WO2016208454A1 - 電流検出用抵抗器、電流検出装置及びその製造方法 - Google Patents

電流検出用抵抗器、電流検出装置及びその製造方法 Download PDF

Info

Publication number
WO2016208454A1
WO2016208454A1 PCT/JP2016/067632 JP2016067632W WO2016208454A1 WO 2016208454 A1 WO2016208454 A1 WO 2016208454A1 JP 2016067632 W JP2016067632 W JP 2016067632W WO 2016208454 A1 WO2016208454 A1 WO 2016208454A1
Authority
WO
WIPO (PCT)
Prior art keywords
current detection
resistor
electrode
detection resistor
terminal
Prior art date
Application number
PCT/JP2016/067632
Other languages
English (en)
French (fr)
Inventor
耕介 荒井
健司 亀子
Original Assignee
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa株式会社 filed Critical Koa株式会社
Priority to US15/738,983 priority Critical patent/US10578651B2/en
Priority to CN201680033555.3A priority patent/CN107851494B/zh
Priority to DE112016002799.0T priority patent/DE112016002799T5/de
Publication of WO2016208454A1 publication Critical patent/WO2016208454A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/146Measuring arrangements for current not covered by other subgroups of G01R15/14, e.g. using current dividers, shunts, or measuring a voltage drop
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/04Arrangements of distinguishing marks, e.g. colour coding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/16Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Definitions

