WO2016207050A1 - Verfahren zum sintern von kohlenstoffkörpern in einer ofeneinrichtung - Google Patents

Verfahren zum sintern von kohlenstoffkörpern in einer ofeneinrichtung Download PDF

Info

Publication number
WO2016207050A1
WO2016207050A1 PCT/EP2016/063826 EP2016063826W WO2016207050A1 WO 2016207050 A1 WO2016207050 A1 WO 2016207050A1 EP 2016063826 W EP2016063826 W EP 2016063826W WO 2016207050 A1 WO2016207050 A1 WO 2016207050A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
chamber
graphite
carbon bodies
channel
Prior art date
Application number
PCT/EP2016/063826
Other languages
English (en)
French (fr)
Inventor
Wolfgang Leisenberg
Original Assignee
Wolfgang Leisenberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wolfgang Leisenberg filed Critical Wolfgang Leisenberg
Priority to US15/737,521 priority Critical patent/US10683207B2/en
Priority to EP16734577.6A priority patent/EP3314184A1/de
Priority to CN201680036691.8A priority patent/CN107848896A/zh
Priority to CA2990070A priority patent/CA2990070A1/en
Priority to AU2016282636A priority patent/AU2016282636B2/en
Publication of WO2016207050A1 publication Critical patent/WO2016207050A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B13/00Furnaces with both stationary charge and progression of heating, e.g. of ring type, of type in which segmental kiln moves over stationary charge
    • F27B13/04Furnaces with both stationary charge and progression of heating, e.g. of ring type, of type in which segmental kiln moves over stationary charge of single-chamber type with temporary partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/02Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces
    • F27B9/021Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces having two or more parallel tracks
    • F27B9/022With two tracks moving in opposite directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • F27B9/24Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace being carried by a conveyor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • F27B9/24Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace being carried by a conveyor
    • F27B9/243Endless-strand conveyor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • F27B9/26Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace on or in trucks, sleds, or containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/3005Details, accessories, or equipment peculiar to furnaces of these types arrangements for circulating gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D5/0068Containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/007Cooling of charges therein

