Verfahren zum Sintern von Kohlenstoffkörpern in einer Ofeneinrichtung
Die vorliegende Erfindung betrifft ein Verfahren zum Sintern von Kohlenstoffkörpern in einer Ofeneinrichtung mit zumindest einer ersten Ofenkammer zur Aufnahme der in einem Packungsmaterial aufgenommenen Kohlenstoffkörper, wobei die Kohlenstoffkörper zwischen seitlichen Kammerwänden der Ofenkammer angeordnet werden, und die Ofenkam- mer zur Ausbildung einer Vorwärmzone, einer mit einer Heizeinrichtung versehenen Heizzone und einer Abkühlzone dient.
Verfahren der eingangs genannten Art werden in unterschiedlichen Ofeneinrichtungen ausgeführt, wobei die sicherlich am meisten verbreitete Anwendung des Verfahrens in sogenannten Ringöfen stattfindet, in denen die Kohlenstoffkörper stationär in der Ofeneinrichtung angeordnet sind und die Aufteilung der Ofeneinrichtung in eine Vorwärmzone, eine Heizzone und einer Abkühlzone dadurch erfolgt, dass eine häufig als Ofenfeuer bezeichnete mobile Heizeinrichtung in ihrer Relativanordnung gegenüber einer Mehrzahl von Ofenkammern verändert wird. Dabei erfolgt eine periodische Aufheizung und Abkühlung der j eweiligen
Abschnitte der Ofenkammer zwischen Raumtemperatur und bis zu
1300 °C .
Das Feuerfestmaterial, mit dem die Ofenkammern ausgekleidet sind, muss j eweils mit aufgeheizt werden. Diese erhebliche Masse ver- schlechtert die Energiebilanz des Ringofens . Darüber hinaus belastet die periodische Aufheizung und Abkühlung den Ofenkörper und führt zu einem entsprechenden Verschleiß des Feuerfestmaterials, so dass ein Austausch des Feuerfestmaterials in etwa 7-bis 10-Jahres-Intervallen notwendig ist. Während ihrer Anordnung in den Ofenkammern sind die Kohlenstoffkörper in einem regelmäßig aus calciniertem Petrolkoks gebildeten Packungsmaterial eingebettet, das im Wesentlichen drei unterschiedliche Funktionen während des Sinterprozesses erfüllt, nämlich eine Abschirmung gegenüber der Umgebungsluft als Schutz gegen Oxydation, eine Permeabilität zur Abführung von aus den Kohlenstoffkörpern während des Aufheizens in der Aufwärmzone entweichenden flüchtigen Bestandteilen, insbesondere Kohlenwasserstoffe, und vor allem eine Wärmeübertragung von den Kammerwänden der Ofenkammer auf die Kohlenstoffkörper. Die relativ schlechte Wärmeleitfähigkeit des Packungsmaterials von etwa 0,3 W/mK führt zu einem Temperaturabfall am Packungsmaterial von bis zu über hundert Kelvin. Hierdurch wird die mögliche Wärmeübertragung und damit die Ofenleistung begrenzt und verschlechtert zusätzlich durch erhöhte Abgastemperaturen die Energieeffizienz des Ringofens. Des Weiteren ist eine Ofeneinrichtung bekannt, die ein kontinuierliches Sinterverfahren ermöglicht, bei dem, wie es beispielsweise aus der WO 99/06779 bekannt ist, die hier als grüne Anoden ausgebildeten Kohlenstoffkörper zusammen mit dem die Kohlenstoffkörper umgebenden Packungsmaterial durch einen vertikalen Ofenkanal gefördert werden. Die Förderung der Kohlenstoffkörper durch den Ofenkanal erfolgt als
Schwerkraftförderung, wobei eine aus einer Mehrzahl von Anoden ausgebildete Anodensäule kontinuierlich abgesenkt wird und j eweils eine unterste gesinterte Anode aus der Anodensäule entfernt wird und nachfolgend eine grüne Anode als oberste Anode der Anodensäule hinzuge- fügt wird. Entsprechend der vertikalen Anordnung der Anoden in einer Anodensäule ergibt sich auch für das ebenfalls geförderte Packungsmaterial eine im Wesentlichen vertikale Anordnung.