  • the present invention relates to a current detection device and the like.
  • a shunt-type current detection method using a metal plate resistor is used in current detection technology for automobile batteries.
  • Patent Document 1 discloses displaying a code for identifying the type of chip-shaped electronic component, characteristics such as a capacitance value, accuracy (error), lot, and the like.
  • Patent Document 1 In addition to the technology for displaying a resistance value with a color code for a resistor, there is Patent Document 1, but recording information unique to the product is not disclosed.
  • the current value can be obtained by energizing the resistor and dividing the measured voltage value by the resistance value. For this reason, it is necessary to accurately grasp the resistance value of the resistor.
  • Such a resistor is designed and adjusted so that the resistance value falls within a certain range in the manufacturing stage, but for more accurate current detection, for example, before mounting in a current detection module, the resistance value is set. It is necessary to measure, and a process and equipment for that are required. In addition, such current detection resistors tend to have a lower resistance value, and equipment and know-how for that purpose are required to accurately measure the resistance value, which is a heavy burden.
  • An object of this invention is to reduce the burden of the user of a resistor.
  • a current detection resistor made of a conductive metal, comprising a code display unit that codes and displays characteristic information unique to the current detection resistor.
  • a current sensing resistor is provided.
  • the current detection resistor includes a resistor and an electrode made of a metal having higher conductivity than the resistor, and the code display unit is formed on the electrode.
  • the encoded characteristic information preferably includes resistance value information.
  • the present invention provides a current detection resistor in which a code including characteristic information is displayed, a storage unit in which characteristic information included in the code is recorded, characteristic information stored in the storage unit, and the current detection resistor
  • a current detection device including a calculation unit that calculates a current value from a voltage signal obtained from a resistor.
  • a step of preparing a current detection resistor made of a conductive metal a step of measuring a characteristic value of the current detection resistor, and the current detection resistor, And a step of coding and writing information including the characteristic value.
  • This specification includes the disclosure of Japanese Patent Application No. 2015-124620, which is the basis of the priority of the present application.
  • FIG. 1 is a perspective view showing a configuration example of a current detection device using a resistor according to an embodiment of the present invention. It is a figure which shows the manufacturing method of the electric current detection apparatus using the resistor by the 2nd Embodiment of this invention, and is a figure which shows a top view and sectional drawing as a set. It is a figure following FIG. It is a figure following FIG. It is a figure which shows the positional relationship of the junction part of a resistor and an electrode terminal, and a through-hole.
  • Fig.6 (a) is a figure which shows a mode that the resistance value of the resistor after completion is measured with a 4-terminal measuring method.
  • FIG. 1 is a perspective view showing a configuration example of a current detection device using a resistor according to an embodiment of the present invention. It is a figure which shows the manufacturing method of the electric current detection apparatus using the resistor by the 2nd Embodiment of this invention, and is a figure which shows a top view and sectional drawing
  • FIG. 6B is a diagram showing a configuration in which a display unit in which data such as measured resistance values is in the form of a QR code or the like is written on the surface of the electrode of the current detection device. It is a figure which shows the circuit structural example of a current detection module.
  • FIG. 8A is a diagram illustrating an external configuration example of the current detection module
  • FIG. 8B is a cross-sectional view illustrating a configuration example of the current detection module
  • FIG. 8C is a current detection module.
  • It is a top view which shows one structural example of a module.
  • It is a flowchart figure which shows an example of the flow of the process by 3rd Embodiment.
  • FIG. 1 It is a figure which shows the manufacturing method of the resistor by the 4th Embodiment of this invention, and is a figure shown combining a top view and sectional drawing. It is a figure following FIG. It is a figure which shows the manufacturing method of the resistor by the 5th Embodiment of this invention, and is a figure shown combining a top view and sectional drawing. It is a figure following FIG. It is a figure which shows the manufacturing method of the resistor by the 6th Embodiment of this invention, and is a figure shown combining a top view and sectional drawing. It is a figure which shows the example of a terminal structure. It is a figure which shows the example of a terminal structure. It is a figure which shows the example of a terminal structure. It is a figure which shows the example of a terminal structure.
  • welding refers to the joining of two or more members by applying heat and / or pressure, and if necessary, adding an appropriate filler material so that the joint is integrated with continuity. It refers to a joining method using a single member.
  • the direction in which the electrode of the resistor-resistor-electrode is arranged is referred to as the length direction, and the direction intersecting with it is referred to as the width direction.
  • FIG. 1 is a perspective view showing a configuration example of a current detecting device using a resistor according to the present embodiment.
  • the current detection device 1 using the shunt resistor (hereinafter referred to as “resistor”) shown in FIG. 1 includes two electrodes 5a (first electrode), 5b (second electrode), electrodes 5a, The resistor 3 arranged between 5b and the voltage detection terminal 17 are provided.
  • the part which consists of the resistor 3 and electrode 5a, 5b is also called a conductor.
  • the electrodes 5a and 5b are also referred to as electrode terminals.
  • Each of the electrodes 5a and 5b has a main electrode portion on the end side (a portion excluding 5c and 5d in 5a and 5b is defined as a main electrode portion) and a width of 2 W 2 than the main electrode portion. Narrow electrode portions 5c and 5d on the side of the resistor 3 are provided. The resistor 3 is disposed between the narrow electrode portions 5c and 5d. Smaller electrode portions 5c, the length dimension of 5d to W 1. This dimension W 1 is, for example, about 1 to 3 mm.
  • one voltage detection terminal 17 is provided for each of the narrow electrode portions 5c and 5d.
  • the distance between the voltage detection terminals 17 can be shortened, and the current measurement accuracy in the four-terminal measurement can be improved.
  • the structure shown in FIG. 1 has a width by providing a recess 7 that enters the inner side in the width direction in a partial region including the joint portions 13a and 13b formed by welding the resistor 3 and the electrode portions 5a and 5b.
  • a narrowed or narrowed portion can be formed.
  • the width of the narrow electrode portions 5c and 5d and the width of the resistor 3 are substantially equal.
  • a narrow portion formed by the recess 7 is referred to as a narrow portion or a narrow portion (the same applies hereinafter).
  • the recess 7 is formed in a partial region including the joint portions 13a and 13b between the resistor 3 and the electrode portions 5a and 5b, the stress generated in the entire shunt is It can suppress concentrating on the junction parts 13a and 13b of the electric current detection apparatus (resistor) 1.
  • reference numeral 15 denotes a bolt hole.
  • Reference numeral 11 denotes a hole for fixing the current detection substrate (hereinafter, omitted).
  • Reference numeral 17 denotes a voltage detection terminal, which is provided in the narrow electrode portions 5c and 5d in this example.
  • a code display portion 12 for displaying a code is formed on the upper surface of the first electrode portion 5a. This code display will be described later.
  • FIG. 2 to FIG. 4 are diagrams showing a method of manufacturing a current detection device using a resistor according to the present embodiment, and are diagrams showing a plan view and a cross-sectional view in combination.
  • an electrode material 31 having a high conductivity such as Cu is prepared.
  • a bolt hole 15 for screwing and a hole 33 for fitting a resistance material are formed in the electrode material 31 by a method such as pressing, cutting, or laser processing.
  • One hole 33 is provided at a substantially central position of the electrode material 31, and a pair of bolt holes 15 is provided at a position near the end of the electrode material 31 in the length direction.
  • a resistance material 35 which is prepared in advance and is approximately the same size as the hole 33 and has a higher resistance than the electrode material 31, is fitted into the hole 33.
  • the outer surface of the resistance member 35 abuts on the inner surface of the hole 33, and, for example, a rectangular joint is formed.
  • a long material (plate) can be cut out and used for both the electrode material 31 and the resistance material 35.
  • a metal plate material such as Cu—Ni, Cu—Mn, or Ni—Cr can be used.
  • the resistance material 35 is fixed to the electrode material 31 by a pressing jig 41 or the like, and for example, an electron beam or a laser beam 43 is scanned as indicated by L1, and the electrode material 31 and the resistance material are scanned.
  • a joining base material can be formed in which the resistance material 35 is fitted and joined to the central region of the electrode material 31.
  • the through hole (hole 33) is provided in the electrode material 31 and the resistance material 35 is fitted into the through hole (hole 33), the electrode material 31 (work) is prevented from being distorted even during welding with an electron beam or the like. Further, when the holding jig 41 is used, it is possible to further suppress the distortion of the workpiece.
  • a through hole 36 for providing a voltage detection terminal is also formed. For this reason, the positional relationship between the voltage detection terminals is stable, and the resistance value adjustment process and the voltage detection terminal positioning process are performed in the same process. Current detection is possible.
  • the voltage detection terminal 17 is formed.
  • a rod-like terminal is erected by being inserted into the through hole 36 of the narrow electrode portions 5c and 5d.
  • copper type alloys such as copper, a brass, phosphor bronze, a Corson alloy, are suitable.
  • the positional relationship between the joints 13 a and 13 b between the resistor 3 and the electrode terminals 5 c and 5 d and the through hole 36 is formed so as to be separated by W 11 . That is, the joint portions 13a and 13b are alloyed by EB welding or the like, and are difficult to process for forming the through hole 36. Therefore, by forming the through hole while avoiding the alloyed region, the through hole 36 can be formed with high accuracy.
  • the code display unit 12 shown in FIG. 1 includes the following data, for example. That is, the content of the code includes a lot number, a product name, a characteristic value (resistance value, TCR value, etc.), a material used (resistance material, etc.), a manufacturer, a manufacturing location, a manufacturing date, and user information (providing company name) Etc.).
  • a user who is provided with a current detection device for example, by actually displaying a combination of a lot number and a resistance value, or a code display of data with a TCR value added thereto after manufacturing the resistor, for example, It is very convenient to be able to know accurate data without measuring the value.
  • the measured value is preferably a measured value, but may be a designed value.
  • the measured value may be recorded as the resistance value, and the designed value may be recorded as the TCR value.
  • FIG. 6 to FIG. 9 are diagrams for explaining a current detection device including a code display unit according to the present embodiment and a manufacturing method thereof.
  • step S1 Start
  • step S2 a current detection device using a resistor is created as described in the first and second embodiments (FIG. 9). 1).