Definitions

  • the present invention relates to a method for sintering carbon bodies in a furnace device having at least a first furnace chamber for receiving the carbon body accommodated in a packing material, wherein the carbon bodies between lateral chamber walls of the furnace chamber are arranged, and the furnace chamber for forming a preheating zone, with a a heater provided heating zone and a cooling zone is used.
  • the refractory material with which the oven chambers are lined must be heated in each case. This considerable mass reduces the energy balance of the ring furnace. In addition, the periodic heating and cooling load on the furnace body and leads to a corresponding wear of the refractory material, so that an exchange of the refractory material in about 7 to 10-year intervals is necessary.
  • the carbon bodies are embedded in a packing material formed regularly of calcined petroleum coke, which performs substantially three different functions during the sintering process, namely shielding from the ambient air as protection against oxidation, permeability to exhaust from the carbon bodies during the heating in the warming zone escaping volatiles, in particular hydrocarbons, and especially a heat transfer from the chamber walls of the furnace chamber to the carbon body.
  • the relatively poor thermal conductivity of the packing material of about 0.3 W / mK leads to a drop in the packing material of up to more than one hundred Kelvin. As a result, the possible heat transfer and thus the kiln power is limited and worsened in addition by increased exhaust gas temperatures, the energy efficiency of the ring furnace.
  • a furnace device which makes possible a continuous sintering process in which, as is known, for example, from WO 99/06779, the carbon bodies formed here as green anodes are conveyed together with the packing material surrounding the carbon bodies through a vertical furnace channel.
  • the promotion of the carbon body through the furnace channel takes place as Gravity production, wherein an anode column formed from a plurality of anodes is lowered continuously and in each case a lowermost sintered anode is removed from the anode column and subsequently a green anode is added as the top anode of the anode column.
  • a substantially vertical arrangement also results for the likewise conveyed packing material.
  • the heating zone subsequent cooling zone results in consequence of the maximum compression of the packing material and the abrasive effect of the usually consisting of calcined packing packing material increased wear of the surface of the channel wall, so that in particular in the cooling zone premature renewal of the channel walls forming Refractory material is required.
  • the vertical orientation of the furnace channel of the known furnace device with the anodes stacked stacked anodes causes overheating of the top anodes in the preheating, so that for setting a desired anode temperature in the preheating additional cooling is required, which is disadvantageous to the Energy efficiency of the continuous process.
  • the invention is therefore based on the object to propose a method which allows a comparatively wear-free and at the same time energy-efficient operation of the furnace device.
  • the inventive method has the features of claim 1.
  • a packing material formed at least partially from a material which is highly heat-conductive is used.
  • the packing material is at least partially formed from a graphite material.
  • the packing material is predominantly formed from a graphite material.
  • a graphite material is particularly suitable for economic
  • the graphite material used is material composed of electrode residues of, for example, electrodes used in the production of stainless steel, which is preferably granulated.
  • the packing height of the packing material can be essentially limited to the height of the carbon bodies, so that the unwanted compression effects already described above are avoided.
  • the heat conduction can be avoided within the series arrangement. Due to the particular compared to the calcined petroleum coke usually used as a packing material significantly better sliding properties of the packing material, which is at least partially formed from a graphite material and is conveyed together with the carbon bodies, hardly resulting abrasion effects by the packing material on the surface of the furnace channel.
  • a substantial increase in energy efficiency compared to the described continuous sintering method can be achieved if a second series arrangement of carbon bodies through a furnace channel of a second furnace chamber adjacent to the first furnace chamber is conveyed parallel to and counter to the conveying direction of the first conveying device by means of a second conveying device wherein a furnace channel of the first furnace chamber is separated from the furnace channel of the second furnace chamber by a heat-transferring chamber wall, such that a heating zone of the first furnace chamber of a cooling zone opposite the second furnace chamber is arranged, and via the chamber wall, a heat transfer between the cooling zone and the preheating zone takes place.
  • a direct heat transfer takes place via the packing material and the chamber wall between the carbon bodies arranged on the first conveying device and the carbon bodies arranged on the second conveying device.
  • the heat transfer takes place by means of a refractory material of the wall elements of the chamber wall, whose ceramic mass comprises silicon carbide or graphite
  • the heat transfer takes place by means of a highly thermally conductive material core accommodated in wall elements of the chamber wall in a jacket of refractory material.
  • the thermal resistance is significantly reduced by the thermally conductive material core, which is preferably made of graphite.
  • a heat transfer medium from the wall elements a heat transfer medium is passed through flow channels formed in the wall elements, which form a preferably meandering channel in the chamber wall, it is possible to adjust the heat conductivity, ie the heat flow in the wall, to a low oven performance and higher Services dissipate the excess heat through the heat transfer medium in the flow channel.
  • air is used as the heat transfer medium, it is for example possible to supply the thus heated air as combustion air of the heating zone.
  • FIG. 1 shows a partial view of a furnace device in an isometric view
  • FIG. 2 is a cross-sectional view of the furnace device shown in FIG. 1
  • FIG. 1 shows a partial view of a furnace device in an isometric view
