WO2016208093A1 - Three-dimensional wiring board and method for producing three-dimensional wiring board - Google Patents

Three-dimensional wiring board and method for producing three-dimensional wiring board Download PDF

Info

Publication number
WO2016208093A1
WO2016208093A1 PCT/JP2015/084958 JP2015084958W WO2016208093A1 WO 2016208093 A1 WO2016208093 A1 WO 2016208093A1 JP 2015084958 W JP2015084958 W JP 2015084958W WO 2016208093 A1 WO2016208093 A1 WO 2016208093A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
wiring board
metal film
resin film
film
Prior art date
Application number
PCT/JP2015/084958
Other languages
French (fr)
Japanese (ja)
Inventor
道脇 茂
Original Assignee
株式会社メイコー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2015/068230 external-priority patent/WO2016208006A1/en
Application filed by 株式会社メイコー filed Critical 株式会社メイコー
Priority to JP2016531084A priority Critical patent/JP6100976B1/en
Priority to TW105119549A priority patent/TW201709783A/en
Publication of WO2016208093A1 publication Critical patent/WO2016208093A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits

Definitions

  • the present invention relates to a three-dimensional wiring board having a three-dimensionally formed rigid portion and a flexible portion, and a method for manufacturing the same.
  • a conventionally known three-dimensional wiring board is a MID (Molded Interconnect Device) substrate, which is a component in which an electric circuit is directly and three-dimensionally formed on the surface of a structure having a three-dimensional structure.
  • MID Manufacturing Interconnect Device
  • methods such as a two-shot method, MIPTEC (Microscopic Integrated Processing Technology), and LDS (Laser Direct Direct Structure) are known.
  • MIPTEC Magnetic Integrated Processing Technology
  • LDS Laser Direct Direct Structure
  • Patent Document 1 discloses a technique related to an MID substrate and its manufacture.
  • the entire surface of the molded mold resin is metalized, and the metal (metalizing layer) at the outer edge portion of the wiring circuit is removed by laser light. Thereafter, a region to be a wiring circuit is energized to perform electroplating, and then the entire surface of the molded body is subjected to flash etching to remove metals other than the wiring circuit, thereby forming a wiring circuit on the mold resin.
  • a special laser irradiation apparatus corresponding to the three-dimensional shape of the molded mold resin is required, and there is a problem of increase in manufacturing cost due to labor of laser processing and equipment investment.
  • the metal necessary for the wiring circuit is deposited by electrolytic plating, it is necessary to energize only the region that becomes the wiring circuit, so that the region that becomes the wiring circuit is electrically connected to the outer periphery of the molded body. Or have to be electrically connected to the outer periphery via a feeder line. That is, there is a problem that it is difficult to electrically separate the region to be the wiring circuit from the outer peripheral portion of the molded body (that is, formation of an independent wiring pattern), and formation of a feed line that is finally unnecessary as a circuit and The problem of increased cost associated with removal arises.
  • LDS In LDS, primary molding is performed using a special resin material containing conductive particles, the region that becomes the wiring circuit is irradiated with laser light to expose the conductive particles, and the exposed portions of the conductive particles are plated. As a result, a wiring circuit is formed on the mold resin.
  • the minimum value of L / S is about 100/150 ⁇ m because of the problem of accuracy of exposing the conductive particles in the molded mold resin, and it is difficult to form a finer wiring pattern.
  • a special laser irradiation device is required as in MIPTEC, and there is a problem of increased manufacturing costs due to labor of laser processing and capital investment.
  • the wiring circuit is formed on the mold resin having a three-dimensional shape, so that the finally manufactured MID substrate is a single-sided substrate. For this reason, the freedom degree of a wiring circuit becomes small compared with a double-sided board, and the problem that size reduction of board
  • a method for solving the problem and the above-described problem there is a method of manufacturing a three-dimensional wiring board by forming a wiring circuit on a thermoplastic resin such as polyimide and then bending the resin by heating and pressing.
  • Patent Document 2 discloses that a metal foil is pasted on a polyimide film by thermocompression bonding, and then three-dimensional molding is disclosed, and Patent Document 3 discloses that a three-dimensional molding is performed after applying a conductive paste on a polysulfone resin. It is disclosed.
  • JP 2012-94605 A Japanese Patent Laid-Open No. 06-188537 JP 2000-174399 A
  • the present invention has been made in view of such problems, and the object of the present invention is to have flexibility, cost reduction, and good compatibility with equipment casings having a narrow space or a three-dimensional shape.
  • An object of the present invention is to provide a three-dimensional wiring board that can be easily arranged and a method for manufacturing the same.
  • a three-dimensional wiring board of the present invention has a three-dimensional shape and has a resin film having a breaking elongation of 50% or more, and a wiring having a desired pattern formed on the surface of the resin film.
  • the resin film includes a rigid portion having the three-dimensional shape, and a flexible portion extending in a desired direction from an end portion of the rigid portion and having flexibility.
  • the manufacturing method of the three-dimensional wiring board of this invention forms the 1st metal film on the surface of the preparatory process which prepares the resin film provided with 50% or more elongation at break, and the said resin film
  • Forming a wiring pattern by laminating a second metal film on the patterned first metal film, and the three-dimensional molding process is a rigid having a three-dimensional shape. And a flexible portion extending in a desired direction from the end portion of the rigid portion and the flexible portion is formed on the resin film.
  • a three-dimensional wiring board that has flexibility, can reduce costs, and can be favorably arranged corresponding to a device casing having a narrow space or a three-dimensional shape, and a method for manufacturing the same. can do.
  • FIG. 1 is a perspective view of the three-dimensional wiring board 1 according to the present embodiment.
  • the three-dimensional wiring board 1 has two rigid parts 1a and 1b that are three-dimensionally molded and a flexible part 1c that connects (couples) the two rigid parts 1a and 1b. is doing.
  • the flexible portion 1c is not three-dimensionally molded, has flexibility, and can be bent in a desired direction. That is, by bending the flexible portion 1c, it is possible to freely adjust the positional relationship between the two rigid portions 1a and 1b, which is suitable for a device housing having a narrow space or a three-dimensional shape.
  • the arrangement of the three-dimensional wiring board 1 can be achieved.
  • the three-dimensional wiring board 1 has different dimensions (that is, heights) in the Z direction at the respective positions in the X direction and the Y direction, and irregularities are formed on the XY plane. .
  • the rigid part in this invention does not necessarily have hardness and intensity
  • the rigid portions 1a and 1b in the present embodiment are not the same as the rigid portions constituting a general rigid substrate or a general rigid flexible substrate, but are defined as portions corresponding to the rigid portions constituting the rigid flexible substrate.
  • the rigid portions 1a and 1b in the present embodiment are softer than a general rigid substrate and harder than a general flexible substrate.
  • the three-dimensional wiring board 1 has a thermoplastic resin film 2 and a wiring pattern 3 formed on both surfaces of the thermoplastic resin film 2 (only one surface is shown in FIG. 1). Yes. Moreover, since the thermoplastic resin film 2 is used as a base material of the three-dimensional wiring board 1, rigid parts 2a, 2b and flexible parts corresponding to the rigid parts 1a, 1b and the flexible part 1c of the three-dimensional wiring board 1. 2c is included. That is, the thermoplastic resin film 2 is composed of rigid portions 2a and 2b that are three-dimensionally molded and a flexible portion 2c that is not three-dimensionally molded and has flexibility. Here, the flexible portion 2c extends in a desired direction (in this embodiment, toward the other rigid portion) from the ends of the rigid portions 2a and 2b, and connects the two rigid portions 2a and 2b. is doing.
  • thermoplastic resin film 2 for example, a known resin film such as polyimide or polyethylene terephthalate can be used.
  • the thickness of the thermoplastic resin film 2 can change suitably according to the use and required characteristic of a three-dimensional wiring board.
  • the thickness of the thermoplastic resin film 2 may be adjusted to about 100 ⁇ m (75 ⁇ m or more and 150 ⁇ m or less). When used together, it may be adjusted to 50 ⁇ m or less.
  • the resin film to be prepared is not limited to the thermoplastic type, and if it is a resin film having a relatively large elongation at break, a thermosetting resin film or a thermosetting resin and a thermoplastic resin are laminated ( That is, a composite resin film having a structure in which a thermoplastic resin film and a thermosetting resin film are bonded together may be used.
  • the relatively large elongation at break is a value of at least 50%, preferably 150% or more.
  • the wiring pattern 3 is made of copper, and particularly has a laminated structure in which two metal films made of copper are laminated.
  • the laminated structure will be described in detail when explaining the manufacturing method described later.
  • the material of the wiring pattern 3 is not limited to copper, but various metals such as silver, gold, or nickel, or an alloy including at least one of these metals and copper, or a laminate of each metal is used. Although it may be used, it is preferable to use a metal that is relatively soft and has a high elongation at break.
  • the materials of the two metal films constituting the material of the wiring pattern 3 may be different.
  • the wiring pattern 3 extends not only in the XY plane but also in the Z direction, and is three-dimensionally patterned.
  • the wiring pattern 3 is also formed in a bent part or a bent part by three-dimensional molding of the thermoplastic resin film 2, but the wiring pattern 3 is also broken by the bending of the flexible part 1c. There is no. The reason will be described in detail when explaining the manufacturing method described later.
  • FIGS. 2, 3, 5, 10, 13, 19, and 21 are cross-sectional views in the manufacturing process of the three-dimensional wiring board.
  • 6 is an enlarged conceptual diagram of the broken line region VI in FIG. 5
  • FIG. 11 is an enlarged conceptual diagram of the broken line region XI in FIG. 10
  • FIG. 20 is an enlarged conceptual diagram of the broken line region XX in FIG.
  • FIG. 22 is an enlarged conceptual diagram of a broken line area XXII in FIG.
  • FIGS. 14 to 17 are schematic views showing a manufacturing process related to three-dimensional molding according to the embodiment of the present invention.
  • 4 are schematic views of the metal film formation for the three-dimensional wiring board according to the embodiment of the present invention.
  • FIG. 18 is a perspective view in the manufacturing process of the three-dimensional wiring board according to the embodiment of the present invention.
  • thermoplastic resin film 2 is prepared (preparation step).
  • a known resin film such as polyimide or polyethylene terephthalate can be used.
  • the thickness is adjusted to about 100 ⁇ m (75 ⁇ m to 150 ⁇ m).
  • the resin film to be prepared is not limited to the thermoplastic type, and as described above, as long as the resin film has a relatively large elongation at break, it is a thermosetting resin film, or a thermosetting resin and a thermoplastic resin.
  • a composite resin film having a structure in which resins are laminated can be used.
  • NC processing, laser processing, punching processing, or the like is performed in order to ensure conduction on the front and back surfaces (first surface 2 d and second surface 2 e) of the thermoplastic resin film 2.
  • Through-hole 4 is formed using the opening technique.
  • the opening diameter of the through hole 4 is about 0.3 mm.
  • an actual three-dimensional wiring board has a plurality of through holes 4.
  • the quantity of the through-hole 4 can also be suitably changed according to the circuit structure of a three-dimensional wiring board.
  • a positioning hole for example, an opening diameter of 3 mm
  • a positioning hole for use as positioning at the time of three-dimensional molding described later is removed without forming an outer edge portion of the thermoplastic resin film 2 (that is, finally forming a three-dimensional wiring board). May be formed on a portion).
  • the first metal film 5 is formed (first metal film forming step).
  • the metal is metallized on the surface of the thermoplastic resin film 2 by electroless plating using a known molecular bonding technique.
  • thermoplastic resin film 2 As a pretreatment, first, Ar plasma treatment is performed on the thermoplastic resin film 2 to remove the fragile layer on the surface of the thermoplastic resin film 2, and a functional group that is compatible with a molecular bonding agent described later is provided. It is formed on the surface of the thermoplastic resin film 2. Thereafter, the Ar resin-treated thermoplastic resin film 2 is immersed in the molecular bonding agent 6 solution (FIG. 4).
  • the molecular bonding agent 6 has a functional group (first functional group) that reacts with the thermoplastic resin film 2, the functional group of the thermoplastic resin film 2 and the functional group of the molecular bonding agent 6 are associated with each other. As shown in FIG. 5 and FIG.
  • the molecular bonding agent 6 is illustrated in a layered form for easy understanding, but actually exists in a nano-level state (the thickness of the molecular bonding agent 6 is several nm) as shown in FIG. It is very thin compared to other materials. Therefore, the molecular bonding agent 6 may be omitted from FIG.
  • the straight line extending up and down of the molecular bonding agent 6 in FIG. 6 represents a functional group, and more specifically, a state in which the straight line extending toward the thermoplastic resin film 2 is connected to the functional group of the thermoplastic resin film 2.
  • the straight line extending to the opposite side of the thermoplastic resin film 2 represents the functional group of the molecular bonding agent 6 that reacts with the metal of the first metal film 5.
  • the catalyst film (Sn—Pd colloid aqueous solution) is impregnated with the thermoplastic resin film 2 subjected to the molecular bonding treatment (FIG. 7).
  • the Sn—Pd colloid is electrically adsorbed on the surface of the thermoplastic resin film 2.
  • Sn covering the periphery of Pd is removed, and Pd ions are changed to metal Pd (FIG. 8). That is, a catalyst treatment (for example, Pd) is carried on the thermoplastic resin film 2 by performing a catalyst treatment.
  • the accelerator liquid sulfuric acid (concentration: 10%) containing oxalic acid (about 0.1%) can be used.
  • the thermoplastic resin film 2 carrying Pd as a catalyst is immersed in an electroless plating tank for 5 minutes, for example.
  • copper is precipitated using Pd as a catalyst, and the precipitated copper is bonded to the molecular bonding agent 6 (FIG. 9).
  • the molecular bonding agent 6 also includes a functional group (second functional group) that reacts with the metal of the first metal film 5, the end of the molecular bonding agent 6 that is bonded to the thermoplastic resin film 2.
  • a metal is chemically bonded to the end portion (second functional group) located on the opposite side of the substrate using a catalyst.
  • thermoplastic resin film 2 is heated at 150 ° C. for 10 minutes to terminate the chemical bond between the molecular bonding agent 6 and the metal, and as shown in FIG. 10, the surface of the thermoplastic resin film 2
  • first metal film 5 that is, molecular bonding between the thermoplastic resin film 2 and the first metal film 5
  • the above-described molecular bonding agent 6 is a chemical for chemically bonding a resin and a metal or the like, and a functional group that bonds to the resin and a functional group that bonds to the metal exist in one molecular structure.
  • the molecular bonding technique is a technique for chemically bonding a resin and a metal or the like using the molecular bonding agent 6 having such a structure. Further, these molecular bonding agents and molecular bonding techniques are described in more detail in Japanese Patent No. 04936344, Japanese Patent No. 05729852, and Japanese Patent No. 05083926.
  • the electroless plating is generated in the form of particles, and the first metal film 5 is formed in a porous shape by the copper particles 5a. Is done.
  • the term “porous” means that the first metal film 5 does not have a film thickness that is completely formed on the film, but the entire film is electrically connected when at least a part of the particles are not all in contact with each other. (It is not always necessary to conduct electricity, and even if the distance between particles is separated by three-dimensional molding, it may be conducted by a second metal film described later).
  • the first metal film 5 having a film thickness capable of transmitting light is formed by depositing copper in a particle form in the range of 0.02 ⁇ m to 0.20 ⁇ m. .
  • the reason for adjusting the state (that is, the film thickness) of the first metal film 5 is that if the first metal film 5 is formed in a complete film shape that does not transmit light, the three-dimensional molding described later is performed. This is because even if a crack is generated in the first metal film 5, it is difficult to repair the crack even by a second metal film described later.
  • the first metal film 5 is thinner than 0.02 ⁇ m, the contact between the resin and copper is reduced, the adhesion is lowered, and the distance between the particles after being stretched is too far apart, and the second metal film described later. It becomes difficult to repair continuity in Further, when the film is stretched in a state of transmitting light, the distance between the particles is only large, so the crack is small. However, when the film is stretched in a complete film shape that does not transmit light, the metal film exceeding the limit (first metal film 5 ) Is cracked and becomes a wide crack. In FIG. 11, only one particle 5 a is shown in the film thickness direction of the first metal film 5, but if the first metal film 5 is porous, a plurality of particles 5 a are present. May be laminated in the film thickness direction.
  • the process of forming the first metal film 5 in a porous shape will be described in detail below.
  • the newly precipitated copper is either the molecular bonding agent 6 or the copper that has already been precipitated and reacts with the molecular bonding agent 6.
  • the activity of Pd which is a catalyst
  • the production of copper proceeds in the plane direction (that is, the direction spreading on the surface of the thermoplastic resin film 2). It will also begin to proceed in the thickness direction (that is, the thickness direction of the first metal film 5).
  • thermoplastic resin film 2 and the first metal film 5 are chemically bonded via the molecular bonding agent 6, the interface between the thermoplastic resin film 2 and the first metal film 5 is defined. Both members can be firmly joined while being smooth. Thereby, it is not necessary to form unevenness on the surface of the thermoplastic resin film 2, and the manufacturing process can be facilitated, the manufacturing cost can be reduced, and the wiring circuit to be formed can have high definition.
  • the molecular bonding agent to be used is not limited to one type.
  • the molecular bonding agent 6 is mixed with another molecular bonding agent having a functional group that reacts with the molecular bonding agent 6 and the first metal film 5.
  • the compound formed may be used, and may be appropriately changed including other process conditions depending on the materials of the thermoplastic resin film 2 and the first metal film 5.
  • the material of the first metal film 5 is not limited to copper, for example, various metals such as silver, gold, or nickel, or alloys or metals containing at least one of these metals and copper.
  • a laminated material may be used, it is preferable to use a metal that is relatively soft and has a high elongation at break.
  • the film thickness for realizing the state of transmitting light and conducting is different depending on the metal to be used, the first metal film 5 is formed in a porous shape when another metal is used. Therefore, the film thickness is adjusted as appropriate so that the above can be realized.
  • the method for forming the first metal film 5 is not limited to the method using the molecular bonding technique described above, and if the first metal film 5 can be formed in a porous shape, for example, sputtering, vapor deposition, Alternatively, a film forming technique such as wet plating other than the method using molecular bonding may be used. And about formation of the 1st metal film 5, you may select the optimal film-forming technique according to the metal material used.
  • the first metal film is formed so as to cover the first surface 2d, the second surface 2e of the thermoplastic resin film 2 and the side surface 2f of the thermoplastic resin film 2 exposed by the through holes.
  • the first metal film 5 is formed only on either the first surface 2d or the second surface 2e of the thermoplastic resin film 2 in accordance with the required structure and characteristics of the three-dimensional wiring board. It may be formed. That is, the three-dimensional wiring board of the present invention includes not only those having wiring patterns formed on both sides but also those having wiring patterns 3 formed only on one side.
  • the first metal film 5 is subjected to patterning processing by photolithography to form a desired wiring pattern (pattern forming step). Specifically, a resist film is thermocompression bonded to the surface of the thermoplastic resin film 2 on which the first metal film 5 is formed, and exposure and development are performed using a mask film on which a predetermined pattern is printed. Subsequently, the first resist film 5 is etched using the developed resist film as an etching mask to form a desired wiring pattern. Thereafter, the resist film is peeled and removed.
  • it is preferable to adjust the shape of the wiring pattern (wiring width, wiring length, wiring spacing, etc.) in consideration of the elongation and deformation of the first metal film 5 due to three-dimensional molding described later.
  • the first metal film 5 is patterned by photolithography, it is possible to realize a higher definition pattern than patterning using an inkjet printing technique or a gravure offset printing technique. That is, the first metal film 5 has higher resolution (that is, excellent linearity and high-definition wiring formation) than a wiring pattern patterned using an ink jet printing technique or a gravure offset printing technique. ) Being.
  • thermoplastic resin film 2 on which the first metal film 5 is formed is subjected to heat treatment and pressure treatment to perform three-dimensional molding (three-dimensional molding step).
  • three-dimensional molding step first, the thermoplastic resin film 2 is positioned with respect to the molding die 11 using the positioning holes described above. This is for matching the molding position and the wiring pattern position. That is, as shown in FIG. 14, the thermoplastic resin film 2 is disposed between the upper mold 12 and the lower mold 13 of the mold 11.