  • Fig.6 (a) is a figure which shows a mode that the resistance value of the resistor after completion is measured with a 4-terminal measuring method. Using the voltage detection terminals 17 and 17 and the electrodes 5a and 5b, the resistance value of the resistor is measured by a four-terminal measurement method. In addition, necessary data (such as a TCR value) may be measured.
  • step S4 as shown in FIG. 6B, the display section 12 in the form of QR code or the like is written on the surface of the electrode 5a of the current detection device, for example, as shown in FIG. That is, information such as characteristic values is converted and coded, and printed on the electrodes.
  • a fiber laser, a semiconductor laser, a green laser, an electron beam, a Yag laser, printing (inkjet printing), or the like can be used.
  • a QR code registered trademark
  • a data matrix a barcode, a two-dimensional code, or the like
  • copper electrode portions 5a and 5b are preferable. It is preferable to avoid printing on the resistor 3 in consideration of the influence on the characteristics of the resistor.
  • a user or the like who is provided with a current detection device using a resistor reads QR code data using, for example, a smartphone or a dedicated decoding device (step S11), and the process ends.
  • FIG. 7 is a diagram illustrating a circuit configuration example of the current detection module.
  • FIG. 8A is a diagram illustrating an external configuration example of the current detection module
  • FIG. 8B is a cross-sectional view illustrating a configuration example of the current detection module
  • FIG. 8C is a current detection module. It is a top view which shows one structural example of a module.
  • the current detection module A shown in FIG. 7 includes the resistor 1, the amplifier 63 that amplifies the voltage signal between both terminals, the A / D converter 65 that A / D converts the signal amplified by the amplifier 63, and the like. And a microcomputer 67 that receives the digital signal output and performs an operation.
  • the voltage value acquired from the voltage detection terminal 17 of the current detection resistor 1 is amplified, converted into digital data, and the microcomputer 67 calculates the current value.
  • the current value is sent to various electric devices through a data bus or the like.
  • the configuration shown in FIG. 7 includes the current detection resistor 1 on which the code including the characteristic information is displayed, and the microcomputer 67.
  • the microcomputer 67 stores the characteristic information included in the code.
  • a calculation unit that calculates a current value from the characteristic information stored in the storage unit and the voltage signal obtained from the current detection resistor 1.
  • various elements are mounted on the detection circuit unit 101 as shown in FIGS. 8A to 8C, and this is connected to the current detection resistor 1 to form a module. .
  • the detection circuit unit 101 is packaged by molding as necessary. It is preferable that the code display unit 12 is positioned so as not to be hidden by the detection circuit unit 101 or the mold.
  • a PCB 105 is mounted on the resistor 1, and encapsulated in a mold or a case as necessary to constitute a current detection module A.
  • the voltage detection terminal 17 penetrates from the back side to the front side of the PCB 105.
  • the PCB 105 and the current detection resistor 1 are screwed and fixed by a through hole indicated by reference numeral 11 in FIG.
  • the PCB 105 is formed of a thermally conductive insulating material, it is preferable for detecting the heat generation of the resistor.
  • a semiconductor chip 111 and the like are mounted on the PCB 105.
  • FIG. 8C is a plan view of the PCB 105 portion.
  • the voltage detection terminal 17 exposed on the surface side of the PCB 105 is soldered to a contact 109 formed on the PCB 105.
  • the contact 109 and the semiconductor chip 111 are connected by a wire 107.
  • the semiconductor chip 111 contains the above-described amplifier, A / D conversion circuit, and microcomputer.
  • the semiconductor chip 111 is connected to the connector 141 and can output a current value.
  • the code display unit 12 of the current detection resistor 1 is read, and unique information such as a resistance value and a TCR value is recorded in a ROM in the microcomputer 67. Using this information, the CPU in the microcomputer 67 calculates the current value, so that more accurate current detection is possible. Further, the current detection resistor 1 or its ambient temperature is measured by a temperature sensor (not shown), and the current value can be calculated after applying necessary correction using the TCR value.
  • FIGS. 10 and 11 are diagrams showing a method of manufacturing a resistor according to the present embodiment, and are a diagram showing a plan view and a cross-sectional view as a set.
  • a long flat plate-like resistance material 53 and an electrode material having a higher conductivity than the resistance material 53 are used.
  • a first electrode material 51 and a second electrode material 51 are prepared.
  • both end surfaces of the resistance material 53 and the end surfaces of the first electrode material 51 and the second electrode material 51 are arranged so as to contact each other to form a joint portion.
  • both joints 55 are welded to form a single flat plate as indicated by reference numeral L1. It is also possible to perform various adjustments regarding the resistance value and the shape depending on the joining position.
  • a plurality of through holes 36 are formed in the first electrode material 51 and the second electrode material 51 in the vicinity thereof along the joint portion 55.
  • the resistor material (bonding base material) including the joint portion 55 is extended in the length direction in which the width is widened in the region including the resistance material 53 and the electrode material 51 in the vicinity thereof. Cut using the existing punching die 59. As shown in FIG. 11 (e), the joint after cutting is indicated by reference numerals 13a and 13b.
  • the voltage detection terminal 17 is formed by inserting a rod-like metal into the through hole 36.
  • FIGS. 12 and 13 are diagrams showing a method of manufacturing a resistor according to the present embodiment, and are a diagram showing a plan view and a cross-sectional view as a set.
  • the process of forming the resistance material (bonding base material) shown in FIGS. 12A and 12B is the same as the process shown in FIGS.
  • the joining base material is punched using a punching die 61 having a shape as shown by a broken line, that is, along the shape of a resistor having a recess in the length direction.
  • a punching die 61 having a shape as shown by a broken line, that is, along the shape of a resistor having a recess in the length direction.
  • a plurality of through holes 36 are formed in the first electrode material 51 and the second electrode material 51 in the vicinity thereof along the joint portion 53 in the same process. At this time, many may be punched out in a single step.
  • a resistor having a recess 7 can be formed in a region including the joint portions 13a and 13b of the separated members. Accordingly, the same effects as those of the first to third embodiments can be obtained.
  • the voltage detection terminals 17 are formed on the narrow electrode portions 5c and 5d.
  • the process of determining the width of the resistor and forming the through hole for erecting the voltage detection terminal can be performed simultaneously, the process is simplified and the positioning accuracy is improved. There is an effect.
  • FIG. 14 is a view showing a method of manufacturing a resistor according to the present embodiment, and is a view showing a plan view and a cross-sectional view as a set.
  • the resistance material 71 is a single metal plate material such as Cu.
  • the resistance material 71 is also referred to as a conductor.
  • the resistance material 71 is punched using a punching die 75 having a shape as shown by a broken line, that is, along the shape of a resistor having a recess in the length direction.
  • a punching die 75 having a shape as shown by a broken line, that is, along the shape of a resistor having a recess in the length direction.
  • a plurality of through holes 36 are formed in the resistance material 71 in the same process. At this time, many may be punched out in a single step.
  • a resistor having the recess 7 and the through hole 36 can be formed.
  • the voltage detection terminal 17 is formed in the through holes 36 formed in the region where the recess 7 is formed.
  • the process of determining the width of the resistor and forming the through hole for erecting the voltage detection terminal can be performed simultaneously, the process is simplified and the positioning accuracy is improved. There is an effect.
  • FIG. 15A is a cross-sectional view showing a configuration example of the terminal structure.
  • the voltage detection terminal 17 is provided in the through hole 36 formed in the electrode 5b (5d).
  • a flange 81 is formed at an intermediate portion of the voltage detection terminal 17.
  • the voltage detection terminal 17 includes a first terminal portion 17 b that fits in the through hole 36 and a second terminal portion 17 a that protrudes from the through hole 36.
  • the voltage detection terminal 17 may be press-fitted into the through hole 36. Or you may weld.
  • FIG. 15B is a cross-sectional view illustrating a configuration example of the terminal structure 2.
  • the voltage detection terminal 17 is provided in the through hole 36 formed in the electrode 5b (5d).
  • a flange 83 is formed at one end of the voltage detection terminal 17.
  • the voltage detection terminal 17 includes a first terminal portion 17 b that fits in the through hole 36 and a second terminal portion 17 a that protrudes from the through hole 36. The same applies hereinafter.
  • the voltage detection terminal 17 may be press-fitted into the through hole 36. Or you may weld.
  • FIG. 16A is a cross-sectional view illustrating a configuration example of the terminal structure 3.
  • the structure shown in FIG. 16A is similar to the terminal structure 1, but has a protruding portion 85 that protrudes on the back side into the through hole 36.
  • FIG. 16B is a cross-sectional view illustrating a configuration example of the terminal structure 4.
  • the protruding portion 85 protruding on the back side of the through hole 36 is bent to form a bent portion 87 that contacts the back surface of the electrode 5b, thereby forming the electrode 5b. It is structured to be fixed to the back side. Furthermore, you may weld the bending part 87 with the back surface of the electrode 5b.
  • FIG. 17 is a diagram illustrating a configuration example of the terminal structure 5 and a manufacturing method thereof.
  • a flange 95 is provided at an intermediate portion of the voltage detection terminal 17, and a portion below the flange 95 is made thicker than an upper portion (terminal side).
  • the through hole (36) formed in the narrow electrode part 5d on the electrode 5b side is formed so that the diameter of the lower part is larger than the upper part. That is, the through-hole (36) is formed so that the upper through-hole 91 and the lower through-hole 93 (a recess having an enlarged inner diameter) communicate with each other to form a recess in the opening of the through-hole (36).
  • the portion AR ⁇ b> 1 below the flange 95 extends into the lower through-hole 93 and forms a flange 97. Fill the space.
  • the flange 95 and the flange 97 make it difficult for the voltage detection terminal 17 to come out of the resistor 1, and the voltage detection terminal 17 can be firmly fixed by the resistor 1.
  • the flange 95 can be used as a spacer (thickness t 21 ) when the PCB 101 is mounted on the current detection device 1, which is convenient.
  • FIG. 18 is a diagram illustrating a configuration example of the terminal structure 6.
  • the structure shown in FIG. 18 is a structure in which concave portions are formed in the upper and lower openings of the through hole.
  • the lower portion can be formed by fitting into the upper concave portion and hitting the lower portion.
  • the upper flange 99 and the lower flange 97 are substantially flush with the upper and lower surfaces of the electrode 5b (5d), there is an advantage that unevenness does not get in the way.
  • Each component of the present invention can be arbitrarily selected, and an invention having a selected configuration is also included in the present invention.
  • the present invention can be used for a current detection device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Details Of Resistors (AREA)

