WO2016208208A1 - 舗装方法および舗装構造 - Google Patents

舗装方法および舗装構造 Download PDF

Info

Publication number
WO2016208208A1
WO2016208208A1 PCT/JP2016/051471 JP2016051471W WO2016208208A1 WO 2016208208 A1 WO2016208208 A1 WO 2016208208A1 JP 2016051471 W JP2016051471 W JP 2016051471W WO 2016208208 A1 WO2016208208 A1 WO 2016208208A1
Authority
WO
WIPO (PCT)
Prior art keywords
geogrid
sand
layer
pavement
block
Prior art date
Application number
PCT/JP2016/051471
Other languages
English (en)
French (fr)
Inventor
宏始 柳沼
竹内 康
Original Assignee
太平洋プレコン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋プレコン工業株式会社 filed Critical 太平洋プレコン工業株式会社
Priority to KR1020187002425A priority Critical patent/KR20180021144A/ko
Publication of WO2016208208A1 publication Critical patent/WO2016208208A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C3/00Foundations for pavings
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C5/00Pavings made of prefabricated single units

Definitions

  • the present invention relates to a paving method and a paving structure using paving blocks.
  • block paving uses blocks such as concrete plates and interlocking blocks as paving materials.
  • block-type pavements especially for pavement structures that use interlocking blocks in the pavement layer, durability and safety can be selected by appropriately selecting the shape, dimensions, laying pattern, color tone, and surface texture of the interlocking block. It becomes possible to realize pavement excellent in performance, comfort and landscape.
  • the interlocking effect of interlocking blocks is exhibited by the sand (joint sand) with which the joint between interlocking blocks was filled. . The load can be dispersed by this meshing effect.
  • Patent Document 1 discloses a technique in which a reinforcing layer made of a geogrid is provided on a roadbed, a roadbed layer is formed thereon, and a pavement block is laid on the roadbed layer. Thereby, even if a certain amount of subsidence occurs on the soft roadbed, the reinforcing effect is exhibited.
  • a surface layer is formed with a porous concrete block, a cushion layer is provided below the surface layer, a base layer made of a porous asphalt treatment mixture is provided below the cushion layer, below the base layer, and A technique for forming a roadbed made of a cement-stabilized material having a water permeability coefficient of 1.0 ⁇ 10 ⁇ 2 to 1.0 ⁇ 10 ⁇ 5 (cm / sec) above the roadbed is disclosed. Thereby, the realization of the water-permeable pavement structure applicable also to the high-traffic roadway is achieved.
  • a step or subsidence may occur after operation, causing people and automobiles. May interfere with traffic.
  • the cause of such steps and subsidence is that the load distribution performance is reduced by applying a product with a large block size, and design / construction / laying with a granular roadbed such as crusher run or particle size-adjusted crushed stone.
  • the quality and thickness of the sand may be excessive (the appropriate thickness is 20 to 30 mm depending on the application).
  • the quality of joint sand etc. may be a cause.
  • This reinforcing plate is a plate made of plastic, and is installed on the laying sand and inserted into the four corners of the block, and has an effect of assisting the load distribution of the interlocking block pavement having a large size.
  • the reinforcing plate is used to reinforce the load distribution effect of the large block, but there is a case where the reinforcement of the load support effect is insufficient in the central portion of the block without the reinforcing plate, and the load is applied to the central portion. As a result, the block may be bent and broken. Furthermore, there is a problem that it cannot be applied to a rectangular block having a small size such as a size of 100 mm ⁇ 200 mm that has the largest construction record in Japan.
  • Patent Document 1 Since the technique described in Patent Document 1 is assumed to be applied to a soft roadbed, how to prevent steps and subsidence after use in block pavement has been completely confirmed by demonstration experiments and the like. Absent.
  • the geogrid greatly affects the deflection characteristics of the block pavement as the position of use becomes the upper layer. That is, as the position where the geogrid is used is on the roadbed, in the roadbed, on the roadbed and above, problems such as a pumping phenomenon may occur, which may be a reverse effect rather than a reinforcing effect. For this reason, it is necessary to limit the size and specification to which the geogrid can be applied, but these points are not confirmed in Patent Document 1. Furthermore, in the case of using on a roadbed, considerations on construction are not taken into consideration at all. Moreover, since the technique of patent document 2 aims at the implementation
  • An object of the present invention is to provide a paving method and a paving structure that can be used.
  • the present invention has taken the following measures. That is, the paving method of the present invention is a paving method using paving blocks, a step of forming a roadbed layer on a roadbed, a step of forming a sandbed layer on the roadbed layer, and a sand of the floor sand layer Laying a bi-directionally stretched geogrid composed of longitudinal strands and transverse strands having a length determined from the maximum particle diameter of the material, and knots of the longitudinal strands and the transverse strands on the spread sand layer; and Laying paving blocks on the geogrid.
  • a bi-directionally stretched geogrid composed of longitudinal strands and transverse strands having a length determined from the maximum particle size of the sand spread of the bed sand layer and the nodes of the longitudinal strands and the transverse strand is formed on the bed sand layer.
  • a load for example, traffic load
  • the geogrid is pushed down in the direction of gravity by the evenly distributed load.
  • tensile stress is generated and sand particles (and joint sand) of sand In between, the frictional force and the interlocking effect, that is, the effect that the movement of the sand particles is restrained by the geogrid is exhibited.
  • the paving block, the sand spread (and joint sand), and the geogrid can be integrated to withstand the load.
  • the geogrid since the geogrid is laid in a wide range, it is possible to widen the load distribution range as compared with a structure without a geogrid or other reinforcing methods. As a result, the deflection of the pavement surface is reduced, and the stress generated in the floor sand layer and the roadbed layer is reduced, so that it is possible to suppress steps and settlement due to the paving block.
  • the node of the geogrid is thicker than the longitudinal strand and the transverse strand and has a convex shape.
  • the nodal points of the geogrid are thicker than the longitudinal strands and the transverse strands, so that the strength of the nodal points can be increased, and the geogrid lattice structure is maintained even if tensile stress occurs. It becomes possible. Moreover, since the nodal point has a convex shape, it is possible to prevent interlayer slip between the geogrid and the paving block.
  • the thickness of the longitudinal strand and the transverse strand is 1.0 mm or more and 3.0 mm or less, and the knot is 2.0 mm or more and 4.0 mm or less. It is characterized by that.
  • the thickness of the longitudinal strand and the transverse strand is 1.0 mm or more and 3.0 mm or less.
  • the deflection generated in the block pavement is increased, and there is a concern about the pumping phenomenon in which joint sand and ground sand are ejected.
  • a pumping phenomenon can be prevented.
  • a nodal point is 2.0 mm or more and 4.0 mm or less. This makes it possible to increase the strength of the nodal point and maintain the geogrid lattice structure even when tensile stress occurs.
  • the pavement block is laid so that a joint portion between one geogrid and another geogrid is always located directly below the pavement block.
  • the paving block is laid so that the joint between one geogrid and the other geogrid is always located directly below the paving block, so the joint between adjacent paving blocks and , The joint between one geogrid and another geogrid will not match. Thereby, it is possible to prevent the pavement block from being displaced, stepped and subsidized.
  • the pavement method of the present invention is further characterized by further including a step of providing a second laying sand layer between the geogrid and the pavement block.
  • the interlocking block is not easily displaced.
  • the pavement structure of this invention is a pavement structure using the block for pavement, Comprising: The roadbed layer formed on the roadbed, The floor sand layer formed on the said roadbed layer, On the said floor sand layer A bi-directionally stretched geogrid composed of longitudinal strands and transverse strands having a length determined from the maximum particle size of the sand spread of the spread sand layer, and a nodal point of the longitudinal strands and the transverse strands, And a paving block laid on the geogrid.
  • a bi-directionally stretched geogrid composed of longitudinal strands and transverse strands having a length determined from the maximum particle size of the sand spread of the bed sand layer and the nodes of the longitudinal strands and the transverse strand is formed on the bed sand layer.
  • a load for example, traffic load
  • the geogrid is pushed down in the direction of gravity by the evenly distributed load.
  • tensile stress is generated and sand particles (and joint sand) of sand In between, the frictional force and the interlocking effect, that is, the effect that the movement of the sand particles is restrained by the geogrid is exhibited.
  • the paving block, the sand spread (and joint sand), and the geogrid can be integrated to withstand the load.
  • the geogrid since the geogrid is laid in a wide range, it is possible to widen the load distribution range as compared with a structure without a geogrid or other reinforcing methods. As a result, the deflection of the pavement surface is reduced, and the stress generated in the floor sand layer and the roadbed layer is reduced, so that it is possible to suppress steps and settlement due to the paving block.
  • the pavement structure of the present invention is characterized in that a second sand layer is further provided between the geogrid and the pavement block.
  • the interlocking block is less likely to be displaced.
  • the geogrid when a load (for example, traffic load) is applied to the paving block, the geogrid is pushed down in the direction of gravity by the evenly distributed load, and at this time, tensile stress is generated, and the sand is spread (and joint sand).
  • the frictional force and the interlocking effect that is, the effect of restraining the movement of the sand particles by the geogrid is exhibited between the sand particles.
  • the paving block, the sand spread (and joint sand), and the geogrid can be integrated to withstand the load.
  • the geogrid is laid in a wide range, it is possible to widen the load distribution range as compared with a structure without a geogrid or other reinforcing methods. As a result, the deflection of the pavement surface is reduced, and the stress generated in the floor sand layer and the roadbed layer is reduced, so that it is possible to suppress steps and settlement due to the paving block. Furthermore, even if the sewer pipes are aged or subsidized due to the occurrence of underground cavities due to acid rain, or even if a subsidence occurs due to an earthquake, the presence of the geogrid will cause people and cars to become holes. It is possible to reduce the risk of falling.
  • the present inventors pay attention to geogrids that are laid on long slopes and steep slope embankments and have the effect of increasing their strength, and by laying geogrids between the sand and paving blocks, block paving It has been found that problems in can be prevented, and has led to the present invention.