  • the upper mold 12 forms the first three-dimensional molded part 12a to form the rigid part 2a on the thermoplastic resin film 2, the second three-dimensional molded part 12b to form the rigid part 2b, and the flexible part 2c. Therefore, the flat part 12c is provided.
  • the lower mold 13 is also formed with the first three-dimensional molded portion 13a for forming the rigid portion 2a on the thermoplastic resin film 2, the second three-dimensional molded portion 13b and the flexible portion 2c for forming the rigid portion 2b. Therefore, a flat portion 13c is provided. That is, the first three-dimensional molding part 12a of the upper mold 12 and the first three-dimensional molding part 13a of the lower mold 13 are opposed to each other, and the second three-dimensional molding part 12b of the upper mold 12 and the second three-dimensional molding of the lower mold 13 are arranged.
  • the molding part 13b faces, the flat part 12c of the upper mold 12 and the flat part 13c of the lower mold 13 face each other, and the thermoplastic resin film 2 is sandwiched therebetween.
  • the heating temperature is adjusted within a range of 270 ° C. to 350 ° C. (eg, 300 ° C.) higher than the glass transition temperature of the material.
  • the heating temperature is appropriately adjusted according to the material of the thermoplastic resin film 2.
  • the heating temperature is required to be equal to or higher than the glass transition temperature and equal to or lower than the heat resistant temperature of the thermoplastic resin film 2, and is preferably set to the lowest possible temperature within the range. This is to reduce a decrease in adhesion due to heating of the first metal film 5 and the thermoplastic resin film 2 formed on the thermoplastic resin film 2.
  • thermoplastic resin film 2 is pressed from above and below with a desired pressure (for example, 10 MPa) (FIG. 16).
  • the desired pressure is appropriately adjusted in consideration of the material of the thermoplastic resin film 2 and the point that the desired three-dimensional molding becomes difficult if the pressure is too weak.
  • the thermoplastic resin film 2 is taken out from the mold 11 (FIG. 17), and the three-dimensional molding of the thermoplastic resin film 2 is completed. In other words, the formation of the three-dimensional wiring board substrate 16 is completed.
  • the first metal film 5 is not shown.
  • the actual three-dimensional wiring board 1 is actually formed with a plurality of projections and depressions.
  • the two-dimensional molded part 12b and the first three-dimensional molded part 13a and the second three-dimensional molded part 13b of the lower mold 13 have a plurality of irregularities, and the plurality of irregularities between the upper mold 12 and the lower mold 13 are A structure that fits each other may be adopted.
  • one mold 11 is used and the thermoplastic resin film 2 is three-dimensionally molded by one heat treatment and pressure treatment, which corresponds to each of the rigid portions 1a and 1b.
  • Three-dimensional molding may be performed by using an independent mold and performing heat treatment and pressure treatment once or twice.
  • an independent mold it is necessary to set a part that has been three-dimensionally molded so that it is not sandwiched again by another mold, and the part that becomes the flexible part 1c is also a mold. It is necessary to prevent deformation due to pinching caused by.
  • the removed thermoplastic resin film 2 is three-dimensionally molded, and the first metal film 5 is formed on both surfaces thereof. Further, as shown in FIG. 18, the first metal film 5 has already been patterned, and the first metal film 5 functions as a base of the wiring pattern 3, so that it has the same wiring shape as the wiring pattern 3. Yes.
  • the thermoplastic resin film 2 that is, the substrate 16 for a three-dimensional wiring board
  • the thermoplastic resin film 2 that has undergone the three-dimensional molding is likely to have a crack 17 in the bent portion 2g that is bent by the three-dimensional molding. It has become.
  • the crack 17 is a gap formed by an increase in the inter-particle distance of the copper particles 5a constituting the first metal film 5, and is a complete metal film shape that does not transmit light.
  • the structure is different from that of a crack generated by stretching the metal film.
  • a crack may not generate
  • the crack 17 is caused by the thermoplastic resin film 2 being stretched, whereas the first metal film 5 has an increased interparticle distance, but the first metal film 5 is Since it is formed in a porous shape, the depth of the crack 17 itself is equivalent to the size of the particle 5a and becomes very small, and further compared with the case where the first metal film 5 is formed in a complete film shape. Thus, the width of the crack 17 is also reduced. That is, the substrate 16 for a three-dimensional wiring board according to the present embodiment is in a state in which the crack 17 can be repaired more easily than in the case where the first metal film 5 is formed in a complete film shape. It has become.
  • the crack 17 (gap between the particles) is small when stretched in a state where light is transmitted because the distance between the particles is only large, but the limit is exceeded when the film is stretched in a complete film shape that does not transmit light.
  • the metal film is cracked and a wide crack is generated.
  • the above-described three-dimensional molding may be performed in a state where the thermoplastic resin film 2 is sandwiched between two protective films.
  • angular part 2h in the bending part 2g can be made slightly smooth, and generation
  • the protective film is preferably formed of the same material as the thermoplastic resin film 2.
  • the shape of the corner portion 2h in the bent portion 2g is curved, or the angle is made smaller than 90 degrees (for example, 75 to 85 degrees).
  • the mold 11 may be designed.
  • thermoplastic resin film 2 is pressed from above and below using the upper mold 12 and the lower mold 13, but the thickness uniformity of the thermoplastic resin film 2 after the heat press is performed. May be used, other press working methods such as a vacuum press or a pneumatic press may be used.
  • the second metal film 21 is formed so as to cover the surface of the first metal film 5 of the substrate 16 for the three-dimensional wiring board (second metal film forming step: FIG. 21).
  • a metal is additionally deposited on the surface of the first metal film 5 by general electroless plating.
  • the three-dimensional wiring substrate base material 16 is desired in order to remove the oxide layer formed on the surface of the three-dimensional wiring substrate base material 16 by heating in the molding step. Soak in a cleaning solution (for example, acid degreasing solution, sulfuric acid solution). Subsequently, a catalyst treatment is performed to cause the first metal film 5 of the substrate 16 for a three-dimensional wiring board to react with a catalyst (for example, a Pd catalyst) of the type that replaces the first metal film 5, and then the substrate for the three-dimensional wiring board The material 16 is immersed in an electroless plating solution.
  • a cleaning solution for example, acid degreasing solution, sulfuric acid solution.
  • metal is selectively deposited only around the first metal film 5 where the catalyst is present on the surface, and the metal that does not become a wiring circuit (that is, the exposed region of the thermoplastic resin film 2) is metal. Is not deposited, and additional patterning of the second metal film 21 becomes unnecessary.
  • copper is used as the metal of the second metal film 21, and as can be seen from FIGS. 21 and 22, a plurality of copper particles 21 a are deposited on the particles 5 a of the first metal film 5.
  • the second metal film 21 is formed in a complete film shape without being formed in a porous shape.
  • the second metal film 21 having a film thickness of 5 ⁇ m or more could be formed by immersion for 1 hour.
  • the particles 21a constituting the second metal film 21 grow around the particles 5a constituting the first metal film 5, and the thickness direction and the thickness of the second metal film 21 are related to each other. It grows to the same extent with respect to the direction orthogonal to the direction (planar direction of the second metal film 21).
  • the 2nd metal film 21 can be formed so that the crack 17 of the 1st metal film 5 which arose by three-dimensional shaping
  • the wiring pattern 3 can be formed.
  • the repair of the crack 17 by the second metal film 21 can repair the width of the crack 17 about twice the film thickness of the second metal film 21, and therefore the film thickness of the second metal film 21 is assumed. It may be adjusted to 1 ⁇ 2 times or more of the maximum width of the crack 17, more preferably adjusted to a film thickness comparable to the width of the crack 17.
  • the second metal film 21 is generated on the side surface 2f of the through hole 4 in the same manner as the surface layer, and it is possible to repair the conduction even if there is a front / back conduction failure due to the through hole 4.
  • the layer thickness (wiring pattern thickness) of the conductor layer necessary for the wiring circuit is insufficient with the film thickness of the first metal film 5, but by forming the second metal film 21. The required layer thickness of the conductor layer can be ensured.
  • the second metal film 21 is formed by electroless plating. However, if the second metal film 21 can be finally formed only on the surface of the first metal film 5, another film is formed. Techniques (for example, electrolytic plating, application of conductive ink, etc.) may be used. However, when the second metal film 21 is formed by electroless plating as in this embodiment, it can be formed even if the independent wiring, that is, the wiring circuit is electrically separated from the outer peripheral portion of the molded body. However, when the second metal film 21 is formed by electrolytic plating, it is necessary that all the wirings are electrically connected to the outer peripheral portion of the molded body, which is taken into consideration at the time of design including the installation of the feeder line. It will be necessary. Further, in this case, when a non-conductive portion is generated by the three-dimensional molding, the second metal film 21 cannot be formed because electricity does not flow beyond the non-conductive portion.
  • the material of the second metal film 21 is not limited to copper, and other metals such as nickel or nickel chrome, nickel copper, gold, or silver or alloys containing these may be used for the three-dimensional wiring board.
  • the material can be appropriately adjusted according to required characteristics and reliability.
  • the surface of the second metal film 21 is subjected to a rust preventive agent treatment, and the three-dimensional wiring board constituted by the thermoplastic resin film 2, the first metal film 5, and the second metal film 21. 1 is completed.
  • a protective film made of a solder resist may be further formed on a necessary portion of the surface of the three-dimensional wiring board 1.
  • a method such as applying a solder resist to a necessary portion by an inject method using an ink jet apparatus can be considered.
  • a protective coating film (coverlay) made of resin may be attached.
  • the finally formed three-dimensional wiring board 1 has different dimensions (that is, heights) in the Z direction at the respective positions in the X direction and the Y direction. Unevenness is formed.
  • one three-dimensional wiring board 1 is manufactured through the above manufacturing process.
  • a plurality of three-dimensional wiring boards 1 may be formed simultaneously by one manufacturing process. . That is, a plurality of (for example, four) three-dimensional wiring boards 1 can be manufactured simultaneously from one thermoplastic resin film (worksheet).
  • the rigid parts 1a and 1b and the flexible part 1c may be punched (die-cut) by external processing so as to be integrated.
  • the said external shape processing may be naturally performed also when manufacturing one three-dimensional wiring board on the sheet
  • the three-dimensional wiring board 1 uses a thermoplastic resin film 2 as a base material, but has a structure in which two rigid portions 1a and 1b are connected by a single flexible portion 1c. It can be used as a substitute for a flexible substrate. That is, it is possible to easily realize a favorable arrangement of the three-dimensional wiring board corresponding to a device housing having a narrow space or a three-dimensional shape. Further, in the three-dimensional wiring board 1 according to the present embodiment, another connecting component for connecting the rigid portions 1a and 1b is unnecessary, and the cost can be reduced by reducing the number of components.
  • the manufacturing method of the three-dimensional wiring board 1 since the two rigid parts 1a and 1b are three-dimensionally molded simultaneously and integrally, the manufacturing method is compared with the conventional manufacturing method of rigid flexible boards. Since the process becomes simpler, costs can be reduced even when compared with conventional products.
  • the first metal film 5 is formed in a porous shape, and therefore cracks that cannot be repaired are formed in the first metal film 5 in the subsequent three-dimensional forming process.
  • production can be prevented and the wiring pattern 3 more robust and excellent in reliability can be formed. Since the crack can be repaired by the second metal film, the wiring pattern 3 can be formed in a stronger and more reliable state, and even if the three-dimensional wiring board 1 is bent, the wiring pattern 3 can be formed. The pattern 3 is prevented from being cracked.
  • the thickness of the thermoplastic resin film 2 serving as a base material is 75 ⁇ m or more.
  • the three-dimensional wiring board 1 manufactured by the above-described manufacturing method is not suitable for repeated bending, and excessive bending is caused after bending when the three-dimensional wiring board 1 is incorporated in the housing.
  • the basic usage is the so-called flex installation.
  • the flexible portion 1c can be made thin (75 ⁇ m or less), and therefore the thermoplastic resin film 2 is repeatedly bent. And can be used for repeated bending.
  • the three-dimensional wiring board 1 has a structure in which the two rigid portions 1a and 1b are connected by one flexible portion 1c.
  • FIG. It is good also as a structure which consists of the flexible part 101b connected to the said rigid part 101a.
  • the flexible part 101b is provided with an external connection terminal 107 on the other end opposite to one end connected to the rigid part 101a. That is, the three-dimensional wiring board 101 shown in FIG. 24 has a flying tail structure.
  • the external connection terminal 107 is formed at one end of the region to be the flexible portion 2c in the subsequent three-dimensional molding process. In the subsequent three-dimensional molding process, the three-dimensional molding is not performed on the portion where the external connection terminal 107 is formed.
  • the quantity of the rigid part 1a and the flexible part 1c is not limited to the quantity of the above-described embodiment, but three or more rigid parts may be formed, and each rigid part may be connected by the flexible part. That is, for a part of the flexible portion, the flexibility may extend in a desired direction from two end portions facing each other or from two adjacent end portions.
  • the other flexible part (flying tail part) as a flying tail is mixed from each rigid part and the flexible part which connects these, and a rigid part.
  • the rigid portions 1a and 1b protrude in the + Z direction (that is, provided with a convex shape on the upper side of the drawing), but either one of the rigid portions 1a and 1b protrudes in the ⁇ Z direction. (In other words, it may have a shape that is convex (in short, concave) on the lower side of the drawing).
  • a conductor layer that is not patterned or a mesh-like conductor layer is formed on one side of the thermoplastic resin film 2 and is grounded to function as a GND layer.
  • a conductor layer that is located on the opposite side of the unpatterned conductor layer A single characteristic impedance control pattern or a differential impedance control pattern may be formed. That is, in the conductor layer located on the opposite side of the unpatterned conductor layer, a wiring width that provides the required impedance, a pair of pattern width and gap width, and wiring thickness in the case of differential impedance wiring, etc. It is possible to form a wiring pattern considering the above. With such a structure, impedance control can be achieved in the three-dimensional wiring board 1.
  • a conductor layer or a mesh-like ground conductor layer that is not subjected to the patterning can be formed on one surface of the flexible portion 1c, so that more excellent impedance control is possible.
  • the impedance value is the material thickness and dielectric constant of the thermoplastic resin film 2 or the like, the structure of the conductor layer or mesh-like conductor layer not subjected to the patterning, and on both sides of the pair of wirings in the case of differential impedance wiring. Since it is affected by the distance from the ground wiring to be provided, it is important to design by simulation in consideration of these influences or to confirm by an actual sample.
  • a three-dimensional wiring board includes a resin film having a three-dimensional shape and having a break elongation of 50% or more, and a wiring pattern having a desired pattern formed on the surface of the resin film.
  • the resin film includes a rigid portion having the three-dimensional shape, and a flexible portion extending in a desired direction from an end portion of the rigid portion and having flexibility.
  • the base material although a resin film is used as the base material, it has a structure in which the rigid part is connected to the flexible part. Therefore, by bending the flexible part, it has a narrow space and a three-dimensional shape. It is possible to easily realize a favorable arrangement of the three-dimensional wiring board corresponding to the device casing or the like. Moreover, in the three-dimensional wiring board according to the first embodiment, another connection component for electrically connecting to the wiring pattern in the rigid portion is not necessary, and the cost can be reduced by reducing the number of components. In particular, since the rigid portion and the flexible portion are three-dimensionally molded simultaneously and integrally, the manufacturing process can be simplified and reduced, and the manufacturing cost can be reduced.
  • the three-dimensional wiring board according to the second embodiment of the present invention is that the wiring pattern is formed on both surfaces of the resin film in the first embodiment described above. As a result, the density of the three-dimensional wiring board can be increased.
  • the three-dimensional wiring board according to a third embodiment of the present invention is the first or second embodiment described above, wherein the wiring pattern has a first metal film having a porous structure in which metal is deposited in the form of particles, and It consists of the 2nd metal film laminated
  • the resin film in any one of the first to third embodiments described above, includes a plurality of rigid portions, and each of the plurality of rigid portions is the flexible. It is connected to the other rigid part via the part. As a result, it is possible to provide a three-dimensional wiring board manufactured at a lower cost that can replace the known flex-rigid board.
  • the flexible portion is externally connected to the other end opposite to the one end connected to the rigid portion. It is to provide a terminal for use. As a result, it is possible to provide a three-dimensional wiring board manufactured at a lower cost as a substitute board for the known flying tail.
  • the manufacturing method of the three-dimensional wiring board which concerns on the 6th embodiment of this invention is a preparatory process which prepares the resin film provided with 50% or more elongation at break, and forms the 1st metal film on the surface of the said resin film.
  • an apparatus housing having a narrow space or a three-dimensional shape is formed by bending the flexible part in order to form a structure in which the rigid part is connected to the flexible part. It is possible to provide a three-dimensional wiring board that can correspond to a body or the like. A separate connecting component for electrically connecting to the wiring pattern in the rigid portion and its mounting process are not required, and the cost can be reduced by reducing the number of components and the mounting process. In particular, since the rigid portion and the flexible portion are three-dimensionally molded simultaneously and integrally, the manufacturing process can be simplified and reduced, and the manufacturing cost can be reduced.
  • the manufacturing method of the three-dimensional wiring board which concerns on the 7th embodiment of this invention is that the said 1st metal film formation process forms the said 1st metal film on both surfaces of the said resin film in the 6th embodiment mentioned above. is there. Wiring patterns can be formed on both surfaces of the three-dimensional wiring board, and the density of the three-dimensional wiring board can be increased.
  • the manufacturing method of the three-dimensional wiring board which concerns on the 8th embodiment of this invention WHEREIN In the 6th or 7th embodiment mentioned above, in the said 1st metal film formation process, metal is deposited to particle shape and a film thickness is adjusted. Thus, the first metal film is formed in a porous shape. Thereby, it is possible to prevent the first metal film from generating a crack that cannot be repaired even in the subsequent three-dimensional formation process.
  • a manufacturing method of a three-dimensional wiring board according to a ninth embodiment of the present invention is the method according to any one of the sixth to eighth embodiments described above, wherein in the three-dimensional molding step, a plurality of the rigid portions are formed and a plurality of the rigids are formed. It is solid-molding so that a part may be connected by the flexible part. As a result, it is possible to provide a three-dimensional wiring board manufactured at a lower cost that can replace the known flex-rigid board.
  • the manufacturing method of the three-dimensional wiring board which concerns on the 9th embodiment of this invention is one end of the area
  • the three-dimensional molding step the three-dimensional molding is not performed on the portion where the external connection terminal is formed. As a result, it is possible to provide a three-dimensional wiring board manufactured at a lower cost as a substitute board for the known flying tail.
  • the manufacturing method of the three-dimensional wiring board according to the eleventh embodiment of the present invention is the method according to any one of the sixth to tenth embodiments described above, wherein in the three-dimensional molding step, the rigid part and the flexible part are formed by one mold. Is to form. Thereby, the die cost can be reduced, and the manufacturing cost of the three-dimensional molded substrate can be reduced.
  • the manufacturing method of the three-dimensional wiring board according to the twelfth embodiment of the present invention is the method according to any one of the ninth embodiments described above, wherein in the three-dimensional molding step, the three-dimensional wiring board is three-dimensional with independent molds that form the plurality of rigid portions. It is to mold. Thereby, highly accurate three-dimensional shaping
  • molding is realizable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

A three-dimensional wiring board is provided with a three-dimensional shape and comprises a resin film (2) having a breaking elongation of 50% or more and a wiring pattern (3) that is formed on the surface of the resin film (2) and that is provided with a desired pattern. The resin film (2) comprises rigid sections (1a, 1b) provided with a three-dimensional shape and a flexible section (1c) that is flexible and that extends in a desired direction from the ends of the rigid sections.

