WO2016208554A1 - 鉄錯体化合物とそれを用いた有機ケイ素化合物の製造方法 - Google Patents

鉄錯体化合物とそれを用いた有機ケイ素化合物の製造方法 Download PDF

Info

Publication number
WO2016208554A1
WO2016208554A1 PCT/JP2016/068329 JP2016068329W WO2016208554A1 WO 2016208554 A1 WO2016208554 A1 WO 2016208554A1 JP 2016068329 W JP2016068329 W JP 2016068329W WO 2016208554 A1 WO2016208554 A1 WO 2016208554A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
mmol
group
iron complex
complex compound
Prior art date
Application number
PCT/JP2016/068329
Other languages
English (en)
French (fr)
Inventor
浩 中沢
和将 早坂
島田 茂
佐藤 一彦
Original Assignee
公立大学法人大阪市立大学
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪市立大学, 国立研究開発法人産業技術総合研究所 filed Critical 公立大学法人大阪市立大学
Priority to JP2017524904A priority Critical patent/JP6763525B2/ja
Publication of WO2016208554A1 publication Critical patent/WO2016208554A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/53Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/02Iron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing an iron complex compound and an organosilicon compound, and more particularly to a complex having iron as a central metal as a common metal and a method for producing an organosilicon compound using the complex as a catalyst for a hydrosilylation reaction.
  • Organosilicon compounds having a silicon-carbon bond in the molecule are used as raw materials for electronic materials, silicone oils, silicone resins, silicone rubbers and the like, and are useful compounds with a wide range of applications.
  • an organosilicon compound does not exist in nature, it must be artificially chemically synthesized, and hydrosilylation to a carbon-carbon multiple bond, which is one of the synthesis methods, is a known technique.
  • Transition metal catalysts are mainly used in the hydrosilylation reaction, but industrially, it depends on platinum catalysts such as Speier catalysts (see Patent Document 1) and Karstedt catalysts (see Patent Document 2).
  • Patent Document 1 Japanese catalysts
  • Patent Document 2 Karstedt catalysts
  • An object of the present invention is to provide a method capable of improving the catalyst in the hydrosilylation reaction and efficiently producing an organosilicon compound.
  • the present inventors have efficiently used an organosilicon compound by using a specific iron complex having an iminobipyridine derivative as a ligand and a hydride reducing agent as a catalyst.
  • the present invention has been completed.
  • a method for producing an organosilicon compound comprising a reaction step of reacting alkenes and / or alkynes with hydrosilanes in the presence of a catalyst, The method for producing an organosilicon compound, wherein the reaction step is a step of using an iron complex compound represented by the following formula (A) and a hydride reducing agent as a catalyst.
  • R 1 and R 2 each independently represents a hydrocarbon group having 1 to 6 carbon atoms
  • R 3 represents a hydrocarbon having 1 to 10 carbon atoms which may contain a hydrogen atom or a halogen atom.
  • R 4 is a hydrogen atom or an aromatic hydrocarbon group having 6 to 20 carbon atoms
  • X is independently a halogen atom
  • m is an integer of 0 to 4
  • n is an integer of 0 to 3.
  • the hydrocarbon groups of R 1 may be linked to form a cyclic structure
  • the hydrocarbon group of R 2 They may be linked together to form an annular structure.
  • R 5 to R 8 are each independently a hydrogen atom, a halogen atom, a nitrogen atom, or an oxygen atom.
  • a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one selected from the group consisting of a silicon atom, a sulfur atom, and a halogen atom each R 9 independently represents a hydrogen atom, a halogen atom, 1 to 20 carbon atoms which may contain at least one selected from the group consisting of a siloxy group, a polysiloxy group having 1 to 50 silicon atoms, or a nitrogen atom, oxygen atom, silicon atom, sulfur atom and halogen atom Represents a hydrocarbon group, provided that when two or more of R 5 to R 8 are hydrocarbon groups, the two or more hydrocarbon groups may be linked to form a cyclic structure.
  • R 1 and R 2 each independently represents a hydrocarbon group having 1 to 6 carbon atoms
  • R 3 represents a hydrocarbon having 1 to 10 carbon atoms which may contain a hydrogen atom or a halogen atom
  • R 4 is a hydrogen atom or an aromatic hydrocarbon group having 6 to 20 carbon atoms
  • m is an integer of 0 to 4
  • n is an integer of 0 to 3, provided that m is an integer of 2 to 4
  • the hydrocarbon groups of R 1 may be linked to form a cyclic structure, and when n is 2 or 3, the hydrocarbon groups of R 2 are linked to form a cyclic structure. May be.
  • R 1 and R 2 each independently represents a hydrocarbon group having 1 to 6 carbon atoms
  • R 3 represents a hydrocarbon having 1 to 10 carbon atoms which may contain a hydrogen atom or a halogen atom
  • R 4 is a hydrogen atom or an aromatic hydrocarbon group having 6 to 20 carbon atoms
  • X is independently a halogen atom
  • m is an integer of 0 to 4
  • n is an integer of 0 to 3.
  • the hydrocarbon groups of R 1 may be linked to form a cyclic structure
  • n is 2 or 3
  • the hydrocarbon group of R 2 They may be linked together to form an annular structure.
  • an organosilicon compound can be produced efficiently.
  • the method for producing an organosilicon compound which is one embodiment of the present invention reacts alkenes and / or alkynes with hydrosilanes in the presence of a catalyst.
  • a method comprising a reaction step (hereinafter sometimes abbreviated as “reaction step”), wherein the reaction step uses an iron complex compound represented by the following formula (A) as a catalyst and a hydride reducing agent. To do.
  • R 1 and R 2 each independently represents a hydrocarbon group having 1 to 6 carbon atoms
  • R 3 represents a hydrocarbon having 1 to 10 carbon atoms which may contain a hydrogen atom or a halogen atom
  • R 4 is a hydrogen atom or an aromatic hydrocarbon group having 6 to 20 carbon atoms
  • X is independently a halogen atom
  • m is an integer of 0 to 4
  • n is an integer of 0 to 3.
  • the hydrocarbon groups of R 1 may be linked to form a cyclic structure, and when n is 2 or 3, the hydrocarbon group of R 2 They may be linked together to form an annular structure.
  • (Modified) Chalk-Harrod mechanism see Non-Patent Documents 1 to 3)
  • Glaser-Tilly mechanism see Non-Patent Documents 4 and 5 are known. .
  • the Glaser-Tilly mechanism since a silylene complex is used as a reaction intermediate, the only hydrosilane that can be applied to the reaction is a primary silane.
  • such a catalyst may activate a plurality of silicon-hydrogen bonds (Si—H) contained in the primary silane and the secondary silane to form a plurality of carbon-silicon bonds (C—Si). It can be used for the production of a wide range of organosilicon compounds.
  • the iron complex represented by the formula (A) is a compound that can be synthesized relatively easily, and is stable in the air, so that it is easy to handle and has a practical utility. is there.
  • Alkenes means an organic compound having at least one carbon-carbon double bond
  • alkynes means an organic compound having at least one carbon-carbon triple bond
  • hydrosilanes means silicon.
  • reaction of “alkenes and / or alkynes” with “hydrosilanes” includes, for example, the reaction represented by the following reaction formula (“alkenes” is “1-octene”, “hydrosilane” Class “is diphenylmethylsilane).
  • the reaction step is characterized by using an iron complex compound represented by the following formula (A) as a catalyst (hereinafter sometimes abbreviated as “iron complex compound”), but represented by the formula (A).
  • iron complex compound represented by the following formula (A).
  • the specific type of the iron complex compound is not particularly limited and can be appropriately selected according to the purpose.
  • R 1 and R 2 each independently represents a hydrocarbon group having 1 to 6 carbon atoms
  • R 3 represents a hydrocarbon having 1 to 10 carbon atoms which may contain a hydrogen atom or a halogen atom.
  • R 4 is a hydrogen atom or an aromatic hydrocarbon group having 6 to 20 carbon atoms
  • X is independently a halogen atom
  • m is an integer of 0 to 4
  • n is an integer of 0 to 3.
  • R 1 and R 2 each independently represent a hydrocarbon group having 1 to 6 carbon atoms, but the “hydrocarbon group” is not limited to a linear saturated hydrocarbon group, but includes a branched structure, a cyclic structure, Each of them may have a carbon-carbon unsaturated bond (may have at least one selected from the group consisting of a branched structure, a cyclic structure, and a carbon-carbon unsaturated bond). ).
  • the number of carbon atoms of the hydrocarbon group for R 1 is preferably 4 or less, more preferably 3 or less, and even more preferably 2 or less.
  • the number of carbon atoms of the hydrocarbon group for R 2 is preferably 4 or less, more preferably 3 or less, and even more preferably 2 or less.
  • R 1 includes a methyl group (—CH 3 ), an ethyl group (—CH 2 CH 3 ), an n-propyl group (—CH 2 CH 2 CH 3 ), an i-propyl group (—CH (CH 2 ) CH 3 ), N-butyl group (—CH 2 CH 2 CH 2 CH 3 ), t-butyl group (—C (CH 3 ) 3 ) and the like.
  • R 2 includes a methyl group (—CH 3 ), an ethyl group (—CH 2 CH 3 ), an n-propyl group (—CH 2 CH 2 CH 3 ), an i-propyl group (—CH (CH 2 ) CH 3 ), N-butyl group (—CH 2 CH 2 CH 2 CH 3 ), t-butyl group (—C (CH 3 ) 3 ) and the like.
  • hydrocarbon groups of R 1 may be linked to form a cyclic structure
  • n is 2 or 3
  • the hydrocarbon groups of R 2 are May be linked to form a cyclic structure, but examples of structures in which hydrocarbon groups are linked to form a cyclic structure include those represented by the following formula.
  • R 3 represents a hydrocarbon group having 1 to 10 carbon atoms which may contain a hydrogen atom or a halogen atom, and the “hydrocarbon group” has the same meaning as in R 1 and the like.
  • the number of carbon atoms of the hydrocarbon group for R 3 is preferably 6 or less, more preferably 4 or less, and even more preferably 3 or less.
  • R 3 includes a hydrogen atom (—H), a methyl group (—CH 3 ), a trifluoromethyl group (—CF 3 ), an ethyl group (—CH 2 CH 3 ), an n-propyl group (—CH 2 CH 2 CH 3 ), i-propyl group (—CH (CH 2 ) CH 3 ), n-butyl group (—CH 2 CH 2 CH 2 CH 3 ), t-butyl group (—C (CH 3 ) 3 ), etc.
  • a hydrogen atom, a methyl group (—CH 3 ), a trifluoromethyl group (—CF 3 ), and a t-butyl group (—C (CH 3 ) 3 ) are preferable.
  • R 4 represents a hydrogen atom or an aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • the “aromatic hydrocarbon group” refers to a monocyclic aromatic hydrocarbon having aromaticity such as a phenyl group. In addition to a group, a polycyclic aromatic hydrocarbon group having aromaticity such as a naphthyl group is also included.
  • the number of carbon atoms of the hydrocarbon group for R 4 is preferably 18 or less, more preferably 16 or less, and still more preferably 14 or less.
  • R 4 includes a hydrogen atom, phenyl group, 2,6-dimethylphenyl group, 2,4-dimethylphenyl group, 2,4,6-trimethylphenyl group, 2,6-diisopropylphenyl as shown in the following formula Groups and the like.
  • X each independently represents a halogen atom, preferably a chlorine atom (—Cl), a bromine atom (—Br) or an iodine atom (—I), and particularly preferably a bromine atom.
  • a bromine atom an organosilicon compound can be produced with higher yield.
  • the iron complex compound is a complex having an iminobipyridine derivative as a ligand, and examples of the iminobipyridine derivative include those represented by the following formula.
  • iron complex compound examples include those represented by the following formula.
  • the amount of the iron complex compound used in the reaction step can be appropriately selected according to the purpose.
  • the amount of the substance ([mol]) relative to the amount of hydrosilane used is usually 0.00005 times or more, preferably It is 0.001 times or more, more preferably 0.01 times or more, usually 1 time or less, preferably 0.1 times or less, more preferably 0.01 times or less.
  • the organosilicon compound can be produced with higher yield.
  • the reaction step is characterized by using a hydride reducing agent, but the specific type of the hydride reducing agent is not particularly limited, and a known one can be appropriately selected according to the purpose.
  • the hydride reducing agent lithium borohydride (LiBH 4 ), sodium borohydride (NaBH 4 ), sodium cyanoborohydride (NaBH 3 CN), lithium triethylborohydride (LiBHEt 3 ), sodium triethylborohydride Boron acid such as (NaBHEt 3 ), tri (sec-butyl) borohydride lithium (LiBH (sec-Bu) 3 ), potassium tri (sec-butyl) borohydride (KBH (sec-Bu) 3 ) Salts; aluminum hydride complexes such as lithium aluminum hydride (LiAlH 4 ), sodium bis (2-methoxyethoxy) aluminum hydride (NaAlH 2 (OC 2 H 4 OCH 3 ) 2
  • the amount of hydride reducing agent used in the reaction step can be appropriately selected according to the purpose, but it is usually at least twice as much as the amount of the iron complex compound ([mol]), preferably 4 It is twice or more, more preferably 8 times or more, usually 50 times or less, preferably 30 times or less, more preferably 20 times or less. Within the above range, the organosilicon compound can be produced with higher yield.
  • Organic silicon compound produced by the production method of the present invention is not particularly limited as long as it is an organic compound having at least a carbon-silicon bond (C—Si) as described above, and a wide variety of organosilicon compounds. Can be applied to. Specific examples include compounds represented by the following formulas (I-1) to (I-9) and (II-1) to (II-30).
  • R 5 to R 8 are each independently a hydrogen atom, a halogen atom, a nitrogen atom, or an oxygen atom.
  • a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one selected from the group consisting of a silicon atom, a sulfur atom, and a halogen atom each R 9 independently represents a hydrogen atom, a halogen atom, 1 to 20 carbon atoms which may contain at least one selected from the group consisting of a siloxy group, a polysiloxy group having 1 to 50 silicon atoms, or a nitrogen atom, oxygen atom, silicon atom, sulfur atom and halogen atom Represents a hydrocarbon group, provided that when two or more of R 5 to R 8 are hydrocarbon groups, the two or more hydrocarbon groups may be linked to form a cyclic structure.
  • organosilicon compounds obtained by the reaction of alkynes and hydrosilane is either a Z isomer, E-isomer, a mixture of Z-form and E form It represents that it may be.
  • the compounds represented by the formulas (I-3) to (I-5) and the compounds represented by the formulas (II-5) to (II-14) are composed of two silicon-hydrogen bonds (Si— H) is activated to form two carbon-silicon bonds (C—Si), and the compounds represented by formulas (I-6) to (I-9) and formulas (II-15) to (II)
  • the compound represented by II-30) represents a compound in which three silicon-hydrogen bonds (Si—H) of hydrosilanes are activated to form three carbon-silicon bonds (C—Si). It can be used for the production of a wide range of organosilicon compounds.
  • R 5 to R 8 may each independently contain at least one selected from the group consisting of a hydrogen atom, a halogen atom, or a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom.
  • Represents a hydrocarbon group of ⁇ 20, but “may contain at least one selected from the group consisting of a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom” means a chloro group (—Cl), fluoro group (—F), amino group (—NH 2 ), nitro group (—NO 2 ), epoxy group, hydroxyl group (—OH), carbonyl group (—C ( ⁇ O) —), tert- butyldimethylsilyl group (-SiBuMe 2), meaning the nitrogen atom such as azide group (-N 3), an oxygen atom, a silicon atom, a sulfur atom, or that may contain a functional group containing a halogen atom
  • a linking group containing a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, or a halogen atom such as an ether group (—O—) or a thioether group (—S
  • R 5 to R 8 are hydrocarbon groups
  • the carbon number is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, preferably 19 or less, more preferably 17 or less, still more preferably 15 or less.
  • the two or more hydrocarbon groups may be linked to form a cyclic structure.
  • R 5 and R 6 are linked.
  • a cycloheptane structure, a cycloheptene structure, a cyclohexane structure, a cyclohexene structure and the like are formed.
  • R 5 to R 8 are hydrocarbon groups
  • the functional group contained in the hydrocarbon group is a chloro group (—Cl), a fluoro group (—F), an amino group (—NH 2 ), a dimethylamino group (— N (CH 3 ) 2 ), nitro group (—NO 2 ), epoxy group, hydroxyl group (—OH), carbonyl group (—C ( ⁇ O) —), thioether group (—S—), tert-butyldimethyl
  • Examples thereof include a silyl group (—SiBuMe 2 ) and an azido group (—N 3 ).
  • R 5 to R 8 are hydrocarbon groups, they are not limited to straight-chain saturated hydrocarbon groups, and may each have a branched structure, a cyclic structure, or a carbon-carbon unsaturated bond (branched And at least one selected from the group consisting of a structure, a cyclic structure, and a carbon-carbon unsaturated bond.
  • R 5 to R 8 are hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, methylpropyl group, methylbutyl group , Methylpentyl group, methylhexyl group, methylheptyl group, dimethylpropyl group, dimethylbutyl group, dimethylpentyl group, dimethylhexyl group, dimethylheptyl group, phenylethyl group, phenylpropyl group, phenylbutyl group, phenylpentyl group Phenylhexyl group, phenylheptyl group, 1-chloropropyl group, 1-chlorobutyl group, 1-chloropentyl group, 1-chlorohexyl group, 1-chloroheptyl group, dimethyl
  • R 9 is independently at least one selected from the group consisting of a hydrogen atom, a halogen atom, a siloxy group, a polysiloxy group having 1 to 50 silicon atoms, or a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom.
  • R 9 is a hydrocarbon group
  • the carbon number is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, preferably 19 or less, more preferably 17 or less, and still more preferably 15 or less. is there.
  • R 9 is a polysiloxy group
  • the number of silicon is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, preferably 48 or less, more preferably 46 or less, and even more preferably 45 or less.
  • R 9 is a hydrocarbon group, it is not limited to a linear saturated hydrocarbon group, and may have a branched structure, a cyclic structure, or a carbon-carbon unsaturated bond (branched structure, cyclic structure).
  • R 9 may have at least one selected from the group consisting of a structure and a carbon-carbon unsaturated bond).
  • R 9 include a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a phenyl group, a methoxy group, an ethoxy group, and a polymethylsiloxy group. It is done.
  • a hydrogen atom is preferable.
  • the reaction step is a step of reacting alkenes and / or alkynes with hydrosilanes in the presence of a catalyst. It should be selected as appropriate. Alkenes and alkynes having a structure that is basically the same as that of the organosilicon compound that is the production purpose should be selected. For example, formulas (I-1) to (I-9) and (II-1) to (II) In the case where the compound represented by ⁇ 30) is intended for production, examples of the alkene include compounds represented by the following formula (i), and examples of the alkyne include compounds represented by the following formula (ii).
  • R 5 to R 8 are each independently selected from the group consisting of a hydrogen atom, a halogen atom, or a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom.
  • 1 represents a hydrocarbon group having 1 to 20 carbon atoms which may contain one, provided that when two or more of R 5 to R 8 are hydrocarbon groups, the two or more hydrocarbon groups are linked.
  • Alkenes include 1-octene, 1-decene, cis-4-octene, trans-5-decene, 4-phenyl-1-butene, 6,6-dimethyl-1-heptene, 4,4-dimethyl-1 -Hexene, styrene, cyclohexene, 6-chloro-1-hexene, 3- (dimethylamino) -1-propene, allylphenyl sulfide and the like.
  • alkynes include diphenylacetylene, 1-phenyl-1-propyne, 4-octyne, and phenylacetylene.
  • the reaction step is a step of reacting alkenes and / or alkynes and hydrosilanes in the presence of a catalyst, but the type of hydrosilanes is not particularly limited and is appropriately selected based on the organosilicon compound that is the production purpose. Should be. Basically, hydrosilanes having a structure in common with the organosilicon compound that is the object of production should be selected. For example, formulas (I-1) to (I-9) and (II-1) to (II-30) In the case where the compound represented by formula (1) is intended for production, hydrosilanes include compounds represented by the following formula (s).
  • each R 9 is independently a hydrogen atom, a halogen atom, a siloxy group, a polysiloxy group having 1 to 50 silicon atoms, or a group consisting of a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. It represents a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one selected from the above.
  • hydrosilanes include diethyl silane, phenyl silane, diphenyl silane, phenyl (methyl) silane, phenyl di (methyl) silane, triethoxy silane, triethyl silane, diethoxymethyl silane, and the like.
  • the amount of alkene and / or alkyne and hydrosilane used in the reaction step can be appropriately selected according to the purpose, but the amount of alkene and / or alkyne used is relative to the amount of hydrosilane used.
  • the amount of substance ([mol]) is usually 0.2 times or more, preferably 0.5 times or more, more preferably 1 time or more, usually 50 times or less, preferably 20 times or less, more preferably 10 times. It is as follows. Within the above range, the organosilicon compound can be produced with higher yield.