Abstract

導電性の金属からなる電流検出用抵抗器であって、前記電流検出用抵抗器の固有の特性情報をコード化し、読み取り可能に表示したコード表示部を備えた電流検出用抵抗器。

Description

電流検出用抵抗器、電流検出装置及びその製造方法
 本発明は、電流検出装置等に関する。
 自動車のバッテリーの電流検出技術などにおいて、金属板抵抗器を用いたシャント式電流検出方法が使われている。
 特許文献1は、チップ状電子部品の品種、容量値等の特性、精度(誤差)、ロット等を識別するためのコードを表示することを開示する。
実開昭61-117201号公報
 抵抗器について、カラーコードで抵抗値を表示する技術の他に、特許文献1もあるが、当該製品固有の情報を記録することは開示されていない。
 抵抗器を用いた電流検出は、抵抗器に通電し、測定された電圧値を抵抗値で除算することで電流値を知ることができる。このため抵抗器の抵抗値が正確に把握されていることが必要である。
 このような抵抗器は、製造段階で一定の範囲に抵抗値が収まるように設計及び調整するが、より正確な電流検出のためには、例えば電流検出用モジュールに搭載する前に、抵抗値を測定する必要があり、そのための工程や設備が必要となる。加えて、このような電流検出用抵抗器はより抵抗値を低くする傾向にあり、抵抗値を正確に測定するにはそのための設備やノウハウが必要であり、負担が大きいものであった。
 本発明は、抵抗器のユーザの負担を軽減することを目的とする。
 本発明の一観点によれば、導電性の金属からなる電流検出用抵抗器であって、前記電流検出用抵抗器の固有の特性情報をコード化し、読み取り可能に表示したコード表示部を備えた電流検出用抵抗器が提供される。
 前記電流検出用抵抗器は、抵抗体と、前記抵抗体より高導電性の金属からなる電極と、を備え、前記コード表示部は、前記電極に形成されることが好ましい。
 前記コード化された特性情報には、抵抗値の情報が含まれることが好ましい。
 本発明は、特性情報が含まれるコードが表示された電流検出用抵抗器と、コードに含まれる特性情報が記録された記憶部と、前記記憶部に記憶された特性情報と、前記電流検出用抵抗器から得られた電圧信号とから、電流値を演算する演算部と、を備えた電流検出装置である。
 本発明の他の観点によれば、導電性の金属からなる電流検出用抵抗器を準備するステップと、前記電流検出用抵抗器の特性値を測定するステップと、前記電流検出用抵抗器に、前記特性値を含む情報をコード化して書き込むステップとを有することを特徴とする電流検出装置の製造方法が提供される。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2015-124620号の開示内容を包含する。
 本発明によれば、抗器のユーザの負担を軽減することができる。
図1は、本発明の実施の形態による抵抗器を用いた電流検出装置の一構成例を示す斜視図である。 本発明の第2の実施の形態による抵抗器を用いた電流検出装置の製造方法を示す図であり、平面図と断面図を組にして示す図である。 図2に続く図である。 図3に続く図である。 抵抗体と電極端子との接合部と、貫通孔との位置関係を示す図である。 図6(a)は、4端子測定法により、完成後の抵抗器の抵抗値を測定する様子を示す図である。図6(b)は、測定した抵抗値などのデータ等をQRコード等の形態にした表示部を、電流検出装置の電極の表面に書き込んだ構成を示す図である。 電流検出モジュールの回路構成例を示す図である。 図8(a)は、電流検出モジュールの外観構成例を示す図であり、図8(b)は、電流検出モジュールの一構成例を示す断面図であり、図8(c)は、電流検出モジュールの一構成例を示す平面図である。 第3の実施の形態による処理の流れの一例を示すフローチャート図である。 本発明の第4の実施の形態による抵抗器の製造方法を示す図であり、平面図と断面図を組にして示す図である。 図10に続く図である。 本発明の第5の実施の形態による抵抗器の製造方法を示す図であり、平面図と断面図を組にして示す図である。 図12に続く図である。 本発明の第6の実施の形態による抵抗器の製造方法を示す図であり、平面図と断面図を組にして示す図である。 端子構造の例を示す図である。 端子構造の例を示す図である。 端子構造の例を示す図である。 端子構造の例を示す図である。
 以下、本発明の実施の形態による電流検出装置について図面を参照しながら詳細に説明する。
 本明細書において、溶接とは、2以上の部材の接合部に、熱又は圧力もしくはその両者を加え、必要があれば適当な溶加材を加えて、接合部が連続性を持つ一体化された1つの部材とする接合方法を指す。
 以下、本発明の実施の形態による電流検出装置について、抵抗体と電極との端面同士を突き合せた突き合わせ構造の抵抗器を用いた電流検出装置を例にして、図面を参照しながら詳細に説明する。尚、この技術は、抵抗体と電極とが表面で接続されている構造に適用することも可能である。
 尚、本明細書において、抵抗器の電極-抵抗体-電極が配置される方向を長さ方向と称し、それと交差する方向を幅方向と称する。
(第1の実施の形態)
 まず、本発明の第1の実施の形態による抵抗器を用いた電流検出装置について説明する。図1は、本実施の形態による抵抗器を用いた電流検出装置の一構成例を示す斜視図である。図1に示すシャント抵抗器(以下、「抵抗器」と称する。)を用いた電流検出装置1は、2つの電極5a(第1の電極)、5b(第2の電極)と、電極5a、5b間に配置された抵抗体3と、電圧検出端子17と、を備えている。なお、抵抗体3、電極5a、5bからなる部分を導電体ともいう。また電極5a、5bを電極端子ともいう。電極5a、5bは、それぞれ、端部側の主電極部(5a、5bのうち、5c、5dを除く部分を主電極部と定義している。)と、主電極部よりも幅が2Wだけ狭い抵抗体3側の狭小電極部5c、5dとを備えている。狭小電極部5c、5dの間に、抵抗体3が配置される。狭小電極部5c、5dの長さ方向の寸法をWとする。この寸法Wは、例えば、1~3mm程度である。
 また、電圧検出端子17を、この例では狭小電極部5c、5dにそれぞれ1本ずつ設けている。電圧検出端子17を狭小電極部5c、5dに設けることで、電圧検出端子17間の距離を短くすることができ、4端子測定における電流測定精度を向上させることができる。
 図1に示す構造は、抵抗体3と電極部5a、5bとの溶接などにより形成された接合部分13a、13bを含む一部領域に、幅方向の内側に入り込む凹部7を設けることで幅を狭くした狭小部または幅狭部を形成することができる。この場合には、狭小電極部5c、5dの幅と抵抗体3の幅とは略等しくなる。凹部7により形成された幅の狭い部分を、狭小部または幅狭部と称する(以下同様)。
 本実施の形態による抵抗器によれば、抵抗体3と電極部5a、5bとの接合部分13a、13bを含む一部領域に、凹部7が形成されているため、シャント全体に生じる応力が、電流検出装置(抵抗器)1の接合部分13a、13bに集中することを抑制できる。
 凹部7を、抵抗体3と電極5a、5bとの境界から1~3mm程度(W)形成した場合でも、10%以上の応力緩和効果が得られる。さらに、凹部7を設けることで、電流経路において電流分布を安定化させることができるため 、TCR特性が改善する。
 尚、図1において、符号15は、ボルト孔である。符号11は、電流検出用基板を固定するための孔である(以下、省略する)。また、符号17は、電圧検出端子であり、この例では狭小電極部5c、5dに設けている。電圧検出端子17を狭小電極部5c、5dに設けることで、電圧検出端子17間の距離を短くすることができ、4端子測定における電流測定精度を向上させることができる。
 また、例えば、第1の電極部5aの上面には、コードを表示するコード表示部12が形成されている。このコード表示については、後述する。
(第2の実施の形態)
 次に、本発明の第2の実施の形態による抵抗器を用いた電流検出装置の製造方法について説明する。製造する抵抗器を用いた電流検出装置の例としては、図1に示すものとする。
 図2から図4までは、本実施の形態による抵抗器を用いた電流検出装置の製造方法を示す図であり、平面図と断面図を組にして示す図である。
 図2(a)に示すように、まず、Cuなどの高電導度の電極材31を準備する。
 図2(b)に示すように、プレス、切削、レーザー加工などの方法により、電極材31に、ねじ留め用のボルト孔15と、抵抗材をはめ込むための孔部33とを形成する。孔部33は電極材31の略中心の位置に1つ、ボルト孔15は電極材31の長さ方向の端部に近い位置に一対設ける。
 図3(c)に示すように、予め準備しておいた、孔部33と略同じ大きさであって、電極材31よりも高抵抗の抵抗材35を孔部33にはめ込む。抵抗材35の外側面が孔部33の内側面に当接し、例えば、矩形の接合部が形成される。
 電極材31、抵抗材35ともに、例えば長尺の材料(板)を切り出して用いることができる。
 抵抗材35用の材料としては、Cu-Ni系、Cu-Mn系、Ni-Cr系などの金属の板材を用いることができる。