Description

立体配線基板、及び立体配線基板の製造方法Three-dimensional wiring board and method for manufacturing three-dimensional wiring board
 本発明は、立体成型されたリジッド部及びフレキシブル部を有する立体配線基板及びその製造方法に関する。 The present invention relates to a three-dimensional wiring board having a three-dimensionally formed rigid portion and a flexible portion, and a method for manufacturing the same.
 従来から知られている立体配線基板としては、三次元構造を備える構造体の表面上に電気回路を直接的かつ立体的に形成した部品であるMID(Molded Interconnect Device)基板がある。MID基板に関する技術としては、2ショット法、MIPTEC(Microscopic Integrated Processing Technology)、及びLDS(Laser Direct Structuring)等の工法が知られている。いずれの工法においても、モールド樹脂に対して三次元構造を形成した後に、その表面に対して配線回路を形成することになる。例えば、特許文献1には、MID基板及びその製造に関する技術が開示されている。 A conventionally known three-dimensional wiring board is a MID (Molded Interconnect Device) substrate, which is a component in which an electric circuit is directly and three-dimensionally formed on the surface of a structure having a three-dimensional structure. As techniques relating to the MID substrate, methods such as a two-shot method, MIPTEC (Microscopic Integrated Processing Technology), and LDS (Laser Direct Direct Structure) are known. In any method, after a three-dimensional structure is formed on the mold resin, a wiring circuit is formed on the surface. For example, Patent Document 1 discloses a technique related to an MID substrate and its manufacture.
 2ショット法においては、一次成型されたモールド樹脂上の配線形成をしない部分に対して、新たな樹脂による二次成型を行い、当該二次成型に係る樹脂をレジストとして触媒塗布及びめっきを行うことにより、モールド樹脂上に配線回路を形成する。しかしながら、2次成型された樹脂によって配線パターン形状を規制するため、2次成型のための金型加工精度の限界から、導体幅と導体間隙とを示すL/S(line width and spacing)の最小値が150/150μm程度となり、より微細な配線パターンの形成が困難であった。 In the two-shot method, secondary molding with a new resin is performed on a portion of the molded resin that is not molded on the primary molding, and a catalyst is applied and plated using the resin for the secondary molding as a resist. Thus, a wiring circuit is formed on the mold resin. However, since the shape of the wiring pattern is regulated by the secondary molded resin, the minimum L / S (line width and spacing) indicating the conductor width and the conductor gap is limited due to the limit of the mold processing accuracy for the secondary molding. The value was about 150/150 μm, and it was difficult to form a finer wiring pattern.
 MIPTECにおいては、成型されたモールド樹脂の表面全体にメタライジングを施し、レーザ光によって配線回路の外縁部分の金属(メタライジング層)を除去する。その後、配線回路となる領域に通電して電解めっきを行い、その後に成型体の全面にフラッシュエッチングを施して配線回路以外の金属を除去することにより、モールド樹脂上に配線回路を形成する。しかしながら、レーザ光の使用にあたっては、成型されたモールド樹脂の三次元形状に対応した特殊なレーザ照射装置が必要となり、レーザ加工の手間及び設備投資による製造コストの増加が問題となる。また、電解めっきによって配線回路に必要となる金属を堆積するため、配線回路となる領域のみに通電する必要があることから、当該配線回路となる領域が成型体の外周部と電気的に接続しているか、或いは給電線を介して外周部と電気的に接続されている必要がある。すなわち、当該配線回路となる領域を成型体の外周部から電気的に離間すること(すなわち、独立した配線パターンの形成)が困難となる問題や、回路として最終的に不要な給電線の形成及び除去に伴うコスト増加の問題が生じる。 In MIPTEC, the entire surface of the molded mold resin is metalized, and the metal (metalizing layer) at the outer edge portion of the wiring circuit is removed by laser light. Thereafter, a region to be a wiring circuit is energized to perform electroplating, and then the entire surface of the molded body is subjected to flash etching to remove metals other than the wiring circuit, thereby forming a wiring circuit on the mold resin. However, when using laser light, a special laser irradiation apparatus corresponding to the three-dimensional shape of the molded mold resin is required, and there is a problem of increase in manufacturing cost due to labor of laser processing and equipment investment. In addition, since the metal necessary for the wiring circuit is deposited by electrolytic plating, it is necessary to energize only the region that becomes the wiring circuit, so that the region that becomes the wiring circuit is electrically connected to the outer periphery of the molded body. Or have to be electrically connected to the outer periphery via a feeder line. That is, there is a problem that it is difficult to electrically separate the region to be the wiring circuit from the outer peripheral portion of the molded body (that is, formation of an independent wiring pattern), and formation of a feed line that is finally unnecessary as a circuit and The problem of increased cost associated with removal arises.
 LDSにおいては、導電粒子を含んだ特殊な樹脂材料を使用して1次成型を行い、配線回路となる領域にレーザ光を照射して当該導電粒子を露出させ、当該導電粒子の露出部分にめっきを行うことにより、モールド樹脂上に配線回路を形成する。しかしながら、成型されたモールド樹脂内の導電粒子を露出させる精度の問題から、L/Sの最小値が100/150μm程度となり、より微細な配線パターンの形成が困難であった。また、MIPTECと同様に特殊なレーザ照射装置が必要となり、レーザ加工の手間及び設備投資による製造コストの増加が問題となる。 In LDS, primary molding is performed using a special resin material containing conductive particles, the region that becomes the wiring circuit is irradiated with laser light to expose the conductive particles, and the exposed portions of the conductive particles are plated. As a result, a wiring circuit is formed on the mold resin. However, the minimum value of L / S is about 100/150 μm because of the problem of accuracy of exposing the conductive particles in the molded mold resin, and it is difficult to form a finer wiring pattern. In addition, a special laser irradiation device is required as in MIPTEC, and there is a problem of increased manufacturing costs due to labor of laser processing and capital investment.
 そして、上記いずれの工法においても、三次元的な形状を備えるモールド樹脂に配線回路を形成するため、最終的に製造されるMID基板は片面基板となる。このため、両面基板と比較して配線回路の自由度が小さくなり、基板自体の小型化も困難になる問題が生じる。当該問題及び上述した問題を解決する方法として、ポリイミド等の熱可塑性樹脂に配線回路を形成した後に、加熱及び加圧によって樹脂に折り曲げ加工を施し、立体配線基板を製造する方法がある。例えば、特許文献2にはポリイミドフィルム上に熱圧着により金属箔を貼り付けた後に立体成型することが開示され、特許文献3にはポリサルホン樹脂上に導電性ペーストを塗布した後に立体成型することが開示されている。 In any of the above methods, the wiring circuit is formed on the mold resin having a three-dimensional shape, so that the finally manufactured MID substrate is a single-sided substrate. For this reason, the freedom degree of a wiring circuit becomes small compared with a double-sided board, and the problem that size reduction of board | substrate itself becomes difficult arises. As a method for solving the problem and the above-described problem, there is a method of manufacturing a three-dimensional wiring board by forming a wiring circuit on a thermoplastic resin such as polyimide and then bending the resin by heating and pressing. For example, Patent Document 2 discloses that a metal foil is pasted on a polyimide film by thermocompression bonding, and then three-dimensional molding is disclosed, and Patent Document 3 discloses that a three-dimensional molding is performed after applying a conductive paste on a polysulfone resin. It is disclosed.
特開2012-94605号公報JP 2012-94605 A 特開平06-188537号公報Japanese Patent Laid-Open No. 06-188537 特開2000-174399号公報JP 2000-174399 A
 しかしながら、立体成型した後においては、剛性が生じることによって立体形状を保持できるものの、柔軟性がなくなるため、フレキシブル基板として用いることは困難となり、立体成型基板の用途がリジッド基板としての用途に限定されてしまう。また、互いに離れた位置に存在する立体成型基板同士を電気的に接続する場合には、配線ワイヤー、別のフレキシブル基板、又は別のリジッド基板等の接続部品を介して電気的に接続する必要が生じ、部品点数の削減によるコスト低減、狭小スペースや三次元的な形状を持つ機器筐体等に対応した立体配線基板の良好な配置が困難となる。 However, after three-dimensional molding, although the three-dimensional shape can be maintained due to rigidity, it becomes difficult to use as a flexible substrate because flexibility is lost, and the use of the three-dimensional molded substrate is limited to the use as a rigid substrate. End up. In addition, when electrically connecting three-dimensional molded substrates that are located apart from each other, it is necessary to electrically connect via connection parts such as wiring wires, another flexible substrate, or another rigid substrate. As a result, it is difficult to reduce the cost by reducing the number of parts and to properly arrange a three-dimensional wiring board corresponding to a device housing having a narrow space or a three-dimensional shape.
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、柔軟性を有するとともに、コスト低減及び狭小スペースや三次元的な形状を持つ機器筐体等に対応した良好な配置を可能とする立体配線基板、及びその製造方法を提供することにある。 The present invention has been made in view of such problems, and the object of the present invention is to have flexibility, cost reduction, and good compatibility with equipment casings having a narrow space or a three-dimensional shape. An object of the present invention is to provide a three-dimensional wiring board that can be easily arranged and a method for manufacturing the same.
 上記目的を達成するため、本発明の立体配線基板は、立体的形状を備え、且つ50%以上の破断伸びを備える樹脂フィルムと、前記樹脂フィルムの表面上に形成され、所望のパターンを備える配線パターンと、を有し、前記樹脂フィルムは、前記立体的形状を備えるリジッド部、及び前記リジッド部の端部から所望の方向に延在し、柔軟性を備えるフレキシブル部を含むこと。 In order to achieve the above object, a three-dimensional wiring board of the present invention has a three-dimensional shape and has a resin film having a breaking elongation of 50% or more, and a wiring having a desired pattern formed on the surface of the resin film. The resin film includes a rigid portion having the three-dimensional shape, and a flexible portion extending in a desired direction from an end portion of the rigid portion and having flexibility.
 また、上記目的を達成するため、本発明の立体配線基板の製造方法は、50%以上の破断伸びを備える樹脂フィルムを準備する準備工程と、前記樹脂フィルムの表面上に第1金属膜を形成する第1金属膜形成工程と、フォトリソグラフィによって前記第1金属膜にパターニングを施し、所望のパターンを形成するパターン形成工程と、前記樹脂フィルムに対して加熱及び加圧を施して立体成型する立体成型工程と、パターン形成された前記第1金属膜上に第2金属膜を積層して配線パターンを形成する配線パターン形成工程と、を有し、前記立体成型工程は、立体的形状を備えるリジッド部、及び前記リジッド部の端部から所望の方向に延在し、柔軟性を備えるフレキシブル部を前記樹脂フィルムに形成すること。 Moreover, in order to achieve the said objective, the manufacturing method of the three-dimensional wiring board of this invention forms the 1st metal film on the surface of the preparatory process which prepares the resin film provided with 50% or more elongation at break, and the said resin film A first metal film forming step, a pattern forming step of patterning the first metal film by photolithography to form a desired pattern, and a three-dimensional molding by heating and pressurizing the resin film. Forming a wiring pattern by laminating a second metal film on the patterned first metal film, and the three-dimensional molding process is a rigid having a three-dimensional shape. And a flexible portion extending in a desired direction from the end portion of the rigid portion and the flexible portion is formed on the resin film.
 本発明によれば、柔軟性を有するとともに、コスト低減及び狭小スペースや三次元的な形状を持つ機器筐体等に対応した良好な配置を図ることができる立体配線基板、及びその製造方法を提供することができる。 According to the present invention, there is provided a three-dimensional wiring board that has flexibility, can reduce costs, and can be favorably arranged corresponding to a device casing having a narrow space or a three-dimensional shape, and a method for manufacturing the same. can do.
本発明の実施例に係る立体配線基板の斜視図である。It is a perspective view of the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 図5における破線領域VIの拡大概念図である。It is an expansion conceptual diagram of the broken-line area | region VI in FIG. 本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 図10における破線領域XIの拡大概念図である。It is an expansion conceptual diagram of the broken-line area | region XI in FIG. 本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体成型に係る製造工程を示す概略図である。It is the schematic which shows the manufacturing process which concerns on the three-dimensional shaping | molding which concerns on the Example of this invention. 本発明の実施例に係る立体成型に係る製造工程を示す概略図である。It is the schematic which shows the manufacturing process which concerns on the three-dimensional shaping | molding which concerns on the Example of this invention. 本発明の実施例に係る立体成型に係る製造工程を示す概略図である。It is the schematic which shows the manufacturing process which concerns on the three-dimensional shaping | molding which concerns on the Example of this invention. 本発明の実施例に係る立体成型に係る製造工程を示す概略図である。It is the schematic which shows the manufacturing process which concerns on the three-dimensional shaping | molding which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板の製造工程における斜視図である。It is a perspective view in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 図19の破線領域XXの拡大概念図である。It is an expansion conceptual diagram of the broken-line area | region XX of FIG. 本発明の実施例に係る立体配線基板の製造工程における断面図である。It is sectional drawing in the manufacturing process of the three-dimensional wiring board which concerns on the Example of this invention. 図21における破線領域XXIIの拡大概念図である。It is an expansion conceptual diagram of the broken-line area | region XXII in FIG. 本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。It is the schematic in metal film formation about the three-dimensional wiring board which concerns on the Example of this invention. 本発明の変形例に係る立体配線基板の斜視図である。It is a perspective view of the three-dimensional wiring board which concerns on the modification of this invention.
 以下、図面を参照し、本発明の実施の形態について、実施例に基づき詳細に説明する。なお、本発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施例の説明に用いる図面は、いずれも本発明による立体配線基板及びその構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、または省略などを行っており、立体配線基板及びその構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。更に、実施例で用いる様々な数値は、一例を示す場合もあり、必要に応じて様々に変更することが可能である。 Hereinafter, with reference to the drawings, embodiments of the present invention will be described in detail based on examples. In addition, this invention is not limited to the content demonstrated below, In the range which does not change the summary, it can change arbitrarily and can implement. The drawings used to describe the embodiments schematically show the three-dimensional wiring board and its constituent members according to the present invention, and are partially emphasized, enlarged, reduced, omitted or the like for the purpose of deepening understanding. In some cases, it does not accurately represent the scale, shape, etc. of the three-dimensional wiring board and its constituent members. Furthermore, various numerical values used in the embodiments may be examples, and can be changed variously as necessary.
<実施例>
 先ず、図1を参照しつつ、本実施例に係る立体配線基板1の構造について説明する。ここで、図1は、本実施例に係る立体配線基板1の斜視図である。
<Example>
First, the structure of the three-dimensional wiring board 1 according to the present embodiment will be described with reference to FIG. Here, FIG. 1 is a perspective view of the three-dimensional wiring board 1 according to the present embodiment.
 図1に示すように、本実施例に係る立体配線基板1は、立体成型された2つのリジッド部1a、1b、及び当該2つのリジッド部1a、1bを接続(結合)するフレキシブル部1cを有している。フレキシブル部1cは、立体成型されておらず、柔軟性を備えており、所望の方向に屈曲させることができる。すなわち、フレキシブル部1cを屈曲することにより、当該2つのリジッド部1a、1bの位置関係を自在に調整することが可能となり、狭小スペースや三次元的な形状を持つ機器筐体等に対応した良好な立体配線基板1の配置を図ることができる。また、立体配線基板1は、図1に示すように、X方向及びY方向のそれぞれの位置において、Z方向の寸法(すなわち、高さ)が異なっており、XY平面において凹凸が形成されている。 As shown in FIG. 1, the three-dimensional wiring board 1 according to the present embodiment has two rigid parts 1a and 1b that are three-dimensionally molded and a flexible part 1c that connects (couples) the two rigid parts 1a and 1b. is doing. The flexible portion 1c is not three-dimensionally molded, has flexibility, and can be bent in a desired direction. That is, by bending the flexible portion 1c, it is possible to freely adjust the positional relationship between the two rigid portions 1a and 1b, which is suitable for a device housing having a narrow space or a three-dimensional shape. The arrangement of the three-dimensional wiring board 1 can be achieved. Further, as shown in FIG. 1, the three-dimensional wiring board 1 has different dimensions (that is, heights) in the Z direction at the respective positions in the X direction and the Y direction, and irregularities are formed on the XY plane. .
 なお、本発明におけるリジッド部とは、一般的なプリント配線基板の1種類であるリジッド基板のような硬度及び強度を備えているわけではなく、フレキシブル部と比較して形状が固定されているという意味で定義されている。すなわち、本実施例におけるリジッド部1a、1bは、一般的なリジッド基板、又は一般的なリジッドフレキシブル基板を構成するリジッド部と同一ではなく、リジッドフレキシブル基板を構成するリジッド部に相当する部分として定義されている。そして、本実施例におけるリジッド部1a、1bは、一般的なリジッド基板よりも柔らかく、一般的なフレキシブル基板よりも硬いことになる。 In addition, the rigid part in this invention does not necessarily have hardness and intensity | strength like the rigid board which is 1 type of a general printed wiring board, but the shape is being fixed compared with a flexible part. Defined by meaning. That is, the rigid portions 1a and 1b in the present embodiment are not the same as the rigid portions constituting a general rigid substrate or a general rigid flexible substrate, but are defined as portions corresponding to the rigid portions constituting the rigid flexible substrate. Has been. The rigid portions 1a and 1b in the present embodiment are softer than a general rigid substrate and harder than a general flexible substrate.