  • FIG. 3 shows a schematic representation of a furnace device designed as a countercurrent furnace
  • FIG. 4 shows a representation of an energy balance of a furnace device operated as a countercurrent furnace
  • Fig. 5 a wall element of a chamber wall
  • FIG. 6 shows a wall element in a further embodiment
  • FIG. 7 shows a chamber wall formed from a plurality of wall elements.
  • Fig. 1 shows a portion of a furnace channel 14 of a furnace device 10 with a furnace chamber 1 1, the lateral chamber walls 12, 13 form the furnace channel 14.
  • the furnace chamber 1 1 has a chamber floor designed as a conveyor 15, are arranged on the carbon body 16 in a series arrangement 1 7.
  • the conveying device 15 forming the chamber bottom is composed of a multiplicity of kiln cars 18 arranged one after the other in the longitudinal direction of the kiln channel 14, which form a substantially continuously formed surface of the chamber bottom in the longitudinal direction of the kiln channel 14 and are in each case arranged in an am Bottom trained rail guide 19 for a longitudinal feed of the kiln cars 1 8 are performed in the furnace channel 14.
  • the illustration of the oven device 10 in Fig. 1 shows only a longitudinal section of the furnace channel 14 of the furnace device, which in the present case is a preheating zone 20 of the furnace channel 14 subdivided into a preheating zone V, a heating zone H and a cooling zone A, as in FIG Fig. 3 is shown in a schematic representation of a designed as a mating device furnace device 10.
  • the furnace device 10 has, in addition to the furnace channel 14, a further furnace channel 20, which is formed, in particular, by adding a further chamber wall 21 to the chamber walls 12, 13 for forming a further furnace chamber 40.
  • the second furnace channel 20 is provided with a conveyor 22 which is designed as a counter-conveying device and allows a feed of the kiln cars 1 8 opposite to the conveying direction of the first conveyor 15.
  • Both furnace channels 14 and 20 are provided opposite one another with a heating device, so that mutually opposite heating zones H are formed.
  • the kiln cars 1 8 are moved in the oven channel 14 from right to left through the oven channel 14 in the embodiment shown in Fig. 3, so that an initial portion of the oven channel 14, the preheating V formed.
  • the carbon bodies 16 After passing through the heating zone H, the carbon bodies 16 reach the kiln car 1 8 into the cooling zone A and are finally conveyed out of the kiln channel 14.
  • the carbon bodies 16 In the oven channel 20 parallel to the furnace channel 20, the carbon bodies 16 are moved through from left to right, so that opposite the cooling zone A of the furnace channel 14, the preheating zone V of the furnace channel 20 is formed and after passing the heating zone H, the carbon body 16 in the cooling zone A at the right end enter the furnace channel 20.
  • the operation of the oven device 10 with counter-conveying conveyor devices 15 and 22 causes due to the opposing arrangement of cooling zones A and preheating V the process-related temperature gradient in the opposing zones allows effective cooling or heating of the carbon body 16 without a external energy supply is necessary.
  • the particular energy efficiency of the oven device 10 is further supported by the fact that as a packing material 23, which for receiving the Carbon body 16 is used, an at least partially formed of a graphite material packing material 23 is used, which, as shown in particular in FIGS. 1 and 2, the carbon body 16 receives shielded from the ambient air. As shown particularly in FIG.
  • the packing material 23, which is in direct contact with both the carbon bodies 16 and the surface of the chamber walls 12, 13, allows heat transfer by conduction, with the particular thermal conductivity of the packing material 23 depending on the size the proportion of graphite material is up to three times the thermal conductivity of petroleum coke, a particularly good heat transfer between the chamber walls 12, 13, which are provided with flow channels 24 for guiding hot gases, and the carbon bodies 16 allows.
  • the chamber walls 12, 13 constructed of wall elements 25, in which the flow channels 24, as exemplified in Fig. 5, thereby formed are that in a cavity 26 of the wall member 25, a material core 27 is inserted from graphite, which divides the cavity 26 in the flow channels 24.
  • the wall element 25 shown in FIG. 5 is thus essentially formed from a graphite body inserted into a jacket 28 made of refractory material.
  • FIG. 4 qualitatively shows the energy balance achievable with a pack material 23, which is formed as graphite granules, and FIG The heat recovery thus covers about 80% of the required heating energy, the heater of the furnace is operated exclusively with volatile hydrocarbons from the carbon bodies as a fuel.
  • the exhaust air temperature is so high that it can also be used to cover the heating energy for the carbon bodies 16 formed as anodes, for example for heating a kneading mixer, which mixes the paste of calcined coke and pitch for the anodes. So the stove does not need any primary energy but works exothermically.
  • FIG. 6 shows a wall element 30 which, embedded in a jacket 3 1 made of a refractory material, has a core 32 made of graphite.
  • the refractory material consists of a ceramic mass which comprises silicon carbide and / or graphite for increasing the thermal conductivity.
  • a flow channel 33 is formed in the refractory material of the shell 3 1, a flow channel 33 is formed.
  • a plurality of wall elements 30 can be combined in a row arrangement to form a chamber wall, such that the flow channels 33 of the individual wall elements 30 are connected to one another via manifolds 35 in order to form a meandering wall channel 34. Similar to the flow channels 33 and the manifold can deviate from the simplified representation in
  • Fig. 7 may be arranged in correspondingly formed wall elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)
  • Ceramic Products (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Sintern von Kohlenstoffkörpern (16) in einer Ofeneinrichtung mit zumindest einer ersten Ofenkammer (11) zur Aufnahme der in einem Packungsmaterial (23) aufgenom- menen Kohlenstoffkörper, wobei die Kohlenstoffkörper zwischen seitlichen Kammerwänden (12, 13, 21) der Ofenkammer angeordnet werden, und die Ofenkammer zur Ausbildung einer Vorwärmzone V, einer mit einer Heizeinrichtung versehenen Heizzone H und einer Abkühlzone A dient, wobei ein zumindest anteilig aus einem hoch wärmeleitfähigen Werkstoff gebildetes Packungsmaterial (23) verwendet wird.

