WO2016204139A1 - 前照灯装置及び照明装置 - Google Patents

前照灯装置及び照明装置 Download PDF

Info

Publication number
WO2016204139A1
WO2016204139A1 PCT/JP2016/067634 JP2016067634W WO2016204139A1 WO 2016204139 A1 WO2016204139 A1 WO 2016204139A1 JP 2016067634 W JP2016067634 W JP 2016067634W WO 2016204139 A1 WO2016204139 A1 WO 2016204139A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical axis
axis
projection lens
condensing
Prior art date
Application number
PCT/JP2016/067634
Other languages
English (en)
French (fr)
Inventor
旭洋 山田
将利 西村
潤 近藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680030323.2A priority Critical patent/CN107614968B/zh
Priority to JP2016567872A priority patent/JP6127224B1/ja
Priority to US15/560,727 priority patent/US10288245B2/en
Priority to DE112016002739.7T priority patent/DE112016002739B4/de
Publication of WO2016204139A1 publication Critical patent/WO2016204139A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/12Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of emitted light
    • F21S41/125Coloured light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/63Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates
    • F21S41/635Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates by moving refractors, filters or transparent cover plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Definitions

  • the present invention relates to a headlamp device and an illumination device using a light source and an optical element.
  • the display effect is improved by changing the color of light that illuminates the merchandise, the spot size of illumination light, or the illumination position.
  • the illumination device that can change the light distribution or the illumination position has been expanded not only for vehicles but also in other illumination devices.
  • Patent Document 1 As an example of a headlamp device for a vehicle that can change the irradiation direction, Patent Document 1 is cited as an example.
  • Patent Document 1 discloses a mechanism that changes the irradiation direction of the first sub lamp unit in the left-right direction or the up-down direction by integrally swinging and rotating the semiconductor light emitting element, the reflector, and the projection lens.
  • a mechanism is disclosed in which only the projection lens held by the lens holder is leveled up and down to change the irradiation direction.
  • Patent Document 1 the semiconductor light emitting element, the reflector, and the projection lens are simultaneously swung and rotated. For this reason, the mechanism for changing the irradiation direction becomes complicated. Moreover, the size of the projection lens of a general headlamp device is large. For this reason, when only the projection lens is leveled, there arises a problem that the size of the headlamp device when viewed from the front is increased and the load applied to the drive mechanism is large.
  • a light source that emits light
  • a condensing optical element that converts the light emitted from the light source into condensed light and emits the light
  • a projection lens that projects the condensed light, and condenses the condensed light
  • the position is located between the condensing optical element and the projection lens, and the condensing position is moved in a direction perpendicular to the optical axis of the projection lens.
  • FIG. 1 It is a block diagram which shows roughly the main structures of the headlamp apparatus 1 of Embodiment 1 which concerns on this invention. It is explanatory drawing explaining the structure of a phosphor element. It is a block diagram which shows schematically another structure of the headlamp apparatus 1 of the modification 1. FIG. It is a block diagram which shows roughly the main structures of the headlamp apparatus 1 of the modification 2. It is explanatory drawing explaining the structure of a wavelength selection element. It is a figure which shows an example of the wavelength characteristic after the fluorescent substance element emission of the light which passes through the area
  • region 7b of the modification 2. 10 is a diagram illustrating an example of transmission-wavelength characteristics in a region 7b of Modification 2.
  • FIG. 10 is a diagram illustrating an example of transmission-wavelength characteristics in a region 7a of Modification 2.
  • FIG. It is a figure which shows an example of the wavelength characteristic after the fluorescent substance element emission of the light which passes through the area
  • 10 is a diagram illustrating an example of transmission-wavelength characteristics in a region 7c of Modification 2.
  • FIG. It is a block diagram which shows roughly the main structures of the headlamp apparatus 101 of Embodiment 2 which concerns on this invention. It is a block diagram which shows roughly the main structures of the headlamp apparatus 102 of Embodiment 3 which concerns on this invention.
  • FIG. It is a schematic block diagram of the headlamp apparatus 104 which shows the structural example in another case. It is a block diagram which shows roughly the main structures of the headlamp apparatus 104a of Embodiment 5 which concerns on this invention. It is the schematic of the disc of this Embodiment 5. It is the schematic of the disc of the modification 3. It is a block diagram which shows schematically the main structures of the headlamp apparatus 105 of Embodiment 6 which concerns on this invention.
  • FIG. 10 is an explanatory diagram showing a simulation result by ray tracing that shows the characteristics of Modification 5.
  • Japanese Patent Application Laid-Open No. 2012-221634 discloses a headlamp that changes a condensing spot size of an excitation light source that irradiates a phosphor element.
  • the headlamp includes a first light emitting unit and a second light emitting unit that emit fluorescence having different peak wavelengths.
  • the irradiation range of the laser beam irradiated to the 2nd light emission part is changed, making the irradiation range of the laser beam in a 1st light emission part constant.
  • this headlamp is colored by utilizing the fact that the excited phosphor spectrum is different between the phosphor element located in the center (first light emitting part) and the phosphor element located in the periphery (second light emitting part).
  • the temperature is changing.
  • the illumination devices of Embodiments 1 to 5 shown below can increase the uniformity of the color temperature of light and can change the color temperature of light projected from the illumination device (including the headlamp device). Become.
  • the left and right direction of the vehicle is the Y axis direction.
  • the right side with respect to the front of the vehicle is the + Y axis direction, and the left side with respect to the front of the vehicle is the ⁇ Y axis direction.
  • “front” refers to the traveling direction of the vehicle. That is, “front” is a direction in which the headlamp device irradiates light.
  • the vertical direction of the vehicle is the X-axis direction.
  • the upper side is the + X axis direction, and the lower side is the -X axis direction.
  • the “upper side” is the sky direction, and the “lower side” is the direction of the ground (road surface, etc.).
  • the traveling direction of the vehicle is the Z-axis direction.
  • the traveling direction is the + Z-axis direction, and the opposite direction is the -Z-axis direction.
  • the + Z-axis direction is called “front”, and the ⁇ Z-axis direction is called “rear”. That is, the + Z-axis direction is a direction in which the headlamp device emits light. That is, the + Z-axis direction is a direction in which the lighting device emits light.
  • FIG. 1 is a configuration diagram schematically showing a main configuration of a headlamp device 1 according to a first embodiment.
  • the headlamp device 1 includes a light source 2, a condenser lens 3, and a projection lens 6.
  • the condenser lens 3 is provided in the wavelength selection unit 11.
  • the wavelength selection unit 11 can include a fluorescence generation unit 51.
  • the fluorescence generator 51 includes a phosphor element 5.
  • the light source 2 emits light serving as excitation light.
  • the light source 2 is an excitation light source such as a laser diode.
  • the light source 2 emits, for example, ultraviolet light having a center wavelength of 405 nm or blue light having a center wavelength of 450 nm.
  • the optical axis Cs of the light source 2 passes through the center of the light emitting area of the light emitting surface of the light source 2 and is perpendicular to the light emitting surface.
  • the wavelength selection unit 11 selects the wavelength of fluorescence emitted by the phosphor. Then, the wavelength selector 11 emits the selected fluorescence as projection light. In FIG. 1, the projection light is emitted in the + Z axis direction.
  • the wavelength selector 11 is arranged in the + Z-axis direction of the light source 2.
  • the wavelength selector 11 is optically arranged in the + Z-axis direction of the light source 2. That is, the traveling direction of the light emitted from the light source 2 can be changed using a mirror or the like.
  • the wavelength selection unit 11 includes the condenser lens 3 and the fluorescence generation unit 51 in the example of FIG.
  • the condensing lens 3 condenses the light emitted from the light source 2.
  • the condensing lens 3 is disposed on the light source 2 side with respect to the fluorescence generating part 51 (phosphor element 5).
  • the condensing lens 3 is an example of a condensing optical element.
  • the optical axis C of the condenser lens 3 is parallel to the Z axis.
  • the optical axis C coincides with the optical axis Cs and the optical axis Cp.
  • the optical axis Cp is the optical axis of the projection lens 6 described later.
  • the optical axes C, Cs, and Cp can be bent using a mirror or the like.
  • the optical axes C, Cs, and Cp are described as being straight lines.
  • the condensing lens 3 is shown as a plano-convex shape. However, the condensing lens 3 may be biconvex.
  • the shape of the condensing lens 3 may be arbitrary. That is, a configuration with two condensing lenses 3 may be used.
  • the condensing lens 3 can move in a direction orthogonal to the optical axis C.
  • the direction orthogonal to the optical axis C is the Y-axis direction. That is, in FIG. 1, as an example, the condenser lens 3 can move in the Y-axis direction.
  • a position where the optical axis C of the condenser lens 3 coincides with the optical axis Cp of the projection lens 6 is set as a reference position of the condenser lens 3.
  • the condensing lens 3 can move the condensing position of the excitation light emitted from the excitation light source 2 on the phosphor element 5 in the Y-axis direction.
  • the condenser lens 3 is composed of two lenses, the two lenses are integrated and moved in the Y-axis direction.
  • the fluorescence generator 51 receives the condensed light emitted from the condenser lens 3 by the phosphor element 5 and emits light of different wavelengths.
  • the fluorescence generating unit 51 includes a phosphor element 5.