  • the reaction step may or may not use a solvent, but it is preferable not to use a solvent.
  • the type of the solvent is not particularly limited and can be appropriately selected according to the purpose. Specifically, hydrocarbon solvents such as hexane, benzene, and toluene, diethyl ether, 1 Ether solvents such as 1,4-dioxane and tetrahydrofuran (THF), protic polar solvents such as ethanol, ethylene glycol and glycerol, acetone, dimethylacetamide (DMA), N, N-dimethylformamide (DMF), N-methylpyrrolidone Examples include aprotic polar solvents such as (NMP) and dimethyl sulfoxide (DMSO). Of these, hydrocarbon solvents and ether solvents are preferable, and toluene and tetrahydrofuran are particularly preferable.
  • the reaction step is a step of reacting alkenes and / or alkynes with hydrosilanes in the presence of a catalyst, but the reaction conditions such as reaction temperature and reaction time are not particularly limited.
  • the reaction temperature in the reaction step is usually 20 ° C or higher, preferably 40 ° C or higher, more preferably 60 ° C or higher, and usually 150 ° C or lower, preferably 100 ° C or lower, more preferably 80 ° C or lower. If it is in the said range, an organosilicon compound can be manufactured with a sufficient yield.
  • the reaction time in the reaction step is usually 1 hour or longer, preferably 2 hours or longer, more preferably 10 hours or longer, and usually 60 hours or shorter, preferably 48 hours or shorter, more preferably 24 hours or shorter.
  • the reaction is usually carried out under an inert atmosphere such as nitrogen or argon.
  • the iron complex compound is a complex having an iminobipyridine derivative as a ligand, but an iminobipyridine compound represented by the following formula (a) (hereinafter also abbreviated as “iminobipyridine compound”) may also be used in the present invention. It is one mode.
  • R 1 and R 2 each independently represents a hydrocarbon group having 1 to 6 carbon atoms
  • R 3 represents a hydrocarbon having 1 to 10 carbon atoms which may contain a hydrogen atom or a halogen atom.
  • R 4 is a hydrogen atom or an aromatic hydrocarbon group having 6 to 20 carbon atoms, m is an integer of 0 to 4, and n is an integer of 0 to 3, provided that m is an integer of 2 to 4
  • the hydrocarbon groups of R 1 may be linked to form a cyclic structure, and when n is 2 or 3, the hydrocarbon groups of R 2 are linked to form a cyclic structure. May be.) Note that R 1 , R 2 , R 3 , R 4 and the like are the same as those described in ⁇ Method for producing organosilicon compound>.
  • the production method of the iminobipyridine compound is not particularly limited, and can be produced by appropriately combining known organic synthesis methods, and examples thereof include production by a synthesis route represented by the following formula.
  • the specific reaction conditions and the like for this synthetic route are described in Hicks, R. et al. G. Org. Lett. 2004, 6, 1887. Verniest, G .; , J .; Org. Chem. 2010, 75, 424. Schubert, U .; Org. Lett. 2000, 2, 3373. Champouret, Y .; D. M.M. , New J .; Chem. , 2007, 31, 75. Diaz-Valenzuela, M .; B. , Chem. Eur. J. et al.
  • an iron complex compound can be easily derived from an active species by adding it to a reaction system together with a hydride reducing agent, and this shows high catalytic activity in a hydrosilylation reaction. It is one embodiment of the invention.
  • R 1 and R 2 each independently represents a hydrocarbon group having 1 to 6 carbon atoms
  • R 3 represents a hydrocarbon having 1 to 10 carbon atoms which may contain a hydrogen atom or a halogen atom.
  • R 4 is a hydrogen atom or an aromatic hydrocarbon group having 6 to 20 carbon atoms
  • X is independently a halogen atom
  • m is an integer of 0 to 4
  • n is an integer of 0 to 3.
  • R 1 when m is an integer of 2 to 4, the hydrocarbon groups of R 1 may be linked to form a cyclic structure, and when n is 2 or 3, the hydrocarbon group of R 2 They may be linked together to form an annular structure.
  • R 1 , R 2 , R 3 , R 4 , X, and the like are the same as those described in ⁇ Organic silicon compound production method>.
  • an iron complex compound is not specifically limited, Usually, making an iminobipyridine compound and bivalent iron halide react is mentioned.
  • the resulting dispersion was diluted with ethyl acetate (200 mL) and filtered through celite.
  • the solvent of the filtrate was distilled off, and the obtained oil component was purified by distillation (140 ° C., 180 Pa) to obtain 2- (tributylstannyl) pyridine as a yellow oil component (yield 74%).
  • Example 2 Preparation of N-([2,2′-bipyridine] -6-ylmethylene) -2,6-diisopropylbenzenamine iron (II) bromide N-([2,2′-bipyridine] -6-ylmethylene) -2,4,6-trimethylbenzenamine is converted to N-([2,2′-bipyridine] -6-ylmethylene) -2,6-diisopropylbenzene.
  • N-([2,2′-bipyridin] -6-ylmethylene) -2,6-diisopropylbenzenamine iron (II) as a blue-green powder was carried out in the same manner as in Example 1, except that the amine was changed.
  • Example 3 Preparation of N- [1- (6′-methyl [2,2′-bipyridin] -6-yl) methylene] -benzenamine iron (II) bromide N-([2,2′-bipyridin] -6-ylmethylene) -2,4,6-trimethylbenzenamine is converted to N- [1- (6′-methyl [2,2′-bipyridin] -6-yl) N- [1- (6′-methyl [2,2′-bipyridin] -6-yl) methylene, which is a green powder, was prepared in the same manner as in Example 1 except for changing to methylene] -benzeneamine.
  • iron complex compound 3 -Benzenamine iron (II) bromide (hereinafter sometimes abbreviated as “iron complex compound 3”) was obtained (yield: 93%).
  • Anal.Calcd.for C 18 H 15 Br 2 FeN 3 C, 44.21; H, 3.09; N, 8.59.Found: C, 44.45; H, 3.41; N, 8.13.
  • Example 4 Preparation of N- [1- (6′-methyl [2,2′-bipyridin] -6-yl) methylene] -2,4,6-trimethylbenzenamine iron (II) bromide N-([2,2′-bipyridin] -6-ylmethylene) -2,4,6-trimethylbenzenamine is converted to N- [1- (6′-methyl [2,2′-bipyridin] -6-yl) N- [1- (6′-methyl [2,2′-], a blue-green powder, was prepared in the same manner as in Example 1, except that the methylene] -2,4,6-trimethylbenzenamine was used.
  • Example 5 Preparation of N- [1- (6'-methyl [2,2'-bipyridin] -6-yl) methylene] -2,6-diisopropylbenzenamine iron (II) bromide N-([2,2′-bipyridin] -6-ylmethylene) -2,4,6-trimethylbenzenamine is converted to N- [1- (6′-methyl [2,2′-bipyridin] -6-yl) N- [1- (6′-methyl [2,2′-bipyridine], a blue-green powder, was prepared in the same manner as in Example 1 except for changing to methylene] -2,6-diisopropylbenzenamine.
  • iron (II) bromide N-([2,2′-bipyridin] -6-ylmethylene) -2,4,6-trimethylbenzenamine is converted to N- [1- (6′-methyl [2,2′-bipyridin] -6-yl) N
  • iron complex compound 5 -6-yl) methylene] -2,6-diisopropylmethylbenzenamine iron (II) bromide (hereinafter sometimes abbreviated as “iron complex compound 5”) was obtained (yield: 59%).
  • Anal.Calcd.for C 24 H 24 Br 2 FeN 3 C, 50.29; H, 4.75; N, 7.33. Found: C, 50.41; H, 4.93; N, 7.06.
  • Example 7 Perform flame drying, accurately weigh iron complex compound 1 (3.0 mg, 0.0058 mmol) into a Schlenk tube into which nitrogen gas has flowed, add 1-octene (9.2 mL, 58 mmol), and start stirring at room temperature. did. Phenylsilane (0.72 mL, 5.8 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (24 ⁇ L, 0.024 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple. And dissolve completely.) The reaction was started by setting the external temperature to 100 ° C.
  • Example 8 The reaction was performed in the same manner as in Example 6 except that the iron complex compound 1 was changed to the iron complex compound 2. The results are shown in Table 1.
  • Example 9 The reaction was performed in the same manner as in Example 7 except that the iron complex compound 1 was changed to the iron complex compound 2. The results are shown in Table 1.
  • Example 10 The reaction was performed in the same manner as in Example 7 except that the iron complex compound 1 was changed to the iron complex compound 3 (0.021 mmol). The results are shown in Table 1.
  • Example 11 Flame-drying, accurately measure the iron complex compound 4 (3.0 mg, 0.0056 mmol) into a Schlenk tube into which nitrogen has been introduced, add 1-octene (8.9 mL, 56.49 mmol), and stir at room temperature. Started. Phenylsilane (0.70 mL, 5.65 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (24 ⁇ L, 0.024 mmol) was added dropwise.
  • Example 12 Flame drying was performed, and iron complex compound 4 (3.0 mg, 0.0056 mmol) was accurately weighed into a Schlenk tube into which nitrogen was introduced, and 1-octene (8.9 mL, 56 mmol) was added, and stirring was started at room temperature. . Phenylsilane (0.70 mL, 5.7 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (24 ⁇ L, 0.024 mmol) was added dropwise.
  • reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple (if the iron complex compound remained undissolved visually, sodium triethylborohydride was added. And dissolve completely.)
  • the reaction was started by setting the external temperature to 100 ° C. After 24 hours and cooling to room temperature, the reaction solution was analyzed by high performance liquid chromatography (199 nm). When the reaction product was quantified by an absolute calibration curve method, the production of octylphenylsilane (conversion rate: 58%) and dioctylphenylsilane (conversion rate: 40%) was confirmed. The results are shown in Table 1.
  • Example 13 The reaction was performed in the same manner as in Example 11 except that the iron complex compound 4 was changed to the iron complex compound 5. The results are shown in Table 1.
  • Example 14 The reaction was performed in the same manner as in Example 12 except that the iron complex compound 4 was changed to the iron complex compound 5. The results are shown in Table 1.
  • Example 15 The reaction was performed in the same manner as in Example 6 except that phenylsilane was changed to diphenylsilane. The results are shown in Table 2.
  • Example 16 The reaction was performed in the same manner as in Example 7 except that phenylsilane was changed to diphenylsilane. The results are shown in Table 2.
  • Example 17 The reaction was conducted in the same manner as in Example 8 except that phenylsilane was changed to diphenylsilane. The results are shown in Table 2.
  • Example 18 The reaction was performed in the same manner as in Example 9 except that phenylsilane was changed to diphenylsilane. The results are shown in Table 2.
  • Example 19 The reaction was performed in the same manner as in Example 11 except that phenylsilane was changed to diphenylsilane. The results are shown in Table 2.
  • Example 20 The reaction was performed in the same manner as in Example 12 except that phenylsilane was changed to diphenylsilane. The results are shown in Table 2.
  • Example 21 The reaction was performed in the same manner as in Example 13 except that phenylsilane was changed to diphenylsilane. The results are shown in Table 2.
  • Example 22 The reaction was performed in the same manner as in Example 14 except that phenylsilane was changed to diphenylsilane. The results are shown in Table 2.
  • Example 23 The reaction was performed in the same manner as in Example 6 except that phenylsilane was changed to phenyl (methyl) silane. The results are shown in Table 3.
  • Example 24 The reaction was performed in the same manner as in Example 7 except that phenylsilane was changed to phenyl (methyl) silane. The results are shown in Table 3.
  • Example 25 The reaction was performed in the same manner as in Example 8 except that phenylsilane was changed to phenyl (methyl) silane. The results are shown in Table 3.
  • Example 26 The reaction was performed in the same manner as in Example 9 except that phenylsilane was changed to phenyl (methyl) silane. The results are shown in Table 3.
  • Example 27 The reaction was performed in the same manner as in Example 11 except that phenylsilane was changed to phenyl (methyl) silane. The results are shown in Table 3.
  • Example 28 The reaction was performed in the same manner as in Example 12 except that phenylsilane was changed to phenyl (methyl) silane. The results are shown in Table 3.
  • Example 29 The reaction was performed in the same manner as in Example 13 except that phenylsilane was changed to phenyl (methyl) silane. The results are shown in Table 3.
  • Example 30 The reaction was performed in the same manner as in Example 14 except that phenylsilane was changed to phenyl (methyl) silane. The results are shown in Table 3.
  • Example 31 The reaction was performed in the same manner as in Example 6 except that the amount of iron complex compound 1 used was changed to 0.019 mmol and phenylsilane was changed to diphenyl (methyl) silane. The results are shown in Table 4.
  • Example 32 The reaction was performed in the same manner as in Example 7 except that the amount of iron complex compound 1 used was changed to 0.019 mmol and phenylsilane was changed to diphenyl (methyl) silane. The results are shown in Table 4.
  • Example 33 The reaction was performed in the same manner as in Example 8 except that the amount of iron complex compound 2 used was changed to 0.018 mmol and phenylsilane was changed to diphenyl (methyl) silane. The results are shown in Table 4.
  • Example 34 The reaction was performed in the same manner as in Example 9, except that the amount of iron complex compound 2 used was changed to 0.018 mmol and phenylsilane was changed to diphenyl (methyl) silane. The results are shown in Table 4.
  • Example 35 The reaction was performed in the same manner as in Example 11 except that the amount of iron complex compound 4 was changed to 0.019 mmol and phenylsilane was changed to diphenyl (methyl) silane. The results are shown in Table 4.
  • Example 36 The reaction was performed in the same manner as in Example 12 except that the amount of iron complex compound 4 was changed to 0.019 mmol and phenylsilane was changed to diphenyl (methyl) silane. The results are shown in Table 4.
  • Example 37 The reaction was performed in the same manner as in Example 13 except that the amount of iron complex compound 5 was changed to 0.017 mmol and phenylsilane was changed to diphenyl (methyl) silane. The results are shown in Table 4.
  • Example 38 The reaction was performed in the same manner as in Example 14 except that the amount of the iron complex compound 5 was changed to 0.017 mmol and phenylsilane was changed to diphenyl (methyl) silane. The results are shown in Table 4.
  • Example 39 Flame drying was carried out, and iron complex compound 5 (3.0 mg, 0.0052 mmol) was accurately weighed into a Schlenk tube into which nitrogen gas was introduced, hexane (7.5 mL) was added, and stirring was started at room temperature. To this slurry solution, 1-octene (0.83 mL, 5.2 mmol) and phenylsilane (0.65 mL, 5.2 mmol) were sequentially added, and then 1M sodium triethylborohydride in toluene (24 ⁇ L, 0.024 mmol) was added. It was dripped. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 40 The reaction was performed in the same manner as in Example 39 except that hexane was changed to toluene. The results are shown in Table 5.
  • Example 41 The reaction was conducted in the same manner as in Example 39 except that hexane was changed to diethyl ether. The results are shown in Table 5.
  • Example 42 The reaction was performed in the same manner as in Example 39 except that hexane was changed to tetrahydrofuran (THF). The results are shown in Table 5.
  • Example 43 Flame drying was performed, and iron complex compound 1 (10 mg, 0.019 mmol) was accurately weighed into a Schlenk tube into which nitrogen was introduced, and cyclohexene (2.0 mL, 19 mmol) was added, and stirring was started at room temperature. To this slurry solution was added phenylsilane (0.24 mL, 1.9 mmol), and then a 1 M sodium triethylborohydride toluene solution (78 ⁇ L, 0.078 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 44 Flame drying was performed, and iron complex compound 1 (10 mg, 0.019 mmol) was accurately weighed into a Schlenk tube into which nitrogen was introduced, and cyclohexene (2.0 mL, 19 mmol) was added, and stirring was started at room temperature. To this slurry solution was added phenylsilane (0.24 mL, 1.9 mmol), and then a 1 M sodium triethylborohydride toluene solution (78 ⁇ L, 0.078 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 45 The reaction was performed in the same manner as in Example 43 except that the iron complex compound 1 was changed to the iron complex compound 2. The results are shown in Table 6.
  • Example 46 The reaction was performed in the same manner as in Example 44 except that the iron complex compound 1 was changed to the iron complex compound 2. The results are shown in Table 6.
  • Example 47 The reaction was performed in the same manner as in Example 43 except that the amount of the iron complex compound 2 was changed to 0.0054 mmol. The results are shown in Table 6.
  • Example 48 The reaction was performed in the same manner as in Example 44 except that the amount of the iron complex compound 2 was changed to 0.0054 mmol. The results are shown in Table 6.
  • Example 49 The reaction was performed in the same manner as in Example 43 except that the iron complex compound 1 was changed to the iron complex compound 4. The results are shown in Table 6.
  • Example 50 The reaction was performed in the same manner as in Example 44 except that the iron complex compound 1 was changed to the iron complex compound 4. The results are shown in Table 6.
  • Example 51 The reaction was performed in the same manner as in Example 43 except that the iron complex compound 1 was changed to the iron complex compound 5. The results are shown in Table 6.
  • Example 52 The reaction was performed in the same manner as in Example 44 except that the iron complex compound 1 was changed to the iron complex compound 5. The results are shown in Table 6.
  • Example 53 Perform flame drying, accurately weigh iron complex compound 1 (3.0 mg, 0.0058 mmol) into a Schlenk tube into which nitrogen gas has flowed, add 1-octene (9.2 mL, 58 mmol), and start stirring at room temperature. did. Phenylsilane (0.72 mL, 5.8 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (40 ⁇ L, 0.040 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 54 Perform flame drying, accurately weigh iron complex compound 1 (3.0 mg, 0.0058 mmol) into a Schlenk tube into which nitrogen gas has flowed, add 1-octene (9.2 mL, 58 mmol), and start stirring at room temperature. did. To this slurry solution was added phenylsilane (7.2 mL, 58 mmol), and then a 1 M sodium triethylborohydride toluene solution (120 ⁇ L, 0.12 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 55 Flame drying was performed, iron complex compound 1 (3.0 mg, 0.0058 mmol) was accurately weighed into a Schlenk tube into which nitrogen gas was introduced, hexane (18 mL) was added, and stirring was started at room temperature. To this slurry solution, 1-octene (18.4 mL, 120 mmol) and phenylsilane (7.2 mL, 58 mmol) were sequentially added, and then a 1 M sodium triethylborohydride toluene solution (120 ⁇ L, 0.12 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 56 Perform flame drying, accurately weigh iron complex compound 2 (3.0 mg, 0.0054 mmol) into a Schlenk tube into which nitrogen gas has flowed, add 1-octene (8.5 mL, 54 mmol), and start stirring at room temperature. did. To this slurry solution was added phenylsilane (066 mL, 5.4 mmol), and then a 1 M sodium triethylborohydride toluene solution (22 ⁇ L, 0.022 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 57 Perform flame drying, accurately weigh iron complex compound 1 (3.0 mg, 0.0058 mmol) into a Schlenk tube into which nitrogen gas has flowed, add 1-octene (9.2 mL, 58 mmol), and start stirring at room temperature. did. Diphenylsilane (1.1 mL, 5.8 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (24 ⁇ L, 0,024 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 58 Flame drying was performed, iron complex compound 1 (3.0 mg, 0.0058 mmol) was accurately weighed into a Schlenk tube into which nitrogen gas was introduced, hexane (36 mL) was added, and stirring was started at room temperature. To this slurry solution, 1-octene (18 mL, 120 mmol) and phenylsilane (11 mL, 58 mmol) were sequentially added, and then a 1 M sodium triethylborohydride toluene solution (120 ⁇ L, 0.12 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 59 Perform flame drying, accurately weigh iron complex compound 2 (3.0 mg, 0.0054 mmol) into a Schlenk tube into which nitrogen gas has flowed, add 1-octene (8.5 mL, 54 mmol), and start stirring at room temperature. did. Diphenylsilane (1.0 mL, 5.4 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (22 ⁇ L, 0.022 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 60 Perform flame drying, accurately weigh iron complex compound 2 (3.0 mg, 0.0054 mmol) into a Schlenk tube into which nitrogen gas has flowed, add 1-octene (1.7 mL, 11 mmol), and start stirring at room temperature. did. Diphenylsilane (1.0 mL, 5.4 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (22 ⁇ L, 0.022 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 61 Flame drying was performed, and iron complex compound 2 (3.0 mg, 0.0054 mmol) was accurately weighed into a Schlenk tube into which nitrogen gas was introduced, and 1-octene (17 mL, 110 mmol) was added, and stirring was started at room temperature. Diphenylsilane (10 mL, 54 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (120 ⁇ L, 0.12 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 62 Flame drying was performed, and iron complex compound 2 (3.0 mg, 0.0054 mmol) was accurately weighed into a Schlenk tube into which nitrogen gas was introduced, hexane (34 mL) was added, and stirring was started at room temperature. 