WO2016208651A1 - Three-dimensional molded component production method and three-dimensional molded component - Google Patents

Three-dimensional molded component production method and three-dimensional molded component Download PDF

Info

Publication number
WO2016208651A1
WO2016208651A1 PCT/JP2016/068595 JP2016068595W WO2016208651A1 WO 2016208651 A1 WO2016208651 A1 WO 2016208651A1 JP 2016068595 W JP2016068595 W JP 2016068595W WO 2016208651 A1 WO2016208651 A1 WO 2016208651A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
dimensional
dimensional molded
exposure mask
protective film
Prior art date
Application number
PCT/JP2016/068595
Other languages
French (fr)
Japanese (ja)
Inventor
道脇 茂
高木 剛
秀吉 瀧井
Original Assignee
株式会社メイコー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2015/068230 external-priority patent/WO2016208006A1/en
Application filed by 株式会社メイコー filed Critical 株式会社メイコー
Priority to JP2017510698A priority Critical patent/JP6211738B2/en
Publication of WO2016208651A1 publication Critical patent/WO2016208651A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits

Definitions

  • the present invention is manufactured by a method of manufacturing a three-dimensional molded component in which at least a part of the surface on which the wiring pattern is formed is covered with a protective film with respect to a three-dimensional molding whose wiring pattern is formed on the surface It relates to a three-dimensional molded part.
  • a MID (Molded Interconnect Device) substrate which is a component in which an electric circuit is directly and three-dimensionally formed on the surface of a structure having a three-dimensional structure.
  • MID substrates As techniques related to MID substrates, methods such as a two-shot method, MIPTEC (Microscopic Integrated Processing Technology), and LDS (Laser Direct Structuring) are known. In any of the methods, after forming a three-dimensional structure on the mold resin, a wiring circuit is formed on the surface.
  • Patent Document 1 discloses a technique related to an MID substrate and its manufacture.
  • the two-shot method secondary molding with a new resin is performed on a portion on the primarily molded mold resin where wiring formation is not performed, and catalyst coating and plating are performed using the resin related to the secondary molding as a resist.
  • a wiring circuit is formed on the mold resin.
  • the L / S line width and spacing
  • the conductor width and the conductor gap is the minimum from the limit of the die processing accuracy for the second molding. The value was about 150/150 ⁇ m, and it was difficult to form a finer wiring pattern.
  • MIPTEC the entire surface of a molded mold resin is metallized, and laser light is used to remove the metal (metallized layer) on the outer edge portion of the wiring circuit. Thereafter, current is supplied to a region to be a wiring circuit to perform electrolytic plating, and then the entire surface of the molded body is subjected to flash etching to remove metal other than the wiring circuit, thereby forming a wiring circuit on the mold resin.
  • a laser beam a special laser irradiation apparatus corresponding to the three-dimensional shape of the molded mold resin is required, and the increase in manufacturing cost due to the labor of laser processing and equipment investment becomes a problem.
  • the metal necessary for the wiring circuit is deposited by electrolytic plating, it is necessary to energize only the region to be the wiring circuit, so the region to be the wiring circuit is electrically connected to the outer peripheral portion of the molded body. Or need to be electrically connected to the outer peripheral portion through a feeder line. That is, it is difficult to electrically separate the area to be the wiring circuit from the outer peripheral portion of the molded body (that is, formation of an independent wiring pattern); The problem of cost increase associated with the removal arises.
  • LDS In LDS, primary molding is performed using a special resin material containing conductive particles, and laser light is irradiated to a region to be a wiring circuit to expose the conductive particles, and plating the exposed portion of the conductive particles To form a wiring circuit on the mold resin.
  • the minimum value of L / S is about 100/150 ⁇ m due to the problem of accuracy in exposing the conductive particles in the molded mold resin, and it is difficult to form a finer wiring pattern.
  • MIPTEC a special laser irradiation apparatus is required, and the increase in manufacturing cost due to the labor of laser processing and equipment investment becomes a problem.
  • the MID substrate finally manufactured becomes a single-sided substrate.
  • the degree of freedom of the wiring circuit becomes smaller than that of the double-sided board, and there arises a problem that miniaturization of the board itself becomes difficult.
  • Patent Document 2 discloses that a metal foil is attached to a polyimide film by thermocompression bonding and then three-dimensional molding is disclosed
  • Patent Document 3 discloses that a conductive paste is applied on a polysulfone resin and then three-dimensional molding is performed. It is disclosed.
  • a method of exposing the wiring pattern of the portion to be soldered a method of applying an insulating resin so as to expose the portion to be soldered from the beginning, or UV curing of the entire coated surface After applying a resin, there is a method of forming an opening in a necessary portion using a photolithography technique.
  • JP 2012-94605 A Japanese Patent Application Publication No. 06-188537 JP 2000-174399 A
  • the present invention has been made in view of such problems, and the object of the present invention is to make a desired fine for a three-dimensional molded product having a wiring pattern formed on the surface without using an expensive apparatus. It is an object of the present invention to provide a method of manufacturing a three-dimensional molded part capable of manufacturing a three-dimensional molded part at low cost while easily forming a protective film having the above opening pattern with high accuracy. Another object of the present invention is to provide a low-cost three-dimensional molded component in which a protective film having a fine opening pattern is formed with high accuracy.
  • a method of manufacturing a three-dimensional molded part according to the present invention includes a three-dimensional molding preparation step of preparing a three-dimensional molding having a wiring pattern formed on a surface of a resin substrate; A protective film forming step of spray-coating a photosensitive material to form a protective film on at least the surface of the three-dimensional molding; and an exposure mask film preparing step of preparing a three-dimensionally formed exposure mask film corresponding to the three-dimensional molding.
  • An exposure step that, the three-dimensional molded article of subjected to a developing process the vacuum degassing bag was taken out, is to have a, an opening formation step of forming a desired opening in the protective film.
  • the three-dimensionally formed component of the present invention is composed of a three-dimensional molding having a wiring pattern formed on the surface of a resin substrate and a photosensitive resin ink to protect the surface of the three-dimensional molding.
  • the protective film and the protective film are provided with an opening corresponding to the area where the wiring pattern is to be exposed, and coat the three-dimensional object along the three-dimensional shape of the three-dimensional object.
  • a three-dimensional molding can be easily and accurately formed on a protective film having a desired fine opening pattern with respect to a three-dimensional molding having a wiring pattern formed on the surface, without using an expensive apparatus. Parts can be manufactured at low cost. Further, according to the present invention, it is possible to provide a low-cost three-dimensional molded component in which a protective film having a fine opening pattern is formed with high accuracy.
  • FIG. 5 is an enlarged conceptual view of a broken line area V in FIG. 4; It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention. It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention. It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention. It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention. It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention. It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention.
  • FIG. 10 is an enlarged conceptual view of a broken line area X in FIG. 9; It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention. It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. It is the schematic which shows the manufacturing process which concerns on the three-dimensional shaping
  • FIG. 18 is an enlarged conceptual view of a broken line area XVIII of FIG. 17; It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention.
  • FIG. 20 is an enlarged conceptual view of a dashed line area XX in FIG. It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention. It is a perspective view of a substrate which constitutes a three-dimensional wiring board concerning an example of the present invention.
  • FIGS. 1, 2, 4, 9, 12, 17, 19, and 23 to 29 are cross-sectional views in the manufacturing process of the three-dimensional wiring substrate.
  • FIGS. 24 to 26 are cross-sectional views of an exposure mask film used for forming an opening in a protective film of a three-dimensional wiring substrate or a film used for the exposure mask film.
  • 5 is an enlarged conceptual view of the broken line area V in FIG. 4
  • FIG. 10 is an enlarged conceptual view of the broken line area X in FIG. 9
  • FIG. 18 is an enlarged conceptual view of the broken line area XVIII in FIG.
  • FIG. 20 is an enlarged conceptual view of a broken line area XX in FIG.
  • FIG. 13 to FIG. 16 are schematic views showing manufacturing steps according to three-dimensional molding according to an embodiment of the present invention.
  • or FIG. 8, FIG. 11, FIG. 21 is the schematic in metal film formation about the three-dimensional wiring board based on the Example of this invention.
  • FIG. 22 is a perspective view of a substrate constituting a three-dimensional wiring substrate according to an embodiment of the present invention
  • FIG. 30 is a cross-sectional view of the three-dimensional wiring substrate according to the embodiment of the present invention.
  • the thermoplastic resin film 1 which is a resin base material is prepared (resin base material preparation process).
  • the thermoplastic resin film 1 for example, a known resin film such as polyimide or polyethylene terephthalate can be used.
  • the thickness of the thermoplastic resin film 1 is not limited, and can be appropriately changed according to the application and the required characteristics of the three-dimensional wiring substrate of the present example corresponding to the three-dimensional wiring component of the present invention.
  • the thickness of the thermoplastic resin film 1 is adjusted to about 125 ⁇ m (about 75 ⁇ m to 150 ⁇ m), but when the three-dimensional wiring board is used together with a holding member such as another mold resin, 50 ⁇ m You may adjust to the following.
  • the resin film to be prepared is not limited to the thermoplastic type, and if it is a resin film having a relatively large elongation at break, a thermosetting resin film or a thermosetting resin and a thermoplastic resin were laminated ( That is, a composite resin film having a structure in which a thermoplastic resin film and a thermosetting resin film are laminated may be used.
  • the relatively large elongation at break is a value of at least 50% or more, preferably 150% or more.
  • the breaking elongation is required to have the necessary characteristics depending on the three-dimensional shape to be molded, and in the case of a complicated large step shape, a resin film material having a larger breaking elongation strength is required so that the material by three-dimensional molding can withstand. .
  • the through hole 2 is formed using the opening technique of. In the present embodiment, the opening diameter of the through hole 2 is about 0.3 mm. Although only one through hole 2 is shown in FIG. 2, the actual three-dimensional wiring board has a plurality of through holes 2. In addition, the number of through holes 2 can be appropriately changed according to the circuit configuration of the three-dimensional wiring board.
  • positioning holes for example, an opening diameter of 3 mm
  • positioning holes for use as positioning at the time of three-dimensional molding to be described later are removed without forming the outer edge portion of the thermoplastic resin film 1 (that is, finally forming a three-dimensional wiring board Part) may be formed.
  • the first metal film 3 is formed (first metal film forming step).
  • metal is metallized on the surface of the thermoplastic resin film 1 by electroless plating using a known molecular bonding technology.
  • thermoplastic resin film 1 is subjected to Ar plasma treatment to remove the fragile layer on the surface of the thermoplastic resin film 1, and a functional group having compatibility with the molecular bonding agent described later is removed. It is formed on the surface of the thermoplastic resin film 1.
  • the thermoplastic resin film 1 after Ar plasma treatment is dipped in the solution of the molecular bonding agent 4 (FIG. 3).
  • the molecular bonding agent 4 is provided with a functional group (first functional group) that reacts with the thermoplastic resin film 1, the functional group of the thermoplastic resin film 1 and the functional group of the molecular bonding agent 4 bond with each other. As shown in FIG. 4 and FIG.
  • FIG. 4 illustrates the molecular bonding agent 4 in layers for easy understanding, in actuality, it exists in a nano level state (the thickness of the molecular bonding agent 4 is several nm) as shown in FIG. And very thin compared to other materials. Therefore, the molecular bonding agent 4 may be omitted in FIG. Further, straight lines extending in the upper and lower direction of the molecular bonding agent 4 in FIG.
  • thermoplastic resin film 1 subjected to the molecular bonding treatment is impregnated with a catalyst solution (Sn—Pd colloid aqueous solution) (FIG. 6).
  • a catalyst solution Sn—Pd colloid aqueous solution
  • the Sn—Pd colloid is electrically adsorbed on the surface of the thermoplastic resin film 1.
  • the Sn covering Pd is removed, and the Pd ion is changed to metal Pd (FIG. 7). That is, the catalyst treatment is performed to cause the thermoplastic resin film 1 to carry a catalyst (for example, Pd).
  • the accelerator solution sulfuric acid (concentration: 10%) containing oxalic acid (about 0.1%) can be used.
  • the thermoplastic resin film 1 supporting Pd as a catalyst is immersed in the electroless plating bath for 5 minutes, for example.
  • copper is deposited using Pd as a catalyst, and the deposited copper is bonded to the molecular bonding agent 4 (FIG. 8).
  • the molecular bonding agent 4 also has a functional group (second functional group) that reacts with the metal of the first metal film 3, the end portion of the molecular bonding agent 4 bonded to the thermoplastic resin film 1 The metal is chemically bonded to the end (the second functional group) located on the opposite side to that using a catalyst.
  • thermoplastic resin film 1 is subjected to heat treatment at 150 ° C. for 10 minutes to terminate the chemical bond between the molecular bonding agent 4 and the metal, and as shown in FIG. 9, the surface of the thermoplastic resin film 1
  • the formation of the first metal film 3 (that is, the molecular bonding between the thermoplastic resin film 1 and the first metal film 3) is completed so as to cover the above.
  • the above-mentioned molecular bonding agent 4 is a chemical for chemically bonding a resin and a metal or the like, and a functional group bonding to a resin and a functional group bonding to a metal are present in one molecular structure.
  • the molecular bonding technology is a technology for chemically bonding a resin, a metal or the like by using a molecular bonding agent 4 having such a structure.
  • these molecular bonding agents, and molecular bonding techniques are described in more detail in Japanese Patent No. 04936344, Japanese Patent No. 05729852, and Japanese Patent No. 05083926.
  • the first metal film 3 is used as the metal of the first metal film 3, and as shown in FIG. 10, electroless plating is generated in the form of particles, and the first metal film 3 is formed in the porous state by the copper particles 3a. Be done.
  • the porous state does not have a film thickness in which the first metal film 3 is completely formed on the film, but at least a part of particles is not in contact with each other, but at least a part of them contact each other. (It does not necessarily mean that electrical conduction is necessary, and it may be conducted with a second metal film described later even if the distance between particles is separated by three-dimensional molding).
  • copper is deposited in the form of particles 0.02 ⁇ m or more and 0.20 ⁇ m or less to form the first metal film 3 having a film thickness capable of transmitting light.
  • the reason for adjusting the state (that is, the film thickness) of the first metal film 3 in this way is that when the first metal film 3 is formed in a complete film shape that does not transmit light, it will be This is because, even if a crack is generated in the first metal film 3, repair of the crack becomes difficult also by the second metal film described later. More specifically, when the first metal film 3 is thinner than 0.02 ⁇ m, the contact between the resin and copper decreases and the adhesion decreases, and the distance between the particles after being stretched becomes too large to be described later.
  • the process of forming the first metal film 3 in a porous form will be described in more detail below.
  • newly deposited copper is combined with the molecular bonding agent 4 or with copper already deposited and reacting with the molecular bonding agent 4.
  • Bond metal since the activity of Pd, which is a catalyst, is higher due to the autocatalytic action of copper, the formation of copper proceeds in the surface direction (that is, the direction of spreading on the surface of the thermoplastic resin film 1). It also starts to move in the direction (that is, the film thickness direction of the first metal film 3).
  • thermoplastic resin film 1 and the first metal film 3 are chemically bonded via the molecular bonding agent 4, the interface between the thermoplastic resin film 1 and the first metal film 3 is While smoothing, both members can be firmly joined.
  • the molecular bonding agent to be used is not limited to one type,
  • the molecular bonding agent 4 and another molecular bonding agent having a functional group that reacts with the molecular bonding agent 4 and the first metal film 3 are mixed.
  • other process conditions may be appropriately changed.
  • the material of the first metal film 3 is not limited to copper, and, for example, various metals such as silver, gold, or nickel, or an alloy containing at least one of these metals and copper, or each metal A laminate may be used, but it is preferable to use a metal that is relatively soft and high in breaking elongation strength.
  • the film thickness for realizing the light transmitting and conducting state differs depending on the metal used, when other metals are used, the first metal film 3 is formed in a porous state. The film thickness is to be appropriately adjusted so as to realize the above.
  • the method of forming the first metal film 3 is not limited to the method using the above-described molecular bonding technique, and it is possible to form the first metal film 3 in a porous state, for example, sputtering, vapor deposition, Alternatively, film formation techniques such as wet plating other than the method using molecular bonding may be used. And about formation of the 1st metal film 3, you may select the optimal film-forming technique according to the metal material to be used.
  • the first metal film is coated so as to cover the first surface 1 a and the second surface 1 b of the thermoplastic resin film 1 and the side surface 1 c of the thermoplastic resin film 1 exposed by the through holes.
  • the first metal film 3 is formed only on either the first surface 1 a or the second surface 1 b of the thermoplastic resin film 1 depending on the structure and characteristics of the three-dimensional wiring substrate required. You may form. That is, the three-dimensional wiring board of the present invention includes not only one in which a wiring pattern is formed on both sides but also one in which a wiring pattern is formed only on one side.
  • the first metal film 3 is patterned by photolithography to form a desired wiring pattern (pattern formation step). Specifically, a resist film is thermocompression-bonded on the surface of the thermoplastic resin film 1 in a flat state before three-dimensional molding in a state in which the first metal film 3 is formed, and a mask film on which a predetermined pattern is printed Exposure and development are performed using Subsequently, the first metal film 3 is etched using the developed resist film as an etching mask to form a desired wiring pattern. Thereafter, the resist film is peeled and removed.
  • it is preferable to adjust the shape of the wiring pattern (wiring width, wiring length, wiring interval, etc.) in consideration of the elongation and deformation of the first metal film 3 due to three-dimensional molding described later.
  • the first metal film 3 is patterned by photolithography, it is possible to realize a pattern with a higher definition than patterning using the inkjet printing technique or the gravure offset printing technique. That is, the first metal film 3 has a resolution higher than that of a wiring pattern patterned using an inkjet printing technique, a gravure offset printing technique, or the like (that is, excellent in linearity and high definition wiring formation is realized). ) Being.
  • thermoplastic resin film 1 in a state in which the first metal film 3 is formed is subjected to heat treatment and pressure treatment to perform three-dimensional molding (first three-dimensional molding process).
  • first three-dimensional molding process first, the thermoplastic resin film 1 is positioned with respect to the mold 11 for molding using the positioning holes described above. This is for aligning the molding position and the wiring pattern position. That is, as shown in FIG. 13, the thermoplastic resin film 1 is disposed between the upper mold 12 and the lower mold 13 of the mold 11. Subsequently, as shown in FIG. 14, the upper mold 12 is heated by the upper heating device 14, and the lower mold 13 is heated by the lower heating device 15.
  • the heating temperature is adjusted within the range of 270 ° C. to 350 ° C. (eg, 300 ° C.) higher than the glass transition temperature of the material.
  • the heating temperature is appropriately adjusted depending on the material of the thermoplastic resin film 1, the heating temperature is appropriately adjusted.
  • the heating temperature needs to be equal to or higher than the glass transition temperature and equal to or lower than the heat resistance temperature of the thermoplastic resin film 1, but it is preferable to set the temperature as low as possible within the range. This is to reduce the decrease in adhesion of the first metal film 3 formed on the thermoplastic resin film 1 and the thermoplastic resin film 1 due to heating.
  • thermoplastic resin film 1 While performing the heat treatment, the upper mold 12 and the lower mold 13 are brought close, and the pressing process is performed on the thermoplastic resin film 1 from above and below under a desired pressure (for example, 10 MPa) (FIG. 15).
  • the desired pressure is appropriately adjusted in consideration of the fact that the material of the thermoplastic resin film 1 and the desired three-dimensional molding become difficult if the pressure is too weak.
  • the thermoplastic resin film 1 is taken out of the mold 11 (FIG. 16), and the three-dimensional molding of the thermoplastic resin film 1 is completed. In other words, the formation of the first base 16 for a three-dimensional wiring substrate is completed.
  • the first metal film 3 is not shown in FIGS. 13 to 16.
  • the actual shape of the three-dimensional wiring substrate is to be formed with a plurality of asperities, so the mold 11 also has a plurality of asperities, and the upper mold 12 and A structure may be employed in which a plurality of concavities and convexities with the lower mold 13 are fitted to each other.
  • a crack 17 is generated in a bent portion 1 d which is bent by three-dimensional molding. It is easier.
  • the crack 17 is a gap formed by an increase in the distance between particles of copper particles 3 a constituting the first metal film 3, and it is a complete metal film that does not transmit light.
  • the structure is different in comparison with the crack caused by the metal film being stretched in. Cracks may not occur depending on the film formation state of the first metal film 3 and the three-dimensional shape by three-dimensional molding. Further, as shown in FIG.
  • the first base 16 for a three-dimensional wiring substrate according to the present embodiment makes it possible to easily repair the crack 17 as compared with the case where the first metal film 3 is formed in a complete film shape.
  • the above-described three-dimensional molding may be performed in a state in which the thermoplastic resin film 1 is sandwiched by two protective films.
  • the shape of the corner portion 1 e in the bent portion 1 d can be slightly smoothed, and the generation of the crack 17 can be suppressed.
  • the protective film is preferably formed of the same material as the thermoplastic resin film 1.
  • the shape of the corner portion 1e in the bending portion 1d is curved or the angle is made smaller than 90 degrees (for example, 75 degrees to 85 degrees) Alternatively, the mold 11 may be designed.
  • thermoplastic resin film 1 is subjected to press processing from above and below using the upper mold 12 and the lower mold 13, the uniformity of the thickness of the thermoplastic resin film 1 after heat pressing As long as it can ensure, you may use other press processing methods, such as a vacuum press or a pneumatic press.
  • a second metal film 21 is formed to cover the surface of the first metal film 3 of the first base 16 for a three-dimensional wiring substrate (second metal film forming step: FIG. 19).
  • a metal is additionally deposited on the surface of the first metal film 3 by general electroless plating.
  • the first base 16 may be washed with a desired cleaning solution (for example, Soak in acid degreasing solution, sulfuric acid solution).
  • a desired cleaning solution for example, Soak in acid degreasing solution, sulfuric acid solution.
  • the catalyst treatment is carried out to cause the first metal film 3 of the first substrate 16 to react with a catalyst of a type to be substituted for the first metal film 3 (for example, Pd catalyst). Immerse in electrolytic plating solution.
  • the metal is selectively deposited only on the periphery of the first metal film 3 on the surface of which the catalyst is present, and the metal does not become the wiring circuit (that is, the exposed region of the thermoplastic resin film 1) Is not deposited, and the additional patterning of the second metal film 21 is not necessary.
  • copper is used as the metal of the second metal film 21, and as can be seen from FIGS. 20 and 21, a plurality of copper particles 21a are deposited on the particles 3a of the first metal film 3. .
  • the second metal film 21 is formed in a complete film shape without being formed in a porous shape.
  • the second metal film 21 having a film thickness of 5 ⁇ m or more could be formed by immersion for 1 hour.
  • the particles 21 a constituting the second metal film 21 grow around the particles 3 a constituting the first metal film 3, and the thickness direction of the second metal film 21 and the thickness thereof The same growth occurs in the direction orthogonal to the direction (the planar direction of the second metal film 21).
  • the second metal film 21 can be formed so as to repair the cracks 17 of the first metal film 3 generated by three-dimensional molding. That is, the formation of the second metal film 21 recovers the conduction failure due to the crack 17 and forms a wiring circuit (a conductor layer formed of the first metal film 3 and the second metal film 21) capable of realizing reliable conduction. can do.
  • the film thickness of the second metal film 21 is assumed. The thickness may be adjusted to 1/2 or more of the maximum width of the crack 17 or, more preferably, may be adjusted to the same thickness as the width of the crack 17.
  • the second metal film 21 is also formed on the side surface 1 c of the through hole 2 in the same manner as the surface layer, and the conduction can be restored even if there is a conduction failure on the front and back due to the through hole 2 temporarily.
  • the layer thickness (wiring pattern thickness) of the conductor layer required as the wiring circuit (wiring pattern) is insufficient at the film thickness of the first metal film 3, the second metal film 21 is used. By forming, the required layer thickness of the said conductor layer is securable.
  • the second metal film 21 is formed by electroless plating, but if the second metal film 21 can be finally formed only on the surface of the first metal film 3, other film formation is possible. Techniques (eg, electrolytic plating, application of conductive ink, etc.) may be used. However, in the case of forming the second metal film 21 by electroless plating as in this embodiment, it is possible to form an independent wiring, that is, even when the wiring circuit is electrically separated from the outer peripheral portion of the molded body. However, in the case of forming the second metal film 21 by electrolytic plating, it is necessary that all the wirings are electrically conducted to the outer peripheral portion of the molded body, and it is considered in design including the installation of the feeders. It will be necessary. Further, in this case, when a nonconductive portion is generated by three-dimensional molding, the second metal film 21 can not be formed because electricity does not flow from the nonconductive portion.
  • the material of the second metal film 21 is not limited to copper, and other metals such as nickel or nickel chromium, nickel copper, gold, or silver, or alloys containing these may be used.
  • the material can be appropriately adjusted according to the required properties and reliability.
  • the surface of the second metal film 21 is treated with a rust inhibitor to form a wiring pattern 22 having a laminated structure in which the first metal film 3 and the second metal film 21 are laminated.
  • the production of the second base material 30 for three-dimensional wiring composed of the thermoplastic resin film 1 and the wiring pattern 22 is completed.
  • the difference between the first base material 16 and the second base material 30 is only the presence or absence of the second metal film 21, and the second base material 30 corresponds to a three-dimensional molding for forming the three-dimensional wiring substrate. . That is, the three-dimensional molded object preparation step is completed by the above-described steps.
  • the second base material 30 finally formed has different dimensions (ie, heights) in the Z direction at respective positions in the X direction and the Y direction, and the XY plane The unevenness is formed in the.
  • FIG. 22 is a schematic view for explaining the three-dimensional shape of the second base material 30, and the wiring pattern 22 and the through holes are omitted.
  • the photosensitive material is spray-coated on the second base material 30, and the front and back surfaces of the second base material 30 (ie, the first surface 1a side of the thermoplastic resin film 1 and The protective film 31 is formed on the second surface 1 b side) (protective film forming step).
  • a curing agent and a solvent are mixed in a predetermined ratio with a photosensitive resin ink (a negative photoresist) as a main material, and stirring is performed for 30 minutes.
  • the mixing and stirring are performed in a yellow room in which light of a specific wavelength is cut, thereby preventing the progress of curing of the photosensitive resin ink.
  • the photosensitive resin ink that is, the photosensitive material
  • the air brush may be a relatively large coating device used at mass production level, or may be a small one used for general model production.
  • the photosensitive material is spray-coated uniformly on the front and back surfaces of the second base material 30 while being rotated 360 degrees while adjusting the angle at which the second base material 30 is sprayed.
  • the reason for adjusting such a spray angle is that the spray from the vertical direction is not applied to the surface close to the vertical of the stepped portion or becomes thinner.
  • the photosensitive material can be reliably applied to the uneven portion of the second base 30 and the vicinity thereof, and the entire surface of the three-dimensionally shaped second base 30 can be uniformly coated. Can be coated with a photosensitive material.
  • coating of a photosensitive material is divided into multiple times little by little and thinly coats, without applying the photosensitive material of the thickness required at once, and a photosensitive material is applied after each application. It is preferable to dry. In other words, it is preferable to form the protective film having a desired film thickness by repeating the spray application and the drying of the photosensitive material on the second substrate 30 a plurality of times while changing the angle and direction. This is because when a large amount of photosensitive material is applied at one time, application unevenness easily occurs in the concave and convex portions of the second base material 30, and the uniformity of the protective film 31 is reduced.
  • predetermined heat treatment is performed on the second base material 30 in a state in which the protective film 31 is formed, and temporary curing of the applied photosensitive material is performed.
  • heat processing are performed on the conditions (for example, 30 minutes at 80 degreeC) which the adhesiveness of a photosensitive material lose
  • a three-dimensionally formed exposure mask film corresponding to the second substrate 30 is prepared (exposure mask film preparation step).
  • known resin films 32 and 33 such as polyethylene terephthalate, which are main components of the exposure mask film, are prepared (FIG. 24).
  • As conditions of the resin film used here it is necessary to transmit the ultraviolet wavelength for exposure, and to have a breaking elongation that can correspond to three-dimensional molding.
  • the film thickness of the resin films 32 and 33 used as the exposure mask film is about 50 ⁇ m, it can be adjusted within the range of about 25 ⁇ m to 100 ⁇ m.
  • the reason why the film thickness is adjusted to such a thickness is that if the film thickness is too large, three-dimensional molding of the resin films 32 and 33 becomes difficult, and the second substrate 30 does not conform to the surface shape of the second substrate 30 This is because the reduction in adhesion may lead to a reduction in exposure resolution.
  • the material of the exposure mask film is a thermoplastic resin film, a thermosetting resin film, or a thermosetting resin and a thermoplastic resin, which has a required breaking elongation (at least 50% or more, preferably 100% or more). The material may be selected appropriately from the viewpoint of ease of three-dimensional molding and repeated use of the exposure mask film.
  • a black ink is applied on the surface of each of the resin films 32 and 33 by inkjet printing, screen printing, or the like printing method, and is irradiated at the time of exposure described later
  • a light shielding portion 34 for shielding light is formed.
  • a photomask film exposed to light and developed by exposing a silver salt photosensitive film on a general polyethylene terephthalate sheet may be used, the thickness of the photomask film coated with a commercially available silver salt photosensitive film may be used. Is as thick as about 150 to 200 ⁇ m, and the shape in the three-dimensional molding described later is difficult to reflect the mold shape and difficult to conform to the surface shape of the second substrate 30, and adhesion at the time of exposure is difficult.
  • the formation position of the light shielding portion 34 is adjusted in correspondence with the opening formation position of the protective film 31. At this time, alignment marks corresponding to positioning pins provided on a mold used at the time of three-dimensional molding described later are also formed.
  • the black ink which is the material of the light shielding portion 34 be relatively flexible and stretchable. The reason why the ink having such characteristics is preferable is that, when three-dimensional molding described later is also performed on the formation region of the light-shielding portion 34, generation of cracks in the light-shielding portion 34 accompanying the three-dimensional molding is prevented. It is for.
  • the thickness of the light shielding part 34 can be adjusted in the range which can light-block the light irradiated in the case of the exposure mentioned later reliably, in consideration of the crack generation accompanying solid molding, it is as thin as possible It is preferable to do.
  • the lands of the three-dimensional wiring board and the resist opening corresponding to the land do not exist in the step, but the slope of the flat portion or an angle close to the flat portion, a curved surface, and the resist opening to the surface including the minute step It is assumed that the formation is limited, and it is necessary to design such a substrate.
  • the black ink applied to the light shielding portion is basically limited and applied to a portion corresponding to a flat surface or an inclined surface having an angle close to the flat surface, a curved surface, or a surface including these minute step portions. Therefore, the application to the portion corresponding to the level difference which is likely to break due to elongation is basically not performed.
  • ink or the like of another color may be used as long as the light irradiated in the exposure described later can be surely shielded.
  • the resin films 32 and 33 are subjected to a heat treatment and a pressure treatment to perform a second three-dimensional molding.
  • the second three-dimensional molding is performed in the same manner as the first three-dimensional molding process (shown in FIGS. 13 to 16) for the thermoplastic resin film 1, and the mold 11 is used and a desired pressure (for example, , 10 MPa) is performed.
  • Heating may be performed as necessary, but in any case, the temperature is equal to or less than the glass transition temperature of the resin ink used for the resin films 32 and 33 and the light shielding portion 34. When the film thickness is thin, it may be normal temperature without heating.
  • a release film having a thickness substantially equal to that of the second base material 30 is prepared, and the above-described pressure treatment is performed while the release film is held by the resin films 32 and 33. Become. At this time, an opening is formed in the above-described alignment mark, and the positioning pin provided on the mold 11 is inserted into the opening, and accurate positioning is performed.
  • three-dimensional molding of the resin film 33 is performed corresponding to the shape on the first surface 1 a side of the thermoplastic resin film 1, and the exposure mask film 35 is completed.
  • the three-dimensional molding of the resin film 32 is performed corresponding to the shape on the second surface 1 b side, and the exposure mask film 36 is completed.
  • the three-dimensional molding of the resin films 32 and 33 may be performed by three-dimensionally molding the resin films 32 and 33 in a shape corresponding to the second substrate 30, and the mold 11 used for the three-dimensional molding of the thermoplastic resin film 1. You may use another mold. Alternatively, the resin films 32 and 33 may be independently three-dimensionally molded without being simultaneously three-dimensionally molded.
  • the exposure mask films 35 and 36 are disposed so as to cover the protective film 31 (exposure mask film placement step). More specifically, the exposure mask film 35 is disposed on the second surface 1b side of the thermoplastic resin film 1 (second base 30), and the exposure mask film 36 is formed of the thermoplastic resin film 1 (second base 30). ) And the second base material 30 sandwiches the two exposure mask films 35 and 36. The exposure mask films 35 and 36 may not be in complete contact with the second base material 30 at the time of the arrangement. In the exposure mask film disposing step, the light shielding portions 34 of the exposure mask films 35 and 36 are disposed in contact with the protective film 31.
  • the surface on which the light shielding portion 34 is formed which is the surface of the exposure mask films 35 and 36, is disposed on the side of the protective film 31.
  • the light shielding portion 34 and the protective film 31 are in direct contact with each other, so that the wraparound of light for exposure is reduced, and it is possible to perform exposure with higher accuracy.
  • the formation side of the light shielding portion 34 may not be located on the protective film 31 side as long as the resin films 32 and 33 can be made extremely thin to reduce the wraparound of light for exposure to a certain extent. At this time, it is necessary to align the land opening position of the wiring pattern on the second base material 30 with the position of the light shielding portion of the exposure mask films 35 and 36, but since both are three-dimensionally formed, Inevitably alignment is made.
  • the vacuum degassing bag 37 needs to have a characteristic of at least transmitting light for exposure in order to perform an exposure process described later.
  • a general disposable polyethylene bag is used for the vacuum degassing bag 37 of this embodiment, it can transmit light for exposure, and the exposure mask films 35 and 36 are formed by vacuum degassing.
  • bags made of other materials may be used.
  • the thickness of the vacuum degassing bag 37 is 50 ⁇ m, it can be adjusted, for example, in the range of 25 to 100 ⁇ m.
  • the vacuum degassing bag 37 can be made to follow the fine irregularities of the second base material 30 at the time of vacuum degassing.
  • the exposure mask films 35 and 36 can be adhered more reliably and precisely.
  • the air in the vacuum degassing bag 37 is exhausted and vacuumed, and the vacuum degassing bag opening end 37a of the vacuum degassing bag 37 is further subjected to a heat treatment.
  • the seal portion 38 is formed.
  • a general vacuum degassing packing apparatus will be used.
  • types of the vacuum degassing packing apparatus there are a relatively inexpensive apparatus for degassing by inserting an exhaust nozzle into the vacuum degassing bag 37, and a relatively expensive apparatus provided with a vacuum chamber, In view of the adhesion between the second substrate 30 and the exposure mask films 35, 36, it is preferable to use the latter device.
  • the vacuum degassing step is completed by the insertion of the second base material 30 into the vacuum degassing bag 37 and the vacuum degassing of the vacuum degassing bag 37, and the second base material 30 is completed.
  • the exposure mask films 35 and 36 are in close contact with each other in a state where the ink resist openings in the lands and the light shielding portions 34 of the exposure mask films 35 and 36 are aligned.
  • the second base material 30 in the state of being inserted into the vacuum degassing bag 37 is put into the exposure apparatus. Thereafter, as shown in FIG. 29, exposure is performed by irradiating the protective film 31 with light of a predetermined wavelength on the front and back sides through the vacuum degassing bag 37 and the exposure mask films 35, 36 (exposure step) .
  • exposure step ultraviolet light having a wavelength of 365 nm is used as light for exposure, and irradiation is performed at 250 mJ on one side.
  • the exposure amount be slightly larger than the exposure amount designated by the material of the protective film 31. This is because the decrease in the exposure amount by the vacuum degassing bag 37 occurs, and the exposure amount is measured and adjusted.
  • the wavelength of the light for exposure and the amount of exposure can be appropriately changed depending on the material of the protective film 31. It is possible to increase the resolution of exposure by using collimated light instead of scattered light as light used for exposure.
  • the exposure may be performed simultaneously on both sides or each side. In the case where the portion close to the vertical of the step portion is exposed, there is a possibility that the exposure amount may become insufficient, but the land of the three-dimensional wiring substrate and the resist opening portion matched thereto do not exist in the step portion, and the flat portion It is premised to be limited to the formation of the resist opening on the inclined surface having an angle close to the flat portion, a curved surface, and a surface including these minute step parts, and it is necessary to design such a substrate.
  • the vacuum state of the vacuum degassing bag 37 is released, the second base material 30 is taken out from the vacuum degassing bag 37, and the exposure mask films 35 and 36 are removed from the second base material 30.
  • the exposure mask films 35 and 36 are not affixed with respect to the 2nd base material 30 using an adhesion member etc., they can be easily removed from the 2nd base material 30.
  • FIG. And the said exposure mask films 35 and 36 can be repeatedly used with respect to the other 2nd base material 30.
  • the ink solder resist opening 39 is formed in the portion where it was formed (opening forming step). That is, the ink solder resist opening 39 is formed by photolithography (exposure and development), and is positioned with high accuracy with respect to the area where the wiring pattern 22 is to be exposed.
  • a three-dimensional wiring board 40 which is a kind of three-dimensional molded component as shown in FIG. 30 is completed.
  • the portion other than the region where the wiring pattern 22 is to be exposed is reliably covered by the protective film 31, and the wiring used for electrical connection such as component mounting.
  • a part of the area (such as a land) of the pattern 22 is exposed reliably and accurately by the ink solder resist opening 39.
  • the ink resist As a method of opening the ink resist, there is a method of removing the resist ink by irradiating it with YAG laser or the like, but in this case, there is no problem even if the laser is irradiated under the protective film 31 irradiated with the laser light. It needs to be a copper pattern. The reason is that if the ink resist without the underlying copper pattern is irradiated with laser light, the underlying substrate resin is also removed by the laser light and holes are opened, and in the case of this method, the inside is smaller than the land size. It needs to be a partial opening (so-called over resist). However, according to the proposed method, even if the opening is larger than the land size, or the pattern part which is not the land part or the opening without the copper, the design freedom is increased.
  • the exposure mask films 35 and 36 can be reliably adhered to the second base material 30 by vacuum degassing using the vacuum degassing bag 37, the subsequent exposure accuracy is It is possible to improve and form the protective film 31 having a desired opening pattern easily and accurately on the second base material 30.
  • the first metal film 3 is formed in a porous state to prevent breakage of the second metal film 21.
  • the vacuum degassing bag 37 is used without using a mold. Unwanted stress is not applied to the second metal film 21 by exposure using vacuum degassing, and breakage of the second metal film 21 in the uneven portion of the second base 30 can be further prevented.
  • the vacuum degassing bag 37 is generally used to bring the exposure mask films 35 and 36 into close contact with the second base material 30, and the contact method is also simple vacuum degassing. An expensive exposure apparatus that can be controlled in three dimensions and a mold for close contact are not required, and the three-dimensional wiring substrate 40 can be manufactured at low cost.
  • the photosensitive material which is a photosensitive ink resist is applied without using the resin film, and the ink solder resist opening 39 is formed in the protective film 31 using photolithography.
  • the positional accuracy of the ink solder resist opening 39 with respect to the land of the three-dimensional wiring substrate 40 can be improved.
  • the photosensitive material since the photosensitive material can be used, the ink solder resist opening 39 with excellent resolution can be formed.
  • the front and back surfaces of the second base material 30 are covered with the protective film 31.
  • the protective film 31 may be covered on only one side. Good. For example, when the wiring pattern 22 is formed only on one side, only the side on which the wiring pattern 22 is formed may be covered.
  • the protective film 31 is coated on the surface of the second base member 30 formed by three-dimensionally molding a film-like resin, but the three-dimensional molding covered by the protective film 31 is the present embodiment. It is not limited to such as the second base material 30 of the example.
  • various MID parts MID substrates
  • the protective film 31 according to the present embodiment is coated on the circuit formation surface of the MID parts, and desired openings are obtained with excellent accuracy. It becomes possible to form.
  • a negative photoresist is used as the photosensitive resin ink, but a positive photoresist may be used.
  • the relationship between the formation position and the non-formation position of the light shielding portion of the exposure mask film is reversed as compared with the above-described embodiment.
  • the exposure mask film can be reliably adhered to the three-dimensional molded product by vacuum degassing using a vacuum degassing bag, the subsequent exposure accuracy is improved, and a desired opening pattern is provided. It becomes possible to form a protective film easily and precisely to a three-dimensional object. Moreover, since it is a general vacuum degassing bag used to adhere the exposure mask film to a three-dimensional molded product and the adhesion method is also simple vacuum degassing, it can be controlled in three dimensions. This eliminates the need for an expensive exposure apparatus and a mold for close contact, and makes it possible to manufacture a three-dimensional molded part at low cost.
  • the photosensitive material includes a negative photoresist
  • the exposure mask film preparing step the exposure mask film Forming a light shielding portion at a position corresponding to the opening on the surface of
  • the light shielding is performed by inkjet printing or screen printing before three-dimensional molding of the exposure mask film. To form a part.
  • the exposure mask film can be more easily prepared, and the manufacturing cost of the three-dimensional wiring component can be reduced.
  • the light shielding portion can be formed with higher precision, and the opening of the protective film can be formed with higher precision and easily.
  • the exposure mask film disposing step is a surface of the exposure mask film in the exposure mask film disposing step.
  • the formation surface side is disposed on the protective film side.
  • the thickness of the resin film used for the exposure mask film is approximately 25 to 100 ⁇ m. It is. As a result, the adhesion between the three-dimensional molded article and the exposure mask film is improved, and it is possible to suppress the decrease in the resolution of exposure.
  • the thickness of the vacuum degassing bag is approximately 25 to 100 ⁇ m.
  • the vacuum degassing bag can be made to follow the fine irregularities of the three-dimensional molded product at the time of vacuum degassing, and the exposure mask film can be more reliably and precisely adhered to the three-dimensional molded product.
  • the spray application and the drying of the photosensitive material are Repeat several times while changing. Thereby, the application nonuniformity of the photosensitive material in the recessed part and convex part of a three-dimensional molded article can be prevented, and it becomes possible to improve the uniformity of a protective film.
  • the protective film is formed on the front and back surfaces of the three-dimensional molded article in the protective film forming step. It is. This makes it possible to protect the wiring pattern reliably and precisely even with respect to a three-dimensional object having the wiring pattern on both sides.
  • a three-dimensional wiring component comprises a three-dimensional molded product having a wiring pattern formed on the surface of a resin substrate, and a protective film made of a photosensitive resin ink and protecting the surface of the three-dimensional molded product.
  • the protective film has an opening corresponding to a region to be exposed of the wiring pattern, and covers the three-dimensional molding along a three-dimensional shape of the three-dimensional molding.
  • the protective member for covering the three-dimensional molded product is a protective film made of a photosensitive resin ink, and an opening corresponding to the area where the wiring pattern is to be exposed is formed in the protective film. That is, in the ninth embodiment, the openings can be formed by photolithography, and a finer opening pattern can be formed. In other words, it is possible to realize a low-cost three-dimensional molded component in which a protective film provided with a fine opening pattern is formed with high accuracy. Further, according to the present invention, it is possible to provide a low-cost three-dimensional molded component in which a protective film having a fine opening pattern is formed with high accuracy.
  • the opening of the protective film is formed by photolithography, and with high accuracy with respect to the exposed area of the wiring pattern. It is being positioned. As a result, it becomes possible to form a fine opening pattern, and a protective film of a three-dimensional molded component can be formed with high accuracy, and cost reduction can be achieved.
  • the three-dimensional wiring component according to the eleventh embodiment of the present invention is that, in the ninth or tenth embodiment described above, the resin base material is made of a film-like resin having a breaking elongation of 50% or more. As a result, even in a member obtained by three-dimensionally molding a resin film, it is possible to accurately and reliably expose only the region to be exposed of the wiring pattern formed on the surface.
  • the three-dimensional wiring component according to the twelfth embodiment of the present invention has a layered structure in which the three-dimensional molded product is covered on both sides with two of the protective films in any of the ninth to eleventh embodiments described above. It is. This makes it possible to protect the wiring pattern reliably and precisely even with respect to a three-dimensional object having the wiring pattern on both sides.
  • the three-dimensional wiring component according to the thirteenth embodiment of the present invention is the first metal according to any of the ninth to twelfth embodiments, wherein the wiring pattern has a porous structure formed by depositing metal in the form of particles. And a second metal film laminated on the first metal film. Thereby, even if a crack occurs in the first metal film, it is repaired by the second metal film, and a wiring circuit having no conduction failure and excellent reliability is realized.
  • Thermoplastic resin film (resin base material) DESCRIPTION OF SYMBOLS 1a 1st surface 1b 2nd surface 1c side 1d bent part 1e corner 2 through hole 3 1st metal film 3a particle 4 molecular bonding agent 11 mold 12 upper mold 13 lower mold 14 upper heating device 15 lower heating Apparatus 16 first base material 17 crack 21 second metal film 21a particle 22 wiring pattern 30 second base material (three-dimensional molding) 31 Protective film 32, 33 Resin film 34 Light shielding part 35, 36 Exposure mask film 37 Vacuum degassing bag 37a Vacuum degassing bag opening end 38 Sealing part 39 Ink solder resist opening (opening) 40 Three-dimensional wiring board (three-dimensional molded parts)