  • FIG. 2 is an explanatory diagram showing an example of the configuration of the phosphor element 5.
  • FIG. 2 is a view of the phosphor element 5 as seen from the ⁇ Z-axis direction. Since the optical axis C is parallel to the Z axis, it is indicated by a black circle in FIG.
  • the phosphor element 5 is divided into a plurality of regions.
  • the phosphor element 5 is divided into a plurality of regions in a direction perpendicular to the optical axis C.
  • the phosphor element 5 is divided into three regions in the Y-axis direction.
  • the phosphor element 5 includes a region 5a, a region 5b, and a region 5c.
  • the region 5a emits fluorescence of, for example, 6000K.
  • the region 5b emits fluorescence of 4000K, for example.
  • the region 5c emits fluorescence of 2500K, for example.
  • the region 5a is disposed on the optical axis C of the condenser lens 3.
  • the region 5b is disposed on the + Y axis direction side with respect to the optical axis C, for example.
  • the region 5c is disposed, for example, on the ⁇ Y axis direction side with respect to the optical axis C.
  • the region 5a is disposed on the optical axis Cp of the projection lens 6.
  • the region 5b is disposed on the + Y-axis direction side with respect to the optical axis Cp.
  • the region 5c is disposed, for example, on the ⁇ Y axis direction side with respect to the optical axis Cp.
  • region of the phosphor element 5 may be two.
  • region of the fluorescence generation part 5 may be divided
  • the condensing diameter of the excitation light on the phosphor element 5 is, for example, ⁇ 0.5 mm.
  • the projection lens 6 projects the fluorescence emitted by the fluorescence generator 51 in the + Z-axis direction.
  • the projection lens 6 projects forward the light distribution pattern formed at the focal position of the projection lens 6 in the optical axis Cp direction of the projection lens 6. For example, when the focal point of the projection lens 6 is positioned on the light emitting surface of the phosphor element 5, the projection lens 6 projects an image corresponding to the light intensity distribution formed on the light emitting surface of the phosphor element 5.
  • the projection lens 6 can project an image based on the shape of the light emitting surface.
  • the projection lens 6 can project an image based on the shape of the light emitting portion of the light emitting surface. In the direction of the optical axis Cp, the condensing position coincides with the focal position of the projection lens.
  • the condenser lens 3 moves in the Y axis direction, for example.
  • the condensing lens 3 can condense the excitation light onto the region 5 b of the phosphor element 5.
  • the condensing lens 3 can condense the excitation light onto the region 5 c of the phosphor element 5.
  • the moving amount of the condensing lens 3 is set according to the condensing position of the excitation light on the phosphor element 5.
  • FIG. 16 is a schematic diagram of the ray trajectory of rays traveling from the phosphor element 5 in the + Z-axis direction.
  • the optical axis Cp coincides with the optical axis C as in the case where the condenser lens 3 of the first embodiment is at the reference position.
  • the lights 1400b and 1400c emitted from the regions 5b and 5c are not located on the optical axis C on the phosphor element 5. For this reason, the light 1400b and 1400c emitted from the regions 5b and 5c normally have an angle with respect to the optical axis Cp after passing through the projection lens 6. That is, the lights 1400b and 1400c emitted from the regions 5b and 5c do not become light parallel to the optical axis Cp after passing through the projection lens 6.
  • the positions of the lights 1400b and 1400c relative to the position of the light 1400a on the irradiation position may be set to a level that does not cause a problem in actual use. it can. That is, even when the phosphor element 5 is divided into the three regions 5a, 5b, and 5c, the light emitted from each region 5a, 5b, and 5c is actually used with respect to the optical axis Cp by the projection lens 6. It becomes parallel light to the extent that there is no problem above.
  • the projection lens 6 can be arranged at a position 60 mm away from the phosphor element 5 in the + Z-axis direction. Note that the amount of deviation of the light distribution is 0.5 degrees.
  • the “irradiation position” is a position where the light projected from the headlamp device (illumination device) is irradiated.
  • the irradiation position on the vehicle is defined by road traffic rules and the like.
  • the measurement position of the luminous intensity of the automotive headlamp device defined by UNECE is a position 25 m from the light source.
  • the measurement position of luminous intensity determined by the Japan Industrial Standards Committee (JIS) is 10 m from the light source.
  • the distance from the phosphor element 5 to the projection lens 6 can be shortened. Further, the amount of change in the light distribution direction can be made variable by changing the distance from the phosphor element 5 to the projection lens 6 continuously or stepwise.
  • the excitation light emitted from the light source 2 is condensed on the region 5 a of the phosphor element 5.
  • the optical axis C of the condenser lens 3 moves in the + Y-axis direction with respect to the optical axis Cp, the excitation light emitted from the light source 2 is condensed on the region 5 b of the phosphor element 5.
  • the excitation light emitted from the light source 2 is condensed on the region 5 c of the phosphor element 5.
  • the condensing position of the excitation light on the phosphor element 5 can be changed. For this reason, it is possible to switch between three types of color temperatures. Further, if a gap is provided between the regions or an aluminum coating layer is provided between the regions, light having different color temperatures is not mixed. For this reason, the occurrence of color unevenness of the light emitted from the projection lens 6 is suppressed.
  • the number of regions of the phosphor element 5 is not limited and may be two or four.
  • the distance between the phosphor element 5 and the projection lens 6 is a distance that results in light having parallelism that is not problematic in use. For this reason, in particular, since the phosphor element 5 is always arranged on the optical axis Cp, it passes through the projection lens 6 and becomes light parallel to the optical axis Cp.
  • FIG. 3 is a configuration diagram schematically showing another configuration of the headlamp device 1 according to the first embodiment of the present invention.
  • the fluorescence generator 51 in FIG. 1 is replaced with a fluorescence generator 52 having another configuration.
  • a wavelength selection element 700 is disposed on the light source 2 side of the phosphor element 5.
  • the wavelength selection element 700 is disposed between the condenser lens 3 and the phosphor element 5.
  • the wavelength selection element 700 is arranged on the surface of the phosphor element 5 on the ⁇ Z axis side.
  • the wavelength selection element 700 reflects light having a wavelength other than the wavelength of the excitation light emitted from the light source 2. That is, the wavelength selection element 700 transmits the excitation light emitted from the light source 2. For example, the wavelength selection element 700 reflects fluorescence emitted from the phosphor element 5.
  • the wavelength selection element 700 By arranging the wavelength selection element 700, the fluorescence emitted from the phosphor element 5 to the light source 2 side is reflected by the wavelength selection element 700 to the projection lens 6 side. For this reason, the utilization efficiency of light becomes high.
  • the wavelength selection element 700 may have a plurality of regions.
  • the area of the wavelength selection element 700 is, for example, three like the phosphor element 5. Fluorescence emitted from each region of the phosphor element 5 to the light source 2 side is reflected to the projection lens 6 side in a corresponding region of the wavelength selection element 700.
  • the color of the light emitted from the headlamp device 1 is determined by the mixed light of the fluorescence emitted from each region of the phosphor element 5 and the light reflected by the wavelength selection element 700. For this reason, the setting range of the color of the light radiate
  • each region of the wavelength selection element 700 can be set so as to reflect only the light having the wavelength of the fluorescence emitted from the region of the corresponding phosphor element 5. That is, the configuration of Modification 1 can improve the efficiency of fluorescence emitted from the phosphor element 5.
  • FIG. 4 is a configuration diagram schematically illustrating a main configuration of the headlamp device 1 according to the second modification.
  • the configuration of the fluorescence generator 53 is different from that of the first embodiment. Since other components are equivalent, the description thereof is omitted.
  • Fluorescence generating unit 53 of Modification 2 is different in that phosphor element 53a is not divided into a plurality of regions. That is, the phosphor element 53a is formed of one region.
  • the fluorescence generation unit 53 is different from the fluorescence generation unit 51 in that the wavelength selection element 7 is provided.
  • the wavelength selection element 7 is arranged on the ⁇ Z axis direction side of the phosphor element 53a.
  • the wavelength selection element 7 is disposed between the condenser lens 3 and the phosphor element 53a.
  • the wavelength selection element 7 is disposed on the surface on the ⁇ Z-axis side of the phosphor element 53a.
  • the light emitted from the light source 2 passes through the wavelength selection element 7 and then reaches the phosphor element 53a.
  • FIG. 5 is an explanatory diagram for explaining the configuration of the wavelength selection element 7.
  • FIG. 5 is a view of the wavelength selection element 7 as seen from the ⁇ Z-axis direction. Since the optical axis C is parallel to the Z axis, it is indicated by a black circle in FIG.
  • the wavelength selection element 7 is divided into three regions 7a, 7b, 7c in the Y-axis direction.
  • the regions 7a, 7b, and 7c have different wavelength selection characteristics. That is, the regions 7a, 7b, and 7c have different wavelength regions that are transmitted with each other.
  • FIG. 6 is a diagram illustrating an example of wavelength characteristics of light after passing through the region 7a and emitted from the phosphor element 53a.
  • the vertical axis in FIG. 6 indicates relative light intensity (relative energy).
  • the characteristics of FIG. 6 are normalized with the maximum light intensity. For this reason, the maximum value of the vertical axis is “1”.
  • the horizontal axis in FIG. 6 indicates the wavelength [nm].