  • the present invention is a pavement method using a paving block, a step of forming a roadbed layer on a roadbed, a step of forming a bedstone layer on the roadbed layer, and the maximum grain size of the sand of the bedstone layer
  • a step of laying a bi-directionally stretched geogrid composed of longitudinal and transverse strands having a length determined from a diameter, and knots of the longitudinal strand and the transverse strand on the laid sand layer And a step of laying a paving block.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a pavement structure according to the first embodiment.
  • the pavement structure 1 according to the present embodiment includes a road bed 3, a road bed layer 5 formed on the road bed 3, a bed sand layer 7 formed on the road bed layer 5, and a geophone laid on the bed sand layer 7. It comprises a grid 9 and an interlocking block 11 as a paving block laid on the geogrid 9.
  • Geogrid 9 is a resin net, also called geotextile, which has been used for reinforced earth walls, reinforced embankments, ground reinforcement, and the like. In the present embodiment, as shown in FIG. 1, the geogrid 9 is laid on the laying sand layer 7 and used to support the interlocking block 11.
  • FIG. 2 is a plan view of the geogrid 9.
  • the geogrid 9 is a two-way stretch type, and is composed of a longitudinal strand 9a and a transverse strand 9b perpendicular to the longitudinal strand 9a on a two-dimensional plane, and a node 9c that is an intersection of the longitudinal strand 9a and the transverse strand 9. Yes.
  • the nodal point strength is 0.5 kN or more in both length and width.
  • the shape of the knot point 9c is made thicker than the vertical and horizontal strands 9a and 9b and is convex.
  • the tensile strength of the geogrid 9 is 10.0 kN / m or more in length and 20.0 kN / m in width. That's it.
  • the elongation rigidity is 20 kgf or more and the maximum tensile force is 0.5 kgf / cm or more.
  • the material of the geogrid 9 is made of polypropylene, polyethylene or the like.
  • the width and length of the geogrid 9 shall be determined in consideration of workability. For example, it is assumed that the width is within 2 to 4 m, the extension is within 100 to 200 m, or is cut in advance to a certain size (within 100 to 200 cm in both length and width).
  • the geogrid 9 can be applied to all block-type pavements constructed with joint sand / laying sand (including empty kneaded mortar). (11) It should be noted that a geogrid is previously pasted on the surface of the interlocking block on the floor side (the lower surface of the interlocking block), and the grounding layer 7 is formed at the time of construction. May be laid. Thereby, it is possible to obtain the same effect as the case where the geogrid 9 is laid on the sand layer 7.
  • FIG. 3 is a conceptual diagram illustrating a state in which the geogrid and the sand particles are subjected to a load to produce an interlocking effect
  • FIG. 4 is a conceptual diagram illustrating a state in which the pavement structure according to the present embodiment is subjected to a load. .
  • the geogrid 9 is pushed downward by the equally distributed load due to the traffic load, and a tensile stress ( ⁇ t) is generated at this time.
  • an interlocking effect due to frictional force between the sand particles (laying sand and joint sand), that is, an effect that the sand particles are restrained by the geogrid and do not move is exhibited.
  • the interlocking block, the spread sand, the joint sand, and the geogrid can be integrated to counter the traffic load.
  • the presence of the geogrid widens the load distribution range as compared to the structure without the geogrid and other reinforcing methods. As a result, the deflection of the pavement surface is reduced, and the stress generated in the sand layer and the roadbed layer is reduced, so that the effect of suppressing steps and settlement is obtained. In addition, even if the sewer pipes are aging or subsidized due to the occurrence of underground cavities due to acid rain, the presence of geogrids can reduce the risk of people and cars falling into holes. .
  • FIG. 5 is a diagram showing a load distribution effect in a pavement structure that has not been reinforced. As shown in FIG. 5, the load is dispersed in a narrow range on the road bed 3 through the sand layer 7 and the roadbed layer 5, and the vertical compressive strain ( ⁇ Z 1 ) generated thereby increases.
  • FIG. 6 is a diagram showing the load distribution effect in the pavement structure using the reinforcing plate 13. As shown in FIG.
  • the load is widely dispersed in the sand layer 7 and the roadbed layer 5 through the reinforcing plate 13, and is also widely dispersed in the roadbed 3, thereby generating a vertical compressive strain ( ⁇ Z 2 ) becomes smaller. Therefore, it is considered that the pavement structure using the reinforced plate 13 has a higher load dispersion effect than the pavement structure not subjected to the reinforcement method.
  • the geogrid 9 is provided, so that the load is applied to a wide range of the sand layer 7 by the geogrid 9. Then, through the subbase layer 5, dispersed in a wide range road bed 3, whereby vertical compressive strain occurring ( ⁇ Z 3) is reduced. That is, the magnitude of the load distribution effect is in the order of the pavement structure according to the present embodiment shown in FIG. 4, the pavement structure using the reinforcing plate 13 shown in FIG. 6, and the pavement structure without the reinforcement method shown in FIG. 5. growing.
  • produce in the bed sand layer 7, the roadbed layer 5, and the roadbed 3 uses the pavement structure in which the reinforcement
  • a small compressive strain ( ⁇ Z) in the vertical direction also has the effect of reducing “rubbing” that occurs due to vehicle traffic. Therefore, it can be said that the pavement structure according to the present embodiment is the least likely to cause steps or subsidences that hinder the passage of vehicles after construction of block pavement.
  • FIG. 7 is a graph showing the measurement result of the amount of deflection directly below. As shown in FIG. 7, the amount of deflection directly below was the smallest in the first (just after construction) pavement structure using the reinforcing plate, but the second and subsequent pavement structure using the geogrid according to the present embodiment. The smallest value is shown. In addition, after the second time, except for the pavement structure that has not been reinforced, the pavement structure using the geogrid according to the present embodiment is most stable and has a high bearing capacity. I understand.
  • FIG. 8 is a graph showing the measurement result of the deflection ratio.
  • the deflection ratio of the pavement structure using the geogrid according to the present embodiment is the most stable and large value, and is most excellent.
  • the pavement structure using the reinforcement board showed the smallest value throughout. Thereby, it turns out that the pavement structure using the geogrid concerning this embodiment is stable and has a high load transmission rate.
  • FIG. 9 is a graph showing a change in the amount of deflection with respect to the loaded load. As shown in FIG. 9, it can be seen that as the load increases from around 500 N, the amount of deflection when using the geogrid is minimized. In other words, when the geogrid is used, it can be said that the bearing capacity reinforcement performance is higher than other methods.
  • FIG. 10 is a diagram showing a load transmission range when the strengthening method is not performed
  • FIG. 11 is a diagram showing a load transmission range when the reinforcing plate 13 is used
  • FIG. It is a figure which shows the load transmission range at the time of using.
  • the load is 1250N.
  • the load transmission range is L1
  • the amount of settlement from the upper surface position of the original interlocking block 11 indicated by the dotted line is d1.
  • the load transmission range is L2, and the amount of settlement from the upper surface position of the original interlocking block 11 indicated by the dotted line is d2.
  • FIG. 10 is a diagram showing a load transmission range when the strengthening method is not performed
  • FIG. 11 is a diagram showing a load transmission range when the reinforcing plate 13 is used
  • FIG. It is a figure which shows the load transmission range at the time of using.
  • the load is 1250N.
  • the load transmission range is L1
  • the load transmission range is L3, and the amount of settlement from the upper surface position of the original interlocking block 11 indicated by the dotted line is d3.
  • the load transmission range is L3> L2> L1, the largest when the geogrid 9 is used, the next when the reinforcing plate 13 is used, and the strengthening method is performed. If not, it is the minimum.
  • the amount of settlement of the interlocking block 11 is d3 ⁇ d2 ⁇ d1, the smallest when the geogrid 9 is used, the next is the case where the reinforcing plate 13 is used, and the case where the strengthening method is not performed is the largest. It has become.
  • the strengthening method using geogrid exhibits sufficient effects in terms of workability, pavement support force, and load distribution effect. This makes it possible to shorten the construction time and extend the pavement life.
  • geogrids may be laid in a double shape, that is, sandwiched between the upper and lower positions of the sand.
  • the geogrid is cut and accommodated.
  • FIG. 13 is a diagram showing a state where the geogrid is cut along the width of the road and the width is adjusted. The part indicated by the arrow corresponds to the joint.
  • FIG. 14 is a diagram showing a state in which joints are formed between the paving blocks 11. Moreover, the part shown with the arrow corresponds to the joint part of a geogrid. As shown in FIG. 14, the joint portion of the geogrid and the joint of the paving block are not matched. This makes it possible to maximize the effect of the geogrid.
  • FIG. 15 is a cross-sectional view illustrating a schematic configuration of the pavement structure according to the present embodiment.
  • the pavement structure 100 according to the present embodiment is formed on the roadbed 3, the roadbed layer 5 formed on the roadbed 3, and the roadbed layer 5, as in the first embodiment shown in FIG. 1.
  • a paving sand layer 7 As a paving sand layer 7, a geogrid 9 laid on the paving sand layer 7, a second paving sand layer 150 formed on the geogrid 9, and a paving block laid on the second paving sand layer 150 And an interlocking block 11.
  • the difference from the first embodiment is that the second spread sand layer 150 is provided on the geogrid 9 and the interlocking block 11 is provided thereon.
  • the second sand layer 150 formed on the geogrid 9 may have the same configuration as the sand layer 7 or may be different. That is, the particle size of the sand constituting the second sand layer 150 may be substantially the same as the particle size of the sand constituting the sand layer 7. In addition, the thickness of the second laying sand layer 150 can be set to 2.0 mm to 5.0 mm. Thus, by providing the 2nd floor sand layer 150 on the geogrid 9, in addition to the effect obtained in 1st Embodiment, the effect that the interlocking block 9 becomes difficult to shift
  • the pavement surface deflection is reduced and the stress generated in the sand layer 7 and the roadbed layer 5 is reduced.
  • the step and subsidence suppression by the paving block 11 are suppressed. Can be achieved.
  • the sewer pipes are aging or subsidized due to the occurrence of underground cavities due to acid rain, the presence of geogrids can reduce the risk of people and cars falling into holes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Structures (AREA)