Insbesondere in der unteren, der Heizzone nachfolgenden Abkühlzone ergibt sich in Folge der maximalen Kompression des Packungsmaterials und der abrasiven Wirkung des üblicherweise aus calciniertem Koks bestehenden Packungsmaterials ein erhöhter Verschleiß der Oberfläche der Kanalwandung, so dass insbesondere in der Abkühlzone eine vorzeitige Erneuerung des die Kanalwände ausbildenden Feuerfestmaterials erforderlich wird. Darüber hinaus bedingt die vertikale Ausrichtung des Ofenkanals der bekannten Ofeneinrichtung mit den zu einer Anodensäule aufeinanderge- stapelten Anoden eine Überhitzung der obersten Anoden in der Vorwärmzone, so dass zur Einstellung einer gewünschten Anodentemperatur in der Vorwärmzone eine zusätzliche Kühlung erforderlich wird, die sich nachteilig auf die Energieeffizienz des kontinuierlichen Verfahrens auswirkt.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren vorzuschlagen, das einen vergleichsweise verschleißfreien und zugleich energieeffizienten Betrieb der Ofeneinrichtung ermöglicht. Zur Lösung dieser Aufgabe weist das erfindungsgemäße Verfahren die Merkmale des Anspruchs 1 auf.
Erfindungsgemäß wird ein zumindest anteilig aus einem hoch wärmeleit- fähigen Werkstoff gebildetes Packungsmaterial verwendet.
Die insbesondere im Vergleich zu calciniertem Petrolkoks wesentlich besseren Wärmeleiteigenschaften eines aus einem hoch wärmeleitfähigen Werkstoff gebildeten Packungsmaterials, führen unabhängig von der Art der j eweils eingesetzten Ofeneinrichtung zu einer verbesserten Energie- bilanz des Verfahrens .
Vorzugsweise ist das Packungsmaterial zumindest anteilig aus einem Graphitwerkstoff gebildet.
Besonders vorteilhaft ist es, wenn das Packungsmaterial überwiegend aus einem Graphitwerkstoff gebildet ist. Als Graphitwerkstoff eignet sich insbesondere aus wirtschaftlichen
Erwägungen ein Kunstgraphit oder Kunstgraphitgranulat, der bzw. das auch aus einem graphitierten Petrolkoks bestehen kann.
Besonders vorteilhaft ist es, wenn als Graphitwerkstoff Material aus Elektrodenresten von beispielsweise bei der Edelstahlherstellung einge- setzten Elektroden verwendet wird, der vorzugsweise granuliert ist.
Als gegenüber dem beschriebenen kontinuierlichen Sinterverfahren besonders vorteilhaft erweist sich, wenn die Kohlenstoffkörper zusammen mit dem zumindest anteilig aus einem Graphitwerkstoff gebildeten Packungsmaterial in einer Reihenanordnung horizontal durch einen zwischen den Kammerwänden der Ofenkammer ausgebildeten Ofenkanal gefördert werden, derart, dass die Reihenanordnung der Kohlenstoffkörper mittels der Fördereinrichtung sukzessive durch die Vorwärmzone A, die Heizzone H und die Abkühlzone A gefördert wird.
Hierdurch kann die Packhöhe des Packungsmaterials im Wesentlichen auf die Höhe der Kohlenstoffkörper beschränkt werden, so dass die bereits eingangs beschriebenen unerwünschten Kompressionseffekte vermieden werden. Zudem kann durch Abstände zwischen den Kohlenstoffkörpern die Wärmeleitung innerhalb der Reihenanordnung vermieden werden.
Aufgrund der insbesondere im Vergleich zu dem üblicherweise als Packungsmaterial verwendeten calcinierten Petrolkoks wesentlich besseren Gleiteigenschaften des Packungsmaterial, das zumindest anteilig aus einem Graphitwerkstoff gebildet ist und zusammen mit den Kohlenstoff- körpern gefördert wird, ergeben sich kaum Abrasionseffekte durch das Packungsmaterial an der Oberfläche des Ofenkanals .