  • the spectrum of the excitation light emitted from the light source 2 is a curve 30a represented by wavelengths from 440 nm to 460 nm.
  • the spectrum of the fluorescence excited by the phosphor element 53a is a curve 50a represented at a wavelength from 470 nm to 780 nm.
  • FIG. 7 is a diagram showing an example of transmittance-wavelength characteristics in the region 7a of the wavelength selection element 7.
  • the vertical axis in FIG. 7 indicates the transmittance [%].
  • the horizontal axis in FIG. 7 indicates the wavelength [nm].
  • the actual transmittance-wavelength characteristic (transmittance characteristic with respect to wavelength) requires 5 nm to 10 nm until the transmittance value is stabilized at the changing point. For this reason, it becomes a curve at the change point.
  • FIG. 7 does not consider the wavelength width until the transmittance value is stabilized at the change point.
  • FIG. 7 shows a characteristic that the region 7a of the wavelength selection element 7 transmits 100% of light having a wavelength shorter than 465 nm.
  • FIG. 7 shows the characteristic that the region 7a reflects 100% of light having a wavelength longer than 465 nm.
  • the wavelength selection element 7 transmits all the excitation light emitted from the light source 2 in the region 7a.
  • a part of the light transmitted through the region 7a is used as excitation light by the phosphor element 53a.
  • the fluorescence excited by the phosphor element 53a also proceeds in the ⁇ Z-axis direction. However, the fluorescence that has traveled also in the ⁇ Z-axis direction is reflected by the region 7a.
  • the fluorescence reflected by the region 7a proceeds in the + Z-axis direction.
  • the excitation light emitted from the light source 2 is converted into, for example, fluorescence having a color temperature of 5000K and emitted from the phosphor element 53a (fluorescence generation unit 53).
  • FIG. 8 is a diagram showing an example of wavelength characteristics of light after passing through the region 7b and exiting from the phosphor element 53a.
  • the vertical axis in FIG. 8 indicates the relative light intensity (relative energy).
  • the characteristics of FIG. 8 are normalized with the maximum light intensity. For this reason, the maximum value of the vertical axis is “1”.
  • the horizontal axis in FIG. 8 indicates the wavelength [nm].
  • the spectrum of the excitation light emitted from the light source 2 is a curve 30b represented by wavelengths from 440 nm to 460 nm.
  • the spectrum of the fluorescence excited by the phosphor element 53a is a curve 50b represented at wavelengths from 470 nm to 780 nm.
  • FIG. 9 is a diagram showing an example of transmittance-wavelength characteristics (transmittance characteristics with respect to wavelength) in the region 7b of the wavelength selection element 7.
  • FIG. The vertical axis in FIG. 9 indicates the transmittance [%].
  • the horizontal axis in FIG. 9 indicates the wavelength [nm].
  • FIG. 9 does not consider the wavelength width until the transmittance value is stabilized at the change point.
  • FIG. 9 shows the characteristic that the region 7b of the wavelength selection element 7 transmits 100% of light having a wavelength shorter than 530 nm.
  • FIG. 9 shows characteristics in which the region 7b reflects 100% of light having a wavelength longer than 530 nm.
  • the wavelength selection element 7 transmits all the excitation light emitted from the light source 2 in the region 7b.
  • a part of the light transmitted through the region 7b is used as excitation light by the phosphor element 53a.
  • the fluorescence excited by the phosphor element 53a also proceeds in the ⁇ Z-axis direction.
  • the fluorescence traveling in the ⁇ Z axis direction the fluorescence having a wavelength longer than 530 nm is reflected by the region 7b.
  • the fluorescence having a wavelength shorter than 530 nm passes through the region 7b and proceeds in the ⁇ Z-axis direction.
  • the fluorescence reflected by the region 7b proceeds in the + Z-axis direction. Thereby, the excitation light emitted from the light source 2 is converted into fluorescence having a color temperature of 4400K, for example, and emitted from the phosphor element 53a (fluorescence generation unit 53).
  • the fluorescence excited by the phosphor element 53a and emitted in the + Z-axis direction is 50%. Further, the fluorescence emitted in the ⁇ Z-axis direction, reflected by the wavelength selection element 7 and traveling in the + Z-axis direction was set to 50%.
  • the fluorescence excited by the phosphor element 53a and traveling in the ⁇ Z-axis direction is not necessarily 50% because it depends on the scattering characteristics of the phosphor element 53a.
  • 50% was set as an example.
  • FIG. 10 is a diagram illustrating an example of wavelength characteristics of light after passing through the region 7c and emitted from the phosphor element 53a.
  • the vertical axis in FIG. 10 indicates relative light intensity (relative energy).
  • the characteristics of FIG. 10 are normalized with the maximum light intensity. For this reason, the maximum value of the vertical axis is “1”.
  • the horizontal axis in FIG. 10 indicates the wavelength [nm].
  • the spectrum of the excitation light emitted from the light source 2 is a curve 30 c represented by wavelengths from 440 nm to 460 nm.
  • the spectrum of the fluorescence excited by the phosphor element 53a is a curve 50c represented at a wavelength from 470 nm to 780 nm.
  • FIG. 11 is a diagram showing an example of transmittance-wavelength characteristics (transmittance characteristics with respect to wavelength) in the region 7c of the wavelength selection element 7.
  • FIG. The vertical axis in FIG. 11 indicates the transmittance [%].
  • the horizontal axis in FIG. 11 indicates the wavelength [nm].
  • FIG. 11 does not consider the wavelength width until the transmittance value is stabilized at the change point.
  • FIG. 11 shows a characteristic that the region 7c of the wavelength selection element 7 transmits 100% of light having a wavelength shorter than 540 nm.
  • FIG. 11 shows the characteristic that the region 7c reflects 100% of light having a wavelength from 540 nm to 595 nm.
  • FIG. 11 shows the characteristic that the region 7c transmits 100% of light having a wavelength longer than 595 nm.
  • the wavelength selection element 7 transmits all the excitation light emitted from the light source 2 in the region 7c.
  • a part of the light transmitted through the region 7c is used as excitation light by the phosphor element 53a.
  • the fluorescence excited by the phosphor element 53a also proceeds in the ⁇ Z-axis direction.
  • the fluorescence traveling in the ⁇ Z-axis direction the fluorescence having a wavelength from 540 nm to 595 nm is reflected by the region 7c.
  • the fluorescence having a wavelength shorter than 540 nm and the fluorescence having a wavelength longer than 595 nm are transmitted through the region 7b and travel in the ⁇ Z-axis direction.
  • the fluorescence reflected by the region 7c proceeds in the + Z-axis direction.
  • the excitation light emitted from the light source 2 is converted into, for example, fluorescence having a color temperature of 5900K and is emitted from the phosphor element 53a (fluorescence generation unit 53).
  • the fluorescence excited by the phosphor element 53a and emitted in the + Z-axis direction is 50%. Further, the fluorescence emitted in the ⁇ Z-axis direction, reflected by the wavelength selection element 7 and traveling in the + Z-axis direction was set to 50%.
  • the fluorescence excited by the phosphor element 53a and traveling in the ⁇ Z-axis direction is not necessarily 50% because it depends on the scattering characteristics of the phosphor element 53a.
  • 50% was set as an example.
  • the phosphor element 53a is not divided into regions. That is, the phosphor element 53a emits one type of fluorescence. However, by dividing the wavelength selection element 7 into the region 7a, the region 7b, and the region 7c, the fluorescence generating unit 53 can emit light having different color temperatures toward the projection lens 6.
  • the condenser lens 3 by moving the condenser lens 3 in the Y-axis direction, it becomes possible to select light of different color temperatures.
  • the color temperature is 4400K, 5000K, and 5900K is shown.
  • the transmittance-wavelength characteristic is a characteristic of transmittance with respect to wavelength.
  • the wavelength selection element 7 by dividing the wavelength selection element 7 into regions, the color temperature of light emitted from the phosphor element 53 a can be changed for each region of the wavelength selection element 7. Further, since the wavelength selection element 7 is divided into regions, color unevenness can be suppressed.
  • FIG. FIG. 12 is a configuration diagram schematically illustrating a main configuration of the headlamp apparatus 101 according to the second embodiment.
  • the headlamp device 101 includes a light source 2, a condenser lens 3, and a projection lens 6.
  • the condenser lens 3 is provided in the wavelength selector 12.
  • the wavelength selection unit 12 can include a fluorescence generation unit 51.
  • the fluorescence generator 51 includes a phosphor element 5.
  • Embodiment 1 an example of an embodiment of the present invention will be described with reference to the drawings, taking a vehicle headlamp device as an example.
  • the same XYZ coordinates as in the first embodiment will be used for ease of explanation.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the same components as in the first embodiment are the light source 2, the fluorescence generation unit 51, and the projection lens 6.
  • the phosphor element 5 provided in the fluorescence generation unit 51 is the same as that in the first embodiment.
  • the condenser lens 3 itself is the same as in the first embodiment. Therefore, in the second embodiment, the same reference numeral 3 as in the first embodiment is used. However, as will be described later, the method of moving the condenser lens 3 is different from that of the first embodiment.
  • the light source 2 emits light serving as excitation light.
  • the light source 2 is an excitation light source.
  • the light source 2 is the same as that in the first embodiment, the contents described in the first embodiment are substituted and the description thereof is omitted.