 更に、図1に示すように、立体配線基板1は、熱可塑性樹脂フィルム2、並びに熱可塑性樹脂フィルム2の両面(図1においては片面のみを図示)に形成された配線パターン3を有している。また、熱可塑性樹脂フィルム2は、立体配線基板1の基材として用いられているため、立体配線基板1のリジッド部1a、1b、及びフレキシブル部1cに対応するリジッド部2a、2b、及びフレキシブル部2cを含んでいる。すなわち、熱可塑性樹脂フィルム2は、立体成型されたリジッド部2a、2bと、立体成型されておらず柔軟性を有するフレキシブル部2cから構成されている。ここで、フレキシブル部2cは、リジッド部2a、2bの端部から所望の方向(本実施例においては、他方のリジッド部に向かった方向)に延在し、2つのリジッド部2a、2bを接続している。 Further, as shown in FIG. 1, the three-dimensional wiring board 1 has a thermoplastic resin film 2 and a wiring pattern 3 formed on both surfaces of the thermoplastic resin film 2 (only one surface is shown in FIG. 1). Yes. Moreover, since the thermoplastic resin film 2 is used as a base material of the three-dimensional wiring board 1, rigid parts 2a, 2b and flexible parts corresponding to the rigid parts 1a, 1b and the flexible part 1c of the three-dimensional wiring board 1. 2c is included. That is, the thermoplastic resin film 2 is composed of rigid portions 2a and 2b that are three-dimensionally molded and a flexible portion 2c that is not three-dimensionally molded and has flexibility. Here, the flexible portion 2c extends in a desired direction (in this embodiment, toward the other rigid portion) from the ends of the rigid portions 2a and 2b, and connects the two rigid portions 2a and 2b. is doing.
 熱可塑性樹脂フィルム2としては、例えば、ポリイミド又はポリエチレンテレフタラート等の公知の樹脂フィルムを用いることができる。熱可塑性樹脂フィルム2の厚みには限定はなく、立体配線基板の用途及び要求される特性に応じて適宜変更することができる。例えば、立体配線基板を単体で使用する場合には、熱可塑性樹脂フィルム2の厚みを約100μm程度(75μm以上150μm以下)に調整してもよく、立体配線基板を他のモールド樹脂等の保持部材とともに使用する場合には、50μm以下に調整してもよい。 As the thermoplastic resin film 2, for example, a known resin film such as polyimide or polyethylene terephthalate can be used. There is no limitation in the thickness of the thermoplastic resin film 2, and it can change suitably according to the use and required characteristic of a three-dimensional wiring board. For example, when the three-dimensional wiring board is used alone, the thickness of the thermoplastic resin film 2 may be adjusted to about 100 μm (75 μm or more and 150 μm or less). When used together, it may be adjusted to 50 μm or less.
 なお、準備する樹脂フィルムは熱可塑性タイプに限定されることなく、比較的に大きな破断伸びを備える樹脂フィルムであれば、熱硬化性樹脂フィルム、或いは熱硬化性樹脂と熱可塑性樹脂を積層した(すなわち、熱可塑性樹脂フィルムと熱硬化性樹脂フィルムとを貼り合わせた)構造を備える複合樹脂フィルムを用いてもよい。ここで、比較的に大きな破断伸びとは、少なくとも50%以上の値であり、好ましくは150%以上である。破断伸びについては成型する立体形状により必要な特性が要求され、複雑で大きな段差形状を持つ場合には立体成型による材料が耐えられる様に、より大きな破断伸び強度を持つ樹脂フィルム材が必要となる。また、フレキシブル部1cに数回の曲げ(フレックスインストール)ではなく繰り返しの屈曲性を求める場合には、その要求される特性に応じた屈曲強度を保つフィルムを用いる必要がある。同様に配線金属材料、カバーレイ等を形成する場合はそのカバーレイ材質にも要求特性に応じた屈曲強度が求められる。 In addition, the resin film to be prepared is not limited to the thermoplastic type, and if it is a resin film having a relatively large elongation at break, a thermosetting resin film or a thermosetting resin and a thermoplastic resin are laminated ( That is, a composite resin film having a structure in which a thermoplastic resin film and a thermosetting resin film are bonded together may be used. Here, the relatively large elongation at break is a value of at least 50%, preferably 150% or more. For breaking elongation, required properties are required depending on the three-dimensional shape to be molded, and in the case of a complicated and large step shape, a resin film material having a larger breaking elongation strength is required so that the material by three-dimensional molding can be withstood. . In addition, when the flexible portion 1c is required to bend repeatedly rather than bend several times (flex installation), it is necessary to use a film that maintains the bending strength according to the required characteristics. Similarly, when forming a wiring metal material, a coverlay or the like, the coverlay material is also required to have a flexural strength according to the required characteristics.
 本実施例にいて、配線パターン3は、銅から構成され、特に、銅からなる2つの金属膜を積層した積層構造を有している。当該積層構造については、後述する製造方法の説明の際に、詳細に説明する。なお、配線パターン3の材料は、銅に限定されることなく、銀、金、又はニッケル等の様々な金属、或いはこれらの金属及び銅のいずれかを少なくとも含む合金や各金属を積層したものを用いてもよいが、比較的にやわらかく破断伸び強度の高い金属を用いることが好ましい。そして、配線パターン3の材料を構成する2つの金属膜の材質は異なっていてもよい。 In this embodiment, the wiring pattern 3 is made of copper, and particularly has a laminated structure in which two metal films made of copper are laminated. The laminated structure will be described in detail when explaining the manufacturing method described later. In addition, the material of the wiring pattern 3 is not limited to copper, but various metals such as silver, gold, or nickel, or an alloy including at least one of these metals and copper, or a laminate of each metal is used. Although it may be used, it is preferable to use a metal that is relatively soft and has a high elongation at break. The materials of the two metal films constituting the material of the wiring pattern 3 may be different.
 また、図1に示すように、配線パターン3は、XY平面のみならず、Z方向にも延在し、立体的なパターニングがなされている。ここで、配線パターン3は、熱可塑性樹脂フィルム2の立体成型がなされて折れ曲がった部分又は屈曲した部分にも形成されることになるが、フレキシブル部1cの屈曲によっても配線パターン3が破断することはない。当該理由については、後述する製造方法の説明の際に詳細に説明する。 Further, as shown in FIG. 1, the wiring pattern 3 extends not only in the XY plane but also in the Z direction, and is three-dimensionally patterned. Here, the wiring pattern 3 is also formed in a bent part or a bent part by three-dimensional molding of the thermoplastic resin film 2, but the wiring pattern 3 is also broken by the bending of the flexible part 1c. There is no. The reason will be described in detail when explaining the manufacturing method described later.
 次に、図1乃至図23を参照しつつ、本発明の実施例に係る立体配線基板の製造方法について詳細に説明する。ここで、図2、図3、図5、図10、図13、図19、及び図21は、立体配線基板の製造工程における断面図である。また、図6は図5における破線領域VIの拡大概念図であり、図11は図10における破線領域XIの拡大概念図であり、図20は図19の破線領域XXの拡大概念図であり、図22は図21における破線領域XXIIの拡大概念図である。更に、図14乃至図17は、本発明の実施例に係る立体成型に係る製造工程を示す概略図である。そして、図4、図7乃至図9、図12、図23は、本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。図18は、本発明の実施例に係る立体配線基板の製造工程における斜視図である。 Next, a method for manufacturing a three-dimensional wiring board according to an embodiment of the present invention will be described in detail with reference to FIGS. 2, 3, 5, 10, 13, 19, and 21 are cross-sectional views in the manufacturing process of the three-dimensional wiring board. 6 is an enlarged conceptual diagram of the broken line region VI in FIG. 5, FIG. 11 is an enlarged conceptual diagram of the broken line region XI in FIG. 10, and FIG. 20 is an enlarged conceptual diagram of the broken line region XX in FIG. FIG. 22 is an enlarged conceptual diagram of a broken line area XXII in FIG. Further, FIGS. 14 to 17 are schematic views showing a manufacturing process related to three-dimensional molding according to the embodiment of the present invention. 4, FIG. 7 to FIG. 9, FIG. 12, and FIG. 23 are schematic views of the metal film formation for the three-dimensional wiring board according to the embodiment of the present invention. FIG. 18 is a perspective view in the manufacturing process of the three-dimensional wiring board according to the embodiment of the present invention.
 先ず、図2に示すように、熱可塑性樹脂フィルム2を準備する(準備工程)。熱可塑性樹脂フィルム2としては、上述したように、ポリイミド又はポリエチレンテレフタラート等の公知の樹脂フィルムを用いることができ、例えば、その厚みを約100μm程度(75μm以上150μm以下)に調整する。 First, as shown in FIG. 2, a thermoplastic resin film 2 is prepared (preparation step). As the thermoplastic resin film 2, as described above, a known resin film such as polyimide or polyethylene terephthalate can be used. For example, the thickness is adjusted to about 100 μm (75 μm to 150 μm).
 なお、準備する樹脂フィルムは熱可塑性タイプに限定されることなく、上述したように、比較的に大きな破断伸びを備える樹脂フィルムであれば、熱硬化性樹脂フィルム、或いは熱硬化性樹脂と熱可塑性樹脂を積層した構造を備える複合樹脂フィルムを用いることができる。 The resin film to be prepared is not limited to the thermoplastic type, and as described above, as long as the resin film has a relatively large elongation at break, it is a thermosetting resin film, or a thermosetting resin and a thermoplastic resin. A composite resin film having a structure in which resins are laminated can be used.
 次に、図3に示すように、熱可塑性樹脂フィルム2の表裏面(第1の面2d、及び第2の面2e)における導通を確保するために、NC加工、レーザ加工、又はパンチング加工等の開口技術を用いて貫通孔4を形成する。本実施例においては、貫通孔4の開口径を約0.3mmとした。なお、図3においては、1つの貫通孔4のみが示されているが、実際の立体配線基板においては複数の貫通孔4を有することになる。また、貫通孔4の数量は、立体配線基板の回路構成に応じて適宜変更することもできる。更に、後述する立体成型時の位置決めとして使用するための位置決め孔(例えば、開口径が3mm)を、熱可塑性樹脂フィルム2の外縁部分(すなわち、最終的に立体配線基板を構成することなく除去される部分)に形成してもよい。 Next, as shown in FIG. 3, NC processing, laser processing, punching processing, or the like is performed in order to ensure conduction on the front and back surfaces (first surface 2 d and second surface 2 e) of the thermoplastic resin film 2. Through-hole 4 is formed using the opening technique. In the present embodiment, the opening diameter of the through hole 4 is about 0.3 mm. In FIG. 3, only one through hole 4 is shown, but an actual three-dimensional wiring board has a plurality of through holes 4. Moreover, the quantity of the through-hole 4 can also be suitably changed according to the circuit structure of a three-dimensional wiring board. Further, a positioning hole (for example, an opening diameter of 3 mm) for use as positioning at the time of three-dimensional molding described later is removed without forming an outer edge portion of the thermoplastic resin film 2 (that is, finally forming a three-dimensional wiring board). May be formed on a portion).
 次に、熱可塑性樹脂フィルム2の第1の面2d、第2の面2e、及び貫通孔によって露出した熱可塑性樹脂フィルム2の側面2fを被覆するように、熱可塑性樹脂フィルム2の表面上に第1金属膜5を形成する(第1金属膜形成工程)。本実施例においては、熱可塑性樹脂フィルム2の表面上に、公知の分子接合技術を利用した無電解めっきによって金属をメタライジングする。 Next, on the surface of the thermoplastic resin film 2 so as to cover the first surface 2d, the second surface 2e of the thermoplastic resin film 2 and the side surface 2f of the thermoplastic resin film 2 exposed by the through holes. The first metal film 5 is formed (first metal film forming step). In this embodiment, the metal is metallized on the surface of the thermoplastic resin film 2 by electroless plating using a known molecular bonding technique.
 より具体的には、先ず、前処理として、熱可塑性樹脂フィルム2にArプラズマ処理を施し、熱可塑性樹脂フィルム2の表面の脆弱層を除去し、後述する分子接合剤と相性のよい官能基を熱可塑性樹脂フィルム2の表面上に形成する。その後、Arプラズマ処理後の熱可塑性樹脂フィルム2を分子接合剤6の溶液に浸ける(図4)。ここで、分子接合剤6は熱可塑性樹脂フィルム2と反応する官能基(第1官能基)を備えているため、熱可塑性樹脂フィルム2の官能基と分子接合剤6の官能基とか結びつき、図5及び図6に示すように、熱可塑性樹脂フィルム2の表面上に分子接合剤6が結合した状態が得られる。なお、図5においては分子接合剤6をわかり易く示す観点から層状に図示しているが、実際には図6に示すようなナノレベルの状態(分子接合剤6の厚みが数nm)で存在しており、他の材料と比較して非常に薄くなっている。よって、図10以降では分子接合剤6を省略することがある。また、図6における分子接合剤6の上下に伸びる直線は官能基を示し、より具体的には、熱可塑性樹脂フィルム2に向かって伸びた直線が熱可塑性樹脂フィルム2の官能基と結びついた状態の分子接合剤6の官能基を示し、熱可塑性樹脂フィルム2とは反対側に伸びた直線が第1金属膜5の金属と反応することになる分子接合剤6の官能基を示している。 More specifically, as a pretreatment, first, Ar plasma treatment is performed on the thermoplastic resin film 2 to remove the fragile layer on the surface of the thermoplastic resin film 2, and a functional group that is compatible with a molecular bonding agent described later is provided. It is formed on the surface of the thermoplastic resin film 2. Thereafter, the Ar resin-treated thermoplastic resin film 2 is immersed in the molecular bonding agent 6 solution (FIG. 4). Here, since the molecular bonding agent 6 has a functional group (first functional group) that reacts with the thermoplastic resin film 2, the functional group of the thermoplastic resin film 2 and the functional group of the molecular bonding agent 6 are associated with each other. As shown in FIG. 5 and FIG. 6, a state in which the molecular bonding agent 6 is bonded on the surface of the thermoplastic resin film 2 is obtained. In FIG. 5, the molecular bonding agent 6 is illustrated in a layered form for easy understanding, but actually exists in a nano-level state (the thickness of the molecular bonding agent 6 is several nm) as shown in FIG. It is very thin compared to other materials. Therefore, the molecular bonding agent 6 may be omitted from FIG. In addition, the straight line extending up and down of the molecular bonding agent 6 in FIG. 6 represents a functional group, and more specifically, a state in which the straight line extending toward the thermoplastic resin film 2 is connected to the functional group of the thermoplastic resin film 2. The straight line extending to the opposite side of the thermoplastic resin film 2 represents the functional group of the molecular bonding agent 6 that reacts with the metal of the first metal film 5.
 次に、分子接合処理がなされた熱可塑性樹脂フィルム2をキャタリスト液(Sn-Pdコロイド水溶液)に含浸する(図7)。ここで、Sn-Pdコロイドは、熱可塑性樹脂フィルム2の表面に電気的に吸着される。その後、Sn-Pdコロイドが表面に担持した状態の熱可塑性樹脂フィルム2をアクセラレータ液に含浸すると、Pdの周囲を覆っていたSnが除去され、Pdイオンが金属Pdに変化する(図8)。すなわち、触媒処理を行って熱可塑性樹脂フィルム2に触媒(例えばPd)を担持させることになる。なお、アクセラレータ液としては、シュウ酸(0.1%程度)を含む硫酸(濃度が10%)を用いることができる。その後、触媒であるPdを担持した熱可塑性樹脂フィルム2を無電解めっき槽に例えば5分間浸漬する。当該浸漬により、Pdを触媒として例えば銅が析出し、析出した銅が分子接合剤6と結合することになる(図9)。ここで、分子接合剤6は、第1金属膜5の金属と反応する官能基(第2官能基)も備えているため、分子接合剤6の熱可塑性樹脂フィルム2と結合している端部とは反対側に位置する端部(第2官能基)には、触媒を利用して金属が化学的に結合する。続いて、熱可塑性樹脂フィルム2に150℃、10分の加熱処理を施して、分子接合剤6と当該金属との化学結合を終結させ、図10に示すように、熱可塑性樹脂フィルム2の表面を覆うように、第1金属膜5の形成(すなわち、熱可塑性樹脂フィルム2と第1金属膜5との分子接合)が完了する。 Next, the catalyst film (Sn—Pd colloid aqueous solution) is impregnated with the thermoplastic resin film 2 subjected to the molecular bonding treatment (FIG. 7). Here, the Sn—Pd colloid is electrically adsorbed on the surface of the thermoplastic resin film 2. Thereafter, when the accelerator liquid is impregnated with the thermoplastic resin film 2 having Sn—Pd colloid supported on the surface, Sn covering the periphery of Pd is removed, and Pd ions are changed to metal Pd (FIG. 8). That is, a catalyst treatment (for example, Pd) is carried on the thermoplastic resin film 2 by performing a catalyst treatment. As the accelerator liquid, sulfuric acid (concentration: 10%) containing oxalic acid (about 0.1%) can be used. Thereafter, the thermoplastic resin film 2 carrying Pd as a catalyst is immersed in an electroless plating tank for 5 minutes, for example. By the immersion, for example, copper is precipitated using Pd as a catalyst, and the precipitated copper is bonded to the molecular bonding agent 6 (FIG. 9). Here, since the molecular bonding agent 6 also includes a functional group (second functional group) that reacts with the metal of the first metal film 5, the end of the molecular bonding agent 6 that is bonded to the thermoplastic resin film 2. A metal is chemically bonded to the end portion (second functional group) located on the opposite side of the substrate using a catalyst. Subsequently, the thermoplastic resin film 2 is heated at 150 ° C. for 10 minutes to terminate the chemical bond between the molecular bonding agent 6 and the metal, and as shown in FIG. 10, the surface of the thermoplastic resin film 2 The formation of the first metal film 5 (that is, molecular bonding between the thermoplastic resin film 2 and the first metal film 5) is completed so as to cover the surface.
 ここで、上述した分子接合剤6とは、樹脂と金属等を化学的に結合させるための化学物であり、樹脂と結合する官能基と金属と結合する官能基が一つの分子構造中に存在するものである。また、分子接合技術とは、このような構造を備える分子接合剤6を用いて、樹脂と金属等を化学的に結合させる技術である。そして、これらの分子接合剤、及び分子接合技術は、特許第04936344号明細書、特許第05729852号明細書、及び特許第05083926号明細書において、より詳細に説明がなされている。 Here, the above-described molecular bonding agent 6 is a chemical for chemically bonding a resin and a metal or the like, and a functional group that bonds to the resin and a functional group that bonds to the metal exist in one molecular structure. To do. The molecular bonding technique is a technique for chemically bonding a resin and a metal or the like using the molecular bonding agent 6 having such a structure. Further, these molecular bonding agents and molecular bonding techniques are described in more detail in Japanese Patent No. 04936344, Japanese Patent No. 05729852, and Japanese Patent No. 05083926.
 本実施例においては、第1金属膜5の金属として銅を用い、図11に示すように、無電解めっきは粒子状に生成され、銅の粒子5aによってポーラス状に第1金属膜5が形成される。ここで、ポーラス状とは、第1金属膜5が膜上に完全に形成される膜厚を備えることがないものの、粒子どうしが全部ではないものの少なくとも一部が接触することによって膜全体として導通している状態をいう(必ずしも電気的な導通が必要というわけではなく、立体成型で粒子間距離が離れても、後述する第2金属膜で導通されれば良い。)。これらのことを換言すると、本実施例においては、銅を粒子状に0.02μm以上0.20μm以下堆積し、光を透過することができる膜厚を備える第1金属膜5を形成している。このように第1金属膜5の状態(すなわち、膜厚)を調整する理由は、光を透過しない完全な膜状に第1金属膜5を形成してしまうと、後述する立体成型の際に第1金属膜5に亀裂が生じたとしても、後述する第2金属膜によっても当該亀裂の修復が困難になるからである。より具体的には、第1金属膜5が0.02μmより薄いと、樹脂と銅の接点が減少し密着が低下するとともに、伸ばされた後の粒子間距離がはなれすぎ後述する第2金属膜での導通修復が困難になる。また、光を透過する状態で伸ばされた場合、粒子間の距離が空くだけなので亀裂は小さいが、光が透過しない完全な膜状で伸ばされると限界をこえた金属膜(第1金属膜5)には亀裂が生じ幅の広いクラックとなる。なお、図11においては、第1金属膜5の膜厚方向には1つの粒子5aのみが存在するように示されているが、第1金属膜5がポーラス状であれば、複数の粒子5aが膜厚方向に積層してもよい。 In this embodiment, copper is used as the metal of the first metal film 5, and as shown in FIG. 11, the electroless plating is generated in the form of particles, and the first metal film 5 is formed in a porous shape by the copper particles 5a. Is done. Here, the term “porous” means that the first metal film 5 does not have a film thickness that is completely formed on the film, but the entire film is electrically connected when at least a part of the particles are not all in contact with each other. (It is not always necessary to conduct electricity, and even if the distance between particles is separated by three-dimensional molding, it may be conducted by a second metal film described later). In other words, in the present embodiment, the first metal film 5 having a film thickness capable of transmitting light is formed by depositing copper in a particle form in the range of 0.02 μm to 0.20 μm. . The reason for adjusting the state (that is, the film thickness) of the first metal film 5 is that if the first metal film 5 is formed in a complete film shape that does not transmit light, the three-dimensional molding described later is performed. This is because even if a crack is generated in the first metal film 5, it is difficult to repair the crack even by a second metal film described later. More specifically, if the first metal film 5 is thinner than 0.02 μm, the contact between the resin and copper is reduced, the adhesion is lowered, and the distance between the particles after being stretched is too far apart, and the second metal film described later. It becomes difficult to repair continuity in Further, when the film is stretched in a state of transmitting light, the distance between the particles is only large, so the crack is small. However, when the film is stretched in a complete film shape that does not transmit light, the metal film exceeding the limit (first metal film 5 ) Is cracked and becomes a wide crack. In FIG. 11, only one particle 5 a is shown in the film thickness direction of the first metal film 5, but if the first metal film 5 is porous, a plurality of particles 5 a are present. May be laminated in the film thickness direction.
