フィン14の先端部と小径部11cとの間の隙間が広くなり、漏れが促進されやすくなると考えられる。
 そこで、図2から明らかなように、0.78<G/W<1.22とすることで、環状溝の設けられていない従来技術と比較して、顕著に漏れ量を減少させることができた。さらに好ましくは、G/Wが約1.0、すなわち、フィン14の低圧側の面14aと環状溝15の低圧側の側面15bとを軸方向において略同位置とすることで、漏れ抑制効果を最大にすることができた。
[第2実施形態]
 本発明にかかるラビリンスシールの第2実施形態について説明する。図3は、第2実施形態にかかるラビリンスシールを示す模式断面図である。第2実施形態のラビリンスシール20は、フィン23、24が径方向に対して傾斜角θをもって傾斜している点が第1実施形態と異なるが、他の点は基本的に第1実施形態と同様である。したがって、第1実施形態と共通する構成(図1と同じ符号を付してある)およびそれによって奏される効果については、適宜説明を省略する。
 第2実施形態では、高圧側のフィン23および低圧側のフィン24ともに、先端部(径方向内側の端部)が基端部(径方向外側の端部)よりも高圧側に位置するように、径方向から高圧側に向かって傾斜角θだけ傾斜している。なお、高圧側のフィン23と低圧側のフィン24とで、傾斜角を同じにすることは必須ではなく、両者の傾斜角が異なっていてもよい。また、高圧側のフィン23は傾斜させずに、低圧側のフィン24のみを傾斜させるようにしてもよい。
(効果)
 第2実施形態のラビリンスシール20のように、段差部11aよりも低圧側に設けられたフィン24の先端部が、フィン24の基端部よりも高圧側に位置する場合、主流Pがフィン24に当たった際に、径方向外側へと向かう分岐流Pbが発生しやすくなり、渦V1の流速を速くすることができる。その結果、渦V1における流体のエネルギー損失を増大させることができ、流体の漏れ抑制効果をさらに向上させることができる。
 なお、上述のような効果を得るための構成は、低圧側のフィン24を傾斜させることに限定されない。例えば、フィン24の先端部が基端部よりも高圧側に位置するように、フィン24を湾曲形状としてもよいし、L字形状等の屈曲形状としてもよい。
 ところで、図2に示した結果は第2実施形態でも同様に当てはまるが、第2実施形態のようにフィン24が傾斜している場合には、図3に示すよう、距離Gは、フィン24の低圧側の面24aの先端部と段差部11aとの間の軸方向における距離と定義する。
[第3実施形態]
 本発明にかかるラビリンスシールの第3実施形態について説明する。図4は、第3実施形態にかかるラビリンスシールを示す模式断面図である。第3実施形態のラビリンスシール30は、環状溝35の断面形状が円弧状となっている点が第1実施形態と異なるが、他の点は基本的に第1実施形態と同様である。したがって、第1実施形態と共通する構成(図1と同じ符号を付してある)およびそれによって奏される効果については、適宜説明を省略する。
 第3実施形態では、回転体11の回転軸を含む断面(図4に示す断面)において、環状溝35の輪郭が円弧状となっている。より詳細には、環状溝35の断面形状が、環状溝35の開口幅Wを直径とする半円状とされている。このため、環状溝35の開口周縁における接線は径方向と一致しており、環状溝35内に円滑に流体を導くことができる。
(効果)
 第3実施形態のラビリンスシール30のように、回転軸を含む断面において、環状溝35の輪郭が円弧状となっている場合、渦V2の流れが環状溝35に沿うことで、渦V2と円弧状の底面との摩擦が増大し、渦V2における流体のエネルギー損失を増大させることができる。したがって、流体の漏れ抑制効果をさらに向上させることができる。
[第4実施形態]
 本発明にかかるラビリンスシールの第4実施形態について説明する。図5は、第4実施形態にかかるラビリンスシールを示す模式断面図である。第4実施形態のラビリンスシール40は、環状溝45の低圧側の側面45bが傾斜面となっている点が第1実施形態と異なるが、他の点は基本的に第1実施形態と同様である。したがって、第1実施形態と共通する構成(図1と同じ符号を付してある)およびそれによって奏される効果については、適宜説明を省略する。