  • the wavelength selection unit 12 selects the wavelength of fluorescence emitted by the phosphor. Then, the wavelength selection unit 12 emits the selected fluorescence as projection light.
  • the wavelength selection unit 12 includes the condenser lens 3 and the fluorescence generation unit 51 in the example of FIG. ⁇ Condensing lens 3> The condensing lens 3 condenses the light emitted from the light source 2.
  • the condensing lens 3 itself is the same as that of the first embodiment, and therefore, the contents described in the first embodiment are substituted and the description thereof is omitted.
  • the operation of the condenser lens 3 is different from that of the first embodiment and will be described below.
  • the condensing lens 3 can swing about the axis S1 passing through the optical axis C and parallel to the X axis, for example.
  • the axis S1 is orthogonal to the C axis.
  • the axis S ⁇ b> 1 is located on the incident surface of the condenser lens 3.
  • the axis S1 is a first axis perpendicular to the optical axis C.
  • Optillation means to move.
  • the condensing lens 3 when viewed from the ⁇ X axis direction side, the condensing lens 3 is rotated by a certain angle clockwise or counterclockwise about the axis S1 as a rotation axis.
  • the constant angle is an angle smaller than 90 degrees.
  • the fixed angle is 5 degrees.
  • the condensing position of the excitation light emitted from the light source 2 on the phosphor element 5 can be moved in the Y-axis direction.
  • the condenser lens 3 is composed of two lenses, the two lenses are integrated.
  • the axis S1 is set so as to be positioned on the incident surface of the lens on the light source 2 side.
  • the axis S ⁇ b> 1 may be located on the exit surface of the condenser lens 3.
  • the region 5 a is disposed on the optical axis C of the condensing lens 3.
  • the region 5b is disposed on the + Y axis direction side with respect to the optical axis C, for example.
  • the region 5c is disposed, for example, on the ⁇ Y axis direction side with respect to the optical axis C.
  • the projection lens 6 projects the fluorescence emitted by the fluorescence generator 51 in the + Z-axis direction. That is, the projection lens 6 projects the light distribution pattern formed at the focal position of the projection lens 6 in the forward direction in the optical axis Cp direction of the projection lens 6. Since the projection lens 6 is also the same as that of the first embodiment, the contents described in the first embodiment are substituted and the description thereof is omitted.
  • the condensing lens 3 When the condensing lens 3 is rotated counterclockwise when viewed from the ⁇ X axis direction with the axis S1 as the central axis, the light emitted from the condensing lens 3 travels in the + Y axis direction. For this reason, the condensing lens 3 can condense the excitation light onto the region 5 b of the phosphor element 5. Note that when the condensing lens 3 is rotated counterclockwise when viewed from the ⁇ X axis direction with the axis S1 as the central axis, it is referred to as “oscillating in the + Y axis direction”.
  • the condensing lens 3 when the condensing lens 3 is rotated clockwise with the axis S1 as the central axis when viewed from the ⁇ X-axis direction, the light emitted from the condensing lens 3 is inclined in the ⁇ Y-axis direction. For this reason, the condensing lens 3 can condense the excitation light onto the region 5 c of the phosphor element 5. Note that when the condensing lens 3 is rotated clockwise with the axis S1 as the central axis when viewed from the ⁇ X-axis direction, it is referred to as “oscillating in the ⁇ Y-axis direction”.
  • the swing angle is set according to the light collection position on the phosphor element 5.
  • the position of the optical axis C on the incident surface of the condenser lens 3 is the Y-axis direction and the condenser lens 3 Move in the opposite direction to the direction of rotation.
  • the condenser lens 3 is rotated counterclockwise when viewed from the ⁇ X-axis direction with the axis S1 as the central axis. Then, the light emitted from the condensing lens 3 proceeds while being inclined in the ⁇ Y axis direction. Further, when the condensing lens 3 is rotated clockwise with the axis S1 as the central axis when viewed from the ⁇ X-axis direction, the light emitted from the condensing lens 3 travels in the + Y-axis direction.
  • the central axis S1 of the swing When the central axis S1 of the swing is arranged on the incident surface side of the condenser lens 3, the position of the optical axis C on the incident surface of the condenser lens 3 does not change, and the swing of the condenser lens 3 does not change. Only the movement affects the ray direction, and the influence on the aberration of the ray is small. For this reason, it is preferable to arrange the center axis S1 of the oscillation on the incident surface side of the condenser lens 3. Note that the central axis S1 can be disposed on the exit surface side of the condenser lens 3 depending on the usage method or the structural constraints.
  • the light emitted from the regions 5 b and 5 c is not located on the optical axis Cp of the projection lens 6. For this reason, the light emitted from the regions 5b and 5c usually has an angle with respect to the optical axis Cp after passing through the projection lens 6. That is, the light emitted from the regions 5b and 5c does not become light parallel to the optical axis Cp after passing through the projection lens 6.
  • the optical axis Cp of the projection lens 6 coincides with the optical axis C of the condenser lens 3 as in the first embodiment.
  • the position of the light on the irradiation position should be such that there is no problem in actual use. Can do. That is, even when the phosphor element 5 is divided into the three regions 5a, 5b, and 5c, the light emitted from each region 5a, 5b, and 5c is actually used with respect to the optical axis Cp by the projection lens 6. It becomes parallel light to the extent that there is no problem above.
  • the distance from the phosphor element 5 to the projection lens 6 can be shortened. Further, the amount of change in the light distribution direction can be made variable by changing the distance from the phosphor element 5 to the projection lens 6 continuously or stepwise.
  • the condensing position on the phosphor element 5 can be changed by swinging the condensing lens 3 about the axis S1. For this reason, it is possible to switch between three types of color temperatures. Further, as in the first embodiment, by providing a gap or the like between the regions, light of different color temperatures is not mixed, so that occurrence of color unevenness of light emitted from the projection lens 6 is suppressed.
  • the number of regions of the phosphor element 5 is not limited and may be two or four.
  • the distance between the phosphor element 5 and the projection lens 6 is a distance that results in light having parallelism that is not problematic in use. For this reason, in particular, since the phosphor element 5 is always arranged on the optical axis Cp, it passes through the projection lens 6 and becomes light parallel to the optical axis Cp.
  • FIG. 13 is a configuration diagram schematically showing the main configuration of the headlamp apparatus 102 according to the third embodiment of the present invention.
  • the headlamp device 102 includes a light source 2, a wavelength selection unit 13, and a projection lens 6.
  • the wavelength selection unit 13 includes the condenser lens 3 and the fluorescence generation unit 54.
  • the fluorescence generator 54 includes the phosphor element 5.
  • Embodiment 1 an example of an embodiment of the present invention will be described with reference to the drawings, taking a vehicle headlamp device as an example.
  • the same XYZ coordinates as in the first embodiment will be used for ease of explanation.
  • the fluorescence generation unit 54 is different from the fluorescence generation unit 51 of the first embodiment, but the phosphor element 5 itself provided in the fluorescence generation unit 54 is the same as that of the first embodiment. Therefore, the same reference numeral 5 as in the first embodiment is used in the third embodiment. However, as will be described later, unlike Embodiment 1, the phosphor element 5 is held so as to be movable.
  • the condenser lens 3 itself is the same as in the first embodiment. Therefore, in the third embodiment, the same reference numeral 3 as in the first embodiment is used. However, as described later, unlike the first embodiment, the condenser lens 3 is fixed. For example, the condenser lens 3 is fixed in a direction perpendicular to the optical axis C. Alternatively, the condenser lens 3 is fixed in a rotational direction around an axis perpendicular to the optical axis C.
  • the light source 2 emits light serving as excitation light.
  • the light source 2 is an excitation light source.
  • the light source 2 is the same as that in the first embodiment, the contents described in the first embodiment are substituted and the description thereof is omitted.
  • the wavelength selection unit 13 selects the wavelength of fluorescence emitted from the phosphor. Then, the wavelength selection unit 13 emits the selected fluorescence as projection light.
  • the wavelength selection unit 13 includes the condenser lens 3 and the fluorescence generation unit 54.
  • the condensing lens 3 condenses the light emitted from the light source 2.
  • the condensing lens 3 itself is the same as that of the first embodiment, and therefore, the contents described in the first embodiment are substituted and the description thereof is omitted.
  • the fluorescence generator 54 includes the same phosphor element 5 as in the first embodiment. Therefore, regarding the phosphor element 5 itself, the description described in the first embodiment is substituted and the description thereof is omitted.
  • the phosphor element 5 can move in a direction orthogonal to the optical axis C.
  • the direction orthogonal to the optical axis C moves in the Y-axis direction.
  • a position where the central axis of the phosphor element 5 coincides with the optical axis C of the condenser lens 3 is set as the reference position of the phosphor element 5. That is, the reference position of the phosphor element 5 is a position where the region 5a is on the optical axis C.
  • the condensing lens 3 is moved to move the condensing position of the excitation light on the phosphor element 5.
  • the condensing position of the excitation light on the phosphor element 5 is moved by fixing the condenser lens 3 and moving the phosphor element 5. This is different from the first and second embodiments.
  • Embodiments 1 and 2 the condenser lens 3 is moved with respect to the phosphor element 5.
  • the phosphor element 5 is moved with respect to the condenser lens 3.