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

Provided is a three-dimensional molded component production method comprising: a three-dimensional molded product preparation step in which a three-dimensional molded product comprising a wiring pattern formed on the surface of a resin substrate is prepared; a protective film formation step in which a protective film is formed on at least the surface of the three-dimensional molded product by spray coating the three-dimensional molded product with a photosensitive material; an exposure mask film preparation step in which an exposure mask film that is three-dimensionally molded so as to correspond to the three-dimensional molded product is prepared; an exposure mask film arrangement step in which the exposure mask film is arranged so as to cover the protective film; a vacuum air removal step in which the three-dimensional molded product having the exposure mask film arranged thereon is inserted into a bag for vacuum air removal, the air is removed by vacuum, and the exposure mask film is made to adhere to the protective film; an exposure step in which the three-dimensional molded product is irradiated with light and thereby exposed while inserted in the bag for vacuum air removal; and an opening formation step in which the three-dimensional molded product is removed from the bag for vacuum air removal, development treatment is carried out, and a desired opening is formed in the protective film.

Description

立体成型部品の製造方法及び立体成型部品Manufacturing method of three-dimensional molded part and three-dimensional molded part
 本発明は、配線パターンが表面に形成された立体成型物に対して、当該配線パターンの形成面の少なくとも一部を保護膜によって被覆する立体成型部品の製造方法、及びその製造方法よって製造される立体成型部品に関する。 The present invention is manufactured by a method of manufacturing a three-dimensional molded component in which at least a part of the surface on which the wiring pattern is formed is covered with a protective film with respect to a three-dimensional molding whose wiring pattern is formed on the surface It relates to a three-dimensional molded part.
 従来から知られている立体配線基板としては、三次元構造を備える構造体の表面上に電気回路を直接的かつ立体的に形成した部品であるMID(Molded Interconnect Device)基板がある。MID基板に関する技術としては、2ショット法、MIPTEC(Microscopic Integrated Processing Technology)、及びLDS(Laser Direct Structuring)等の工法が知られている。いずれの工法においても、モールド樹脂に対して三次元構造を形成した後に、その表面に対して配線回路を形成することになる。例えば、特許文献1には、MID基板及びその製造に関する技術が開示されている。 As a conventionally known three-dimensional wiring substrate, there is a MID (Molded Interconnect Device) substrate which is a component in which an electric circuit is directly and three-dimensionally formed on the surface of a structure having a three-dimensional structure. As techniques related to MID substrates, methods such as a two-shot method, MIPTEC (Microscopic Integrated Processing Technology), and LDS (Laser Direct Structuring) are known. In any of the methods, after forming a three-dimensional structure on the mold resin, a wiring circuit is formed on the surface. For example, Patent Document 1 discloses a technique related to an MID substrate and its manufacture.
 2ショット法においては、一次成型されたモールド樹脂上の配線形成をしない部分に対して、新たな樹脂による二次成型を行い、当該二次成型に係る樹脂をレジストとして触媒塗布及びめっきを行うことにより、モールド樹脂上に配線回路を形成する。しかしながら、2次成型された樹脂によって配線パターン形状を規制するため、2次成型のための金型加工精度の限界から、導体幅と導体間隙とを示すL/S(line width and spacing)の最小値が150/150μm程度となり、より微細な配線パターンの形成が困難であった。 In the two-shot method, secondary molding with a new resin is performed on a portion on the primarily molded mold resin where wiring formation is not performed, and catalyst coating and plating are performed using the resin related to the secondary molding as a resist. Thus, a wiring circuit is formed on the mold resin. However, in order to regulate the wiring pattern shape by the secondarily molded resin, the L / S (line width and spacing) indicating the conductor width and the conductor gap is the minimum from the limit of the die processing accuracy for the second molding. The value was about 150/150 μm, and it was difficult to form a finer wiring pattern.
 MIPTECにおいては、成型されたモールド樹脂の表面全体にメタライジングを施し、レーザ光によって配線回路の外縁部分の金属(メタライジング層)を除去する。その後、配線回路となる領域に通電して電解めっきを行い、その後に成型体の全面にフラッシュエッチングを施して配線回路以外の金属を除去することにより、モールド樹脂上に配線回路を形成する。しかしながら、レーザ光の使用にあたっては、成型されたモールド樹脂の三次元形状に対応した特殊なレーザ照射装置が必要となり、レーザ加工の手間及び設備投資による製造コストの増加が問題となる。また、電解めっきによって配線回路に必要となる金属を堆積するため、配線回路となる領域のみに通電する必要があることから、当該配線回路となる領域が成型体の外周部と電気的に接続しているか、或いは給電線を介して外周部と電気的に接続されている必要がある。すなわち、当該配線回路となる領域を成型体の外周部から電気的に離間すること(すなわち、独立した配線パターンの形成)が困難となる問題や、回路として最終的に不要な給電線の形成及び除去に伴うコスト増加の問題が生じる。 In MIPTEC, the entire surface of a molded mold resin is metallized, and laser light is used to remove the metal (metallized layer) on the outer edge portion of the wiring circuit. Thereafter, current is supplied to a region to be a wiring circuit to perform electrolytic plating, and then the entire surface of the molded body is subjected to flash etching to remove metal other than the wiring circuit, thereby forming a wiring circuit on the mold resin. However, when using a laser beam, a special laser irradiation apparatus corresponding to the three-dimensional shape of the molded mold resin is required, and the increase in manufacturing cost due to the labor of laser processing and equipment investment becomes a problem. In addition, since the metal necessary for the wiring circuit is deposited by electrolytic plating, it is necessary to energize only the region to be the wiring circuit, so the region to be the wiring circuit is electrically connected to the outer peripheral portion of the molded body. Or need to be electrically connected to the outer peripheral portion through a feeder line. That is, it is difficult to electrically separate the area to be the wiring circuit from the outer peripheral portion of the molded body (that is, formation of an independent wiring pattern); The problem of cost increase associated with the removal arises.
 LDSにおいては、導電粒子を含んだ特殊な樹脂材料を使用して1次成型を行い、配線回路となる領域にレーザ光を照射して当該導電粒子を露出させ、当該導電粒子の露出部分にめっきを行うことにより、モールド樹脂上に配線回路を形成する。しかしながら、成型されたモールド樹脂内の導電粒子を露出させる精度の問題から、L/Sの最小値が100/150μm程度となり、より微細な配線パターンの形成が困難であった。また、MIPTECと同様に特殊なレーザ照射装置が必要となり、レーザ加工の手間及び設備投資による製造コストの増加が問題となる。 In LDS, primary molding is performed using a special resin material containing conductive particles, and laser light is irradiated to a region to be a wiring circuit to expose the conductive particles, and plating the exposed portion of the conductive particles To form a wiring circuit on the mold resin. However, the minimum value of L / S is about 100/150 μm due to the problem of accuracy in exposing the conductive particles in the molded mold resin, and it is difficult to form a finer wiring pattern. In addition, as with MIPTEC, a special laser irradiation apparatus is required, and the increase in manufacturing cost due to the labor of laser processing and equipment investment becomes a problem.
 そして、上記いずれの工法においても、三次元的な形状を備えるモールド樹脂に配線回路を形成するため、最終的に製造されるMID基板は片面基板となる。このため、両面基板と比較して配線回路の自由度が小さくなり、基板自体の小型化も困難になる問題が生じる。当該問題及び上述した問題を解決する方法として、ポリイミド等の熱可塑性樹脂に配線回路を形成した後に、加熱及び加圧によって樹脂に折り曲げ加工を施し、立体配線基板を製造する方法がある。例えば、特許文献2にはポリイミドフィルム上に熱圧着により金属箔を貼り付けた後に立体成型することが開示され、特許文献3にはポリサルホン樹脂上に導電性ペーストを塗布した後に立体成型することが開示されている。 Then, in any of the above-described methods, in order to form the wiring circuit in the mold resin having a three-dimensional shape, the MID substrate finally manufactured becomes a single-sided substrate. For this reason, the degree of freedom of the wiring circuit becomes smaller than that of the double-sided board, and there arises a problem that miniaturization of the board itself becomes difficult. As a method of solving the said problem and the problem mentioned above, after forming a wiring circuit in thermoplastic resins, such as a polyimide, there exists the method of bending-processing to resin by heating and pressurization, and manufacturing a three-dimensional wiring board. For example, Patent Document 2 discloses that a metal foil is attached to a polyimide film by thermocompression bonding and then three-dimensional molding is disclosed, and Patent Document 3 discloses that a conductive paste is applied on a polysulfone resin and then three-dimensional molding is performed. It is disclosed.
 上述した立体配線基板においては、形成された配線パターンは露出しているため、部品実装、他の部品、又は他の基板との接続に半田付けをする際、半田付けのランド間のブリッジが起きやすくなり、又は温度若しくは水分にさらされることによる配線パターン金属材の酸化等の劣化、混入異物による短絡の問題等が発生しやすくなる。このため、部品実装に必要なランド部以外は、絶縁性樹脂によって被覆することが一般的に行われる。このような被覆方法としては、例えば、インク状の熱硬化樹脂若しくは紫外線硬化樹脂をスクリーン印刷、スプレーコート、又はインクジェット印刷によって絶縁性樹脂を塗布する。ここで、半田付けをする部分の配線パターンを露出する方法としては、半田付けをする部分を始めから露出するように絶縁性樹脂を塗布する方法や、或いは被覆面全体に対して紫外線硬化型の樹脂を塗布した後に、フォトリソグラフィ技術を利用して必要部分に開口を形成する方法等がある。 In the above-described three-dimensional wiring board, since the formed wiring pattern is exposed, a bridge between the soldering lands occurs when soldering is performed for component mounting, connection with another component, or another substrate. Deterioration such as oxidation of the wiring pattern metal material due to being easy or exposed to temperature or moisture, a problem of short circuit due to mixed foreign matter, and the like easily occur. For this reason, coating with insulating resin is generally performed except for the land portions required for component mounting. As such a coating method, for example, an insulating resin is applied by screen printing, spray coating, or ink jet printing with an ink-like thermosetting resin or ultraviolet curing resin. Here, as a method of exposing the wiring pattern of the portion to be soldered, a method of applying an insulating resin so as to expose the portion to be soldered from the beginning, or UV curing of the entire coated surface After applying a resin, there is a method of forming an opening in a necessary portion using a photolithography technique.
特開2012-94605号公報JP 2012-94605 A 特開平06-188537号公報Japanese Patent Application Publication No. 06-188537 特開2000-174399号公報JP 2000-174399 A
 しかしながら立体成型された対象物へのスクリーン印刷による塗布においては、立体成型物に段差が存在するため、立体成型物の表面に沿って絶縁性樹脂を塗布することが困難である。また、インクジェット印刷による塗布においては、立体成型物の段差により、立体成型物の表面に沿った絶縁性樹脂の塗布、及び着弾した液滴の硬化前の濡れ広がりを防止する為、昨今よく使用される紫外線硬化樹脂を用いた仮硬化の為の紫外線照射が、インクジェットヘッドと基板の間隔を段差により広くとらなければならないことで、基板表面での紫外線の反射によるインクジェットヘッドノズル内の射出前の樹脂を硬化させてしまう問題等により、困難である。 However, in the case of application by screen printing to a three-dimensionally shaped object, it is difficult to apply the insulating resin along the surface of the three-dimensionally shaped object because of the presence of steps in the three-dimensionally shaped object. Moreover, in coating by ink jet printing, it is frequently used nowadays to prevent application of the insulating resin along the surface of the three-dimensional molding and wetting and spreading of the landed droplets before curing due to the step of the three-dimensional molding. The UV radiation for temporary curing using a UV curable resin requires that the distance between the inkjet head and the substrate be made wider by the step, so that the resin before the injection in the inkjet head nozzle due to the reflection of the UV light on the substrate surface Is difficult due to problems such as curing the resin.
 一方、一般的な平面基板に使用されているフィルム状の保護膜を、印刷用の絶縁性樹脂に替えて使用することが考えられるが、立体成型物の面積の増加及びその形状の複雑化により、薄い保護膜を立体成型物の表面全体に亘って均一に加圧することは困難となり、立体成型物と保護膜との間に気泡や隙間が生じたり、立体成型物上に形成された配線パターンに対して断線につながるような応力が加わる問題がある。また、当該保護膜と立体成型物とを密着させて加圧するような場合には、立体成型物のそれぞれに対して成型用金型が必要となり、1つの立体成型物による成型用金型の占有によって、生産規模の拡大及びタクトタイムの短縮が困難となり、製造コストが増加する問題が生じる。そして、加圧時における保護膜の伸縮及び保護膜への開口形成のための抜き金型使用の影響(抜き金型では精細な開口部の形成が困難)により、露出すべき配線パターンの部分に対して、精細な精度によるより微細な開口形成が困難となる。 On the other hand, it is conceivable to use a film-like protective film used for a general flat substrate in place of the insulating resin for printing, but it is conceivable to increase the area of the three-dimensional molding and to make the shape complicated. It becomes difficult to uniformly press a thin protective film over the entire surface of a three-dimensional molded product, and air bubbles or gaps are generated between the three-dimensional molded product and the protective film, or a wiring pattern formed on the three-dimensional molded product There is a problem that a stress is applied to lead to disconnection. In addition, in the case where the protective film and the three-dimensional molded product are brought into close contact with each other to be pressurized, a molding die is required for each of the three-dimensional molded products, and occupation of the molding die by one three-dimensional molded product. As a result, it becomes difficult to expand the production scale and shorten the tact time, resulting in the problem of increased manufacturing costs. And, in the part of the wiring pattern to be exposed due to the influence of the use of the punching die for expansion and contraction of the protective film at the time of pressurization and the formation of the opening to the protective film (the formation of fine openings is difficult with the die) On the other hand, it is difficult to form finer openings with fine precision.
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、高価な装置を使用することなく、配線パターンが表面に形成された立体成型物に対して、所望の微細な開口パターンを備える保護膜を容易且つ高精度に形成しつつ、立体成型部品を低コストで製造することができる立体成型部品の製造方法を提供することである。また、微細な開口パターンを備える保護膜が高精度に形成された低コストの立体成型部品を提供することである。 The present invention has been made in view of such problems, and the object of the present invention is to make a desired fine for a three-dimensional molded product having a wiring pattern formed on the surface without using an expensive apparatus. It is an object of the present invention to provide a method of manufacturing a three-dimensional molded part capable of manufacturing a three-dimensional molded part at low cost while easily forming a protective film having the above opening pattern with high accuracy. Another object of the present invention is to provide a low-cost three-dimensional molded component in which a protective film having a fine opening pattern is formed with high accuracy.
 上記目的を達成するため、本発明の立体成型部品の製造方法は、樹脂基材の表面に配線パターンが形成された立体成型物を準備する立体成型物準備工程と、前記立体成型物に対して感光性材料をスプレー塗布し、少なくとも前記立体成型物の表面に保護膜を形成する保護膜形成工程と、前記立体成型物に対応させて立体成型された露光マスクフィルムを準備する露光マスクフィルム準備工程と、前記露光マスクフィルムによって前記保護膜を被覆するように配置する露光マスクフィルム配置工程と、前記露光マスクフィルムが配置された状態の前記立体成型物を真空脱気用袋に内挿し、真空脱気して前記露光マスクフィルムを前記保護膜に密着させる真空脱気工程と、前記立体成型物を前記真空脱気用袋に内挿した状態で光を照射して露光する露光工程と、前記立体成型物を前記真空脱気用袋が取り出して現像処理を施し、前記保護膜に所望の開口を形成する開口形成工程と、を有することである。 In order to achieve the above object, a method of manufacturing a three-dimensional molded part according to the present invention includes a three-dimensional molding preparation step of preparing a three-dimensional molding having a wiring pattern formed on a surface of a resin substrate; A protective film forming step of spray-coating a photosensitive material to form a protective film on at least the surface of the three-dimensional molding; and an exposure mask film preparing step of preparing a three-dimensionally formed exposure mask film corresponding to the three-dimensional molding. An exposure mask film disposing step of arranging to cover the protective film with the exposure mask film, and inserting the three-dimensional molded article in a state where the exposure mask film is disposed into a vacuum degassing bag, A vacuum degassing step of bringing the exposed mask film into intimate contact with the protective film, and exposing the three-dimensional molded product to the vacuum degassing bag in a state of being inserted with light for exposure An exposure step that, the three-dimensional molded article of subjected to a developing process the vacuum degassing bag was taken out, is to have a, an opening formation step of forming a desired opening in the protective film.
 また、上記目的を達成するため、本発明の立体形成部品は、樹脂基材の表面に配線パターンが形成された立体成型物と、感光性樹脂インクからなり、前記立体成型物の表面を保護する保護膜と、前記保護膜は、前記配線パターンの露出すべき領域に対応した開口部を備えるとともに、前記立体成型物の立体形状に沿って前記立体成型物を被覆することである。 Further, in order to achieve the above object, the three-dimensionally formed component of the present invention is composed of a three-dimensional molding having a wiring pattern formed on the surface of a resin substrate and a photosensitive resin ink to protect the surface of the three-dimensional molding. The protective film and the protective film are provided with an opening corresponding to the area where the wiring pattern is to be exposed, and coat the three-dimensional object along the three-dimensional shape of the three-dimensional object.
 本発明により、高価な装置を使用することなく、配線パターンが表面に形成された立体成型物に対して、所望の微細な開口パターンを備える保護膜を容易且つ高精度に形成しつつ、立体成型部品を低コストで製造することができる。また、本発明により、微細な開口パターンを備える保護膜が高精度に形成された低コストの立体成型部品を提供することができる。 According to the present invention, a three-dimensional molding can be easily and accurately formed on a protective film having a desired fine opening pattern with respect to a three-dimensional molding having a wiring pattern formed on the surface, without using an expensive apparatus. Parts can be manufactured at low cost. Further, according to the present invention, it is possible to provide a low-cost three-dimensional molded component in which a protective film having a fine opening pattern is formed with high accuracy.
本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 図4における破線領域Vの拡大概念図である。FIG. 5 is an enlarged conceptual view of a broken line area V in FIG. 4; 本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 図9における破線領域X拡大概念図である。FIG. 10 is an enlarged conceptual view of a broken line area X in FIG. 9; 本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体成型に係る製造工程を示す概略図である。It is the schematic which shows the manufacturing process which concerns on the three-dimensional shaping | molding which concerns on the Example of this invention. 本発明の実施例に係る立体成型に係る製造工程を示す概略図である。It is the schematic which shows the manufacturing process which concerns on the three-dimensional shaping | molding which concerns on the Example of this invention. 本発明の実施例に係る立体成型に係る製造工程を示す概略図である。It is the schematic which shows the manufacturing process which concerns on the three-dimensional shaping | molding which concerns on the Example of this invention. 本発明の実施例に係る立体成型に係る製造工程を示す概略図である。It is the schematic which shows the manufacturing process which concerns on the three-dimensional shaping | molding which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 図17の破線領域XVIIIの拡大概念図である。FIG. 18 is an enlarged conceptual view of a broken line area XVIII of FIG. 17; 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 図19における破線領域XXの拡大概念図である。FIG. 20 is an enlarged conceptual view of a dashed line area XX in FIG. 本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板を構成する基材の斜視図である。It is a perspective view of a substrate which constitutes a three-dimensional wiring board concerning an example of the present invention. 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板の断面図である。It is sectional drawing of the three-dimensional wiring board which concerns on the Example of this invention.
 以下、図面を参照し、本発明の実施の形態について、実施例に基づき詳細に説明する。なお、本発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施例の説明に用いる図面は、いずれも本発明による立体成型部品及びその構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、または省略などを行っており、立体成型部品及びその構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。更に、実施例で用いる様々な数値は、一例を示す場合もあり、必要に応じて様々に変更することが可能である。 Hereinafter, embodiments of the present invention will be described in detail based on examples with reference to the drawings. The present invention is not limited to the contents described below, and can be arbitrarily changed and implemented without changing the gist of the present invention. Further, the drawings used for describing the embodiments are all schematically showing the three-dimensional molded part according to the present invention and the constituent members thereof, and the partial emphasis, enlargement, reduction, omission or the like is to be understood for further understanding. In some cases, the scale, shape, etc. of the three-dimensional molded part and its constituent members may not be accurately represented. Furthermore, various numerical values used in the embodiments may represent an example, and can be variously changed as needed.
<実施例>
 以下において、図1乃至図30を参照しつつ、本発明の実施例に係る立体配線基板の製造方法について詳細に説明する。ここで、図1、図2、図4、図9、図12、図17、図19、及び図23乃至図29は、立体配線基板の製造工程における断面図である。特に、図24乃至図26は、立体配線基板の保護膜への開口形成に使用される露光マスクフィルム又は当該露光マスクフィルムに使用されるフィルムの断面図である。また、図5は図4における破線領域Vの拡大概念図であり、図10は図9における破線領域Xの拡大概念図であり、図18は図17の破線領域XVIIIの拡大概念図であり、図20は図19における破線領域XXの拡大概念図である。更に、図13乃至図16は、本発明の実施例に係る立体成型に係る製造工程を示す概略図である。そして、図3、図6乃至図8、図11、図21は、本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。図22は、本発明の実施例に係る立体配線基板を構成する基材の斜視図であり、図30は、本発明の実施例に係る立体配線基板の断面図である。