Abstract

ブロック系舗装に特有の段差や沈下を有効に防止する。路床3上に形成された路盤層5と、路盤層5上に形成された敷砂層7と、敷砂層7上に敷設され、敷砂層7の敷砂の最大粒径から定まる長さを有する縦ストランドおよび横ストランド並びに縦ストランドおよび横ストランドの結節点から構成された二方向延伸型のジオグリッド9と、ジオグリッド9上に敷設された舗装用ブロック11と、を備える。ジオグリッドの結節点は、縦ストランドおよび横ストランドよりも厚さが大きく、凸型の形状を有する。

Description

舗装方法および舗装構造
 本発明は、舗装用ブロックを用いる舗装方法および舗装構造に関する。
 道路や駐車場などで用いられる舗装構造のうち、ブロック系舗装では、舗装材にコンクリート平板やインターロッキングブロックなどのブロックが用いられる。ブロック系舗装の中でも、特に、舗装層にインターロッキングブロックを用いる舗装構造は、インターロッキングブロックの形状、寸法、敷設パタ-ン、色調および表面の質感などを適宜選択することによって、耐久性、安全性、快適性および景観性に優れた舗装を実現することが可能となる。また、インターロッキングブロックを用いた舗装構造では、車両等の輪荷重が作用した際、インターロッキングブロック間の目地に充填した砂(目地砂)によって、インターロッキングブロック相互の噛み合わせ効果が発揮される。この噛み合わせ効果によって荷重を分散させることができる。
 特許文献1には、路床の上にジオグリッドからなる補強層を設け、その上に路盤層を形成し、路盤層上に舗装ブロックを敷設する技術が開示されている。これにより、軟弱な路床である程度の沈下が生じたとしても、補強効果の発揮が図られている。また、特許文献2には、ポーラスコンクリートブロックで表層を形成し、この表層の下方にクッション層を設け、このクッション層の下方にポーラスアスファルト処理混合物からなる基層を設け、この基層の下方で、かつ、路床の上方に透水係数が1.0×10-2~1.0×10-5(cm/sec)である、セメント安定処理物からなる路盤を形成する技術が開示されている。これにより、交通量の多い車道にも適用可能な透水性の舗装構造の実現が図られている。
特開2010-281080号公報 特開2001-011810号公報
 インターロッキングブロック、コンクリート平板、自然石、タイル、レンガ等のブロック系舗装を、目地砂や敷砂を用いて乾式工法で施工する場合、供用後に段差や沈下等が発生することにより、人や自動車の通行の妨げになる場合がある。このような段差や沈下等が発生する原因は、ブロック寸法が大きい製品を適用することによって、荷重分散性能が低下することにあったり、クラッシャランや粒度調整砕石等の粒状路盤による設計・施工、敷砂の品質や厚さが過大(適正厚は用途に応じて20~30mmである)となることにあったりする。また、目地砂の品質等が原因となる場合もある。
 一方、インターロッキングブロック舗装の強化策として、強化板を用いた工法が知られている。この強化板とは、プラスチック製の板であり、敷砂上に設置し、ブロックの四隅に挿入して、サイズの大きいインターロッキングブロック舗装の荷重分散を補助する効果を奏するものである。
 しかし、強化板には下記のような課題が存在する。すなわち、強化板を用いた工法では、強化板をブロックの四隅に1つ1つ手作業で敷設しなければならないため、強化板を用いない工法に比べて施工に手間と時間がかかってしまう。その結果、施工コストが増加し、強化板の材料費も高額になってしまう。また、強化板の使用により、ブロック間の目地幅が広がり、荷重分散機能が低下する恐れがある。また、強化板は、大版ブロックの荷重分散効果を補強するために用いられるが、強化板が無いブロック中央部において、荷重支持効果の補強が不十分となる場合があり、中央部に荷重がかかることによって、ブロックの曲げ破壊が生じる恐れがある。さらに、国内で施工実績が最も多い100mm×200mmサイズ等の寸法が小さい長方形ブロックには適用できないという問題がある。
 特許文献1記載の技術は、軟弱な路床に適用することが想定されているため、ブロック系舗装における供用後の段差や沈下をどのように防ぐかについては、実証実験等により全く確認されていない。また、ジオグリッドは、使用する位置が上層になるに伴って、ブロック舗装のたわみ特性に大きな影響を与える。すなわち、ジオグリッドを使用する位置が路床上、路盤内、路盤上と上方になるに従って、ポンピング現象等の不具合が発生する場合があり、補強効果どころか逆効果となることがある。このため、ジオグリッドを適用できるサイズや仕様を限定する必要があるが、これらの点については、特許文献1では、確認されていない。さらに、路盤上に使用する場合では、施工上の留意点について、全く考慮されていない。また、特許文献2記載の技術は、透水性の舗装構造の実現を目的としているため、ブロック系舗装における課題を解決することはできない。
 また、近時、地面が突然陥没し、地表に穴が開く現象が問題となっている。この現象は、下水道の管渠が老朽化することや、酸性雨が地下に浸透し、酸に溶けやすい性質の岩盤が溶かし流され、地下に空洞ができることに起因すると言われている。また、地震によって陥没が生ずることもある。交通量の多い道路で、陥没が発生すると、人や車が穴に転落する可能性が高まるため、このようなリスクを軽減させる手法が求められている。
 本発明は、このような事情に鑑みてなされたものであり、ブロック系舗装に特有の段差や沈下を有効に防止すると共に、道路の陥没により生じた穴に人や車が転落するリスクを軽減することができる舗装方法および舗装構造を提供することを目的とする。
 (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の舗装方法は、舗装用ブロックを用いる舗装方法であって、路床上に路盤層を形成する工程と、前記路盤層上に敷砂層を形成する工程と、前記敷砂層の敷砂の最大粒径から定まる長さを有する縦ストランドおよび横ストランド並びに前記縦ストランドおよび前記横ストランドの結節点から構成された二方向延伸型のジオグリッドを、前記敷砂層上に敷設する工程と、前記ジオグリッド上に舗装用ブロックを敷設する工程と、を含むことを特徴とする。
 このように、敷砂層の敷砂の最大粒径から定まる長さを有する縦ストランドおよび横ストランド並びに縦ストランドおよび横ストランドの結節点から構成された二方向延伸型のジオグリッドを、敷砂層上に敷設する。これにより、舗装用ブロックに荷重(例えば、交通荷重)がかかった場合、等分布荷重によってジオグリッドは重力方向に押し下げられ、この時に引張り応力が発生し、敷砂(および目地砂)の砂粒子との間に、摩擦力とインターロッキング効果、すなわち、砂粒子の移動がジオグリッドによって拘束される効果が発揮される。その結果、舗装用ブロック、敷砂(および目地砂)、ジオグリッドが一体化して、荷重に耐えることが可能となる。また、ジオグリッドが広範囲に敷設されるため、ジオグリッドが無い構造や他の補強工法に比べて、荷重の分布範囲を広くすることが可能となる。その結果、舗装面のたわみが減少し、敷砂層や路盤層に発生する応力が低減されるため、舗装用ブロックによる段差や沈下の抑制を図ることが可能となる。