  • the projection lens 6 projects the fluorescence emitted by the fluorescence generator 54 in the + Z-axis direction. That is, the projection lens 6 projects the light distribution pattern formed at the focal position of the projection lens 6 in the forward direction in the optical axis Cp direction of the projection lens 6. Since the projection lens 6 is also the same as that of the first embodiment, the contents described in the first embodiment are substituted and the description thereof is omitted.
  • the phosphor element 5 moves in the Y-axis direction, for example.
  • the phosphor element 5 If the phosphor element 5 is not moved from the reference position, the light emitted from the condenser lens 3 is condensed on the region 5a. That is, if the phosphor element 5 is located at the reference position, the light emitted from the condenser lens 3 is condensed on the region 5a.
  • the amount of movement of the phosphor element 5 in the Y-axis direction is set so that the regions 5a, 5b, and 5c of the phosphor element 5 are on the optical axis C.
  • the light emitted from the regions 5a, 5b, and 5c is located on the optical axis Cp of the projection lens 6. For this reason, after passing through the projection lens 6, the light becomes parallel to the optical axis Cp.
  • the light emitted from the projection lens 6 was not strictly parallel to the optical axis Cp.
  • the light emitted from the projection lens 6 is parallel to the optical axis Cp.
  • the combination of the wavelength selection element 700 and the phosphor element 5 shown by the fluorescence generation unit 52 can be applied to the phosphor element 5 of the third embodiment. Further, the combination of the wavelength selection element 7 and the phosphor element 53a shown in the fluorescence generation unit 53 can be applied to the phosphor element 5 of the third embodiment.
  • the excitation light emitted from the light source 2 is condensed on the region 5a.
  • the excitation light emitted from the light source 2 is condensed on the region 5c.
  • the excitation light emitted from the light source 2 is condensed on the region 5b.
  • the regions 5a, 5b, and 5c on the phosphor element 5 that collect the excitation light emitted from the condenser lens 3 are changed. can do. For this reason, it is possible to switch between three types of color temperatures. Further, since light having different color temperatures is not mixed, occurrence of color unevenness of light emitted from the projection lens 6 is suppressed.
  • the number of regions of the phosphor element 5 is not limited and may be two or four.
  • the phosphor element 540 is always disposed on the optical axis Cp, the light becomes parallel to the optical axis Cp after passing through the projection lens 6.
  • FIG. 14 is a configuration diagram schematically showing the main configuration of the headlamp device 103 according to the fourth embodiment of the present invention.
  • the headlamp device 103 includes a light source 2, a condenser lens 3, a transmission element 4, and a projection lens 6.
  • the headlamp device 103 is provided with a fluorescence generation unit 51.
  • the fluorescence generating unit 51 includes the phosphor element 5.
  • the fluorescence generator 51 is provided in the wavelength selector 14. Further, the condenser lens 3 and the transmission element 4 are also provided in the wavelength selection unit 14.
  • Embodiment 1 an example of an embodiment of the present invention will be described with reference to the drawings, taking a vehicle headlamp device as an example.
  • the same XYZ coordinates as in the first embodiment will be used for ease of explanation.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the same components as in the first embodiment are the light source 2, the fluorescence generation unit 51, and the projection lens 6.
  • the phosphor element 5 provided in the fluorescence generating unit 51 is the same as that in the first embodiment.
  • the condenser lens 3 itself is the same as in the first embodiment. Therefore, in the third embodiment, the same reference numeral 3 as in the first embodiment is used. However, as described later, unlike the first embodiment, the condenser lens 3 is fixed. That is, the condenser lens 3 is fixed as in the third embodiment.
  • the light source 2 emits light serving as excitation light.
  • the light source 2 is an excitation light source.
  • the light source 2 is the same as that in the first embodiment, the contents described in the first embodiment are substituted and the description thereof is omitted.
  • the wavelength selection unit 14 selects the wavelength of fluorescence emitted from the phosphor. Then, the wavelength selection unit 14 emits the selected fluorescence as projection light.
  • the wavelength selection unit 14 includes the condenser lens 3, the transmission element 4, and the fluorescence generation unit 51.
  • the condensing lens 3 condenses the light emitted from the light source 2.
  • the condensing lens 3 itself is the same as that of the first embodiment, and therefore, the contents described in the first embodiment are substituted and the description thereof is omitted. Further, the condenser lens 3 is fixed to the light source 2 as in the third embodiment.
  • the transmissive element 4 changes the traveling direction of the excitation light emitted from the condenser lens 3.
  • the transmission element 4 is, for example, a plate-like optical element.
  • the transmissive element 4 is described as a parallel plate. It is possible to employ a transmission element in which the light exit surface is inclined with respect to the incident surface.
  • the transmission element 4 swings about an axis S2 parallel to the X axis.
  • the transmissive element 4 can rotate by a certain angle clockwise or counterclockwise about the axis S2 as a rotation axis.
  • the axis S2 is a second axis perpendicular to the optical axis C.
  • the axis S2 is orthogonal to the optical axis C. “Orthogonal” means intersecting at right angles. That is, in FIG. 14, the axis S2 is on the optical axis C when viewed from the X-axis direction.
  • the axis S ⁇ b> 2 is located on the incident surface of the transmissive element 4. However, it may be located on the exit surface of the transmissive element 4.
  • the material of the transmissive element 4 is, for example, glass having a refractive index of 1.52. Note that the material is not limited to glass as long as it has a refractive action. However, considering the light utilization efficiency, it is preferable that the transmittance is high.
  • the region 5 a is disposed on the optical axis C of the condensing lens 3.
  • the region 5b is disposed on the + Y axis direction side with respect to the optical axis C, for example.
  • the region 5c is disposed, for example, on the ⁇ Y axis direction side with respect to the optical axis C.
  • the reference position of the condenser lens 3 according to the first embodiment is a position where the condenser lens 3 is not rotated in the first embodiment.
  • the projection lens 6 projects the fluorescence emitted from the phosphor element 5 in the + Z-axis direction. Since the projection lens 6 is also the same as that of the first embodiment, the contents described in the first embodiment are substituted and the description thereof is omitted.
  • FIGS. 15A, 15B, and 15C are simulation results of ray tracing for explaining the operation of the headlamp device 103 according to the fourth embodiment.
  • the transmissive element 4 is perpendicular to the optical axis C.
  • the transmissive element 4 rotates counterclockwise as viewed from the ⁇ X axis direction with respect to the state of FIG.
  • the transmissive element 4 is rotating clockwise with respect to the state of FIG. 15A when viewed from the ⁇ X axis direction.
  • the rotation angle is both 30 degrees.
  • the light beam in FIG. 15B is a light beam 300b.
  • the light beam in FIG. 15C is a light beam 300c.
  • 15A, 15B, and 15C show light rays 300a, 300b, and 300c emitted from the center of the light source 2.
  • the light emitted from the light source 2 travels in the + Z-axis direction at an emission angle centered on the optical axis C.
  • the light traveling in the + Z-axis direction enters the condenser lens 3.
  • the light incident on the condenser lens 3 is collected.
  • the incident surface 41 of the transmissive element 4 is perpendicular to the optical axis C.
  • the light rays on the optical axis C travel without being refracted by the incident surface 41.
  • the condensing position of the light ray 300a is on the optical axis C.
  • the light beam 300 a is focused on the region 5 a of the phosphor element 5.
  • the incident surface 41 of the transmission element 4 is rotated 30 degrees counterclockwise with respect to the optical axis C as viewed from the ⁇ X axis direction.
  • the light beam on the optical axis C travels by being refracted in the + Y-axis direction at the incident surface 41.
  • the condensing position of the light beam 300b moves in the + Y-axis direction with respect to the optical axis C.
  • the light beam 300 b is focused on the region 5 b of the phosphor element 5.
  • the incident surface 41 of the transmission element 4 is rotated 30 degrees clockwise with respect to the optical axis C when viewed from the ⁇ X axis direction.
  • the light beam on the optical axis C travels by being refracted in the ⁇ Y-axis direction at the incident surface 41. Therefore, the condensing position of the light beam 300c moves in the ⁇ Y axis direction with respect to the optical axis C.
  • the light beam 300 c is focused on the region 5 c of the phosphor element 5.
  • the incident surface 41 of the transmissive element 4 when the incident surface 41 of the transmissive element 4 is perpendicular to the optical axis C, the light beam 300 a emitted from the light source 2 is condensed on the region 5 a of the phosphor element 5.
  • the incident surface 41 of the transmissive element 4 rotates counterclockwise with respect to the optical axis C when viewed from the ⁇ X axis direction, the light beam 300 b emitted from the light source 2 is collected in the region 5 b of the phosphor element 5.
  • the incident surface 41 of the transmissive element 4 rotates clockwise with respect to the optical axis C as viewed from the ⁇ X axis direction, the light beam 300 c emitted from the light source 2 is focused on the region 5 c of the phosphor element 5. To do.
  • region 5a, 5b, 5c of the fluorescent substance element 5 changes with the thickness or refractive index of the transmissive element 4.
  • region 5a, 5b, 5c of the fluorescent substance element 5 also changes with the position of area
  • the light rays 300a, 300b, and 300c are condensed on the regions 5a, 5b, and 5c of the phosphor element 5, respectively.
