WO2016208571A1 - 高速度工具鋼鋼材の製造方法、高速度工具鋼製品の製造方法および高速度工具鋼製品 - Google Patents
高速度工具鋼鋼材の製造方法、高速度工具鋼製品の製造方法および高速度工具鋼製品 Download PDFInfo
- Publication number
- WO2016208571A1 WO2016208571A1 PCT/JP2016/068374 JP2016068374W WO2016208571A1 WO 2016208571 A1 WO2016208571 A1 WO 2016208571A1 JP 2016068374 W JP2016068374 W JP 2016068374W WO 2016208571 A1 WO2016208571 A1 WO 2016208571A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- speed tool
- tool steel
- less
- steel
- product
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
- B23B27/148—Composition of the cutting inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B51/00—Tools for drilling machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C5/00—Milling-cutters
- B23C5/16—Milling-cutters characterised by physical features other than shape
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/02—Hardening by precipitation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/22—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for drills; for milling cutters; for machine cutting tools
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/24—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for saw blades
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/30—Ferrous alloys, e.g. steel alloys containing chromium with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/36—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
Definitions
- the present invention relates to a manufacturing method of a high-speed tool steel material used for a high-speed tool steel product such as a cutting tool, a cutting tool, and a mold, a manufacturing method of the high-speed tool steel product, and a high-speed tool steel product. .
- high-speed tool steel has excellent wear resistance, so cutting tools such as end mills, drills, taps, and milling cutters, and cutting tools such as band saws, are made of high-speed tool steel. Yes.
- Some molds for plastic working such as pressing and forging use high-speed tool steel as their material (see Patent Documents 1 to 3).
- High-speed tool steel is usually a steel ingot obtained by casting molten steel adjusted to a predetermined component composition (casting process) as a starting material, subjected to various hot working and heat treatments, Finished to steel with dimensions.
- the steel ingot is first hot worked, and is processed into an intermediate material having a shape such as a slab, bloom, billet, or sheet bar (splitting step). And this intermediate material is further hot-processed and finished into a steel material having a shape corresponding to the product shape (finishing step).
- the shape of the steel material is, for example, an end mill, a drill, a tap, etc., if the product manufactured from this is a rod shape with a cross-section diameter or side of about 5 to 50 mm. These are linear with a diameter and one side of about 1-5 mm.
- high-speed tool steel is usually supplied to manufacturers of products such as cutting tools in an annealed state with low hardness.
- the high-speed tool steel supplied to the manufacturer is machined into a product shape and then adjusted to a predetermined working hardness by quenching and tempering. Further, it is common to perform finishing machining after the hardness is adjusted to the working hardness.
- the linear high-speed tool steel is welded to the body and then machined (bladed) and quenched and tempered.
- An object of the present invention is to provide a method for producing a high-speed tool steel product that can increase carbides in the structure of the high-speed tool steel product, a method for producing a high-speed tool steel product, and a high-speed tool steel product. is there.
- the present invention by mass, C: 0.50 to 2.20%, Si: 0.10 to 1.00%, Mn: 0.10 to 1.00%, P: 0.025% or less, S : 0.0040% or less, Cr: 3.00 to 7.00%, one or two of W and Mo according to the relational expression of (W + 2Mo): 5.00 to 30.00%, V: 0.00.
- a method for producing a high-speed tool steel having a component composition of 60 to 5.00%, remaining Fe and impurities A casting process in which molten steel is cast to obtain a steel ingot; After the steel ingot obtained in this casting process is heated to a temperature exceeding 1120 ° C, it is hot-worked to obtain an intermediate material; After heating the intermediate material obtained in this smashing process to a temperature of 900 to 1120 ° C., it is hot-worked to obtain a high-speed tool steel material having the above-mentioned composition, Is a method for producing a high-speed tool steel.
- said high-speed tool steel material is 1 type (s) or 2 or more types in Co: 10.00% or less, Al: 0.30% or less, Ca: 0.0150% or less further by the mass%. It is a manufacturing method of the high-speed tool steel material which has a component composition to contain. Furthermore, the present invention is a method for producing a high-speed tool steel material comprising an annealing step for annealing the high-speed tool steel material having the above-described component composition obtained in the finishing step.
- this invention is a manufacturing method of the high-speed tool steel product which quenches and tempers the high-speed tool steel manufactured by the manufacturing method of said high-speed tool steel.
- C 0.50 to 2.20%
- Si 0.10 to 1.00%
- Mn 0.10 to 1.00%
- P 0.025% or less
- S 0.0040% or less
- Cr 3.00 to 7.00%
- V High-speed tool steel product having a component composition of 0.60 to 5.00%, balance Fe and impurities
- the area ratio of MC carbide having a maximum length of 0.40 ⁇ m or more in the cross-sectional structure is 3.8%
- This is a high-speed tool steel product in which the area ratio of M 6 C carbide having a maximum length of 0.40 ⁇ m or more is 6.8% or more.
- said high-speed tool steel product is further 1 mass%, Co: 10.00% or
- carbides in the structure of the high-speed tool steel product can be increased.
- the manufacturing method of the high-speed tool steel of the present invention is mass% (hereinafter, simply referred to as “%”), C: 0.50 to 2.20%, Si: 0.10 to 1. 00%, Mn: 0.10 to 1.00%, P: 0.025% or less, S: 0.0040% or less, Cr: 3.00 to 7.00%, W according to the relational expression of (W + 2Mo) and One or two of Mo: 5.00 to 30.00%, V: 0.60 to 5.00%, a method for producing a high-speed tool steel material having a component composition of Fe and impurities.
- the high-speed tool steel material further includes a component composition containing one or more of Co: 10.00% or less, Al: 0.30% or less, and Ca: 0.0150% or less. It is a manufacturing method of the high-speed tool steel material which has.
- the component composition of the high-speed tool steel materials (including products) according to the present invention includes that of conventional high-speed tool steel materials.
- This component composition includes general-purpose steel grades such as SKH51, which are standardized in “High-speed tool steel” in JIS-G-4403. Hereinafter, the component composition will be described.
- C 0.50-2.20%
- C is an element that combines with Cr, W, Mo, and V to form carbides and improves the wear resistance of the product. However, when too much, toughness falls. Therefore, it is set to 0.50 to 2.20% in balance with Cr, W, Mo, and V amounts described later.
- it is 1.00% or more. More preferably, it is 1.10% or more. Further, it is preferably 1.50% or less. More preferably, it is 1.30% or less. More preferably, it is 1.25% or less.
- Si 0.10 to 1.00%
- Si is usually used as a deoxidizer in the dissolution process. And there exists an effect which improves the machinability of material. However, when it is too much, the toughness of the product decreases. Therefore, Si is made 0.10 to 1.00%. Preferably it is 0.25% or more. More preferably, it is 0.40% or more. Further, it is preferably 0.80% or less. More preferably, it is 0.60% or less.
- Mn 0.10 to 1.00%
- Mn is used as a deoxidizer in the same manner as Si.
- Mn is set to 0.10 to 1.00%.
- it is 0.15% or more. More preferably, it is 0.20% or more.
- it is 0.75% or less. More preferably, it is 0.50% or less. More preferably, it is 0.45% or less.
- P 0.025% or less
- P is an element that can be inevitably contained in various high-speed tool steels even if not added. And it is an element which segregates in the prior austenite grain boundary at the time of heat treatment such as tempering and embrittles the grain boundary. Therefore, in order to maintain the toughness of the product, it is restricted to 0.025% or less including the case where it is added.
- S 0.0040% or less
- S is an element that can be inevitably contained in various high-speed tool steels even if not added. And if it is too much, it is an element that deteriorates the hot workability at the time of the steel ingot or intermediate material before hot working and causes cracking in the steel ingot or material during hot working. Further, when the steel material contains Ca, which will be described later, it is combined with Ca and becomes a factor that hinders the effect of improving hot workability exhibited by Ca alone. Therefore, S is an element to be reduced and is regulated to 0.0040% or less. Preferably it is 0.0020% or less, More preferably, it is 0.0010% or less.