 (2)また、本発明の舗装方法において、前記ジオグリッドの結節点は、前記縦ストランドおよび前記横ストランドよりも厚さが大きく、凸型の形状を有することを特徴とする。
 このように、ジオグリッドの結節点は、縦ストランドおよび横ストランドよりも厚さが大きいので、結節点の強度を高めることが可能となり、引張り応力が発生してもジオグリッドの格子構造を維持することが可能となる。また、結節点は、凸型の形状を有するので、ジオグリッドと舗装用ブロックとの層間すべりを防止することが可能となる。
 (3)また、本発明の舗装方法において、前記縦ストランドおよび前記横ストランドの厚さは、1.0mm以上3.0mm以下であり、前記結節点は、2.0mm以上4.0mm以下であることを特徴とする。
 このように、縦ストランドおよび横ストランドの厚さは、1.0mm以上3.0mm以下である。縦ストランドおよび横ストランドの厚さが大きいと、ブロック舗装で発生するたわみが大きくなり、目地砂や敷砂が噴出するポンビング現象が懸念されるが、縦ストランドおよび横ストランドの厚さが、1.0mm以上3.0mm以下であることにより、ポンピング現象を防止することが可能となる。また、結節点は、2.0mm以上4.0mm以下である。これにより、結節点の強度を高めることが可能となり、引張り応力が発生してもジオグリッドの格子構造を維持することが可能となる。
 (4)また、本発明の舗装方法は、一のジオグリッドと他の一のジオグリッドとの接合部が、常に舗装用ブロックの直下に位置するように、前記舗装用ブロックを敷設することを特徴とする。
 このように、一のジオグリッドと他の一のジオグリッドとの接合部が、常に舗装用ブロックの直下に位置するように、舗装用ブロックを敷設するので、隣接する舗装用ブロック間の目地と、一のジオグリッドと他の一のジオグリッドとの接合部とが一致することがなくなる。これにより、舗装用ブロックのずれ、段差および沈下を防止することが可能となる。
 (5)また、本発明の舗装方法は、前記ジオグリッドと前記舗装用ブロックとの間に、第2の敷砂層を設ける工程をさらに含むことを特徴とする。
 このように、ジオグリッドと舗装用ブロックとの間に、第2の敷砂層を設けるので、インターロッキングブロックがずれにくくなる。
 (6)また、本発明の舗装構造は、舗装用ブロックを用いた舗装構造であって、路床上に形成された路盤層と、前記路盤層上に形成された敷砂層と、前記敷砂層上に敷設され、前記敷砂層の敷砂の最大粒径から定まる長さを有する縦ストランドおよび横ストランド並びに前記縦ストランドおよび前記横ストランドの結節点から構成された二方向延伸型のジオグリッドと、前記ジオグリッド上に敷設された舗装用ブロックと、を備えることを特徴とする。
 このように、敷砂層の敷砂の最大粒径から定まる長さを有する縦ストランドおよび横ストランド並びに縦ストランドおよび横ストランドの結節点から構成された二方向延伸型のジオグリッドを、敷砂層上に敷設する。これにより、舗装用ブロックに荷重(例えば、交通荷重)がかかった場合、等分布荷重によってジオグリッドは重力方向に押し下げられ、この時に引張り応力が発生し、敷砂(および目地砂)の砂粒子との間に、摩擦力とインターロッキング効果、すなわち、砂粒子の移動がジオグリッドによって拘束される効果が発揮される。その結果、舗装用ブロック、敷砂(および目地砂)、ジオグリッドが一体化して、荷重に耐えることが可能となる。また、ジオグリッドが広範囲に敷設されるため、ジオグリッドが無い構造や他の補強工法に比べて、荷重の分布範囲を広くすることが可能となる。その結果、舗装面のたわみが減少し、敷砂層や路盤層に発生する応力が低減されるため、舗装用ブロックによる段差や沈下の抑制を図ることが可能となる。
 (7)また、本発明の舗装構造は、前記ジオグリッドと前記舗装用ブロックとの間に、第2の敷砂層をさらに備えることを特徴とする。
 このように、ジオグリッドと舗装用ブロックとの間に、第2の敷砂層をさらに備えるので、インターロッキングブロックがずれにくくなる。
 本発明によれば、舗装用ブロックに荷重(例えば、交通荷重)がかかった場合、等分布荷重によってジオグリッドは重力方向に押し下げられ、この時に引張り応力が発生し、敷砂(および目地砂)の砂粒子との間に、摩擦力とインターロッキング効果、すなわち、砂粒子の移動がジオグリッドによって拘束される効果が発揮される。その結果、舗装用ブロック、敷砂(および目地砂)、ジオグリッドが一体化して、荷重に耐えることが可能となる。また、ジオグリッドが広範囲に敷設されるため、ジオグリッドが無い構造や他の補強工法に比べて、荷重の分布範囲を広くすることが可能となる。その結果、舗装面のたわみが減少し、敷砂層や路盤層に発生する応力が低減されるため、舗装用ブロックによる段差や沈下の抑制を図ることが可能となる。さらに、下水道の管渠の老朽化や、酸性雨による地下空洞の発生に伴う陥没が生じたとしても、また、地震によって陥没が生じたとしても、ジオグリッドの存在により、人や車が穴に転落するリスクを軽減させることが可能となる。
第1の実施形態に係る舗装構造の概略構成を示す断面図である。 ジオグリッドの平面図である。 ジオグリッドと砂粒子とが荷重を受けてインターロッキング効果を生ずる様子を示す概念図である。 本実施形態に係る舗装構造が荷重を受ける様子を示す概念図である。 強化工法がなされていない舗装構造における荷重分散効果を示す図である。 強化板13を用いた舗装構造における荷重分散効果を示す図である。 直下たわみ量の測定結果を示すグラフである。 たわみ比の測定結果を示すグラフである。 載荷荷重に対するたわみ量の変化を示すグラフである。 強化工法がなされていない場合の荷重伝達範囲と沈下量を示す図である。 強化板を用いた場合の荷重伝達範囲と沈下量を示す図である。 ジオグリッドを用いた場合の荷重伝達範囲と沈下量を示す図である。 ジオグリッドを道路の幅に沿って切断し、幅を調整した状態を示す図である。 舗装用ブロック11同士の間に、目地が形成されている様子を示す図である。 第2の実施形態に係る舗装構造の概略構成を示す断面図である。
 本発明者らは、長大斜面や急勾配盛土に敷設され、それらの強度を高める効果を有するジオグリッドに着目し、敷砂と舗装用ブロックとの間にジオグリッドを敷設することによって、ブロック舗装における不具合を防止することができることを見出し、本発明をするに至った。
 すなわち、本発明は、舗装用ブロックを用いる舗装方法であって、路床上に路盤層を形成する工程と、前記路盤層上に敷砂層を形成する工程と、前記敷砂層の敷砂の最大粒径から定まる長さを有する縦ストランドおよび横ストランド並びに前記縦ストランドおよび前記横ストランドの結節点から構成された二方向延伸型のジオグリッドを、前記敷砂層上に敷設する工程と、前記ジオグリッド上に舗装用ブロックを敷設する工程と、を含むことを特徴とする。