<Example>
Hereinafter, a method of manufacturing a three-dimensional wiring substrate according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 30. Here, FIGS. 1, 2, 4, 9, 12, 17, 19, and 23 to 29 are cross-sectional views in the manufacturing process of the three-dimensional wiring substrate. In particular, FIGS. 24 to 26 are cross-sectional views of an exposure mask film used for forming an opening in a protective film of a three-dimensional wiring substrate or a film used for the exposure mask film. 5 is an enlarged conceptual view of the broken line area V in FIG. 4, FIG. 10 is an enlarged conceptual view of the broken line area X in FIG. 9, and FIG. 18 is an enlarged conceptual view of the broken line area XVIII in FIG. FIG. 20 is an enlarged conceptual view of a broken line area XX in FIG. Furthermore, FIG. 13 to FIG. 16 are schematic views showing manufacturing steps according to three-dimensional molding according to an embodiment of the present invention. And FIG. 3, FIG. 6 thru | or FIG. 8, FIG. 11, FIG. 21 is the schematic in metal film formation about the three-dimensional wiring board based on the Example of this invention. FIG. 22 is a perspective view of a substrate constituting a three-dimensional wiring substrate according to an embodiment of the present invention, and FIG. 30 is a cross-sectional view of the three-dimensional wiring substrate according to the embodiment of the present invention.
 先ず、図1に示すように、樹脂基材である熱可塑性樹脂フィルム1を準備する(樹脂基材準備工程)。熱可塑性樹脂フィルム1としては、例えば、ポリイミド又はポリエチレンテレフタラート等の公知の樹脂フィルムを用いることができる。熱可塑性樹脂フィルム1の厚みには限定はなく、本発明の立体配線部品に該当する本実施例の立体配線基板の用途及び要求される特性に応じて適宜変更することができる。例えば、本実施例においては、熱可塑性樹脂フィルム1の厚みを約125μm程度(75μm以上150μm以下)に調整したが、立体配線基板を他のモールド樹脂等の保持部材とともに使用する場合には、50μm以下に調整してもよい。 First, as shown in FIG. 1, the thermoplastic resin film 1 which is a resin base material is prepared (resin base material preparation process). As the thermoplastic resin film 1, for example, a known resin film such as polyimide or polyethylene terephthalate can be used. The thickness of the thermoplastic resin film 1 is not limited, and can be appropriately changed according to the application and the required characteristics of the three-dimensional wiring substrate of the present example corresponding to the three-dimensional wiring component of the present invention. For example, in the present embodiment, the thickness of the thermoplastic resin film 1 is adjusted to about 125 μm (about 75 μm to 150 μm), but when the three-dimensional wiring board is used together with a holding member such as another mold resin, 50 μm You may adjust to the following.
 なお、準備する樹脂フィルムは熱可塑性タイプに限定されることなく、比較的に大きな破断伸びを備える樹脂フィルムであれば、熱硬化性樹脂フィルム、或いは熱硬化性樹脂と熱可塑性樹脂を積層した(すなわち、熱可塑性樹脂フィルムと熱硬化性樹脂フィルムとを貼り合わせた)構造を備える複合樹脂フィルムを用いてもよい。ここで、比較的に大きな破断伸びとは、少なくとも50%以上の値であり、好ましくは150%以上である。破断伸びについては成型する立体形状により必要な特性が要求され、複雑で大きな段差形状を持つ場合には立体成型による材料が耐えられる様に、より大きな破断伸び強度を持つ樹脂フィルム材が必要となる。 The resin film to be prepared is not limited to the thermoplastic type, and if it is a resin film having a relatively large elongation at break, a thermosetting resin film or a thermosetting resin and a thermoplastic resin were laminated ( That is, a composite resin film having a structure in which a thermoplastic resin film and a thermosetting resin film are laminated may be used. Here, the relatively large elongation at break is a value of at least 50% or more, preferably 150% or more. The breaking elongation is required to have the necessary characteristics depending on the three-dimensional shape to be molded, and in the case of a complicated large step shape, a resin film material having a larger breaking elongation strength is required so that the material by three-dimensional molding can withstand. .
 次に、図2に示すように、熱可塑性樹脂フィルム1の表裏面(第1の面1a、及び第2の面1b)における導通を確保するために、NC加工、レーザ加工、又はパンチング加工等の開口技術を用いて貫通孔2を形成する。本実施例においては、貫通孔2の開口径を約0.3mmとした。なお、図2においては、1つの貫通孔2のみが示されているが、実際の立体配線基板においては複数の貫通孔2を有することになる。また、貫通孔2の数量は、立体配線基板の回路構成に応じて適宜変更することもできる。更に、後述する立体成型時の位置決めとして使用するための位置決め孔(例えば、開口径が3mm)を、熱可塑性樹脂フィルム1の外縁部分(すなわち、最終的に立体配線基板を構成することなく除去される部分)に形成してもよい。 Next, as shown in FIG. 2, NC processing, laser processing, punching processing, etc., in order to ensure conduction on the front and back surfaces (first surface 1 a and second surface 1 b) of the thermoplastic resin film 1. The through hole 2 is formed using the opening technique of. In the present embodiment, the opening diameter of the through hole 2 is about 0.3 mm. Although only one through hole 2 is shown in FIG. 2, the actual three-dimensional wiring board has a plurality of through holes 2. In addition, the number of through holes 2 can be appropriately changed according to the circuit configuration of the three-dimensional wiring board. Furthermore, positioning holes (for example, an opening diameter of 3 mm) for use as positioning at the time of three-dimensional molding to be described later are removed without forming the outer edge portion of the thermoplastic resin film 1 (that is, finally forming a three-dimensional wiring board Part) may be formed.
 次に、熱可塑性樹脂フィルム1の第1の面1a、第2の面1b、及び貫通孔によって露出した熱可塑性樹脂フィルム1の側面1cを被覆するように、熱可塑性樹脂フィルム1の表面上に第1金属膜3を形成する(第1金属膜形成工程)。本実施例においては、熱可塑性樹脂フィルム1の表面上に、公知の分子接合技術を利用した無電解めっきによって金属をメタライジングする。 Next, on the surface of the thermoplastic resin film 1 so as to cover the first surface 1a and the second surface 1b of the thermoplastic resin film 1 and the side surface 1c of the thermoplastic resin film 1 exposed by the through holes. The first metal film 3 is formed (first metal film forming step). In the present embodiment, metal is metallized on the surface of the thermoplastic resin film 1 by electroless plating using a known molecular bonding technology.
 より具体的には、先ず、前処理として、熱可塑性樹脂フィルム1にArプラズマ処理を施し、熱可塑性樹脂フィルム1の表面の脆弱層を除去し、後述する分子接合剤と相性のよい官能基を熱可塑性樹脂フィルム1の表面上に形成する。その後、Arプラズマ処理後の熱可塑性樹脂フィルム1を分子接合剤4の溶液に浸ける(図3)。ここで、分子接合剤4は熱可塑性樹脂フィルム1と反応する官能基(第1官能基)を備えているため、熱可塑性樹脂フィルム1の官能基と分子接合剤4の官能基とか結びつき、図4及び図5に示すように、熱可塑性樹脂フィルム1の表面上に分子接合剤4が結合した状態が得られる。なお、図4においては分子接合剤4をわかり易く示す観点から層状に図示しているが、実際には図5に示すようなナノレベルの状態(分子接合剤4の厚みが数nm)で存在しており、他の材料と比較して非常に薄くなっている。よって、図9以降では分子接合剤4を省略することがある。また、図5における分子接合剤4の上下に伸びる直線は官能基を示し、より具体的には、熱可塑性樹脂フィルム1に向かって伸びた直線が熱可塑性樹脂フィルム1の官能基と結びついた状態の分子接合剤4の官能基を示し、熱可塑性樹脂フィルム1とは反対側に伸びた直線が第1金属膜3の金属と反応することになる分子接合剤4の官能基を示している。 More specifically, first, as pretreatment, the thermoplastic resin film 1 is subjected to Ar plasma treatment to remove the fragile layer on the surface of the thermoplastic resin film 1, and a functional group having compatibility with the molecular bonding agent described later is removed. It is formed on the surface of the thermoplastic resin film 1. Thereafter, the thermoplastic resin film 1 after Ar plasma treatment is dipped in the solution of the molecular bonding agent 4 (FIG. 3). Here, since the molecular bonding agent 4 is provided with a functional group (first functional group) that reacts with the thermoplastic resin film 1, the functional group of the thermoplastic resin film 1 and the functional group of the molecular bonding agent 4 bond with each other. As shown in FIG. 4 and FIG. 5, a state in which the molecular bonding agent 4 is bonded to the surface of the thermoplastic resin film 1 is obtained. Although FIG. 4 illustrates the molecular bonding agent 4 in layers for easy understanding, in actuality, it exists in a nano level state (the thickness of the molecular bonding agent 4 is several nm) as shown in FIG. And very thin compared to other materials. Therefore, the molecular bonding agent 4 may be omitted in FIG. Further, straight lines extending in the upper and lower direction of the molecular bonding agent 4 in FIG. 5 indicate functional groups, and more specifically, a state in which the straight lines extending toward the thermoplastic resin film 1 are combined with the functional groups of the thermoplastic resin film 1 The functional group of the molecular bonding agent 4 is shown, and the straight line extending on the opposite side to the thermoplastic resin film 1 shows the functional group of the molecular bonding agent 4 that will react with the metal of the first metal film 3.
 次に、分子接合処理がなされた熱可塑性樹脂フィルム1をキャタリスト液(Sn-Pdコロイド水溶液)に含浸する(図6)。ここで、Sn-Pdコロイドは、熱可塑性樹脂フィルム1の表面に電気的に吸着される。その後、Sn-Pdコロイドが表面に担持した状態の熱可塑性樹脂フィルム1をアクセラレータ液に含浸すると、Pdの周囲を覆っていたSnが除去され、Pdイオンが金属Pdに変化する(図7)。すなわち、触媒処理を行って熱可塑性樹脂フィルム1に触媒(例えばPd)を担持させることになる。なお、アクセラレータ液としては、シュウ酸(0.1%程度)を含む硫酸(濃度が10%)を用いることができる。その後、触媒であるPdを担持した熱可塑性樹脂フィルム1を無電解めっき槽に例えば5分間浸漬する。当該浸漬により、Pdを触媒として例えば銅が析出し、析出した銅が分子接合剤4と結合することになる(図8)。ここで、分子接合剤4は、第1金属膜3の金属と反応する官能基(第2官能基)も備えているため、分子接合剤4の熱可塑性樹脂フィルム1と結合している端部とは反対側に位置する端部(第2官能基)には、触媒を利用して金属が化学的に結合する。続いて、熱可塑性樹脂フィルム1に150℃、10分の加熱処理を施して、分子接合剤4と当該金属との化学結合を終結させ、図9に示すように、熱可塑性樹脂フィルム1の表面を覆うように、第1金属膜3の形成(すなわち、熱可塑性樹脂フィルム1と第1金属膜3との分子接合)が完了する。 Next, the thermoplastic resin film 1 subjected to the molecular bonding treatment is impregnated with a catalyst solution (Sn—Pd colloid aqueous solution) (FIG. 6). Here, the Sn—Pd colloid is electrically adsorbed on the surface of the thermoplastic resin film 1. Thereafter, when the thermoplastic resin film 1 in a state where the Sn—Pd colloid is supported on the surface is impregnated into the accelerator solution, the Sn covering Pd is removed, and the Pd ion is changed to metal Pd (FIG. 7). That is, the catalyst treatment is performed to cause the thermoplastic resin film 1 to carry a catalyst (for example, Pd). In addition, as the accelerator solution, sulfuric acid (concentration: 10%) containing oxalic acid (about 0.1%) can be used. Thereafter, the thermoplastic resin film 1 supporting Pd as a catalyst is immersed in the electroless plating bath for 5 minutes, for example. By the immersion, for example, copper is deposited using Pd as a catalyst, and the deposited copper is bonded to the molecular bonding agent 4 (FIG. 8). Here, since the molecular bonding agent 4 also has a functional group (second functional group) that reacts with the metal of the first metal film 3, the end portion of the molecular bonding agent 4 bonded to the thermoplastic resin film 1 The metal is chemically bonded to the end (the second functional group) located on the opposite side to that using a catalyst. Subsequently, the thermoplastic resin film 1 is subjected to heat treatment at 150 ° C. for 10 minutes to terminate the chemical bond between the molecular bonding agent 4 and the metal, and as shown in FIG. 9, the surface of the thermoplastic resin film 1 The formation of the first metal film 3 (that is, the molecular bonding between the thermoplastic resin film 1 and the first metal film 3) is completed so as to cover the above.
 ここで、上述した分子接合剤4とは、樹脂と金属等を化学的に結合させるための化学物であり、樹脂と結合する官能基と金属と結合する官能基が一つの分子構造中に存在するものである。また、分子接合技術とは、このような構造を備える分子接合剤4を用いて、樹脂と金属等を化学的に結合させる技術である。そして、これらの分子接合剤、及び分子接合技術は、特許第04936344号明細書、特許第05729852号明細書、及び特許第05083926号明細書において、より詳細に説明がなされている。 Here, the above-mentioned molecular bonding agent 4 is a chemical for chemically bonding a resin and a metal or the like, and a functional group bonding to a resin and a functional group bonding to a metal are present in one molecular structure. It is Further, the molecular bonding technology is a technology for chemically bonding a resin, a metal or the like by using a molecular bonding agent 4 having such a structure. And, these molecular bonding agents, and molecular bonding techniques are described in more detail in Japanese Patent No. 04936344, Japanese Patent No. 05729852, and Japanese Patent No. 05083926.
 本実施例においては、第1金属膜3の金属として銅を用い、図10に示すように、無電解めっきは粒子状に生成され、銅の粒子3aによってポーラス状に第1金属膜3が形成される。ここで、ポーラス状とは、第1金属膜3が膜上に完全に形成される膜厚を備えることがないものの、粒子どうしが全部ではないものの少なくとも一部が接触することによって膜全体として導通している状態をいう(必ずしも電気的な導通が必要というわけではなく、立体成型で粒子間距離が離れても、後述する第2金属膜で導通されれば良い。)。これらのことを換言すると、本実施例においては、銅を粒子状に0.02μm以上0.20μm以下堆積し、光を透過することができる膜厚を備える第1金属膜3を形成している。このように第1金属膜3の状態(すなわち、膜厚)を調整する理由は、光を透過しない完全な膜状に第1金属膜3を形成してしまうと、後述する立体成型の際に第1金属膜3に亀裂が生じたとしても、後述する第2金属膜によっても当該亀裂の修復が困難になるからである。より具体的には、第1金属膜3が0.02μmより薄いと、樹脂と銅の接点が減少し密着が低下するとともに、伸ばされた後の粒子間距離がはなれすぎ後述する第2金属膜での導通修復が困難になる。また、光を透過する状態で伸ばされた場合、粒子間の距離が空くだけなので亀裂は小さいが、光が透過しない完全な膜状で伸ばされると限界をこえた金属膜(第1金属膜3)には亀裂が生じ幅の広いクラックとなる。なお、図10においては、第1金属膜3の膜厚方向には1つの粒子3aのみが存在するように示されているが、第1金属膜3がポーラス状であれば、複数の粒子3aが膜厚方向に積層してもよい。 In the present embodiment, copper is used as the metal of the first metal film 3, and as shown in FIG. 10, electroless plating is generated in the form of particles, and the first metal film 3 is formed in the porous state by the copper particles 3a. Be done. Here, the porous state does not have a film thickness in which the first metal film 3 is completely formed on the film, but at least a part of particles is not in contact with each other, but at least a part of them contact each other. (It does not necessarily mean that electrical conduction is necessary, and it may be conducted with a second metal film described later even if the distance between particles is separated by three-dimensional molding). In other words, in the present embodiment, copper is deposited in the form of particles 0.02 μm or more and 0.20 μm or less to form the first metal film 3 having a film thickness capable of transmitting light. . The reason for adjusting the state (that is, the film thickness) of the first metal film 3 in this way is that when the first metal film 3 is formed in a complete film shape that does not transmit light, it will be This is because, even if a crack is generated in the first metal film 3, repair of the crack becomes difficult also by the second metal film described later. More specifically, when the first metal film 3 is thinner than 0.02 μm, the contact between the resin and copper decreases and the adhesion decreases, and the distance between the particles after being stretched becomes too large to be described later. Repair of continuity in In addition, when it is stretched in the light transmitting state, the cracks are small because the distance between the particles is only large, but if it is stretched in a complete film shape which does not transmit the light, the metal film (first metal film 3) ) Is cracked to form a wide crack. In FIG. 10, only one particle 3a is shown to be present in the film thickness direction of the first metal film 3. However, if the first metal film 3 is porous, a plurality of particles 3a are formed. May be stacked in the film thickness direction.
 第1金属膜3がポーラス状に形成される工程を、以下においてより詳細に説明する。図8に示した銅が析出を開始した状態から更に銅の析出を続けると、新たに析出する銅は、分子接合剤4と、又は既に析出して分子接合剤4と反応している銅と金属結合をする。この際、銅の自己触媒作用によって触媒であるPdの方が活性度が高いため、銅の生成は面方向(すなわち、熱可塑性樹脂フィルム1の表面に広がる方向)に進むことになるものの、厚み方向(すなわち、第1金属膜3の膜厚方向)にも進み始めることになる。そして、銅の自己触媒作用が始まると、銅が順次析出して銅どうしの金属結合が進むことになり、銅の成長は厚み方向により進み、膜厚が増加することになる。この状態においては、図11に示すように、銅の存在しない空隙部分が存在し、部分的には電気的導通が得られていない部分があるものの、形成された金属膜全体としては電気的な接続経路が存在するため電気的導通が得られている。上述したように、このような状態が、本実施例におけるポーラス状ということになる。そして、このようなポーラス状の第1金属膜3においては、銅の破断伸び率を超えても、大きなクラックが発生することなく、部分的に銅分子どうしの距離が若干広がるに留まることになる。 The process of forming the first metal film 3 in a porous form will be described in more detail below. When copper deposition is further continued from the state where copper has started to be deposited as shown in FIG. 8, newly deposited copper is combined with the molecular bonding agent 4 or with copper already deposited and reacting with the molecular bonding agent 4. Bond metal. At this time, since the activity of Pd, which is a catalyst, is higher due to the autocatalytic action of copper, the formation of copper proceeds in the surface direction (that is, the direction of spreading on the surface of the thermoplastic resin film 1). It also starts to move in the direction (that is, the film thickness direction of the first metal film 3). Then, when the autocatalysis of copper starts, copper is sequentially deposited to promote metal bonding between the coppers, and copper growth proceeds in the thickness direction, and the film thickness is increased. In this state, as shown in FIG. 11, although there is a void where copper does not exist and there is a part where electric conduction is not obtained, the formed metal film as a whole is electrically Electrical continuity is obtained because the connection path exists. As described above, such a state is referred to as a porous state in the present embodiment. And, in such a porous first metal film 3, even if the elongation at break of copper is exceeded, large cracks do not occur, and the distance between the copper molecules is only partially extended. .
 また、本実施例においては、分子接合剤4を介して、熱可塑性樹脂フィルム1と第1金属膜3とを化学結合しているため、熱可塑性樹脂フィルム1と第1金属膜3と界面を平滑にしつつも、両部材を強固に接合することができる。これにより、熱可塑性樹脂フィルム1の表面に凹凸を形成する必要がなくなり、製造工程の容易化及び製造コストの低減ならびに形成する配線回路の高精細化を図ることができる。なお、使用する分子接合剤は1種類に限定されることなく、例えば、分子接合剤4と当該分子接合剤4及び第1金属膜3と反応する官能基を備える他の分子接合剤とを混合して形成した化合物であってもよく、熱可塑性樹脂フィルム1及び第1金属膜3の材料に応じて、他のプロセス条件を含め適宜変更することができる。 Further, in the present embodiment, since the thermoplastic resin film 1 and the first metal film 3 are chemically bonded via the molecular bonding agent 4, the interface between the thermoplastic resin film 1 and the first metal film 3 is While smoothing, both members can be firmly joined. As a result, it is not necessary to form asperities on the surface of the thermoplastic resin film 1, and the manufacturing process can be simplified, the manufacturing cost can be reduced, and the definition of the wiring circuit to be formed can be enhanced. In addition, the molecular bonding agent to be used is not limited to one type, For example, the molecular bonding agent 4 and another molecular bonding agent having a functional group that reacts with the molecular bonding agent 4 and the first metal film 3 are mixed. Depending on the materials of the thermoplastic resin film 1 and the first metal film 3, other process conditions may be appropriately changed.
 また、第1金属膜3の材料は、銅に限定されることなく、例えば、銀、金、又はニッケル等の様々な金属、或いはこれらの金属及び銅のいずれかを少なくとも含む合金や各金属を積層したものを用いてもよいが、比較的にやわらかく破断伸び強度の高い金属を用いることが好ましい。ここで、使用する金属に応じて、光を透過し且つ導通している状態を実現するための膜厚が異なるため、他の金属を用いる場合には、第1金属膜3がポーラス状に形成されることを実現できるように、膜厚を適宜調整することになる。 Further, the material of the first metal film 3 is not limited to copper, and, for example, various metals such as silver, gold, or nickel, or an alloy containing at least one of these metals and copper, or each metal A laminate may be used, but it is preferable to use a metal that is relatively soft and high in breaking elongation strength. Here, since the film thickness for realizing the light transmitting and conducting state differs depending on the metal used, when other metals are used, the first metal film 3 is formed in a porous state. The film thickness is to be appropriately adjusted so as to realize the above.
 更に、第1金属膜3の形成方法については、上述した分子接合技術を用いた方法に限定されることなく、第1金属膜3をポーラス状に形成することができれば、例えば、スパッタ、蒸着、又は分子接合を使用する方法以外の湿式めっき等の成膜技術を用いてもよい。そして、第1金属膜3の形成については、使用される金属材料に応じて、最適な成膜技術を選択してもよい。 Furthermore, the method of forming the first metal film 3 is not limited to the method using the above-described molecular bonding technique, and it is possible to form the first metal film 3 in a porous state, for example, sputtering, vapor deposition, Alternatively, film formation techniques such as wet plating other than the method using molecular bonding may be used. And about formation of the 1st metal film 3, you may select the optimal film-forming technique according to the metal material to be used.
 なお、本実施例においては、熱可塑性樹脂フィルム1の第1の面1a、第2の面1b、及び貫通孔によって露出した熱可塑性樹脂フィルム1の側面1cを被覆するように、第1金属膜3を形成していたが、要求される立体配線基板の構造及び特性に応じて、熱可塑性樹脂フィルム1の第1の面1a又は第2の面1bのいずれかのみに第1金属膜3を形成してもよい。すなわち、本発明の立体配線基板には、両面に配線パターンが形成されたもののみならず、片面のみに配線パターンが形成されているものが含まれることになる。 In the present embodiment, the first metal film is coated so as to cover the first surface 1 a and the second surface 1 b of the thermoplastic resin film 1 and the side surface 1 c of the thermoplastic resin film 1 exposed by the through holes. Although 3 was formed, the first metal film 3 is formed only on either the first surface 1 a or the second surface 1 b of the thermoplastic resin film 1 depending on the structure and characteristics of the three-dimensional wiring substrate required. You may form. That is, the three-dimensional wiring board of the present invention includes not only one in which a wiring pattern is formed on both sides but also one in which a wiring pattern is formed only on one side.