- Cr is an element effective in improving hardenability and forming carbides to improve the wear resistance of the product. It is an element that imparts oxidation resistance. However, if the amount is too large, the toughness and high-temperature strength are reduced. Therefore, Cr is set to 3.00 to 7.00%. Preferably it is 3.50% or more. More preferably, it is 4.00% or more. Moreover, Preferably it is 5.50% or less. More preferably, it is 5.00% or less.
- W and Mo are elements that combine with C to form carbides and give the product wear resistance and seizure resistance. Further, it is an element that has a large secondary curing action during tempering and can impart high-temperature strength.
- W and Mo can be contained alone or in combination.
- the content at this time can be defined together by the W equivalent defined by the relational expression of (W + 2Mo) because Mo has an atomic weight about half that of W.
- it is set as 5.00% or more by the value by the relational expression of (W + 2Mo). Preferably it is 10.00% or more.
- it is 15.00% or more. More preferably, it is 17.00% or more.
- it is 30.00% or less as a value according to the relational expression (W + 2Mo).
- W + 2Mo the relational expression
- it is 25.00% or less. More preferably, it is 22.00% or less. More preferably, it is 20.00% or less.
- V is an element that combines with C to form a hard carbide and contributes to the improvement of the wear resistance of the product. However, when it is too much, the toughness of the product decreases. Therefore, V is set to 0.60 to 5.00%. Preferably it is 1.00% or more. More preferably, it is 1.50% or more. More preferably, it is 2.00% or more. Particularly preferably, it is 2.50% or more. Further, it is preferably 4.00% or less. More preferably, it is 3.50% or less. More preferably, it is 3.00% or less.
- Co, Al, and Ca are elements that may remain in the steel. And Co, Al, and Ca may be contained as necessary in terms of the following effects.
- Co may contain, for example, less than 0.10% even when it is not added. And when it contains Co, it is preferably 0.10% or more.
- Al has an effect of making the cast structure uniform and fine and improving the hot workability of the steel ingot. However, if it is too much, a lot of alumina inclusions are formed in the structure and the toughness of the product is lowered. Therefore, 0.30% or less of Al can be contained. Preferably it is 0.25% or less. More preferably, it is 0.20% or less. In addition, when it contains Al, Preferably it is 0.02% or more. More preferably, it is 0.06% or more. More preferably, it is 0.08% or more. Particularly preferably, it is 0.10% or more.
- Ca 0.0150% or less
- Ca has an effect of increasing the absolute amount of MC carbide described later, and is an element effective in improving the wear resistance of the product. And like above-mentioned Al, it also has the effect which makes a cast structure uniform fine and improves the hot workability of a steel ingot.
- 0.0150% or less of Ca can be contained.
- it is 0.0130% or less. More preferably, it is 0.0120% or less. More preferably, it is 0.0100% or less.
- when Ca is contained it is preferably 0.0050% or more. More preferably, it is 0.0060% or more. More preferably, it is 0.0070% or more.
- N nitrogen
- O (oxygen) and N (nitrogen) are elements that may remain in the steel as impurities. These elements are preferably as low as possible.
- N is preferably restricted to 0.0100% or less. More preferably, it is controlled to 0.0060% or less, further preferably 0.0050% or less, and particularly preferably 0.0020% or less.
- O is an element unavoidably present in steel. When there is too much O, many oxide inclusions are formed in the structure, and the quality of the product is lowered. Therefore, it is preferably regulated to 0.0040% or less. More preferably, it is 0.0030% or less, More preferably, it is 0.0020% or less.
- the manufacturing method of the high-speed tool steel material of this invention includes the casting process which casts molten steel and obtains a steel ingot.
- the high-speed tool steel is usually produced using a steel ingot obtained by casting molten steel adjusted to a predetermined component composition as a starting material.
- the method of obtaining the steel ingot is a continuous casting method, a vacuum arc remelting method performed once on a steel ingot after casting, or an electroslag. Any method such as a re-dissolution method may be used.
- the term “ingot” refers to, for example, a material obtained by casting and solidifying molten steel in a steel ingot mold (ingot case) in JIS-G-0203 “Steel Terms (Products and Quality)”, or Continuously cast steel slab, usually processed into a semi-finished product or product in a later process by hot working or forging (including steel ingot remelted by vacuum arc or electrogas slag method). Is defined.
- the steel ingot may be subjected to soaking treatment (soaking treatment) that is maintained at a constant temperature and time, if necessary.
- the manufacturing method of the high-speed tool steel material of this invention heats the steel ingot obtained by the casting process of (2) mentioned above to the temperature exceeding 1120 degreeC, Then, it hot-processes and obtains an intermediate material Includes a lump process.
- the component composition of the high-speed tool steel according to the present invention includes that of a general-purpose steel type such as SKH51.
- the feature of the present invention is that, in the manufacturing process of the high-speed tool steel material including such a general-purpose component composition, it is possible to adjust the conditions of the hot working process without specially changing the component composition.
- the carbide in the structure of the high-speed tool steel product can be increased, and the wear resistance of the high-speed tool steel product can be improved.
- MC carbide containing a large amount of vanadium and “M 6 C carbide” containing a lot of tungsten and molybdenum are hard and excellent in the effect of improving wear resistance. Therefore, increasing MC carbide and M 6 C carbide, particularly in the structure of the high-speed tool steel product, is effective in improving the wear resistance of the high-speed tool steel product. And in conventional high-speed tool steel products, there is room to increase the amount of carbides in the structure of the product by reviewing the conditions of the above hot working process without specially changing its component composition The present inventors have found out.
- the manufacturing method of the high-speed tool steel material is obtained by the “bundling process” in which the steel ingot obtained in the casting step (2) described above is subjected to the bundling process in the hot working process.
- the intermediate material is subjected to a “finishing process” in which the intermediate material is finished into a steel shape.
- the above-mentioned “intermediate material” can be interpreted as, for example, the state of “semi-finished product” defined in JIS-G-0203 “Steel term (product and quality)”.
- “steel slab” means “a semi-finished product obtained by rolling or forging a steel ingot or by continuous casting and having a constant cross-sectional shape in the length direction.
- the hot working temperature was conventionally managed by the series of hot working temperature of the same temperature range from said lump process to a finishing process.
- the hot processing temperature was set high so that the hot processing temperature of patent document 1 is 1160 degreeC and the hot processing temperature of patent document 3 is 1150 degreeC, for example.
- the above-mentioned “bundling process” and “finishing process” in the hot working process are separately managed at the processing temperature. It is.
- the processing temperature of the lump process will be described.
- the lump process plays a role of crushing the eutectic coarse MC carbide in the cast structure of the steel ingot. Then, to decompose the eutectic type M 2 C carbides in the cast structure in the steel ingot, responsible for adjusting the M 6 C carbides.
- the eutectic MC carbide crushing and the M 2 C carbide decomposition are sufficiently advanced in the above-mentioned lump process. It is effective to make the temperature higher.
- the processing temperature namely, temperature of a steel ingot
- the steel ingot before a segmentation process is heated to the temperature exceeding 1120 degreeC. .
- it is 1130 degreeC or more.
- the heating temperature of the steel ingot it is efficient to set it to 1160 ° C. or lower.
- the processing temperature in the bundling process is also preferable because the plastic workability of the steel ingot can be maintained high.
- the steel ingot has a larger cross-sectional area than an intermediate material (steel piece) described later. Therefore, the steel ingot at the time of performing the lump processing is required to have better plastic workability than the intermediate material when the finishing process described later is performed. If the processing temperature in the splitting process is too low, there is a concern that the steel ingot during the splitting process breaks.
- the temperature of the steel ingot during the chunk processing gradually decreases from the start of the chunk processing.
- the temperature of a steel ingot (namely, intermediate material) may be 1120 degrees C or less. Even in this case, the effect of the lump process of the present invention is exhibited when the start temperature of lump processing exceeds 1120 ° C.