Description

Verfahren zum Sintern von Kohlenstoffkörpern in einer Ofeneinrichtung
Die vorliegende Erfindung betrifft ein Verfahren zum Sintern von Kohlenstoffkörpern in einer Ofeneinrichtung mit zumindest einer ersten Ofenkammer zur Aufnahme der in einem Packungsmaterial aufgenommenen Kohlenstoffkörper, wobei die Kohlenstoffkörper zwischen seitlichen Kammerwänden der Ofenkammer angeordnet werden, und die Ofenkam- mer zur Ausbildung einer Vorwärmzone, einer mit einer Heizeinrichtung versehenen Heizzone und einer Abkühlzone dient.
Verfahren der eingangs genannten Art werden in unterschiedlichen Ofeneinrichtungen ausgeführt, wobei die sicherlich am meisten verbreitete Anwendung des Verfahrens in sogenannten Ringöfen stattfindet, in denen die Kohlenstoffkörper stationär in der Ofeneinrichtung angeordnet sind und die Aufteilung der Ofeneinrichtung in eine Vorwärmzone, eine Heizzone und einer Abkühlzone dadurch erfolgt, dass eine häufig als Ofenfeuer bezeichnete mobile Heizeinrichtung in ihrer Relativanordnung gegenüber einer Mehrzahl von Ofenkammern verändert wird. Dabei erfolgt eine periodische Aufheizung und Abkühlung der j eweiligen
Abschnitte der Ofenkammer zwischen Raumtemperatur und bis zu
1300 °C .
Das Feuerfestmaterial, mit dem die Ofenkammern ausgekleidet sind, muss j eweils mit aufgeheizt werden. Diese erhebliche Masse ver- schlechtert die Energiebilanz des Ringofens . Darüber hinaus belastet die periodische Aufheizung und Abkühlung den Ofenkörper und führt zu einem entsprechenden Verschleiß des Feuerfestmaterials, so dass ein Austausch des Feuerfestmaterials in etwa 7-bis 10-Jahres-Intervallen notwendig ist. Während ihrer Anordnung in den Ofenkammern sind die Kohlenstoffkörper in einem regelmäßig aus calciniertem Petrolkoks gebildeten Packungsmaterial eingebettet, das im Wesentlichen drei unterschiedliche Funktionen während des Sinterprozesses erfüllt, nämlich eine Abschirmung gegenüber der Umgebungsluft als Schutz gegen Oxydation, eine Permeabilität zur Abführung von aus den Kohlenstoffkörpern während des Aufheizens in der Aufwärmzone entweichenden flüchtigen Bestandteilen, insbesondere Kohlenwasserstoffe, und vor allem eine Wärmeübertragung von den Kammerwänden der Ofenkammer auf die Kohlenstoffkörper. Die relativ schlechte Wärmeleitfähigkeit des Packungsmaterials von etwa 0,3 W/mK führt zu einem Temperaturabfall am Packungsmaterial von bis zu über hundert Kelvin. Hierdurch wird die mögliche Wärmeübertragung und damit die Ofenleistung begrenzt und verschlechtert zusätzlich durch erhöhte Abgastemperaturen die Energieeffizienz des Ringofens. Des Weiteren ist eine Ofeneinrichtung bekannt, die ein kontinuierliches Sinterverfahren ermöglicht, bei dem, wie es beispielsweise aus der WO 99/06779 bekannt ist, die hier als grüne Anoden ausgebildeten Kohlenstoffkörper zusammen mit dem die Kohlenstoffkörper umgebenden Packungsmaterial durch einen vertikalen Ofenkanal gefördert werden. Die Förderung der Kohlenstoffkörper durch den Ofenkanal erfolgt als Schwerkraftförderung, wobei eine aus einer Mehrzahl von Anoden ausgebildete Anodensäule kontinuierlich abgesenkt wird und j eweils eine unterste gesinterte Anode aus der Anodensäule entfernt wird und nachfolgend eine grüne Anode als oberste Anode der Anodensäule hinzuge- fügt wird. Entsprechend der vertikalen Anordnung der Anoden in einer Anodensäule ergibt sich auch für das ebenfalls geförderte Packungsmaterial eine im Wesentlichen vertikale Anordnung.
Insbesondere in der unteren, der Heizzone nachfolgenden Abkühlzone ergibt sich in Folge der maximalen Kompression des Packungsmaterials und der abrasiven Wirkung des üblicherweise aus calciniertem Koks bestehenden Packungsmaterials ein erhöhter Verschleiß der Oberfläche der Kanalwandung, so dass insbesondere in der Abkühlzone eine vorzeitige Erneuerung des die Kanalwände ausbildenden Feuerfestmaterials erforderlich wird. Darüber hinaus bedingt die vertikale Ausrichtung des Ofenkanals der bekannten Ofeneinrichtung mit den zu einer Anodensäule aufeinanderge- stapelten Anoden eine Überhitzung der obersten Anoden in der Vorwärmzone, so dass zur Einstellung einer gewünschten Anodentemperatur in der Vorwärmzone eine zusätzliche Kühlung erforderlich wird, die sich nachteilig auf die Energieeffizienz des kontinuierlichen Verfahrens auswirkt.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren vorzuschlagen, das einen vergleichsweise verschleißfreien und zugleich energieeffizienten Betrieb der Ofeneinrichtung ermöglicht. Zur Lösung dieser Aufgabe weist das erfindungsgemäße Verfahren die Merkmale des Anspruchs 1 auf.
Erfindungsgemäß wird ein zumindest anteilig aus einem hoch wärmeleit- fähigen Werkstoff gebildetes Packungsmaterial verwendet. Die insbesondere im Vergleich zu calciniertem Petrolkoks wesentlich besseren Wärmeleiteigenschaften eines aus einem hoch wärmeleitfähigen Werkstoff gebildeten Packungsmaterials, führen unabhängig von der Art der j eweils eingesetzten Ofeneinrichtung zu einer verbesserten Energie- bilanz des Verfahrens .
Vorzugsweise ist das Packungsmaterial zumindest anteilig aus einem Graphitwerkstoff gebildet.
Besonders vorteilhaft ist es, wenn das Packungsmaterial überwiegend aus einem Graphitwerkstoff gebildet ist. Als Graphitwerkstoff eignet sich insbesondere aus wirtschaftlichen
Erwägungen ein Kunstgraphit oder Kunstgraphitgranulat, der bzw. das auch aus einem graphitierten Petrolkoks bestehen kann.
Besonders vorteilhaft ist es, wenn als Graphitwerkstoff Material aus Elektrodenresten von beispielsweise bei der Edelstahlherstellung einge- setzten Elektroden verwendet wird, der vorzugsweise granuliert ist.