Durch das erfindungsgemäße Verfahren kann eine wesentliche Steigerung der Energieeffizienz auch gegenüber dem beschriebenen kontinuierlichen Sinterverfahren erreicht werden, wenn parallel und entgegen der Förder- richtung der ersten Fördereinrichtung mittels einer zweiten Fördereinrichtung eine zweite Reihenanordnung von Kohlenstoffkörpern durch einen Ofenkanal einer zur ersten Ofenkammer benachbarten zweiten Ofenkammer gefördert wird, wobei ein Ofenkanal der ersten Ofenkammer von dem Ofenkanal der zweiten Ofenkammer durch eine wärme- übertragende Kammerwand getrennt ist, derart, dass eine Aufheizzone der ersten Ofenkammer einer Abkühlzone gegenüberliegend der zweiten Ofenkammer angeordnet ist, und über die Kammerwand eine Wärmeübertragung zwischen der Abkühlzone und der Vorwärmzone erfolgt. Somit erfolgt über das Packungsmaterial und die Kammerwand ein direkter Wärmeübergang zwischen den auf der ersten Fördereinrichtung angeordneten Kohlenstoffkörpern und den auf der zweiten Fördereinrichtung angeordneten Kohlenstoffkörpern.
Zur Verbesserung der Wärmeübertragung ist es vorteilhaft, wenn die Wärmeübertragung mittels eines Feuerfestmaterials der Wandelemente der Kammerwand erfolgt, dessen keramische Masse Siliziumcarbid oder Graphit aufweist
Besonders vorteilhaft ist es, wenn die Wärmeübertragung mittels eines in Wandelementen der Kammerwand in einem Mantel aus Feuerfestmaterial aufgenommenen hoch wärmeleitfähigen Materialkern erfolgt.
Gegenüber einer konventionellen aus feuerfesten Wandelementen aufgebauten Kammerwand, die einen erheblichen Wärmewiderstand aufweisen, ist durch den wärmeleitfähigen Materialkern, der vorzugsweise aus Graphit gebildet ist, der Wärmewiderstand erheblich reduziert. Wenn die Einstellung einer definierten Wärmeleitfähigkeit über die Formgebung des Materialkerns erfolgt, kann insbesondere in Kombination mit dem für das Packungsmaterial ausgewählten Werkstoff exakt der Wärmefluss eingestellt werden, der bei der durch die Brennkurve vorgegebenen Temperaturdifferenz zwischen dem heißen und den dem kalten Kohlenstoffkörper die gewünschten Aufheiz- und Abkühlgradienten ergibt.
Wenn zur Wärmeabführung aus den Wandelementen ein Wärmeträgermedium durch in den Wandelementen ausgebildete Strömungskanäle geleitet wird, die in der Kammerwand einen vorzugsweise meanderförmig verlaufenden Kanal ausbilden, ist es möglich, die Wärmeleitfähigkeit, also den Wärmefluss in der Wand, auf eine niedrige Ofenleistung einzustellen und bei höheren Leistungen die überschüssige Wärme über das Wärmeträgermedium im Strömungskanal abzuführen.
Wenn als Wärmeträgermedium Luft verwendet wird, ist es beispielsweise möglich, die so aufgeheizte Luft als Verbrennungsluft der Heizzone zuzuführen.
Nachfolgend wird eine Ausführungsform des erfindungsgemäßen Verfahrens sowie eine Ausführungsform der erfindungsgemäßen Ofeneinrichtung anhand der Zeichnungen näher erläutert. Es zeigen:
Fig. 1 : eine Teildarstellung einer Ofeneinrichtung in isometrischer Ansicht;
Fig. 2 : eine Querschnittsdarstellung der in Fig. 1 dargestellten Ofeneinrichtung;
Fig. 3 : eine schematische Darstellung einer als Gegenlaufofen ausgebildeten Ofeneinrichtung;
Fig. 4 : eine Darstellung einer Energiebilanz einer als Gegenlaufofen betriebenen Ofeneinrichtung;
Fig. 5 : ein Wandelement einer Kammerwand;
Fig. 6 : ein Wandelement in einer weiteren Ausführungsform;
Fig. 7: eine aus mehreren Wandelementen gebildete Kammer- wand.