1-octene (17 mL, 110 mmol) and diphenylsilane (10 mL, 54 mmol) were sequentially added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (120 ⁇ L, 0.12 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 63 Perform flame drying, accurately weigh iron complex compound 1 (3.0 mg, 0.0058 mmol) into a Schlenk tube into which nitrogen gas has flowed, add 1-octene (9.2 mL, 58 mmol), and start stirring at room temperature. did. Phenyl (methyl) silane (0.81 mL, 5.8 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (24 ⁇ L, 0.024 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 64 Perform flame drying, accurately weigh iron complex compound 1 (3.0 mg, 0.0058 mmol) into a Schlenk tube into which nitrogen gas has flowed, add 1-octene (9.2 mL, 58 mmol), and start stirring at room temperature. did. Phenyl (methyl) silane (8.1 mL, 58 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (120 ⁇ L, 0.12 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 65 Flame drying was performed, iron complex compound 1 (3.0 mg, 0.0058 mmol) was accurately weighed into a Schlenk tube into which nitrogen gas was introduced, hexane (18 mL) was added, and stirring was started at room temperature. 1-octene (9.2 mL, 58 mmol) and phenyl (methyl) silane (8.1 mL, 58 mmol) were sequentially added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (120 ⁇ L, 0.12 mmol) was added dropwise. did. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 66 Flame drying was performed, iron complex compound 1 (3.0 mg, 0.0058 mmol) was accurately weighed into a Schlenk tube into which nitrogen gas was introduced, hexane (36 mL) was added, and stirring was started at room temperature. 1-octene (18 mL, 120 mmol) and phenyl (methyl) silane (8.1 mL, 58 mmol) were sequentially added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (120 ⁇ L, 0.12 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 67 Flame drying was performed, and iron complex compound 1 (3.0 mg, 0.0058 mmol) was accurately weighed into a Schlenk tube into which nitrogen gas was introduced, hexane was added, and stirring was started at room temperature. To this slurry solution, 1-octene (46 mL, 290 mmol) and phenyl (methyl) silane (8.1 mL, 58 mmol) were sequentially added, and then a 1 M sodium triethylborohydride toluene solution (120 ⁇ L, 0.12 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 68 Flame drying was performed, iron complex compound 1 (3.0 mg, 0.0058 mmol) was accurately weighed into a Schlenk tube into which nitrogen gas was introduced, toluene (18 mL) was added, and stirring was started at room temperature. 1-octene (9.2 mL, 58 mmol) and phenyl (methyl) silane (8.1 mL, 58 mmol) were sequentially added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (120 ⁇ L, 0.12 mmol) was added dropwise. did. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 69 Perform flame drying, accurately weigh iron complex compound 2 (3.0 mg, 0.0054 mmol) into a Schlenk tube into which nitrogen gas has flowed, add 1-octene (8.5 mL, 54 mmol), and start stirring at room temperature. did. Phenyl (methyl) silane (0.75 mL, 5.4 mmol) was added to the slurry solution, and then 1M sodium triethylborohydride in toluene (22 ⁇ L, 0.022 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 70 Flame drying was performed, and iron complex compound 2 (3.0 mg, 0.0054 mmol) was accurately weighed into a Schlenk tube into which nitrogen gas was introduced, and 1-octene (17 mL, 110 mmol) was added, and stirring was started at room temperature. Phenyl (methyl) silane (7.5 mL, 54 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (110 ⁇ L, 0.11 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 71 Flame drying was carried out, and iron complex compound 1 (10 mg, 0.019 mmol) was accurately weighed into a Schlenk tube into which nitrogen gas was introduced, and 1-octene (3.1 mL, 19 mmol) was added, and stirring was started at room temperature. Diphenyl (methyl) silane (0.41 mL, 1.9 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (7.8 ⁇ L, 0.078 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 72 Flame-dried, iron complex compound 1 (3.0 mg, 0.0058 mmol) was accurately weighed into a Schlenk tube into which nitrogen gas was introduced, and 1-octene (0.92 mL, 5.8 mmol) was added and stirred at room temperature. Started. Diphenyl (methyl) silane (1.2 mL, 5.8 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (24 ⁇ L, 0.024 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 73 Perform flame drying, accurately weigh iron complex compound 1 (3.0 mg, 0.0058 mmol) into a Schlenk tube into which nitrogen gas has flowed, add 1-octene (1.8 mL, 12 mmol), and start stirring at room temperature. did. Diphenyl (methyl) silane (1.2 mL, 5.8 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (24 ⁇ L, 0.024 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 74 Flame drying was performed, and iron complex compound 1 (3.0 mg, 0.0058 mmol) was accurately weighed into a Schlenk tube into which nitrogen gas was introduced, hexane (3.6 mL) was added, and stirring was started at room temperature. 1-octene (1.8 mL, 12 mmol) and diphenyl (methyl) silane (1.2 mL, 5.8 mmol) were sequentially added to the slurry solution, and then 1M sodium triethylborohydride in toluene (24 ⁇ L, 0.024 mmol) was added. Was dripped. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 76 Flame-drying, accurately measuring iron complex compound 1 (3.0 mg, 0.0058 mmol) in a Schlenk tube into which nitrogen gas was introduced, adding 1-octene (0.31 mL, 1.9 mmol), and stirring at room temperature Started.
  • Diphenyl (methyl) silane (0.81 mL, 3.9 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (24 ⁇ L, 0.024 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 77 Flame drying was performed, and iron complex compound 2 (10 mg, 0.018 mmol) was accurately weighed into a Schlenk tube into which nitrogen gas was introduced, and 1-octene (2.8 mL, 18 mmol) was added, and stirring was started at room temperature. Diphenyl (methyl) silane (0.38 mL, 1.8 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (72 ⁇ L, 0.072 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 78 Flame drying was performed, and iron complex compound 2 (10 mg, 0.018 mmol) was accurately weighed into a Schlenk tube into which nitrogen gas was introduced, and 1-octene (5.7 mL, 36 mmol) was added, and stirring was started at room temperature. Diphenylsilane (3.4 mL, 18 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (72 ⁇ L, 0.072 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 79 Flame drying was performed, and iron complex compound 2 (3.0 mg, 0.0054 mmol) was accurately weighed into a Schlenk tube into which nitrogen gas was introduced, and 1-octene (17 mL, 110 mmol) was added, and stirring was started at room temperature. Diphenylsilane (10 mL, 54 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (110 ⁇ L, 0.11 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 80 Flame drying was performed, and iron complex compound 2 (3.0 mg, 0.0054 mmol) was accurately weighed into a Schlenk tube into which nitrogen gas was introduced, and 1-octene (21 mL, 130 mmol) was added, and stirring was started at room temperature. Diphenylsilane (13 mL, 67 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (110 ⁇ L, 0.11 mmol) was added dropwise. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • the crude product was purified by Kugelrohr distillation (120 ° C., 140 Pa) to obtain 2,2,2-trifluoro-1- [2,2′-bipyridin] -6-yl-ethanone, a brownish white powder. (Yield: 54%).
  • the product contained a small amount of unidentifiable impurities, but was used as it was because it did not affect the next imination reaction.
  • the 13 C NMR spectrum is complicated and no assignment is made.
  • iron complex compound 6 N- (1- [2,2′-bipyridine] -6-ylethylidene) -2,4,6-trimethylbenzenamine iron (II) bromide (hereinafter abbreviated as “iron complex compound 6”) (Yield: 99%).
  • the product contains 0.5 equivalent of water.
  • Example 82 Synthesis of N- (1- [2,2′-bipyridine] -6-ylethylidene) -2,6-diisopropylbenzenamineiron (II) bromide N- (1- [2,2′-bipyridin] -6-ylethylidene) -2,4,6-trimethylbenzenamine is converted to N- (1- [2,2′-bipyridin] -6-ylethylidene)- N- (1- [2,2′-bipyridin] -6-ylethylidene) -2, a reddish purple powder, was prepared in the same manner as in Example 81 except that 2,6-diisopropylbenzeneamine was used.
  • iron complex compound 7 6-Diisopropylbenzeneamine iron (II) bromide (hereinafter sometimes abbreviated as “iron complex compound 7”) was obtained (yield: 83%).
  • Anal.Calcd.for C 24 H 27 Br 2 FeN 3 C, 50.29; H, 4.75; N, 7.33. Found: C, 49.99; H, 4.82; N, 7.20.
  • Example 83 Synthesis of N- (2,2-dimethyl- [2,2′-bipyridin] -6-ylpropylidene) -2,4,6-trimethylbenzenamine iron (II) bromide N- (1- [2,2′-bipyridine] -6-ylethylidene) -2,4,6-trimethylbenzenamine is converted to N- (2,2-dimethyl- [2,2′-bipyridine] -6- N- (2,2-dimethyl- [2,2′-bipyridine], a blue-violet powder, was prepared in the same manner as in Example 81, except that it was changed to ylpropylidene) -2,4,6-trimethylbenzenamine.
  • iron (II) bromide N- (1- [2,2′-bipyridine] -6-ylethylidene) -2,4,6-trimethylbenzenamine is converted to N- (2,2-dimethyl- [2,2′-bipyridine] -6
  • iron complex compound 8 -6-ylpropylidene -2,4,6-trimethylbenzenamine iron (II) bromide (hereinafter sometimes abbreviated as “iron complex compound 8”) was obtained (yield: 56%).
  • Example 84 Synthesis of N- (2,2,2-trifluoro- [2,2′-bipyridine] -6-ylethylidene) -2,4,6-trimethylbenzenamine iron (II) bromide N- (1- [2,2′-bipyridine] -6-ylethylidene) -2,4,6-trimethylbenzenamine is converted to N- (2,2,2-trifluoro- [2,2′-bipyridine].
  • N- (2,2,2-trifluoro- [2] which is a brown powder, was prepared in the same manner as in Example 81 except that it was changed to -6-ylethylidene) -2,4,6-trimethylbenzenamine.
  • iron complex compound 9 2′-bipyridine] -6-ylethylidene) -2,4,6-trimethylbenzenamine iron (II) bromide (hereinafter sometimes abbreviated as “iron complex compound 9”) was obtained (yield: 88%).
  • the product contains 0.5 equivalent of hexane.
  • Example 85 Synthesis of N- (2,2,2-trifluoro- [2,2′-bipyridine] -6-ylethylidene) -2,6-diisopropylbenzenamineiron (II) bromide N- (1- [2,2′-bipyridine] -6-ylethylidene) -2,4,6-trimethylbenzenamine is converted to N- (2,2,2-trifluoro- [2,2′-bipyridine].
  • N- (2,2,2-trifluoro- [2,2] a green powder, was prepared in the same manner as in Example 81 except for changing to -6-ylethylidene) -2,6-diisopropylbenzenamine.
  • iron complex compound 10 -6-ylethylidene -2,6-diisopropylbenzeneamine iron (II) bromide (hereinafter sometimes abbreviated as “iron complex compound 10”) was obtained (yield: 56%).
  • Anal.Calcd.for C 24 H 24 Br 2 F 3 FeN 3 C, 45.97; H, 3.96; N, 6.70. Found: C, 45.91; H, 3.97; N, 6.72.
  • Example 87 The reaction was performed in the same manner as in Example 86 except that the iron complex compound 1 was changed to the iron complex compound 2. The results are shown in Table 12.
  • Example 88 The reaction was performed in the same manner as in Example 86 except that the iron complex compound 1 was changed to the iron complex compound 6. The results are shown in Table 12.
  • Example 89 The reaction was performed in the same manner as in Example 86 except that the iron complex compound 1 was changed to the iron complex compound 7. The results are shown in Table 12.
  • Example 90 The reaction was performed in the same manner as in Example 86 except that the iron complex compound 1 was changed to the iron complex compound 8. The results are shown in Table 12.
  • Example 91 The reaction was performed in the same manner as in Example 86 except that the iron complex compound 1 was changed to the iron complex compound 9. The results are shown in Table 12.
  • Example 92 The reaction was performed in the same manner as in Example 86 except that the iron complex compound 1 was changed to the iron complex compound 10. The results are shown in Table 12.
  • Example 93 The reaction was performed in the same manner as in Example 86, except that phenylsilane was changed to diphenylsilane. The results are shown in Table 13.
  • Example 94 The reaction was conducted in the same manner as in Example 88 except that phenylsilane was changed to diphenylsilane. The results are shown in Table 13.
  • Example 95 The reaction was performed in the same manner as in Example 89 except that phenylsilane was changed to diphenylsilane. The results are shown in Table 13.
  • Example 96 The reaction was performed in the same manner as in Example 90 except that phenylsilane was changed to diphenylsilane. The results are shown in Table 13.
  • Example 97 The reaction was conducted in the same manner as in Example 91 except that phenylsilane was changed to diphenylsilane. The results are shown in Table 13.
  • Example 98 The reaction was conducted in the same manner as in Example 92 except that phenylsilane was changed to diphenylsilane. The results are shown in Table 13.
  • Example 99 The reaction was performed in the same manner as in Example 86, except that phenylsilane was changed to phenyl (methyl) silane. The results are shown in Table 14.
  • Example 100 The reaction was conducted in the same manner as in Example 87 except that phenylsilane was changed to phenyl (methyl) silane. The results are shown in Table 14.
  • Example 101 The reaction was performed in the same manner as in Example 88 except that phenylsilane was changed to phenyl (methyl) silane. The results are shown in Table 14.
  • Example 102 The reaction was conducted in the same manner as in Example 89 except that phenylsilane was changed to phenyl (methyl) silane. The results are shown in Table 14.
  • Example 103 The reaction was performed in the same manner as in Example 90 except that phenylsilane was changed to phenyl (methyl) silane. The results are shown in Table 14.
  • Example 104 The reaction was conducted in the same manner as in Example 91 except that phenylsilane was changed to phenyl (methyl) silane. The results are shown in Table 14.
  • Example 105 The reaction was performed in the same manner as in Example 92 except that phenylsilane was changed to phenyl (methyl) silane. The results are shown in Table 14.
  • Example 106 Perform flame drying, accurately weigh iron complex compound 1 (3.0 mg, 0.0058 mmol) into a Schlenk tube into which nitrogen gas has flowed, add 1-octene (1.8 mL, 11 mmol), and start stirring at room temperature. did. To this slurry solution was added diphenyl (methyl) silane (1.2 mL, 5.8 mmol), followed by 1M sodium triethylborohydride in toluene (46 ⁇ L, 0.046 mmol). Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 107 The reaction was performed in the same manner as in Example 106 except that the iron complex compound 1 was changed to the iron complex compound 2. The results are shown in Table 15.
  • Example 108 Perform flame drying, accurately weigh iron complex compound 2 (3.0 mg, 0.0054 mmol) into a Schlenk tube into which nitrogen gas has flowed, add 1-octene (1.7 mL, 11 mmol), and start stirring at room temperature. did. Diphenyl (methyl) silane (1.1 mL, 5.4 mmol) was added to the slurry solution, and then 1M sodium triethylborohydride in toluene (110 ⁇ L, 0.11 mmol) was added. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 109 The reaction was performed in the same manner as in Example 106 except that the iron complex compound 1 was changed to the iron complex compound 6 and diphenyl (methyl) silane was changed to phenyldi (methyl) silane. The results are shown in Table 15.
  • Example 110 The reaction was performed in the same manner as in Example 108, except that the iron complex compound 1 was changed to the iron complex compound 6 and diphenyl (methyl) silane was changed to phenyldi (methyl) silane. The results are shown in Table 15.
  • Example 111 The reaction was performed in the same manner as in Example 106 except that the iron complex compound 1 was changed to the iron complex compound 6. The results are shown in Table 15.
  • Example 112 The reaction was performed in the same manner as in Example 108 except that the iron complex compound 1 was changed to the iron complex compound 6. The results are shown in Table 15.
  • Example 113 The reaction was performed in the same manner as in Example 106 except that the iron complex compound 1 was changed to the iron complex compound 6 and diphenyl (methyl) silane was changed to triphenylsilane. The results are shown in Table 15.
  • Example 114 The reaction was performed in the same manner as in Example 106 except that the iron complex compound 1 was changed to the iron complex compound 7. The results are shown in Table 15.
  • Example 115 The reaction was performed in the same manner as in Example 108 except that the iron complex compound 1 was changed to the iron complex compound 7. The results are shown in Table 15.
  • Example 116 The reaction was performed in the same manner as in Example 106 except that the iron complex compound 1 was changed to the iron complex compound 8. The results are shown in Table 15.
  • Example 117 The reaction was performed in the same manner as in Example 106 except that the iron complex compound 1 was changed to the iron complex compound 9. The results are shown in Table 15.
  • Example 118 The reaction was performed in the same manner as in Example 106 except that the iron complex compound 1 was changed to the iron complex compound 10. The results are shown in Table 15.
  • Example 119 Flame drying was performed, and iron complex compound 6 (10 mg, 0.019 mmol) was accurately weighed into a Schlenk tube into which nitrogen gas was introduced, and cyclohexene (2.0 mL, 19 mmol) was added, and stirring was started at room temperature. Phenylsilane (0.23 mL, 1.9 mmol) was added to the slurry solution, and then 1 M sodium triethylborohydride in toluene (75 ⁇ L, 0.075 mmol) was added. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 120 The reaction was performed in the same manner as in Example 119 except that the iron complex compound 6 was changed to the iron complex compound 7. The results are shown in Table 16.
  • Example 121 The reaction was performed in the same manner as in Example 119 except that the iron complex compound 6 was changed to the iron complex compound 8. The results are shown in Table 16.
  • Example 122 The reaction was performed in the same manner as in Example 119 except that the iron complex compound 6 was changed to the iron complex compound 9. The results are shown in Table 16.
  • Example 123 The reaction was performed in the same manner as in Example 119 except that the iron complex compound 6 was changed to the iron complex compound 10. The results are shown in Table 16.
  • Example 124 Perform flame drying, accurately weigh iron complex compound 6 (3.0 mg, 0.0056 mmol) into a Schlenk tube into which nitrogen gas has flowed, add 1-octene (1.8 mL, 11 mmol), and start stirring at room temperature. did. Diethylsilane (0.77 mL, 5.7 mmol) was added to the slurry solution, and then 1 M sodium triethylborohydride in toluene (45 ⁇ L, 0.075 mmol) was added. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 125 Perform flame drying, accurately weigh iron complex compound 6 (3.0 mg, 0.0056 mmol) into a Schlenk tube into which nitrogen gas has flowed, add 1-octene (1.8 mL, 11 mmol), and start stirring at room temperature. did. Triethylsilane (0.92 mL, 5.7 mmol) was added to the slurry solution, and then 1 M sodium triethylborohydride in toluene (45 ⁇ L, 0.075 mmol) was added. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 126 Flame dry, accurately measure iron complex compound 6 (20 mg, 0.038 mmol) in a Schlenk tube into which nitrogen gas has flowed, and add 6-chloro-1-hexene (1.0 mL, 7.5 mmol) to room temperature. And stirring was started. Diphenylsilane (0.72 mL, 3.8 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (150 ⁇ L, 0.15 mmol) was added. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 12-7 Flame dry, accurately measure iron complex compound 6 (3.0 mg, 0.0056 mmol) in a Schlenk tube into which nitrogen gas has flowed, and add 6-chloro-1-hexene (1.6 mL, 11 mmol) to room temperature. And stirring was started. Diphenylsilane (1.1 mL, 5.7 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (45 ⁇ L, 0.045 mmol) was added. Within 2 minutes, the reaction solution became a homogeneous solution with a change from colorless to deep green to reddish purple.
  • Example 1228 The reaction was conducted in the same manner as in Example 46 except that 6-chloro-1-hexene was changed to N, N-dimethylallylamine. The results are shown in Table 17.
  • Example 129 The reaction was conducted in the same manner as in Example 127 except that 6-chloro-1-hexene was changed to N, N-dimethylallylamine. The results are shown in Table 17.
  • Example 130 The reaction was carried out in the same manner as in Example 126 except that 6-chloro-1-hexene was changed to allyl phenyl sulfide. The results are shown in Table 17.
  • the amount of the iron complex catalyst is 0.01% by mole or more, but examination was performed when the amount of the catalyst was further reduced to 0.001% by mole.
  • the following hydrosilylation reaction was carried out with reference to Examples 86, 88 and 94. Flame drying was performed, and iron complex compound 6 (0.0058 mmol) was accurately weighed into a Schlenk tube into which nitrogen gas was introduced, and 1-octene (120 mmol) was added, and stirring was started at room temperature. Diphenylsilane (58 mmol) was added to the slurry solution, and then a 1 M sodium triethylborohydride toluene solution (0.12 mmol) was added.
  • This solution was stirred at room temperature for 5 to 10 minutes, and about one-tenth of the obtained uniform solution was dropped into a separately prepared solution containing diphenylsilane and 1-octene in a molar ratio of 1: 2 to obtain an iron complex.
  • the solution was stirred for 24 hours at room temperature, and the reaction solution was analyzed by high performance liquid chromatography (199 nm). When the reaction product was quantified by the absolute calibration curve method, it was confirmed that only octyldiphenylsilane was produced as the hydrosilylation product and the catalytic activity (TON) was 42,000.
  • the organosilicon compound obtained by the present invention can be used as a raw material for various materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyridine Compounds (AREA)