Als gegenüber dem beschriebenen kontinuierlichen Sinterverfahren besonders vorteilhaft erweist sich, wenn die Kohlenstoffkörper zusammen mit dem zumindest anteilig aus einem Graphitwerkstoff gebildeten Packungsmaterial in einer Reihenanordnung horizontal durch einen zwischen den Kammerwänden der Ofenkammer ausgebildeten Ofenkanal gefördert werden, derart, dass die Reihenanordnung der Kohlenstoffkörper mittels der Fördereinrichtung sukzessive durch die Vorwärmzone A, die Heizzone H und die Abkühlzone A gefördert wird.
Hierdurch kann die Packhöhe des Packungsmaterials im Wesentlichen auf die Höhe der Kohlenstoffkörper beschränkt werden, so dass die bereits eingangs beschriebenen unerwünschten Kompressionseffekte vermieden werden. Zudem kann durch Abstände zwischen den Kohlenstoffkörpern die Wärmeleitung innerhalb der Reihenanordnung vermieden werden. Aufgrund der insbesondere im Vergleich zu dem üblicherweise als Packungsmaterial verwendeten calcinierten Petrolkoks wesentlich besseren Gleiteigenschaften des Packungsmaterial, das zumindest anteilig aus einem Graphitwerkstoff gebildet ist und zusammen mit den Kohlenstoff- körpern gefördert wird, ergeben sich kaum Abrasionseffekte durch das Packungsmaterial an der Oberfläche des Ofenkanals .
Durch das erfindungsgemäße Verfahren kann eine wesentliche Steigerung der Energieeffizienz auch gegenüber dem beschriebenen kontinuierlichen Sinterverfahren erreicht werden, wenn parallel und entgegen der Förder- richtung der ersten Fördereinrichtung mittels einer zweiten Fördereinrichtung eine zweite Reihenanordnung von Kohlenstoffkörpern durch einen Ofenkanal einer zur ersten Ofenkammer benachbarten zweiten Ofenkammer gefördert wird, wobei ein Ofenkanal der ersten Ofenkammer von dem Ofenkanal der zweiten Ofenkammer durch eine wärme- übertragende Kammerwand getrennt ist, derart, dass eine Aufheizzone der ersten Ofenkammer einer Abkühlzone gegenüberliegend der zweiten Ofenkammer angeordnet ist, und über die Kammerwand eine Wärmeübertragung zwischen der Abkühlzone und der Vorwärmzone erfolgt. Somit erfolgt über das Packungsmaterial und die Kammerwand ein direkter Wärmeübergang zwischen den auf der ersten Fördereinrichtung angeordneten Kohlenstoffkörpern und den auf der zweiten Fördereinrichtung angeordneten Kohlenstoffkörpern.
Zur Verbesserung der Wärmeübertragung ist es vorteilhaft, wenn die Wärmeübertragung mittels eines Feuerfestmaterials der Wandelemente der Kammerwand erfolgt, dessen keramische Masse Siliziumcarbid oder Graphit aufweist
Besonders vorteilhaft ist es, wenn die Wärmeübertragung mittels eines in Wandelementen der Kammerwand in einem Mantel aus Feuerfestmaterial aufgenommenen hoch wärmeleitfähigen Materialkern erfolgt. Gegenüber einer konventionellen aus feuerfesten Wandelementen aufgebauten Kammerwand, die einen erheblichen Wärmewiderstand aufweisen, ist durch den wärmeleitfähigen Materialkern, der vorzugsweise aus Graphit gebildet ist, der Wärmewiderstand erheblich reduziert. Wenn die Einstellung einer definierten Wärmeleitfähigkeit über die Formgebung des Materialkerns erfolgt, kann insbesondere in Kombination mit dem für das Packungsmaterial ausgewählten Werkstoff exakt der Wärmefluss eingestellt werden, der bei der durch die Brennkurve vorgegebenen Temperaturdifferenz zwischen dem heißen und den dem kalten Kohlenstoffkörper die gewünschten Aufheiz- und Abkühlgradienten ergibt.
Wenn zur Wärmeabführung aus den Wandelementen ein Wärmeträgermedium durch in den Wandelementen ausgebildete Strömungskanäle geleitet wird, die in der Kammerwand einen vorzugsweise meanderförmig verlaufenden Kanal ausbilden, ist es möglich, die Wärmeleitfähigkeit, also den Wärmefluss in der Wand, auf eine niedrige Ofenleistung einzustellen und bei höheren Leistungen die überschüssige Wärme über das Wärmeträgermedium im Strömungskanal abzuführen.
Wenn als Wärmeträgermedium Luft verwendet wird, ist es beispielsweise möglich, die so aufgeheizte Luft als Verbrennungsluft der Heizzone zuzuführen.
Nachfolgend wird eine Ausführungsform des erfindungsgemäßen Verfahrens sowie eine Ausführungsform der erfindungsgemäßen Ofeneinrichtung anhand der Zeichnungen näher erläutert. Es zeigen:
Fig. 1 : eine Teildarstellung einer Ofeneinrichtung in isometrischer Ansicht; Fig. 2 : eine Querschnittsdarstellung der in Fig. 1 dargestellten Ofeneinrichtung;
Fig. 3 : eine schematische Darstellung einer als Gegenlaufofen ausgebildeten Ofeneinrichtung;
Fig. 4 : eine Darstellung einer Energiebilanz einer als Gegenlaufofen betriebenen Ofeneinrichtung;
Fig. 5 : ein Wandelement einer Kammerwand;
Fig. 6 : ein Wandelement in einer weiteren Ausführungsform;
Fig. 7: eine aus mehreren Wandelementen gebildete Kammer- wand.
Fig. 1 zeigt einen Abschnitt eines Ofenkanals 14 einer Ofeneinrichtung 10 mit einer Ofenkammer 1 1 , deren seitliche Kammerwände 12, 13 den Ofenkanal 14 ausbilden. Die Ofenkammer 1 1 weist einen als Fördereinrichtung 15 ausgebildeten Kammerboden auf, auf dem Kohlenstoffkörper 16 in einer Reihenanordnung 1 7 angeordnet sind. Die den Kammerboden ausbildende Fördereinrichtung 15 ist im vorliegenden Fall aus einer Vielzahl von in Längsrichtung des Ofenkanals 14 einander nachfolgend angeordneten Ofenwagen 1 8 zusammengesetzt, die in Längsrichtung des Ofenkanals 14 eine im Wesentlichen kontinuierlich ausgebildete Ober- fläche des Kammerbodens ausbilden und j eweils in einer am Boden ausgebildeten Schienenführung 19 für einen Längsvorschub der Ofenwagen 1 8 im Ofenkanal 14 geführt sind.