  • the condensing positions of the light beams 300a, 300b, and 300c may not be on the phosphor element 5. That is, the condensing positions of the light beams 300a, 300b, and 300c may move in the direction of the optical axis C with respect to the phosphor element 5. It is only necessary that the light beams of the light rays 300a, 300b, and 300c reach the ranges of the regions 5a, 5b, and 5c. That is, the spot diameters of the light beams 300a, 300b, and 300c need only be within the ranges of the regions 5a, 5b, and 5c.
  • the position of the transmission element 4 is preferably between the condenser lens 3 and the phosphor element 5.
  • Lights 300 a, 300 b, and 300 c emitted from the light source 2 are collected by the condenser lens 3. For this reason, the transmissive element 4 can be realized with small components.
  • the combination of the wavelength selection element 700 and the phosphor element 5 shown by the fluorescence generation unit 52 can be applied to the phosphor element 5 of the fourth embodiment. Further, the combination of the wavelength selection element 7 and the phosphor element 53a shown in the fluorescence generation unit 53 can be applied to the phosphor element 5 of the fourth embodiment.
  • FIG. 17 shows a configuration in the case where the condenser lens 3b is disposed between the transmission element 4 and the phosphor element 502.
  • FIG. 17 is a schematic configuration diagram of the headlamp device 104 illustrating a configuration example when parallel light is incident on the transmissive element 4.
  • the headlamp device 104 includes a collimating lens 3 a between the light source 2 and the transmissive element 4.
  • the headlamp device 104 includes a condenser lens 3 b between the transmissive element 4 and the phosphor element 502.
  • the collimating lens 3a turns the light emitted from the light source 2 into parallel light.
  • the condensing lens 3 b condenses the parallel light transmitted through the transmissive element 4.
  • the light emitted from the light source 2 is collimated by the collimating lens 3a and reaches the transmission element 4. Then, according to the rotation of the transmission element 4 about the axis S2, the parallel light emitted from the parallelizing lens 3a moves in the Y-axis direction and reaches the condenser lens 3b.
  • the condensing lens 3b condenses the incident parallel light on the optical axis C of the condensing lens 3b. Therefore, the light rays 300a, 300b, and 300c are collected on the optical axis C regardless of the rotation of the transmissive element 4. For this reason, the light ray 300b cannot reach the region 5b. Further, the light beam 300c cannot reach the region 5c. And the color temperature of the light projected from a headlamp apparatus cannot be changed.
  • FIG. FIG. 18 is a configuration diagram schematically showing the main configuration of the headlamp device 104a according to the fifth embodiment of the present invention.
  • the headlamp device 104 a includes a light source 2, a wavelength selection unit 15, and a projection lens 6.
  • the wavelength selection unit 15 includes the condenser lens 3 and the fluorescence generation unit 55.
  • the fluorescence generation unit 55 includes a phosphor element 540.
  • the fluorescence generation unit 55 can include a wavelength selection element 710.
  • Embodiment 1 an example of an embodiment of the present invention will be described with reference to the drawings, taking a vehicle headlamp device as an example.
  • the same XYZ coordinates as in the first embodiment will be used for ease of explanation.
  • the condensing lens 3 itself is the same as that in the first embodiment. Therefore, in the fifth embodiment, the same reference numeral 3 as in the first embodiment is used. However, as described later, unlike the first embodiment, the condenser lens 3 is fixed. That is, the condenser lens 3 is fixed as in the third embodiment.
  • the light source 2 emits light serving as excitation light.
  • the light source 2 is an excitation light source.
  • the light source 2 is the same as that in the first embodiment, the contents described in the first embodiment are substituted and the description thereof is omitted.
  • the wavelength selection unit 15 selects the wavelength of fluorescence emitted by the phosphor. Then, the wavelength selection unit 15 emits the selected fluorescence as projection light.
  • the wavelength selector 15 includes the condenser lens 3 and the fluorescence generator 55.
  • the condensing lens 3 condenses the light emitted from the light source 2.
  • the condensing lens 3 itself is the same as that of the first embodiment, and therefore, the contents described in the first embodiment are substituted and the description thereof is omitted. Further, the condenser lens 3 is fixed to the light source 2 as in the third embodiment.
  • the optical axis C of the condenser lens 3 coincides with the optical axis Cp of the projection lens 6.
  • the fluorescence generation unit 55 includes a wavelength selection element 710 and a phosphor element 540.
  • the wavelength selection element 710 and the phosphor element 540 rotate around the axis S3.
  • the axis S3 is, for example, parallel to the Z axis. That is, the axis S3 is parallel to the optical axis C, for example.
  • the axis S3 is, for example, parallel to the optical axis Cp.
  • the wavelength selection element 710 is disposed on the condenser lens 3 side with respect to the phosphor element 540. That is, the phosphor element 540 is arranged on the + Z axis direction side of the wavelength selection element 710. The phosphor element 540 is disposed on the projection lens 6 side of the wavelength selection element 710.
  • the wavelength selection element 710 has, for example, a glass substrate coated with a coating having wavelength selection characteristics.
  • the phosphor element 540 is applied on the light incident surface side or the light emission surface side.
  • the phosphor element 540 is applied concentrically, for example.
  • the wavelength selection element 710 is integrated with the phosphor element 540.
  • FIG. 19 is a schematic diagram of the wavelength selection element 710 and the phosphor element 540 of the fifth embodiment.
  • FIG. 19 is a view of the wavelength selection element 710 and the phosphor element 540 as viewed from the + Z-axis side.
  • the phosphor element 540 is divided into, for example, three regions in the circumferential direction as shown in FIG.
  • the phosphor element 540 includes a region 540a, a region 540b, and a region 540c.
  • the phosphor element 540 includes a region 540a, a region 540b, and a region 540c that are radially divided about the axis S3. That is, the regions 540a, 540b, and 540c have a fan shape.
  • the central angle of the sector shape is, for example, 120 degrees.
  • the region 540a emits fluorescence of 6000K, for example.
  • the region 540b emits fluorescence of 4000K, for example.
  • the region 540c emits fluorescence of 2500K, for example.
  • the regions 540a, 540b, and 540c are arranged so that the regions 540a, 540, and 540c are positioned on the optical axis C by rotating.
  • the phosphor element 540 is rotated so that the regions 540a, 540b, and 540c are located on the optical axis C.
  • the phosphor element 540 can generate fluorescence of different wavelengths. This is different from the first embodiment.
  • the number of regions of the phosphor element 540 is not limited, and may be two or four.
  • the phosphor element 540 is always disposed on the optical axis Cp. For this reason, the fluorescence emitted from the phosphor element 540 after passing through the projection lens 6 becomes light parallel to the optical axis Cp.
  • the light emitted from the regions 540a, 540b, and 540c becomes parallel to the optical axis Cp after passing through the projection lens 6.
  • the condensing diameter on the phosphor element 540 is, for example, ⁇ 0.5 mm.
  • a wavelength selection element 710 is provided.
  • the phosphor element 540 is applied on the wavelength selection element 710.
  • the phosphor element 540 may be coated on a glass substrate that does not have wavelength selection characteristics.
  • the projection lens 6 projects the fluorescence emitted by the fluorescence generator 55 in the + Z-axis direction. Since the projection lens 6 is also the same as that of the first embodiment, the contents described in the first embodiment are substituted and the description thereof is omitted.
  • the phosphor element 540 rotates around the axis S3.
  • the axis S3 is, for example, parallel to the optical axis C.
  • the region 540a of the phosphor element 540 When the region 540a of the phosphor element 540 is positioned on the optical axis C, the light emitted from the condenser lens 3 is collected on the region 540a.
  • the region 540b of the phosphor element 540 When the region 540b of the phosphor element 540 is located on the optical axis C, the light emitted from the condenser lens 3 is collected on the region 540b.
  • the region 540c of the phosphor element 540 When the region 540c of the phosphor element 540 is positioned on the optical axis C, the light emitted from the condenser lens 3 is collected on the region 540c.
  • the rotation angle of the phosphor element 540 is set so that the regions 540a, 540b, and 540c of the phosphor element 540 are positioned on the optical axis C.
  • the light emitted from the regions 540a, 540b, and 540c is located on the optical axis Cp. For this reason, the light beam after passing through the projection lens 6 is parallel to the optical axis Cp.
  • the excitation light emitted from the light source 2 is condensed on the region 540a.
  • the region 540b of the phosphor element 540 is disposed on the optical axis C, the excitation light emitted from the light source 2 is collected on the region 540b.
  • the region 540c of the phosphor element 540 is disposed on the optical axis C, the excitation light emitted from the light source 2 is collected on the region 540c.
  • the area on the optical axis C of the phosphor element 540 is changed to the areas 540a, 540b, and 540c, and excitation emitted from the condenser lens 3 is performed. Light can be collected.
  • FIG. 20 is a schematic diagram of the wavelength selection element 711 and the phosphor element 550 of the third modification.
  • FIG. 20 is a view of the wavelength selection element 711 and the phosphor element 550 as viewed from the + Z-axis side. Since only the wavelength selection element 711 and the phosphor element 550 of the fluorescence generation unit 55 in the headlamp device 104a shown in FIG. 18 are different, only differences from the headlamp device 104a shown in FIG. 18 will be described.
  • the fluorescence generation unit 55 includes a wavelength selection element 711 instead of the wavelength selection element 710. Further, the fluorescence generating unit 55 includes a phosphor element 550 instead of the phosphor element 540.