 第1金属膜5がポーラス状に形成される工程を、以下においてより詳細に説明する。図9に示した銅が析出を開始した状態から更に銅の析出を続けると、新たに析出する銅は、分子接合剤6と、又は既に析出して分子接合剤6と反応している銅と金属結合をする。この際、銅の自己触媒作用によりも触媒であるPdの方が活性度が高いため、銅の生成は面方向(すなわち、熱可塑性樹脂フィルム2の表面に広がる方向)に進むことになるものの、厚み方向(すなわち、第1金属膜5の膜厚方向)にも進み始めることになる。そして、銅の自己触媒作用が始まると、銅が順次析出して銅どうしの金属結合が進むことになり、銅の成長は厚み方向により進むことになり、膜厚が増加することになる。この状態においては、図12に示すように、銅の存在しない空隙部分が存在し、部分的には電気的導通が得られていない部分があるものの、形成された金属膜全体としては電気的な接続経路が存在するため電気的導通が得られている。上述したように、このような状態が、本実施例におけるポーラス状ということになる。そして、このようなポーラス状の第1金属膜5においては、銅の破断伸び率を超えても、大きなクラックが発生することなく、部分的に銅分子どうしの距離が若干広がるに留まることになる。 The process of forming the first metal film 5 in a porous shape will be described in detail below. When copper is further precipitated from the state where the copper shown in FIG. 9 has started to precipitate, the newly precipitated copper is either the molecular bonding agent 6 or the copper that has already been precipitated and reacts with the molecular bonding agent 6. Make metal bonds. At this time, since the activity of Pd, which is a catalyst, is higher than the autocatalytic action of copper, the production of copper proceeds in the plane direction (that is, the direction spreading on the surface of the thermoplastic resin film 2). It will also begin to proceed in the thickness direction (that is, the thickness direction of the first metal film 5). And when the autocatalytic action of copper starts, copper will precipitate sequentially and the metal bond of copper will advance, the growth of copper will advance by a thickness direction, and a film thickness will increase. In this state, as shown in FIG. 12, although there is a void portion where copper does not exist and there is a portion where electrical conduction is not partially obtained, the formed metal film as a whole is electrically Since there is a connection path, electrical continuity is obtained. As described above, such a state is a porous shape in the present embodiment. In such a porous first metal film 5, even if the elongation at break of copper is exceeded, a large crack is not generated, and the distance between the copper molecules is partially expanded slightly. .
 また、本実施例においては、分子接合剤6を介して、熱可塑性樹脂フィルム2と第1金属膜5とを化学結合しているため、熱可塑性樹脂フィルム2と第1金属膜5と界面を平滑にしつつも、両部材を強固に接合することができる。これにより、熱可塑性樹脂フィルム2の表面に凹凸を形成する必要がなくなり、製造工程の容易化及び製造コストの低減ならびに形成する配線回路の高精細化を図ることができる。なお、使用する分子接合剤は1種類に限定されることなく、例えば、分子接合剤6と当該分子接合剤6及び第1金属膜5と反応する官能基を備える他の分子接合剤とを混合して形成した化合物であってもよく、熱可塑性樹脂フィルム2及び第1金属膜5の材料に応じて、他のプロセス条件を含め適宜変更することができる。 In this embodiment, since the thermoplastic resin film 2 and the first metal film 5 are chemically bonded via the molecular bonding agent 6, the interface between the thermoplastic resin film 2 and the first metal film 5 is defined. Both members can be firmly joined while being smooth. Thereby, it is not necessary to form unevenness on the surface of the thermoplastic resin film 2, and the manufacturing process can be facilitated, the manufacturing cost can be reduced, and the wiring circuit to be formed can have high definition. The molecular bonding agent to be used is not limited to one type. For example, the molecular bonding agent 6 is mixed with another molecular bonding agent having a functional group that reacts with the molecular bonding agent 6 and the first metal film 5. The compound formed may be used, and may be appropriately changed including other process conditions depending on the materials of the thermoplastic resin film 2 and the first metal film 5.
 また、第1金属膜5の材料は、銅に限定されることなく、例えば、銀、金、又はニッケル等の様々な金属、或いはこれらの金属及び銅のいずれかを少なくとも含む合金や各金属を積層したものを用いてもよいが、比較的にやわらかく破断伸び強度の高い金属を用いることが好ましい。ここで、使用する金属に応じて、光を透過し且つ導通している状態を実現するための膜厚が異なるため、他の金属を用いる場合には、第1金属膜5がポーラス状に形成されることを実現できるように、膜厚を適宜調整することになる。 In addition, the material of the first metal film 5 is not limited to copper, for example, various metals such as silver, gold, or nickel, or alloys or metals containing at least one of these metals and copper. Although a laminated material may be used, it is preferable to use a metal that is relatively soft and has a high elongation at break. Here, since the film thickness for realizing the state of transmitting light and conducting is different depending on the metal to be used, the first metal film 5 is formed in a porous shape when another metal is used. Therefore, the film thickness is adjusted as appropriate so that the above can be realized.
 更に、第1金属膜5の形成方法については、上述した分子接合技術を用いた方法に限定されることなく、第1金属膜5をポーラス状に形成することができれば、例えば、スパッタ、蒸着、又は分子接合を使用する方法以外の湿式めっき等の成膜技術を用いてもよい。そして、第1金属膜5の形成については、使用される金属材料に応じて、最適な成膜技術を選択してもよい。 Furthermore, the method for forming the first metal film 5 is not limited to the method using the molecular bonding technique described above, and if the first metal film 5 can be formed in a porous shape, for example, sputtering, vapor deposition, Alternatively, a film forming technique such as wet plating other than the method using molecular bonding may be used. And about formation of the 1st metal film 5, you may select the optimal film-forming technique according to the metal material used.
 なお、本実施例においては、熱可塑性樹脂フィルム2の第1の面2d、第2の面2e、及び貫通孔によって露出した熱可塑性樹脂フィルム2の側面2fを被覆するように、第1金属膜5を形成していたが、要求される立体配線基板の構造及び特性に応じて、熱可塑性樹脂フィルム2の第1の面2d又は第2の面2eのいずれかのみに第1金属膜5を形成してもよい。すなわち、本発明の立体配線基板には、両面に配線パターンが形成されたもののみならず、片面のみに配線パターン3が形成されているものが含まれることになる。 In the present embodiment, the first metal film is formed so as to cover the first surface 2d, the second surface 2e of the thermoplastic resin film 2 and the side surface 2f of the thermoplastic resin film 2 exposed by the through holes. The first metal film 5 is formed only on either the first surface 2d or the second surface 2e of the thermoplastic resin film 2 in accordance with the required structure and characteristics of the three-dimensional wiring board. It may be formed. That is, the three-dimensional wiring board of the present invention includes not only those having wiring patterns formed on both sides but also those having wiring patterns 3 formed only on one side.
 次に、図13に示すように、フォトリソグラフィによって第1金属膜5にパターニング処理を施し、所望の配線パターンを形成する(パターン形成工程)。具体的には、第1金属膜5が形成された状態の熱可塑性樹脂フィルム2の表面にレジストフィルムを熱圧着し、所定のパターンが印刷されたマスクフィルムを用いて露光及び現像を行う。続いて、現像されたレジストフィルムをエッチングマスクとして第1金属膜5にエッチングを施して所望の配線パターンを形成する。その後に、当該レジストフィルムを剥離除去する。ここで、後述する立体成型による第1金属膜5の伸び及び変形を考慮して、配線パターンの形状(配線幅、配線長、配線間隔等)を調整しておくことが好ましい。 Next, as shown in FIG. 13, the first metal film 5 is subjected to patterning processing by photolithography to form a desired wiring pattern (pattern forming step). Specifically, a resist film is thermocompression bonded to the surface of the thermoplastic resin film 2 on which the first metal film 5 is formed, and exposure and development are performed using a mask film on which a predetermined pattern is printed. Subsequently, the first resist film 5 is etched using the developed resist film as an etching mask to form a desired wiring pattern. Thereafter, the resist film is peeled and removed. Here, it is preferable to adjust the shape of the wiring pattern (wiring width, wiring length, wiring spacing, etc.) in consideration of the elongation and deformation of the first metal film 5 due to three-dimensional molding described later.
 このように、フォトリソグラフィによって第1金属膜5にパターニングを施すため、インクジェット印刷技術又はグラビアオフセット印刷技術等を用いたパターニング形成よりも高精細なパターンを実現することができる。すなわち、第1金属膜5は、インクジェット印刷技術又はグラビアオフセット印刷技術等を用いてパターンニングされた配線パターンよりも、解像度が高く(すなわち、直線性が優れ高精細な配線形成が実現される。)なる。 Thus, since the first metal film 5 is patterned by photolithography, it is possible to realize a higher definition pattern than patterning using an inkjet printing technique or a gravure offset printing technique. That is, the first metal film 5 has higher resolution (that is, excellent linearity and high-definition wiring formation) than a wiring pattern patterned using an ink jet printing technique or a gravure offset printing technique. )Become.
 次に、第1金属膜5が形成された状態の熱可塑性樹脂フィルム2に対して、加熱処理及び加圧処理を施して立体成型を行う(立体成型工程)。具体的な立体成型工程としては、先ず、上述した位置決め孔を用いて、成型用の金型11に対して熱可塑性樹脂フィルム2の位置決めを行う。これは、成型位置と配線パターン位置を合わせるためのものである。すなわち、図14に示すように、金型11の上部金型12と下部金型13との間に熱可塑性樹脂フィルム2を配置することになる。ここで、上部金型12は、熱可塑性樹脂フィルム2にリジッド部2aを形成するため第1立体成型部12a、リジッド部2bを形成するため第2立体成型部12b、及びフレキシブル部2cを形成するため平坦部12cを備えている。また、下部金型13も同様に、熱可塑性樹脂フィルム2にリジッド部2aを形成するため第1立体成型部13a、リジッド部2bを形成するため第2立体成型部13b、及びフレキシブル部2cを形成するため平坦部13cを備えている。すなわち、上部金型12の第1立体成型部12aと下部金型13の第1立体成型部13aとが対向し、上部金型12の第2立体成型部12bと下部金型13の第2立体成型部13bとが対向し、上部金型12の平坦部12cと下部金型13の平坦部13cとが対向し、熱可塑性樹脂フィルム2を挟むことになる。 Next, the thermoplastic resin film 2 on which the first metal film 5 is formed is subjected to heat treatment and pressure treatment to perform three-dimensional molding (three-dimensional molding step). As a specific three-dimensional molding process, first, the thermoplastic resin film 2 is positioned with respect to the molding die 11 using the positioning holes described above. This is for matching the molding position and the wiring pattern position. That is, as shown in FIG. 14, the thermoplastic resin film 2 is disposed between the upper mold 12 and the lower mold 13 of the mold 11. Here, the upper mold 12 forms the first three-dimensional molded part 12a to form the rigid part 2a on the thermoplastic resin film 2, the second three-dimensional molded part 12b to form the rigid part 2b, and the flexible part 2c. Therefore, the flat part 12c is provided. Similarly, the lower mold 13 is also formed with the first three-dimensional molded portion 13a for forming the rigid portion 2a on the thermoplastic resin film 2, the second three-dimensional molded portion 13b and the flexible portion 2c for forming the rigid portion 2b. Therefore, a flat portion 13c is provided. That is, the first three-dimensional molding part 12a of the upper mold 12 and the first three-dimensional molding part 13a of the lower mold 13 are opposed to each other, and the second three-dimensional molding part 12b of the upper mold 12 and the second three-dimensional molding of the lower mold 13 are arranged. The molding part 13b faces, the flat part 12c of the upper mold 12 and the flat part 13c of the lower mold 13 face each other, and the thermoplastic resin film 2 is sandwiched therebetween.
 続いて、図15に示すように、上部金型12を上部加熱装置14で加熱するとともに、下部金型13を下部加熱装置15によって加熱を行う。ここで、本実施例においては、熱可塑性樹脂フィルム2にポリイミドフィルムを用いているため、加熱温度は材料のガラス転移点温度より高い270℃~350℃の範囲内(例えば、300℃)で調整することができるが、熱可塑性樹脂フィルム2の材料に応じて当該加熱温度は適宜調整されることになる。ここで、加熱温度は、当該ガラス転移温度以上であって、熱可塑性樹脂フィルム2の耐熱温度以下であることが必要となるが、当該範囲内においてできる限り低い温度に設定することが好ましい。これは、熱可塑性樹脂フィルム2上に形成される第1金属膜5と熱可塑性樹脂フィルム2の加熱による密着低下を低減するためである。 Subsequently, as shown in FIG. 15, the upper mold 12 is heated by the upper heating device 14, and the lower mold 13 is heated by the lower heating device 15. In this example, since a polyimide film is used as the thermoplastic resin film 2, the heating temperature is adjusted within a range of 270 ° C. to 350 ° C. (eg, 300 ° C.) higher than the glass transition temperature of the material. The heating temperature is appropriately adjusted according to the material of the thermoplastic resin film 2. Here, the heating temperature is required to be equal to or higher than the glass transition temperature and equal to or lower than the heat resistant temperature of the thermoplastic resin film 2, and is preferably set to the lowest possible temperature within the range. This is to reduce a decrease in adhesion due to heating of the first metal film 5 and the thermoplastic resin film 2 formed on the thermoplastic resin film 2.
 当該加熱処理を行いつつ、上部金型12及び下部金型13を近づけ、熱可塑性樹脂フィルム2に対して、上下から所望の圧力(例えば、10MPa)によってプレス処理を行う(図16)。なお、所望の圧力とは、熱可塑性樹脂フィルム2の材料、圧力が弱すぎると所望の立体成型が困難になる点を考慮して適宜調整することになる。そして、プレス処理の完了後に、熱可塑性樹脂フィルム2を金型11から取り出し(図17)、熱可塑性樹脂フィルム2の立体成型が完了する。換言すると、立体配線基板用基材16の形成が完了する。なお、図14乃至図17において、第1金属膜5の図示は省略している。また、要求される立体形状にもよるが、実際の立体配線基板1の形状は複数の凹凸が形成されることになるため、実際には、上部金型12の第1立体成型部12a及び第2立体成型部12b、並びに下部金型13の第1立体成型部13a及び第2立体成型部13bは複数の凹凸を有しており、上部金型12と下部金型13との複数の凹凸が互いに嵌合するような構造が採用されてもよい。 While performing the heat treatment, the upper die 12 and the lower die 13 are brought closer to each other, and the thermoplastic resin film 2 is pressed from above and below with a desired pressure (for example, 10 MPa) (FIG. 16). The desired pressure is appropriately adjusted in consideration of the material of the thermoplastic resin film 2 and the point that the desired three-dimensional molding becomes difficult if the pressure is too weak. Then, after the press process is completed, the thermoplastic resin film 2 is taken out from the mold 11 (FIG. 17), and the three-dimensional molding of the thermoplastic resin film 2 is completed. In other words, the formation of the three-dimensional wiring board substrate 16 is completed. In FIGS. 14 to 17, the first metal film 5 is not shown. In addition, although depending on the required three-dimensional shape, the actual three-dimensional wiring board 1 is actually formed with a plurality of projections and depressions. The two-dimensional molded part 12b and the first three-dimensional molded part 13a and the second three-dimensional molded part 13b of the lower mold 13 have a plurality of irregularities, and the plurality of irregularities between the upper mold 12 and the lower mold 13 are A structure that fits each other may be adopted.
 なお、本実施例においては、1つの金型11を使用し、1度の加熱処理及び加圧処理によって熱可塑性樹脂フィルム2の立体成型を行ったが、リジッド部1a、1bのそれぞれに対応する独立した金型を使用し、1度又は2度の加熱処理及び加圧処理によって立体成型を行ってもよい。独立した金型を使用する場合には、立体成型を1度行った部分については、別な金型による再度の挟み込みがないように設定する必要があり、フレキシブル部1cとなる部分についても金型による挟み込みによる変形がないようにすることが必要となる。 In the present embodiment, one mold 11 is used and the thermoplastic resin film 2 is three-dimensionally molded by one heat treatment and pressure treatment, which corresponds to each of the rigid portions 1a and 1b. Three-dimensional molding may be performed by using an independent mold and performing heat treatment and pressure treatment once or twice. When using an independent mold, it is necessary to set a part that has been three-dimensionally molded so that it is not sandwiched again by another mold, and the part that becomes the flexible part 1c is also a mold. It is necessary to prevent deformation due to pinching caused by.
 図18から分かるように、取り出された熱可塑性樹脂フィルム2には立体成型がなされ、その両面には第1金属膜5が形成されることになる。また、図18に示すように、第1金属膜5には既にパターニングが施され、第1金属膜5は配線パターン3の下地として機能することから、配線パターン3と同一の配線形状となっている。 As can be seen from FIG. 18, the removed thermoplastic resin film 2 is three-dimensionally molded, and the first metal film 5 is formed on both surfaces thereof. Further, as shown in FIG. 18, the first metal film 5 has already been patterned, and the first metal film 5 functions as a base of the wiring pattern 3, so that it has the same wiring shape as the wiring pattern 3. Yes.