Die Darstellung der Ofeneinrichtung 10 in Fig. 1 zeigt lediglich einen Längsabschnitt des Ofenkanals 14 der Ofeneinrichtung, wobei es sich im vorliegenden Fall um eine Vorwärmzone 20 des in eine Vorwärmzone V, in eine Heizzone H und eine Abkühlzone A unterteilten Ofenkanals 14 handelt, wie in Fig. 3 in einer schematischen Darstellung einer als Gegenlaufeinrichtung ausgebildeten Ofeneinrichtung 10 dargestellt. Wie weiter der Fig. 3 zu entnehmen ist, weist die Ofeneinrichtung 10 neben dem Ofenkanal 14 einen weiteren Ofenkanal 20 auf, der insbesondere dadurch ausgebildet ist, dass den Kammerwänden 12 , 13 zur Ausbildung einer weiteren Ofenkammer 40 noch eine weitere Kammerwand 21 hinzugefügt ist. Der zweite Ofenkanal 20 ist mit einer Fördereinrichtung 22 versehen, die als Gegenfördereinrichtung ausgebildet ist und einen Vorschub der Ofenwagen 1 8 entgegengesetzt zur Förderrichtung der ersten Fördereinrichtung 15 ermöglicht. Beide Ofenkanäle 14 und 20 sind einander gegenüberliegend mit einer Heizeinrichtung versehen, sodass entsprechend einander gegenüberliegende Heizzonen H ausgebildet sind.
Im Betrieb der Ofeneinrichtung 10 werden bei dem in Fig. 3 dargestellten Ausführungsbeispiel die Ofenwagen 1 8 im Ofenkanal 14 von rechts nach links durch den Ofenkanal 14 bewegt, sodass ein Anfangsabschnitt des Ofenkanals 14 die Vorwärmzone V ausgebildet. Nach Passieren der Heizzone H gelangen die Kohlenstoffkörper 16 auf den Ofenwagen 1 8 in die Abkühlzone A und werden schließlich aus dem Ofenkanal 14 hinausbefördert. In dem zum Ofenkanal 14 parallelen Ofenkanal 20 werden die Kohlenstoffkörper 16 von links nach rechts hindurchbewegt, sodass gegenüberliegend der Abkühlzone A des Ofenkanals 14 die Vorwärmzone V des Ofenkanals 20 ausgebildet ist und nach Passieren der Heizzone H die Kohlenstoffkörper 16 in die Abkühlzone A am rechten Ende des Ofenkanals 20 gelangen.
Der Betrieb der Ofeneinrichtung 10 mit gegenläufig fördernden Förder- einrichtungen 15 und 22 bewirkt, dass aufgrund der einander gegenüberliegenden Anordnung von Abkühlzonen A und Vorwärmzonen V das in den einander gegenüberliegenden Zonen verfahrensbedingte Temperaturgefälle eine effektive Abkühlung bzw. Aufwärmung der Kohlenstoffkörper 16 ermöglicht, ohne dass eine äußere Energiezufuhr notwendig ist. Die besondere Energieeffizienz der Ofeneinrichtung 10 wird noch dadurch unterstützt, dass als Packungsmaterial 23 , das zur Aufnahme der Kohlenstoffkörper 16 dient, ein zumindest anteilig aus einem Graphitwerkstoff gebildetes Packungsmaterial 23 verwendet wird, das, wie insbesondere in den Fig. 1 und 2 dargestellt ist, die Kohlenstoffkörper 16 abgeschirmt gegenüber der Umgebungsluft aufnimmt. Wie insbesondere Fig. 2 zeigt, ermöglicht das Packungsmaterial 23 , das in unmittelbarem Kontakt sowohl mit den Kohlenstoffkörpern 16 als auch mit der Oberfläche der Kammerwände 12 , 13 steht, einen Wärmeübergang durch Wärmeleitung, wobei die besondere Wärmeleitfähigkeit des Packungsmaterials 23 , die j e nach Größe des Anteils an Graphit- werkstoff bis zum Dreifachen der Wärmeleitfähigkeit von Petrolkoks beträgt, einen besonders guten Wärmeübergang zwischen den Kammerwänden 12, 13 , die mit Strömungskanälen 24 zur Führung von Heizgasen versehen sind, und den Kohlenstoffkörpern 16 ermöglicht.
Mit einem Materialkern 27 aus isotropem Graphit kann der Wärmewider- stand eines in Fig. 5 dargestellten Wandelementes 25 , das aus Festigkeitsgründen etwa 400 mm dick sein muss, praktisch auf den Wärmewiderstand der Keramikhülle reduziert werden.
Zur Erzielung eines besonders guten Wärmeübergangs zwischen den in Strömungskanälen 24 der Kammerwände 12, 13 strömenden Heizgasen und dem Packungsmaterial 23 sind die Kammerwände 12, 13 aus Wandelementen 25 aufgebaut, bei denen die Strömungskanäle 24 , so wie beispielhaft in Fig. 5 dargestellt, dadurch ausgebildet sind, dass in einen Hohlraum 26 des Wandelements 25 ein Materialkern 27 aus Graphit eingesetzt ist, der den Hohlraum 26 in die Strömungskanäle 24 aufteilt. Das in Fig. 5 dargestellte Wandelement 25 ist somit im Wesentlichen aus einem in einen Mantel 28 aus feuerfestem Material eingesetzten Graphitkörper gebildet.
Damit wird eine sehr hohe Rekuperationsrate von bis zu 80 % erreicht. Fig. 4 zeigt qualitativ die erzielbare Energiebilanz einer mit einem Pa- ckungsmaterial 23 , das als Graphitgranulat ausgebildet ist, und einer Kammerwand aus Wandelementen mit einem Materialkern aus Graphit betriebenen Ofeneinrichtung 10. Die Wärmerückgewinnung deckt demnach etwa 80 % der erforderlichen Aufheizenergie, wobei die Heizeinrichtung des Ofens ausschließlich mit flüchtigen Kohlenwasserstoffen aus den Kohlenstoffkörpern als Brennstoff betrieben wird. Dabei ist die Ablufttemperatur so hoch, dass damit auch die Heizenergie für die beispielsweise als Anoden ausgebildeten Kohlenstoffkörper 16, also etwa zur Beheizung eines Knetmischers, gedeckt werden kann, der die aus calciniertem Koks und Pech bestehende Paste für die Anoden mischt. Der Ofen benötigt also keine Primärenergie, sondern arbeitet exotherm.
Fig. 6 zeigt ein Wandelement 30, das in einem Mantel 3 1 aus einem Feuerfestmaterial eingebettet einen aus Graphit ausgebildeten Materialkern 32 aufweist. Das Feuerfestmaterial besteht aus einer keramischen Masse, die Siliziumcarbid oder/und Graphit zur Erhöhung der Wärmeleitfähigkeit aufweist. Im Feuerfestmaterial des Mantels 3 1 ist ein Strömungskanal 33 ausgebildet.
Wie Fig. 7 zeigt, können mehrere Wandelemente 30 in einer Reihenanordnung zu einer Kammerwand kombiniert werden, derart, dass die Strömungskanäle 33 der einzelnen Wandelemente 30 zur Ausbildung eines meanderförmig verlaufenden Wandkanals 34 über Krümmer 35 miteinander verbunden werden. Vergleichbar den Strömungskanälen 33 können auch die Krümmer abweichend von der vereinfachten Darstellung in
Fig. 7 in entsprechend ausgebildeten Wandelementen angeordnet sein.