  • the wavelength selection element 711 and the phosphor element 550 rotate around the axis S3.
  • the axis S3 is, for example, parallel to the Z axis. That is, the axis S3 is parallel to the optical axis C, for example.
  • the axis S3 is, for example, parallel to the optical axis Cp.
  • the phosphor element 550 is located on the + Z axis direction side of the wavelength selection element 711.
  • the wavelength selection element 711 has, for example, a glass substrate coated with a coating having wavelength selection characteristics.
  • the coating having wavelength selection characteristics may be applied to either the + Z axis side or the ⁇ Z axis side of the wavelength selection element 711.
  • the regions 711a, 711b, and 711c may have the same wavelength selection characteristics as the regions 7a, 7b, and 7c shown in the second modification of the first embodiment. If it does so, the light of the wavelength similar to the modification 2 of Embodiment 1 can be radiate
  • the phosphor element 550 is applied on the light incident surface side of the wavelength selection element 711, for example. That is, the phosphor element 550 is applied on the surface of the wavelength selection element 711 on the + Z axis direction side. In FIG. 20, the phosphor element 550 is applied concentrically on the wavelength selection element 711 with respect to the axis S3.
  • the phosphor element 550 is applied directly on the surface of the wavelength selection element 711 on the + Z-axis direction side, for example. That is, the wavelength selection element 711 is integrated with the phosphor element 550.
  • the phosphor element 550 is formed of one phosphor.
  • the wavelength selection element 711 is divided into a region 711a, a region 711b, and a region 711c.
  • the wavelength selection element 711 is divided into, for example, three regions in the circumferential direction.
  • the wavelength selection element 711 includes a region 711a, a region 711b, and a region 711c that are radially divided about the axis S3. That is, the regions 711a, 711b, and 711c have a fan shape.
  • the central angle is 120 degrees, for example.
  • the regions 711a, 711b, and 711c located on the optical axis C can be changed.
  • time division control can be performed in conjunction with the light source 2.
  • light is emitted from the light source 2 when the arbitrary regions 540a, 540b, and 540c are arranged on the optical axis C.
  • light is emitted from the light source 2 when the arbitrary regions 711a, 711b, and 711c are arranged on the optical axis C.
  • light of different wavelengths emitted from the region 540a, the region 540b, and the region 540c can be incident on the projection lens 6 in a time division manner.
  • light of different wavelengths emitted from the region 711a, the region 711b, and the region 711c can be incident on the projection lens 6 in a time division manner.
  • Time division means that two or more processes are alternately performed with a time shift in one apparatus.
  • the fluorescence generation part 55 can make the light of a different wavelength enter into the projection lens 6 shifted temporally.
  • the central ray of the light beam incident on the projection lens 6 is located on the optical axis Cp. For this reason, light with high parallelism with respect to the optical axis Cp can be emitted from the projection lens 6.
  • the “center ray” is a ray passing through the optical axis C of the condenser lens 3.
  • the wavelength selection element 711 is divided into three is described. However, it may be divided into two or four, and is not limited to three.
  • FIG. 21 is a configuration diagram schematically showing the main configuration of the headlamp device 105 according to the sixth embodiment of the present invention.
  • the headlamp device 105 includes a light source 2, a condensing lens 3, a transmissive element 4, and a projection lens 6.
  • the headlamp device 105 can include a phosphor element 560.
  • the headlamp device 105 is provided with a fluorescence generator 56.
  • the fluorescence generator 56 includes a phosphor element 560.
  • the headlamp device 105 does not include a wavelength selection unit. That is, the headlamp device 105 cannot change the wavelength of the projection light.
  • Embodiment 1 an example of an embodiment of the present invention will be described with reference to the drawings, taking a vehicle headlamp device as an example.
  • the same XYZ coordinates as in the first embodiment will be used for ease of explanation.
  • the condensing lens 3 itself is the same as that in the first embodiment. Therefore, in the sixth embodiment, the same reference numeral 3 as in the first embodiment is used. However, as described later, unlike the first embodiment, the condenser lens 3 is fixed.
  • the transmissive element 4 is the same as the transmissive element 4 described in the fourth embodiment. For this reason, description of the part which overlaps with description of Embodiment 4 substitutes for description of Embodiment 4, and abbreviate
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
  • the phosphor element 560 of the headlamp device 105 is formed of one phosphor.
  • the headlamp device 105 is different from the headlamp device 103 of the fourth embodiment in that the phosphor element 5 is changed to the phosphor element 560.
  • the headlamp device 105 in FIG. 21 condenses the light emitted from the light source 2 on the phosphor element 560 by swinging the transmission element 4 about the axis S2 as in the fourth embodiment. Move the position in the Y-axis direction.
  • FIG. 16 is used as a ray tracing diagram for explaining the effect of the sixth embodiment.
  • the phosphor element 5 will be described as a phosphor element 560.
  • the phosphor element 560 is composed of one region. For this reason, the region 5a, the region 5b, and the region 5c emit light of the same wavelength band.
  • the light beam 1400a emitted from the region 5a travels parallel to the optical axis Cp after passing through the projection lens 6.
  • the light beam 1400b emitted from the region 5b passes through the projection lens 6 and then travels in the ⁇ Y-axis direction at an angle with respect to the optical axis Cp.
  • the light beam 1400c emitted from the region 5c passes through the projection lens 6 and then travels in the + Y-axis direction with an angle with respect to the optical axis Cp.
  • the traveling direction of the light beam can be controlled by the position of the light beam emitted from the phosphor element 560. That is, by changing the regions 5a, 5b, and 5c where the phosphor element 560 emits light, the position where the light is irradiated can be controlled.
  • the headlamp device 105 can project the light emitted from the light source 2 toward the traveling direction side of the vehicle when the driver is traveling on a curve.
  • the traveling direction side of the vehicle is a direction in which the vehicle turns. As a result, the visibility of the driver with respect to the traveling direction of the vehicle can be improved.
  • the headlamp device 105 can change the position of light irradiation with a simple configuration. That is, the headlamp device 105 can control light distribution.
  • the headlamp device 105 can be used as an AFS (Adaptive Front-Lighting System) with this configuration.
  • the AFS is a light distribution variable headlamp that senses the steering angle or the vehicle speed when turning a curve at night, and turns the irradiation direction of the headlamp in a turning direction.
  • the headlamp device 105 can change the light distribution with a simple configuration in which the transmissive element 4 is swung. Furthermore, since the headlamp device 105 swings the transmissive element 4, the light distribution variable headlamp can be reduced in size.
  • the headlamp device 105 can swing the transmissive element 4 continuously in a reciprocating motion in the left-right direction. When a person is present ahead, the headlamp device 105 can project light by swinging the transmissive element 4 so as to avoid a region where the person is present. Further, the headlamp device 105 can turn off the light source 2 when the projected light reaches the direction in which a person exists.
  • the headlamp device 105 can be used as an ADB (Adaptive Driving Beam) with this configuration.
  • ADB Adaptive Driving Beam
  • the ADB detects the position of the front vehicle with an in-vehicle camera, shields only that area, and other areas with a high beam.
  • a headlamp system for irradiation When a front vehicle such as an oncoming vehicle or a preceding vehicle appears while driving with a high beam, the ADB detects the position of the front vehicle with an in-vehicle camera, shields only that area, and other areas with a high beam.
  • the headlamp device 105 can control the light distribution in the direction according to the road curve by adjusting the rotation angle of the transmission element 4. Further, the headlamp device 105 can control the light distribution according to the width of the road by adjusting the rotation angle of the transmission element 4.
  • the rotation angle of the transmission element 4 is narrowed.
  • the rotation angle of the transmissive element 4 is increased on a wide road. Thereby, the light distribution control according to the width of the road becomes possible. That is, the light distribution corresponding to the width of the road can be realized by continuously changing the rotation angle of the transmission element 4.
  • the light emitted from the condenser lens 3 is allowed to reach the transmission element 4.
  • the transmissive element 4 is swung around an axis parallel to the X axis.
  • the condensing position on the phosphor element 560 is moved in the Y-axis direction.
  • the light distribution of the light emitted from the projection lens 6 is moved in the Y-axis direction.
  • the transmission element 4 is swung around an axis parallel to the X axis, and the arrival position of the light emitted from the light source 2 is moved in the Y axis direction.
  • the arriving position of the light emitted from the light source 2 may be moved in the X-axis direction by swinging the transmissive element 4 about an axis parallel to the Y-axis.
  • the condenser lens 3 may be a collimating lens that collimates the light emitted from the light source 2.
  • the light beam diameter on the phosphor element 560 is larger than the light beam diameter in the case of the condenser lens 3.
  • the parallelism of the light emitted from the projection lens 6 decreases.
  • the central luminous intensity of a light distribution pattern falls.
  • one light distribution pattern can be formed by the headlamp device employing the condenser lens 3 and the headlamp device employing the collimating lens.
  • the headlamp device employing the collimating lens forms the shape of the entire light distribution pattern.
  • adopted the condensing lens 3 forms a high illumination intensity area
  • the condensing lens 3 may have a two-lens configuration including a collimating lens and a condensing lens.
  • the distance from the light source 2 to the condenser lens 3 can be set freely.
  • a mirror that bends the light beam can be disposed between the collimating lens and the condenser lens 3.