 次に、図12に示すように、フォトリソグラフィによって第1金属膜3にパターニング処理を施し、所望の配線パターンを形成する(パターン形成工程)。具体的には、第1金属膜3が形成された状態であって立体成型前の平坦な状態の熱可塑性樹脂フィルム1の表面にレジストフィルムを熱圧着し、所定のパターンが印刷されたマスクフィルムを用いて露光及び現像を行う。続いて、現像されたレジストフィルムをエッチングマスクとして第1金属膜3にエッチングを施して所望の配線パターンを形成する。その後に、当該レジストフィルムを剥離除去する。ここで、後述する立体成型による第1金属膜3の伸び及び変形を考慮して、配線パターンの形状(配線幅、配線長、配線間隔等)を調整しておくことが好ましい。 Next, as shown in FIG. 12, the first metal film 3 is patterned by photolithography to form a desired wiring pattern (pattern formation step). Specifically, a resist film is thermocompression-bonded on the surface of the thermoplastic resin film 1 in a flat state before three-dimensional molding in a state in which the first metal film 3 is formed, and a mask film on which a predetermined pattern is printed Exposure and development are performed using Subsequently, the first metal film 3 is etched using the developed resist film as an etching mask to form a desired wiring pattern. Thereafter, the resist film is peeled and removed. Here, it is preferable to adjust the shape of the wiring pattern (wiring width, wiring length, wiring interval, etc.) in consideration of the elongation and deformation of the first metal film 3 due to three-dimensional molding described later.
 このように、フォトリソグラフィによって第1金属膜3にパターニングを施すため、インクジェット印刷技術又はグラビアオフセット印刷技術等を用いたパターニング形成よりも高精細なパターンを実現することができる。すなわち、第1金属膜3は、インクジェット印刷技術又はグラビアオフセット印刷技術等を用いてパターンニングされた配線パターンよりも、解像度が高く(すなわち、直線性が優れ高精細な配線形成が実現される。)なる。 As described above, since the first metal film 3 is patterned by photolithography, it is possible to realize a pattern with a higher definition than patterning using the inkjet printing technique or the gravure offset printing technique. That is, the first metal film 3 has a resolution higher than that of a wiring pattern patterned using an inkjet printing technique, a gravure offset printing technique, or the like (that is, excellent in linearity and high definition wiring formation is realized). )Become.
 次に、第1金属膜3が形成された状態の熱可塑性樹脂フィルム1に対して、加熱処理及び加圧処理を施して立体成型を行う(第1の立体成型工程)。具体的な第1の立体成型工程としては、先ず、上述した位置決め孔を用いて、成型用の金型11に対して熱可塑性樹脂フィルム1の位置決めを行う。これは、成型位置と配線パターン位置を合わせるためのものである。すなわち、図13に示すように、金型11の上部金型12と下部金型13との間に熱可塑性樹脂フィルム1を配置することになる。続いて、図14に示すように、上部金型12を上部加熱装置14で加熱するとともに、下部金型13を下部加熱装置15によって加熱を行う。ここで、本実施例においては、熱可塑性樹脂フィルム1にポリイミドフィルムを用いているため、加熱温度は材料のガラス転移点温度より高い270℃~350℃の範囲内(例えば、300℃)で調整することができるが、熱可塑性樹脂フィルム1の材料に応じて当該加熱温度は適宜調整されることになる。ここで、加熱温度は、当該ガラス転移温度以上であって、熱可塑性樹脂フィルム1の耐熱温度以下であることが必要となるが、当該範囲内においてできる限り低い温度に設定することが好ましい。これは、熱可塑性樹脂フィルム1上に形成される第1金属膜3と熱可塑性樹脂フィルム1の加熱による密着低下を低減するためである。 Next, the thermoplastic resin film 1 in a state in which the first metal film 3 is formed is subjected to heat treatment and pressure treatment to perform three-dimensional molding (first three-dimensional molding process). As a specific first three-dimensional molding process, first, the thermoplastic resin film 1 is positioned with respect to the mold 11 for molding using the positioning holes described above. This is for aligning the molding position and the wiring pattern position. That is, as shown in FIG. 13, the thermoplastic resin film 1 is disposed between the upper mold 12 and the lower mold 13 of the mold 11. Subsequently, as shown in FIG. 14, the upper mold 12 is heated by the upper heating device 14, and the lower mold 13 is heated by the lower heating device 15. Here, in the present embodiment, since the polyimide film is used for the thermoplastic resin film 1, the heating temperature is adjusted within the range of 270 ° C. to 350 ° C. (eg, 300 ° C.) higher than the glass transition temperature of the material. However, depending on the material of the thermoplastic resin film 1, the heating temperature is appropriately adjusted. Here, the heating temperature needs to be equal to or higher than the glass transition temperature and equal to or lower than the heat resistance temperature of the thermoplastic resin film 1, but it is preferable to set the temperature as low as possible within the range. This is to reduce the decrease in adhesion of the first metal film 3 formed on the thermoplastic resin film 1 and the thermoplastic resin film 1 due to heating.
 当該加熱処理を行いつつ、上部金型12及び下部金型13を近づけ、熱可塑性樹脂フィルム1に対して、上下から所望の圧力(例えば、10MPa)によってプレス処理を行う(図15)。なお、所望の圧力とは、熱可塑性樹脂フィルム1の材料、圧力が弱すぎると所望の立体成型が困難になる点を考慮して適宜調整することになる。そして、プレス処理の完了後に、熱可塑性樹脂フィルム1を金型11から取り出し(図16)、熱可塑性樹脂フィルム1の立体成型が完了する。換言すると、立体配線基板用の第1基材16の形成が完了する。なお、図13乃至図16において、第1金属膜3の図示は省略している。また、要求される立体形状にもよるが、実際の立体配線基板の形状は複数の凹凸が形成されることになるため、金型11も複数の凹凸を有しており、上部金型12と下部金型13との複数の凹凸が互いに嵌合するような構造が採用されてもよい。 While performing the heat treatment, the upper mold 12 and the lower mold 13 are brought close, and the pressing process is performed on the thermoplastic resin film 1 from above and below under a desired pressure (for example, 10 MPa) (FIG. 15). The desired pressure is appropriately adjusted in consideration of the fact that the material of the thermoplastic resin film 1 and the desired three-dimensional molding become difficult if the pressure is too weak. Then, after completion of the pressing process, the thermoplastic resin film 1 is taken out of the mold 11 (FIG. 16), and the three-dimensional molding of the thermoplastic resin film 1 is completed. In other words, the formation of the first base 16 for a three-dimensional wiring substrate is completed. The first metal film 3 is not shown in FIGS. 13 to 16. In addition, although depending on the required three-dimensional shape, the actual shape of the three-dimensional wiring substrate is to be formed with a plurality of asperities, so the mold 11 also has a plurality of asperities, and the upper mold 12 and A structure may be employed in which a plurality of concavities and convexities with the lower mold 13 are fitted to each other.
 図17に示されているように、立体成型が完了した熱可塑性樹脂フィルム1(すなわち、立体配線基板用の第1基材16)には、立体成型によって屈曲した屈曲部1dに亀裂17が生じやすくなっている。ここで、図18に示すように、亀裂17とは、第1金属膜3を構成する銅の粒子3aの粒子間距離の拡大によって生じる隙間のことであり、光が透過しない完全な金属膜状において当該金属膜が伸ばされることによって生じる亀裂と比較して、その構造が異なっている。なお、第1金属膜3の成膜状態、及び立体成型による三次元形状によっては、亀裂が発生しない場合もある。また、図18に示すように、亀裂17は、熱可塑性樹脂フィルム1が伸ばされたのに対し、第1金属膜3はそれに従って粒子間距離が広がることになるが、第1金属膜3がポーラス状に形成されているため、亀裂17自体の深さは粒子3aの寸法と同等であって非常に小さくなり、更には第1金属膜3が完全な膜状にて形成される場合と比較して亀裂17の幅も小さくなる。すなわち、本実施例に係る立体配線基板用の第1基材16は、第1金属膜3が完全な膜状にて形成される場合と比較して、亀裂17の修復をより容易に可能とする状態になっている。換言すれば、光を透過する状態で伸ばされた場合、粒子間の距離が空くだけなので亀裂17(粒子間の隙間)は小さいが、光が透過しない完全な膜状で伸ばされると限界をこえた金属膜には亀裂が生じ幅の広いクラックが生じることになる。 As shown in FIG. 17, in the thermoplastic resin film 1 (that is, the first base material 16 for a three-dimensional wiring substrate) which has been three-dimensionally molded, a crack 17 is generated in a bent portion 1 d which is bent by three-dimensional molding. It is easier. Here, as shown in FIG. 18, the crack 17 is a gap formed by an increase in the distance between particles of copper particles 3 a constituting the first metal film 3, and it is a complete metal film that does not transmit light. The structure is different in comparison with the crack caused by the metal film being stretched in. Cracks may not occur depending on the film formation state of the first metal film 3 and the three-dimensional shape by three-dimensional molding. Further, as shown in FIG. 18, while the cracks 17 in the thermoplastic resin film 1 are stretched, the inter-particle distance of the first metal film 3 is expanded accordingly, but the first metal film 3 is Because it is formed in a porous shape, the depth of the crack 17 itself is very small, equal to the size of the particle 3a, and compared with the case where the first metal film 3 is formed in a complete film shape. The width of the crack 17 also decreases. That is, the first base 16 for a three-dimensional wiring substrate according to the present embodiment makes it possible to easily repair the crack 17 as compared with the case where the first metal film 3 is formed in a complete film shape. It is in the state of In other words, when stretched in the light transmitting state, the cracks 17 (the gaps between the particles) are small because the distance between the particles is only large, but when stretched in a complete film shape that does not transmit the light, the limit is exceeded. In the metal film, cracks occur and wide cracks are generated.
 また、屈曲部1dにおける亀裂17の発生を減少させる方法として、熱可塑性樹脂フィルム1を2枚の保護フィルムによって挟んだ状態において、上述した立体成型を行ってもよい。これにより、屈曲部1dにおける角部1eの形状を若干滑らかにすることができ、亀裂17の発生を抑制することができる。ここで、当該保護フィルムは、熱可塑性樹脂フィルム1と同一の材料で形成することが好ましい。更に、屈曲部1dにおける亀裂17の発生を減少させる方法として、屈曲部1dにおける角部1eの形状を湾曲させる、或いはその角度を90度よりも小さく(例えば、75度~85度)となるように、金型11を設計してもよい。 Further, as a method of reducing the occurrence of the cracks 17 in the bent portion 1d, the above-described three-dimensional molding may be performed in a state in which the thermoplastic resin film 1 is sandwiched by two protective films. Thereby, the shape of the corner portion 1 e in the bent portion 1 d can be slightly smoothed, and the generation of the crack 17 can be suppressed. Here, the protective film is preferably formed of the same material as the thermoplastic resin film 1. Furthermore, as a method of reducing the occurrence of the cracks 17 in the bending portion 1d, the shape of the corner portion 1e in the bending portion 1d is curved or the angle is made smaller than 90 degrees (for example, 75 degrees to 85 degrees) Alternatively, the mold 11 may be designed.
 なお、本実施例においては、熱可塑性樹脂フィルム1を上部金型12及び下部金型13を用いて上下からプレス処理を施しているが、ヒートプレス後における熱可塑性樹脂フィルム1の厚みの均一性を確保することができれば、真空プレス、又は圧空プレス等の他のプレス加工方法を用いてもよい。 In the present embodiment, although the thermoplastic resin film 1 is subjected to press processing from above and below using the upper mold 12 and the lower mold 13, the uniformity of the thickness of the thermoplastic resin film 1 after heat pressing As long as it can ensure, you may use other press processing methods, such as a vacuum press or a pneumatic press.
 次に、立体配線基板用の第1基材16の第1金属膜3の表面を被覆するように、第2金属膜21を形成する(第2金属膜形成工程:図19)。本実施例においては、一般的な無電解めっきによって第1金属膜3の表面上に金属を追加的に堆積する。 Next, a second metal film 21 is formed to cover the surface of the first metal film 3 of the first base 16 for a three-dimensional wiring substrate (second metal film forming step: FIG. 19). In this embodiment, a metal is additionally deposited on the surface of the first metal film 3 by general electroless plating.
 具体的な第2金属膜形成工程としては、先ず、成型工程の加熱によって第1基材16の表面上に形成された酸化層を除去するために、第1基材16を所望の洗浄液(例えば、酸脱脂液、硫酸液)に浸す。続いて、触媒処理を行って第1基材16の第1金属膜3に、第1金属膜3と置換するタイプの触媒(例えばPd触媒)を反応させ、その後に第1基材16を無電解めっき液に浸す。そして、表面に触媒が存在する第1金属膜3の周囲に対してのみ選択的に金属が堆積することになり、配線回路とならない領域(すなわち、熱可塑性樹脂フィルム1の露出領域)には金属が堆積されず、第2金属膜21の追加のパターニングが不要となる。 As a specific second metal film forming step, first, in order to remove the oxide layer formed on the surface of the first base 16 by heating in the molding step, the first base 16 may be washed with a desired cleaning solution (for example, Soak in acid degreasing solution, sulfuric acid solution). Subsequently, the catalyst treatment is carried out to cause the first metal film 3 of the first substrate 16 to react with a catalyst of a type to be substituted for the first metal film 3 (for example, Pd catalyst). Immerse in electrolytic plating solution. Then, the metal is selectively deposited only on the periphery of the first metal film 3 on the surface of which the catalyst is present, and the metal does not become the wiring circuit (that is, the exposed region of the thermoplastic resin film 1) Is not deposited, and the additional patterning of the second metal film 21 is not necessary.
 本実施例においては、第2金属膜21の金属として銅を用い、図20及び図21から分かるように、複数の銅の粒子21aが第1金属膜3の粒子3a上に堆積することになる。ここで、第2金属膜21をポーラス状に形成することなく、完全な膜状に形成する。特に、本実施例においては、1時間の浸漬により、5μm以上の膜厚を備える第2金属膜21を形成することができた。また、本実施例においては、第2金属膜21を構成する粒子21aが、第1金属膜3を構成する粒子3aの周囲に成長することになり、第2金属膜21の厚み方向及び当該厚み方向に直交する方向(第2金属膜21の平面方向)に対して同程度に成長することになる。これにより、立体成型によって生じた第1金属膜3の亀裂17を修復するように、第2金属膜21を形成することができる。すなわち、第2金属膜21の形成により、亀裂17による導通不良を回復させ、確実な導通を実現することができる配線回路(第1金属膜3及び第2金属膜21からなる導体層)を形成することができる。ここで、第2金属膜21による亀裂17の修復は、第2金属膜21の膜厚に対して2倍程度の亀裂17の幅を修復できるため、第2金属膜21の膜厚を想定される亀裂17の最大幅の1/2倍以上に調整してもよく、より好ましくは亀裂17の幅と同程度の膜厚に調整してもよい。また、この第2金属膜21は貫通孔2の側面1cにも表層と同様に生成され、貫通孔2による表裏の導通不良が仮にあった場合でも導通を修復することが可能である。 In the present embodiment, copper is used as the metal of the second metal film 21, and as can be seen from FIGS. 20 and 21, a plurality of copper particles 21a are deposited on the particles 3a of the first metal film 3. . Here, the second metal film 21 is formed in a complete film shape without being formed in a porous shape. In particular, in the present example, the second metal film 21 having a film thickness of 5 μm or more could be formed by immersion for 1 hour. Further, in the present embodiment, the particles 21 a constituting the second metal film 21 grow around the particles 3 a constituting the first metal film 3, and the thickness direction of the second metal film 21 and the thickness thereof The same growth occurs in the direction orthogonal to the direction (the planar direction of the second metal film 21). Thereby, the second metal film 21 can be formed so as to repair the cracks 17 of the first metal film 3 generated by three-dimensional molding. That is, the formation of the second metal film 21 recovers the conduction failure due to the crack 17 and forms a wiring circuit (a conductor layer formed of the first metal film 3 and the second metal film 21) capable of realizing reliable conduction. can do. Here, since repair of the crack 17 by the second metal film 21 can repair the width of the crack 17 about twice as large as the film thickness of the second metal film 21, the film thickness of the second metal film 21 is assumed. The thickness may be adjusted to 1/2 or more of the maximum width of the crack 17 or, more preferably, may be adjusted to the same thickness as the width of the crack 17. The second metal film 21 is also formed on the side surface 1 c of the through hole 2 in the same manner as the surface layer, and the conduction can be restored even if there is a conduction failure on the front and back due to the through hole 2 temporarily.
 更に、本実施例においては、配線回路(配線パターン)として必要となる導体層の層厚(配線パターン厚み)が第1金属膜3の膜厚では不足しているものの、第2金属膜21を形成することによって当該導体層の必要な層厚を確保することができる。 Furthermore, in the present embodiment, although the layer thickness (wiring pattern thickness) of the conductor layer required as the wiring circuit (wiring pattern) is insufficient at the film thickness of the first metal film 3, the second metal film 21 is used. By forming, the required layer thickness of the said conductor layer is securable.
 なお、本実施例においては、無電解めっきによって第2金属膜21を形成したが、最終的に第1金属膜3の表面上のみ第2金属膜21を形成することができれば、他の成膜技術(例えば、電解めっき、導電性インクの塗布等)を用いてもよい。但し、本実施例の様に無電解メッキにより第2金属膜21を形成する場合は、独立した配線すなわち当該配線回路が成型体の外周部から電気的に離間していても形成が可能であるが、電解めっきによって第2金属膜21を形成する場合は、全ての配線が成型体の外周部と電気的に導通していることが必要であり、給電線の設置を含めて設計時に考慮することが必要となる。また、この場合、立体成型による非導通部分が発生していた場合、非導通部分から先は電気が流れないため第2金属膜21が形成出来なくなる。 In the present embodiment, the second metal film 21 is formed by electroless plating, but if the second metal film 21 can be finally formed only on the surface of the first metal film 3, other film formation is possible. Techniques (eg, electrolytic plating, application of conductive ink, etc.) may be used. However, in the case of forming the second metal film 21 by electroless plating as in this embodiment, it is possible to form an independent wiring, that is, even when the wiring circuit is electrically separated from the outer peripheral portion of the molded body. However, in the case of forming the second metal film 21 by electrolytic plating, it is necessary that all the wirings are electrically conducted to the outer peripheral portion of the molded body, and it is considered in design including the installation of the feeders. It will be necessary. Further, in this case, when a nonconductive portion is generated by three-dimensional molding, the second metal film 21 can not be formed because electricity does not flow from the nonconductive portion.
 なお、第2金属膜21の材料は、銅に限定されることなく、ニッケル若しくはニッケルクロム、ニッケル銅、金、又は銀等の他の金属またはこれらを含む合金を用いてよく、立体配線基板に要求される特性及び信頼性に応じてその材料を適宜調整することができる。 The material of the second metal film 21 is not limited to copper, and other metals such as nickel or nickel chromium, nickel copper, gold, or silver, or alloys containing these may be used. The material can be appropriately adjusted according to the required properties and reliability.
 上述した製造工程を経た後に、第2金属膜21の表面に防錆剤処理を施して、第1金属膜3及び第2金属膜21が積層された積層構造を備える配線パターン22が形成されるとともに、熱可塑性樹脂フィルム1及び配線パターン22から構成される立体配線用の第2基材30の製造が完了する。ここで、第1基材16と第2基材30との相違は、第2金属膜21の有無だけであり、第2基材30が立体配線基板を構成するための立体成型物に該当する。すなわち、上述した工程により、立体成型物準備工程が完了することになる。 After passing through the above-described manufacturing process, the surface of the second metal film 21 is treated with a rust inhibitor to form a wiring pattern 22 having a laminated structure in which the first metal film 3 and the second metal film 21 are laminated. At the same time, the production of the second base material 30 for three-dimensional wiring composed of the thermoplastic resin film 1 and the wiring pattern 22 is completed. Here, the difference between the first base material 16 and the second base material 30 is only the presence or absence of the second metal film 21, and the second base material 30 corresponds to a three-dimensional molding for forming the three-dimensional wiring substrate. . That is, the three-dimensional molded object preparation step is completed by the above-described steps.
 図19乃至図21からわかるように、本実施例に係る第2基材30においては、熱可塑性樹脂フィルム1の表面においてポーラス状に形成された第1金属膜3に生じる亀裂が、第1金属膜3よりも厚い膜厚で形成された第2金属膜21によって確実に修復されており、配線パターン22の断線が防止された優れた信頼性が備えられている。また、上述した製造方法より、MID基板と比較して、より容易に微細な配線パターン(例えば、L/S=30/30μm)を実現することができ、小型化及び低コスト化も実現されている。 As can be seen from FIGS. 19 to 21, in the second base material 30 according to the present example, the cracks generated in the first metal film 3 formed in a porous shape on the surface of the thermoplastic resin film 1 are the first metal It is reliably repaired by the second metal film 21 formed to have a film thickness larger than that of the film 3 and has excellent reliability in which the disconnection of the wiring pattern 22 is prevented. Further, according to the manufacturing method described above, a finer wiring pattern (for example, L / S = 30/30 μm) can be realized more easily than the MID substrate, and miniaturization and cost reduction can also be realized. There is.
 そして、最終的に形成される第2基材30は、図22に示すように、X方向及びY方向のそれぞれの位置において、Z方向の寸法(すなわち、高さ)が異なっており、XY平面において凹凸が形成されている。なお、図22は、第2基材30の3次元形状を説明するための模式的な図面であり、配線パターン22及び貫通孔は省略している。 Then, as shown in FIG. 22, the second base material 30 finally formed has different dimensions (ie, heights) in the Z direction at respective positions in the X direction and the Y direction, and the XY plane The unevenness is formed in the. FIG. 22 is a schematic view for explaining the three-dimensional shape of the second base material 30, and the wiring pattern 22 and the through holes are omitted.
 次に、図23に示すように、第2基材30に対して感光性材料をスプレー塗布し、第2基材30の表裏面(すなわち、熱可塑性樹脂フィルム1の第1の面1a側及び第2の面1b側)に保護膜31を形成する(保護膜形成工程)。具体的には、先ず、主材となる感光性樹脂インク(ネガ型のフォトレジスト)に硬化剤及び溶剤を所定の比率で混合し、30分間の撹拌を実施する。この混合及び撹拌は、特定の波長の光がカットされたイエロールームで実施され、これにより感光性樹脂インクの硬化の進行が防止される。続いて、混合及び撹拌された後の感光性樹脂インク(すなわち、感光性材料)をエアブラシに充填する。当該エアブラシは、量産レベルで使用される比較的に大型の塗布装置であってもよく、一般的な模型製作用に用いられる小型のものであってもよい。その後、第2基材30をスプレーする角度を調整しながら360度回転させつつ、第2基材30の表裏面に対して均一に感光性材料をスプレー塗布する。このようなスプレーする角度を調整する理由としては、垂直方向からのスプレーでは、段差部の垂直に近い面に塗布されないか、もしくは薄くなってしまうためである。このようなスプレー塗布により、第2基材30の凹凸部分及びその近傍に対しても確実に感光性材料を塗布することができ、立体成型された第2基材30の全面に対して、均一に感光性材料を塗布することができる。 Next, as shown in FIG. 23, the photosensitive material is spray-coated on the second base material 30, and the front and back surfaces of the second base material 30 (ie, the first surface 1a side of the thermoplastic resin film 1 and The protective film 31 is formed on the second surface 1 b side) (protective film forming step). Specifically, first, a curing agent and a solvent are mixed in a predetermined ratio with a photosensitive resin ink (a negative photoresist) as a main material, and stirring is performed for 30 minutes. The mixing and stirring are performed in a yellow room in which light of a specific wavelength is cut, thereby preventing the progress of curing of the photosensitive resin ink. Subsequently, the photosensitive resin ink (that is, the photosensitive material) after being mixed and stirred is filled in an airbrush. The air brush may be a relatively large coating device used at mass production level, or may be a small one used for general model production. Thereafter, the photosensitive material is spray-coated uniformly on the front and back surfaces of the second base material 30 while being rotated 360 degrees while adjusting the angle at which the second base material 30 is sprayed. The reason for adjusting such a spray angle is that the spray from the vertical direction is not applied to the surface close to the vertical of the stepped portion or becomes thinner. By such spray coating, the photosensitive material can be reliably applied to the uneven portion of the second base 30 and the vicinity thereof, and the entire surface of the three-dimensionally shaped second base 30 can be uniformly coated. Can be coated with a photosensitive material.