 第4実施形態では、回転体11の回転軸を含む断面(図5に示す断面)において、環状溝45の輪郭が台形状となっている。より詳細には、環状溝45は、高圧側の側面45a、低圧側の側面45bおよび底面45cを有して構成されているが、低圧側の側面45bが、底面45c側に向かうにつれて高圧側に位置する傾斜面となっている。つまり、側面45bは、径方向内側(底面側)の端部が、径方向外側(開口側)の端部よりも高圧側に位置する形状を有している。なお、高圧側の側面45aは、第1実施形態と同様に、段差部11aと面一になっている。
(効果)
 第4実施形態のラビリンスシール40のように、回転軸を含む断面において、環状溝45の低圧側の側面45bが、径方向内側の端部が径方向外側の端部よりも高圧側に位置する形状となっていれば、主流Pが低圧側のフィン14に当たった際に生じる径方向内側向きの分岐流Paをより多く環状溝45内に流入させることができる。このため、渦V2の流速を速めることができ、渦V2における流体のエネルギー損失を増大させることによって、流体の漏れ抑制効果をさらに向上させることができる。
 なお、上述のような効果を得るための構成は、環状溝45の低圧側の側面45bを傾斜させることに限定されない。例えば、側面45bが、底面45c側に向かうにつれて高圧側に位置する湾曲面であってもよい。
[その他の実施形態]
 なお、本発明は上記各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上記各実施形態の要素を適宜組み合わせまたは種々の変更を加えることが可能である。
 例えば、上記各実施形態において、段差部11aよりも高圧側に設けたフィン13、23を省略することも可能である。
 また、上記各実施形態では、環状溝15、35、45の高圧側の端部が、軸方向において段差部11aと同位置であるとしたが、段差部11aよりも低圧側に位置させてもよい。
 また、上記各実施形態では、フィン13、14、23、24を静止体12とは別の部材として説明したが、フィン13、14、23、24が静止体12と一体的に構成されていてもよい。
 また、上記各実施形態においては、本発明のラビリンスシールを構成する回転体11の階段構造が、段差部11aが1つだけ設けられた2段構造の場合について説明したが、図6に示すように、回転体51が3段以上の階段構造を有する場合に本発明を適用することも可能である。
 図6に示すラビリンスシール50は、主に、回転体51の外周面に形成された4つの段差部53A~53Dと、静止体52の内周面に形成された4つのフィン54A~54Dとを有して構成される。各フィン54A~54Dは、各段差部53A~53Dの低圧側(小径側)に設けられている。回転体51の外周面には、各段差部53A~53Dと各フィン54A~54Dとの間の少なくとも一部の領域に、環状溝55A~55Dがそれぞれ形成されている。なお、フィン54A~54Dや環状溝55A~55Dは、例えば上記各実施形態に示した形態をとり得る。
 このように、高圧側から低圧側に向かって順次径が小さくなるように回転体51の外周面に設けられた複数の段差部53A~53Dと、各段差部53A~53Dの少なくとも低圧側に設けられた複数のフィン54A~54Dと、各段差部53A~53Dと各フィン54A~54Dとの間に設けられた複数の環状溝55A~55Dとを備えるラビリンスシール50によれば、流体の漏れ低減効果を一層向上させることができる。
 本出願は、2015年7月3日出願の日本国特許出願(特願2015-134119)に基づくものであり、その内容はここに参照として取り込まれる。
  10、20、30、40、50:ラビリンスシール
  11、51:回転体
  11a、53A~53D:段差部
  12、52:静止体
  13、14、23、24、54A~54D:フィン
  15、35、45、55A~55D:環状溝