Abstract

ヒドロシリル化反応における触媒を改良し、効率良く有機ケイ素化合物を製造することができる方法を提供することを目的とする。アルケン類及び/又はアルキン類とヒドロシラン類とを触媒存在下で反応させる反応工程を含む有機ケイ素化合物の製造方法において、触媒として、下記式(A)で表される鉄錯体化合物とヒドリド還元剤を使用することにより、効率良く有機ケイ素化合物を製造することができる。(式(A)中、R及びRはそれぞれ独立して炭素数1~6の炭化水素基を、Rは水素原子又はハロゲン原子を含んでいてもよい炭素数1~10の炭化水素基を、Rは水素原子又は炭素数6~20の芳香族炭化水素基を、Xはハロゲン原子を、mは0~4の整数を、nは0~3の整数を表す。但し、mが2~4の整数である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよく、nが2又は3である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよい。)

Description

鉄錯体化合物とそれを用いた有機ケイ素化合物の製造方法
 本発明は、鉄錯体化合物及び有機ケイ素化合物の製造方法に関し、より詳しくはコモンメタルである鉄を中心金属とする錯体とそれをヒドロシリル化反応の触媒として利用した有機ケイ素化合物の製造方法に関する。
 分子内にケイ素-炭素結合を有する有機ケイ素化合物は、電子材料、シリコーンオイル、シリコーン樹脂、シリコーンゴム等の原料として用いられており、その利用範囲は多岐にわたる有用な化合物である。しかし、有機ケイ素化合物は天然には存在しないため、人工的に化学合成する必要があり、合成方法の1つである炭素-炭素多重結合へのヒドロシリル化反応は公知の技術である。
 ヒドロシリル化反応には、主に遷移金属触媒が用いられているが、工業的にはSpeier触媒(特許文献1参照)やKarstedt触媒(特許文献2参照)等の白金触媒に依存しているのが現状である。
米国特許出願公開第2011/0009565号明細書 国際公開第2011/006049号
Sollradl, H.; Hengge, E., J. Organomet. Chem., 1983, 243, 257. Grogger, C.; Loidl, B.; Stueger, H.; Kammel, T.; Pachaly, B., J. Organomet. Chem., 2006, 691, 105. Wang, J.; Gurevich, Y.; Botoshansky, M. S., Organometallics, 2008, 27, 4494. Liu, Y.: Yamazaki, S.; Yamabe, S., J. Org. Chem., 2005, 70, 556. Nielsen, L.; Skrydstrup, T., J. Am. Chem. Soc., 2008, 130, 13145.
 前述のようにヒドロシリル化反応には、希少金属である白金触媒等が利用されているため、コスト等の観点で改善の余地を残すものであった。
 本発明は、ヒドロシリル化反応における触媒を改良し、効率良く有機ケイ素化合物を製造することができる方法を提供することを目的とする。
 本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、イミノビピリジン誘導体を配位子とする特定の鉄錯体とヒドリド還元剤を触媒として使用することにより、効率良く有機ケイ素化合物を製造することができることを見出し、本発明を完成させた。
 即ち、本発明は以下の通りである。
<1> アルケン類及び/又はアルキン類とヒドロシラン類とを触媒存在下で反応させる反応工程を含む有機ケイ素化合物の製造方法であって、
 前記反応工程が、触媒として下記式(A)で表される鉄錯体化合物とヒドリド還元剤を使用する工程であることを特徴とする、有機ケイ素化合物の製造方法。
Figure JPOXMLDOC01-appb-C000005

(式(A)中、R及びRはそれぞれ独立して炭素数1~6の炭化水素基を、Rは水素原子又はハロゲン原子を含んでいてもよい炭素数1~10の炭化水素基を、Rは水素原子又は炭素数6~20の芳香族炭化水素基を、Xはそれぞれ独立してハロゲン原子を、mは0~4の整数を、nは0~3の整数を表す。但し、mが2~4の整数である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよく、nが2又は3である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよい。)
<2> 下記式(I-1)~(I-9)及び(II-1)~(II-30)で表される化合物からなる群より選択される少なくとも1種の化合物を製造する方法である、<1>に記載の有機ケイ素化合物の製造方法。
Figure JPOXMLDOC01-appb-C000006

(式(I-1)~(I-9)及び式(II-1)~(II-30)中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1~20の炭化水素基を、Rはそれぞれ独立して水素原子、ハロゲン原子、シロキシ基、ケイ素数1~50のポリシロキシ基、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1~20の炭化水素基を表す。但し、R~Rの2個以上が炭化水素基である場合、その2個以上の炭化水素基が連結して環状構造を形成していてもよい。)
<3> 下記式(a)で表されるイミノビピリジン化合物。
Figure JPOXMLDOC01-appb-C000007

(式(a)中、R及びRはそれぞれ独立して炭素数1~6の炭化水素基を、Rは水素原子又はハロゲン原子を含んでいてもよい炭素数1~10の炭化水素基を、Rは水素原子又は炭素数6~20の芳香族炭化水素基を、mは0~4の整数を、nは0~3の整数を表す。但し、mが2~4の整数である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよく、nが2又は3である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよい。)
<4> 下記式(A)で表される鉄錯体化合物。
Figure JPOXMLDOC01-appb-C000008

(式(A)中、R及びRはそれぞれ独立して炭素数1~6の炭化水素基を、Rは水素原子又はハロゲン原子を含んでいてもよい炭素数1~10の炭化水素基を、Rは水素原子又は炭素数6~20の芳香族炭化水素基を、Xはそれぞれ独立してハロゲン原子を、mは0~4の整数を、nは0~3の整数を表す。但し、mが2~4の整数である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよく、nが2又は3である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよい。)
 本発明によれば、効率良く有機ケイ素化合物を製造することができる。
 本発明を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。
<有機ケイ素化合物の製造方法>
 本発明の一態様である有機ケイ素化合物の製造方法(以下、「本発明の製造方法」と略す場合がある。)は、アルケン類及び/又はアルキン類とヒドロシラン類とを触媒存在下で反応させる反応工程(以下、「反応工程」と略す場合がある。)を含む方法であり、反応工程が触媒として下記式(A)で表される鉄錯体化合物とヒドリド還元剤を使用することを特徴とする。
Figure JPOXMLDOC01-appb-C000009

(式(A)中、R及びRはそれぞれ独立して炭素数1~6の炭化水素基を、Rは水素原子又はハロゲン原子を含んでいてもよい炭素数1~10の炭化水素基を、Rは水素原子又は炭素数6~20の芳香族炭化水素基を、Xはそれぞれ独立してハロゲン原子を、mは0~4の整数を、nは0~3の整数を表す。但し、mが2~4の整数である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよく、nが2又は3である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよい。)
 遷移金属触媒を用いたヒドロシリル化反応の反応機構には、(Modified)Chalk-Harrod機構(非特許文献1~3参照)とGlaser-Tilly機構(非特許文献4、5参照)が知られている。Glaser-Tilly機構の場合、反応中間体としてシリレン錯体を経由することから、反応に適用できるヒドロシランは第1級シランのみとなり、白金触媒のように幅広いヒドロシランに触媒活性を示すためには、(Modified)Chalk-Harrod機構を考慮して触媒設計を行う必要がある。この場合、触媒サイクル中で炭素-炭素不飽和結合のπ配位とヒドロシランの酸化的付加で4電子増加し、形式酸化数が+2増加となることから、鉄錯体においては触媒活性種が0価で価電子総数が14電子以下となる錯体が好ましいと考えられる。
Figure JPOXMLDOC01-appb-C000010

 本発明者らは、式(A)で表される鉄錯体とヒドリド還元剤を反応系中に添加することによって容易に活性種を誘導することができ、これがヒドロシリル化反応において高い触媒活性を示して、効率良く有機ケイ素化合物を製造することができることを見出したのである。また、かかる触媒は、第1級シランや第2級シランに含まれる複数のケイ素-水素結合(Si-H)を活性化して、複数の炭素-ケイ素結合(C-Si)を形成することができる特長を有しており、幅広い有機ケイ素化合物の製造に利用することできる。さらに式(A)で表される鉄錯体は、比較的簡易的に合成することができる化合物であり、さらに空気中で安定であるため、取扱いが容易で、実用性に富んだ触媒となるのである。
 なお、「アルケン類」とは炭素-炭素二重結合を少なくとも1つ有する有機化合物を、「アルキン類」とは炭素-炭素三重結合を少なくとも1つ有する有機化合物を、「ヒドロシラン類」とはケイ素-水素結合(Si-H)を少なくとも1つ有する化合物を、「有機ケイ素化合物」とは炭素-ケイ素結合(C-Si)を少なくとも1つ有する有機化合物を意味するものとする。従って、「アルケン類及び/又はアルキン類」と「ヒドロシラン類」の反応として、例えば下記の反応式で示されるような反応が挙げられる(「アルケン類」が「1-オクテン」であり、「ヒドロシラン類」がジフェニルメチルシランである。)。
Figure JPOXMLDOC01-appb-C000011
 反応工程は、触媒として下記式(A)で表される鉄錯体化合物(以下、「鉄錯体化合物」と略す場合がある。)を使用することを特徴とするが、式(A)で表される鉄錯体化合物の具体的種類は特に限定されず、目的に応じて適宜選択することができる。
Figure JPOXMLDOC01-appb-C000012

(式(A)中、R及びRはそれぞれ独立して炭素数1~6の炭化水素基を、Rは水素原子又はハロゲン原子を含んでいてもよい炭素数1~10の炭化水素基を、Rは水素原子又は炭素数6~20の芳香族炭化水素基を、Xはそれぞれ独立してハロゲン原子を、mは0~4の整数を、nは0~3の整数を表す。但し、mが2~4の整数である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよく、nが2又は3である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよい。)
 R及びRはそれぞれ独立して炭素数1~6の炭化水素基を表しているが、「炭化水素基」は、直鎖状の飽和炭化水素基に限られず、分岐構造、環状構造、炭素-炭素不飽和結合のそれぞれを有していてもよいものとする(分岐構造、環状構造、及び炭素-炭素不飽和結合からなる群より選択される少なくとも1種を有していてもよい。)。
 Rの炭化水素基の炭素数としては、好ましくは4以下、より好ましくは3以下、さらに好ましくは2以下である。
 Rの炭化水素基の炭素数としては、好ましくは4以下、より好ましくは3以下、さらに好ましくは2以下である。
 Rとしては、メチル基(-CH)、エチル基(-CHCH)、n-プロピル基(-CHCHCH)、i-プロピル基(-CH(CH)CH)、n-ブチル基(-CHCHCHCH)、t-ブチル基(-C(CH)等が挙げられる。
 Rとしては、メチル基(-CH)、エチル基(-CHCH)、n-プロピル基(-CHCHCH)、i-プロピル基(-CH(CH)CH)、n-ブチル基(-CHCHCHCH)、t-ブチル基(-C(CH)等が挙げられる。
 また、mが2~4の整数である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよく、nが2又は3である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよいが、炭化水素基同士が連結して環状構造を形成している構造として、下記式で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000013
 Rは水素原子又はハロゲン原子を含んでいてもよい炭素数1~10の炭化水素基を表しているが、「炭化水素基」はR等の場合と同義である。
 Rの炭化水素基の炭素数としては、好ましくは6以下、より好ましくは4以下、さらに好ましくは3以下である。
 Rとしては、水素原子(-H)、メチル基(-CH)、トリフルオロメチル基(-CF)、エチル基(-CHCH)、n-プロピル基(-CHCHCH)、i-プロピル基(-CH(CH)CH)、n-ブチル基(-CHCHCHCH)、t-ブチル基(-C(CH)等が挙げられるが、水素原子、メチル基(-CH)、トリフルオロメチル基(-CF)、t-ブチル基(-C(CH)が好ましい。
 Rは水素原子又は炭素数6~20の芳香族炭化水素基を表しているが、「芳香族炭化水素基」には、フェニル基のような芳香族性を有する単環の芳香族炭化水素基が含まれるほか、ナフチル基のような芳香族性を有する多環の芳香族炭化水素基も含まれるものとする。
 Rの炭化水素基の炭素数としては、好ましくは18以下、より好ましくは16以下、さらに好ましくは14以下である。
 Rとしては、下記式に挙げられるような水素原子、フェニル基、2,6-ジメチルフェニル基、2,4-ジメチルフェニル基、2,4,6-トリメチルフェニル基、2,6-ジイソプロピルフェニル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 Xはそれぞれ独立してハロゲン原子を表しているが、塩素原子(-Cl)、臭素原子(-Br)、ヨウ素原子(-I)が好ましく、臭素原子が特に好ましい。臭素原子であると、有機ケイ素化合物をより収率良く製造することができる。
 鉄錯体化合物は、イミノビピリジン誘導体を配位子とする錯体であるが、イミノビピリジン誘導体としては、下記式で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000015
 鉄錯体化合物としては、下記式で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000016
 反応工程における鉄錯体化合物の使用量は、目的に応じて適宜選択することができるが、ヒドロシラン類の使用量に対して、物質量([mol])で、通常0.00005倍以上、好ましくは0.001倍以上、より好ましくは0.01倍以上であり、通常1倍以下、好ましくは0.1倍以下、より好ましくは0.01倍以下である。上記範囲内であると、有機ケイ素化合物をより収率良く製造することができる。
(ヒドリド還元剤)
 反応工程は、ヒドリド還元剤を使用することを特徴とするが、ヒドリド還元剤の具体的種類は特に限定されず、公知のものを目的に応じて適宜選択することができる。
 ヒドリド還元剤としては、水素化ホウ素リチウム(LiBH)、水素化ホウ素ナトリウム(NaBH)、シアノ水素化ホウ素ナトリウム(NaBHCN)、水素化トリエチルホウ素リチウム(LiBHEt)、水素化トリエチルホウ素ナトリウム(NaBHEt)、水素化トリ(sec-ブチル)ホウ素リチウム(LiBH(sec-Bu))、水素化トリ(sec-ブチル)ホウ素カリウム(KBH(sec-Bu))等の水素化ホウ素酸塩;水素化アルミニウムリチウム(LiAlH)、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム(NaAlH(OCOCH)等のアルミニウムのヒドリド錯体等が挙げられる。
 これらの中でも、水素化トリエチルホウ素ナトリウム(NaBHEt)が特に好ましい。
 反応工程におけるヒドリド還元剤の使用量は、目的に応じて適宜選択することができるが、鉄錯体化合物の使用量に対して、物質量([mol])で、通常2倍以上、好ましくは4倍以上、より好ましくは8倍以上であり、通常50倍以下、好ましくは30倍以下、より好ましくは20倍以下である。上記範囲内であると、有機ケイ素化合物をより収率良く製造することができる。
(有機ケイ素化合物)
 本発明の製造方法によって製造される有機ケイ素化合物は、前述のように炭素-ケイ素結合(C-Si)を少なくとも有する有機化合物であれば、具体的な構造は特に限定されず、幅広い有機ケイ素化合物に適用することができる。
 具体的には、下記式(I-1)~(I-9)及び(II-1)~(II-30)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000017

(式(I-1)~(I-9)及び式(II-1)~(II-30)中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1~20の炭化水素基を、Rはそれぞれ独立して水素原子、ハロゲン原子、シロキシ基、ケイ素数1~50のポリシロキシ基、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1~20の炭化水素基を表す。但し、R~Rの2個以上が炭化水素基である場合、その2個以上の炭化水素基が連結して環状構造を形成していてもよい。)
 なお、式(I-1)~(I-9)で表される化合物は、アルケン類とヒドロシラン類との反応によって得られる有機ケイ素化合物であり、式(II-1)~(II-30)で表される化合物は、アルキン類とヒドロシラン類との反応によって得られる有機ケイ素化合物である。また、SiR 基が付加する位置は特に限定されず、さらにアルキン類とヒドロシラン類との反応によって得られる有機ケイ素化合物は、Z体、E体、Z体とE体の混合物の何れであってもよいことを表している。さらに式(I-3)~(I-5)で表される化合物と式(II-5)~(II-14)で表される化合物は、ヒドロシラン類の2つのケイ素-水素結合(Si-H)を活性化して、2つの炭素-ケイ素結合(C-Si)を形成した化合物を、式(I-6)~(I-9)で表される化合物と式(II-15)~(II-30)で表される化合物は、ヒドロシラン類の3つのケイ素-水素結合(Si-H)を活性化して、3つの炭素-ケイ素結合(C-Si)を形成した化合物を表しており、幅広い有機ケイ素化合物の製造に利用することできるのである。
 R~Rはそれぞれ独立に水素原子、ハロゲン原子、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1~20の炭化水素基を表しているが、「窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい」とは、クロロ基(-Cl)、フルオロ基(-F)、アミノ基(-NH)、ニトロ基(-NO)、エポキシ基、ヒドロキシル基(-OH)、カルボニル基(-C(=O)-)、tert-ブチルジメチルシリル基(-SiBuMe)、アジ基(-N)等の窒素原子、酸素原子、ケイ素原子、硫黄原子、又はハロゲン原子を含む官能基を含んでいてもよいことを意味するほか、エーテル基(-O-)、チオエーテル基(-S-)等の窒素原子、酸素原子、ケイ素原子、硫黄原子、又はハロゲン原子を含む連結基を炭素骨格の内部又は末端に含んでいてもよいことを意味する。
 R~Rが炭化水素基である場合の炭素数は、好ましくは2以上、より好ましくは3以上、さらに好ましくは4以上であり、好ましくは19以下、より好ましくは17以下、さらに好ましくは15以下である。なお、R~Rの2個以上が炭化水素基である場合、その2個以上の炭化水素基が連結して環状構造を形成していてもよいが、例えばRとRが連結してシクロヘプタン構造、シクロヘプテン構造、シクロヘキサン構造、シクロヘキセン構造等を形成していることが挙げられる。
 R~Rが炭化水素基である場合の炭化水素基に含まれる官能基は、クロロ基(-Cl)、フルオロ基(-F)、アミノ基(-NH)、ジメチルアミノ基(-N(CH)、ニトロ基(-NO)、エポキシ基、ヒドロキシル基(-OH)、カルボニル基(-C(=O)-)、チオエーテル基(-S-)、tert-ブチルジメチルシリル基(-SiBuMe)、アジ基(-N)等が挙げられる。
 また、R~Rが炭化水素基である場合、直鎖状の飽和炭化水素基に限られず、分岐構造、環状構造、炭素-炭素不飽和結合のそれぞれを有していてもよい(分岐構造、環状構造、及び炭素-炭素不飽和結合からなる群より選択される少なくとも1種を有していてもよい。)。
 R~Rとしては、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、n-へキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、メチルプロピル基、メチルブチル基、メチルペンチル基、メチルへキシル基、メチルヘプチル基、ジメチルプロピル基、ジメチルブチル基、ジメチルペンチル基、ジメチルへキシル基、ジメチルヘプチル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、フェニルペンチル基、フェニルへキシル基、フェニルヘプチル基、1-クロロプロピル基、1-クロロブチル基、1-クロロペンチル基、1-クロロへキシル基、1-クロロヘプチル基、ジメチルアミノメチル基、フェニルスルファニルメチル基等が挙げられる。
 Rはそれぞれ独立に水素原子、ハロゲン原子、シロキシ基、ケイ素数1~50のポリシロキシ基、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1~20の炭化水素基を表しているが、「窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい」については、R~Rの場合と同義である。
 Rが炭化水素基である場合の炭素数は、好ましくは2以上、より好ましくは3以上、さらに好ましくは4以上であり、好ましくは19以下、より好ましくは17以下、さらに好ましくは15以下である。
 Rがポリシロキシ基である場合のケイ素数は、好ましくは2以上、より好ましくは3以上、さらに好ましくは4以上であり、好ましくは48以下、より好ましくは46以下、さらに好ましくは45以下である。
 また、Rが炭化水素基である場合、直鎖状の飽和炭化水素基に限られず、分岐構造、環状構造、炭素-炭素不飽和結合のそれぞれを有していてもよい(分岐構造、環状構造、及び炭素-炭素不飽和結合からなる群より選択される少なくとも1種を有していてもよい。)。
 Rとしては、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、フェニル基、メトキシ基、エトキシ基、ポリメチルシロキシ基等が挙げられる。この中でも、水素原子が好ましい。
(アルケン類・アルキン類)
 反応工程は、アルケン類及び/又はアルキン類とヒドロシラン類とを触媒存在下で反応させる工程であるが、アルケン類及び/又はアルキン類の種類は特に限定されず、製造目的である有機ケイ素化合物に基づいて適宜選択されるべきである。
 基本的に製造目的である有機ケイ素化合物と共通する構造を有するアルケン類やアルキン類を選択すべきであり、例えば式(I-1)~(I-9)及び(II-1)~(II-30)で表される化合物を製造目的とする場合、アルケン類としては下記式(i)で表される化合物が、アルキン類としては下記式(ii)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000018

(式(i)及び(ii)中、R~Rはそれぞれ独立に水素原子、ハロゲン原子、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1~20の炭化水素基を表す。但し、R~Rの2個以上が炭化水素基である場合、その2個以上の炭化水素基が連結して環状構造を形成していてもよい。)
 アルケン類としては、1-オクテン、1-デセン、cis-4-オクテン、trans-5-デセン、4-フェニル-1-ブテン、6,6-ジメチル-1-ヘプテン、4,4-ジメチル-1-ヘキセン、スチレン、シクロヘキセン、6-クロロ-1-ヘキセン、3-(ジメチルアミノ)-1-プロペン、アリルフェニルスルフィド等が挙げられる。
 また、アルキン類としては、ジフェニルアセチレン、1-フェニル-1-プロピン、4-オクチン、フェニルアセチレン等が挙げられる。
(ヒドロシラン類)
 反応工程は、アルケン類及び/又はアルキン類とヒドロシラン類とを触媒存在下で反応させる工程であるが、ヒドロシラン類の種類は特に限定されず、製造目的である有機ケイ素化合物に基づいて適宜選択されるべきである。
 基本的に製造目的である有機ケイ素化合物と共通する構造を有するヒドロシラン類を選択すべきであり、例えば式(I-1)~(I-9)及び(II-1)~(II-30)で表される化合物を製造目的とする場合、ヒドロシラン類としては下記式(s)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000019