 なお、上記した感光性材料の塗布については、1度に必要な厚みの感光性材料を塗布することなく、感光性材料の塗布を少量ずつ複数回に分け薄く塗り、各塗布後に感光性材料を乾燥させることが好ましい。換言すると、第2基材30に対して、感光性材料のスプレー塗布及び乾燥を角度や方向を変えながら複数回繰り返し、所望の膜厚を有する保護膜を形成することが好ましい。これは、1度に大量の感光性材料を塗布すると、第2基材30の凹部及び凸部において塗布ムラが生じ易くなり、保護膜31の均一性が低下するためである。 In addition, about application | coating of the above-mentioned photosensitive material, the application | coating of a photosensitive material is divided into multiple times little by little and thinly coats, without applying the photosensitive material of the thickness required at once, and a photosensitive material is applied after each application. It is preferable to dry. In other words, it is preferable to form the protective film having a desired film thickness by repeating the spray application and the drying of the photosensitive material on the second substrate 30 a plurality of times while changing the angle and direction. This is because when a large amount of photosensitive material is applied at one time, application unevenness easily occurs in the concave and convex portions of the second base material 30, and the uniformity of the protective film 31 is reduced.
 次に、保護膜31が形成された状態の第2基材30に対して所定の加熱処理を施し、塗布された感光性材料の仮硬化を行う。当該加熱処理の条件は、使用される感光性材料によって異なるが、感光性材料の粘着性が概ねなくなる条件(例えば、80℃で30分間)で加熱処理が行われる。 Next, predetermined heat treatment is performed on the second base material 30 in a state in which the protective film 31 is formed, and temporary curing of the applied photosensitive material is performed. Although the conditions of the said heat processing change with photosensitive materials used, heat processing are performed on the conditions (for example, 30 minutes at 80 degreeC) which the adhesiveness of a photosensitive material lose | eliminates substantially.
 次に、第2基材30に対応させて立体成型された露光マスクフィルムを準備する(露光マスクフィルム準備工程)。具体的には、露光マスクフィルムの主材となるポリエチレンテレフタラート等の公知の樹脂フィルム32、33を準備する(図24)。ここで用いられる樹脂フィルムの条件としては、露光用の紫外線波長を透過すること、および立体成型に対応できる破断伸びを有することが必要である。また、本実施例においては、露光マスクフィルムとして使用される樹脂フィルム32、33の膜厚を約50μmとしたが、約25μm~100μmの範囲内で調整することができる。このような膜厚に調整する理由としては、膜厚が厚すぎると樹脂フィルム32、33の立体成型が困難となり、第2基材30の表層形状に沿わなくなることによる第2基材30との密着性の低下による露光の解像度の低下をもたらすことがあるからである。なお、露光マスクフィルムの材料は、必要な破断伸び(少なくとも50%以上、好ましくは100%以上)を有する、熱可塑性樹脂フィルム、熱硬化性樹脂フィルム、或いは熱硬化性樹脂と熱可塑性樹脂を積層した複合樹脂フィルムであってもよく、立体成型の容易性及び露光マスクフィルムを繰り返し使用する観点から適宜材料を選択することができる。 Next, a three-dimensionally formed exposure mask film corresponding to the second substrate 30 is prepared (exposure mask film preparation step). Specifically, known resin films 32 and 33 such as polyethylene terephthalate, which are main components of the exposure mask film, are prepared (FIG. 24). As conditions of the resin film used here, it is necessary to transmit the ultraviolet wavelength for exposure, and to have a breaking elongation that can correspond to three-dimensional molding. Further, in the present embodiment, although the film thickness of the resin films 32 and 33 used as the exposure mask film is about 50 μm, it can be adjusted within the range of about 25 μm to 100 μm. The reason why the film thickness is adjusted to such a thickness is that if the film thickness is too large, three-dimensional molding of the resin films 32 and 33 becomes difficult, and the second substrate 30 does not conform to the surface shape of the second substrate 30 This is because the reduction in adhesion may lead to a reduction in exposure resolution. The material of the exposure mask film is a thermoplastic resin film, a thermosetting resin film, or a thermosetting resin and a thermoplastic resin, which has a required breaking elongation (at least 50% or more, preferably 100% or more). The material may be selected appropriately from the viewpoint of ease of three-dimensional molding and repeated use of the exposure mask film.
 続いて、図25に示すように、樹脂フィルム32、33のそれぞれの表面上に、インクジェット印刷、スクリーン印刷、これに類する印刷方法によって黒色のインクを塗布し、後述する露光の際に照射される光を遮光する遮光部34を形成する。一般的なポリエチレンテレフタラートシート上の銀塩感光膜に光をあてて露光・現像したフォトマスクフィルムを用いても良いが、市販されている銀塩感光膜を表面塗布されたフォトマスクフィルムの厚みは150~200μm程度と厚く、後述する立体成型での形状が金型形状を反映しにくく第2基材30の表面形状にあわせにくく、露光時の密着がうまくいかないため使用するのは困難である。本実施例においては、保護膜31の開口形成位置に対応させて遮光部34の形成位置が調整されている。この際、後述する立体成型時に使用される金型に設けられた位置決めピンに対応するアライメントマークも形成される。ここで、遮光部34の材料である黒色のインクは、比較的に柔軟で伸びのあるものが好ましい。このような特性を備えるインクが好ましい理由は、遮光部34の形成領域に対しても後述する立体成型がなされる場合に、当該立体成型に伴って遮光部34にクラックが発生することを防止するためである。そして、遮光部34の厚みは、後述する露光の際に照射される光を確実に遮光することができる範囲で調整することができるが、立体成型に伴うクラック発生を考慮して、できる限り薄くすることが好ましい。そもそも立体配線基板のランドやそれに合わせたレジスト開口部は段差部には存在せず、平坦部か平坦部に近い角度の斜面、曲面、これらの微小段差部を含む面への当該レジスト開口部の形成に限定されることを前提としており、そのような基板設計をすることが必要となる。これにより遮光部に塗布される黒色インクは基本的に平坦部か平坦部に近い角度の斜面、曲面、これらの微小段差部を含む面、に相当する部分に限定されて塗布されることになるため、伸びによる破断の起きやすい段差相当部分への塗布は基本的には行われない。なお、遮光部34の材料は、後述する露光の際に照射される光を確実に遮光することができれば、他の色のインク等を用いてもよい。 Subsequently, as shown in FIG. 25, a black ink is applied on the surface of each of the resin films 32 and 33 by inkjet printing, screen printing, or the like printing method, and is irradiated at the time of exposure described later A light shielding portion 34 for shielding light is formed. Although a photomask film exposed to light and developed by exposing a silver salt photosensitive film on a general polyethylene terephthalate sheet may be used, the thickness of the photomask film coated with a commercially available silver salt photosensitive film may be used. Is as thick as about 150 to 200 μm, and the shape in the three-dimensional molding described later is difficult to reflect the mold shape and difficult to conform to the surface shape of the second substrate 30, and adhesion at the time of exposure is difficult. In the present embodiment, the formation position of the light shielding portion 34 is adjusted in correspondence with the opening formation position of the protective film 31. At this time, alignment marks corresponding to positioning pins provided on a mold used at the time of three-dimensional molding described later are also formed. Here, it is preferable that the black ink which is the material of the light shielding portion 34 be relatively flexible and stretchable. The reason why the ink having such characteristics is preferable is that, when three-dimensional molding described later is also performed on the formation region of the light-shielding portion 34, generation of cracks in the light-shielding portion 34 accompanying the three-dimensional molding is prevented. It is for. And although the thickness of the light shielding part 34 can be adjusted in the range which can light-block the light irradiated in the case of the exposure mentioned later reliably, in consideration of the crack generation accompanying solid molding, it is as thin as possible It is preferable to do. The lands of the three-dimensional wiring board and the resist opening corresponding to the land do not exist in the step, but the slope of the flat portion or an angle close to the flat portion, a curved surface, and the resist opening to the surface including the minute step It is assumed that the formation is limited, and it is necessary to design such a substrate. As a result, the black ink applied to the light shielding portion is basically limited and applied to a portion corresponding to a flat surface or an inclined surface having an angle close to the flat surface, a curved surface, or a surface including these minute step portions. Therefore, the application to the portion corresponding to the level difference which is likely to break due to elongation is basically not performed. In addition, as a material of the light shielding portion 34, ink or the like of another color may be used as long as the light irradiated in the exposure described later can be surely shielded.
 遮光部34の形成後に、樹脂フィルム32、33に対して、加熱処理及び加圧処理を施して第2の立体成型を行う。例えば、当該第2の立体成型は熱可塑性樹脂フィルム1に対する第1の立体成型工程(図13乃至図16に示す)と同様に行われ、金型11が使用されるとともに、所望の圧力(例えば、10MPa)によってプレス処理が行われる。加熱は必要に応じて行っても良いが、いずれにしろ樹脂フィルム32、33、遮光部34に用いられる樹脂インクのガラス転移温度以下の温度とする。フィルム厚が薄い場合は常温で、加熱なしでもよい。本実施例においては、第2基材30とほぼ同等の厚みを備える離型フィルムを準備し、当該離型フィルムを樹脂フィルム32、33によって挟持させつつ、上記加圧処理が施されることになる。この際、上述したアライメントマークに開口が形成され、当該開口に金型11に設けられた位置決めピンが嵌挿され、正確な位置決めがなされることになる。このような加圧処理を経て、熱可塑性樹脂フィルム1の第1の面1a側の形状に対応して樹脂フィルム33の立体成型がなされて露光マスクフィルム35が完成し、熱可塑性樹脂フィルム1の第2の面1b側の形状に対応して樹脂フィルム32の立体成型がなされて露光マスクフィルム36が完成することになる。 After the formation of the light shielding portion 34, the resin films 32 and 33 are subjected to a heat treatment and a pressure treatment to perform a second three-dimensional molding. For example, the second three-dimensional molding is performed in the same manner as the first three-dimensional molding process (shown in FIGS. 13 to 16) for the thermoplastic resin film 1, and the mold 11 is used and a desired pressure (for example, , 10 MPa) is performed. Heating may be performed as necessary, but in any case, the temperature is equal to or less than the glass transition temperature of the resin ink used for the resin films 32 and 33 and the light shielding portion 34. When the film thickness is thin, it may be normal temperature without heating. In the present embodiment, a release film having a thickness substantially equal to that of the second base material 30 is prepared, and the above-described pressure treatment is performed while the release film is held by the resin films 32 and 33. Become. At this time, an opening is formed in the above-described alignment mark, and the positioning pin provided on the mold 11 is inserted into the opening, and accurate positioning is performed. After such pressure treatment, three-dimensional molding of the resin film 33 is performed corresponding to the shape on the first surface 1 a side of the thermoplastic resin film 1, and the exposure mask film 35 is completed. The three-dimensional molding of the resin film 32 is performed corresponding to the shape on the second surface 1 b side, and the exposure mask film 36 is completed.
 なお、樹脂フィルム32、33の立体成型については、樹脂フィルム32、33が第2基材30に対応する形状に立体成型されればよく、熱可塑性樹脂フィルム1の立体成型に使用した金型11とは別の金型を使用してもよい。また、樹脂フィルム32、33を同時に立体成型することなく、独立して立体成型してもよい。 The three-dimensional molding of the resin films 32 and 33 may be performed by three-dimensionally molding the resin films 32 and 33 in a shape corresponding to the second substrate 30, and the mold 11 used for the three-dimensional molding of the thermoplastic resin film 1. You may use another mold. Alternatively, the resin films 32 and 33 may be independently three-dimensionally molded without being simultaneously three-dimensionally molded.
 次に、図27に示すように、保護膜31を被覆するように露光マスクフィルム35、36を配置する(露光マスクフィルム配置工程)。より具体的には、露光マスクフィルム35を熱可塑性樹脂フィルム1(第2基材30)の第2の面1b側に配置し、露光マスクフィルム36を熱可塑性樹脂フィルム1(第2基材30)の第1の面1a側に配置し、第2基材30を2つの露光マスクフィルム35、36を挟むようにする。なお、当該配置の時点において、露光マスクフィルム35、36は、第2基材30と完全に密着していなくてもよい。当該露光マスクフィルム配置工程においては、露光マスクフィルム35、36の遮光部34が保護膜31に接触するように配置される。換言すると、露光マスクフィルム35、36の表面であって遮光部34の形成面側が、保護膜31側に位置するように配置されることになる。このような配置により、遮光部34と保護膜31が直接的に接触することになり、露光用の光の回り込みが低減され、より高精度な露光を行うことが可能になる。なお、樹脂フィルム32、33を非常に薄くすることにより、露光用の光の回り込みをある程度低減することができれば、遮光部34の形成面側が保護膜31側に位置しなくても良い。この際、第2基材30上の配線パターンのランド部開口位置と、露光マスクフィルム35、36の遮光部の位置を合わせることが必要であるが、双方が立体形成されているため、重ねると必然的に位置合わせがなされる。 Next, as shown in FIG. 27, the exposure mask films 35 and 36 are disposed so as to cover the protective film 31 (exposure mask film placement step). More specifically, the exposure mask film 35 is disposed on the second surface 1b side of the thermoplastic resin film 1 (second base 30), and the exposure mask film 36 is formed of the thermoplastic resin film 1 (second base 30). ) And the second base material 30 sandwiches the two exposure mask films 35 and 36. The exposure mask films 35 and 36 may not be in complete contact with the second base material 30 at the time of the arrangement. In the exposure mask film disposing step, the light shielding portions 34 of the exposure mask films 35 and 36 are disposed in contact with the protective film 31. In other words, the surface on which the light shielding portion 34 is formed, which is the surface of the exposure mask films 35 and 36, is disposed on the side of the protective film 31. By such an arrangement, the light shielding portion 34 and the protective film 31 are in direct contact with each other, so that the wraparound of light for exposure is reduced, and it is possible to perform exposure with higher accuracy. The formation side of the light shielding portion 34 may not be located on the protective film 31 side as long as the resin films 32 and 33 can be made extremely thin to reduce the wraparound of light for exposure to a certain extent. At this time, it is necessary to align the land opening position of the wiring pattern on the second base material 30 with the position of the light shielding portion of the exposure mask films 35 and 36, but since both are three-dimensionally formed, Inevitably alignment is made.
 次に、図28に示すように、露光マスクフィルム35、36が表裏面に配置された状態の第2基材30を真空脱気に使用される真空脱気用袋(真空梱包用袋)37に内挿する。当該真空脱気用袋37は、後述する露光工程を行うために、露光用の光を少なくとも透過する特性を有する必要がある。本実施例の真空脱気用袋37には、一般的な使い捨てのポリエチレン袋が使用されているが、露光用の光を透過することができ、且つ真空脱気によって露光マスクフィルム35、36を第2基材30に確実に密着させることができれば、他の材質の袋を用いてもよい。また、本実施例において、真空脱気用袋37の厚みは50μmとしたが、例えば、25~100μmの範囲内で調整することができる。特に、厚みの薄い真空脱気用袋37を使用することで、真空脱気時に真空脱気用袋37を第2基材30の細かな凹凸に追従させることが可能となり、第2基材30に対して露光マスクフィルム35、36をより確実且つ高精度に密着させることができる。 Next, as shown in FIG. 28, the vacuum degassing bag (vacuum packaging bag) 37 used for vacuum degassing of the second base material 30 with the exposure mask films 35 and 36 arranged on the front and back surfaces. Interpolate to The vacuum degassing bag 37 needs to have a characteristic of at least transmitting light for exposure in order to perform an exposure process described later. Although a general disposable polyethylene bag is used for the vacuum degassing bag 37 of this embodiment, it can transmit light for exposure, and the exposure mask films 35 and 36 are formed by vacuum degassing. As long as the second base material 30 can be firmly adhered, bags made of other materials may be used. In the present embodiment, although the thickness of the vacuum degassing bag 37 is 50 μm, it can be adjusted, for example, in the range of 25 to 100 μm. In particular, by using a thin vacuum degassing bag 37, the vacuum degassing bag 37 can be made to follow the fine irregularities of the second base material 30 at the time of vacuum degassing. On the other hand, the exposure mask films 35 and 36 can be adhered more reliably and precisely.
 続いて、図29に示すように、真空脱気用袋37内の空気を排気して真空引きを施し、更に真空脱気用袋37の真空脱気用袋開口端37aに加熱処理を施してシール部38を形成する。このような真空脱気及びシール部形成を行う際には、一般的な真空脱気梱包装置を使用することになる。当該真空脱気梱包装置の種類としては、排気用ノズルを真空脱気用袋37に差し込んで脱気を行う比較的に安価な装置と、真空チャンバーを備える比較的に高価な装置があるが、第2基材30と露光マスクフィルム35、36と密着性を考慮すると、後者の装置を使用することが好ましい。 Subsequently, as shown in FIG. 29, the air in the vacuum degassing bag 37 is exhausted and vacuumed, and the vacuum degassing bag opening end 37a of the vacuum degassing bag 37 is further subjected to a heat treatment. The seal portion 38 is formed. When performing such vacuum degassing and seal part formation, a general vacuum degassing packing apparatus will be used. As types of the vacuum degassing packing apparatus, there are a relatively inexpensive apparatus for degassing by inserting an exhaust nozzle into the vacuum degassing bag 37, and a relatively expensive apparatus provided with a vacuum chamber, In view of the adhesion between the second substrate 30 and the exposure mask films 35, 36, it is preferable to use the latter device.
 上述した真空脱気用袋37への第2基材30の内挿、及び真空脱気用袋37の真空脱気を施すことによって真空脱気工程が完了し、第2基材30に対して露光マスクフィルム35、36がランド部のインクレジスト開口部と露光マスクフィルム35、36の遮光部34が位置合わせされた状態で、確実に密着することになる。 The vacuum degassing step is completed by the insertion of the second base material 30 into the vacuum degassing bag 37 and the vacuum degassing of the vacuum degassing bag 37, and the second base material 30 is completed. The exposure mask films 35 and 36 are in close contact with each other in a state where the ink resist openings in the lands and the light shielding portions 34 of the exposure mask films 35 and 36 are aligned.
 次に、真空脱気用袋37に内挿されたままの状態の第2基材30を露光装置に投入する。その後、図29に示すように、真空脱気用袋37及び露光マスクフィルム35、36を介して、表裏それぞれ所定の波長の光を保護膜31に向けて照射して露光を行う(露光工程)。本実施例においては、露光用の光として波長が365nmの紫外線を使用し、片側250mJで照射を行っている。また、当該露光量は、保護膜31の材料によって指定された露光量よりも若干多くすることが好ましい。これは、真空脱気用袋37による露光量の減少が生じるためであり、露光量を測定し調整する。なお、露光用の光の波長および露光量は、保護膜31の材料によって適宜変更することができる。露光に用いる光は散乱光ではなく平行光を用いることで露光の解像度を上げることが可能となる。露光は両面同時でも、片面毎でもかまわない。なお、段差部の垂直に近い部分に露光される場合、露光量が足らなくなる可能性があるが、そもそも立体配線基板のランドやそれに合わせたレジスト開口部は段差部には存在せず、平坦部か平坦部に近い角度の斜面、曲面、これらの微小段差部を含む面への当該レジスト開口部の形成に限定されることを前提としており、そのような基板設計をすることが必要となる。 Next, the second base material 30 in the state of being inserted into the vacuum degassing bag 37 is put into the exposure apparatus. Thereafter, as shown in FIG. 29, exposure is performed by irradiating the protective film 31 with light of a predetermined wavelength on the front and back sides through the vacuum degassing bag 37 and the exposure mask films 35, 36 (exposure step) . In the present embodiment, ultraviolet light having a wavelength of 365 nm is used as light for exposure, and irradiation is performed at 250 mJ on one side. Further, it is preferable that the exposure amount be slightly larger than the exposure amount designated by the material of the protective film 31. This is because the decrease in the exposure amount by the vacuum degassing bag 37 occurs, and the exposure amount is measured and adjusted. The wavelength of the light for exposure and the amount of exposure can be appropriately changed depending on the material of the protective film 31. It is possible to increase the resolution of exposure by using collimated light instead of scattered light as light used for exposure. The exposure may be performed simultaneously on both sides or each side. In the case where the portion close to the vertical of the step portion is exposed, there is a possibility that the exposure amount may become insufficient, but the land of the three-dimensional wiring substrate and the resist opening portion matched thereto do not exist in the step portion, and the flat portion It is premised to be limited to the formation of the resist opening on the inclined surface having an angle close to the flat portion, a curved surface, and a surface including these minute step parts, and it is necessary to design such a substrate.
 次に、真空脱気用袋37の真空状態を開放し、第2基材30を真空脱気用袋37から取り出すとともに、露光マスクフィルム35、36を第2基材30から取り外す。この際、露光マスクフィルム35、36は、第2基材30に対して接着部材等を用いて貼り付けられていないため、第2基材30から容易に取り外すことができる。そして、当該露光マスクフィルム35、36は他の第2基材30に対して繰り返し使用することができる。続いて、保護膜31が形成された状態の第2基材30に対して現像処理を施す。本実施例においては、1%の炭酸ナトリウム液を保護膜31に対してスプレーする。このような現像処理により、図30に示すように、ネガ型のフォトレジストを主材とする保護膜31には、遮光部34に接触していなかった部分が残存し、遮光部34に接触していた部分にインクソルダーレジスト開口部39が形成されることになる(開口形成工程)。すなわち、インクソルダーレジスト開口部39は、フォトリソグラフィ(露光・現像)により形成され、配線パターン22の露出すべき領域に対して高精度で位置決めされている。 Next, the vacuum state of the vacuum degassing bag 37 is released, the second base material 30 is taken out from the vacuum degassing bag 37, and the exposure mask films 35 and 36 are removed from the second base material 30. Under the present circumstances, since the exposure mask films 35 and 36 are not affixed with respect to the 2nd base material 30 using an adhesion member etc., they can be easily removed from the 2nd base material 30. FIG. And the said exposure mask films 35 and 36 can be repeatedly used with respect to the other 2nd base material 30. FIG. Subsequently, development processing is performed on the second base material 30 in a state in which the protective film 31 is formed. In the present embodiment, 1% sodium carbonate solution is sprayed on the protective film 31. By such development processing, as shown in FIG. 30, a portion not in contact with the light shielding portion 34 remains on the protective film 31 mainly made of a negative type photoresist, and is in contact with the light shielding portion 34. The ink solder resist opening 39 is formed in the portion where it was formed (opening forming step). That is, the ink solder resist opening 39 is formed by photolithography (exposure and development), and is positioned with high accuracy with respect to the area where the wiring pattern 22 is to be exposed.