Claims (9)

  1.  回転軸周りに回転する回転体の外周面と、前記回転体の外側に設けられる静止体の内周面との間の隙間を通って、流体が軸方向に沿って高圧側から低圧側に漏れることを抑制するラビリンスシールであって、
     前記回転体の外周面に高圧側よりも低圧側が小径となる段差部が形成されるとともに、前記静止体の内周面から径方向内側に向かって延びるフィンが、前記段差部の少なくとも低圧側に設けられており、
     前記回転体の外周面のうち、前記段差部と当該段差部よりも低圧側に設けられた前記フィンとの間の領域の少なくとも一部に、周方向に沿って環状溝が形成されていることを特徴とするラビリンスシール。
  2.  前記段差部よりも低圧側に設けられた前記フィンの先端部が、当該フィンの基端部よりも高圧側に位置する請求項1に記載のラビリンスシール。
  3.  前記回転軸を含む断面において、前記環状溝の輪郭が円弧状となっている請求項1に記載のラビリンスシール。
  4.  前記回転軸を含む断面において、前記環状溝の輪郭が円弧状となっている請求項2に記載のラビリンスシール。
  5.  前記回転軸を含む断面において、前記環状溝の低圧側の側面は、径方向内側の端部が径方向外側の端部よりも高圧側に位置する形状となっている請求項1に記載のラビリンスシール。
  6.  前記回転軸を含む断面において、前記環状溝の低圧側の側面は、径方向内側の端部が径方向外側の端部よりも高圧側に位置する形状となっている請求項2に記載のラビリンスシール。
  7.  前記環状溝は、軸方向において前記段差部の位置から低圧側へと形成されている請求項1~6のいずれか1項に記載のラビリンスシール。
  8.  前記段差部と当該段差部よりも低圧側に設けられた前記フィンの低圧側の面の先端部との間の軸方向における距離をG、前記環状溝の軸方向における開口幅をWとするとき、
     0.78<G/W<1.22
     を満たす請求項7に記載のラビリンスシール。
  9.  前記回転体の外周面に、高圧側から低圧側に向かって順次径が小さくなるように前記段差部が複数形成されており、前記各段差部の少なくとも低圧側に前記フィンが設けられている請求項1に記載のラビリンスシール。
PCT/JP2016/066773 2015-07-03 2016-06-06 ラビリンスシール WO2017006678A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112016003036.3T DE112016003036B4 (de) 2015-07-03 2016-06-06 Labyrinthdichtung
US15/740,831 US10570768B2 (en) 2015-07-03 2016-06-06 Labyrinth seal
KR1020177037196A KR102020138B1 (ko) 2015-07-03 2016-06-06 라비린스 시일

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015134119A JP6510915B2 (ja) 2015-07-03 2015-07-03 ラビリンスシール
JP2015-134119 2015-07-03

Publications (1)

Publication Number Publication Date
WO2017006678A1 true WO2017006678A1 (ja) 2017-01-12

Family

ID=57685529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066773 WO2017006678A1 (ja) 2015-07-03 2016-06-06 ラビリンスシール

Country Status (5)

Country Link
US (1) US10570768B2 (ja)
JP (1) JP6510915B2 (ja)
KR (1) KR102020138B1 (ja)
DE (1) DE112016003036B4 (ja)
WO (1) WO2017006678A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190027730A (ko) * 2017-09-07 2019-03-15 가부시키가이샤 고베 세이코쇼 래비린스 시일 및 래비린스 시일 구조
KR20190046970A (ko) * 2016-10-13 2019-05-07 가부시키가이샤 고베 세이코쇼 래비린스 시일
WO2021199993A1 (ja) * 2020-03-31 2021-10-07 川崎重工業株式会社 ラビリンスシール及びガスタービン