- the temperature of a lump process it is preferable to maintain the completion
- the plastic workability of the steel ingot can be maintained, and it becomes easy to make the steel ingot an intermediate material having a predetermined dimension. Moreover, it becomes easy to give a big processing ratio to a steel ingot.
- the temperature of the steel ingot is lowered to near 900 ° C. (or 1120 ° C.).
- the ingot processing can be interrupted, and the ingot can be reheated by, for example, putting the ingot into a heating furnace. Then, the ingot processing can be repeated until the steel ingot after reheating becomes an intermediate material having a predetermined size (until a predetermined processing ratio can be given to the ingot).
- the intermediate material obtained in the above-described step (3) is heated to a temperature of 900 to 1120 ° C. and then hot-worked.
- a finishing process for obtaining a high-speed tool steel material having a component composition is included.
- the finishing process is a process in which the intermediate material obtained in the lump process is hot processed to finish the intermediate material into a steel material. By this finishing process, the intermediate material is finished into a high-speed tool steel material having a predetermined size and a shape corresponding to the product shape.
- “steel product” means, for example, JIS-G-0203 “steel term (product and quality)” that is processed into a required shape by various methods such as rolling, forging, drawing, and casting. Is a general term for steel and does not include steel ingots and billets.
- the shape of the high-speed tool steel material related to the present invention is, for example, a bar shape with a cross-sectional diameter and a side of about 5 to 50 mm if the product manufactured from this is an end mill, a drill, a tap, or the like. In the case of a blade or the like, for example, the cross section has a diameter of about 1 to 5 mm or one side.
- the finishing step is a step of spheroidizing the MC carbide and M 6 C carbide imparted in the structure in the lump step. Then, in the present invention, an important step contributing to increasing the MC carbides and M 6 C carbides.
- the processing temperature of the finishing process performed on the intermediate material obtained in the step (3) (that is, the temperature of the intermediate material) is the same “temperature exceeding 1120 ° C.” as in the step.
- the MC carbide and M 6 C carbide in the structure of the intermediate material are dissolved in the base austenite structure, and the MC carbide and M 6 C carbide are dissolved.
- the amount of decreases.
- the amount of MC carbide and M 6 C carbide in the structure is different and the amount is reduced, so that the wear resistance of the product is reduced. Decreases.
- the heating temperature of the intermediate raw material before finishing is limited to 1120 degrees C or less.
- it is 1115 degrees C or less. More preferably, it is 1110 degrees C or less.
- the temperature of the intermediate material during the finishing is usually gradually decreased from the start of the finishing. If the temperature of the intermediate material becomes too low during the finishing process, the plastic workability of the intermediate material is lowered, and it becomes difficult to make the intermediate material a steel material having a predetermined dimension. Therefore, the heating temperature of the intermediate material before finishing is set to 900 ° C. or higher.
- the finishing temperature is preferably maintained between 1120 ° C. and 900 ° C. from the start to the end of the processing. Alternatively, the finishing temperature is preferably maintained at 900 to 1050 ° C. as the finishing temperature.
- the plastic workability of the intermediate material can be maintained, and the intermediate material can be easily made into a steel material having a predetermined size.
- the finishing process is interrupted and the intermediate material is heated in the heating furnace.
- the intermediate material can be reheated, for example, in Then, the finishing process can be repeated until the intermediate material after reheating is finished into a steel material having a predetermined size.
- the manufacturing method of the high speed tool steel material of this invention includes the "annealing process” which anneals the steel material obtained at the "finishing process” of (4). Annealing itself to the steel material obtained in the above finishing process is a normal process. By this annealing step, it is possible to impart machinability when machining into a product shape. Moreover, the residual stress can be removed from the steel material after hot working.
- the annealing temperature is about 870 ° C. at the highest, but if the annealing temperature is too high, solid solution of MC carbide and M 6 C carbide in the steel structure tends to proceed. Therefore, the annealing temperature is preferably 900 ° C. or lower. Moreover, it is preferable that an annealing temperature shall be 860 degreeC or more.
- the method for producing a high-speed tool steel product according to the present invention involves quenching and tempering the high-speed tool steel produced by the method for producing a high-speed tool steel according to the present invention including the above-described steps. It is.
- the high-speed tool steel produced by the method for producing a high-speed tool steel according to the present invention is adjusted to a predetermined hardness by quenching and tempering, and is adjusted to a high-speed tool steel product.
- the high-speed tool steel material is adjusted to the shape of the high-speed tool steel product by various machining processes such as cutting and drilling. This machining is preferably performed in a state of low hardness (annealed state) before quenching and tempering. In this case, finishing machining may be performed after quenching and tempering.
- the quenching and tempering temperatures vary depending on the composition of the high-speed tool steel, the target hardness, etc., but the quenching temperature is approximately 1170-1220 ° C., and the tempering temperature is approximately 550-590 ° C. preferable.
- the quenching temperature is about 1180 to 1210 ° C.
- the tempering temperature is about 550 to 580 ° C.
- the quenching and tempering hardness is preferably 69 HRC or less. Moreover, it is preferable to set it as 64 HRC or more.
- MC carbide and M 6 C carbide those having a maximum length of 0.40 ⁇ m or more in the cross-sectional structure of the high-speed tool steel product have a large effect of improving wear resistance.
- the area ratio of MC carbide having a maximum length of 0.40 ⁇ m or more in the cross-sectional structure is at most about 3.0% and the maximum length is 0.40 ⁇ m.
- the area ratio of the above M 6 C carbide was about 6.0% at most.
- the area ratio of MC carbide having a maximum length of 0.40 ⁇ m or more in the cross-sectional structure of the high-speed tool steel product is 3.8% or more.
- the amount can be increased.
- the amount can be increased to 4.0% or more.
- 9.0% or less is realistic.
- the area ratio of M 6 C carbide having a maximum length of 0.40 ⁇ m or more in the cross-sectional structure of the high-speed tool steel product is 6.8% or more.
- the amount can be increased to 7.0% or more. At this time, it is not particularly necessary to set the upper limit of the area ratio of the M 6 C carbide. However, 12.0% or less is realistic.
- the procedure for measuring the area ratio of MC carbide and M 6 C carbide having a maximum length of 0.40 ⁇ m or more in the cross-sectional structure of the high-speed tool steel product will be described.
- a sample for observing the cross section is taken from the high-speed tool steel product.
- the cross-section to be observed can be the work site of the product (in the case of a cutting tool or cutting tool, it is a cutting edge part, and in the case of a die, it is a mold engraving surface).
- the cross section to be observed is polished to a mirror surface, and the cross-sectional structure after the polishing is observed with a scanning electron microscope having a magnification of 2000 times.
- the observed cross-sectional structure is taken in as a reflected electron beam (BSE; Back Scattered Electron) image having 1260 ⁇ 960 pixels (area 63 ⁇ m ⁇ 48 ⁇ m) per one visual field, and this image is prepared for 10 visual fields.
- the BSE image can display differences in the composition of C, W, Mo, V, Fe, and the like contained in the cross-sectional structure, and can clearly distinguish MC carbide and M 6 C carbide with the contrast.
- FIG. 1 is an example of a BSE image of a cross-sectional structure of a high-speed tool steel product A1 evaluated in Examples described later. In FIG. 1, the granular dispersion identified in the matrix is carbide.
- MC carbide (reference numeral 1)” is shown in dark color, and “M 6 C carbide (reference numeral 2)” is shown in light color. is there. Then, from these BSE images, MC carbide and M 6 C carbide having a maximum length of 0.40 ⁇ m or more are extracted using image analysis software, and the area of these carbides occupying the total cross-sectional structure for 10 fields of view. Each rate can be determined.
- a molten steel adjusted to a predetermined component composition was prepared, and this molten steel was cast to produce a steel ingot of high-speed tool steel.
- Table 1 shows the composition of the steel ingot.