(式(s)中、Rはそれぞれ独立に水素原子、ハロゲン原子、シロキシ基、ケイ素数1~50のポリシロキシ基、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1~20の炭化水素基を表す。)
 ヒドロシラン類としては、ジエチルシラン、フェニルシラン、ジフェニルシラン、フェニル(メチル)シラン、フェニルジ(メチル)シラン、トリエトキシシラン、トリエチルシラン、ジエトキシメチルシラン等が挙げられる。
 反応工程におけるアルケン類及び/又はアルキン類とヒドロシラン類の使用量は、目的に応じて適宜選択することができるが、アルケン類及び/又はアルキン類の使用量は、ヒドロシラン類の使用量に対して、物質量([mol])で、通常0.2倍以上、好ましくは0.5倍以上、より好ましくは1倍以上であり、通常50倍以下、好ましくは20倍以下、より好ましくは10倍以下である。上記範囲内であると、有機ケイ素化合物をより収率良く製造することができる。
(溶媒)
 反応工程は、溶媒を使用しても、使用しなくてもよいが、溶媒を使用しない方が好ましい。また、溶媒を使用する場合、その溶媒の種類は特に限定されず、目的に応じて適宜選択することができるが、具体的にはヘキサン、ベンゼン、トルエン等の炭化水素系溶媒、ジエチルエーテル、1,4-ジオキサン、テトラヒドロフラン(THF)等のエーテル系溶媒、エタノール、エチレングリコール、グリセリン等のプロトン性極性溶媒、アセトン、ジメチルアセトアミド(DMA)、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒等が挙げられる。この中でも炭化水素系溶媒、エーテル系溶媒が好ましく、トルエン、テトラヒドロフランが特に好ましい。
(反応条件)
 反応工程は、アルケン類及び/又はアルキン類とヒドロシラン類とを触媒存在下で反応させる工程であるが、反応温度、反応時間等の反応条件は特に限定されない。
 反応工程の反応温度は、通常20℃以上、好ましくは40℃以上、より好ましくは60℃以上であり、通常150℃以下、好ましくは100℃以下、より好ましくは80℃以下である。上記範囲内であれば、有機ケイ素化合物をより収率良く製造することができる。
 反応工程の反応時間は、通常1時間以上、好ましくは2時間以上、より好ましくは10時間以上であり、通常60時間以下、好ましくは48時間以下、より好ましくは24時間以下である。
 反応は、通常窒素、アルゴン等の不活性雰囲気下で行う。
<イミノビピリジン誘導体>
 鉄錯体化合物は、イミノビピリジン誘導体を配位子とする錯体であるが、下記式(a)で表されるイミノビピリジン化合物(以下、「イミノビピリジン化合物」と略す場合がある。)も本発明の一態様である。
Figure JPOXMLDOC01-appb-C000020

(式(a)中、R及びRはそれぞれ独立して炭素数1~6の炭化水素基を、Rは水素原子又はハロゲン原子を含んでいてもよい炭素数1~10の炭化水素基を、Rは水素原子又は炭素数6~20の芳香族炭化水素基を、mは0~4の整数を、nは0~3の整数を表す。但し、mが2~4の整数である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよく、nが2又は3である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよい。)
 なお、R、R、R、R等については、<有機ケイ素化合物の製造方法>において説明した内容と同様である。
 イミノビピリジン化合物の製造方法は、特に限定されず、公知の有機合成法を適宜組み合せて製造することができるが、下記式で表される合成経路によって製造することが挙げられる。
Figure JPOXMLDOC01-appb-C000021

 なお、かかる合成経路の具体的反応条件等は、Hicks,R.G.,Org.Lett.2004,6,1887.、Verniest,G.,J.Org.Chem.2010,75,424.、Schubert,U.,Org.Lett.2000,2,3373.、Champouret,Y.D.M.,New J.Chem.,2007,31,75.、Diaz-Valenzuela,M.B.,Chem.Eur.J.,2009,15,1227.Rangheard,C.,Dalton Trans.,2009,770.Dai,X.,Adv.Synth.Catal.,2014,356,1317.等を参考にすることができる。
 また、例えば下記式で表される化合物等は、市販されており、原料として利用して幅広いイミノビピリジン化合物を製造することが可能である。
Figure JPOXMLDOC01-appb-C000022
<鉄錯体化合物>
 鉄錯体化合物は、ヒドリド還元剤と共に反応系中に添加することによって容易に活性種を誘導することができ、これがヒドロシリル化反応において高い触媒活性を示すことを前述したが、鉄錯体化合物もまた本発明の一態様である。
Figure JPOXMLDOC01-appb-C000023

(式(A)中、R及びRはそれぞれ独立して炭素数1~6の炭化水素基を、Rは水素原子又はハロゲン原子を含んでいてもよい炭素数1~10の炭化水素基を、Rは水素原子又は炭素数6~20の芳香族炭化水素基を、Xはそれぞれ独立してハロゲン原子を、mは0~4の整数を、nは0~3の整数を表す。但し、mが2~4の整数である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよく、nが2又は3である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよい。)
 なお、R、R、R、R、X等については、<有機ケイ素化合物の製造方法>において説明した内容と同様である。
 鉄錯体化合物の製造方法は、特に限定されないが、通常イミノビピリジン化合物と2価のハロゲン化鉄を反応させることが挙げられる。
Figure JPOXMLDOC01-appb-C000024
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<配位子の合成>
(合成例1:6-ブロモピリジン-2-カルボキシアルデヒドの合成)
Figure JPOXMLDOC01-appb-C000025

 n-BuLiヘキサン溶液(2.65M,103mL,273mmol)を-30℃下、THF(395mL)で希釈し、-80℃に冷却した。温度を-80℃に維持し、撹拌しながら、これに2,6-ジブロモピリジン(60.0g,248mmol)のTHF(210mL)溶液を滴下した。-80℃以下で30分間撹拌を続けた後、過剰量の無水DMF(29.0mL,372mmol)を1分間かけて滴下したところ、発熱反応が生じた。この反応液を-70℃以下に冷却した後、室温に戻し、反応をメタノール(180mL)でクエンチして、飽和炭酸水素ナトリウム水溶液(600mL)を加えた。この溶液をクロロホルム(600mL×5)で抽出し、有機相を集めて溶媒を留去した。粗生成物をカラムクロマトグラフィー(シリカ,CHCl,Rf=0.70)で精製し、白色粉体である6-ブロモピリジン-2-カルボキシアルデヒドを得た(収率:93%)。
1H NMR (400 MHz, CDCl3): 7.71 (m, 2H), 7.93 (dd, 1H, J = 6.8, 1.8 Hz), 10.01 (s,1H).
(合成例2:2-(トリブチルスタニル)ピリジンの合成)
Figure JPOXMLDOC01-appb-C000026

 n-BuLiヘキサン溶液(2.65M,95mL,251mmol)を、2-ブロモピリジン(40.0g,233mmol)のTHF(360mL)溶液に-78℃下で滴下した。-70℃下で30分間撹拌した後、-78℃下でトリブチルスズクロリド(90.8g,279mmol)を加え、反応液を室温に戻した。反応をメタノール(30.5mL)でクエンチし、溶媒を留去した。得られた分散液を酢酸エチル(200mL)で希釈し、セライトで濾過した。濾液の溶媒を留去し、得られた油性成分を蒸留(140℃,180Pa)して精製し、黄色の油性成分である2-(トリブチルスタニル)ピリジンを得た(収率74%)。
1H NMR (400 MHz, CDCl3): 0.88 (t, 9H, J = 7.3 Hz), 1.12 (m, 6H), 1.32 (m, 6H), 1.56 (m, 6H), 7.11 (m, 1H), 7.39 (d, 1H, J = 7.3 Hz), 7.48 (m, 1H), 8.73 (d, 1H, J = 4.5 Hz).
(合成例3:[2,2’]ビピリジン-6-カルボキシアルデヒドの合成)
Figure JPOXMLDOC01-appb-C000027

 6-ブロモピリジン-2-カルボキシアルデヒド(20.4g,110mmol)、2-(トリブチルスタニル)ピリジン(40.4g,110mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム(6.33g,5.48mmol)のトルエン(200mL)溶液を窒素下で一晩還流した。この反応液を水(100mL)で洗浄し、溶媒を留去した。粗生成物をカラムクロマトグラフィー(シリカ,AcOEt,Rf=0.70)で精製し、黄色粉体である[2,2’]ビピリジン-6-カルボキシアルデヒドを得た(収率:43%)。
1H NMR (400 MHz, CDCl3): 7.36 (m, 1H), 7.86 (m, 1H), 7.98 (m, 2H), 8.54 (m, 1H),8.65 (m, 1H), 8.71 (m, 1H), 10.17 (d, 1H, J = 1.2).
(合成例4:N-([2,2’-ビピリジン]-6-イルメチレン)-2,4,6-トリメチルベンゼンアミンの合成)
Figure JPOXMLDOC01-appb-C000028

 2,4,6-トリメチルアニリン(1.14g,8.14mmol)及び[2,2’]ビピリジン-6-カルボキシアルデヒド(1.50g、8.14mmol)のメタノール(20.0mL)溶液を還流温度で加熱し、室温まで戻した。減圧下で溶媒を留去後、粗生成物をクーゲルロール蒸留(250℃,170Pa)を利用して精製し、黄色の油性成分であるN-([2,2’-ビピリジン]-6-イルメチレン)-2,4,6-トリメチルベンゼンアミンを得た(収率:82%)。なお、生成物には不純物として少量の2,4,6-トリメチルアニリンが含まれている。
1H NMR (400 MHz, CDCl3): 2.17 (s, 6H), 2.31 (s, 3H), 6.92 (s, 2H), 7.34 (m, 1H),7.84 (m, 1H), 7.97 (t, 1H, J = 7.9 Hz), 8.32 (d, 1H, J = 7.8 Hz), 8.44 (s, 1H),8.51 (m, 2H), 8.71 (m, 1H).
13C{1H} NMR (100.4 MHz, CDCl3): 18.39, 20.88, 121.00, 121.32, 122.67, 124.03, 126.92, 128.90, 133.47, 137.07, 137.64, 148.11, 149.36, 154.23, 155.81, 156.11, 164.02.
(合成例5:N-([2,2’-ビピリジン]-6-イルメチレン)-2,6-ジイソプロピルベンゼンアミンの合成)
Figure JPOXMLDOC01-appb-C000029

 2,6-ジイソプロピルアニリン(1.44g,8.14mmol)及び[2,2’]ビピリジン-6-カルボキシアルデヒド(1.50g、8.14mmol)のメタノール(20.0mL)溶液を還流温度で加熱し、室温まで戻した。減圧下で溶媒を留去後、粗生成物をクーゲルロール蒸留(240℃,170Pa)を利用して精製し、黄色粉体であるN-([2,2’-ビピリジン]-6-イルメチレン)-2,6-ジイソプロピルベンゼンアミンを得た(収率:55%)。なお、生成物には不純物として少量の2,6-ジイソプロピルアニリンが含まれている。
1H NMR (400 MHz, CDCl3): 1.19 (d, 12H, J = 6.8 Hz), 3.01 (sept, 2H, J = 6.7 Hz),7.11-7.22 (m, 3H), 7.34 (m, 1H), 7.85 (m, 1H), 7.98 (t, 1H, J = 7.6 Hz), 8.32 (d, 1H, J = 7.7 Hz), 8.41 (s, 1H), 8.52 (m, 2H), 8.71 (m, 1H).
13C{1H} NMR (100.4MHz, CDCl3): 23.53, 28.08, 121.11, 121.36, 122.73, 123.14, 124.05, 124.51, 137.06, 137.35, 137.69, 148.63, 149.34, 154.05, 155.78, 156.19, 163.52.
(合成例6:6-メチル-2-(トリブチルスタニル)ピリジンの合成)
Figure JPOXMLDOC01-appb-C000030

 n-BuLiヘキサン溶液(2.65M,28.0mL,74.6mmol)を、2-ブロモ-6-メチルピリジン(11.9g,69.2mmol)のTHF(107mL)溶液に-80℃下で滴下した。-70℃下で30分間撹拌した後、-80℃以下の温度でトリブチルスズクロリド(27.0g,83.0mmol)を加え、反応液を室温に戻した。反応をメタノール(10.0mL)でクエンチし、溶媒を留去した。得られた分散液をクロロホルム(100mL)で希釈し、セライトで濾過した。濾液の溶媒を留去し、得られた油性成分を蒸留(150℃,60Pa)して精製し、無色油性成分である6-メチル-2-(トリブチルスタニル)ピリジンを得た(収率65%)。
1H NMR (400 MHz, CDCl3): 0.88 (t, 9H, J = 7.3 Hz), 1.10 (m, 6H), 1.32 (m, 6H), 1.56 (m, 6H), 2.54 (s, 3H), 6.95 (d, 1H, J = 7.6 Hz), 7.17 (d, 1H, J = 7.2 Hz), 7.36 (t, 1H, J = 7.6 Hz).
(合成例7:6’-メチル[2,2’]ビピリジン-6-カルボキシアルデヒドの合成)
Figure JPOXMLDOC01-appb-C000031

 6-ブロモピリジン-2-カルボキシアルデヒド(1.89g,10.2mmol)、6-メチル-2-(トリブチルスタニル)ピリジン(3.88g,10.2mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム(1.17g,1.02mmol)のトルエン(18.9mL)溶液を窒素下で一晩還流した。この反応液を水(10.0mL)で洗浄し、溶媒を留去した。粗生成物をクーゲルロール蒸留(125℃,190Pa)を利用して精製し、白色粉体である6’-メチル[2,2’]ビピリジン-6-カルボキシアルデヒドを得た(収率:73%)。
1H NMR (400 MHz, CDCl3): 2.65 (s, 3H), 7.22 (d, 1H, J = 7.6 Hz), 7.33 (br, 1H), 7.75 (t, 1H, J = 7.8 Hz), 7.97 (m, 1H), 8.33 (d, 1H, J = 7.6 Hz), 8.67 (dd, 1H, J = 6.5, 2.3 Hz), 10.17 (s, 1H).
(合成例8:N-[1-(6’-メチル[2,2’-ビピリジン]-6-イル)メチレン]-ベンゼンアミンの合成)
Figure JPOXMLDOC01-appb-C000032

 アニリン(0.10g,1.07mmol)及び6’-メチル[2,2’]ビピリジン-6-カルボキシアルデヒド(0.21g、1.07mmol)のメタノール(3.2mL)溶液を還流温度で加熱し、室温まで戻した。沈殿物を濾過で単離し、メタノール(0.3mL)で3回洗浄、真空乾燥させて、黄色粉体であるN-[1-(6’-メチル[2,2’-ビピリジン]-6-イル)メチレン]-ベンゼンアミンを得た(収率:26%)。
1H NMR (400 MHz, CDCl3): 2.67 (s, 3H), 7.21 (d, 1H, J = 7.6 Hz), 7.24-7.35 (m, 3H), 7.43 (t, 2H, J = 7.6 Hz), 7.75 (t, 1H, J = 7.8 Hz), 7.94 (t, 1H, J = 7.8 Hz), 8.25 (d, 1H, J = 7.8 Hz), 8.29 (d, 1H, J = 7.8 Hz), 8.52 (d, 1H, J = 7.8 Hz), 8.71 (s, 1H).
13C{1H} NMR (100.4 MHz, CDCl3): 24.73, 118.44, 121.28, 121.38, 121.50, 122.82, 123.73, 129.36, 137.44, 137.64, 151.24, 154.30, 155.16, 158.16, 161.40, 193.96.
Anal. Calcd. for C18H15N3: C, 79.10; H, 5.53; N, 15.37. Found: C, 79.04; H, 5.62; N, 15.43.
(合成例9:N-[1-(6’-メチル[2,2’-ビピリジン]-6-イル)メチレン]-2,4,6-トリメチルベンゼンアミンの合成)
Figure JPOXMLDOC01-appb-C000033

 アニリンを2,4,6-トリメチルアニリンに変更した以外、合成例8と同様の方法を行って、黄色粉体であるN-[1-(6’-メチル[2,2’-ビピリジン]-6-イル)メチレン]-2,4,6-トリメチルベンゼンアミンを得た(収率:55%)。
1H NMR (400 MHz, CDCl3): 2.16 (s, 6H), 2.30 (s, 3H), 2.66 (s, 3H), 6.91 (s, 2H),7.20 (d, 1H, J = 7.6 Hz), 7.72 (t, 1H, J = 7.8 Hz), 7.95 (t, 1H, J = 7.8 Hz), 8.26 (d, 1H, J = 7.8 Hz), 8.29 (d, 1H, J = 7.8 Hz), 8.42 (s, 1H), 8.52 (d, 1H, J =7.8 Hz).
13C{1H} NMR (100.4 MHz, CDCl3): 18.40, 20.89, 24.80, 118.33, 120.82, 122.77, 123.63, 126.95, 128.88, 133.45, 137.25, 137.57, 148.13, 154.17, 155.21, 156.44, 158.17, 164.16.
Anal. Calcd. for C21H21N3: C, 79.97; H, 6.71; N, 13.32. Found: C, 80.11; H, 6.85; N, 13.36.
(合成例10:N-[1-(6’-メチル[2,2’-ビピリジン]-6-イル)メチレン]-2,6-ジイソプロピルベンゼンアミンの合成)
Figure JPOXMLDOC01-appb-C000034

 アニリンを2,4,6-トリメチルアニリンに変更した以外、合成例8と同様の方法を行って、黄色粉体であるN-[1-(6’-メチル[2,2’-ビピリジン]-6-イル)メチレン]-2,6-ジイソプロピルベンゼンアミンを得た(収率:96%)。
1H NMR (400 MHz, CDCl3): 1.19 (d, 12H, J = 6.8 Hz), 2.67 (s, 3H), 3.01 (sept, 2H, J = 6.8 Hz), 7.11-7.22 (m, 4H), 7.73 (t, 1H, J = 7.8 Hz), 7.97 (t, 1H, J = 7.8Hz), 8.29 (d, 2H, J = 7.5 Hz), 8.40 (s, 1H), 8.56 (d, 1H, J = 7.6 Hz).
13C{1H} NMR (100.4 MHz, CDCl3): 23.59, 24.80, 28.09, 118.37, 120.93, 122.83, 123.15, 123.64, 124.50, 137.23, 137.39, 137.61, 148.67, 154.02, 155.21, 156.55, 158.15, 163.65.
Anal. Calcd. for C24H24N3: C, 80.63; H, 7.61; N, 11.75. Found: C, 80.43; H,7.71; N, 11.70.
<式(A)で表される鉄錯体化合物の調製>
(実施例1:N-([2,2’-ビピリジン]-6-イルメチレン)-2,4,6-トリメチルベンゼンアミン鉄(II)ブロミドの調製)
Figure JPOXMLDOC01-appb-C000035

 乾燥した窒素雰囲気、室温下で激しく撹拌しながら、臭化鉄(II)(1.20g,5.55mmol)を、N-([2,2’-ビピリジン]-6-イルメチレン)-2,4,6-トリメチルベンゼンアミン(1.68g,5.57mmol)のTHF(84.0mL)溶液に加えた。沈殿物を濾過で単離し、THF(8.0mL)で3回洗浄、真空乾燥させて、暗緑色粉体であるN-([2,2’-ビピリジン]-6-イルメチレン)-2,4,6-トリメチルベンゼンアミン鉄(II)ブロミド(以下、「鉄錯体化合物1」と略す場合がある。)を得た(収率:89%)。
Anal. Calcd. for C20H19Br2FeN3: C, 46.46; H, 3.70; N, 8.13. Found: C, 46.00; H, 3.84; N, 7.96.
(実施例2:N-([2,2’-ビピリジン]-6-イルメチレン)-2,6-ジイソプロピルベンゼンアミン鉄(II)ブロミドの調製)
Figure JPOXMLDOC01-appb-C000036

 N-([2,2’-ビピリジン]-6-イルメチレン)-2,4,6-トリメチルベンゼンアミンをN-([2,2’-ビピリジン]-6-イルメチレン)-2,6-ジイソプロピルベンゼンアミンに変更した以外、実施例1と同様の方法を行って、青緑色粉体であるN-([2,2’-ビピリジン]-6-イルメチレン)-2,6-ジイソプロピルベンゼンアミン鉄(II)ブロミド(以下、「鉄錯体化合物2」と略す場合がある。)を得た(収率:59%)。
Anal. Calcd. for C23H25Br2FeN3: C, 49.41; H, 4.51; N, 7.52. Found: C, 49.44; H, 4.68; N, 7.31.
(実施例3:N-[1-(6’-メチル[2,2’-ビピリジン]-6-イル)メチレン]-ベンゼンアミン鉄(II)ブロミドの調製)
Figure JPOXMLDOC01-appb-C000037

 N-([2,2’-ビピリジン]-6-イルメチレン)-2,4,6-トリメチルベンゼンアミンをN-[1-(6’-メチル[2,2’-ビピリジン]-6-イル)メチレン]-ベンゼンアミンに変更した以外、実施例1と同様の方法を行って、緑色粉体であるN-[1-(6’-メチル[2,2’-ビピリジン]-6-イル)メチレン]-ベンゼンアミン鉄(II)ブロミド(以下、「鉄錯体化合物3」と略す場合がある。)を得た(収率:93%)。
Anal. Calcd. for C18H15Br2FeN3: C, 44.21; H, 3.09; N, 8.59. Found: C, 44.45; H, 3.41; N, 8.13.
(実施例4:N-[1-(6’-メチル[2,2’-ビピリジン]-6-イル)メチレン]-2,4,6-トリメチルベンゼンアミン鉄(II)ブロミドの調製)
Figure JPOXMLDOC01-appb-C000038