 図3(d)に示すように、押さえ治具41などにより抵抗材35を電極材31に固定し、例えば電子ビームやレーザービーム43などをL1に示すように走査し、電極材31と抵抗材35との接合部を溶接することで、電極材31の中央領域に抵抗材35がはめ込まれ接合した接合母材を形成することができる。
 電極材31に貫通孔(孔部33)を設け、これに抵抗材35を嵌めこむため、電子ビームなどによる溶接の際にも電極材31(ワーク)が歪むことが抑制される。また、押さえ治具41を使うと、ワークのゆがみをより抑制することができて良い。
 図4(e)に示すように、抵抗値を確定させるために、例えば、抵抗材35の幅を決めるプレス加工(45)を行う。ここでは、抵抗材35の幅方向の端部を含む領域をカットして凹部7を形成する(図4(f))。すると、はめ込み当初の抵抗材35の幅に対して、側面からカットすることで、抵抗体の幅が小さくなり、抵抗値を調整することができる。さらに、溶接の始点、終点をカットすることで、接合部13a、13bにおける接合のばらつきを抑制し、応力を緩和することができる。
 さらに、この工程において、電圧検出端子を設けるための貫通孔36も形成する。このため、電圧検出端子の位置関係が安定し、また、抵抗値の調整工程と電圧検出端子の位置決め工程とを同じ工程で行うため、抵抗値との関係においても、ばらつきが小さい、高精度な電流検出が可能になる。
 図4(g)に示すように、電圧検出端子17を形成する。例えば棒状端子を狭小電極部5c、5dの貫通孔36に挿入して立設する。
 以上の製造工程により、図1に示す抵抗器を用いた電流検出装置を作成することができる。
 尚、電圧検出端子17の材料としては、銅、真鍮、リン青銅、コルソン合金、等の銅系の合金が好適である。
 尚、図3(d)に示すように、EB溶接などを行う場合に、溶接個所の始端と終端の接合状態が安定せず、破損の起点になる恐れがある。そこで、図4(e)に示すように、始端と終端とを含めてカットすることで、上述の応力緩和の効果に加えて、良好な接合状態を保つことができる。
 また、図5に示すように、抵抗体3と電極端子5c、5dとの接合部13a、13bと、貫通孔36との位置関係が、W11だけ離れて形成するようにしている。すなわち、接合部13a、13bは、EB溶接などにより合金化されており、貫通孔36を形成するための加工がしにくい。そこで、その合金化領域を避けて貫通孔を形成することで、貫通孔36を精度良く形成することができる。
 以上に説明したように、本実施の形態による製造方法によれば、電流検出装置における電圧検出端子の位置精度を高く保つことができるという利点がある。
(第3の実施の形態)
 次に、本発明の第3の実施の形態による、コード表示部を備えた電流検出装置について、説明を行う。図1に示すコード表示部12には、例えば、以下のデータ等が含まれる。すなわち、コードの内容は、ロット番号、製品名、特性を示す値(抵抗値、TCR値など)、使用材料(抵抗材料など)、製造者、製造場所、製造日、ユーザ情報(提供する会社名等)、などである。特に、ロット番号と抵抗値との組み合わせ、あるいは、それにTCR値を追加したデータのコード表示を、抵抗器を製造した後に行うことで、電流検出装置を提供されたユーザ等は、例えば実際に抵抗値などを測定せずに、正確なデータ等を知ることができることは非常に便利である。特性を示す値については、実測値が好ましいが、設計値でもよく、例えば抵抗値は実測値を記録し、TCR値は設計値を記録するなど任意に選択することができる。
 図6から図9までは、本実施の形態によるコード表示部を備えた電流検出装置及びその製造方法を説明するための図である。
 図9に示すように、処理を開始し(ステップS1: Start)、ステップS2において、第1及び第2の実施の形態において説明したように、抵抗器を用いた電流検出装置を作成する(図1参照)。
 次いで、ステップS3において、抵抗器の抵抗値等を測定する。図6(a)は、4端子測定法により、完成後の抵抗器の抵抗値を測定する様子を示す図である。電圧検出端子17、17と、電極5a、5bとを利用して、4端子測定法により、抵抗器の抵抗値を実測する。その他、必要なデータ(TCR値等)を測定しても良い。
 次いで、ステップS4において、図6(b)に示すように、測定した抵抗値などのデータ等をQRコード等の形態にした表示部12を、例えば電流検出装置の電極5aの表面などに書き込む。すなわち、特性値等の情報を変換してコード化し、電極に印字する。
 この際の印字方法としては、ファイバーレーザー、半導体レーザー、Greenレーザー、電子ビーム、Yagレーザー、印刷(インクジェット印刷)などを用いることができる。また、印字形態としては、QRコード(登録商標)、データマトリックス、バーコード、2次元コードなどを用いることができる。
 印字場所(位置)としては、銅の電極部分5a、5bが好ましい。尚、抵抗体3への印字は、抵抗器の特性への影響を考慮して避けることが好ましい。
 銅電極への印字は、レーザーマーキングにより、表面を薄く削る方法や、炭化させることで黒くする方法等がある。
 抵抗器を用いた電流検出装置を提供されたユーザ等は、例えばスマートフォンや専用のデコード装置等を用いてQRコードのデータを読み込み(ステップS11)、処理が終了する。
 上記の技術を用いることで、抵抗器のユーザ等は、抵抗値測定の設備を保有する必要が無く、コードリーダ等による表示部12のコードの読み込みのみで、抵抗値の管理や確認が可能となる。従って、デジタルデータでのトレーサビリティが可能となる。誤搭載などの問題も回避することができる。
 次に、電流検出モジュールの構成例について説明する。図7は、電流検出モジュールの回路構成例を示す図である。図8(a)は、電流検出モジュールの外観構成例を示す図であり、図8(b)は、電流検出モジュールの一構成例を示す断面図であり、図8(c)は、電流検出モジュールの一構成例を示す平面図である。
 図7に示す電流検出モジュールAは、上記の抵抗器1と、その両端子間の電圧信号を増幅するアンプ63と、アンプ63により増幅した信号をA/D変換するA/D変換器65と、デジタル信号出力を受け取って演算を行うマイコン67とを有する。
 通電時に、電流検出用抵抗器1の電圧検出端子17より取得した電圧値が増幅され、デジタルデータに変換され、マイコン67によって電流値が演算される。電流値は、データバス等を通じて各種電気機器へ送られる。
 すなわち、図7に示す構成は、特性情報が含まれるコードが表示された電流検出用抵抗器1と、マイコン67とを有し、マイコン67には、コードに含まれる特性情報が記録された記憶部と、記憶部に記憶された特性情報と、電流検出用抵抗器1から得られた電圧信号とから、電流値を演算する演算部と、が備えられている。
 図7に示す回路は、図8(a)から図8(c)までに示すように検出回路部101に各種素子が搭載され、これが電流検出用抵抗器1と接続されてモジュールが構成される。検出回路部101は必要に応じてモールド成形により外装が施される。コード表示部12は検出回路部101あるいはモールドで隠れない位置にすることが好ましい。図8(b)に示すように、抵抗器1上に、PCB105が実装され、必要に応じでモールド成形やケースに封入され、電流検出モジュールAが構成される。PCB105の裏面側から表面側に電圧検出端子17が貫通している。PCB105と電流検出用抵抗器1とは、図1において符号11で示した貫通孔によってねじ止め固定される。PCB105は熱伝導性絶縁材料で形成すると、抵抗器の発熱を検出する上で好適である。PCB105上には、半導体チップ111等が搭載されている。
 図8(c)はPCB105の部分の平面図である。PCB105の表面側に露出させた電圧検出端子17は、PCB105に形成されたコンタクト109に半田接続されている。コンタクト109と半導体チップ111は、ワイヤー107により接続されている。半導体チップ111には、前述の、アンプ、A/D変換回路、マイコンが内蔵されている。半導体チップ111はコネクタ141と接続されており、電流値を出力できる。
 この電流検出モジュールAへ電流検出抵抗器1を組み込むにあたって、当該電流検出抵抗器1のコード表示部12を読み取り、抵抗値、TCR値などの固有の情報をマイコン67内のROMに記録する。この情報を使用して、マイコン67内のCPUが電流値の演算を行うため、より高精度な電流検出が可能となる。また、図示しない温度センサによって電流検出抵抗器1もしくはその周囲温度を測定し、TCR値を使用して必要な補正をかけた上で電流値の演算をすることが可能となる。
(第4の実施の形態)
 次に、本発明の第4の実施の形態による抵抗器を用いた電流検出装置の製造方法について説明する。製造する抵抗器を用いた電流検出装置の例としては、図1に示す構造を例とする。
 図10及び図11は、本実施の形態による抵抗器の製造方法を示す図であり、平面図と断面図を組にして示す図である。
 図10(a)に示すように、例えば、長尺の平板状等の抵抗材53と、抵抗材53よりも高電導度の電極材からなり、抵抗材53と同様の長尺の平板状の第1の電極材51、第2の電極材51を準備する。