 上述した各工程を経ることにより、図30に示すような立体成型部品の一種である立体配線基板40が完成する。図30に示すように、立体配線基板40においては、配線パターン22の露出するべき領域以外の部分が、保護膜31によって確実に被覆されるとともに、部品実装等の電気的接続に使用される配線パターン22の一部の領域(ランド部等)が、インクソルダーレジスト開口部39によって確実且つ精度よく露出することになる。インクレジストを開口させる方法として、YAGレーザ等を照射してレジストインクを除去し開口させる方法もあるが、この場合レーザ光の照射される保護膜31の下はレーザを照射しても問題のない銅パターンである必要がある。なぜなら下地の銅パターンのないインクレジストにレーザが照射されると、その下の基材樹脂にもレーザ光による除去がなされ穴が空いてしまうからであり、この方法の場合ランドの大きさより小さい内側部分の開口である必要がある(いわゆるオーバーレジスト)。しかしながら、本提案の方法であれば、ランドサイズより大きい開口でも、もしくはランド部ではないパターン部や銅の無い部分の開口も可能であり、設計自由度が増す。 Through the above-described steps, a three-dimensional wiring board 40 which is a kind of three-dimensional molded component as shown in FIG. 30 is completed. As shown in FIG. 30, in the three-dimensional wiring substrate 40, the portion other than the region where the wiring pattern 22 is to be exposed is reliably covered by the protective film 31, and the wiring used for electrical connection such as component mounting. A part of the area (such as a land) of the pattern 22 is exposed reliably and accurately by the ink solder resist opening 39. As a method of opening the ink resist, there is a method of removing the resist ink by irradiating it with YAG laser or the like, but in this case, there is no problem even if the laser is irradiated under the protective film 31 irradiated with the laser light. It needs to be a copper pattern. The reason is that if the ink resist without the underlying copper pattern is irradiated with laser light, the underlying substrate resin is also removed by the laser light and holes are opened, and in the case of this method, the inside is smaller than the land size. It needs to be a partial opening (so-called over resist). However, according to the proposed method, even if the opening is larger than the land size, or the pattern part which is not the land part or the opening without the copper, the design freedom is increased.
 以上のように、本実施例においては真空脱気用袋37を用いた真空脱気によって露光マスクフィルム35、36を第2基材30に確実に密着させることができるため、その後の露光精度が向上され、所望の開口パターンを備える保護膜31を第2基材30に対して容易且つ高精度に形成することが可能になる。特に、本実施例においては、第1金属膜3をポーラス状に形成して第2金属膜21の破断を防止しているが、金型を使用することなく真空脱気用袋37を用いた真空脱気を利用した露光により、第2金属膜21に無用な応力が加わることがなくなり、第2基材30の凹凸部分における第2金属膜21の破断防止がより一層図られることになる。また、第2基材30に対して露光マスクフィルム35、36を密着させるために使用されるものが一般的な真空脱気用袋37であり、当該密着方法も簡易な真空脱気であるため、三次元で制御可能な高価な露光装置及び密着のための金型が不要となり、低コストで立体配線基板40を製造することが可能になる。 As described above, in the present embodiment, since the exposure mask films 35 and 36 can be reliably adhered to the second base material 30 by vacuum degassing using the vacuum degassing bag 37, the subsequent exposure accuracy is It is possible to improve and form the protective film 31 having a desired opening pattern easily and accurately on the second base material 30. In the present embodiment, in particular, the first metal film 3 is formed in a porous state to prevent breakage of the second metal film 21. However, the vacuum degassing bag 37 is used without using a mold. Unwanted stress is not applied to the second metal film 21 by exposure using vacuum degassing, and breakage of the second metal film 21 in the uneven portion of the second base 30 can be further prevented. Further, the vacuum degassing bag 37 is generally used to bring the exposure mask films 35 and 36 into close contact with the second base material 30, and the contact method is also simple vacuum degassing. An expensive exposure apparatus that can be controlled in three dimensions and a mold for close contact are not required, and the three-dimensional wiring substrate 40 can be manufactured at low cost.
 また、本実施例においては、樹脂フィルムを用いることなく、感光性のインクレジストである感光性材料を塗布し、フォトリソグラフィを用いて保護膜31にインクソルダーレジスト開口部39を形成しているため、立体配線基板40のランドに対するインクソルダーレジスト開口部39の位置精度を向上することができる。換言すると、本実施例においては、感光性材料を使用することができることにより、解像度の優れたインクソルダーレジスト開口部39を形成することができる。 Further, in the present embodiment, the photosensitive material which is a photosensitive ink resist is applied without using the resin film, and the ink solder resist opening 39 is formed in the protective film 31 using photolithography. The positional accuracy of the ink solder resist opening 39 with respect to the land of the three-dimensional wiring substrate 40 can be improved. In other words, in the present embodiment, since the photosensitive material can be used, the ink solder resist opening 39 with excellent resolution can be formed.
 なお、上述した実施例においては、第2基材30の表裏面を保護膜31によって被覆していたが、第2基材30の状態に応じて、保護膜31による被覆を片面のみにしてもよい。例えば、配線パターン22が片面のみに形成されている場合には、当該配線パターン22が形成されている形成面側のみを被覆するようにしてもよい。 In the above-described embodiment, the front and back surfaces of the second base material 30 are covered with the protective film 31. However, depending on the state of the second base material 30, the protective film 31 may be covered on only one side. Good. For example, when the wiring pattern 22 is formed only on one side, only the side on which the wiring pattern 22 is formed may be covered.
 また、上述した実施例においては、フィルム状の樹脂を立体成型して形成された第2基材30の表面に保護膜31を被覆したが、保護膜31によって被覆される立体成型物は本実施例の第2基材30のようなものに限定されない。例えば、立体成型物として種々のMID部品(MID基板)を選択することができ、本実施例に係る保護膜31を当該MID部品の回路形成面に被覆し、且つ優れた精度によって所望の開口を形成することが可能になる。 Further, in the above-described embodiment, the protective film 31 is coated on the surface of the second base member 30 formed by three-dimensionally molding a film-like resin, but the three-dimensional molding covered by the protective film 31 is the present embodiment. It is not limited to such as the second base material 30 of the example. For example, various MID parts (MID substrates) can be selected as a three-dimensional molded product, the protective film 31 according to the present embodiment is coated on the circuit formation surface of the MID parts, and desired openings are obtained with excellent accuracy. It becomes possible to form.
 更に、上述した実施例においては、感光性樹脂インクにネガ型のフォトレジストを使用していたが、ポジ型のフォトレジストを使用してもよい。この場合には、露光マスクフィルムの遮光部の形成位置と非形成位置との関係が、上述した実施例の場合と比較して逆になることになる。 Furthermore, in the above-described embodiment, a negative photoresist is used as the photosensitive resin ink, but a positive photoresist may be used. In this case, the relationship between the formation position and the non-formation position of the light shielding portion of the exposure mask film is reversed as compared with the above-described embodiment.
<本発明の実施態様>
 本発明の第1実施態様に係る立体配線部品の製造方法は、樹脂基材の表面に配線パターンが形成された立体成型物を準備する立体成型物準備工程と、前記立体成型物に対して感光性材料をスプレー塗布し、少なくとも前記立体成型物の表面に保護膜を形成する保護膜形成工程と、前記立体成型物に対応させて立体成型された露光マスクフィルムを準備する露光マスクフィルム準備工程と、前記露光マスクフィルムによって前記保護膜を被覆するように配置する露光マスクフィルム配置工程と、前記露光マスクフィルムが配置された状態の前記立体成型物を真空脱気用袋に内挿し、真空脱気して前記露光マスクフィルムを前記保護膜に密着させる真空脱気工程と、前記立体成型物を前記真空脱気用袋に内挿した状態で光を照射して露光する露光工程と、前記立体成型物を前記真空脱気用袋が取り出して現像処理を施し、前記保護膜に所望の開口を形成する開口形成工程と、を有することである。
<Embodiment of the present invention>
In the method of manufacturing a three-dimensional wiring component according to the first embodiment of the present invention, a three-dimensional molding preparation step of preparing a three-dimensional molding having a wiring pattern formed on the surface of a resin substrate; A protective film forming step of spray-coating a hydrophobic material to form a protective film on at least the surface of the three-dimensional molding, and an exposure mask film preparing step of preparing a three-dimensionally formed exposure mask film corresponding to the three-dimensional molding An exposure mask film disposing step of arranging so as to cover the protective film with the exposure mask film; and inserting the three-dimensional molding in a state where the exposure mask film is disposed into a vacuum degassing bag; A vacuum degassing step of bringing the exposure mask film into intimate contact with the protective film, and exposing by irradiating light in a state in which the three-dimensional molded product is inserted in the vacuum degassing bag Degree and, the three-dimensional molding was subjected to a developing process the vacuum degassing bag was taken out, it is to have a, an opening formation step of forming a desired opening in the protective film.
 第1実施態様においては、真空脱気用袋を用いた真空脱気によって露光マスクフィルムを立体成型物に確実に密着させることができるため、その後の露光精度が向上され、所望の開口パターンを備える保護膜を立体成型物に対して容易且つ高精度に形成することが可能になる。また、立体成型物に対して露光マスクフィルムを密着させるために使用されるものが一般的な真空脱気用袋であり、当該密着方法も簡易な真空脱気であるため、三次元で制御可能な高価な露光装置及び密着のための金型が不要となり、低コストで立体成型部品を製造することが可能になる。 In the first embodiment, since the exposure mask film can be reliably adhered to the three-dimensional molded product by vacuum degassing using a vacuum degassing bag, the subsequent exposure accuracy is improved, and a desired opening pattern is provided. It becomes possible to form a protective film easily and precisely to a three-dimensional object. Moreover, since it is a general vacuum degassing bag used to adhere the exposure mask film to a three-dimensional molded product and the adhesion method is also simple vacuum degassing, it can be controlled in three dimensions. This eliminates the need for an expensive exposure apparatus and a mold for close contact, and makes it possible to manufacture a three-dimensional molded part at low cost.
 本発明の第2実施態様に係る立体配線部品の製造方法は、上述した第1実施態様において、前記感光性材料はネガ型のフォトレジストを含み、前記露光マスクフィルム準備工程において、前記露光マスクフィルムの表面上であって前記開口に対応する位置に遮光部を形成することである。これにより、入手が容易な材料によって簡易な構造の露光マスクフィルムを準備することができ、立体配線部品の製造コストを低減することができる。また、このような遮光部を形成することにより、保護膜の開口形成をより高精度且つ容易に行うことができる。 In the method of manufacturing a three-dimensional wiring component according to the second embodiment of the present invention, in the first embodiment described above, the photosensitive material includes a negative photoresist, and in the exposure mask film preparing step, the exposure mask film Forming a light shielding portion at a position corresponding to the opening on the surface of Thereby, the exposure mask film of a simple structure can be prepared with an easily available material, and the manufacturing cost of a three-dimensional wiring component can be reduced. In addition, by forming such a light shielding portion, the opening of the protective film can be formed more accurately and easily.
 本発明の第3実施態様に係る立体配線部品の製造方法は、上述した第2実施態様において、前記露光マスクフィルム準備工程では前記露光マスクフィルムの立体成型前に、インクジェット印刷またはスクリーン印刷によって前記遮光部を形成することである。これにより、露光マスクフィルムをより容易に準備することができ、立体配線部品の製造コストを低減することができる。また、遮光部の形成をより高精度に行うことができ、保護膜の開口形成をより高精度且つ容易に行うことができる。 In the method of manufacturing a three-dimensional wiring component according to the third embodiment of the present invention, in the second embodiment described above, in the exposure mask film preparation step, the light shielding is performed by inkjet printing or screen printing before three-dimensional molding of the exposure mask film. To form a part. Thereby, the exposure mask film can be more easily prepared, and the manufacturing cost of the three-dimensional wiring component can be reduced. In addition, the light shielding portion can be formed with higher precision, and the opening of the protective film can be formed with higher precision and easily.
 本発明の第4実施態様に係る立体配線部品の製造方法は、上述した第1乃至3実施態様のいずれかにおいて、前記露光マスクフィルム配置工程では前記露光マスクフィルムの表面であって前記遮光部の形成面側を前記保護膜側に配置することである。これにより、露光時における露光用の光の回り込みを低減することができ、保護膜の開口形成をより高精度に行うことができる。 In the method of manufacturing a three-dimensional wiring component according to the fourth embodiment of the present invention, in any one of the first to third embodiments described above, the exposure mask film disposing step is a surface of the exposure mask film in the exposure mask film disposing step. The formation surface side is disposed on the protective film side. Thereby, the wraparound of the light for exposure at the time of exposure can be reduced, and the opening formation of the protective film can be performed with higher accuracy.
 本発明の第5実施態様に係る立体配線部品の製造方法は、上述した第1乃至4実施態様のいずれかにおいて、前記露光マスクフィルムに使用される樹脂フィルムの厚みは概ね25~100μmであることである。これにより、立体成型物と露光マスクフィルムとの密着性が向上するとともに、露光の解像度の低下を抑制することが可能になる。 In the method of manufacturing a three-dimensional wiring component according to the fifth embodiment of the present invention, in any one of the first to fourth embodiments described above, the thickness of the resin film used for the exposure mask film is approximately 25 to 100 μm. It is. As a result, the adhesion between the three-dimensional molded article and the exposure mask film is improved, and it is possible to suppress the decrease in the resolution of exposure.
 本発明の第6実施態様に係る立体配線部品の製造方法は、上述した第1乃至5実施態様のいずれかにおいて、前記真空脱気用袋の厚みは概ね25~100μmであることである。これにより、真空脱気時に真空脱気用袋を立体成型物の細かな凹凸に追従させることが可能となり、立体成型物に対して露光マスクフィルムをより確実且つ高精度に密着させることができる。 In the method of manufacturing a three-dimensional wiring component according to the sixth embodiment of the present invention, in any one of the first to fifth embodiments described above, the thickness of the vacuum degassing bag is approximately 25 to 100 μm. As a result, the vacuum degassing bag can be made to follow the fine irregularities of the three-dimensional molded product at the time of vacuum degassing, and the exposure mask film can be more reliably and precisely adhered to the three-dimensional molded product.
 本発明の第7実施態様に係る立体配線部品の製造方法は、上述した第1乃至6実施態様のいずれかにおいて、前記保護膜形成工程では前記感光性材料のスプレー塗布及び乾燥を角度や方向を変えながら複数回繰り返すことである。これにより、立体成型物の凹部及び凸部における感光性材料の塗布ムラを防止することができ、保護膜の均一性を向上することが可能になる。 In the method of manufacturing a three-dimensional wiring component according to the seventh embodiment of the present invention, in the protective film forming step according to any one of the first to sixth embodiments described above, the spray application and the drying of the photosensitive material are Repeat several times while changing. Thereby, the application nonuniformity of the photosensitive material in the recessed part and convex part of a three-dimensional molded article can be prevented, and it becomes possible to improve the uniformity of a protective film.
 本発明の第8実施態様に係る立体配線部品の製造方法は、上述した第1乃至7実施態様のいずれかにおいて、前記保護膜形成工程では前記立体成型物の表裏面に前記保護膜を形成することである。これにより、両面に配線パターンを備える立体成型物に対しても、確実且つ高精細に配線パターンの保護が可能になる。 In the method of manufacturing a three-dimensional wiring component according to the eighth embodiment of the present invention, in any of the first to seventh embodiments described above, the protective film is formed on the front and back surfaces of the three-dimensional molded article in the protective film forming step. It is. This makes it possible to protect the wiring pattern reliably and precisely even with respect to a three-dimensional object having the wiring pattern on both sides.
 本発明の第9実施態様に係る立体配線部品は、樹脂基材の表面に配線パターンが形成された立体成型物と、感光性樹脂インクからなり、前記立体成型物の表面を保護する保護膜と、前記保護膜は、前記配線パターンの露出すべき領域に対応した開口を備えるとともに、前記立体成型物の立体形状に沿って前記立体成型物を被覆している。 A three-dimensional wiring component according to a ninth embodiment of the present invention comprises a three-dimensional molded product having a wiring pattern formed on the surface of a resin substrate, and a protective film made of a photosensitive resin ink and protecting the surface of the three-dimensional molded product. The protective film has an opening corresponding to a region to be exposed of the wiring pattern, and covers the three-dimensional molding along a three-dimensional shape of the three-dimensional molding.
 第9実施態様においては、立体成型物を被覆する保護部材を感光性樹脂インクからなる保護膜とし、当該保護膜に配線パターンの露出すべき領域に対応した開口を形成している。すなわち、第9実施形態においては、フォトリソグラフィによって開口を形成することができ、より微細な開口パターンの形成が可能になる。換言すると、微細な開口パターンを備える保護膜が高精度に形成された低コストの立体成型部品が実現できることになる。
また、本発明により、微細な開口パターンを備える保護膜が高精度に形成された低コストの立体成型部品を提供することができる。
In the ninth embodiment, the protective member for covering the three-dimensional molded product is a protective film made of a photosensitive resin ink, and an opening corresponding to the area where the wiring pattern is to be exposed is formed in the protective film. That is, in the ninth embodiment, the openings can be formed by photolithography, and a finer opening pattern can be formed. In other words, it is possible to realize a low-cost three-dimensional molded component in which a protective film provided with a fine opening pattern is formed with high accuracy.
Further, according to the present invention, it is possible to provide a low-cost three-dimensional molded component in which a protective film having a fine opening pattern is formed with high accuracy.
 本発明の第10実施態様に係る立体配線部品は、上述した第9実施態様において、前記保護膜の前記開口は、フォトリソグラフィによって形成され、前記配線パターンの露出すべき領域に対して高精度で位置決めされていることである。これにより、微細な開口パターンの形成が可能になり、立体成型部品の保護膜を高精度に形成することができ、低コスト化を図ることができる。 In the three-dimensional wiring component according to the tenth embodiment of the present invention, in the above-mentioned ninth embodiment, the opening of the protective film is formed by photolithography, and with high accuracy with respect to the exposed area of the wiring pattern. It is being positioned. As a result, it becomes possible to form a fine opening pattern, and a protective film of a three-dimensional molded component can be formed with high accuracy, and cost reduction can be achieved.
 本発明の第11実施態様に係る立体配線部品は、上述した第9又は10実施態様において、前記樹脂基材が50%以上の破断伸びを備えるフィルム状の樹脂からなることである。これにより、樹脂フィルムを立体成型した部材についても、その表面に形成された配線パターンの露出すべき領域のみを、高精度且つ確実に露出することが可能になる。 The three-dimensional wiring component according to the eleventh embodiment of the present invention is that, in the ninth or tenth embodiment described above, the resin base material is made of a film-like resin having a breaking elongation of 50% or more. As a result, even in a member obtained by three-dimensionally molding a resin film, it is possible to accurately and reliably expose only the region to be exposed of the wiring pattern formed on the surface.
 本発明の第12実施態様に係る立体配線部品は、上述した第9乃至第11実施態様のいずれかにおいて、前記立体成型物が2枚の前記保護膜によってその両面が被覆された積層構造を有することである。これにより、両面に配線パターンを備える立体成型物に対しても、確実且つ高精細に配線パターンの保護が可能になる。 The three-dimensional wiring component according to the twelfth embodiment of the present invention has a layered structure in which the three-dimensional molded product is covered on both sides with two of the protective films in any of the ninth to eleventh embodiments described above. It is. This makes it possible to protect the wiring pattern reliably and precisely even with respect to a three-dimensional object having the wiring pattern on both sides.
 本発明の第13実施態様に係る立体配線部品は、上述した第9乃至第12実施態様のいずれかにおいて、前記配線パターンが金属を粒子状に堆積してなるポーラス状の構造を備える第1金属膜、及び前記第1金属膜上に積層された第2金属膜からなることである。これにより、第1金属膜に亀裂が生じても第2金属膜で修復されており、導通不良がなく且つ優れた信頼性を備える配線回路が実現されている。 The three-dimensional wiring component according to the thirteenth embodiment of the present invention is the first metal according to any of the ninth to twelfth embodiments, wherein the wiring pattern has a porous structure formed by depositing metal in the form of particles. And a second metal film laminated on the first metal film. Thereby, even if a crack occurs in the first metal film, it is repaired by the second metal film, and a wiring circuit having no conduction failure and excellent reliability is realized.
 1  熱可塑性樹脂フィルム(樹脂基材)
 1a  第1の面
 1b  第2の面
 1c  側面
 1d  屈曲部
 1e  角部
 2  貫通孔
 3  第1金属膜
 3a  粒子
 4  分子接合剤
 11  金型
 12  上部金型
 13  下部金型
 14  上部加熱装置
 15  下部加熱装置
 16  第1基材
 17  亀裂
 21  第2金属膜
 21a  粒子
 22  配線パターン
 30  第2基材(立体成型物)
 31  保護膜
 32、33  樹脂フィルム
 34  遮光部
 35、36  露光マスクフィルム
 37  真空脱気用袋
 37a  真空脱気用袋開口端
 38  シール部
 39  インクソルダーレジスト開口部(開口)
 40  立体配線基板(立体成型部品)
1 Thermoplastic resin film (resin base material)
DESCRIPTION OF SYMBOLS 1a 1st surface 1b 2nd surface 1c side 1d bent part 1e corner 2 through hole 3 1st metal film 3a particle 4 molecular bonding agent 11 mold 12 upper mold 13 lower mold 14 upper heating device 15 lower heating Apparatus 16 first base material 17 crack 21 second metal film 21a particle 22 wiring pattern 30 second base material (three-dimensional molding)
31 Protective film 32, 33 Resin film 34 Light shielding part 35, 36 Exposure mask film 37 Vacuum degassing bag 37a Vacuum degassing bag opening end 38 Sealing part 39 Ink solder resist opening (opening)
40 Three-dimensional wiring board (three-dimensional molded parts)