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6637385B2 (ja) * 2016-05-31 2020-01-29 株式会社神戸製鋼所 ラビリンスシール
JP6665043B2 (ja) * 2016-06-22 2020-03-13 株式会社神戸製鋼所 ラビリンスシール
JP6623138B2 (ja) * 2016-10-13 2019-12-18 株式会社神戸製鋼所 ラビリンスシール
CN109737262A (zh) * 2019-01-18 2019-05-10 华北电力大学 阶梯迷宫型节流件
JP2021162084A (ja) * 2020-03-31 2021-10-11 川崎重工業株式会社 ラビリンスシール及びガスタービン
US11692557B2 (en) * 2021-01-04 2023-07-04 Danfoss A/S Step seal for refrigerant compressors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104803U (ja) * 1977-01-31 1978-08-23
JP2002228014A (ja) * 2001-02-05 2002-08-14 Mitsubishi Heavy Ind Ltd ラビリンスシール
JP2015096729A (ja) * 2014-12-15 2015-05-21 三菱日立パワーシステムズ株式会社 タービン

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1708044A (en) * 1923-09-12 1929-04-09 Westinghouse Electric & Mfg Co Labyrinth-gland packing
US1756958A (en) * 1928-10-03 1930-05-06 Westinghouse Electric & Mfg Co Elastic-fluid turbine
US2123818A (en) * 1935-07-11 1938-07-12 Wegmann Ernst Labyrinth packing
US3231285A (en) * 1962-12-17 1966-01-25 Allis Chalmers Mfg Co Rotary shaft seal
US3940153A (en) * 1974-12-09 1976-02-24 General Motors Corporation Labyrinth seal
JPS5182855A (ja) 1975-01-16 1976-07-20 Hitachi Ltd Jikufusochi
US4335886A (en) * 1980-07-22 1982-06-22 Cornell Pump Company Labyrinth seal with current-forming sealing passages
US5244216A (en) * 1988-01-04 1993-09-14 The Texas A & M University System Labyrinth seal
US5029876A (en) 1988-12-14 1991-07-09 General Electric Company Labyrinth seal system
US5228700A (en) * 1989-09-11 1993-07-20 Skf Gmbh Contactless seal
US5181728A (en) * 1991-09-23 1993-01-26 General Electric Company Trenched brush seal
US5823740A (en) * 1997-02-25 1998-10-20 Voith Hydro, Inc. Dissolved gas augmentation with mixing chambers
EP0924386B1 (de) * 1997-12-23 2003-02-05 ABB Turbo Systems AG Verfahren und Vorrichtung zum berührungsfreien Abdichten eines zwischen einem Rotor und einem Stator ausgebildeten Trennspalts
US7445213B1 (en) * 2006-06-14 2008-11-04 Florida Turbine Technologies, Inc. Stepped labyrinth seal
DE102009042857A1 (de) * 2009-09-24 2011-03-31 Rolls-Royce Deutschland Ltd & Co Kg Gasturbine mit Deckband-Labyrinthdichtung
JP5484990B2 (ja) 2010-03-30 2014-05-07 三菱重工業株式会社 タービン
US20110250073A1 (en) * 2010-04-08 2011-10-13 Sudhakar Neeli Rotor and assembly for reducing leakage flow
US20120027582A1 (en) * 2010-08-02 2012-02-02 General Electric Company Floating packing ring assembly
JP5600542B2 (ja) 2010-09-29 2014-10-01 株式会社神戸製鋼所 回転機械の軸封装置
DE202011105609U1 (de) * 2011-09-12 2011-10-13 Alstom Technology Ltd. Labyrinthdichtung
JP5936515B2 (ja) 2012-10-18 2016-06-22 三菱日立パワーシステムズ株式会社 回転機械
FR3037117B1 (fr) * 2015-06-05 2018-01-12 Danfoss A/S Machine a fluide comportant un joint a labyrinthe
JP6209200B2 (ja) * 2015-12-09 2017-10-04 三菱日立パワーシステムズ株式会社 ステップシール,シール構造,ターボ機械及びステップシールの製造方法
JP6637385B2 (ja) * 2016-05-31 2020-01-29 株式会社神戸製鋼所 ラビリンスシール
JP6665043B2 (ja) * 2016-06-22 2020-03-13 株式会社神戸製鋼所 ラビリンスシール
JP6623138B2 (ja) * 2016-10-13 2019-12-18 株式会社神戸製鋼所 ラビリンスシール
US20190072185A1 (en) * 2017-09-07 2019-03-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Labyrinth seal and labyrinth seal structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104803U (ja) * 1977-01-31 1978-08-23
JP2002228014A (ja) * 2001-02-05 2002-08-14 Mitsubishi Heavy Ind Ltd ラビリンスシール
JP2015096729A (ja) * 2014-12-15 2015-05-21 三菱日立パワーシステムズ株式会社 タービン