 これにより、本発明者らは、舗装面のたわみを減少させると共に、敷砂層や路盤層に発生する応力を低減させ、その結果、舗装用ブロックによる段差や沈下の抑制を図ることを可能とした。以下、本発明の実施形態について図面を参照して説明する。
 [第1の実施形態]
 [舗装構造について]
 図1は、第1の実施形態に係る舗装構造の概略構成を示す断面図である。本実施形態に係る舗装構造1は、路床3と、路床3上に形成された路盤層5と、路盤層5上に形成された敷砂層7と、敷砂層7上に敷設されたジオグリッド9と、ジオグリッド9上に敷設された舗装用ブロックとしてのインターロッキングブロック11と、から構成される。
 ジオグリッド9は、ジオテキスタイルとも呼称される樹脂製網であり、従来から、補強土壁、補強盛土、地盤補強等に使用されている。本実施形態では、図1に示すように、ジオグリッド9を敷砂層7の上に敷設し、インターロッキングブロック11を支持するように用いる。
 [ジオグリッドについて]
 図2は、ジオグリッド9の平面図である。ジオグリッド9は、二方向延伸型であって、2次元平面上で縦ストランド9aおよびこれに直交する横ストランド9b、並びに縦ストランド9aと横ストランド9との交点である結節点9cから構成されている。本実施形態に係るジオグリッド9は、以下のように定めることができる。
 (1)形状は二方向延伸型とする。
 (2)目合い(縦ストランド9aの長さa×横ストランド9bの長さb)は、「a=19~38mm、b=28.5~47.5mm」とする。これは、ブロック系舗装に適用される敷砂の品質として、最大粒径が4.75mm以下を考慮した寸法から定められる。すなわち、目合いの横と縦は、砂粒子の最大粒径と網目の大きさとの関係から、4.75mmの倍数として定めた。
 (3)ジオグリッド9の厚みが増すと、ブロック舗装に発生するたわみが大きくなって、目地砂や敷砂が噴出する“ポンピング現象”が発生する可能性があるため、縦・横のストランドの厚みは1.0~3.0mm以内とした。
 (4)ジオグリッド9の格子構造を維持するため、縦・横ストランドの結節点9cは、ストランドよりも厚くする(2.0~4.0mm)。また、十分な結節点強度(ストランド1本)が必要であるため、縦・横ともに結節点強度は0.5kN以上とする。
 (5)ジオグリッド9とインターロッキングブロック11との層間すべりを防ぐために、結節点9cの形状は、縦・横ストランド9a、9bよりも厚くすると共に、凸型とする。
 (6)インターロッキングブロック11に対して繰り返される交通荷重に耐えるために、高い引張強度が必要となるため、ジオグリッド9の引張強度を、縦10.0kN/m以上、横20.0kN/m以上とする。
 (7)ジオグリッド9による荷重分散効果を発揮するためには、高い伸び剛性と最大引張力が必要となることから、伸び剛性は20kgf以上、最大引張力は0.5kgf/cm以上とする。
 (8)ジオグリッド9の素材は、ポリプロピレン、ポリエチレン等とする。
 (9)ジオグリッド9の幅や長さは、施工性を考慮して定めるものとする。例えば、幅が2~4m以内、延長で100~200m以内、または、ある一定の寸法(縦・横ともに100~200cm以内)に予め裁断したものとする。
 (10)ジオグリッド9は、目地砂・敷砂(空練りモルタル含む)で施工するブロック系舗装全般に適用することが可能である。
 (11)なお、インターロッキングブロックの敷砂側の面(インターロッキングブロックの下面)に、予めジオグリッドを貼付しておき、施工時に、敷砂層7を形成した後、ジオグリッド付きのインターロッキングブロックを敷設しても良い。これにより、敷砂層7の上にジオグリッド9を敷設する場合と同等の効果を得ることが可能である。
 [ジオグリッドの作用]
 図3は、ジオグリッドと砂粒子とが荷重を受けてインターロッキング効果を生ずる様子を示す概念図であり、図4は、本実施形態に係る舗装構造が荷重を受ける様子を示す概念図である。ジオグリッド9を敷砂層7の上面に敷設することによって、図4に示すように、交通荷重による等分布荷重によって、ジオグリッド9は下方に押し下げられ、この時に引張応力(σt)が発生する。その結果、砂粒子(敷砂と目地砂)との間に摩擦力によるインターロッキング効果、すなわち、砂粒子がジオグリッドによって拘束され、移動しなくなる効果を発揮する。これにより、インターロッキングブロック、敷砂、目地砂、ジオグリッドが一体化して交通荷重に対抗することが可能となる。
 このように、ジオグリッドが有ることによって、ジオグリッドが無い構造や、他の補強工法に比べて荷重の分散範囲が広くなる。その結果、舗装面のたわみが減少し、敷砂層や路盤層に発生する応力が低減されるため、段差や沈下の抑制効果が得られる。さらに、下水道の管渠の老朽化や、酸性雨による地下空洞の発生に伴う陥没が生じたとしても、ジオグリッドの存在により、人や車が穴に転落するリスクを軽減させることが可能となる。
 [ジオグリッドの荷重分散効果]
 本実施形態に係る舗装構造における荷重分散効果に対し、強化工法がなされていない舗装構造および強化板を用いた舗装構造の荷重分散効果を比較する。図5は、強化工法がなされていない舗装構造における荷重分散効果を示す図である。図5に示すように、荷重が敷砂層7および路盤層5を介して、路床3に狭い範囲で分散し、これによって発生する鉛直方向の圧縮ひずみ(εZ)が大きくなる。図6は、強化板13を用いた舗装構造における荷重分散効果を示す図である。図6に示すように、荷重が、強化板13を介して、敷砂層7および路盤層5に広く分散し、路床3にも広く分散して、これによって発生する鉛直方向の圧縮ひずみ(εZ)が小さくなる。従って、強化工法がなされていない舗装構造よりも、強化板13を用いた舗装構造の方が、荷重分散効果が高いと考えられる。
 これらの舗装構造に対し、図4に示す本実施形態に係る舗装構造では、ジオグリッド9が設けられているため、荷重はジオグリッド9によって敷砂層7の広い範囲に加わる。そして、路盤層5を介して、路床3に広い範囲で分散し、これによって発生する鉛直方向の圧縮ひずみ(εZ)が小さくなる。すなわち、荷重分散効果の大きさは、図4に示す本実施形態に係る舗装構造、図6に示す強化板13を用いた舗装構造、図5に示す強化工法がなされていない舗装構造の順で大きくなる。また、敷砂層7、路盤層5および路床3に発生する応力や圧縮ひずみ(εZ)の大きさは、図5に示す強化工法がなされていない舗装構造、図6に示す強化板13を用いた舗装構造、図4に示す本実施形態に係る舗装構造の順で大きくなる。鉛直方向の圧縮ひずみ(εZ)が小さいことは、車両通行によって発生する“わだち掘れ”も小さくなる効果もある。従って、ブロック舗装を施工した後に、車両の通行等の支障となる段差や沈下等が、最も発生しにくいのは、本実施形態に係る舗装構造であると言える。
 [ジオグリッドの効果確認実験]
 本発明者らは、本実施形態に係る舗装構造、強化工法がなされていない舗装構造および強化板を用いた舗装構造について、以下のように実験を行なった。
 (1)第1の屋外実験