- the ingot processing was performed on the steel ingot. That is, the steel ingot was heated to 1130 ° C. and hot-worked to obtain an intermediate material (steel piece) having a cross-sectional dimension of 135 mm ⁇ 135 mm.
- the processing temperature was the surface temperature of the steel ingot.
- the steel ingot was not reheated during the hot working.
- the end temperature of the hot working was 1049 ° C.
- the finishing process was performed on the intermediate material obtained by the above-described block processing. That is, the intermediate material was heated to the respective temperatures shown in Table 2 and hot-worked to finish rod-like high-speed tool steel materials A1 to A6 and B1 to B4 having a cross-sectional dimension of 11 mm in diameter.
- the processing temperature was the surface temperature of the intermediate material.
- the intermediate material was not reheated during the hot working for finishing.
- the finishing hot finishing temperature was in the range of 1000 to 1040 ° C.
- the annealed high-speed tool steel material was heated to 1190 ° C. and held for 30 minutes for quenching. Then, the high-speed tool steel products after quenching were repeatedly tempered by holding at 560 ° C. for 1 hour twice (target hardness 65.5 HRC) to produce high-speed tool steel products A1 to A6 and B1 to B4. Then, the area ratios of MC carbide and M 6 C carbide having a maximum length of 0.40 ⁇ m or more in the cross-sectional structure of the high-speed tool steel product were measured according to the above measurement procedure. At this time, the observed cross section was a vertical cross section including the rod-shaped center line.
- the high-speed tool steel products A1 to A6 according to the present invention have MC carbide in the finishing process after the ingot processing in addition to the ingot being heated to a temperature exceeding 1120 ° C. And M 6 C carbide is hot-worked at a temperature at which it is difficult to dissolve in the matrix.
- the area ratio of MC carbide having a maximum length of 0.40 ⁇ m or more in the cross-sectional structure was 3.8% or more, and the area ratio of M 6 C carbide was 6.8% or more.
- the steel ingot is heated to a temperature exceeding 1120 ° C.
- MC carbide and M 6 C are subjected to the finishing process thereafter. This is hot-worked at a temperature at which the carbide is easily dissolved in the matrix.
- the area ratio of MC carbide and M 6 C carbide having a maximum length of 0.40 ⁇ m or more in the cross-sectional structure was smaller than that of the high-speed tool steel products A1 to A6.
- FIG. 2 shows the results of Table 2, MC carbide having a maximum length of 0.40 ⁇ m or more in the cross-sectional structure of the high-speed tool steel product and the heating temperature of the intermediate material during finishing (that is, the processing start temperature). and it shows the relationship between the M 6 C carbide area ratio. From FIG. 2, it can be seen that MC carbide and M 6 C carbide in the cross-sectional structure can be increased by lowering the processing temperature during finishing.
- a molten steel adjusted to a predetermined component composition was prepared, and this molten steel was cast to produce steel ingots 1 and 2 of high-speed tool steel.
- Table 3 shows the composition of the steel ingots 1 and 2.
- the steel ingots 1 and 2 were heated to 1140 ° C. and subjected to a lump processing. And the intermediate material (steel piece) whose cross-sectional dimension is 80 mm x 80 mm was obtained. At this time, reheating of the steel ingot was not performed during the ingot processing. And the finishing temperature (the surface temperature of a steel ingot) of a lump processing was 1080 degreeC. In the above-described ingot machining, the heating temperature of the steel ingots 1 and 2 (that is, the starting temperature of the ingot machining) was also lowered to 1080 ° C. As a result, the tip of the steel ingot during the ingot processing was broken and the ingot processing could not proceed. Since the intermediate material having a sound final shape could not be obtained, the subsequent experiment was stopped at this point.
- the intermediate material obtained by the lump processing with the heating temperature of the steel ingot being 1140 ° C. was heated to the temperature shown in Table 4 and subjected to finish processing by forging.
- the high-speed tool steel materials 1 and 2 which consist of a rectangular bar with a cross-sectional shape of 20 mm x 20 mm corresponding to the numerical order of the steel ingots 1 and 2 were produced.
- the finishing temperature surface temperature of the intermediate material was 1010 ° C.
- the high-speed tool steel materials 1 and 2 after this annealing were heated to 1190 degreeC, hold