 N-([2,2’-ビピリジン]-6-イルメチレン)-2,4,6-トリメチルベンゼンアミンをN-[1-(6’-メチル[2,2’-ビピリジン]-6-イル)メチレン]-2,4,6-トリメチルベンゼンアミンに変更した以外、実施例1と同様の方法を行って、青緑色粉体であるN-[1-(6’-メチル[2,2’-ビピリジン]-6-イル)メチレン]-2,4,6-トリメチルベンゼンアミン鉄(II)ブロミド(以下、「鉄錯体化合物4」と略す場合がある。)を得た(収率:86%)。
Anal. Calcd. for C21H21Br2FeN3: C, 47.49; H, 3.99; N, 7.91. Found: C, 47.23; H, 4.03; N, 7.84.
(実施例5:N-[1-(6’-メチル[2,2’-ビピリジン]-6-イル)メチレン]-2,6-ジイソプロピルベンゼンアミン鉄(II)ブロミドの調製)
Figure JPOXMLDOC01-appb-C000039

 N-([2,2’-ビピリジン]-6-イルメチレン)-2,4,6-トリメチルベンゼンアミンをN-[1-(6’-メチル[2,2’-ビピリジン]-6-イル)メチレン]-2,6-ジイソプロピルベンゼンアミンに変更した以外、実施例1と同様の方法を行って、青緑色粉体であるN-[1-(6’-メチル[2,2’-ビピリジン]-6-イル)メチレン]-2,6-ジイソプロピルメチルベンゼンアミン鉄(II)ブロミド(以下、「鉄錯体化合物5」と略す場合がある。)を得た(収率:59%)。
Anal. Calcd. for C24H24Br2FeN3: C, 50.29; H, 4.75; N, 7.33. Found: C, 50.41; H, 4.93; N, 7.06.
<有機ケイ素化合物の製造(ヒドロシリル化反応)>
(実施例6)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、1-オクテン(9.2mL,58mmol)を加え室温にて撹拌を開始した。このスラリー溶液にフェニルシラン(0.72mL,5.8mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(24μL,0.024mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、ジオクチルフェニルシラン(変換率:89%)の生成を確認した。結果を表1に示す。
(実施例7)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、1-オクテン(9.2mL,58mmol)を加え室温にて撹拌を開始した。このスラリー溶液にフェニルシラン(0.72mL,5.8mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(24μL,0.024mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。外温100℃に設定して反応開始とし、24時間後、室温まで冷却後、反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、ジオクチルフェニルシラン(変換率:91%)の生成を確認した。結果を表1に示す。
(実施例8)
 鉄錯体化合物1を鉄錯体化合物2に変更した以外、実施例6と同様の方法により反応を行った。結果を表1に示す。
(実施例9)
 鉄錯体化合物1を鉄錯体化合物2に変更した以外、実施例7と同様の方法により反応を行った。結果を表1に示す。
(実施例10)
 鉄錯体化合物1を鉄錯体化合物3(0.021mmol)に変更した以外、実施例7と同様の方法により反応を行った。結果を表1に示す。
(実施例11)
 フレームドライを行い、窒素を流入したシュレンク管に鉄錯体化合物4(3.0mg,0.0056mmol)を精密に量り取り、1-オクテン(8.9mL,56.49mmol)を加え室温にて撹拌を開始した。このスラリー溶液にフェニルシラン(0.70mL,5.65mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(24μL,0.024mmol)を滴下した。2分以内に反応溶液は無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルフェニルシラン(変換率:72%)及びジオクチルフェニルシラン(変換率:26%)の生成を確認した。結果を表1に示す。
(実施例12)
 フレームドライを行い、窒素を流入したシュレンク管に鉄錯体化合物4(3.0mg,0.0056mmol)を精密に量り取り、1-オクテン(8.9mL,56mmol)を加え室温にて撹拌を開始した。このスラリー溶液にフェニルシラン(0.70mL,5.7mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(24μL,0.024mmol)を滴下した。2分以内に反応溶液は無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。外温100℃に設定して反応開始とし、24時間後、室温まで冷却後、反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルフェニルシラン(変換率:58%)及びジオクチルフェニルシラン(変換率:40%)の生成を確認した。結果を表1に示す。
(実施例13)
 鉄錯体化合物4を鉄錯体化合物5に変更した以外、実施例11と同様の方法により反応を行った。結果を表1に示す。
(実施例14)
 鉄錯体化合物4を鉄錯体化合物5に変更した以外、実施例12と同様の方法により反応を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000040
(実施例15)
 フェニルシランをジフェニルシランに変更した以外、実施例6と同様の方法により反応を行った。結果を表2に示す。
(実施例16)
 フェニルシランをジフェニルシランに変更した以外、実施例7と同様の方法により反応を行った。結果を表2に示す。
(実施例17)
 フェニルシランをジフェニルシランに変更した以外、実施例8と同様の方法により反応を行った。結果を表2に示す。
(実施例18)
 フェニルシランをジフェニルシランに変更した以外、実施例9と同様の方法により反応を行った。結果を表2に示す。
(実施例19)
 フェニルシランをジフェニルシランに変更した以外、実施例11と同様の方法により反応を行った。結果を表2に示す。
(実施例20)
 フェニルシランをジフェニルシランに変更した以外、実施例12と同様の方法により反応を行った。結果を表2に示す。
(実施例21)
 フェニルシランをジフェニルシランに変更した以外、実施例13と同様の方法により反応を行った。結果を表2に示す。
(実施例22)
 フェニルシランをジフェニルシランに変更した以外、実施例14と同様の方法により反応を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000041
(実施例23)
 フェニルシランをフェニル(メチル)シランに変更した以外、実施例6と同様の方法により反応を行った。結果を表3に示す。
(実施例24)
 フェニルシランをフェニル(メチル)シランに変更した以外、実施例7と同様の方法により反応を行った。結果を表3に示す。
(実施例25)
 フェニルシランをフェニル(メチル)シランに変更した以外、実施例8と同様の方法により反応を行った。結果を表3に示す。
(実施例26)
 フェニルシランをフェニル(メチル)シランに変更した以外、実施例9と同様の方法により反応を行った。結果を表3に示す。
(実施例27)
 フェニルシランをフェニル(メチル)シランに変更した以外、実施例11と同様の方法により反応を行った。結果を表3に示す。
(実施例28)
 フェニルシランをフェニル(メチル)シランに変更した以外、実施例12と同様の方法により反応を行った。結果を表3に示す。
(実施例29)
 フェニルシランをフェニル(メチル)シランに変更した以外、実施例13と同様の方法により反応を行った。結果を表3に示す。
(実施例30)
 フェニルシランをフェニル(メチル)シランに変更した以外、実施例14と同様の方法により反応を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000042
(実施例31)
 鉄錯体化合物1の使用量を0.019mmolに、フェニルシランをジフェニル(メチル)シランに変更した以外、実施例6と同様の方法により反応を行った。結果を表4に示す。
(実施例32)
 鉄錯体化合物1の使用量を0.019mmolに、フェニルシランをジフェニル(メチル)シランに変更した以外、実施例7と同様の方法により反応を行った。結果を表4に示す。
(実施例33)
 鉄錯体化合物2の使用量を0.018mmolに、フェニルシランをジフェニル(メチル)シランに変更した以外、実施例8と同様の方法により反応を行った。結果を表4に示す。
(実施例34)
 鉄錯体化合物2の使用量を0.018mmolに、フェニルシランをジフェニル(メチル)シランに変更した以外、実施例9と同様の方法により反応を行った。結果を表4に示す。
(実施例35)
 鉄錯体化合物4の使用量を0.019mmolに、フェニルシランをジフェニル(メチル)シランに変更した以外、実施例11と同様の方法により反応を行った。結果を表4に示す。
(実施例36)
 鉄錯体化合物4の使用量を0.019mmolに、フェニルシランをジフェニル(メチル)シランに変更した以外、実施例12と同様の方法により反応を行った。結果を表4に示す。
(実施例37)
 鉄錯体化合物5の使用量を0.017mmolに、フェニルシランをジフェニル(メチル)シランに変更した以外、実施例13と同様の方法により反応を行った。結果を表4に示す。
(実施例38)
 鉄錯体化合物5の使用量を0.017mmolに、フェニルシランをジフェニル(メチル)シランに変更した以外、実施例14と同様の方法により反応を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000043
(実施例39)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物5(3.0mg,0.0052mmol)を精密に量り取り、ヘキサン(7.5mL)を加え、室温にて撹拌を開始した。このスラリー溶液に1-オクテン(0.83mL,5.2mmol)とフェニルシラン(0.65mL,5.2mmol)を順次加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(24μL,0.024mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルフェニルシラン(変換率:94%)及びジオクチルフェニルシラン(変換率:6%)の生成を確認した。結果を表5に示す。
(実施例40)
 ヘキサンをトルエンに変更した以外、実施例39と同様の方法により反応を行った。結果を表5に示す。
(実施例41)
 ヘキサンをジエチルエーテルに変更した以外、実施例39と同様の方法により反応を行った。結果を表5に示す。
(実施例42)
 ヘキサンをテトラヒドロフラン(THF)に変更した以外、実施例39と同様の方法により反応を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000044
(実施例43)
 フレームドライを行い、窒素を流入したシュレンク管に鉄錯体化合物1(10mg,0.019mmol)を精密に量り取り、シクロヘキセン(2.0mL,19mmol)を加え室温にて撹拌を開始した。このスラリー溶液にフェニルシラン(0.24mL,1.9mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(78μL,0.078mmol)を滴下した。2分以内に反応溶液は無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて触媒前駆体の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、シクロヘキシルフェニルシラン(変換率:50%)の生成を確認した。結果を表6に示す。
(実施例44)
 フレームドライを行い、窒素を流入したシュレンク管に鉄錯体化合物1(10mg,0.019mmol)を精密に量り取り、シクロヘキセン(2.0mL,19mmol)を加え室温にて撹拌を開始した。このスラリー溶液にフェニルシラン(0.24mL,1.9mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(78μL,0.078mmol)を滴下した。2分以内に反応溶液は無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて触媒前駆体の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。外温100℃に設定して反応開始とし、24時間後、室温まで冷却後、反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、シクロヘキシルフェニルシラン(変換率:93%)の生成を確認した。結果を表6に示す。
(実施例45)
 鉄錯体化合物1を鉄錯体化合物2に変更した以外、実施例43と同様の方法により反応を行った。結果を表6に示す。
(実施例46)
 鉄錯体化合物1を鉄錯体化合物2に変更した以外、実施例44と同様の方法により反応を行った。結果を表6に示す。
(実施例47)
 鉄錯体化合物2の使用量を0.0054mmolに変更した以外、実施例43と同様の方法により反応を行った。結果を表6に示す。
(実施例48)
 鉄錯体化合物2の使用量を0.0054mmolに変更した以外、実施例44と同様の方法により反応を行った。結果を表6に示す。
(実施例49)
 鉄錯体化合物1を鉄錯体化合物4に変更した以外、実施例43と同様の方法により反応を行った。結果を表6に示す。
(実施例50)
 鉄錯体化合物1を鉄錯体化合物4に変更した以外、実施例44と同様の方法により反応を行った。結果を表6に示す。
(実施例51)
 鉄錯体化合物1を鉄錯体化合物5に変更した以外、実施例43と同様の方法により反応を行った。結果を表6に示す。
(実施例52)
 鉄錯体化合物1を鉄錯体化合物5に変更した以外、実施例44と同様の方法により反応を行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000045
(実施例53)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、1-オクテン(9.2mL,58mmol)を加え室温にて撹拌を開始した。このスラリー溶液にフェニルシラン(0.72mL,5.8mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(40μL,0.040mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、ジオクチルフェニルシラン(変換率:89%)の生成を確認した。結果を表7に示す。
(実施例54)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、1-オクテン(9.2mL,58mmol)を加え室温にて撹拌を開始した。このスラリー溶液にフェニルシラン(7.2mL,58mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(120μL,0.12mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルフェニルシラン(変換率:64%)及びジオクチルフェニルシラン(変換率:9%)の生成を確認した。結果を表7に示す。
(実施例55)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、ヘキサン(18mL)を加え、室温にて撹拌を開始した。このスラリー溶液に1-オクテン(18.4mL,120mmol)とフェニルシラン(7.2mL,58mmol)を順次加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(120μL,0.12mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルフェニルシラン(変換率:37%)及びジオクチルフェニルシラン(変換率:3%)の生成を確認した。結果を表7に示す。
(実施例56)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物2(3.0mg,0.0054mmol)を精密に量り取り、1-オクテン(8.5mL,54mmol)を加え室温にて撹拌を開始した。このスラリー溶液にフェニルシラン(066mL,5.4mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(22μL,0.022mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、ジオクチルフェニルシラン(変換率:86%)の生成を確認した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000046
(実施例57)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、1-オクテン(9.2mL,58mmol)を加え室温にて撹拌を開始した。このスラリー溶液にジフェニルシラン(1.1mL,5.8mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(24μL,0,024mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルジフェニルシラン(変換率:65%)及びジオクチルジフェニルシラン(変換率:22%)の生成を確認した。結果を表8に示す。
(実施例58)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、ヘキサン(36mL)を加え、室温にて撹拌を開始した。このスラリー溶液に1-オクテン(18mL,120mmol)とフェニルシラン(11mL,58mmol)を順次加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(120μL,0.12mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルジフェニルシラン(変換率:81%)の生成を確認した。結果を表8に示す。
(実施例59)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物2(3.0mg,0.0054mmol)を精密に量り取り、1-オクテン(8.5mL,54mmol)を加え室温にて撹拌を開始した。このスラリー溶液にジフェニルシラン(1.0mL,5.4mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(22μL,0.022mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルジフェニルシラン(変換率:59%)及びジオクチルジフェニルシラン(変換率:20%)の生成を確認した。結果を表8に示す。
(実施例60)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物2(3.0mg,0.0054mmol)を精密に量り取り、1-オクテン(1.7mL,11mmol)を加え室温にて撹拌を開始した。このスラリー溶液にジフェニルシラン(1.0mL,5.4mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(22μL,0.022mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルジフェニルシラン(変換率:79%)及びジオクチルジフェニルシラン(変換率:6%)の生成を確認した。結果を表8に示す。
(実施例61)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物2(3.0mg,0.0054mmol)を精密に量り取り、1-オクテン(17mL,110mmol)を加え室温にて撹拌を開始した。このスラリー溶液にジフェニルシラン(10mL,54mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(120μL,0.12mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルジフェニルシラン(変換率:94%)及びジオクチルジフェニルシラン(変換率:0.7%)の生成を確認した。結果を表8に示す。
(実施例62)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物2(3.0mg,0.0054mmol)を精密に量り取り、ヘキサン(34mL)を加え、室温にて撹拌を開始した。このスラリー溶液に1-オクテン(17mL,110mmol)とジフェニルシラン(10mL,54mmol)を順次加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(120μL,0.12mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルジフェニルシラン(変換率:97%)の生成を確認した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000047
(実施例63)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、1-オクテン(9.2mL,58mmol)を加え室温にて撹拌を開始した。このスラリー溶液にフェニル(メチル)シラン(0.81mL,5.8mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(24μL,0.024mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、ジオクチルフェニル(メチル)シラン(変換率:84%)の生成を確認した。結果を表9に示す。
(実施例64)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、1-オクテン(9.2mL,58mmol)を加え室温にて撹拌を開始した。このスラリー溶液にフェニル(メチル)シラン(8.1mL,58mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(120μL,0.12mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルフェニル(メチル)シラン(変換率:87%)の生成を確認した。結果を表9に示す。
(実施例65)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、ヘキサン(18mL)を加え、室温にて撹拌を開始した。このスラリー溶液に1-オクテン(9.2mL,58mmol)とフェニル(メチル)シラン(8.1mL,58mmol)を順次加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(120μL,0.12mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルフェニル(メチル)シラン(変換率:73%)の生成を確認した。結果を表9に示す。
(実施例66)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、ヘキサン(36mL)を加え、室温にて撹拌を開始した。このスラリー溶液に1-オクテン(18mL,120mmol)とフェニル(メチル)シラン(8.1mL,58mmol)を順次加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(120μL,0.12mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルフェニル(メチル)シラン(変換率:87%)の生成を確認した。結果を表9に示す。
(実施例67)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、ヘキサンを加え、室温にて撹拌を開始した。このスラリー溶液に1-オクテン(46mL,290mmol)とフェニル(メチル)シラン(8.1mL,58mmol)を順次加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(120μL,0.12mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルフェニル(メチル)シラン(変換率:17%)の生成を確認した。結果を表9に示す。
(実施例68)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、トルエン(18mL)を加え、室温にて撹拌を開始した。このスラリー溶液に1-オクテン(9.2mL,58mmol)とフェニル(メチル)シラン(8.1mL,58mmol)を順次加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(120μL,0.12mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルフェニル(メチル)シラン(変換率:73%)の生成を確認した。結果を表9に示す。
(実施例69)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物2(3.0mg,0.0054mmol)を精密に量り取り、1-オクテン(8.5mL,54mmol)を加え室温にて撹拌を開始した。このスラリー溶液にフェニル(メチル)シラン(0.75mL,5.4mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(22μL,0.022mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、ジオクチルフェニル(メチル)シラン(変換率:74%)の生成を確認した。結果を表9に示す。
(実施例70)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物2(3.0mg,0.0054mmol)を精密に量り取り、1-オクテン(17mL,110mmol)を加え室温にて撹拌を開始した。このスラリー溶液にフェニル(メチル)シラン(7.5mL,54mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(110μL,0.11mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルフェニル(メチル)シラン(変換率:41%)及びジオクチルフェニル(メチル)シラン(変換率:34%)の生成を確認した。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000048
(実施例71)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(10mg,0.019mmol)を精密に量り取り、1-オクテン(3.1mL,19mmol)を加え室温にて撹拌を開始した。このスラリー溶液にジフェニル(メチル)シラン(0.41mL,1.9mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(7.8μL,0.078mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルジフェニル(メチル)シラン(変換率:72%)の生成を確認した。結果を表10に示す。
(実施例72)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、1-オクテン(0.92mL,5.8mmol)を加え室温にて撹拌を開始した。このスラリー溶液にジフェニル(メチル)シラン(1.2mL,5.8mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(24μL,0.024mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルジフェニル(メチル)シラン(変換率:6%)の生成を確認した。結果を表10に示す。
(実施例73)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、1-オクテン(1.8mL,12mmol)を加え室温にて撹拌を開始した。このスラリー溶液にジフェニル(メチル)シラン(1.2mL,5.8mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(24μL,0.024mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルジフェニル(メチル)シラン(変換率:2%)の生成を確認した。結果を表10に示す。
(実施例74)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、ヘキサン(3.6mL)を加え、室温にて撹拌を開始した。このスラリー溶液に1-オクテン(1.8mL,12mmol)とジフェニル(メチル)シラン(1.2mL,5.8mmol)を順次加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(24μL,0.024mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルジフェニル(メチル)シラン(変換率:3%)の生成を確認した。結果を表10に示す。
(実施例75)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、1-オクテン(0.92mL,5.8mmol)を加え室温にて撹拌を開始した。このスラリー溶液にジフェニル(メチル)シラン(2.4mL,12mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(24μL,0.024mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルジフェニル(メチル)シラン(変換率:67%)の生成を確認した。結果を表10に示す。
(実施例76)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、1-オクテン(0.31mL,1.9mmol)を加え室温にて撹拌を開始した。このスラリー溶液にジフェニル(メチル)シラン(0.81mL,3.9mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(24μL,0.024mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルジフェニル(メチル)シラン(変換率:87%)の生成を確認した。結果を表10に示す。
(実施例77)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物2(10mg,0.018mmol)を精密に量り取り、1-オクテン(2.8mL,18mmol)を加え室温にて撹拌を開始した。このスラリー溶液にジフェニル(メチル)シラン(0.38mL,1.8mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(72μL,0.072mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルジフェニル(メチル)シラン(変換率:43%)の生成を確認した。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000049
(実施例78)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物2(10mg,0.018mmol)を精密に量り取り、1-オクテン(5.7mL,36mmol)を加え室温にて撹拌を開始した。このスラリー溶液にジフェニルシラン(3.4mL,18mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(72μL,0.072mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、18分(0.3時間)後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルジフェニルシラン(変換率:79%)及び時刻チルジフェニルシラン(変換率:6%)の生成を確認した。結果を表11に示す。
(実施例79)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物2(3.0mg,0.0054mmol)を精密に量り取り、1-オクテン(17mL,110mmol)を加え室温にて撹拌を開始した。このスラリー溶液にジフェニルシラン(10mL,54mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(110μL,0.11mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、66分(1.1時間)後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルジフェニルシラン(変換率:94%)及び時刻チルジフェニルシラン(変換率:0.7%)の生成を確認した。結果を表11に示す。
(実施例80)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物2(3.0mg,0.0054mmol)を精密に量り取り、1-オクテン(21mL,130mmol)を加え室温にて撹拌を開始した。このスラリー溶液にジフェニルシラン(13mL,67mmol)を加えた後に1M水素化トリエチルホウ素ナトリウムのトルエン溶液(110μL,0.11mmol)を滴下した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、141分(2.3時間)後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルジフェニルシラン(変換率:96%)及びジオクチルジフェニルシラン(変換率:1.2%)の生成を確認した。結果を表11に示す。
Figure JPOXMLDOC01-appb-T000050
<配位子合成>
(合成例11:6-ブロモ-2,2’-ビピリジンの合成)
Figure JPOXMLDOC01-appb-C000051