Claims (13)

  1.  樹脂基材の表面に配線パターンが形成された立体成型物を準備する立体成型物準備工程と、
     前記立体成型物に対して感光性材料をスプレー塗布し、少なくとも前記立体成型物の表面に保護膜を形成する保護膜形成工程と、
     前記立体成型物に対応させて立体成型された露光マスクフィルムを準備する露光マスクフィルム準備工程と、
     前記露光マスクフィルムによって前記保護膜を被覆するように配置する露光マスクフィルム配置工程と、
     前記露光マスクフィルムが配置された状態の前記立体成型物を真空脱気用袋に内挿し、真空脱気して前記露光マスクフィルムを前記保護膜に密着させる真空脱気工程と、
     前記立体成型物を前記真空脱気用袋に内挿した状態で光を照射して露光する露光工程と、
     前記立体成型物を前記真空脱気用袋が取り出して現像処理を施し、前記保護膜に所望の開口を形成する開口形成工程と、を有する立体成型部品の製造方法。
    A three-dimensional molding preparation step of preparing a three-dimensional molding having a wiring pattern formed on the surface of a resin substrate;
    A protective film forming step of spray-coating a photosensitive material on the three-dimensional molded product to form a protective film on at least a surface of the three-dimensional molded product;
    An exposure mask film preparing step of preparing a three-dimensionally formed exposure mask film corresponding to the three-dimensional molding;
    An exposure mask film disposing step of disposing so as to cover the protective film with the exposure mask film;
    A vacuum degassing step of inserting the three-dimensional molded product in a state in which the exposure mask film is disposed in a vacuum degassing bag and vacuum degassing to make the exposed mask film adhere to the protective film;
    An exposure step of irradiating with light and exposing in a state in which the three-dimensional molded product is inserted in the vacuum degassing bag;
    And a step of forming a desired opening in the protective film by taking out the three-dimensional molded product from the bag for vacuum degassing and subjecting it to a development treatment.
  2.  前記感光性材料は、ネガ型のフォトレジストを含み、
     前記露光マスクフィルム準備工程において、前記露光マスクフィルムの表面上であって前記開口に対応する位置に遮光部を形成する請求項1に記載の立体成型部品の製造方法。
    The photosensitive material comprises a negative photoresist.
    The manufacturing method of the three-dimensional molded component according to claim 1 which forms a shading part on the surface of said exposure mask film and a position corresponding to said opening in said exposure mask film preparation process.
  3.  前記露光マスクフィルム準備工程において、前記露光マスクフィルムの立体成型前に、インクジェット印刷またはスクリーン印刷によって前記遮光部を形成する請求項2に記載の立体成型部品の製造方法。 The manufacturing method of the three-dimensional molded component according to claim 2, wherein the light shielding portion is formed by inkjet printing or screen printing before three-dimensional molding of the exposure mask film in the exposure mask film preparing step.
  4.  前記露光マスクフィルム配置工程において、前記露光マスクフィルムの表面であって前記遮光部の形成面側を前記保護膜側に配置する請求項1乃至3のいずれか1項に記載の立体成型部品の製造方法。 The said exposure mask film arrangement | positioning process WHEREIN: It is a surface of the said exposure mask film, Comprising: The formation surface side of the said light-shielding part is arrange | positioned to the said protective film side, Manufacture of the three-dimensional molded component of any one of Claims 1-3. Method.
  5.  前記露光マスクフィルムに使用される樹脂フィルムの厚みは25~100μmである請求項1乃至4のいずれか1項に記載の立体成型部品の製造方法。 The method for producing a three-dimensional molded part according to any one of claims 1 to 4, wherein the thickness of the resin film used for the exposure mask film is 25 to 100 μm.
  6.  前記真空脱気用袋の厚みは25~100μmである請求項1乃至5のいずれか1項に記載の立体成型部品の製造方法。 The method for manufacturing a three-dimensional molded part according to any one of claims 1 to 5, wherein the thickness of the vacuum degassing bag is 25 to 100 μm.
  7.  前記保護膜形成工程においては、前記感光性材料のスプレー塗布及び乾燥を角度や方向を変えながら複数回繰り返す請求項1乃至6のいずれか1項に記載の立体成型部品の製造方法。 The method for manufacturing a three-dimensional molded part according to any one of claims 1 to 6, wherein in the protective film forming step, spray application and drying of the photosensitive material are repeated a plurality of times while changing the angle and direction.
  8.  前記保護膜形成工程においては、前記立体成型物の表裏面に前記保護膜を形成する請求項1乃至7のいずれか1項に記載の立体成型部品の製造方法。 The method for manufacturing a three-dimensional molded component according to any one of claims 1 to 7, wherein the protective film is formed on the front and back surfaces of the three-dimensional molded product in the protective film forming step.
  9.  樹脂基材の表面に配線パターンが形成された立体成型物と、
     感光性樹脂インクからなり、前記立体成型物の表面を保護する保護膜と、
     前記保護膜は、前記配線パターンの露出すべき領域に対応した開口を備えるとともに、前記立体成型物の立体形状に沿って前記立体成型物を被覆する立体成型部品。
    A three-dimensional molded product having a wiring pattern formed on the surface of a resin base material,
    A protective film made of a photosensitive resin ink and protecting the surface of the three-dimensional molding;
    The protective film has an opening corresponding to a region where the wiring pattern is to be exposed, and covers the three-dimensional molding along a three-dimensional shape of the three-dimensional molding.
  10.  前記保護膜の前記開口は、フォトリソグラフィによって形成され、前記配線パターンの露出すべき領域に対して高精度で位置決めされている請求項9に記載の立体成型部品。 The three-dimensional molded part according to claim 9, wherein the opening of the protective film is formed by photolithography and positioned with high accuracy with respect to the exposed area of the wiring pattern.
  11.  前記樹脂基材は、50%以上の破断伸びを備えるフィルム状の樹脂からなる請求項9又は10に記載の立体成型部品。 The three-dimensional molded part according to claim 9 or 10, wherein the resin base material is a film-like resin having a breaking elongation of 50% or more.
  12.  前記立体成型物は、2枚の前記保護膜によってその両面が被覆された積層構造を有する請求項9乃至11のいずれか1項に記載の立体成型部品。 The three-dimensional molded part according to any one of claims 9 to 11, wherein the three-dimensional molded article has a laminated structure in which both surfaces are covered with two sheets of the protective film.
  13.  前記配線パターンは、金属を粒子状に堆積してなるポーラス状の構造を備える第1金属膜、及び前記第1金属膜上に積層された第2金属膜からなる請求項9乃至12のいずれか1項に記載の立体成型部品。 13. The semiconductor device according to claim 9, wherein the wiring pattern comprises a first metal film having a porous structure formed by depositing metal in the form of particles, and a second metal film laminated on the first metal film. The three-dimensional molded part according to item 1.
PCT/JP2016/068595 2015-06-24 2016-06-23 Three-dimensional molded component production method and three-dimensional molded component WO2016208651A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017510698A JP6211738B2 (en) 2015-06-24 2016-06-23 Three-dimensional molded part manufacturing method and three-dimensional molded part