- the area ratios of MC carbide and M 6 C carbide having a maximum length of 0.40 ⁇ m or more in the cross-sectional structures of the high-speed tool steel products 1 and 2 were measured according to the above measurement procedure.
- the observed cross section was a vertical cross section including the rod-shaped center line.
- the observed cross section was set as the position where “side length / 8” entered from the surface side of the high-speed tool steel product (steel material) toward the center line of the vertical cross section.
- the results are shown in Table 4.
- the Ogoshi type abrasion test was implemented to the high-speed tool steel products 1 and 2 by making the position of "side length / 8" extracted by the above-mentioned procedure into the test surface.
- the mating material was a normalizing material of SCM415 (hardness 183HBW), the load was 64.7 N (6.6 kgf), the friction distance was 400 m, and the test speed was 0.97 m / s.
- the test by this condition was implemented 3 times with each high-speed tool steel product, the specific wear amount was measured, and the average value of the specific wear amount was calculated
- the area ratio of MC carbide having a maximum length of 0.40 ⁇ m or more in the cross-sectional structure is 3.8% or more, and the area ratio of M 6 C carbide is 6.8. % Or more.
- M 6 C carbides The area ratio increased to 9.0% or more.
- the high-speed tool steel product 2 of the comparative example had a high heating temperature of the steel ingot at the time of the ingot processing, but also had a high heating temperature of the intermediate material in the subsequent finishing processing.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明の目的は、高速度工具鋼製品の組織中の炭化物を増やすことができる高速度工具鋼鋼材の製造方法と、高速度工具鋼製品の製造方法および高速度工具鋼製品を提供することである。
溶鋼を鋳造して、鋼塊を得る鋳造工程と、
この鋳造工程で得た鋼塊を1120℃を超える温度に加熱した後、熱間加工して、中間素材を得る分塊工程と、
この分塊工程で得た中間素材を900~1120℃の温度に加熱した後、熱間加工して、上述の成分組成を有する高速度工具鋼鋼材を得る仕上工程と、
を具備する高速度工具鋼鋼材の製造方法である。
そして、上記の高速度工具鋼鋼材が、さらに、質量%で、Co:10.00%以下、Al:0.30%以下、Ca:0.0150%以下のうちの1種または2種以上を含む成分組成を有する高速度工具鋼鋼材の製造方法である。
また、さらに、上記の仕上工程で得た上述の成分組成の高速度工具鋼鋼材に焼鈍を行う焼鈍工程を具備する高速度工具鋼鋼材の製造方法である。
そして、上記の高速度工具鋼製品が、さらに、質量%で、Co:10.00%以下、Al:0.30%以下、Ca:0.0150%以下のうちの1種または2種以上を含む成分組成を有する高速度工具鋼製品である。
本発明に係る高速度工具鋼鋼材(製品を含む)の成分組成は、従来の高速度工具鋼鋼材のそれを含むものである。この成分組成には、JIS-G-4403の「高速度工具鋼鋼材」に規格されている、SKH51のような、汎用鋼種も含まれている。以下、成分組成について、説明する。
Cは、Cr、W、Mo、Vと結合して炭化物を形成し、製品の耐摩耗性を向上する元素である。しかし、多すぎると、靭性が低下する。よって、後述するCr、W、Mo、V量とバランスさせた上で、0.50~2.20%とする。好ましくは1.00%以上である。より好ましくは1.10%以上である。また、好ましくは1.50%以下である。より好ましくは1.30%以下である。さらに好ましくは1.25%以下である。
Siは、通常、溶解工程における脱酸剤として使用される。そして、材料の被削性を高める効果がある。しかし、多すぎると、製品の靭性が低下する。よって、Siは、0.10~1.00%とする。好ましくは0.25%以上である。より好ましくは0.40%以上である。また好ましくは0.80%以下である。より好ましくは0.60%以下である。
Mnは、Siと同様、脱酸剤として使用される。そして、焼入性を高めて、製品に適度の焼入れ焼戻し硬さを付与する効果がある。しかし、多すぎると、焼入れ焼戻し後の組織中に残留オーステナイトが多くなり、靭性を低下させる。よって、Mnは、0.10~1.00%とする。好ましくは0.15%以上である。より好ましくは0.20%以上である。また、好ましくは0.75%以下である。より好ましくは0.50%以下である。さらに好ましくは0.45%以下である。
Pは、通常、添加しなくても、各種の高速度工具鋼鋼材に不可避的に含まれ得る元素である。そして、焼戻し等の熱処理時に旧オーステナイト粒界に偏析して粒界を脆化させる元素である。したがって、製品の靭性を維持するために、添加する場合も含めて、0.025%以下に規制する。
Sは、通常、添加しなくても、各種の高速度工具鋼鋼材に不可避的に含まれ得る元素である。そして、多過ぎると、熱間加工前の鋼塊や中間素材時において、その熱間加工性を劣化させ、熱間加工中の鋼塊や素材に割れを生じさせる元素である。また、鋼材が後述するCaを含むときには、Caと結合して、Ca単体が発揮する熱間加工性の向上効果を阻害する要因ともなる。よって、Sは、低減すべき元素であり、0.0040%以下に規制する。好ましくは0.0020%以下、より好ましくは0.0010%以下である。
Crは、焼入性を高め、また炭化物を形成して、製品の耐摩耗性を向上するのに有効な元素である。また、耐酸化性を付与する元素である。但し、多過ぎると、靱性や高温強度の低下を招く。よって、Crは、3.00~7.00%とする。好ましくは3.50%以上である。より好ましくは4.00%以上である。また、好ましくは5.50%以下である。より好ましくは5.00%以下である。
WおよびMoは、Cと結合して炭化物を形成し、製品に耐摩耗性や耐焼付き性を付与する元素である。また、焼戻し時の二次硬化作用が大きく、高温強度も付与できる元素である。このとき、WおよびMoは、単独または複合で含有させることができる。また、このときの含有量は、MoがWの約1/2の原子量であることから、(W+2Mo)の関係式で定義されるW当量で一緒に規定できる。そして、上記の効果を得るために、(W+2Mo)の関係式による値で、5.00%以上とする。好ましくは10.00%以上である。より好ましくは15.00%以上である。さらに好ましくは17.00%以上である。
しかし、多すぎると、鋼塊または中間素材の時点における熱間加工性を阻害する。よって、(W+2Mo)の関係式による値で、30.00%以下とする。好ましくは25.00%以下である。より好ましくは22.00%以下である。さらに好ましくは20.00%以下である。
Vは、Cと結合して硬質の炭化物を形成し、製品の耐摩耗性の向上に寄与する元素である。しかし、多すぎると、製品の靭性が低下する。よって、Vは、0.60~5.00%とする。好ましくは1.00%以上である。より好ましくは1.50%以上である。さらに好ましくは2.00%以上である。特に好ましくは2.50%以上である。また、好ましくは4.00%以下である。より好ましくは3.50%以下である。さらに好ましくは3.00%以下である。
・Co:10.00%以下
Coは、基地中に固溶して、製品の強度や耐熱性を向上させる。但し、多過ぎると、製品の靱性を低下させる。よって、10.00%以下のCoを含有することができる(0%を含む)。好ましくは5.00%以下である。より好ましくは3.00%以下である。さらに好ましくは2.00%以下である。なお、Coは、無添加の場合でも、例えば、0.10%未満を含み得る場合がある。そして、Coを含有する場合、好ましくは0.10%以上である。
Alは、鋳造組織を均一微細にして、鋼塊の熱間加工性を向上させる効果を有する。但し、多過ぎると、組織中にアルミナ系介在物を多く形成して、製品の靱性を低下させる。よって、0.30%以下のAlを含有することができる。好ましくは0.25%以下である。より好ましくは0.20%以下である。なお、Alを含有する場合、好ましくは0.02%以上である。より好ましくは0.06%以上である。さらに好ましくは0.08%以上である。特に好ましくは0.10%以上である。
Caは、後述するMC炭化物の絶対量を増やす効果を有し、製品の耐摩耗性の向上に有効な元素である。そして、上述のAlと同様、鋳造組織を均一微細にして、鋼塊の熱間加工性を向上する効果も有する。しかし、多すぎると、多くのCaが酸化物系の介在物を形成して、清浄度を低める。よって、0.0150%以下のCaを含有することができる。好ましくは0.0130%以下である。より好ましくは0.0120%以下である。さらに好ましくは0.0100%以下である。なお、Caを含有する場合、好ましくは0.0050%以上である。より好ましくは0.0060%以上である。さらに好ましくは0.0070%以上である。
・N:0.0100%以下
Nは、鋼中に不可避的に存在する元素である。Nが多すぎると、組織中に多くの窒化物系の介在物が形成されて、製品の品位を下げる。よって、好ましくは0.0100%以下に規制する。より好ましくは0.0060%以下、さらに好ましくは0.0050%以下、特に好ましくは0.0020%以下に規制する。