Claims

16. Juni 2016
Prof. Dr. Ing. Wolfgang Leisenberg G/IOT-010-WO 61231 Bad Nauheim Tap/sam
Patentansprüche
1. Verfahren zum Sintern von Kohlenstoffkörpern (16) in einer Ofeneinrichtung (10, 30) mit zumindest einer ersten Ofenkammer (11) zur Aufnahme der in einem Packungsmaterial (23) aufgenommenen Kohlenstoffkörper, wobei die Kohlenstoffkörper zwischen seitlichen Kammerwänden (12, 13, 21, 35) der Ofenkammer angeordnet werden, und die Ofenkammer zur Ausbildung einer Vorwärmzone V, einer mit einer Heizeinrichtung versehenen Heizzone H und einer Abkühlzone A dient,
dadurch g e k e nn z e i c hn e t,
dass ein zumindest anteilig aus einem hoch wärmeleitfähigen Werkstoff gebildetes Packungsmaterial (23) verwendet wird.
2. Verfahren nach Anspruch 1,
dadurch g e k e nn z e i c hn e t,
dass das Packungsmaterial (23) zumindest anteilig aus einem Graphitwerkstoff gebildet ist.
3. Verfahren nach Anspruch 2,
dadurch g e k e nn z e i c hn e t, dass das Packungsmaterial (23) überwiegend aus einem Graphitwerkstoff gebildet ist.
4. Verfahren nach Anspruch 1 oder 2,
dadurch g e k e nn z e i c hn e t,
dass als Graphitwerkstoff ein Kunstgraphit verwendet wird.
5. Verfahren nach Anspruch 4,
dadurch g e k e nn z e i c hn e t,
dass der Kunstgraphit als Granulat ausgebildet ist.
6. Verfahren nach einem der Ansprüche 3 bis 5,
dadurch g e k e nn z e i c hn e t,
dass als Graphitwerkstoff graphitierter Petrolkoks verwendet wird.
7. Verfahren nach einem der Ansprüche 2 bis 6,
dadurch g e k e nn z e i c hn e t,
dass als Graphitwerkstoff ein recycelter Werkstoff aus Resten ver- brauchter Elektroden verwendet wird.
Verfahren nach einem der vorangehenden Ansprüche,
dadurch g e k e nn z e i c hn e t,
dass die Kohlenstoffkörper (16) zusammen mit dem zumindest anteilig aus einem Graphitwerkstoff gebildeten Packungsmaterial (23) in einer Reihenanordnung (17) horizontal durch einen zwischen den Kammerwänden (12, 13, 21, 35) der Ofenkammer (111, 26) ausgebildeten Ofenkanal (14, 20) gefördert werden, derart, dass die Reihenanordnung (17) der Kohlenstoffkörper mittels der Fördereinrichtung sukzessive durch die Vorwärmzone V, die Heizzone H und die Abkühlzone A gefördert wird.
9. Verfahren nach Anspruch 8,
dadurch g e k e nn z e i c hn e t,
dass parallel und entgegen der Förderrichtung der ersten Fördereinrichtung (15) mittels eine zweiten Fördereinrichtung (22) eine zweite Reihenanordnung (17) von Kohlenstoffkörpern (16) durch einen
Ofenkanal (20) einer zur ersten Ofenkammer (11) benachbarten zweiten Ofenkammer (26) gefördert wird, wobei ein Ofenkanal (14) der ersten Ofenkammer von dem Ofenkanal (20) der zweiten Ofenkammer durch eine wärmeübertragende Kammerwand (13, 35) getrennt ist, derart, dass eine Vorwärmzone V der ersten Ofenkammer gegenüberliegend einer Abkühlzone A der zweiten Ofenkammer angeordnet ist, und über die Kammerwand eine Wärmeübertragung zwischen der Abkühlzone A und der Vorwärmzone V erfolgt.
10. Verfahren nach einem der vorangehenden Ansprüche,
dadurch g e k e nn z e i c hn e t,
dass die Wärmeübertragung mittels eines Feuerfestmaterials der Wandelemente (25, 30) der Kammerwand (13, 35) erfolgt, dessen keramische Masse Siliziumcarbid oder Graphit aufweist.
11. Verfahren nach einem der vorangehenden Ansprüche,
dadurch g e k e nn z e i c hn e t,
dass die Wärmeübertragung mittels eines in Wandelementen (25, 30) der Kammerwand (13, 35) in einem Mantel (28, 31) aus Feuerfestmaterial aufgenommenen hoch wärmeleitfähigen Materialkern (27, 32) erfolgt. 12. Verfahren nach Anspruch 11,
dadurch g e k e nn z e i c hn e t,
dass die Wärmeübertragung über einen Materialkern (27, 32) erfolgt, der aus Graphit gebildet ist. 4
13. Verfahren nach Anspruch 11 oder 12,
dadurch g e k e nn z e i c hn e t,
dass die Einstellung einer definierten Wärmeleitfähigkeit über die Formgebung des Materialkerns (27, 32) erfolgt. 14. Verfahren nach einem der vorangehenden Ansprüche,
dadurch g e k e nn z e i c hn e t,
dass zur Wärmeabführung aus den Wandelementen (30) ein Wärmeträgermedium durch in den Wandelementen ausgebildete Strömungskanäle (33) geleitet wird, die in der Kammerwand (35) einen mean- derförmig verlaufenden Wandkanal (34) ausbilden.
15. Verfahren nach Anspruch 14,
dadurch g e k e nn z e i c hn e t,
dass als Wärmeträgermedium Luft verwendet wird.
PCT/EP2016/063826 2015-06-23 2016-06-16 Verfahren zum sintern von kohlenstoffkörpern in einer ofeneinrichtung WO2016207050A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/737,521 US10683207B2 (en) 2015-06-23 2016-06-16 Method for sintering carbon bodies in a furnace
EP16734577.6A EP3314184A1 (de) 2015-06-23 2016-06-16 Verfahren zum sintern von kohlenstoffkörpern in einer ofeneinrichtung
CN201680036691.8A CN107848896A (zh) 2015-06-23 2016-06-16 在炉内烧结碳体的方法
CA2990070A CA2990070A1 (en) 2015-06-23 2016-06-16 Method for sintering carbon bodies in a furnace
AU2016282636A AU2016282636B2 (en) 2015-06-23 2016-06-16 Method for sintering carbon bodies in a furnace device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102015211624 2015-06-23
DE102015211624.7 2015-06-23
DE102015224209.9 2015-12-03
DE102015224209.9A DE102015224209A1 (de) 2015-06-23 2015-12-03 Verfahren zum Sintern von Kohlenstoffkörpern in einer Ofeneinrichtung