 また、図19に示されているように、立体成型が完了した熱可塑性樹脂フィルム2(すなわち、立体配線基板用基材16)には、立体成型によって屈曲した屈曲部2gに亀裂17が生じやすくなっている。ここで、図20に示すように、亀裂17とは、第1金属膜5を構成する銅の粒子5aの粒子間距離の拡大によって生じる隙間のことであり、光が透過しない完全な金属膜状において当該金属膜が伸ばされることによって生じる亀裂と比較して、その構造が異なっている。なお、第1金属膜5の成膜状態、及び立体成型による三次元形状によっては、亀裂が発生しない場合もある。また、図19に示すように、亀裂17は、熱可塑性樹脂フィルム2が伸ばされたのに対し、第1金属膜5はそれに従って粒子間距離が広がることになるが、第1金属膜5がポーラス状に形成されているため、亀裂17自体の深さは粒子5aの寸法と同等であって非常に小さくなり、更には第1金属膜5が完全な膜状にて形成される場合と比較して亀裂17の幅も小さくなる。すなわち、本実施例に係る立体配線基板用基材16は、第1金属膜5が完全な膜状にて形成される場合と比較して、亀裂17の修復をより容易に可能とする状態になっている。換言すれば、光を透過する状態で伸ばされた場合、粒子間の距離が空くだけなので亀裂17(粒子間の隙間)は小さいが、光が透過しない完全な膜状で伸ばされると限界をこえた金属膜には亀裂が生じ幅の広いクラックが生じることになる。 Further, as shown in FIG. 19, the thermoplastic resin film 2 (that is, the substrate 16 for a three-dimensional wiring board) that has undergone the three-dimensional molding is likely to have a crack 17 in the bent portion 2g that is bent by the three-dimensional molding. It has become. Here, as shown in FIG. 20, the crack 17 is a gap formed by an increase in the inter-particle distance of the copper particles 5a constituting the first metal film 5, and is a complete metal film shape that does not transmit light. The structure is different from that of a crack generated by stretching the metal film. In addition, a crack may not generate | occur | produce depending on the film-forming state of the 1st metal film 5, and the three-dimensional shape by three-dimensional shaping | molding. In addition, as shown in FIG. 19, the crack 17 is caused by the thermoplastic resin film 2 being stretched, whereas the first metal film 5 has an increased interparticle distance, but the first metal film 5 is Since it is formed in a porous shape, the depth of the crack 17 itself is equivalent to the size of the particle 5a and becomes very small, and further compared with the case where the first metal film 5 is formed in a complete film shape. Thus, the width of the crack 17 is also reduced. That is, the substrate 16 for a three-dimensional wiring board according to the present embodiment is in a state in which the crack 17 can be repaired more easily than in the case where the first metal film 5 is formed in a complete film shape. It has become. In other words, the crack 17 (gap between the particles) is small when stretched in a state where light is transmitted because the distance between the particles is only large, but the limit is exceeded when the film is stretched in a complete film shape that does not transmit light. The metal film is cracked and a wide crack is generated.
 また、屈曲部2gにおける亀裂17の発生を減少させる方法として、熱可塑性樹脂フィルム2を2枚の保護フィルムによって挟んだ状態において、上述した立体成型を行ってもよい。これにより、屈曲部2gにおける角部2hの形状を若干滑らかにすることができ、亀裂17の発生を抑制することができる。ここで、当該保護フィルムは、熱可塑性樹脂フィルム2と同一の材料で形成することが好ましい。更に、屈曲部2gにおける亀裂17の発生を減少させる方法として、屈曲部2gにおける角部2hの形状を湾曲させる、或いはその角度を90度よりも小さく(例えば、75度~85度)となるように、金型11を設計してもよい。 Further, as a method of reducing the occurrence of the crack 17 in the bent portion 2g, the above-described three-dimensional molding may be performed in a state where the thermoplastic resin film 2 is sandwiched between two protective films. Thereby, the shape of the corner | angular part 2h in the bending part 2g can be made slightly smooth, and generation | occurrence | production of the crack 17 can be suppressed. Here, the protective film is preferably formed of the same material as the thermoplastic resin film 2. Further, as a method of reducing the occurrence of the crack 17 in the bent portion 2g, the shape of the corner portion 2h in the bent portion 2g is curved, or the angle is made smaller than 90 degrees (for example, 75 to 85 degrees). In addition, the mold 11 may be designed.
 なお、本実施例においては、熱可塑性樹脂フィルム2を上部金型12及び下部金型13を用いて上下からプレス処理を施しているが、ヒートプレス後における熱可塑性樹脂フィルム2の厚みの均一性を確保することができれば、真空プレス、又は圧空プレス等の他のプレス加工方法を用いてもよい。 In this embodiment, the thermoplastic resin film 2 is pressed from above and below using the upper mold 12 and the lower mold 13, but the thickness uniformity of the thermoplastic resin film 2 after the heat press is performed. May be used, other press working methods such as a vacuum press or a pneumatic press may be used.
 次に、立体配線基板用基材16の第1金属膜5の表面を被覆するように、第2金属膜21を形成する(第2金属膜形成工程:図21)。本実施例においては、一般的な無電解めっきによって第1金属膜5の表面上に金属を追加的に堆積する。 Next, the second metal film 21 is formed so as to cover the surface of the first metal film 5 of the substrate 16 for the three-dimensional wiring board (second metal film forming step: FIG. 21). In this embodiment, a metal is additionally deposited on the surface of the first metal film 5 by general electroless plating.
 具体的な第2金属膜形成工程としては、先ず、成型工程の加熱によって立体配線基板用基材16の表面上に形成された酸化層を除去するために、立体配線基板用基材16を所望の洗浄液(例えば、酸脱脂液、硫酸液)に浸す。続いて、触媒処理を行って立体配線基板用基材16の第1金属膜5に、第1金属膜5と置換するタイプの触媒(例えばPd触媒)を反応させ、その後に立体配線基板用基材16を無電解めっき液に浸す。そして、表面に触媒が存在する第1金属膜5の周囲に対してのみ選択的に金属が堆積することになり、配線回路とならない領域(すなわち、熱可塑性樹脂フィルム2の露出領域)には金属が堆積されず、第2金属膜21の追加のパターニングが不要となる。 As a specific second metal film forming step, first, the three-dimensional wiring substrate base material 16 is desired in order to remove the oxide layer formed on the surface of the three-dimensional wiring substrate base material 16 by heating in the molding step. Soak in a cleaning solution (for example, acid degreasing solution, sulfuric acid solution). Subsequently, a catalyst treatment is performed to cause the first metal film 5 of the substrate 16 for a three-dimensional wiring board to react with a catalyst (for example, a Pd catalyst) of the type that replaces the first metal film 5, and then the substrate for the three-dimensional wiring board The material 16 is immersed in an electroless plating solution. Then, metal is selectively deposited only around the first metal film 5 where the catalyst is present on the surface, and the metal that does not become a wiring circuit (that is, the exposed region of the thermoplastic resin film 2) is metal. Is not deposited, and additional patterning of the second metal film 21 becomes unnecessary.
 本実施例においては、第2金属膜21の金属として銅を用い、図21及び図22から分かるように、複数の銅の粒子21aが第1金属膜5の粒子5a上に堆積することになる。ここで、第2金属膜21をポーラス状に形成することなく、完全な膜状に形成する。特に、本実施例においては、1時間の浸漬により、5μm以上の膜厚を備える第2金属膜21を形成することができた。また、本実施例においては、第2金属膜21を構成する粒子21aが、第1金属膜5を構成する粒子5aの周囲に成長することになり、第2金属膜21の厚み方向及び当該厚み方向に直交する方向(第2金属膜21の平面方向)に対して同程度に成長することになる。これにより、立体成型によって生じた第1金属膜5の亀裂17を修復するように、第2金属膜21を形成することができる。すなわち、第2金属膜21の形成により、亀裂17による導通不良を回復させ、確実な導通を実現することができる配線回路(第1金属膜5及び第2金属膜21からなる導体層)である配線パターン3を形成することができる。ここで、第2金属膜21による亀裂17の修復は、第2金属膜21の膜厚に対して2倍程度の亀裂17の幅を修復できるため、第2金属膜21の膜厚を想定される亀裂17の最大幅の1/2倍以上に調整してもよく、より好ましくは亀裂17の幅と同程度の膜厚に調整してもよい。また、この第2金属膜21は貫通孔4の側面2fにも表層と同様に生成され、貫通孔4による表裏の導通不良が仮にあった場合でも導通を修復することが可能である。 In this embodiment, copper is used as the metal of the second metal film 21, and as can be seen from FIGS. 21 and 22, a plurality of copper particles 21 a are deposited on the particles 5 a of the first metal film 5. . Here, the second metal film 21 is formed in a complete film shape without being formed in a porous shape. In particular, in this example, the second metal film 21 having a film thickness of 5 μm or more could be formed by immersion for 1 hour. In the present embodiment, the particles 21a constituting the second metal film 21 grow around the particles 5a constituting the first metal film 5, and the thickness direction and the thickness of the second metal film 21 are related to each other. It grows to the same extent with respect to the direction orthogonal to the direction (planar direction of the second metal film 21). Thereby, the 2nd metal film 21 can be formed so that the crack 17 of the 1st metal film 5 which arose by three-dimensional shaping | molding may be repaired. That is, it is a wiring circuit (a conductor layer made up of the first metal film 5 and the second metal film 21) that can restore the conduction failure due to the crack 17 and realize reliable conduction by forming the second metal film 21. The wiring pattern 3 can be formed. Here, the repair of the crack 17 by the second metal film 21 can repair the width of the crack 17 about twice the film thickness of the second metal film 21, and therefore the film thickness of the second metal film 21 is assumed. It may be adjusted to ½ times or more of the maximum width of the crack 17, more preferably adjusted to a film thickness comparable to the width of the crack 17. Further, the second metal film 21 is generated on the side surface 2f of the through hole 4 in the same manner as the surface layer, and it is possible to repair the conduction even if there is a front / back conduction failure due to the through hole 4.
 更に、本実施例においては、配線回路として必要となる導体層の層厚(配線パターン厚み)が第1金属膜5の膜厚では不足しているものの、第2金属膜21を形成することによって当該導体層の必要な層厚を確保することができる。 Furthermore, in this embodiment, the layer thickness (wiring pattern thickness) of the conductor layer necessary for the wiring circuit is insufficient with the film thickness of the first metal film 5, but by forming the second metal film 21. The required layer thickness of the conductor layer can be ensured.
 なお、本実施例においては、無電解めっきによって第2金属膜21を形成したが、最終的に第1金属膜5の表面上のみ第2金属膜21を形成することができれば、他の成膜技術(例えば、電解めっき、導電性インクの塗布等)を用いてもよい。但し、本実施例の様に無電解メッキにより第2金属膜21を形成する場合は、独立した配線すなわち当該配線回路が成型体の外周部から電気的に離間していても形成が可能であるが、電解めっきによって第2金属膜21を形成する場合は、全ての配線が成型体の外周部と電気的に導通していることが必要であり、給電線の設置を含めて設計時に考慮することが必要となる。また、この場合、立体成型による非導通部分が発生していた場合、非導通部分から先は電気が流れないため第2金属膜21が形成出来なくなる。 In the present embodiment, the second metal film 21 is formed by electroless plating. However, if the second metal film 21 can be finally formed only on the surface of the first metal film 5, another film is formed. Techniques (for example, electrolytic plating, application of conductive ink, etc.) may be used. However, when the second metal film 21 is formed by electroless plating as in this embodiment, it can be formed even if the independent wiring, that is, the wiring circuit is electrically separated from the outer peripheral portion of the molded body. However, when the second metal film 21 is formed by electrolytic plating, it is necessary that all the wirings are electrically connected to the outer peripheral portion of the molded body, which is taken into consideration at the time of design including the installation of the feeder line. It will be necessary. Further, in this case, when a non-conductive portion is generated by the three-dimensional molding, the second metal film 21 cannot be formed because electricity does not flow beyond the non-conductive portion.
 なお、第2金属膜21の材料は、銅に限定されることなく、ニッケル若しくはニッケルクロム、ニッケル銅、金、又は銀等の他の金属またはこれらを含む合金を用いてよく、立体配線基板に要求される特性及び信頼性に応じてその材料を適宜調整することができる。 The material of the second metal film 21 is not limited to copper, and other metals such as nickel or nickel chrome, nickel copper, gold, or silver or alloys containing these may be used for the three-dimensional wiring board. The material can be appropriately adjusted according to required characteristics and reliability.
 上述した製造工程を経てた後に、第2金属膜21の表面に防錆剤処理を施して、熱可塑性樹脂フィルム2、第1金属膜5、及び第2金属膜21から構成される立体配線基板1の製造が完了する。なお、立体配線基板1の表面の必要な部分に、ソルダーレジストからなる保護膜を更に形成してもよい。この場合に、インクジェット装置を用いたインジェット方式により、ソルダーレジストを必要な部分に塗布すること等の方法が考えられる。また、当該ソルダーレジストの塗布に代えて、樹脂からなる保護用被覆膜(カバーレイ)を貼り付けてもよい。 After passing through the manufacturing process described above, the surface of the second metal film 21 is subjected to a rust preventive agent treatment, and the three-dimensional wiring board constituted by the thermoplastic resin film 2, the first metal film 5, and the second metal film 21. 1 is completed. Note that a protective film made of a solder resist may be further formed on a necessary portion of the surface of the three-dimensional wiring board 1. In this case, a method such as applying a solder resist to a necessary portion by an inject method using an ink jet apparatus can be considered. Further, instead of applying the solder resist, a protective coating film (coverlay) made of resin may be attached.
 図20乃至図22からわかるように、本実施例に係る立体配線基板1においては、熱可塑性樹脂フィルム2の表面においてポーラス状に形成された第1金属膜5に生じる亀裂が、第1金属膜5よりも厚い膜厚で形成された第2金属膜21によって確実に修復されており、配線回路の断線が防止された優れた信頼性が備えられている。また、上述した製造方法より、MID基板と比較して、より容易に微細な配線パターン(例えば、L/S=30/30μm)を実現することができ、小型化及び低コスト化も実現されている。 As can be seen from FIGS. 20 to 22, in the three-dimensional wiring board 1 according to this example, cracks generated in the first metal film 5 formed in a porous shape on the surface of the thermoplastic resin film 2 are caused by the first metal film. It is reliably repaired by the second metal film 21 formed with a film thickness thicker than 5, and has excellent reliability in which disconnection of the wiring circuit is prevented. In addition, a fine wiring pattern (for example, L / S = 30/30 μm) can be realized more easily than the MID substrate by the manufacturing method described above, and miniaturization and cost reduction are also realized. Yes.
 そして、最終的に形成される立体配線基板1は、図1に示すように、X方向及びY方向のそれぞれの位置において、Z方向の寸法(すなわち、高さ)が異なっており、XY平面において凹凸が形成されている。 As shown in FIG. 1, the finally formed three-dimensional wiring board 1 has different dimensions (that is, heights) in the Z direction at the respective positions in the X direction and the Y direction. Unevenness is formed.
 なお、上述した実施例においては、上記製造工程を経ることによって1つの立体配線基板1が製造されていたが、1回の製造工程によって複数の立体配線基板1を同時に形成するようにしてもよい。すなわち、1枚の熱可塑性樹脂フィルム(ワークシート)から複数の立体配線基板1を同時に複数(例えば、4つ)製造することも可能である。この場合においては、リジッド部1a、1bとフレキシブル部1cとを一体化するような外形加工によって打ち抜いて(型抜きして)もよい。なお、当該外形加工は、1枚のワークシート上に1つの立体配線基板を製造する場合にも当然に行われてもよい。 In the above-described embodiment, one three-dimensional wiring board 1 is manufactured through the above manufacturing process. However, a plurality of three-dimensional wiring boards 1 may be formed simultaneously by one manufacturing process. . That is, a plurality of (for example, four) three-dimensional wiring boards 1 can be manufactured simultaneously from one thermoplastic resin film (worksheet). In this case, the rigid parts 1a and 1b and the flexible part 1c may be punched (die-cut) by external processing so as to be integrated. In addition, the said external shape processing may be naturally performed also when manufacturing one three-dimensional wiring board on the sheet | seat of 1 sheet.
 本実施例に係る立体配線基板1は、基材に熱可塑性樹脂フィルム2を用いるものの、2つリジッド部1a、1bを1つのフレキシブル部1cによって接続した構造を有しているため、既知のリジッドフレキシブル基板の代替品として使用することができる。すなわち、狭小スペースや三次元的な形状を持つ機器筐体等に対応した立体配線基板の良好な配置を容易に実現することが可能である。また、本実施例に係る立体配線基板1においては、リジッド部1a、1b同士を接続する別の接続部品が不要であり、部品点数の削減によるコスト低減も図ることができる。特に、本実施例に係る立体配線基板1の製造方法においては、2つのリジッド部1a、1bを同時且つ一体的に立体成型するため、従来のリジッドフレキシブル基板の製造方法と比較しても、製造工程がより簡易となるため、従来品と比較してもコスト低減を図ることができる。 The three-dimensional wiring board 1 according to the present embodiment uses a thermoplastic resin film 2 as a base material, but has a structure in which two rigid portions 1a and 1b are connected by a single flexible portion 1c. It can be used as a substitute for a flexible substrate. That is, it is possible to easily realize a favorable arrangement of the three-dimensional wiring board corresponding to a device housing having a narrow space or a three-dimensional shape. Further, in the three-dimensional wiring board 1 according to the present embodiment, another connecting component for connecting the rigid portions 1a and 1b is unnecessary, and the cost can be reduced by reducing the number of components. In particular, in the manufacturing method of the three-dimensional wiring board 1 according to the present embodiment, since the two rigid parts 1a and 1b are three-dimensionally molded simultaneously and integrally, the manufacturing method is compared with the conventional manufacturing method of rigid flexible boards. Since the process becomes simpler, costs can be reduced even when compared with conventional products.
 また、本実施例に係る立体配線基板の製造方法においては、第1金属膜5をポーラス状に形成するため、その後の立体形成工程においても、修復が不可能な亀裂を第1金属膜5に発生することを防止することができ、より強固且つ信頼性に優れた配線パターン3を形成することができる。そして、第2金属膜によって当該亀裂を修復することができるため、配線パターン3をよりより強固且つ信頼性に優れた状態で形成することができ、立体配線基板1を屈曲させたとしても、配線パターン3に亀裂等が生じることが防止されている。 Moreover, in the manufacturing method of the three-dimensional wiring board according to the present embodiment, the first metal film 5 is formed in a porous shape, and therefore cracks that cannot be repaired are formed in the first metal film 5 in the subsequent three-dimensional forming process. Generation | occurrence | production can be prevented and the wiring pattern 3 more robust and excellent in reliability can be formed. Since the crack can be repaired by the second metal film, the wiring pattern 3 can be formed in a stronger and more reliable state, and even if the three-dimensional wiring board 1 is bent, the wiring pattern 3 can be formed. The pattern 3 is prevented from being cracked.
 上述した製造方法によって製造される立体配線基板1において、立体形状を保持するためには、基材となる熱可塑性樹脂フィルム2の厚みが75μm以上となることから、フレキシブル部1cを繰り返し屈曲させると、フレキシブル部1cにおける劣化(熱可塑性樹脂フィルム2の破損等)が生じる可能性がある。このため、上述した製造方法によって製造される立体配線基板1のままでは、繰り返して屈曲させる用途には向かず、筐体内に立体配線基板1を組み込む際に屈曲させた後には過剰の繰り返し湾曲がなされない、いわゆるフレックスインストールとしの使用用途が基本となる。但し、立体配線基板1の表裏面を別の樹脂等によって被覆することによって剛性を確保することができれば、フレキシブル部1cを薄く(75μm以下)することができるため、熱可塑性樹脂フィルム2が繰り返し屈曲に耐えうることになり、繰り返して屈曲させる用途にも使用することが可能になる。 In the three-dimensional wiring board 1 manufactured by the manufacturing method described above, in order to maintain a three-dimensional shape, the thickness of the thermoplastic resin film 2 serving as a base material is 75 μm or more. There is a possibility that deterioration in the flexible part 1c (breakage of the thermoplastic resin film 2 or the like) may occur. For this reason, the three-dimensional wiring board 1 manufactured by the above-described manufacturing method is not suitable for repeated bending, and excessive bending is caused after bending when the three-dimensional wiring board 1 is incorporated in the housing. The basic usage is the so-called flex installation. However, if the rigidity can be ensured by covering the front and back surfaces of the three-dimensional wiring board 1 with another resin or the like, the flexible portion 1c can be made thin (75 μm or less), and therefore the thermoplastic resin film 2 is repeatedly bent. And can be used for repeated bending.