Oは、鋼中に不可避的に存在する元素である。Oが多すぎると、組織中に多くの酸化物系の介在物が形成されて、製品の品位を下げる。よって、好ましくは0.0040%以下に規制する。より好ましくは0.0030%以下、さらに好ましくは0.0020%以下である。
通常、高速度工具鋼鋼材が、所定の成分組成に調整された溶鋼を鋳造して得た鋼塊を出発材料にして製造されることは、先述の通りである。そして、本発明の場合、この鋼塊を得る手法は、インゴットケースを使用した普通造塊法の他に、連続鋳造法や、一旦鋳造後の鋼塊に実施する真空アーク再溶解法やエレクトロスラグ再溶解法である等、その手法を問わない。これについて、「鋼塊(ingot)」とは、例えば、JIS-G-0203「鉄鋼用語(製品及び品質)」において、「溶鋼を鋼塊用鋳型(インゴットケース)に鋳込み凝固させたもの、又は連続鋳造された鋼片。通常は、熱間加工又は鍛造による後工程で、半製品又は製品に加工される(真空アーク又はエレクトロガススラグ法で再溶解され、鋳造された鋼塊を含む)。」と定義されている。
また、上記の鋼塊には、例えば、一定の温度および時間で保持する均熱処理(ソーキング処理)を、必要に応じて行ってもよい。
本発明に係る高速度工具鋼鋼材の成分組成が、SKH51等の汎用鋼種のそれを含むものであることは、上述の通りである。そして、本発明の特徴は、このような汎用的な成分組成を含む高速度工具鋼材の製造工程において、その熱間加工工程の条件を調整することで、成分組成を特別に変更しなくても、高速度工具鋼製品の組織中の炭化物を増やすことができ、高速度工具鋼製品の耐摩耗性を向上できる点にある。
そして、上記の熱間加工工程において、従来、その熱間加工温度は、上記の分塊工程から仕上工程までを通して、同じ温度範囲の、一連の熱間加工温度で管理されていた。そして、その熱間加工温度は、例えば、特許文献1の熱間加工温度が1160℃であり、特許文献3の熱間加工温度が1150℃であるように、高く設定されていた。
分塊工程で加工温度を上げることは、鋼塊の塑性加工性を高く維持できる点でも好ましい。通常、鋼塊は、後述する中間素材(鋼片)よりも、その断面積が大きい。よって、分塊加工が行われるときの鋼塊には、後述の仕上加工が行われるときの中間素材よりも、優れた塑性加工性が求められる。分塊工程での加工温度が低すぎると、分塊加工中の鋼塊が割れることが懸念される。
分塊加工中の鋼塊の温度を900℃以上の温度(または、1120℃を超える温度)に維持するには、例えば、鋼塊の温度が900℃(または、1120℃)の近くまで降温してきたときに、分塊加工を中断して、鋼塊を加熱炉に入れる等して、鋼塊を再加熱することができる。そして、この再加熱後の鋼塊が、所定の寸法の中間素材になるまで(鋼塊に所定の加工比を付与できるまで)、分塊加工を繰り返すことができる。
仕上工程は、分塊工程で得た中間素材を熱間加工して、中間素材を鋼材に仕上加工する工程である。この仕上加工によって、中間素材は、製品形状に応じた形状の、所定の寸法の高速度工具鋼鋼材に仕上げられる。これについて、「鋼材(steel product)」とは、例えば、JIS-G-0203「鉄鋼用語(製品及び品質)」において、「圧延、鍛造、引抜き、鋳造など各種の方法で所要の形状に加工された鋼の総称。鋼塊及び鋼片は含まない。」と定義されている。そして、本発明に関する高速度工具鋼鋼材の形状は、これより製造される製品がエンドミル、ドリル、タップ等であるなら、例えば、断面の直径や一辺が5~50mm程度の棒状であるし、帯鋸刃等であるなら、例えば、断面の直径や一辺が1~5mm程度の線状である。
また、仕上工程は、分塊工程で組織中に付与したMC炭化物およびM6C炭化物を球状化する工程である。そして、本発明においては、MC炭化物およびM6C炭化物の増量に寄与する重要な工程である。
仕上加工中の中間素材の温度を900℃以上の温度に維持するには、例えば、中間素材の温度が900℃の近くまで降温してきたときに、仕上加工を中断して、中間素材を加熱炉に入れる等して、中間素材を再加熱することができる。そして、この再加熱後の中間素材が、所定の寸法の鋼材に仕上がるまで、仕上加工を繰り返すことができる。
上記の仕上工程で得た鋼材に焼鈍を行うこと自体は、通常の工程である。この焼鈍工程によって、製品形状に機械加工する際の、機械加工性を付与することができる。また、熱間加工後の鋼材から残留応力を除去することができる。なお、一般的に、焼鈍温度は、高くても870℃程度であるところ、焼鈍温度が高すぎると、鋼材組織中のMC炭化物およびM6C炭化物の基地中への固溶が進みやすい。よって、焼鈍温度は900℃以下とすることが好ましい。また、焼鈍温度は860℃以上とすることが好ましい。
本発明の高速度工具鋼鋼材の製造方法によって製造された高速度工具鋼鋼材は、焼入れ焼戻しによって、所定の硬さに調製されて、高速度工具鋼製品に整えられる。そして、この間において、高速度工具鋼鋼材は、切削や穿孔といった各種の機械加工によって、高速度工具鋼製品の形状に整えられる。この機械加工は、焼入れ焼戻し前の、硬さが低い状態(焼鈍状態)で行うことが好ましい。この場合、焼入れ焼戻し後に仕上げの機械加工を行ってもよい。
これに対して、本発明の高速度工具鋼製品の製造方法によれば、高速度工具鋼製品の断面組織に占める、最大長が0.40μm以上のMC炭化物の面積率を3.8%以上に増量することができる。好ましくは4.0%以上に増量することができる。このとき、このMC炭化物の面積率の上限については、特に設定することを要しない。但し、9.0%以下が現実的である。
そして、本発明の高速度工具鋼製品の製造方法によれば、高速度工具鋼製品の断面組織に占める、最大長が0.40μm以上のM6C炭化物の面積率を6.8%以上に増量することができる。好ましくは7.0%以上に増量することができる。このとき、このM6C炭化物の面積率の上限については、特に設定することを要しない。但し、12.0%以下が現実的である。
まず、高速度工具鋼製品から、断面を観察する試料を採取する。観察する断面は、製品の作業部位(切削工具や切断工具の場合、刃先部であり、金型の場合、型彫面である。)とすることができる。
次に、この観察する断面を鏡面に研磨してから、この研磨後の断面組織を、倍率2000倍の走査型電子顕微鏡で観察する。そして、この観察した断面組織を、1視野あたりの画素数が1260×960ピクセル(面積63μm×48μm)の反射電子線(BSE;Back Scattered Electron)画像として取り込み、この画像を10視野分準備する。BSE画像は、断面組織に含まれるC、W、Mo、VおよびFe等の組成の違いを表示でき、MC炭化物とM6C炭化物とをコントラストの濃淡で明瞭に識別できるものである。図1は、後述する実施例で評価した高速度工具鋼製品A1の断面組織のBSE画像の一例である。図1において、基地中に確認される粒状の分散物が炭化物である。そして、これら粒状の分散物のなかで、濃色で示されているのが「MC炭化物(符号1)」であり、淡色で示されているのが「M6C炭化物(符号2)」である。
そして、これらのBSE画像から、画像解析ソフトウェアを用いて、最大長が0.40μm以上のMC炭化物およびM6C炭化物を抽出して、10視野分の合計の断面組織に占める、これら炭化物の面積率をそれぞれ求めることができる。
次に、上記の分塊加工で得た中間素材に仕上加工を行った。つまり、中間素材を表2に示すそれぞれの温度に加熱して、これを熱間加工し、断面寸法が直径11mmの棒状の高速度工具鋼鋼材A1~A6およびB1~B4に仕上げた。なお、加工温度は、中間素材の表面温度とした。また、仕上げの熱間加工中に、中間素材の再加熱は行わなかった。そして、仕上げの熱間加工の終了温度は1000~1040℃の範囲であった。
そして、この高速度工具鋼製品の断面組織に占める、最大長が0.40μm以上のMC炭化物およびM6C炭化物の面積率を、上述の測定要領に従って、測定した。このとき、観察した断面は、その棒状の中心線を含む縦断面とした。そして、観察した断面は、上記の縦断面の、高速度工具鋼製品(鋼材)の表面側から中心線に向かって「直径/8」入った位置とした。画像解析ソフトウェアには、オリンパス株式会社製ソフトウェア「SCANDIUM」を用いた。結果を表2に示す。また、高速度工具鋼製品A1の断面組織のBSE画像を、図1に示す。
これに対して、比較例の高速度工具鋼製品B1~B4は、鋼塊を1120℃を超える温度に加熱して分塊加工を行ってから、その後の仕上加工で、MC炭化物およびM6C炭化物が基地中に固溶し易い温度で熱間加工したものである。そして、断面組織に占める、最大長が0.40μm以上のMC炭化物およびM6C炭化物の面積率は、高速度工具鋼製品A1~A6に比べて、少なかった。
なお、上記の分塊加工においては、鋼塊1、2の加熱温度(つまり、分塊加工の開始温度)を1080℃に低めたものにも行った。その結果、分塊加工中の鋼塊の先端が割れて、分塊加工を進めることができなかった。そして、健全な最終形状の中間素材を得られなかったことから、この時点で、以降の実験を中止した。
そして、上記の高速度工具鋼鋼材1、2に870℃の焼鈍を実施した後に、この焼鈍後の高速度工具鋼鋼材1、2を1190℃に加熱して30分間保持し、焼入れを行った。そして、焼入れ後の高速度工具鋼鋼材1、2に、560℃で1時間保持する焼戻しを2回繰り返して(狙い硬さ65.5HRC)、高速度工具鋼鋼材(鋼塊)1、2の番号順に対応する、高速度工具鋼製品1、2を作製した。
また、上述の要領により採取した「辺長さ/8」の位置を試験面として、高速度工具鋼製品1、2に大越式摩耗試験を実施した。試験条件として、相手材はSCM415の焼ならし材(硬さ183HBW)、荷重は64.7N(6.6kgf)、摩擦距離は400m、試験速度は0.97m/sとした。そして、この条件による試験を、それぞれの高速度工具鋼製品で3回実施して、比摩耗量を測定し、その比摩耗量の平均値を求めた。この比摩耗量の値が小さい程、耐摩耗性に優れることを意味する。結果を表4に示す。
これに対して、比較例の高速度工具鋼製品2は、分塊加工時における鋼塊の加熱温度は高かったものの、その後の仕上加工における中間素材の加熱温度も高かったことから、中間素材の組織中にあったMC炭化物やM6C炭化物が基地に溶け込んだと思われ、高速度工具鋼製品における上記のMC炭化物およびM6C炭化物の面積率は、高速度工具鋼製品1に比べて、少なかった。
そして、高速度工具鋼製品1の比摩耗量の値は、高速度工具鋼製品2のそれに比べて小さく、高速度工具鋼製品1の耐摩耗性が、高速度工具鋼製品2よりも優れていることを示した。
2 M6C炭化物
Claims (6)
- 質量%で、C:0.50~2.20%、Si:0.10~1.00%、Mn:0.10~1.00%、P:0.025%以下、S:0.0040%以下、Cr:3.00~7.00%、(W+2Mo)の関係式によるWおよびMoのうちの1種または2種:5.00~30.00%、V:0.60~5.00%、残部Feおよび不純物の成分組成を有する高速度工具鋼鋼材の製造方法であって、
溶鋼を鋳造して、鋼塊を得る鋳造工程と、