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/068230 WO2016208006A1 (en) 2015-06-24 2015-06-24 Three-dimensional wiring board production method, three-dimensional wiring board, and substrate for three-dimensional wiring board
JPPCT/JP2015/068230 2015-06-24
PCT/JP2015/080796 WO2016208090A1 (en) 2015-06-24 2015-10-30 Three-dimensional wiring board production method, three-dimensional wiring board, and substrate for three-dimensional wiring board
JPPCT/JP2015/080796 2015-10-30

Publications (1)

Publication Number Publication Date
WO2016208651A1 true WO2016208651A1 (en) 2016-12-29

Family

ID=57145231

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2015/084957 WO2016208092A1 (en) 2015-06-24 2015-12-14 Three-dimensional molded component production method and three-dimensional molded component
PCT/JP2015/084958 WO2016208093A1 (en) 2015-06-24 2015-12-14 Three-dimensional wiring board and method for producing three-dimensional wiring board
PCT/JP2016/068595 WO2016208651A1 (en) 2015-06-24 2016-06-23 Three-dimensional molded component production method and three-dimensional molded component

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/084957 WO2016208092A1 (en) 2015-06-24 2015-12-14 Three-dimensional molded component production method and three-dimensional molded component
PCT/JP2015/084958 WO2016208093A1 (en) 2015-06-24 2015-12-14 Three-dimensional wiring board and method for producing three-dimensional wiring board

Country Status (2)

Country Link
JP (1) JP6014792B1 (en)
WO (3) WO2016208092A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035619A (en) * 2019-04-22 2019-07-19 健鼎(湖北)电子有限公司 A kind of internal layer dry film production method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6302613B1 (en) * 2017-03-01 2018-03-28 ナノコイル株式会社 Manufacturing method of nano coil type GSR sensor element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005301113A (en) * 2004-04-15 2005-10-27 Toyota Motor Corp Three-dimensional exposure mask and three-dimensional exposure method
JP2008047786A (en) * 2006-08-21 2008-02-28 Fuji Electric Device Technology Co Ltd Insulating film forming method
JP2010253822A (en) * 2009-04-24 2010-11-11 Panasonic Electric Works Co Ltd Sheet material and printed wiring board
JP2013235878A (en) * 2012-05-02 2013-11-21 Ibiden Co Ltd Electronic component mounting substrate, case unit, and manufacturing method of electronic component mounting substrate
WO2015108085A1 (en) * 2014-01-14 2015-07-23 太陽インキ製造株式会社 Three-dimensional circuit board and solder resist composition used for same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281248A (en) * 2003-03-17 2004-10-07 Pioneer Electronic Corp Heat-resistant insulating film and insulation method
JP2005183484A (en) * 2003-12-16 2005-07-07 Fujikura Ltd Working method of enclosure film and printed wiring board
JP2006228887A (en) * 2005-02-16 2006-08-31 Fujikura Ltd Manufacturing method of rigid and flexible multilayer printed circuit board
JP2006269496A (en) * 2005-03-22 2006-10-05 Mitsui Mining & Smelting Co Ltd Flexible printed wiring board and semiconductor apparatus
CN102498238B (en) * 2009-09-16 2015-04-22 日立化成工业株式会社 Copper metal film, method for producing same, copper metal pattern, conductive wiring line using the copper metal pattern, copper metal bump, heat conduction path, bonding material, and liquid composition
JP5973190B2 (en) * 2012-03-06 2016-08-23 タイコエレクトロニクスジャパン合同会社 Three-dimensional laminated wiring board
WO2014168220A1 (en) * 2013-04-12 2014-10-16 セーレン株式会社 Process for producing three-dimensional conductive pattern structure, and material for three-dimensional molding for use therein
TW201522071A (en) * 2013-09-10 2015-06-16 Dainippon Ink & Chemicals Laminate body, conductive pattern, electrical circuit, and method for producing laminate body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005301113A (en) * 2004-04-15 2005-10-27 Toyota Motor Corp Three-dimensional exposure mask and three-dimensional exposure method
JP2008047786A (en) * 2006-08-21 2008-02-28 Fuji Electric Device Technology Co Ltd Insulating film forming method
JP2010253822A (en) * 2009-04-24 2010-11-11 Panasonic Electric Works Co Ltd Sheet material and printed wiring board
JP2013235878A (en) * 2012-05-02 2013-11-21 Ibiden Co Ltd Electronic component mounting substrate, case unit, and manufacturing method of electronic component mounting substrate
WO2015108085A1 (en) * 2014-01-14 2015-07-23 太陽インキ製造株式会社 Three-dimensional circuit board and solder resist composition used for same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035619A (en) * 2019-04-22 2019-07-19 健鼎(湖北)电子有限公司 A kind of internal layer dry film production method

Also Published As

Publication number Publication date
WO2016208092A1 (en) 2016-12-29
WO2016208093A1 (en) 2016-12-29
JPWO2016208090A1 (en) 2017-06-29
JP6014792B1 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
JP6211738B2 (en) Three-dimensional molded part manufacturing method and three-dimensional molded part
US20070207607A1 (en) Ball grid array substrate having window and method of fabricating same
KR20010105366A (en) Method of manufacturing multilayer wiring board
JP5227753B2 (en) Method for manufacturing printed circuit board
WO2016208651A1 (en) Three-dimensional molded component production method and three-dimensional molded component
WO2019172123A1 (en) Wiring substrate and method for producing same
CN109315069B (en) Three-dimensional wiring board, method for manufacturing three-dimensional wiring board, and substrate for three-dimensional wiring board
US6527963B1 (en) Method of manufacturing multilayer wiring boards
JP2007251084A (en) Wiring structure for electrode and method of manufacturing same
CN114375097B (en) Processing technology of packaging substrate for sensor
TWI227102B (en) Fabrication method for circuit carrier
TWI691244B (en) Circuit board
KR100651320B1 (en) Board on chip ball grid array board and method for manufacturing the same
JP4675096B2 (en) 3D molded circuit component manufacturing method and 3D molded circuit component manufactured thereby
KR20100054394A (en) Circuit board used for ball grid array package and method for manufacturing the same
WO2008023666A1 (en) Wiring board manufacturing method and wiring board
CN115500023A (en) Rigid-flex printed circuit board with multiple tail flying structures and preparation method thereof
JPH02121387A (en) Manufacture of electronic circuit device
CN117440599A (en) Circuit board structure and manufacturing method thereof
CN112788866A (en) Circuit board and surface treatment method
JP2006253615A (en) Pattern shaped-body, method of manufacturing wiring, and wiring board
JPS63228798A (en) Manufacture of double-sided circuit board
JPH0974281A (en) Multilayer printed wiring board and manufacture thereof
JP2004336072A (en) Manufacturing method for flexible substrate
JPH03204961A (en) Ic package and manufacture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510698

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814420

Country of ref document: EP

Kind code of ref document: A1