Publications (1)

Publication Number Publication Date
WO2016207050A1 true WO2016207050A1 (de) 2016-12-29

Family

ID=57537164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/063826 WO2016207050A1 (de) 2015-06-23 2016-06-16 Verfahren zum sintern von kohlenstoffkörpern in einer ofeneinrichtung

Country Status (7)

Country Link
US (1) US10683207B2 (de)
EP (1) EP3314184A1 (de)
CN (1) CN107848896A (de)
AU (1) AU2016282636B2 (de)
CA (1) CA2990070A1 (de)
DE (1) DE102015224209A1 (de)
WO (1) WO2016207050A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2792985B1 (de) * 2013-04-18 2014-11-26 Amann Girrbach AG Sintervorrichtung
DE102017109245A1 (de) * 2017-04-28 2018-10-31 VON ARDENNE Asset GmbH & Co. KG Prozesskammeranordnung, Prozessiervorrichtung und deren Verwendung zum Prozessieren von Substraten
CN117387368A (zh) * 2022-01-19 2024-01-12 福建华清电子材料科技有限公司 石墨炉的配气系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4569835A (en) * 1982-08-18 1986-02-11 Alusuisse Italia S.P.A. Method of producing carbonaceous blocks in a tunnel type furnace
WO1999006779A1 (en) 1997-08-01 1999-02-11 Lazar Enterprises Pty. Ltd. Carbon baking furnace

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1828839A (en) * 1926-06-15 1931-10-27 Carborundum Co Furnace and method of operating the same
US3112181A (en) * 1958-05-08 1963-11-26 Shell Oil Co Production of graphite from petroleum
US3610391A (en) * 1970-03-20 1971-10-05 Btu Eng Corp Furnace conveyor system
US4847021A (en) * 1986-06-26 1989-07-11 Union Carbide Corporation Process for producing high density carbon and graphite articles
NO306549B1 (no) 1995-12-15 1999-11-22 Norsk Hydro As Fremgangsmåte ved baking eller kalsinering av formede kull-legemer i en kalsineringsovn samt pakkmateriale for bruk i samme
TWI516640B (zh) * 2013-08-30 2016-01-11 國立交通大學 石墨氧化物及石墨烯製備方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4569835A (en) * 1982-08-18 1986-02-11 Alusuisse Italia S.P.A. Method of producing carbonaceous blocks in a tunnel type furnace
WO1999006779A1 (en) 1997-08-01 1999-02-11 Lazar Enterprises Pty. Ltd. Carbon baking furnace

Also Published As

Publication number Publication date
EP3314184A1 (de) 2018-05-02
CA2990070A1 (en) 2016-12-29
AU2016282636B2 (en) 2021-01-28
US20180186646A1 (en) 2018-07-05
US10683207B2 (en) 2020-06-16
CN107848896A (zh) 2018-03-27
AU2016282636A1 (en) 2018-01-04
DE102015224209A1 (de) 2016-12-29

Similar Documents

Publication Publication Date Title
WO2016207050A1 (de) Verfahren zum sintern von kohlenstoffkörpern in einer ofeneinrichtung
DE2722065A1 (de) Ofen zum isostatischen warmpressen
DE3339972A1 (de) Kammerringofen und verfahren zu dessen betrieb
DE3787847T2 (de) Ofen für Hochtemperatur-Behandlung von plastischen oder gehärteten Produkten.
DE102010029082A1 (de) Durchlaufofen zum Erwärmen von Werkstücken mit hoher Aufheizrate im Eingangsbereich
DE2035287C3 (de) Anordnung zum Aufheizen von Gasen
DE513581C (de) Elektrisch beheizter Tunnelofen mit Vorwaerme-, Brenn- und Kuehlzone zum Brennen vonkeramischen Gegenstaenden bei hohen Temperaturen
DE3626889A1 (de) Brennofen zur kontinuierlichen herstellung selbstbackender langgestreckter kohlekoerper
DE29917101U1 (de) Heizplatte
DE3640213C1 (de) Verfahren zum Brennen von Formteilen aus grobkeramischem Material oder Oxidkeramik und Durchschubofen fuer das Verfahren
AT390322B (de) Vorrichtung zum durchwaermen von stahlteilen
AT412086B (de) Verfahren zum brennen
DE251207C (de)
DE2001148A1 (de) Tunnelofen
WO2009059345A1 (de) Elektrisch beheizter schachtofen
DE904330C (de) Elektrisch beheizter Hochtemperaturofen
AT162615B (de) Verfahren zum Brennen von Kunstkohlenkörpern in elektrischen Widerstandsöfen und Ofer zur Ausführung des Verfahrens
EP1461298B1 (de) Verfahren zur kontinuierlichen graphitierung
WO2020058195A1 (de) Anlage und verfahren zum sintern von bauteilen
DE3427407A1 (de) Gekuehlter ofenkopf fuer hochstromwiderstandsofen
DE1546628C (de) Tunnelofen zur Verkokung von auf Transportwagen aufgestellten Kohleformlingen mit direktem Wärmeübergang
DE3119344A1 (de) Verfahren und ofen zum brennen von keramischen erzeugnissen
DE970402C (de) Vorrichtung zur Durchfuehrung von bei hohen Temperaturen verlaufenden Umsetzungen inSchachtoefen
DE161461C (de)
DE19528147A1 (de) Verfahren und Vorrichtung zur Aufheizung und anschließenden Abkühlung eines transportierbaren Gutes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16734577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2990070

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016282636

Country of ref document: AU

Date of ref document: 20160616

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016734577

Country of ref document: EP