 また、本実施例に係る立体配線基板1は、2つのリジッド部1a、1bを1つのフレキシブル部1cによって接続する構造を有していたが、図24に示すように、1つのリジッド部101aと当該リジッド部101aに接続されたフレキシブル部101bからなる構造としてもよい。ここで、図24に示す立体配線基板101において、フレキシブル部101bは、リジッド部101aと接続する一端とは反対側の他端に、外部接続用端子107が設けられている。すなわち、図24に示す立体配線基板101は、フライングテール構造を備えることになる。このようなフライングテール構造を備える立体配線基板101を製造する際には、上述したパターン形成工程において、その後の立体成型工程においてフレキシブル部2cとなる領域の一端に外部接続用端子107を形成し、その後の立体成型工程では、外部接続用端子107が形成された部分には立体成型を行わないことになる。 In addition, the three-dimensional wiring board 1 according to the present embodiment has a structure in which the two rigid portions 1a and 1b are connected by one flexible portion 1c. However, as shown in FIG. It is good also as a structure which consists of the flexible part 101b connected to the said rigid part 101a. Here, in the three-dimensional wiring board 101 shown in FIG. 24, the flexible part 101b is provided with an external connection terminal 107 on the other end opposite to one end connected to the rigid part 101a. That is, the three-dimensional wiring board 101 shown in FIG. 24 has a flying tail structure. When manufacturing the three-dimensional wiring board 101 having such a flying tail structure, in the pattern forming process described above, the external connection terminal 107 is formed at one end of the region to be the flexible portion 2c in the subsequent three-dimensional molding process. In the subsequent three-dimensional molding process, the three-dimensional molding is not performed on the portion where the external connection terminal 107 is formed.
 更に、リジッド部1a及びフレキシブル部1cの数量は、上述した実施例の数量に限定されることなく、3つ以上のリジッド部を形成し、各リジッド部をフレキシブル部によって接続するにしてもよい。すなわち、フレキシブル部の一部については、互いに向き合う2つの端部又は近接する2つの端部から所望の方向にフレキシブルが延在していてもよい。一方、1つのリジッド部から複数のフレキシブル部が延在した構造としてもよい。すなわち、1つのリジッド部の各端部からフレキシブル部が伸びたフライングテール構造が形成されてもよい。或いは、複数のリジッド部及びこれらを連結するフレキシブル部、並びに各リジッド部からフライングテールとしての他のフレキシブル部(フライングテール部)が混在する構造としてもよい。 Furthermore, the quantity of the rigid part 1a and the flexible part 1c is not limited to the quantity of the above-described embodiment, but three or more rigid parts may be formed, and each rigid part may be connected by the flexible part. That is, for a part of the flexible portion, the flexibility may extend in a desired direction from two end portions facing each other or from two adjacent end portions. On the other hand, it is good also as a structure where the some flexible part extended from one rigid part. That is, a flying tail structure in which a flexible portion extends from each end portion of one rigid portion may be formed. Or it is good also as a structure where the other flexible part (flying tail part) as a flying tail is mixed from each rigid part and the flexible part which connects these, and a rigid part.
 そして、図1においては、リジッド部1a、1bが+Z方向に突出し(すなわち、図面上側に凸となる形状を備え)ていたが、リジッド部1a、1bのいずれか一方が、-Z方向に突出し(すなわち、図面下側に凸(要するに凹)となる形状を備える)てもよい。 In FIG. 1, the rigid portions 1a and 1b protrude in the + Z direction (that is, provided with a convex shape on the upper side of the drawing), but either one of the rigid portions 1a and 1b protrudes in the −Z direction. (In other words, it may have a shape that is convex (in short, concave) on the lower side of the drawing).
 また、パターニングを施さない導体層又はメッシュ状の導体層を熱可塑性樹脂フィルム2の片面に形成し且つ接地してGND層として機能させ、当該パターニングされない導体層とは反対側に位置する導体層に単独の特性インピーダンス制御パターン又は差動インピーダンス制御パターンを形成してもよい。すなわち、当該パターニングされない導体層とは反対側に位置する導体層においては、必要なインピーダンスがえられるような配線幅、差動インピーダンス配線の場合には一対のパターン幅とギャップ幅、及び配線厚み等を考慮した配線パターンの形成が可能となる。このような構造により、立体配線基板1においてはインピーダンス制御を図ることができる。特に、本実施例においては、フレキシブル部1cの一方の面に、当該パターニングを施さない導体層又はメッシュ状のグランド導体層を形成することができ、より優れたインピーダンス制御が可能となる。なお、インピーダンス値は、熱可塑性樹脂フィルム2等の材料厚みや誘電率、当該パターニングを施さない導体層又はメッシュ状の導体層の構造、及び差動インピーダンス配線の場合には一対の配線の両側に設けるグランド配線との間隔等の影響を受けるため、これらの影響を鑑みたシミュレーションによる設計、又は実際のサンプルによる確認等が重要となる。 In addition, a conductor layer that is not patterned or a mesh-like conductor layer is formed on one side of the thermoplastic resin film 2 and is grounded to function as a GND layer. A conductor layer that is located on the opposite side of the unpatterned conductor layer A single characteristic impedance control pattern or a differential impedance control pattern may be formed. That is, in the conductor layer located on the opposite side of the unpatterned conductor layer, a wiring width that provides the required impedance, a pair of pattern width and gap width, and wiring thickness in the case of differential impedance wiring, etc. It is possible to form a wiring pattern considering the above. With such a structure, impedance control can be achieved in the three-dimensional wiring board 1. In particular, in this embodiment, a conductor layer or a mesh-like ground conductor layer that is not subjected to the patterning can be formed on one surface of the flexible portion 1c, so that more excellent impedance control is possible. In addition, the impedance value is the material thickness and dielectric constant of the thermoplastic resin film 2 or the like, the structure of the conductor layer or mesh-like conductor layer not subjected to the patterning, and on both sides of the pair of wirings in the case of differential impedance wiring. Since it is affected by the distance from the ground wiring to be provided, it is important to design by simulation in consideration of these influences or to confirm by an actual sample.
<本発明の実施態様>
 本発明の第1実施態様に係る立体配線基板は、立体的形状を備え、且つ50%以上の破断伸びを備える樹脂フィルムと、前記樹脂フィルムの表面上に形成され、所望のパターンを備える配線パターンと、を有し、前記樹脂フィルムは、前記立体的形状を備えるリジッド部、及び前記リジッド部の端部から所望の方向に延在し、柔軟性を備えるフレキシブル部を含むことである。
<Embodiment of the present invention>
A three-dimensional wiring board according to a first embodiment of the present invention includes a resin film having a three-dimensional shape and having a break elongation of 50% or more, and a wiring pattern having a desired pattern formed on the surface of the resin film. And the resin film includes a rigid portion having the three-dimensional shape, and a flexible portion extending in a desired direction from an end portion of the rigid portion and having flexibility.
 第1実施態様においては、基材に樹脂フィルムを用いるものの、リジッド部をフレキシブル部に接続した構造を有しているため、フレキシブル部を屈曲させることにより、狭小スペースや三次元的な形状を持つ機器筐体等に対応した立体配線基板の良好な配置を容易に実現することが可能である。また、第1実施態様に係る立体配線基板においては、リジッド部における配線パターンに対して電気的に接続するための別の接続部品が不要となり、部品点数の削減によるコスト低減も図ることができる。特に、リジッド部とフレキシブル部とを同時且つ一体的に立体成型するため、製造工程の容易化及び削減を図り、製造コストの低減が実現されることになる。 In the first embodiment, although a resin film is used as the base material, it has a structure in which the rigid part is connected to the flexible part. Therefore, by bending the flexible part, it has a narrow space and a three-dimensional shape. It is possible to easily realize a favorable arrangement of the three-dimensional wiring board corresponding to the device casing or the like. Moreover, in the three-dimensional wiring board according to the first embodiment, another connection component for electrically connecting to the wiring pattern in the rigid portion is not necessary, and the cost can be reduced by reducing the number of components. In particular, since the rigid portion and the flexible portion are three-dimensionally molded simultaneously and integrally, the manufacturing process can be simplified and reduced, and the manufacturing cost can be reduced.
 本発明の第2実施態様に係る立体配線基板は、上述した第1実施態様において、前記配線パターンが前記樹脂フィルムの両面に形成されたことである。これにより、立体配線基板の高密度化を図ることができる。 The three-dimensional wiring board according to the second embodiment of the present invention is that the wiring pattern is formed on both surfaces of the resin film in the first embodiment described above. As a result, the density of the three-dimensional wiring board can be increased.
 本発明の第3実施態様に係る立体配線基板は、上述した第1又は2実施態様において、前記配線パターンは、金属を粒子状に堆積してなるポーラス状の構造を備える第1金属膜、及び前記第1金属膜上に積層された第2金属膜からなることである。これにより、第1金属膜に亀裂が生じても、追加の成膜によって当該亀裂を修復することができるため、最終的な導通不良の防止が図られている。 The three-dimensional wiring board according to a third embodiment of the present invention is the first or second embodiment described above, wherein the wiring pattern has a first metal film having a porous structure in which metal is deposited in the form of particles, and It consists of the 2nd metal film laminated | stacked on the said 1st metal film. As a result, even if a crack occurs in the first metal film, the crack can be repaired by additional film formation, so that a final conduction failure is prevented.
 本発明の第4実施態様に係る立体配線基板は、上述した第1乃至第3実施態様のいずれかにおいて、前記樹脂フィルムが複数の前記リジッド部を備え、複数の前記リジッド部のそれぞれが前記フレキシブル部を介して他の前記リジッド部に接続していることである。これにより、既知のフレックスリジッド基板に代替えすることができる、より低コストで製造された立体配線基板を提供することが可能になる。 In the three-dimensional wiring board according to the fourth embodiment of the present invention, in any one of the first to third embodiments described above, the resin film includes a plurality of rigid portions, and each of the plurality of rigid portions is the flexible. It is connected to the other rigid part via the part. As a result, it is possible to provide a three-dimensional wiring board manufactured at a lower cost that can replace the known flex-rigid board.
 本発明の第5実施態様に係る立体配線基板は、上述した第1乃至3実施態様のいずれかにおいて、前記フレキシブル部が、前記リジッド部と接続する一端とは反対側の他端に、外部接続用端子を備えることである。これにより、既知のフライングテールの代替え基板として、より低コストで製造された立体配線基板を提供することが可能になる。 In the three-dimensional wiring board according to the fifth embodiment of the present invention, in any one of the first to third embodiments described above, the flexible portion is externally connected to the other end opposite to the one end connected to the rigid portion. It is to provide a terminal for use. As a result, it is possible to provide a three-dimensional wiring board manufactured at a lower cost as a substitute board for the known flying tail.
 本発明の第6実施態様に係る立体配線基板の製造方法は、50%以上の破断伸びを備える樹脂フィルムを準備する準備工程と、前記樹脂フィルムの表面上に第1金属膜を形成する第1金属膜形成工程と、フォトリソグラフィによって前記第1金属膜にパターニングを施し、所望のパターンを形成するパターン形成工程と、前記樹脂フィルムに対して加熱及び加圧を施して立体成型する立体成型工程と、パターン形成された前記第1金属膜上に第2金属膜を積層して配線パターンを形成する配線パターン形成工程と、を有し、前記立体成型工程は、立体的形状を備えるリジッド部、及び前記リジッド部の端部から所望の方向に延在し、柔軟性を備えるフレキシブル部を前記樹脂フィルムに形成することである。 The manufacturing method of the three-dimensional wiring board which concerns on the 6th embodiment of this invention is a preparatory process which prepares the resin film provided with 50% or more elongation at break, and forms the 1st metal film on the surface of the said resin film. A metal film forming process, a pattern forming process for patterning the first metal film by photolithography to form a desired pattern, and a three-dimensional molding process for performing three-dimensional molding by applying heat and pressure to the resin film. A wiring pattern forming step of forming a wiring pattern by laminating a second metal film on the patterned first metal film, and the three-dimensional molding step includes a rigid portion having a three-dimensional shape, and A flexible portion extending in a desired direction from the end of the rigid portion and having flexibility is formed on the resin film.
 第6実施態様においては、基材に樹脂フィルムを用いるものの、リジッド部をフレキシブル部に接続した構造を形成するため、フレキシブル部を屈曲させることにより、狭小スペースや三次元的な形状を持つ機器筐体等に対応できる立体配線基板を提供することができる。リジッド部における配線パターンに対して電気的に接続するための別の接続部品及びその取付け工程が不要となり、部品点数及びその取付け工程の削減によるコスト低減も図ることができる。特に、リジッド部とフレキシブル部とを同時且つ一体的に立体成型するため、製造工程の容易化及び削減を図り、製造コストの低減が実現されることになる。 In the sixth embodiment, although a resin film is used as the base material, an apparatus housing having a narrow space or a three-dimensional shape is formed by bending the flexible part in order to form a structure in which the rigid part is connected to the flexible part. It is possible to provide a three-dimensional wiring board that can correspond to a body or the like. A separate connecting component for electrically connecting to the wiring pattern in the rigid portion and its mounting process are not required, and the cost can be reduced by reducing the number of components and the mounting process. In particular, since the rigid portion and the flexible portion are three-dimensionally molded simultaneously and integrally, the manufacturing process can be simplified and reduced, and the manufacturing cost can be reduced.
 本発明の第7実施態様に係る立体配線基板の製造方法は、上述した第6実施態様において、前記第1金属膜形成工程では、前記樹脂フィルムの両面に前記第1金属膜を形成することである。立体配線基板の両面に配線パターンを形成することができ、立体配線基板の高密度化を図ることができる。 The manufacturing method of the three-dimensional wiring board which concerns on the 7th embodiment of this invention is that the said 1st metal film formation process forms the said 1st metal film on both surfaces of the said resin film in the 6th embodiment mentioned above. is there. Wiring patterns can be formed on both surfaces of the three-dimensional wiring board, and the density of the three-dimensional wiring board can be increased.
 本発明の第8実施態様に係る立体配線基板の製造方法は、上述した第6又は第7実施態様において、前記第1金属膜形成工程では、金属を粒子状に堆積し且つ膜厚を調整することによって前記第1金属膜をポーラス状に形成することである。これにより、その後の立体形成工程においても、修復が不可能な亀裂を第1金属膜に発生することを防止することができる。 The manufacturing method of the three-dimensional wiring board which concerns on the 8th embodiment of this invention WHEREIN: In the 6th or 7th embodiment mentioned above, in the said 1st metal film formation process, metal is deposited to particle shape and a film thickness is adjusted. Thus, the first metal film is formed in a porous shape. Thereby, it is possible to prevent the first metal film from generating a crack that cannot be repaired even in the subsequent three-dimensional formation process.
 本発明の第9実施態様に係る立体配線基板の製造方法は、上述した第6乃至第8実施態様のいずれかにおいて、前記立体成型工程では、前記リジッド部を複数形成するとともに、複数の前記リジッド部を前記フレキシブル部によって接続するように立体成型することである。これにより、既知のフレックスリジッド基板に代替えすることができる、より低コストで製造された立体配線基板を提供することが可能になる。 A manufacturing method of a three-dimensional wiring board according to a ninth embodiment of the present invention is the method according to any one of the sixth to eighth embodiments described above, wherein in the three-dimensional molding step, a plurality of the rigid portions are formed and a plurality of the rigids are formed. It is solid-molding so that a part may be connected by the flexible part. As a result, it is possible to provide a three-dimensional wiring board manufactured at a lower cost that can replace the known flex-rigid board.
 本発明の第9実施態様に係る立体配線基板の製造方法は、上述した第6乃至第8実施態様のいずれかにおいて、前記パターン形成工程では、前記立体成型工程において前記フレキシブル部となる領域の一端に外部接続用端子を形成し、前記立体成型工程では、前記外部接続用端子が形成された部分には立体成型を行わないことである。これにより、既知のフライングテールの代替え基板として、より低コストで製造された立体配線基板を提供することが可能になる。 The manufacturing method of the three-dimensional wiring board which concerns on the 9th embodiment of this invention is one end of the area | region used as the said flexible part in the said three-dimensional shaping | molding process in the said pattern formation process in any of the 6th thru | or 8th embodiment mentioned above. In the three-dimensional molding step, the three-dimensional molding is not performed on the portion where the external connection terminal is formed. As a result, it is possible to provide a three-dimensional wiring board manufactured at a lower cost as a substitute board for the known flying tail.
 本発明の第11実施態様に係る立体配線基板の製造方法は、上述した第6乃至第10実施態様のいずれかにおいて、前記立体成型工程では、1つの金型によって前記リジッド部及び前記フレキシブル部を形成することである。これにより、金型費用の削減が図られ、立体成型基板の製造コストを低減することができる。 The manufacturing method of the three-dimensional wiring board according to the eleventh embodiment of the present invention is the method according to any one of the sixth to tenth embodiments described above, wherein in the three-dimensional molding step, the rigid part and the flexible part are formed by one mold. Is to form. Thereby, the die cost can be reduced, and the manufacturing cost of the three-dimensional molded substrate can be reduced.
 本発明の第12実施態様に係る立体配線基板の製造方法は、上述した第9実施態様のいずれかにおいて、前記立体成型工程では、複数の前記リジッド部のそれぞれを形成する独立した金型により立体成型することである。これにより、より高精度な立体成型を実現することができる。 The manufacturing method of the three-dimensional wiring board according to the twelfth embodiment of the present invention is the method according to any one of the ninth embodiments described above, wherein in the three-dimensional molding step, the three-dimensional wiring board is three-dimensional with independent molds that form the plurality of rigid portions. It is to mold. Thereby, highly accurate three-dimensional shaping | molding is realizable.
 1  立体配線基板
 1a、1b  リッジッド部
 1c  フレキシブル部
 2  熱可塑性樹脂フィルム
 2a、2b  リッジッド部
 2c  フレキシブル部
 2d  第1の面
 2e  第2の面
 2f 側面
 2g  屈曲部
 2h  角部
 3  配線パターン
 4  貫通孔
 5  第1金属膜
 5a  粒子
 6  分子接合剤
 11  金型
 12  上部金型
 12a  第1立体成型部
 12b  第2立体成型部
 12c  平坦部
 13  下部金型
 13a  第1立体成型部
 13b  第2立体成型部
 13c  平坦部
 14  上部加熱装置
 15  下部加熱装置
 16  立体配線基板用基材
 17  亀裂
 21  第2金属膜
 21a  粒子
 