Fig. 1 zeigt einen Abschnitt eines Ofenkanals 14 einer Ofeneinrichtung 10 mit einer Ofenkammer 1 1 , deren seitliche Kammerwände 12, 13 den Ofenkanal 14 ausbilden. Die Ofenkammer 1 1 weist einen als Fördereinrichtung 15 ausgebildeten Kammerboden auf, auf dem Kohlenstoffkörper 16 in einer Reihenanordnung 1 7 angeordnet sind. Die den Kammerboden ausbildende Fördereinrichtung 15 ist im vorliegenden Fall aus einer Vielzahl von in Längsrichtung des Ofenkanals 14 einander nachfolgend angeordneten Ofenwagen 1 8 zusammengesetzt, die in Längsrichtung des Ofenkanals 14 eine im Wesentlichen kontinuierlich ausgebildete Ober- fläche des Kammerbodens ausbilden und j eweils in einer am Boden ausgebildeten Schienenführung 19 für einen Längsvorschub der Ofenwagen 1 8 im Ofenkanal 14 geführt sind.
Die Darstellung der Ofeneinrichtung 10 in Fig. 1 zeigt lediglich einen Längsabschnitt des Ofenkanals 14 der Ofeneinrichtung, wobei es sich im vorliegenden Fall um eine Vorwärmzone 20 des in eine Vorwärmzone V, in eine Heizzone H und eine Abkühlzone A unterteilten Ofenkanals 14 handelt, wie in Fig. 3 in einer schematischen Darstellung einer als Gegenlaufeinrichtung ausgebildeten Ofeneinrichtung 10 dargestellt. Wie
weiter der Fig. 3 zu entnehmen ist, weist die Ofeneinrichtung 10 neben dem Ofenkanal 14 einen weiteren Ofenkanal 20 auf, der insbesondere dadurch ausgebildet ist, dass den Kammerwänden 12 , 13 zur Ausbildung einer weiteren Ofenkammer 40 noch eine weitere Kammerwand 21 hinzugefügt ist. Der zweite Ofenkanal 20 ist mit einer Fördereinrichtung 22 versehen, die als Gegenfördereinrichtung ausgebildet ist und einen Vorschub der Ofenwagen 1 8 entgegengesetzt zur Förderrichtung der ersten Fördereinrichtung 15 ermöglicht. Beide Ofenkanäle 14 und 20 sind einander gegenüberliegend mit einer Heizeinrichtung versehen, sodass entsprechend einander gegenüberliegende Heizzonen H ausgebildet sind.
Im Betrieb der Ofeneinrichtung 10 werden bei dem in Fig. 3 dargestellten Ausführungsbeispiel die Ofenwagen 1 8 im Ofenkanal 14 von rechts nach links durch den Ofenkanal 14 bewegt, sodass ein Anfangsabschnitt des Ofenkanals 14 die Vorwärmzone V ausgebildet. Nach Passieren der Heizzone H gelangen die Kohlenstoffkörper 16 auf den Ofenwagen 1 8 in die Abkühlzone A und werden schließlich aus dem Ofenkanal 14 hinausbefördert. In dem zum Ofenkanal 14 parallelen Ofenkanal 20 werden die Kohlenstoffkörper 16 von links nach rechts hindurchbewegt, sodass gegenüberliegend der Abkühlzone A des Ofenkanals 14 die Vorwärmzone V des Ofenkanals 20 ausgebildet ist und nach Passieren der Heizzone H die Kohlenstoffkörper 16 in die Abkühlzone A am rechten Ende des Ofenkanals 20 gelangen.