 各舗装構造について、荷重と載荷位置のたわみ量(以下、「直下たわみ量」と呼称する)を測定した。直下たわみ量は、値が小さいほど舗装構造の支持力が高いことを示す。試験条件は、以下の通りである。
 測定日:2014/8/22から約10日間隔
 設定荷重:8065.8N
 設定K30値:100MN/m
 載荷回数:各点1測定16回
 図7は、直下たわみ量の測定結果を示すグラフである。図7に示される通り、直下たわみ量は、1回目(施工直後)は強化板を用いた舗装構造が最も小さかったが、2回目以降は、本実施形態に係るジオグリッドを用いた舗装構造が最も小さい値を示している。また、2回目以降は、強化工法がなされていない舗装構造を除き、概ね安定した値を示しており、本実施形態に係るジオグリッドを用いた舗装構造が最も安定していて支持力が高いことが分かる。
 (2)第2の屋外実験
 各舗装構造について、たわみ比を測定した。たわみ比は、値が大きいほど周辺への荷重伝達率が高いことを示す。試験条件は、以下の通りである。
 測定日:2014/8/22から約10日間隔
 設定荷重:8065.8N
 設定K30値:100MN/m
 載荷回数:各点1測定16回
 図8は、たわみ比の測定結果を示すグラフである。図8に示される通り、たわみ比は、本実施形態に係るジオグリッドを用いた舗装構造が最も安定して大きい値を示しており、最も優れる場合がほとんどである。なお、強化板を用いた舗装構造は、全体を通して最も小さい値を示した。これにより、本実施形態に係るジオグリッドを用いた舗装構造は、安定して荷重伝達率が高いことが分かる。
 (3)室内実験
 次に、簡易断面再現模型を使用して、室内実験を行なった。同一荷重を受けた時に、たわみ量が小さいほど支持力が高くなるため、たわみ量を測定することによって、支持力補強性能および荷重伝達範囲を評価することができる。そこで、簡易断面再現模型に荷重を加え、載荷時の工法による性能の違いを測定した。簡易断面再現模型では、敷砂よりも載荷時の変化を明確にするため、敷砂の代わりとしてスポンジゴムを使用した。
 図9は、載荷荷重に対するたわみ量の変化を示すグラフである。図9に示すように、荷重が500Nの付近から大きくなるほど、ジオグリッドを用いた場合のたわみ量が最も小さくなることが分かる。すなわち、ジオグリッドを用いた場合、他の工法よりも支持力補強性能が高いと言える。
 図10は、強化工法がなされていない場合の荷重伝達範囲を示す図であり、図11は、強化板13を用いた場合の荷重伝達範囲を示す図であり、図12は、ジオグリッド9を用いた場合の荷重伝達範囲を示す図である。図10~図12のいずれも載荷重は1250Nである。同荷重載荷時に、スポンジゴム15の変形範囲が広いほど、荷重を広範囲に伝達させる。図10では、荷重伝達範囲がL1であり、点線で示した元のインターロッキングブロック11の上面位置からの沈下量がd1となっている。図11では、荷重伝達範囲がL2であり、点線で示した元のインターロッキングブロック11の上面位置からの沈下量がd2となっている。図12では、荷重伝達範囲がL3であり、点線で示した元のインターロッキングブロック11の上面位置からの沈下量がd3となっている。図10~図12から明らかなように、荷重伝達範囲は、L3>L2>L1であり、ジオグリッド9を用いた場合が最も大きく、次が強化板13を用いた場合で、強化工法がなされていない場合が最小となっている。また、インターロッキングブロック11の沈下量は、d3<d2<d1であり、ジオグリッド9を用いた場合が最も小さく、次が強化板13を用いた場合で、強化工法がなされていない場合が最大となっている。
 以上により、ジオグリッドによる強化工法は、施工性、舗装支持力、荷重分散効果において十分な効果が発揮されることが分かった。これにより、施工時間の短縮、舗装の長寿命化を図ることが可能となる。
 [施工について]
 (1)ジオグリッドの効果が最も大きく発揮されるのは、敷砂層の上に設置する場合である。ただし、敷砂と路盤の間に使用しても相応の効果が得られる。
 (2)段差が生じやすい舗装端部やマンホール等の路面施設周りでは、ジオグリッドを2重に、すなわち、敷砂の上側と下側の位置にサンドイッチ状にジオグリッドを敷設しても良い。
 (3)舗装用ブロックの敷設に伴い、次第にジオグリッドにたるみが生じるため、たるみが大きくなったら、ジオグリッドの一部を切断して、開口部を設けても良い。
 (4)ジオグリッドは重ね合わせて敷設しない。
 (5)曲線部では、ジオグリッドを切断して収容する。
 (6)舗装用ブロックの目地と、切断や敷設によって生じたジオグリッドの接合部による目地は一致させてはならない。図13は、ジオグリッドを道路の幅に沿って切断し、幅を調整した状態を示す図である。矢印で示した部分が、接合部に該当する。図14は、舗装用ブロック11同士の間に、目地が形成されている様子を示す図である。また、矢印で示した部分が、ジオグリッドの接合部に該当する。図14に示すように、ジオグリッドの接合部と舗装用ブロックの目地とを一致させない。これにより、ジオグリッドの効果を最大限に発揮させることが可能となる。
 (7)本実施形態によれば、他の補強工法や無補強と比べて、目地調整時に生じやすい敷砂がブロック間にかむことによる目地ラインの蛇行を防げるため、目地調整が容易になり目地ラインを通しやすくなる。
 [第2の実施形態]
 図15は、本実施形態に係る舗装構造の概略構成を示す断面図である。本実施形態に係る舗装構造100は、図1に示した第1の実施形態と同様に、路床3と、路床3上に形成された路盤層5と、路盤層5上に形成された敷砂層7と、敷砂層7上に敷設されたジオグリッド9と、ジオグリッド9の上に形成された第2の敷砂層150と、第2の敷砂層150上に敷設された舗装用ブロックとしてのインターロッキングブロック11と、から構成される。第1の実施形態と異なるのは、ジオグリッド9の上に第2の敷砂層150を有し、その上にインターロッキングブロック11を設けたことである。
 ジオグリッド9の上に形成する第2の敷砂層150は、敷砂層7と同じ構成を採っても良いし、違っていても良い。すなわち、第2の敷砂層150を構成する砂の粒径は、敷砂層7を構成する砂の粒径と実質的に同一として良い。また、第2の敷砂層150の厚さは、2.0mm~5.0mmとすることが可能である。このように、ジオグリッド9の上に第2の敷砂層150を設けたことによって、第1の実施形態で得られた効果に加え、インターロッキングブロック9がずれにくくなるという効果が得られる。
 以上説明したように、本実施形態によれば、舗装面のたわみを減少させると共に、敷砂層7や路盤層5に発生する応力を低減させ、その結果、舗装用ブロック11による段差や沈下の抑制を図ることが可能となる。さらに、下水道の管渠の老朽化や、酸性雨による地下空洞の発生に伴う陥没が生じたとしても、ジオグリッドの存在により、人や車が穴に転落するリスクを軽減させることが可能となる。
1、100 舗装構造
3 路床
5 路盤層
7 敷砂層
9 ジオグリッド
9a 縦ストランド
9b 横ストランド
9c 結節点
11 舗装用ブロック(インターロッキングブロック)
13 強化板
150 第2の敷砂層