 2,6-ジブロモピリジン(74.0g,312mmol)、2-(トリブチルスタニル)ピリジン(115g,312mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム(18.5g,16.0mmol)のトルエン溶液(120mL)を窒素下で一晩還流した。室温に戻し、溶媒を留去して、クロロホルム(630mL)を加えた。6N塩酸水溶液(630mL)を加え、水層をクロロホルム(630mL×2)で洗浄した。水層に10N水酸化ナトリウム水溶液(420mL)を加え、クロロホルム(630mL)で抽出した。有機相を集めて溶媒を留去した。粗生成物をカラムクロマトグラフィー(シリカ,AcOEt:Hexane=1:9)で精製し、白色粉末である6-ブロモ-2,2’-ビピリジンを得た(収率:62%)。
1H NMR (400 MHz, CDCl3): 7.32 (dd, 1H, J = 4.8, 7.6 Hz), 7.48 (d, 1H, J = 7.8 Hz), 7.66 (t, 1H, J = 7.8 Hz), 7.81 (td, 1H, J = 1.5, 7.9 Hz), 8.37 (d, 1H, J = 7.7 Hz), 8.49 (d, 1H, J = 8.2 Hz), 8.66 (bd, 1H, J = 4.4 Hz). 13C{1H} NMR (100 MHz, CDCl3): 119.84, 121.62, 124.40, 128.12, 137.15, 139.36, 141.72, 149.34, 154.61, 157.46.
(合成例12:1-[2,2’-ビピリジン]-6-イル-エタノンの合成)
Figure JPOXMLDOC01-appb-C000052

 6-ブロモ-2,2’-ビピリジン(15.0g,63.8mmol)をジエチルエーテル(45mL)、ヘキサン(23mL)、THF(23mL)に溶解し、-80℃に冷却した。温度を-80℃以下に維持し、n-BuLiヘキサン溶液(2.65M,26.5mL,70.2mmol)を30分かけて滴下した。-80℃で30分間撹拌を続けた後、過剰量のジメチルアセトアミド(12.0mL,128mmol)を1分間かけて滴下したところ発熱した。この反応溶液を一旦-80℃以下に冷却した後、室温に戻し一晩撹拌した。反応を水(45mL)でクエンチした。この溶液をAcOEt(90mL×5)で抽出し、有機相を集めて溶媒を留去した。粗生成物をクーゲルロール蒸留(140℃,170Pa)にて精製し、茶色粉末である1-[2,2’-ビピリジン]-6-イル-エタノンを得た(収率:89%)。
1H NMR (400 MHz, CDCl3): 2.84 (s, 3H), 7.36 (bt, 1H, J = 5.9 Hz), 7.87 (bt, 1H, J = 8.1 Hz), 7.96 (t, 1H, J = 7.8 Hz), 8.05 (d, 1H, J = 7.6 Hz), 8.53 (d, 1H, J = 8.0 Hz), 8.62 (d, 1H, J = 7.9 Hz), 8.70 (bd, 1H, J = 4.0 Hz).
13C{1H} NMR (100 MHz, CDCl3): 25.86, 121.26, 121.59, 124.26, 124.42, 137.13, 137.95, 149.38, 153.10, 155.53, 155.56, 200.41.
(合成例13:N-(1-[2,2’-ビピリジン]-6-イルエチリデン)-2,4,6-トリメチルベンゼンアミンの合成)
Figure JPOXMLDOC01-appb-C000053

 2,4,6-トリメチルアニリン(1.45mL,10.1mmol)及び1-[2,2’-ビピリジン]-6-イル-エタノン(2.00g,10.1mmol)のメタノール(20.0mL)溶液に蟻酸(5滴)を滴下し、2日間還流した。ガスクロマトグラフ質量分析を用いて反応の追跡を行い、1-[2,2’-ビピリジン]-6-イル-エタノンが全て消失するのを確認した。室温まで戻した後、減圧下で溶媒を留去した。粗生成物をクーゲルロール蒸留(240℃,140Pa)により精製し、黄色の油性成分であるN-(1-[2,2’-ビピリジン]-6-イルエチリデン)-2,4,6-トリメチルベンゼンアミンを得た(収率:71%)。なお、生成物は新規化合物であるが、少量の同定不可能な不純物が含まれている。しかし、実施例81に影響がないため、上記の精製方法以上は行っていない。
1H NMR (400 MHz, CDCl3): 2.04 (s, 6H), 2.31 (s, 6H), 6.92 (s, 2H), 7.33 (m, 1H),7.84 (m, 1H), 7.94 (t, 1H, J = 7.8 Hz), 8.42 (d, 1H, J = 7.8 Hz), 8.55 (t, 2H, J = 8.2 Hz), 8.71 (m, 1H).
13C{1H} NMR (100 MHz, CDCl3): 16.58, 17.98, 20.84, 121.16, 121.26, 122.02, 123.88, 125.38, 128.66, 132.25, 136.96, 137.45, 146.42, 149.27, 154.94, 155.87, 156.15, 167.61.
(合成例14:N-(1-[2,2’-ビピリジン]-6-イルエチリデン)-2,6-ジイソプロピルベンゼンアミンの合成)
Figure JPOXMLDOC01-appb-C000054

 2,6-ジイソプロピルアニリン(2.11mL,10.1mmol)及び1-[2,2’-ビピリジン]-6-イル-エタノン(2.00g,10.1mmol)のメタノール(20.0mL)溶液に蟻酸(5滴)を滴下し、還流した。ガスクロマトグラフ質量分析を用いて反応の追跡を行い、1-[2,2’-ビピリジン]-6-イル-エタノンが全て消失するのを確認した。室温まで戻した後、沈殿物を濾過で単離し、メタノール(10mL)で2回洗浄、真空乾燥させて、黄色粉末であるN-(1-[2,2’-ビピリジン]-6-イルエチリデン)-2,6-ジイソプロピルベンゼンアミンを得た(収率:88%)。
1H NMR (400 MHz, CDCl3): 1.16 (d, 12H, J = 6.8 Hz), 2.33 (s, 3H), 2.79 (sept, 2H, J = 6.6 Hz), 7.11 (m, 1H), 7.18 (m, 2H), 7.34 (m, 1H), 7.85 (m, 1H), 7.95 (t, 1H, J = 7.9 Hz), 8.40 (bd, 1H, J = 7.3 Hz), 8.55 (bt, 2H, J = 7.9 Hz), 8.71 (bd,1H, J = 4.4 Hz).
13C{1H} NMR (100 MHz, CDCl3): 17.67, 23.07, 23.36, 28.42, 121.22, 121.32, 122.07, 123.67, 123.94, 135.97, 137.02, 137.54, 146.69, 149.33, 155.04, 155.80, 156.21, 167.19. Anal. Calcd. for C24H27N3: C, 80.63; H, 7.61; N, 11.75. Found: C, 81.02; H, 7.70; N, 11.71.
(合成例15:2,2-ジメチル-1-[2,2’-ビピリジン]-6-イル-1-プロパノンの合成)
Figure JPOXMLDOC01-appb-C000055

 水素化ホウ素ナトリウム(7.80g,195mmol)のTHF(550mL)溶液を0℃以下に冷却し、1-[2,2’-ビピリジン]-6-イル-エタノン(4.29g,21.7mmol)のTHF(43.0mL)溶液を滴下した。この反応溶液を室温に戻し3時間撹拌を行い、再度0℃以下まで冷却した。温度を0℃以下に維持し、ヨードメタン(13.5mL,217mmol)を滴下した。この反応溶液を室温に戻し一晩撹拌した。反応溶液に水(70.0mL)とAcOEt(70.0mL)を加え、有機相を集めて溶媒を留去した。NMR測定の結果、トリアルキル化体とジアルキル化体の混合物として観測されたため、再度上記と同じ操作を行い、全てトリアルキル化体に変換した。粗生成物をクーゲルロール蒸留(150℃,180Pa)により精製し、黄色の油性成分である2,2-ジメチル-1-[2,2’-ビピリジン]-6-イル-1-プロパノンを得た(収率:79%)。生成物には少量の同定不可能な不純物が含まれていたが、次のイミノ化反応に影響しないため、そのまま次の反応に使用した。不純物混合のため、13C NMRスペクトルの同定は行なっていない。
1H NMR (400 MHz, CDCl3): 1.55 (s, 9H), 7.34 (dd, 1H, J = 4.9, 7.3 Hz), 7.86 (m, 1H), 7.93 (m, 2H), 8.41 (d, 1H, J = 8.2 Hz), 8.56 (dd, 1H, J = 2.8, 6.4 Hz), 8.69 (d, 1H, J = 5.1 Hz).
(合成例16:N-(2,2-ジメチル-[2,2’-ビピリジン]-6-イルプロピリデン)-2,4,6-トリメチルベンゼンアミンの合成)
Figure JPOXMLDOC01-appb-C000056

 2,4,6-トリメチルアニリン(0.89mL,6.24mmol)及び2,2-ジメチル-1-[2,2’-ビピリジン]-6-イル-1-プロパノン(1.00g,4.16mmol)のトルエン(20.0mL)溶液にp-トルエンスルホン酸一水和物(41.0mg,0.21mmol)を加え、Dean-Stark装置を用いて脱水した。室温まで戻した後、減圧下で溶媒を留去した。粗生成物をクーゲルロール蒸留(240℃,170Pa)により精製し、黄色粉末であるN-(2,2-ジメチル-[2,2’-ビピリジン]-6-イルプロピリデン)-2,4,6-トリメチルベンゼンアミンを得た(収率:43%)。生成物には少量の同定不可能な不純物が含まれていたが、実施例83に影響がないため、次の反応にそのまま使用した。
1H NMR (400 MHz, CDCl3): 1.42 (s, 9H), 2.06 (s, 6H), 2.08 (s, 3H), 6.56 (s, 2H),6.76 (d, 1H, J = 7.4 Hz), 7.30 (m, 1H), 7.52 (t, 1H, J = 8.1 Hz), 7.82 (m, 1H),8.21 (d, 1H, J = 7.9 Hz), 8.40 (d, 1H, J = 7.9 Hz), 8.64 (bdt, 1H, J = 4.3 Hz).13C{1H} NMR (100 MHz, CDCl3): 18.39, 20.72, 29.13, 40.52, 119.69, 121.17, 121.55, 123.89, 125.48, 128.26, 131.60, 136.30, 137.10, 149.18, 155.93, 156.09.
(合成例17:2,2,2-トリフルオロ-1-[2,2’-ビピリジン]-6-イル-エタノンの合成)
Figure JPOXMLDOC01-appb-C000057

 6-ブロモ-2,2’-ビピリジン(7.52g,32.0mmol)をジエチルエーテル(23mL)、ヘキサン(12mL)、THF(12mL)に溶解し、-80℃に冷却した。温度を-80℃以下に維持し、n-BuLiヘキサン溶液(2.65M,14.0mL,35.2mmol)を30分かけて滴下した。-80℃で30分間撹拌を続けた後、過剰量の2,2,2-トリフルオロ-N,N-ジメチルアセトアミド(7.2mL,64.0mmol)を1分間かけて滴下したところ、発熱反応が生じた。この反応溶液を一旦-80℃以下に冷却した後、室温に戻し一晩撹拌した。反応を水(75mL)でクエンチした。この溶液をAcOEt(150mL×5)で抽出し、有機相を集めて溶媒を留去した。粗生成物をクーゲルロール蒸留(120℃,140Pa)により精製し、茶白色粉末である2,2,2-トリフルオロ-1-[2,2’-ビピリジン]-6-イル-エタノンを得た(収率:54%)。生成物には少量の同定不可能な不純物が含まれていたが、次のイミノ化反応に影響しないため、そのまま使用した。また、不純物の混合および生成物のクロロホルムへの難溶性のため、13C NMRスペクトルが複雑になり帰属は行っていない。
1H NMR (400 MHz, CDCl3): 7.38 (m, 1H), 7.87 (qd, 1H, J = 1.6, 7.8 Hz), 8.05 (t, 1H, J = 7.8 Hz), 8.17 (dd, 1H, J = 0.9, 7.8 Hz), 8.54 (bd, 1H, J = 7.8 Hz), 8.71(bt, 1H, J = 5.8 Hz), 8.77 (dd, 1H, J = 0.7, 8.2 Hz).
(合成例18:N-(2,2,2-トリフルオロ-[2,2’-ビピリジン]-6-イルエチリデン)-2,4,6-トリメチルベンゼンアミンの合成)
Figure JPOXMLDOC01-appb-C000058

 2,4,6-トリメチルアニリン(0.43mL,3.03mmol)及び2,2,2-トリフルオロ-1-[2,2’-ビピリジン]-6-イル-エタノン(0.64g,2.53mmol)のトルエン(6.40mL)溶液にp-トルエンスルホン酸一水和物(14.6mg,0.08mmol)を加え、Dean-Stark装置を用いて脱水した。室温まで戻した後、減圧下で溶媒を留去した。粗生成物をクーゲルロール蒸留(200℃,200Pa)により精製し、黄色粉末であるN-(2,2,2-トリフルオロ-[2,2’-ビピリジン]-6-イルエチリデン)-2,4,6-トリメチルベンゼンアミンを得た(収率:79%)。
1H NMR (400 MHz, CDCl3): 1.98 (s, 6H), 2.21 (s, 3H), 6.76 (s, 2H), 7.12 (d, 1H, J = 7.6 Hz), 7.31 (m, 1H), 7.74 (m, 2H), 8.07 (d, 1H, J = 8.1 Hz), 8.40 (d, 1H, J = 8.0 Hz), 8.63 (br, 1H).
13C{1H} NMR (100 MHz, CDCl3): 17.91, 20.82, 121.77, 122.20, 123.10, 124.32, 128.84, 133.61, 137.07, 137.49, 143.48, 147.92, 149.14, 155.18, 156.17. Anal. Calcd.for C21H18F3N3: C, 68.28; H, 4.91; N, 11.38. Found: C, 68.16; H, 5.00; N, 11.42.
(合成例19:N-(2,2,2-トリフルオロ-[2,2’-ビピリジン]-6-イルエチリデン)-2,6-ジイソプロピルベンゼンアミンの合成)
Figure JPOXMLDOC01-appb-C000059

 2,6-ジイソプロピルアニリン(0.85mL,4.03mmol)及び2,2,2-トリフルオロ-1-[2,2’-ビピリジン]-6-イル-エタノン(1.02g,4.03mmol)のトルエン(10.2mL)溶液にp-トルエンスルホン酸一水和物(23.3mg,0.12mmol)を加え、Dean-Stark装置を用いて脱水した。室温まで戻した後、減圧下で溶媒を留去した。粗生成物をクーゲルロール蒸留(210℃,140Pa)により精製し、黄色粉末であるN-(2,2,2-トリフルオロ-[2,2’-ビピリジン]-6-イルエチリデン)-2,6-ジイソプロピルベンゼンアミンを得た(収率:55%)。なお、生成物は新規化合物であるが、少量の同定不可能な不純物が含まれている。しかし、実施例85に影響しないため、上記の精製方法以上は行っていない。
1H NMR (400 MHz, CDCl3): 0.86 (m, 5H, J = 5.1 Hz), 1.18 (m, 7H, J = 6.8 Hz), 2.78 (sept, 2H, J = 6.4 Hz), 7.10 (m, 3H), 7.17 (d, 1H, J = 6.7 Hz), 7.29 (t, 1H, J= 6.2 Hz), 7.72 (t, 2H, J = 6.7 Hz), 7.87 (d, 1H, J = 7.1 Hz), 8.40 (d, 1H, J =7.6 Hz), 8.62 (br, 1H).
13C{1H} NMR (100 MHz, CDCl3): 22.36, 28.45, 28.46, 121.92, 122.31, 123.43, 123.78, 124.33, 124.77, 134.57, 137.00, 137.46, 143.73, 147.06, 149.09, 155.08, 156.06.
<鉄錯体化合物の調製>
(実施例81:N-(1-[2,2’-ビピリジン]-6-イルエチリデン)-2,4,6-トリメチルベンゼンアミン鉄(II)ブロミドの合成)
Figure JPOXMLDOC01-appb-C000060

 窒素雰囲気、室温下で激しく撹拌しながら、臭化鉄(II)(1.98g,6.26mmol)を、N-(1-[2,2’-ビピリジン]-6-イルエチリデン)-2,4,6-トリメチルベンゼンアミン(1.38g,6.26mmol)のTHF(100mL)溶液に加えた。沈殿物を濾過で単離し、THF(10mL)で3回洗浄後、真空乾燥した。茶紫色粉末であるN-(1-[2,2’-ビピリジン]-6-イルエチリデン)-2,4,6-トリメチルベンゼンアミン鉄(II)ブロミド(以下、「鉄錯体化合物6」と略す場合がある。)を得た(収率:99%)。なお、生成物には0.5当量の水が含まれている。
Anal. Calcd. for C42H44Br4Fe2N6O (2M + H2O): C, 46.70; H, 4.11; N, 7.78. Found: C, 47.12; H, 4.22; N, 7.37.
(実施例82:N-(1-[2,2’-ビピリジン]-6-イルエチリデン)-2,6-ジイソプロピルベンゼンアミン鉄(II)ブロミドの合成)
Figure JPOXMLDOC01-appb-C000061

 N-(1-[2,2’-ビピリジン]-6-イルエチリデン)-2,4,6-トリメチルベンゼンアミンをN-(1-[2,2’-ビピリジン]-6-イルエチリデン)-2,6-ジイソプロピルベンゼンアミンに変更した以外、実施例81と同様の方法を行って、赤紫色粉末であるN-(1-[2,2’-ビピリジン]-6-イルエチリデン)-2,6-ジイソプロピルベンゼンアミン鉄(II)ブロミド(以下、「鉄錯体化合物7」と略す場合がある。)を得た(収率:83%)。
Anal. Calcd. for C24H27Br2FeN3: C, 50.29; H, 4.75; N, 7.33. Found: C, 49.99; H, 4.82; N, 7.20.
(実施例83:N-(2,2-ジメチル-[2,2’-ビピリジン]-6-イルプロピリデン)-2,4,6-トリメチルベンゼンアミン鉄(II)ブロミドの合成)
Figure JPOXMLDOC01-appb-C000062

 N-(1-[2,2’-ビピリジン]-6-イルエチリデン)-2,4,6-トリメチルベンゼンアミンをN-(2,2-ジメチル-[2,2’-ビピリジン]-6-イルプロピリデン)-2,4,6-トリメチルベンゼンアミンに変更した以外、実施例81と同様の方法を行って、青紫色粉末であるN-(2,2-ジメチル-[2,2’-ビピリジン]-6-イルプロピリデン)-2,4,6-トリメチルベンゼンアミン鉄(II)ブロミド(以下、「鉄錯体化合物8」と略す場合がある。)を得た(収率:56%)。
Anal. Calcd. for C240H270Br22Fe11N30(10M + FeBr2): C, 48.47; H, 4.58; N, 7.07. Found: C, 48.46; H, 4.73; N, 7.10.
(実施例84:N-(2,2,2-トリフルオロ-[2,2’-ビピリジン]-6-イルエチリデン)-2,4,6-トリメチルベンゼンアミン鉄(II)ブロミドの合成)
Figure JPOXMLDOC01-appb-C000063

 N-(1-[2,2’-ビピリジン]-6-イルエチリデン)-2,4,6-トリメチルベンゼンアミンをN-(2,2,2-トリフルオロ-[2,2’-ビピリジン]-6-イルエチリデン)-2,4,6-トリメチルベンゼンアミンに変更した以外、実施例81と同様の方法を行って、茶色粉末であるN-(2,2,2-トリフルオロ-[2,2’-ビピリジン]-6-イルエチリデン)-2,4,6-トリメチルベンゼンアミン鉄(II)ブロミド(以下、「鉄錯体化合物9」と略す場合がある。)を得た(収率:88%)。なお、生成物には0.5当量のヘキサンが含まれている。
Anal. Calcd. for C48H50Br4F6Fe2N6(2M + hexane): C, 45.89; H, 4.01; N, 6.69. Found: C, 45.81; H, 4.00; N, 6.51.
(実施例85:N-(2,2,2-トリフルオロ-[2,2’-ビピリジン]-6-イルエチリデン)-2,6-ジイソプロピルベンゼンアミン鉄(II)ブロミドの合成)
Figure JPOXMLDOC01-appb-C000064