Der Betrieb der Ofeneinrichtung 10 mit gegenläufig fördernden Förder- einrichtungen 15 und 22 bewirkt, dass aufgrund der einander gegenüberliegenden Anordnung von Abkühlzonen A und Vorwärmzonen V das in den einander gegenüberliegenden Zonen verfahrensbedingte Temperaturgefälle eine effektive Abkühlung bzw. Aufwärmung der Kohlenstoffkörper 16 ermöglicht, ohne dass eine äußere Energiezufuhr notwendig ist. Die besondere Energieeffizienz der Ofeneinrichtung 10 wird noch dadurch unterstützt, dass als Packungsmaterial 23 , das zur Aufnahme der
Kohlenstoffkörper 16 dient, ein zumindest anteilig aus einem Graphitwerkstoff gebildetes Packungsmaterial 23 verwendet wird, das, wie insbesondere in den Fig. 1 und 2 dargestellt ist, die Kohlenstoffkörper 16 abgeschirmt gegenüber der Umgebungsluft aufnimmt. Wie insbesondere Fig. 2 zeigt, ermöglicht das Packungsmaterial 23 , das in unmittelbarem Kontakt sowohl mit den Kohlenstoffkörpern 16 als auch mit der Oberfläche der Kammerwände 12 , 13 steht, einen Wärmeübergang durch Wärmeleitung, wobei die besondere Wärmeleitfähigkeit des Packungsmaterials 23 , die j e nach Größe des Anteils an Graphit- werkstoff bis zum Dreifachen der Wärmeleitfähigkeit von Petrolkoks beträgt, einen besonders guten Wärmeübergang zwischen den Kammerwänden 12, 13 , die mit Strömungskanälen 24 zur Führung von Heizgasen versehen sind, und den Kohlenstoffkörpern 16 ermöglicht.
Mit einem Materialkern 27 aus isotropem Graphit kann der Wärmewider- stand eines in Fig. 5 dargestellten Wandelementes 25 , das aus Festigkeitsgründen etwa 400 mm dick sein muss, praktisch auf den Wärmewiderstand der Keramikhülle reduziert werden.
Zur Erzielung eines besonders guten Wärmeübergangs zwischen den in Strömungskanälen 24 der Kammerwände 12, 13 strömenden Heizgasen und dem Packungsmaterial 23 sind die Kammerwände 12, 13 aus Wandelementen 25 aufgebaut, bei denen die Strömungskanäle 24 , so wie beispielhaft in Fig. 5 dargestellt, dadurch ausgebildet sind, dass in einen Hohlraum 26 des Wandelements 25 ein Materialkern 27 aus Graphit eingesetzt ist, der den Hohlraum 26 in die Strömungskanäle 24 aufteilt. Das in Fig. 5 dargestellte Wandelement 25 ist somit im Wesentlichen aus einem in einen Mantel 28 aus feuerfestem Material eingesetzten Graphitkörper gebildet.
Damit wird eine sehr hohe Rekuperationsrate von bis zu 80 % erreicht. Fig. 4 zeigt qualitativ die erzielbare Energiebilanz einer mit einem Pa- ckungsmaterial 23 , das als Graphitgranulat ausgebildet ist, und einer
Kammerwand aus Wandelementen mit einem Materialkern aus Graphit betriebenen Ofeneinrichtung 10. Die Wärmerückgewinnung deckt demnach etwa 80 % der erforderlichen Aufheizenergie, wobei die Heizeinrichtung des Ofens ausschließlich mit flüchtigen Kohlenwasserstoffen aus den Kohlenstoffkörpern als Brennstoff betrieben wird. Dabei ist die Ablufttemperatur so hoch, dass damit auch die Heizenergie für die beispielsweise als Anoden ausgebildeten Kohlenstoffkörper 16, also etwa zur Beheizung eines Knetmischers, gedeckt werden kann, der die aus calciniertem Koks und Pech bestehende Paste für die Anoden mischt. Der Ofen benötigt also keine Primärenergie, sondern arbeitet exotherm.
Fig. 6 zeigt ein Wandelement 30, das in einem Mantel 3 1 aus einem Feuerfestmaterial eingebettet einen aus Graphit ausgebildeten Materialkern 32 aufweist. Das Feuerfestmaterial besteht aus einer keramischen Masse, die Siliziumcarbid oder/und Graphit zur Erhöhung der Wärmeleitfähigkeit aufweist. Im Feuerfestmaterial des Mantels 3 1 ist ein Strömungskanal 33 ausgebildet.
Wie Fig. 7 zeigt, können mehrere Wandelemente 30 in einer Reihenanordnung zu einer Kammerwand kombiniert werden, derart, dass die Strömungskanäle 33 der einzelnen Wandelemente 30 zur Ausbildung eines meanderförmig verlaufenden Wandkanals 34 über Krümmer 35 miteinander verbunden werden. Vergleichbar den Strömungskanälen 33 können auch die Krümmer abweichend von der vereinfachten Darstellung in
Fig. 7 in entsprechend ausgebildeten Wandelementen angeordnet sein.