 図10(b)に示すように、抵抗材53の両端面と第1の電極材51、第2の電極材51の端面とが接触し接合部を形成するように配置し、例えば電子ビームやレーザービーム57などで、符号L1に示すように両方の接合部55を溶接して1枚の平板とする。接合位置により、抵抗値や形状に関する種々の調整を行うことも可能である。
 図10(c)に示すように、接合部55に沿ってその近傍の第1の電極材51、第2の電極材51に、複数の貫通孔36を形成する。
 図11(d)に示すように、接合部55を含む抵抗器素材(接合母材)を、抵抗材53とその近傍の電極材51を含む領域で幅が広くなっている長さ方向に延在する打ち抜き型59を利用して、カットしていく。図11(e)に示すように、カット後の接合部を符号13a、13bで示す。
 図11(e)に示すように、第1の実施の形態と同様の凹部7を有し、狭小電極部5c、5dにそれぞれ貫通孔36を有する抵抗器が形成できる。次いで、図11(f)に示すように、貫通孔36に、棒状の金属を挿通して電圧検出端子17を形成する。
 以上の工程により、主電極部5a、5bと狭小電極部5c、5dとを有し、電圧検出端子17を設けた電流検出装置を多数作成することができる。
 尚、図1で示したボルト孔15、電流検出用基板を固定するための孔11等は、説明では省略しているが、設けるか否かは任意である(以下の説明でも省略する)。
(第5の実施の形態)
 次に、本発明の第5の実施の形態による抵抗器を用いた電流検出装置の製造方法について説明する。製造する抵抗器を用いた電流検出装置の例としては、例えば図1に示すものとする。
 図12及び図13は、本実施の形態による抵抗器の製造方法を示す図であり、平面図と断面図を組にして示す図である。
 図12(a)、(b)に示す抵抗素材(接合母材)を形成する工程は、図10(a)、(b)に示す工程と同様である。
 図13(c)に示すように、接合母材を、破線で示すような、すなわち、長さ方向に凹部を有する抵抗器の形状に沿った形状を有する打ち抜き型61を用いて、打ち抜く。この打ち抜き工程において、接合部53に沿ってその近傍の第1の電極材51、第2の電極材51に、複数の貫通孔36を同じ工程で形成する。この際、一回の工程で、多数を打ち抜くようにしても良い。
 図13(d)に示すように、個片化された部材の接合部13a、13bを含む領域に凹部7を有する抵抗器が形成できる。従って、第1から第3までの各実施の形態と同様の効果を得ることができる。
 図13(e)に示すように、狭小電極部5c、5dに電圧検出端子17を形成する。
 以上の工程により、主電極部と狭小電極部とを有する、図1のような抵抗器を多数作成することができる。
 本実施の形態によれば、抵抗体の幅決め、電圧検出端子を立設するための貫通孔の形成の工程を同時に行うことができるため、工程が簡単になり、また、位置決め精度が良くなるという効果がある。
(第6の実施の形態)
 次に、本発明の第6の実施の形態による抵抗器を用いた電流検出装置の製造方法について説明する。製造する抵抗器を用いた電流検出装置の例としては、例えば図1に示すものとする。但し、電極と抵抗体との接合部が形成されていない。
 図14は、本実施の形態による抵抗器の製造方法を示す図であり、平面図と断面図を組にして示す図である。
 図14(a)に示すように、抵抗素材71を準備する。抵抗素材71は例えばCuなどの単一の金属板材である。なお、抵抗素材71を導電体ともいう。
 図14(b)に示すように、抵抗素材71を、破線で示すような、すなわち、長さ方向に凹部を有する抵抗器の形状に沿った形状を有する打ち抜き型75を用いて、打ち抜く。この打ち抜き工程において、抵抗素材71に、複数の貫通孔36を同じ工程で形成する。この際、一回の工程で、多数を打ち抜くようにしても良い。
 図14(c)に示すように、凹部7と貫通孔36とを有する抵抗器が形成できる。
 図14(d)に示すように、凹部7が形成されている領域に形成された貫通孔36、36に、電圧検出端子17を形成する。
 以上の工程により、抵抗素材のみを用いて、抵抗器を用いた電流検出素子を多数作成することができる。
 本実施の形態によれば、抵抗体の幅決め、電圧検出端子を立設するための貫通孔の形成の工程を同時に行うことができるため、工程が簡単になり、また、位置決め精度が良くなるという効果がある。
(第7の実施の形態)
 次に、本発明の第7の実施の形態について説明する。本実施の形態では、抵抗器に電圧検出端子を立設する端子構造及びその製造方法について説明する。
(1)端子構造1
 図15(a)は、端子構造の構成例を示す断面図である。図15(a)に示す構造では、電極5b(5d)に形成された貫通孔36内に、電圧検出端子17を設ける。この構造では、電圧検出端子17の中間部にフランジ81を形成している。電圧検出端子17を、貫通孔36に挿入すると、フランジ81により、電圧検出端子17の挿入位置が決められ、かつ、挿入構造が安定する。電圧検出端子17は、貫通孔36に収まる第1端子部17bと、貫通孔36から突出する第2端子部17aとを有する。
 尚、電圧検出端子17は、貫通孔36に圧入するとよい。あるいは、溶接してもよい。
(2)端子構造2
 図15(b)は、端子構造2の構成例を示す断面図である。図15(b)に示す構造では、電極5b(5d)に形成された貫通孔36内に、電圧検出端子17を設ける。この構造では、電圧検出端子17の一端にフランジ83を形成している。電圧検出端子17を、貫通孔36に図の下側から挿入すると、フランジ83により、電圧検出端子17の挿入位置が決められ、かつ、挿入構造が安定する。電圧検出端子17は、貫通孔36に収まる第1端子部17bと、貫通孔36から突出する第2端子部17aとを有する。以下、同様である。
 尚、電圧検出端子17は、貫通孔36に圧入するとよい。あるいは、溶接してもよい。
(3)端子構造3
 図16(a)は、端子構造3の構成例を示す断面図である。図16(a)に示す構造は、端子構造1と類似しているが、貫通孔36に挿入する側が裏に突出する突出部85を有するようになっている。
(4)端子構造4
 図16(b)は、端子構造4の構成例を示す断面図である。図16(b)に示す構造は、端子構造3において、貫通孔36に挿入する側が裏に突出する突出部85を曲げて電極5bの裏面に当接する屈曲部87を形成し、これにより電極5bの裏面に固定する構造としている。更に、屈曲部87を電極5bの裏面と溶接してもよい。
(5)端子構造5
 図17は、端子構造5の構成例と製造方法を示す図である。図17(a)に示すように、電圧検出端子17の中間部にフランジ95を設け、このフランジ95より下の部分を上の部分(端子側)よりも太くする。一方、電極5b側の狭小電極部5dに形成する貫通孔(36)を、上部よりも下部の径が大きいように形成する。すなわち、貫通孔(36)を、上部貫通孔91と下部貫通孔93(内径が広がった凹部)とが連通するように形成しておき、貫通孔(36)の開口部の凹部を形成する。
 図17(b)に示すように、貫通孔(36)に電圧検出端子17を上から挿入していくと、フランジ95の下面が電極5b(5d)表面に当接する。
 図17(c)に示すように、フランジ95より下の部分AR1を潰し加工することで、フランジ95より下の部分AR1が下部貫通孔93内に広がり、フランジ97を形成するように径の大きな空間を埋める。
 この構造によれば、フランジ95とフランジ97とにより、電圧検出端子17が抵抗器1から抜けにくくなり、電圧検出端子17を抵抗器1によりしっかりと固定することができる。
 また、図17(c)に示すように、電流検出装置1に、PCB101を搭載する場合のスペーサ(厚さt21)として、フランジ95を利用することができるため、便利である。
(6)端子構造6
 図18は、端子構造6の構成例を示す図である。図18に示す構造は、貫通孔の上下の開口に凹部を形成したものである。この場合には、図17に示す構造において、上部の凹部へのはめ込みにより、下部を凹部への打ち付けにより形成することができる。この構造によれば、上部フランジ99、下部フランジ97が、それぞれ電極5b(5d)の上下面と略同一平面となるので、凹凸が邪魔にならないという利点がある。
 上記の実施の形態において、添付図面に図示されている構成等については、これらに限定されるものではなく、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。
 また、本発明の各構成要素は、任意に取捨選択することができ、取捨選択した構成を具備する発明も本発明に含まれるものである。
 本発明は、電流検出装置に利用可能である。
1…電流検出装置(電流検出用抵抗器)、3…抵抗体、5a…第1の電極、5b…第2の電極、5c、5d…狭小電極部、7…凹部、12…コード表示部、13a、13b…接合部分、17…電圧検出端子。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (5)