Claims (7)

  1.  舗装用ブロックを用いる舗装方法であって、
     路床上に路盤層を形成する工程と、
     前記路盤層上に敷砂層を形成する工程と、
     前記敷砂層の敷砂の最大粒径から定まる長さを有する縦ストランドおよび横ストランド並びに前記縦ストランドおよび前記横ストランドの結節点から構成された二方向延伸型のジオグリッドを、前記敷砂層上に敷設する工程と、
     前記ジオグリッド上に舗装用ブロックを敷設する工程と、を含むことを特徴とする舗装方法。
  2.  前記ジオグリッドの結節点は、前記縦ストランドおよび前記横ストランドよりも厚さが大きく、凸型の形状を有することを特徴とする舗装方法。
  3.  前記縦ストランドおよび前記横ストランドの厚さは、1.0mm以上3.0mm以下であり、前記結節点は、2.0mm以上4.0mm以下であることを特徴とする請求項2記載の舗装方法。
  4.  一のジオグリッドと他の一のジオグリッドとの接合部が、常に舗装用ブロックの直下に位置するように、前記舗装用ブロックを敷設することを特徴とする請求項1から請求項3のいずれかに記載の舗装方法。
  5.  前記ジオグリッドと前記舗装用ブロックとの間に、第2の敷砂層を設ける工程をさらに含むことを特徴とする請求項1から請求項4のいずれかに記載の舗装方法。
  6.  舗装用ブロックを用いた舗装構造であって、
     路床上に形成された路盤層と、
     前記路盤層上に形成された敷砂層と、
     前記敷砂層上に敷設され、前記敷砂層の敷砂の最大粒径から定まる長さを有する縦ストランドおよび横ストランド並びに前記縦ストランドおよび前記横ストランドの結節点から構成された二方向延伸型のジオグリッドと、
     前記ジオグリッド上に敷設された舗装用ブロックと、を備えることを特徴とする舗装構造。
  7.  前記ジオグリッドと前記舗装用ブロックとの間に、第2の敷砂層をさらに備えることを特徴とする請求項6記載の舗装構造。
PCT/JP2016/051471 2015-06-26 2016-01-19 舗装方法および舗装構造 WO2016208208A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020187002425A KR20180021144A (ko) 2015-06-26 2016-01-19 포장 방법 및 포장 구조