前記鋳造工程で得た鋼塊を1120℃を超える温度に加熱した後、熱間加工して、中間素材を得る分塊工程と、
前記分塊工程で得た中間素材を900~1120℃の温度に加熱した後、熱間加工して、前記成分組成を有する高速度工具鋼鋼材を得る仕上工程と、
を具備することを特徴とする高速度工具鋼鋼材の製造方法。 - 前記高速度工具鋼鋼材が、さらに、質量%で、Co:10.00%以下、Al:0.30%以下、Ca:0.0150%以下のうちの1種または2種以上を含む成分組成を有することを特徴とする請求項1に記載の高速度工具鋼鋼材の製造方法。
- さらに、前記仕上工程で得た前記成分組成の高速度工具鋼鋼材に焼鈍を行う焼鈍工程を具備することを特徴とする請求項1または2に記載の高速度工具鋼鋼材の製造方法。
- 請求項1ないし3のいずれかに記載の高速度工具鋼鋼材の製造方法によって製造された高速度工具鋼鋼材に、焼入れおよび焼戻しを行うことを特徴とする高速度工具鋼製品の製造方法。
- 質量%で、C:0.50~2.20%、Si:0.10~1.00%、Mn:0.10~1.00%、P:0.025%以下、S:0.0040%以下、Cr:3.00~7.00%、(W+2Mo)の関係式によるWおよびMoのうちの1種または2種:5.00~30.00%、V:0.60~5.00%、残部Feおよび不純物の成分組成を有する高速度工具鋼製品であって、断面組織に占める、最大長が0.40μm以上のMC炭化物の面積率が3.8%以上であり、最大長が0.40μm以上のM6C炭化物の面積率が6.8%以上であることを特徴とする高速度工具鋼製品。
- 前記高速度工具鋼製品が、さらに、質量%で、Co:10.00%以下、Al:0.30%以下、Ca:0.0150%以下のうちの1種または2種以上を含む成分組成を有することを特徴とする請求項5に記載の高速度工具鋼製品。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES16814341T ES2828977T3 (es) | 2015-06-22 | 2016-06-21 | Método para producir material de acero para herramientas de alta velocidad, método para producir un producto de acero para herramientas de alta velocidad y un producto de acero para herramientas de alta velocidad |
US15/579,626 US10661353B2 (en) | 2015-06-22 | 2016-06-21 | Method for producing high-speed tool steel material, method for producing high-speed tool steel product, and high-speed tool steel product |
JP2017524917A JP6432807B2 (ja) | 2015-06-22 | 2016-06-21 | 高速度工具鋼鋼材の製造方法、高速度工具鋼製品の製造方法および高速度工具鋼製品 |
CN201680036056.XA CN107709581A (zh) | 2015-06-22 | 2016-06-21 | 高速工具钢钢材的制造方法、高速工具钢制品的制造方法及高速工具钢制品 |
EP16814341.0A EP3315617B1 (en) | 2015-06-22 | 2016-06-21 | Method for producing high-speed tool steel material, method for producing high-speed tool steel product, and high-speed tool steel product |
BR112017026771-3A BR112017026771B1 (pt) | 2015-06-22 | 2016-06-21 | Método para produzir um material de aço de ferramenta de alta velocidade, e, produto de aço de ferramenta de alta velocidade |
US16/854,266 US20200246877A1 (en) | 2015-06-22 | 2020-04-21 | Method for producing high-speed tool steel material, method for producing high-speed tool steel product, and high-speed tool steel product |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015124584 | 2015-06-22 | ||
JP2015-124584 | 2015-06-22 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/579,626 A-371-Of-International US10661353B2 (en) | 2015-06-22 | 2016-06-21 | Method for producing high-speed tool steel material, method for producing high-speed tool steel product, and high-speed tool steel product |
US16/854,266 Division US20200246877A1 (en) | 2015-06-22 | 2020-04-21 | Method for producing high-speed tool steel material, method for producing high-speed tool steel product, and high-speed tool steel product |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016208571A1 true WO2016208571A1 (ja) | 2016-12-29 |
Family
ID=57585550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/068374 WO2016208571A1 (ja) | 2015-06-22 | 2016-06-21 | 高速度工具鋼鋼材の製造方法、高速度工具鋼製品の製造方法および高速度工具鋼製品 |
Country Status (7)
Country | Link |
---|---|
US (2) | US10661353B2 (ja) |
EP (1) | EP3315617B1 (ja) |
JP (1) | JP6432807B2 (ja) |
CN (2) | CN107709581A (ja) |
BR (1) | BR112017026771B1 (ja) |
ES (1) | ES2828977T3 (ja) |
WO (1) | WO2016208571A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019156169A1 (ja) * | 2018-02-07 | 2019-08-15 | 住友重機械ハイマテックス株式会社 | 工具材の製造方法及び工具材 |
RU2760140C1 (ru) * | 2020-12-10 | 2021-11-22 | Сергей Константинович Лаптев | Способ получения низкоуглеродистой мартенситной стали |
WO2024062933A1 (ja) * | 2022-09-21 | 2024-03-28 | 株式会社プロテリアル | 熱間工具鋼の製造方法および熱間工具鋼 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017104220A1 (ja) * | 2015-12-17 | 2017-06-22 | 日立金属株式会社 | 高速度工具鋼、工具用材料、および、工具用材料の製造方法 |
CN110273105B (zh) * | 2019-07-30 | 2020-10-02 | 攀钢集团江油长城特殊钢有限公司 | 一种高速工具钢及其制备方法 |
CN112626305A (zh) * | 2020-11-27 | 2021-04-09 | 中钢集团邢台机械轧辊有限公司 | 一种用于高速钢材质中加入vc颗粒的方法 |
DE102021101105A1 (de) | 2021-01-20 | 2022-07-21 | Voestalpine Böhler Edelstahl Gmbh & Co Kg | Verfahren zur Herstellung eines Werkzeugstahls als Träger für PVD-Beschichtungen und ein Werkzeugstahl |
CN116516259A (zh) * | 2023-06-02 | 2023-08-01 | 丹阳市曙光新材料科技有限公司 | 一种含钴低合金高速钢麻花钻及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02232341A (ja) * | 1989-03-03 | 1990-09-14 | Hitachi Metals Ltd | 高速度工具鋼およびその製造方法 |
JPH03111515A (ja) * | 1989-09-26 | 1991-05-13 | Kobe Steel Ltd | 合金工具鋼の圧延方法 |
JPH04111962A (ja) * | 1990-08-31 | 1992-04-13 | Daido Steel Co Ltd | 高速度工具鋼の製造方法 |
JPH04180540A (ja) * | 1990-11-14 | 1992-06-26 | Hitachi Metals Ltd | 高速度工具鋼 |
CN102747293A (zh) * | 2012-07-25 | 2012-10-24 | 河冶科技股份有限公司 | 高韧高耐磨滚刀用高速钢及其制备方法 |
JP2013213277A (ja) * | 2012-03-08 | 2013-10-17 | Hitachi Metals Ltd | 熱間加工性に優れた高速度工具鋼素材の製造方法 |
CN103469084A (zh) * | 2013-09-22 | 2013-12-25 | 浙江特星标模制造有限公司 | 高韧性高耐磨高速钢及其加工工艺和应用该工艺的刀具 |