  1.  導電性の金属からなる電流検出用抵抗器であって、
     前記電流検出用抵抗器の固有の特性情報をコード化し、読み取り可能に表示したコード表示部を備えた電流検出用抵抗器。
  2.  前記電流検出用抵抗器は、抵抗体と、前記抵抗体より高導電性の金属からなる電極と、を備え、
     前記コード表示部は、前記電極に形成される請求項1に記載の電流検出用抵抗器。
  3.  前記コード化された特性情報には、抵抗値の情報が含まれる請求項1又は2に記載の電流検出用抵抗器。
  4.  特性情報が含まれるコードが表示された電流検出用抵抗器と、
     コードに含まれる特性情報が記録された記憶部と、
     前記記憶部に記憶された特性情報と、前記電流検出用抵抗器から得られた電圧信号とから、電流値を演算する演算部と、
    を備えた電流検出装置。
  5.  導電性の金属からなる電流検出用抵抗器を準備するステップと、
     前記電流検出用抵抗器の特性値を測定するステップと、
     前記電流検出用抵抗器に、前記特性値を含む情報をコード化して書き込むステップと
    を有することを特徴とする電流検出装置の製造方法。
PCT/JP2016/067632 2015-06-22 2016-06-14 電流検出用抵抗器、電流検出装置及びその製造方法 WO2016208454A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/738,983 US10578651B2 (en) 2015-06-22 2016-06-14 Current sensing resistor, current sensing device, and method for producing the same
CN201680033555.3A CN107851494B (zh) 2015-06-22 2016-06-14 电流检测用电阻器、电流检测装置及其制造方法
DE112016002799.0T DE112016002799T5 (de) 2015-06-22 2016-06-14 Stromerfassungswiderstand, Stromerfassungsvorrichtung und Verfahren zu deren Herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-124620 2015-06-22
JP2015124620A JP6842823B2 (ja) 2015-06-22 2015-06-22 電流検出用抵抗器