DESCRIPTION OF SYMBOLS 1 Three- dimensional wiring board 1a, 1b Ridged part 1c Flexible part 2 Thermoplastic resin film 2a, 2b Ridged part 2c Flexible part 2d 1st surface 2e 2nd surface 2f Side surface 2g Bending part 2h Corner | angular part 3 Wiring pattern 4 Through-hole 5 First metal film 5a Particle 6 Molecular bonding agent 11 Mold 12 Upper mold 12a First three-dimensional molding part 12b Second three-dimensional molding part 12c Flat part 13 Lower mold 13a First three-dimensional molding part 13b Second three-dimensional molding part 13c Flat Part 14 Upper heating device 15 Lower heating device 16 Substrate for three-dimensional wiring board 17 Crack 21 Second metal film 21a Particle

Claims (12)

  1.  立体的形状を備え、且つ50%以上の破断伸びを備える樹脂フィルムと、
     前記樹脂フィルムの表面上に形成され、所望のパターンを備える配線パターンと、を有し、
     前記樹脂フィルムは、前記立体的形状を備えるリジッド部、及び前記リジッド部の端部から所望の方向に延在し、柔軟性を備えるフレキシブル部を含む立体配線基板。
    A resin film having a three-dimensional shape and having an elongation at break of 50% or more;
    A wiring pattern formed on the surface of the resin film and having a desired pattern;
    The said resin film is a three-dimensional wiring board containing the rigid part provided with the said three-dimensional shape, and the flexible part extended in a desired direction from the edge part of the said rigid part, and provided with a softness | flexibility.
  2.  前記配線パターンは、前記樹脂フィルムの両面に形成された請求項1に記載の立体配線基板。 The wiring board according to claim 1, wherein the wiring pattern is formed on both surfaces of the resin film.
  3.  前記配線パターンは、金属を粒子状に堆積してなるポーラス状の構造を備える第1金属膜、及び前記第1金属膜上に積層された第2金属膜からなる請求項1又は2に記載の立体配線基板。 The said wiring pattern consists of a 1st metal film provided with the porous structure formed by depositing a metal in the shape of a particle, and the 2nd metal film laminated | stacked on the said 1st metal film. Three-dimensional wiring board.
  4.  前記樹脂フィルムは、複数の前記リジッド部を備え、
     複数の前記リジッド部のそれぞれは、前記フレキシブル部を介して他の前記リジッド部に接続している請求項1乃至3のいずれか1項に記載の立体配線基板。
    The resin film includes a plurality of the rigid portions,
    4. The three-dimensional wiring board according to claim 1, wherein each of the plurality of rigid portions is connected to another rigid portion via the flexible portion. 5.
  5.  前記フレキシブル部は、前記リジッド部と接続する一端とは反対側の他端に、外部接続用端子を備える請求項1乃至3のいずれか1項に記載の立体配線基板。 The three-dimensional wiring board according to any one of claims 1 to 3, wherein the flexible portion includes an external connection terminal on the other end opposite to one end connected to the rigid portion.
  6.  50%以上の破断伸びを備える樹脂フィルムを準備する準備工程と、
     前記樹脂フィルムの表面上に第1金属膜を形成する第1金属膜形成工程と、
     フォトリソグラフィによって前記第1金属膜にパターニングを施し、所望のパターンを形成するパターン形成工程と、
     前記樹脂フィルムに対して加熱及び加圧を施して立体成型する立体成型工程と、
     パターン形成された前記第1金属膜上に第2金属膜を積層して配線パターンを形成する配線パターン形成工程と、を有し、
     前記立体成型工程は、立体的形状を備えるリジッド部、及び前記リジッド部の端部から所望の方向に延在し、柔軟性を備えるフレキシブル部を前記樹脂フィルムに形成する立体配線基板の製造方法。
    A preparation step of preparing a resin film having an elongation at break of 50% or more;
    A first metal film forming step of forming a first metal film on the surface of the resin film;
    Patterning the first metal film by photolithography to form a desired pattern; and
    A three-dimensional molding process in which three-dimensional molding is performed by applying heat and pressure to the resin film;
    A wiring pattern forming step of forming a wiring pattern by laminating a second metal film on the patterned first metal film,
    The three-dimensional molding step is a method for manufacturing a three-dimensional wiring board in which a rigid portion having a three-dimensional shape and a flexible portion extending in a desired direction from an end portion of the rigid portion and having flexibility are formed on the resin film.
  7.  前記第1金属膜形成工程においては、前記樹脂フィルムの両面に前記第1金属膜を形成する請求項6に記載の立体配線基板の製造方法。 The manufacturing method of a three-dimensional wiring board according to claim 6, wherein in the first metal film forming step, the first metal film is formed on both surfaces of the resin film.
  8.  前記第1金属膜形成工程においては、金属を粒子状に堆積し且つ膜厚を調整することによって前記第1金属膜をポーラス状に形成する請求項6又は7に記載の立体配線基板の製造方法。 The method of manufacturing a three-dimensional wiring board according to claim 6 or 7, wherein, in the first metal film forming step, the first metal film is formed in a porous shape by depositing metal in a particle shape and adjusting a film thickness. .
  9.  前記立体成型工程においては、前記リジッド部を複数形成するとともに、複数の前記リジッド部を前記フレキシブル部によって接続するように立体成型する請求項6乃至8のいずれか1項に記載の立体配線基板の製造方法。 The three-dimensional wiring board according to any one of claims 6 to 8, wherein, in the three-dimensional molding step, a plurality of the rigid portions are formed and a plurality of the rigid portions are three-dimensionally molded so as to be connected by the flexible portion. Production method.
  10.  前記パターン形成工程においては、前記立体成型工程において前記フレキシブル部となる領域の一端に外部接続用端子を形成し、
     前記立体成型工程において、前記外部接続用端子が形成された部分には立体成型を行わない請求項6乃至8のいずれか1項に記載の立体配線基板の製造方法。
    In the pattern forming step, an external connection terminal is formed at one end of the region to be the flexible portion in the three-dimensional molding step,
    The method for manufacturing a three-dimensional wiring board according to any one of claims 6 to 8, wherein in the three-dimensional molding step, the three-dimensional molding is not performed on a portion where the external connection terminal is formed.
  11.  前記立体成型工程においては、1つの金型によって前記リジッド部及び前記フレキシブル部を形成する請求項6乃至10のいずれか1項に記載の立体配線基板の製造方法。 The method for manufacturing a three-dimensional wiring board according to any one of claims 6 to 10, wherein in the three-dimensional molding step, the rigid portion and the flexible portion are formed by a single mold.
  12.  前記立体成型工程においては、複数の前記リジッド部のそれぞれを形成する独立した金型により立体成型する請求項9に記載の立体配線基板の製造方法。 The method for manufacturing a three-dimensional wiring board according to claim 9, wherein, in the three-dimensional molding step, three-dimensional molding is performed by an independent mold that forms each of the plurality of rigid portions.
PCT/JP2015/084958 2015-06-24 2015-12-14 Three-dimensional wiring board and method for producing three-dimensional wiring board WO2016208093A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016531084A JP6100976B1 (en) 2015-06-24 2015-12-14 Three-dimensional wiring board and method for manufacturing three-dimensional wiring board
TW105119549A TW201709783A (en) 2015-06-24 2016-06-22 Three-dimensional wiring board and method for producing three-dimensional wiring board

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/068230 WO2016208006A1 (en) 2015-06-24 2015-06-24 Three-dimensional wiring board production method, three-dimensional wiring board, and substrate for three-dimensional wiring board
JPPCT/JP2015/068230 2015-06-24
JPPCT/JP2015/080796 2015-10-30
PCT/JP2015/080796 WO2016208090A1 (en) 2015-06-24 2015-10-30 Three-dimensional wiring board production method, three-dimensional wiring board, and substrate for three-dimensional wiring board

Publications (1)

Publication Number Publication Date
WO2016208093A1 true WO2016208093A1 (en) 2016-12-29

Family

ID=57145231

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2015/084957 WO2016208092A1 (en) 2015-06-24 2015-12-14 Three-dimensional molded component production method and three-dimensional molded component
PCT/JP2015/084958 WO2016208093A1 (en) 2015-06-24 2015-12-14 Three-dimensional wiring board and method for producing three-dimensional wiring board
PCT/JP2016/068595 WO2016208651A1 (en) 2015-06-24 2016-06-23 Three-dimensional molded component production method and three-dimensional molded component

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084957 WO2016208092A1 (en) 2015-06-24 2015-12-14 Three-dimensional molded component production method and three-dimensional molded component

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068595 WO2016208651A1 (en) 2015-06-24 2016-06-23 Three-dimensional molded component production method and three-dimensional molded component

Country Status (2)

Country Link
JP (1) JP6014792B1 (en)
WO (3) WO2016208092A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6302613B1 (en) * 2017-03-01 2018-03-28 ナノコイル株式会社 Manufacturing method of nano coil type GSR sensor element
CN110035619A (en) * 2019-04-22 2019-07-19 健鼎(湖北)电子有限公司 A kind of internal layer dry film production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228887A (en) * 2005-02-16 2006-08-31 Fujikura Ltd Manufacturing method of rigid and flexible multilayer printed circuit board
WO2013132930A1 (en) * 2012-03-06 2013-09-12 タイコエレクトロニクスジャパン合同会社 Three-dimensional laminated wiring substrate
WO2014168220A1 (en) * 2013-04-12 2014-10-16 セーレン株式会社 Process for producing three-dimensional conductive pattern structure, and material for three-dimensional molding for use therein
WO2015037511A1 (en) * 2013-09-10 2015-03-19 Dic株式会社 Stacked body, conductive pattern, electronic circuit, and production method for stacked body

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281248A (en) * 2003-03-17 2004-10-07 Pioneer Electronic Corp Heat-resistant insulating film and insulation method
JP2005183484A (en) * 2003-12-16 2005-07-07 Fujikura Ltd Working method of enclosure film and printed wiring board
JP4479322B2 (en) * 2004-04-15 2010-06-09 トヨタ自動車株式会社 Three-dimensional exposure mask and three-dimensional exposure method
JP2006269496A (en) * 2005-03-22 2006-10-05 Mitsui Mining & Smelting Co Ltd Flexible printed wiring board and semiconductor apparatus
JP4993068B2 (en) * 2006-08-21 2012-08-08 富士電機株式会社 Insulating film formation method
JP5144583B2 (en) * 2009-04-24 2013-02-13 パナソニック株式会社 Sheet material and printed wiring board
US9457406B2 (en) * 2009-09-16 2016-10-04 Hitachi Chemical Company, Ltd. Copper metal film, method for producing same, copper metal pattern, conductive wiring line using the copper metal pattern, copper metal bump, heat conduction path, bonding material, and liquid composition
JP2013235878A (en) * 2012-05-02 2013-11-21 Ibiden Co Ltd Electronic component mounting substrate, case unit, and manufacturing method of electronic component mounting substrate
US20160360621A1 (en) * 2014-01-14 2016-12-08 Taiyo Ink Mfg. Co., Ltd. Three-dimensional circuit board and solder resist composition used for same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228887A (en) * 2005-02-16 2006-08-31 Fujikura Ltd Manufacturing method of rigid and flexible multilayer printed circuit board
WO2013132930A1 (en) * 2012-03-06 2013-09-12 タイコエレクトロニクスジャパン合同会社 Three-dimensional laminated wiring substrate
WO2014168220A1 (en) * 2013-04-12 2014-10-16 セーレン株式会社 Process for producing three-dimensional conductive pattern structure, and material for three-dimensional molding for use therein
WO2015037511A1 (en) * 2013-09-10 2015-03-19 Dic株式会社 Stacked body, conductive pattern, electronic circuit, and production method for stacked body

Also Published As

Publication number Publication date
WO2016208651A1 (en) 2016-12-29
JP6014792B1 (en) 2016-10-25
JPWO2016208090A1 (en) 2017-06-29
WO2016208092A1 (en) 2016-12-29

Similar Documents

Publication Publication Date Title
JP6100976B1 (en) Three-dimensional wiring board and method for manufacturing three-dimensional wiring board
US20150382445A1 (en) Double-sided flexible printed circuit board including plating layer and method of manufacturing the same
CN110798988B (en) Additive process for manufacturing high-frequency antenna packaging substrate and AiP packaging antenna structure
CN104582240A (en) Circuit board and circuit board manufacturing method
JP6169304B1 (en) 3D wiring board, 3D wiring board manufacturing method, 3D wiring board base material
WO2016208093A1 (en) Three-dimensional wiring board and method for producing three-dimensional wiring board
JP5079344B2 (en) Manufacturing method of multilayer flexible printed wiring board
CN111491458A (en) Circuit board and manufacturing method thereof
CN111343802B (en) Circuit board and manufacturing method thereof
US8927880B2 (en) Printed circuit board and method for manufacturing the same
KR101055559B1 (en) Printed circuit board with film and manufacturing method
US20220369469A1 (en) Method of manufacturing printed wiring board
CN104979733B (en) The manufacture method of adapter
TWI547047B (en) Manufacturing method of connector
CN115633453A (en) Nickel gold and electrogold depositing manufacturing process of BT gold wire binding carrier plate
JP2012119497A (en) Flexible printed wiring board, electronic circuit module, and electronic apparatus
JP2018098289A (en) Wiring board, manufacturing method of wiring board
JP2014036043A (en) Flexible printed wiring board and manufacturing method of the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016531084

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896411

Country of ref document: EP

Kind code of ref document: A1