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-129115 2015-06-26
JP2015129115A JP6673650B2 (ja) 2015-06-26 2015-06-26 舗装方法および舗装構造

Publications (1)

Publication Number Publication Date
WO2016208208A1 true WO2016208208A1 (ja) 2016-12-29

Family

ID=57584783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051471 WO2016208208A1 (ja) 2015-06-26 2016-01-19 舗装方法および舗装構造

Country Status (3)

Country Link
JP (1) JP6673650B2 (ja)
KR (1) KR20180021144A (ja)
WO (1) WO2016208208A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112030640A (zh) * 2020-08-26 2020-12-04 上海交通大学 一种砂土路基填筑的施工方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109033714B (zh) * 2018-09-03 2023-02-28 李来宾 一种控制路基路面协调变形的设计方法
JP7080201B2 (ja) * 2019-06-13 2022-06-03 大林道路株式会社 透水コンクリート舗装の舗装構造及び施工方法
JP7239448B2 (ja) * 2019-10-30 2023-03-14 太平洋プレコン工業株式会社 舗装方法および舗装構造

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247820U (ja) * 1975-10-02 1977-04-05
JPH0551908A (ja) * 1991-08-16 1993-03-02 Misawa Homes Co Ltd 地盤上への舗石ブロツクの敷設構造
JPH1088505A (ja) * 1996-07-05 1998-04-07 Bkn Karl Boegl Gmbh & Co Baustoffwerke 石材による固定化構造
JPH11107204A (ja) * 1997-09-30 1999-04-20 Hokuetsu:Kk 舗装ブロック材および舗装ブロック工
JPH11209905A (ja) * 1998-01-29 1999-08-03 Nihon Kogyo Co Ltd ブロック舗装構造
JP2001011810A (ja) * 1999-06-28 2001-01-16 Kajima Road Co Ltd 舗装構造
JP2003166205A (ja) * 2001-12-03 2003-06-13 Nippon Petrochemicals Co Ltd ブロック舗装に用いられるジオテキスタイル
JP2003193406A (ja) * 2001-12-27 2003-07-09 Kankyo Kogaku Kk 舗装構造及び舗装用敷設シート
JP2010281080A (ja) * 2009-06-03 2010-12-16 Mitsubishi Plastics Inc 舗装構造

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156101A (ja) * 1986-12-18 1988-06-29 株式会社 林物産 目地構成材
JP2001295211A (ja) * 2000-04-17 2001-10-26 Takeshige Shimonohara タイル付き有孔部材及びその敷設方法
JP5883336B2 (ja) * 2012-04-05 2016-03-15 鹿島建設株式会社 設計支援システム及び道路補強構造体
CN105793492B (zh) * 2013-09-30 2020-12-25 吉欧泰克科技有限公司 土工格室与土工格栅路面系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247820U (ja) * 1975-10-02 1977-04-05
JPH0551908A (ja) * 1991-08-16 1993-03-02 Misawa Homes Co Ltd 地盤上への舗石ブロツクの敷設構造
JPH1088505A (ja) * 1996-07-05 1998-04-07 Bkn Karl Boegl Gmbh & Co Baustoffwerke 石材による固定化構造
JPH11107204A (ja) * 1997-09-30 1999-04-20 Hokuetsu:Kk 舗装ブロック材および舗装ブロック工
JPH11209905A (ja) * 1998-01-29 1999-08-03 Nihon Kogyo Co Ltd ブロック舗装構造
JP2001011810A (ja) * 1999-06-28 2001-01-16 Kajima Road Co Ltd 舗装構造
JP2003166205A (ja) * 2001-12-03 2003-06-13 Nippon Petrochemicals Co Ltd ブロック舗装に用いられるジオテキスタイル
JP2003193406A (ja) * 2001-12-27 2003-07-09 Kankyo Kogaku Kk 舗装構造及び舗装用敷設シート
JP2010281080A (ja) * 2009-06-03 2010-12-16 Mitsubishi Plastics Inc 舗装構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112030640A (zh) * 2020-08-26 2020-12-04 上海交通大学 一种砂土路基填筑的施工方法

Also Published As

Publication number Publication date
JP6673650B2 (ja) 2020-03-25
JP2017014693A (ja) 2017-01-19
KR20180021144A (ko) 2018-02-28

Similar Documents

Publication Publication Date Title
US5851089A (en) Composite reinforced structure including an integrated multi-layer geogrid and method of constructing the same
US5160215A (en) Ground surfacing and erosion control device
WO2016208208A1 (ja) 舗装方法および舗装構造
EA031977B1 (ru) Системы дорожного покрытия с геоячейкой и георешеткой
Keller Application of geosynthetics on low-volume roads
JP2006225926A (ja) 流動化処理土、山砂、現地発生土、砕石等の埋め戻し材を利用した盛土工法
AU2018216633B2 (en) Method of constructing a foundation
JP5913701B1 (ja) 仮設兼用型の本設土構造物およびその構築方法
CN111005278B (zh) 一种局部加筋路堤的快速修复加固方法
JP5379857B2 (ja) 樹脂製積層構造物を備える地中構造物
CN210066390U (zh) 一种适用于深厚软土路基的处治结构
CN214882659U (zh) 一种防治箱涵顶部新建道路不均匀沉降的路基处理结构
JP5067307B2 (ja) 道路の変状防止構造及び道路の変状防止方法
KR20090124056A (ko) 보도 포장 공법
JP6240625B2 (ja) 擁壁、造成地及び造成地の造成方法
JP6445572B2 (ja) 車両通過用盛土の構築、補強、拡幅、嵩上げ方法
JP4506316B2 (ja) 道路の段差解消構造
Ohta et al. Retrofit technique for asphalt concrete pavements after seismic damage
CN111236269B (zh) 一种机场高边坡区域土工材料分层铺设组合加固方法
JP2018115475A (ja) コンクリートブロックおよびそれを使用した敷設構造物
KR20140022334A (ko) 보도 블록 시공용 지오그리드
CN111827030A (zh) 一种高填路堤结构及施工方法
CN203129156U (zh) 一种高陡加筋边坡结构
KR101351075B1 (ko) 다중 그물망을 이용한 부등침하 방지기능을 갖는 보도 블록 포장구조 및 보도 블록 포장방법
JP2024102509A (ja) 舗装構造および舗装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16813979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187002425

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16813979

Country of ref document: EP

Kind code of ref document: A1