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190046970A (ko) * 2016-10-13 2019-05-07 가부시키가이샤 고베 세이코쇼 래비린스 시일
KR102188474B1 (ko) 2016-10-13 2020-12-08 가부시키가이샤 고베 세이코쇼 래비린스 시일
KR20190027730A (ko) * 2017-09-07 2019-03-15 가부시키가이샤 고베 세이코쇼 래비린스 시일 및 래비린스 시일 구조
KR102244406B1 (ko) * 2017-09-07 2021-04-26 가부시키가이샤 고베 세이코쇼 래비린스 시일 및 래비린스 시일 구조
WO2021199993A1 (ja) * 2020-03-31 2021-10-07 川崎重工業株式会社 ラビリンスシール及びガスタービン
JP7445495B2 (ja) 2020-03-31 2024-03-07 川崎重工業株式会社 ラビリンスシール及びガスタービン

Also Published As

Publication number Publication date
KR20180011811A (ko) 2018-02-02
JP6510915B2 (ja) 2019-05-08
US20180187567A1 (en) 2018-07-05
DE112016003036B4 (de) 2023-01-26
KR102020138B1 (ko) 2019-09-09
US10570768B2 (en) 2020-02-25
JP2017015208A (ja) 2017-01-19
DE112016003036T5 (de) 2018-03-22

Similar Documents

Publication Publication Date Title
WO2017006678A1 (ja) ラビリンスシール
JP6623138B2 (ja) ラビリンスシール
US11060615B2 (en) Labyrinth seal
JP6975672B2 (ja) ラビリンスシール構造
KR102244406B1 (ko) 래비린스 시일 및 래비린스 시일 구조
JP5972374B2 (ja) 軸流流体機械
WO2017221771A1 (ja) ラビリンスシール
WO2018070282A1 (ja) ラビリンスシール
WO2018181855A1 (ja) 蒸気タービンの排気室、及び、蒸気タービン
WO2017013922A1 (ja) 非接触環状シール及びこれを備える回転機械
WO2017098944A1 (ja) シールフィン,シール構造及びターボ機械
JP2019035364A (ja) 蒸気タービン
JP2015001180A (ja) 軸流タービン
JP6824862B2 (ja) ラビリンスシール、および、ラビリンスシール構造
WO2016199422A1 (ja) 排気ディフューザ
JP7013316B2 (ja) 遠心圧縮機
JP6654453B2 (ja) ラビリンスシール
JP5478379B2 (ja) 多段ポンプ
WO2013115361A1 (ja) シール構造及びこれを備えた回転機械
WO2017221971A1 (ja) タービン、ガスタービン
WO2017159730A1 (ja) インペラ、回転機械、およびインペラの製造方法
JP7225076B2 (ja) ラビリンスシール
JP2008223625A (ja) 送風装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821149

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177037196

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016003036

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821149

Country of ref document: EP

Kind code of ref document: A1