Publications (1)

Publication Number Publication Date
WO2016208454A1 true WO2016208454A1 (ja) 2016-12-29

Family

ID=57585413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067632 WO2016208454A1 (ja) 2015-06-22 2016-06-14 電流検出用抵抗器、電流検出装置及びその製造方法

Country Status (5)

Country Link
US (1) US10578651B2 (ja)
JP (1) JP6842823B2 (ja)
CN (1) CN107851494B (ja)
DE (1) DE112016002799T5 (ja)
WO (1) WO2016208454A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199222A1 (ja) * 2017-04-28 2018-11-01 株式会社Gsユアサ 電流検出装置、管理装置、エンジン始動用のバッテリ
TWI748691B (zh) * 2019-10-28 2021-12-01 乾坤科技股份有限公司 電流檢測裝置及其製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6622491B2 (ja) * 2015-06-22 2019-12-18 Koa株式会社 電流検出装置及びその製造方法
JP6782096B2 (ja) * 2016-05-26 2020-11-11 サンコール株式会社 シャント抵抗器
WO2018073627A1 (en) * 2016-10-21 2018-04-26 Sony Mobile Communications Inc. Device and method for measuring electrical current in an electrical conductor
WO2018229817A1 (ja) * 2017-06-12 2018-12-20 新電元工業株式会社 パワーモジュール
WO2018229820A1 (ja) * 2017-06-12 2018-12-20 新電元工業株式会社 パワーモジュール
US10438730B2 (en) * 2017-10-31 2019-10-08 Cyntec Co., Ltd. Current sensing resistor and fabrication method thereof
JP6967431B2 (ja) * 2017-11-15 2021-11-17 サンコール株式会社 シャント抵抗器の製造方法
JP7173755B2 (ja) * 2018-05-17 2022-11-16 Koa株式会社 シャント抵抗器の実装構造
JP7075297B2 (ja) * 2018-07-04 2022-05-25 Koa株式会社 シャント装置
JP7237596B2 (ja) * 2019-01-10 2023-03-13 サンコール株式会社 シャントセンサ
DE102020207874B4 (de) * 2020-06-24 2023-11-23 Vitesco Technologies GmbH Strommessschaltung mit einer Auswerteeinheit und einem Widerstandsmesselement
DE202022104228U1 (de) 2022-07-26 2022-08-04 Isabellenhütte Heusler Gmbh & Co. Kg Elektronisches Bauelement mit einem Code

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233402U (ja) * 1988-08-26 1990-03-02

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117201U (ja) 1985-01-08 1986-07-24
JPS61264701A (ja) * 1985-05-20 1986-11-22 株式会社日立製作所 金属皮膜抵抗の抵抗値読み取り器
US20050156318A1 (en) * 2004-01-15 2005-07-21 Douglas Joel S. Security marking and security mark
US7955856B2 (en) * 2005-07-15 2011-06-07 Nipro Diagnostics, Inc. Method of making a diagnostic test strip having a coding system
US8999125B2 (en) * 2005-07-15 2015-04-07 Nipro Diagnostics, Inc. Embedded strip lot autocalibration
IN2012DN01923A (ja) 2009-09-04 2015-07-24 Vishay Dale Electronics Inc
US8888973B2 (en) * 2011-07-29 2014-11-18 Roche Diagnostics Operations, Inc. Encoded biosensors and methods of manufacture and use thereof
TWI428940B (zh) * 2011-11-15 2014-03-01 Ta I Technology Co Ltd 電流感應電阻及其製造方法
JP6622491B2 (ja) * 2015-06-22 2019-12-18 Koa株式会社 電流検出装置及びその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233402U (ja) * 1988-08-26 1990-03-02

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
COMPANY PROFILE, 2012, XP055340878, Retrieved from the Internet <URL:http://www. nikkohm.com/nikkohm_e_pdf/companyprofile_eng. pdf> [retrieved on 20160809] *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199222A1 (ja) * 2017-04-28 2018-11-01 株式会社Gsユアサ 電流検出装置、管理装置、エンジン始動用のバッテリ
JP2018189384A (ja) * 2017-04-28 2018-11-29 株式会社Gsユアサ 電流検出装置、管理装置、エンジン始動用のバッテリ
US11493013B2 (en) 2017-04-28 2022-11-08 Gs Yuasa International Ltd. Current detector, management device, battery for starting engine
TWI748691B (zh) * 2019-10-28 2021-12-01 乾坤科技股份有限公司 電流檢測裝置及其製造方法

Also Published As

Publication number Publication date
JP2017011087A (ja) 2017-01-12
CN107851494A (zh) 2018-03-27
CN107851494B (zh) 2019-12-10
JP6842823B2 (ja) 2021-03-17
DE112016002799T5 (de) 2018-04-12
US20180172735A1 (en) 2018-06-21
US10578651B2 (en) 2020-03-03

Similar Documents

Publication Publication Date Title
WO2016208454A1 (ja) 電流検出用抵抗器、電流検出装置及びその製造方法
JP6622491B2 (ja) 電流検出装置及びその製造方法
JP6906036B2 (ja) 電流検出用シャント抵抗器
US10163553B2 (en) Resistor and method for producing the same
US10438730B2 (en) Current sensing resistor and fabrication method thereof
WO2014038372A1 (ja) 電流検出用抵抗器
JP6064254B2 (ja) 電流検出用抵抗器
JP2009244065A (ja) シャント抵抗およびシャント抵抗への端子取付け方法
JP2009266977A (ja) 金属板抵抗器
JP5041996B2 (ja) 固体電解コンデンサ
JP2009076610A (ja) 磁性部品
JP2008082957A (ja) シャント抵抗器
JP2021196346A (ja) 電流強度を測定する装置を製造する方法および電流強度を測定する装置
JP7332567B2 (ja) 電流検出用抵抗器、電流検出装置及びその製造方法
JP5737252B2 (ja) 回路装置とその製造方法
CN111354522A (zh) 用于电池传感器的电阻组件和电池传感器
JP2005108900A5 (ja)
JP4332391B2 (ja) リード端子付き抵抗器の製造方法
JP2001237359A (ja) 半導体装置
JP5370535B2 (ja) 固体電解コンデンサ
JP2022092581A (ja) 抵抗アセンブリおよび抵抗アセンブリを製造する方法
JP2007220714A (ja) 抵抗器およびその製造方法
JP5116861B2 (ja) 固体電解コンデンサ
JP2012242241A (ja) 電子部品用測定冶具
JPH0528016U (ja) チツプ型電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814225

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15738983

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016002799

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814225

Country of ref document: EP

Kind code of ref document: A1