 N-(1-[2,2’-ビピリジン]-6-イルエチリデン)-2,4,6-トリメチルベンゼンアミンをN-(2,2,2-トリフルオロ-[2,2’-ビピリジン]-6-イルエチリデン)-2,6-ジイソプロピルベンゼンアミンに変更した以外、実施例81と同様の方法を行って、緑色粉末であるN-(2,2,2-トリフルオロ-[2,2’-ビピリジン]-6-イルエチリデン)-2,6-ジイソプロピルベンゼンアミン鉄(II)ブロミド(以下、「鉄錯体化合物10」と略す場合がある。)を得た(収率:56%)。
Anal. Calcd. for C24H24Br2F3FeN3: C, 45.97; H, 3.96; N, 6.70. Found: C, 45.91; H, 3.97; N, 6.72.
<有機ケイ素化合物の製造(ヒドロシリル化反応)>
(実施例86)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、1-オクテン(18mL,120mmol)を加え室温にて撹拌を開始した。このスラリー溶液にフェニルシラン(7.2mL,58mmol)を加えた後、1M水素化トリエチルホウ素ナトリウムのトルエン溶液(120μL,0.12mmol)を添加した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルフェニルシラン(変換率:21%)及びジオクチルフェニルシラン(0.8%)の生成を確認した。結果を表12に示す。
(実施例87)
 鉄錯体化合物1を鉄錯体化合物2に変更した以外、実施例86と同様の方法により反応を行った。結果を表12に示す。
(実施例88)
 鉄錯体化合物1を鉄錯体化合物6に変更した以外、実施例86と同様の方法により反応を行った。結果を表12に示す。
(実施例89)
 鉄錯体化合物1を鉄錯体化合物7に変更した以外、実施例86と同様の方法により反応を行った。結果を表12に示す。
(実施例90)
 鉄錯体化合物1を鉄錯体化合物8に変更した以外、実施例86と同様の方法により反応を行った。結果を表12に示す。
(実施例91)
 鉄錯体化合物1を鉄錯体化合物9に変更した以外、実施例86と同様の方法により反応を行った。結果を表12に示す。
(実施例92)
 鉄錯体化合物1を鉄錯体化合物10に変更した以外、実施例86と同様の方法により反応を行った。結果を表12に示す。
Figure JPOXMLDOC01-appb-T000065
(実施例93)
 フェニルシランをジフェニルシランに変更した以外、実施例86と同様の方法により反応を行った。結果を表13に示す。
(実施例94)
 フェニルシランをジフェニルシランに変更した以外、実施例88と同様の方法により反応を行った。結果を表13に示す。
(実施例95)
 フェニルシランをジフェニルシランに変更した以外、実施例89と同様の方法により反応を行った。結果を表13に示す。
(実施例96)
 フェニルシランをジフェニルシランに変更した以外、実施例90と同様の方法により反応を行った。結果を表13に示す。
(実施例97)
 フェニルシランをジフェニルシランに変更した以外、実施例91と同様の方法により反応を行った。結果を表13に示す。
(実施例98)
 フェニルシランをジフェニルシランに変更した以外、実施例92と同様の方法により反応を行った。結果を表13に示す。
Figure JPOXMLDOC01-appb-T000066
(実施例99)
 フェニルシランをフェニル(メチル)シランに変更した以外、実施例86と同様の方法により反応を行った。結果を表14に示す。
(実施例100)
 フェニルシランをフェニル(メチル)シランに変更した以外、実施例87と同様の方法により反応を行った。結果を表14に示す。
(実施例101)
 フェニルシランをフェニル(メチル)シランに変更した以外、実施例88と同様の方法により反応を行った。結果を表14に示す。
(実施例102)
 フェニルシランをフェニル(メチル)シランに変更した以外、実施例89と同様の方法により反応を行った。結果を表14に示す。
(実施例103)
 フェニルシランをフェニル(メチル)シランに変更した以外、実施例90と同様の方法により反応を行った。結果を表14に示す。
(実施例104)
 フェニルシランをフェニル(メチル)シランに変更した以外、実施例91と同様の方法により反応を行った。結果を表14に示す。
(実施例105)
 フェニルシランをフェニル(メチル)シランに変更した以外、実施例92と同様の方法により反応を行った。結果を表14に示す。
Figure JPOXMLDOC01-appb-T000067
(実施例106)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物1(3.0mg,0.0058mmol)を精密に量り取り、1-オクテン(1.8mL,11mmol)を加え室温にて撹拌を開始した。このスラリー溶液にジフェニル(メチル)シラン(1.2mL,5.8mmol)を加えた後、1M水素化トリエチルホウ素ナトリウムのトルエン溶液(46μL,0.046mmol)を添加した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルジフェニル(メチル)シラン(変換率:74%)の生成を確認した。結果を表15に示す。
(実施例107)
 鉄錯体化合物1を鉄錯体化合物2に変更した以外、実施例106と同様の方法により反応を行った。結果を表15に示す。
(実施例108)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物2(3.0mg,0.0054mmol)を精密に量り取り、1-オクテン(1.7mL,11mmol)を加え室温にて撹拌を開始した。このスラリー溶液にジフェニル(メチル)シラン(1.1mL,5.4mmol)を加えた後、1M水素化トリエチルホウ素ナトリウムのトルエン溶液(110μL,0.11mmol)を添加した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、オクチルジフェニル(メチル)シラン(変換率:6%)の生成を確認した。結果を表15に示す。
(実施例109)
 鉄錯体化合物1を鉄錯体化合物6に、ジフェニル(メチル)シランをフェニルジ(メチル)シランに変更した以外、実施例106と同様の方法により反応を行った。結果を表15に示す。
(実施例110)
 鉄錯体化合物1を鉄錯体化合物6に、ジフェニル(メチル)シランをフェニルジ(メチル)シランに変更した以外、実施例108と同様の方法により反応を行った。結果を表15に示す。
(実施例111)
 鉄錯体化合物1を鉄錯体化合物6に変更した以外、実施例106と同様の方法により反応を行った。結果を表15に示す。
(実施例112)
 鉄錯体化合物1を鉄錯体化合物6に変更した以外、実施例108と同様の方法により反応を行った。結果を表15に示す。
(実施例113)
 鉄錯体化合物1を鉄錯体化合物6に、ジフェニル(メチル)シランをトリフェニルシランに変更した以外、実施例106と同様の方法により反応を行った。結果を表15に示す。
(実施例114)
 鉄錯体化合物1を鉄錯体化合物7に変更した以外、実施例106と同様の方法により反応を行った。結果を表15に示す。
(実施例115)
 鉄錯体化合物1を鉄錯体化合物7に変更した以外、実施例108と同様の方法により反応を行った。結果を表15に示す。
(実施例116)
 鉄錯体化合物1を鉄錯体化合物8に変更した以外、実施例106と同様の方法により反応を行った。結果を表15に示す。
(実施例117)
 鉄錯体化合物1を鉄錯体化合物9に変更した以外、実施例106と同様の方法により反応を行った。結果を表15に示す。
(実施例118)
 鉄錯体化合物1を鉄錯体化合物10に変更した以外、実施例106と同様の方法により反応を行った。結果を表15に示す。
Figure JPOXMLDOC01-appb-T000068
(実施例119)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物6(10mg,0.019mmol)を精密に量り取り、シクロヘキセン(2.0mL,19mmol)を加え室温にて撹拌を開始した。このスラリー溶液にフェニルシラン(0.23mL,1.9mmol)を加えた後、1M水素化トリエチルホウ素ナトリウムのトルエン溶液(75μL,0.075mmol)を添加した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、シクロヘキシルフェニルシラン(変換率:74%)の生成を確認した。結果を表16に示す。
(実施例120)
 鉄錯体化合物6を鉄錯体化合物7に変更した以外、実施例119と同様の方法により反応を行った。結果を表16に示す。
(実施例121)
 鉄錯体化合物6を鉄錯体化合物8に変更した以外、実施例119と同様の方法により反応を行った。結果を表16に示す。
(実施例122)
 鉄錯体化合物6を鉄錯体化合物9に変更した以外、実施例119と同様の方法により反応を行った。結果を表16に示す。
(実施例123)
 鉄錯体化合物6を鉄錯体化合物10に変更した以外、実施例119と同様の方法により反応を行った。結果を表16に示す。
Figure JPOXMLDOC01-appb-T000069
(実施例124)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物6(3.0mg,0.0056mmol)を精密に量り取り、1-オクテン(1.8mL,11mmol)を加え室温にて撹拌を開始した。このスラリー溶液にジエチルシラン(0.77mL,5.7mmol)を加えた後、1M水素化トリエチルホウ素ナトリウムのトルエン溶液(45μL,0.075mmol)を添加した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液をガスクロマトグラフ質量分析によって分析した。反応生成物をクーゲルロール蒸留により単離したところ、ジエチルオクチルシラン(変換率:68%)及びジエチルジオクチルシラン(26%)の生成を確認した。結果を表17に示す。
(実施例125)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物6(3.0mg,0.0056mmol)を精密に量り取り、1-オクテン(1.8mL,11mmol)を加え室温にて撹拌を開始した。このスラリー溶液にトリエチルシラン(0.92mL,5.7mmol)を加えた後、1M水素化トリエチルホウ素ナトリウムのトルエン溶液(45μL,0.075mmol)を添加した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液をガスクロマトグラフ質量分析によって分析した。反応生成物をクーゲルロール蒸留(120℃,160Pa)により単離したところ、トリエチルオクチルシラン(変換率:10%)の生成を確認した。結果を表17に示す。
(実施例126)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物6(20mg,0.038mmol)を精密に量り取り、6-クロロ-1-ヘキセン(1.0mL,7.5mmol)を加え室温にて撹拌を開始した。このスラリー溶液にジフェニルシラン(0.72mL,3.8mmol)を加えた後、1M水素化トリエチルホウ素ナトリウムのトルエン溶液(150μL,0.15mmol)を添加した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液をガスクロマトグラフ質量分析によって分析した。反応生成物をクーゲルロール蒸留(190℃,150Pa)により単離したところ、1-クロロ-(6-ジフェニルシリル)ヘキサン(変換率:81%)の生成を確認した。結果を表17に示す。
(実施例127)
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物6(3.0mg,0.0056mmol)を精密に量り取り、6-クロロ-1-ヘキセン(1.6mL,11mmol)を加え室温にて撹拌を開始した。このスラリー溶液にジフェニルシラン(1.1mL,5.7mmol)を加えた後、1M水素化トリエチルホウ素ナトリウムのトルエン溶液(45μL,0.045mmol)を添加した。2分以内に反応溶液は、無色から深緑~赤紫色への変化を伴って均一溶液となった(目視にて鉄錯体化合物の溶け残りが確認された場合には、水素化トリエチルホウ素ナトリウムを追加して完全に溶解させる。)。この状態を反応開始とし、24時間後に反応溶液をガスクロマトグラフ質量分析によって分析した。反応生成物をクーゲルロール蒸留(190℃,150Pa)により単離したところ、1-クロロ-(6-ジフェニルシリル)ヘキサン(変換率:67%)の生成を確認した。結果を表17に示す。
(実施例128)
 6-クロロ-1-ヘキセンをN,N-ジメチルアリルアミンに変更した以外、実施例46と同様の方法により反応を行った。結果を表17に示す。
(実施例129)
 6-クロロ-1-ヘキセンをN,N-ジメチルアリルアミンに変更した以外、実施例127と同様の方法により反応を行った。結果を表17に示す。
(実施例130)
 6-クロロ-1-ヘキセンをアリルフェニルスルフィドに変更した以外、実施例126と同様の方法により反応を行った。結果を表17に示す。
Figure JPOXMLDOC01-appb-T000070
(実施例131)
 上記実施例では、鉄錯体触媒量を0.01モル%以上使用しているが、さらに触媒量を0.001モル%まで減らした場合の検討を行った。実施例86、88、94を参考に以下のヒドロシリル化反応を行った。
 フレームドライを行い、窒素ガスを流入したシュレンク管に鉄錯体化合物6(0.0058mmol)を精密に量り取り、1-オクテン(120mmol)を加え室温にて撹拌を開始した。このスラリー溶液にジフェニルシラン(58mmol)を加えた後、1M水素化トリエチルホウ素ナトリウムのトルエン溶液(0.12mmol)を添加した。この溶液を室温で5~10分間撹拌し、得られた均一溶液の約十分の一液量を、別途調製したジフェニルシランと1-オクテンが1:2モル比で含む溶液に滴下し、鉄錯体がジフェニルシランの0.001モル%となるように調整した。この溶液を24時間室温で撹拌し、反応溶液を高速液体クロマトグラフィー(199nm)によって分析した。絶対検量線法により反応生成物を定量したところ、ヒドロシリル化生成物としてオクチルジフェニルシランのみが生成しており、触媒活性(TON)は42000であることを確認した。
 本発明によって得られた有機ケイ素化合物は、様々な材料の原料として使用することができる。

Claims (4)

  1.  アルケン類及び/又はアルキン類とヒドロシラン類とを触媒存在下で反応させる反応工程を含む有機ケイ素化合物の製造方法であって、
     前記反応工程が、触媒として下記式(A)で表される鉄錯体化合物とヒドリド還元剤を使用する工程であることを特徴とする、有機ケイ素化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (式(A)中、R及びRはそれぞれ独立して炭素数1~6の炭化水素基を、Rは水素原子又はハロゲン原子を含んでいてもよい炭素数1~10の炭化水素基を、Rは水素原子又は炭素数6~20の芳香族炭化水素基を、Xはそれぞれ独立してハロゲン原子を、mは0~4の整数を、nは0~3の整数を表す。但し、mが2~4の整数である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよく、nが2又は3である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよい。)
  2.  下記式(I-1)~(I-9)及び(II-1)~(II-30)で表される化合物からなる群より選択される少なくとも1種の化合物を製造する方法である、請求項1に記載の有機ケイ素化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000002

    (式(I-1)~(I-9)及び式(II-1)~(II-30)中、R~Rはそれぞれ独立して水素原子、ハロゲン原子、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1~20の炭化水素基を、Rはそれぞれ独立して水素原子、ハロゲン原子、シロキシ基、ケイ素数1~50のポリシロキシ基、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1~20の炭化水素基を表す。但し、R~Rの2個以上が炭化水素基である場合、その2個以上の炭化水素基が連結して環状構造を形成していてもよい。)
  3.  下記式(a)で表されるイミノビピリジン化合物。
    Figure JPOXMLDOC01-appb-C000003

    (式(a)中、R及びRはそれぞれ独立して炭素数1~6の炭化水素基を、Rは水素原子又はハロゲン原子を含んでいてもよい炭素数1~10の炭化水素基を、Rは水素原子又は炭素数6~20の芳香族炭化水素基を、mは0~4の整数を、nは0~3の整数を表す。但し、mが2~4の整数である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよく、nが2又は3である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよい。)
  4.  下記式(A)で表される鉄錯体化合物。
    Figure JPOXMLDOC01-appb-C000004

    (式(A)中、R及びRはそれぞれ独立して炭素数1~6の炭化水素基を、Rは水素原子又はハロゲン原子を含んでいてもよい炭素数1~10の炭化水素基を、Rは水素原子又は炭素数6~20の芳香族炭化水素基を、Xはそれぞれ独立してハロゲン原子を、mは0~4の整数を、nは0~3の整数を表す。但し、mが2~4の整数である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよく、nが2又は3である場合、Rの炭化水素基同士が連結して環状構造を形成していてもよい。)
PCT/JP2016/068329 2015-06-23 2016-06-21 鉄錯体化合物とそれを用いた有機ケイ素化合物の製造方法 WO2016208554A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017524904A JP6763525B2 (ja) 2015-06-23 2016-06-21 鉄錯体化合物とそれを用いた有機ケイ素化合物の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015125522 2015-06-23
JP2015-125522 2015-06-23
JP2015198815 2015-10-06
JP2015-198815 2015-10-06

Publications (1)

Publication Number Publication Date
WO2016208554A1 true WO2016208554A1 (ja) 2016-12-29

Family

ID=57585771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068329 WO2016208554A1 (ja) 2015-06-23 2016-06-21 鉄錯体化合物とそれを用いた有機ケイ素化合物の製造方法

Country Status (2)

Country Link
JP (1) JP6763525B2 (ja)
WO (1) WO2016208554A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018118925A (ja) * 2017-01-25 2018-08-02 公立大学法人大阪市立大学 鉄錯体触媒を用いたカルボニル化合物のヒドロシリル化反応によるアルコキシシランの製造方法
CN110483565A (zh) * 2019-08-30 2019-11-22 上海交通大学 基于加成反应的烷基硅类化合物优化制备方法
JP2021001118A (ja) * 2019-06-19 2021-01-07 公立大学法人大阪 イミノビピリジンコバルト錯体、及びイミノビピリジンコバルト錯体を利用したヒドロシリル化反応による有機ケイ素化合物の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058320A1 (en) * 1999-03-29 2000-10-05 Bp Chemicals Limited Pyridine.imine polymerisation catalysts
WO2000068280A1 (en) * 1999-05-06 2000-11-16 E.I. Du Pont De Nemours And Company Polymerization of ethylene

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058320A1 (en) * 1999-03-29 2000-10-05 Bp Chemicals Limited Pyridine.imine polymerisation catalysts
WO2000068280A1 (en) * 1999-05-06 2000-11-16 E.I. Du Pont De Nemours And Company Polymerization of ethylene

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BRITOVSEK, GEORGE J.P . ET AL.: "The role of bulky substituents in the polymerization of ethylene using late transition metal catalysts: a comparative study of nickel and iron catalyst systems", INORGANICA CHIMICA ACTA, vol. 345, 2003, pages 279 - 291, XP001197373 *
GROGGER, CHRISTA ET AL., JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 691, 2006, pages 105 - 110 *
HAYASAKA, KAZUMASA ET AL., BULL. CHEM. SOC. JPN, vol. 89, 2016, pages 394 - 404 *
LIU, YANG ET AL., THE JOURNAL OF ORGANIC CHEMISTRY, vol. 70, no. 2, 2005, pages 556 - 561 *
NIELSEN, LONE ET AL., JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 130, no. 39, 2008, pages 13145 - 13151 *
SOLLRADL, H. ET AL., JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 243, no. 3, 1983, pages 257 - 269 *
WANG, JIAXI ET AL., ORGANOMETALLICS, vol. 27, no. 17, 2008, pages 4494 - 4504 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018118925A (ja) * 2017-01-25 2018-08-02 公立大学法人大阪市立大学 鉄錯体触媒を用いたカルボニル化合物のヒドロシリル化反応によるアルコキシシランの製造方法
JP2021001118A (ja) * 2019-06-19 2021-01-07 公立大学法人大阪 イミノビピリジンコバルト錯体、及びイミノビピリジンコバルト錯体を利用したヒドロシリル化反応による有機ケイ素化合物の製造方法
JP7351460B2 (ja) 2019-06-19 2023-09-27 公立大学法人大阪 イミノビピリジンコバルト錯体、及びイミノビピリジンコバルト錯体を利用したヒドロシリル化反応による有機ケイ素化合物の製造方法
CN110483565A (zh) * 2019-08-30 2019-11-22 上海交通大学 基于加成反应的烷基硅类化合物优化制备方法
CN110483565B (zh) * 2019-08-30 2021-06-29 上海交通大学 基于加成反应的烷基硅类化合物优化制备方法

Also Published As

Publication number Publication date
JPWO2016208554A1 (ja) 2018-04-12
JP6763525B2 (ja) 2020-09-30

Similar Documents

Publication Publication Date Title
KR101710043B1 (ko) 하이드로실릴화 촉매
KR101890606B1 (ko) 하이드로실릴화 촉매로 사용되는 금속착물의 현장 활성화
Hayasaka et al. Highly efficient olefin hydrosilylation catalyzed by iron complexes with iminobipyridine ligand
WO2011081277A2 (en) Saturated n-heterocyclic carbene-ligand metal complex derivatives, preparing method thereof, and preparing method of silane compound by hydrosilylation reaction using the same as catalyst
JP6763525B2 (ja) 鉄錯体化合物とそれを用いた有機ケイ素化合物の製造方法
Singh et al. Derivatization of 3-aminopropylsilatrane to introduce azomethine linkage in the axial chain: Synthesis, characterization and structural studies
JPWO2015122216A1 (ja) カルボジイミド化合物の製造方法
Shi et al. Synthesis of divalent ytterbium terphenylamide and catalytic application for regioselective hydrosilylation of alkenes
JP6933835B2 (ja) 鉄錯体触媒を用いたカルボニル化合物のヒドロシリル化反応によるアルコキシシランの製造方法
JP6333710B2 (ja) 有機ケイ素化合物の製造方法及び触媒組成物
JP6308547B2 (ja) 有機ケイ素化合物の製造方法
JP2020007232A (ja) 新規なトリボリルアルケン、その製造方法、及び多置換アルケンの製造方法
TWI734939B (zh) 多環式胺基矽烷化合物及其之製造方法
JP6865362B2 (ja) 鉄錯体触媒を用いたヒドロシランの脱水素縮合反応によるポリシランの製造方法
CN108456172B (zh) 一种具有苯并咪唑骨架的手性氮杂环卡宾前体化合物及其制备方法和应用
JP7023511B2 (ja) 環状シロキサン化合物の製造方法、及び環状シロキサン化合物
JP7334965B2 (ja) ポリカルボニル化合物、その誘導体及びそれらの製造方法
JP7360205B2 (ja) 化合物及びその製造方法
JP6269940B2 (ja) ニッケル錯体化合物、触媒組成物、及び有機ケイ素化合物の製造方法
CN111100159B (zh) 一种含三(三甲基硅基)硅烷基亚甲基取代的杂环化合物的合成方法
JP7351460B2 (ja) イミノビピリジンコバルト錯体、及びイミノビピリジンコバルト錯体を利用したヒドロシリル化反応による有機ケイ素化合物の製造方法
JP2019073473A (ja) 錯体化合物及びシロキサンの製造方法
JP2015231965A (ja) 有機ケイ素化合物の製造方法及び触媒組成物
JP6846738B2 (ja) 環状アルキル基を有する有機ケイ素化合物の製造方法
JP7016149B2 (ja) シロキサンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524904

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814324

Country of ref document: EP

Kind code of ref document: A1