JP2014208870A (ja) * | 2012-09-20 | 2014-11-06 | 日立金属株式会社 | 高速度工具鋼、刃先用材料および切断工具、ならびに、刃先用材料の製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4036670A (en) * | 1975-04-03 | 1977-07-19 | Continental Copper & Steel Industries, Inc. | Tool steel |
JPH093604A (ja) * | 1995-06-23 | 1997-01-07 | Daido Steel Co Ltd | 精密鋳造用高速度工具鋼 |
JP4016449B2 (ja) | 1997-06-16 | 2007-12-05 | 大同特殊鋼株式会社 | 熱間加工性を改善した高速度工具鋼およびその製造方法 |
US6478898B1 (en) | 1999-09-22 | 2002-11-12 | Sumitomo Metal Industries, Ltd. | Method of producing tool steels |
JP2004285444A (ja) * | 2003-03-24 | 2004-10-14 | Daido Steel Co Ltd | 安定した靭性を示す低合金高速度工具鋼 |
JP4179024B2 (ja) * | 2003-04-09 | 2008-11-12 | 日立金属株式会社 | 高速度工具鋼及びその製造方法 |
CN101745562A (zh) * | 2010-01-13 | 2010-06-23 | 天津飞轮有限公司 | 飞轮挤压模具凸模的加工方法 |
MX363648B (es) * | 2012-06-20 | 2019-03-28 | Nippon Steel & Sumitomo Metal Corp | Acero para articulos tubulares de paises petroleros y metodo para la produccion de los mismos. |
CN105522085A (zh) * | 2015-12-03 | 2016-04-27 | 抚顺特殊钢股份有限公司 | 高速工具钢大截面锻材制造方法 |
WO2017104220A1 (ja) * | 2015-12-17 | 2017-06-22 | 日立金属株式会社 | 高速度工具鋼、工具用材料、および、工具用材料の製造方法 |
-
2016
- 2016-06-21 BR BR112017026771-3A patent/BR112017026771B1/pt active IP Right Grant
- 2016-06-21 JP JP2017524917A patent/JP6432807B2/ja active Active
- 2016-06-21 ES ES16814341T patent/ES2828977T3/es active Active
- 2016-06-21 CN CN201680036056.XA patent/CN107709581A/zh active Pending
- 2016-06-21 EP EP16814341.0A patent/EP3315617B1/en active Active
- 2016-06-21 US US15/579,626 patent/US10661353B2/en active Active
- 2016-06-21 WO PCT/JP2016/068374 patent/WO2016208571A1/ja active Application Filing
- 2016-06-21 CN CN202111270268.3A patent/CN114086063A/zh active Pending
-
2020
- 2020-04-21 US US16/854,266 patent/US20200246877A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02232341A (ja) * | 1989-03-03 | 1990-09-14 | Hitachi Metals Ltd | 高速度工具鋼およびその製造方法 |
JPH03111515A (ja) * | 1989-09-26 | 1991-05-13 | Kobe Steel Ltd | 合金工具鋼の圧延方法 |
JPH04111962A (ja) * | 1990-08-31 | 1992-04-13 | Daido Steel Co Ltd | 高速度工具鋼の製造方法 |
JPH04180540A (ja) * | 1990-11-14 | 1992-06-26 | Hitachi Metals Ltd | 高速度工具鋼 |
JP2013213277A (ja) * | 2012-03-08 | 2013-10-17 | Hitachi Metals Ltd | 熱間加工性に優れた高速度工具鋼素材の製造方法 |
CN102747293A (zh) * | 2012-07-25 | 2012-10-24 | 河冶科技股份有限公司 | 高韧高耐磨滚刀用高速钢及其制备方法 |
JP2014208870A (ja) * | 2012-09-20 | 2014-11-06 | 日立金属株式会社 | 高速度工具鋼、刃先用材料および切断工具、ならびに、刃先用材料の製造方法 |
CN103469084A (zh) * | 2013-09-22 | 2013-12-25 | 浙江特星标模制造有限公司 | 高韧性高耐磨高速钢及其加工工艺和应用该工艺的刀具 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019156169A1 (ja) * | 2018-02-07 | 2019-08-15 | 住友重機械ハイマテックス株式会社 | 工具材の製造方法及び工具材 |
JP2019136799A (ja) * | 2018-02-07 | 2019-08-22 | 住友重機械ハイマテックス株式会社 | 工具材の製造方法及び工具材 |
JP7185211B2 (ja) | 2018-02-07 | 2022-12-07 | 住友重機械ハイマテックス株式会社 | 工具材の製造方法及び工具材 |
RU2760140C1 (ru) * | 2020-12-10 | 2021-11-22 | Сергей Константинович Лаптев | Способ получения низкоуглеродистой мартенситной стали |
WO2024062933A1 (ja) * | 2022-09-21 | 2024-03-28 | 株式会社プロテリアル | 熱間工具鋼の製造方法および熱間工具鋼 |
Also Published As
Publication number | Publication date |
---|---|
US20180147636A1 (en) | 2018-05-31 |
EP3315617A1 (en) | 2018-05-02 |
JP6432807B2 (ja) | 2018-12-05 |
BR112017026771B1 (pt) | 2022-02-01 |
US10661353B2 (en) | 2020-05-26 |
US20200246877A1 (en) | 2020-08-06 |
CN114086063A (zh) | 2022-02-25 |
EP3315617B1 (en) | 2020-08-05 |
ES2828977T3 (es) | 2021-05-28 |
EP3315617A4 (en) | 2019-01-30 |
BR112017026771A2 (ja) | 2018-08-21 |
CN107709581A (zh) | 2018-02-16 |
JPWO2016208571A1 (ja) | 2017-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6432807B2 (ja) | 高速度工具鋼鋼材の製造方法、高速度工具鋼製品の製造方法および高速度工具鋼製品 | |
JP6474348B2 (ja) | 高速度工具鋼およびその製造方法 | |
JP6226086B2 (ja) | 冷間鍛造部品用圧延棒鋼または圧延線材 | |
RU2674176C2 (ru) | Толстостенная стальная труба для нефтяных скважин и способ ее производства | |
CN109563579A (zh) | 高频淬火用钢 | |
KR20190028781A (ko) | 고주파 담금질용 강 | |
KR20190028492A (ko) | 고주파 담금질용 강 | |
KR20190028757A (ko) | 고주파 담금질용 강 | |
JP6020963B2 (ja) | 熱間加工性に優れた高速度工具鋼素材の製造方法 | |
EP3173500A1 (en) | Hot-working tool material, method for manufacturing hot-working tool, and hot-working tool | |
JP6057141B2 (ja) | 冷間工具材料および冷間工具の製造方法 | |
KR101852316B1 (ko) | 냉간 공구 재료 및 냉간 공구의 제조 방법 | |
JP6650104B2 (ja) | 冷間工具材料および冷間工具の製造方法 | |
JP4393344B2 (ja) | 冷間加工性と耐結晶粒粗大化特性に優れた肌焼き用鋼の製造方法 | |
JP2001123247A (ja) | 被削性に優れた冷間工具鋼 | |
JP2006249504A (ja) | ブローチ加工性に優れた窒化部品用素材及びその製造方法 | |
WO2024062933A1 (ja) | 熱間工具鋼の製造方法および熱間工具鋼 | |
JP2001234278A (ja) | 被削性に優れた冷間工具鋼 | |
JP7061263B2 (ja) | 冷間工具材料および冷間工具の製造方法 | |
JP2023128718A (ja) | 熱間鍛造材の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16814341 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017524917 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15579626 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016814341 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017026771 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112017026771 Country of ref document: BR Kind code of ref document: A2 Effective date: 20171212 |