  • size of the projection direction (Z-axis direction) of the headlamp apparatus 1 can be made small. “Bending a light beam” means changing the direction of the light beam by reflection.
  • the transmissive element 4 is arranged between the condenser lens 3 and the projection lens 6, the above-described effect can be obtained.
  • the transmissive element 4 can be disposed between the phosphor element 560 and the projection lens 6.
  • the condensing position of the condensing lens 3 is preferably on the phosphor element 560.
  • the focal position of the projection lens 6 is preferably on the phosphor element 560.
  • the term “on the phosphor element 560” means the surface of the phosphor element 560.
  • the most condensed light is converted into fluorescence by the phosphor element 560 and emitted.
  • emitted from the projection lens 6 can be improved. Note that when the performance of the phosphor element 560 is deteriorated due to a temperature rise or the like, the condensing position of the condenser lens 3 can be shifted from the phosphor element 560.
  • the headlamp device has been described as an example.
  • the configuration of Embodiment 6 can also be used as a lighting device.
  • the configuration of Embodiment 6 can be used for an illumination device that emits light in accordance with the movement of a subject.
  • the illumination effect is improved by changing the illumination projection position over time.
  • adopted the structure of this Embodiment 6 can implement
  • the headlamp device that can change the color temperature of the light has been described.
  • These headlamp devices can also be used as lighting devices. That is, the illumination effect is improved by changing the color of the projected illumination light with time.
  • adopted the structure of embodiment which can change the color temperature of the above-mentioned light can implement
  • FIG. 22 is a configuration diagram schematically showing the main configuration of the headlamp device 107 according to the seventh embodiment of the present invention.
  • the headlamp device 107 includes a light source 27, a condenser lens 37, a transmissive element 4, and a projection lens 6.
  • a component similar to that of the first embodiment is a projection lens 6.
  • the transmissive element 4 is the same as the transmissive element 4 described in the fourth or sixth embodiment. For this reason, the description of the part which overlaps with description of Embodiment 4 or 6 substitutes for description of Embodiment 4 or 6, and is abbreviate
  • FIG. 1 the description of the part which overlaps with description of Embodiment 4 or 6 substitutes for description of Embodiment 4 or 6, and is abbreviate
  • the light source 27 emits white light.
  • the light source 27 is a light emitting diode that emits white light.
  • the light source 27 includes a blue light emitting diode and a yellow phosphor. In this case, the light source 27 excites a yellow phosphor with a blue light emitting diode.
  • the light source 27 includes an ultraviolet light emitting diode and a white phosphor. In this case, the light source 27 excites a white phosphor with an ultraviolet light emitting diode.
  • the light source 27 is not an excitation light source.
  • the headlamp device 107 does not include a phosphor element.
  • the headlamp device 107 does not include a fluorescence generator.
  • the condensing lens 37 may be the same as that of the sixth embodiment.
  • the light source 27 has a larger divergence angle than the light source 2. For this reason, when the size of the light source 27 is the same as that of the light source 2 and the light capturing efficiency is increased, the size of the condenser lens 37 is larger than that of the condenser lens 3. For this reason, the condenser lens 37 is distinguished from the condenser lens 3 of the sixth embodiment.
  • the condensing lens 37 condenses the light emitted from the light source 27 at the condensing point F7.
  • the condensing point F7 is located between the transmission element 4 and the projection lens 6.
  • the condensing point F ⁇ b> 7 is located on the optical axis Cp of the projection lens 6.
  • the condensing lens 37 may be configured to use two lenses. As a result, the distance between the light source 2 and the condenser lens 37 can be changed. For example, by arranging a mirror that bends the light beam between the collimating lens and the condenser lens, the size of the projection lens 6 of the headlamp device 107 in the optical axis direction (Z-axis direction) can be reduced.
  • the condensing lens 37 may be configured to use one hybrid lens.
  • the hybrid lens here is, for example, a lens having light transmission characteristics and total reflection characteristics. That is, the condensing lens 37 can be an optical element using refraction and total reflection. For example, this optical element can collect light having a small divergence angle by refraction and collect light having a large divergence angle by total reflection.
  • the headlamp device 107 shown in FIG. 22 swings the transmissive element 4 around the axis S2 as in the sixth embodiment.
  • the headlamp device 107 moves the condensing point F7 of the light emitted from the light source 27 in the Y-axis direction.
  • the Y-axis direction is a direction perpendicular to a plane including the optical axis Cp and the axis S2.
  • FIG. 16 is used as a ray tracing diagram for explaining the effect of the seventh embodiment.
  • a description will be given assuming that the condensing point F7 has moved to the positions of the regions 5a, 5b, and 5c on the phosphor element 5.
  • the phosphor element 5 is not used in the seventh embodiment.
  • the condensing point F7 is a point where the light emitted from the light source 27 is collected on the optical axis Cp. For this reason, when the condensing point F7 moves to the position of each region 5a, 5b, 5c, it is equivalent to that the light emitted from the light source 27 is emitted from the position of each region 5a, 5b, 5c. Become.
  • the light beam 1400a emitted from the position of the region 5a travels in parallel with the optical axis Cp after passing through the projection lens 6.
  • the light beam 1400b emitted from the position of the region 5b passes through the projection lens 6 and then travels in the ⁇ Y-axis direction with an angle with respect to the optical axis Cp.
  • the light beam 1400c emitted from the position of the region 5c passes through the projection lens 6 and then travels in the + Y-axis direction with an angle with respect to the optical axis Cp.
  • the traveling direction of the light beam emitted from the condensing point F7 is changed depending on the position of the condensing point F7. That is, the position where the light emitted from the light source 27 is irradiated can be moved by changing the position of the condensing point F7 in the Y-axis direction.
  • the headlamp device 107 can project the light emitted from the light source 2 toward the traveling direction side of the vehicle when the driver is traveling on a curve.
  • the traveling direction side of the vehicle is a direction in which the vehicle turns. As a result, the visibility of the driver with respect to the traveling direction of the vehicle can be improved.
  • the headlamp device 107 can change the position of light irradiation with a simple configuration. That is, the headlamp device 107 can control light distribution.
  • the transmission element 4 is swung around an axis parallel to the X axis, and the arrival position of the light emitted from the light source 27 is moved in the Y axis direction.
  • the transmission element 4 may be swung around an axis parallel to the Y axis to move the arrival position of the light emitted from the light source 27 in the X axis direction.
  • the headlamp device 107 causes the light emitted from the condenser lens 37 to reach the transmission element 4.
  • the headlamp device 107 swings the transmissive element 4 about an axis parallel to the X axis.
  • the X axis is an axis perpendicular to the optical axis Cp of the projection lens 6.
  • the headlamp device 107 moves the condensing point F7 in the Y-axis direction.
  • the Y axis is an axis perpendicular to the optical axis Cp and the X axis.
  • the headlamp device 107 distributes the light emitted from the projection lens 6 by moving the condensing point F7 in the Y-axis direction and moving the light irradiation position (radiation direction) in the Y-axis direction. It is moved in the Y-axis direction.
  • the condensing lens 37 when the light source 27 has a large divergence angle like a light emitting diode, it is not preferable to use the condensing lens 37 as a collimating lens.
  • the collimating lens turns the light emitted from the light source 27 into parallel light. This is because, when a light emitting diode is used as the light source 27, the diameter of the light beam reaching the condenser lens 37 increases, and the parallelism of the light emitted from the projection lens 6 decreases. If the reduction in the parallelism of light is within an allowable range, a collimating lens can be employed even when the light source 27 is a light emitting diode.
  • the transmission element 4 may be disposed anywhere as long as it is between the condenser lens 37 and the projection lens 6. That is, the position of the transmissive element 4 is not particularly limited optically. Unlike Embodiment 6, light is not scattered by phosphor element 560. That is, the spread of light passing through the condensing point F7 is smaller than that of scattered light.
  • FIG. 23 is a diagram showing a ray tracing result when the transmission element 4 is arranged between the condensing point F7 and the projection lens 6.
  • FIG. 23A, FIG. 23B, and FIG. 23C are explanatory diagrams illustrating simulation results by ray tracing according to the seventh embodiment.
  • the transmission element 4 in FIG. 23B rotates counterclockwise as viewed from the ⁇ X axis direction with respect to the state of FIG.
  • the transmissive element 4 in FIG. 23C rotates clockwise with respect to the state of FIG. 23A when viewed from the ⁇ X axis direction.
  • the rotation angle of the transmissive element 4 is, for example, 30 degrees.
  • a light ray 700a in FIG. 23A travels parallel to the optical axis Cp.
  • the light ray 700b in FIG. 23B travels in the ⁇ Y axis direction at an angle with respect to the optical axis Cp.
  • the light ray 700c in FIG. 23C travels in the + Y-axis direction with an angle with respect to the optical axis Cp.
  • FIG. 23A, 23B, and 23C show light rays 700a, 700b, and 700c emitted from the center of the light source 27.
  • the center of the light source 27 is on the optical axis C of the condenser lens 37.
  • light emitted from a position on the optical axis C of the light source 27 will be described.
  • the light emitted from the light source 27 travels in the + Z-axis direction at an emission angle centered on the optical axis C.
  • the light traveling in the + Z-axis direction enters the condenser lens 37.
  • the light incident on the condenser lens 37 is condensed on the optical axis C.
  • the incident surface 41 of the transmissive element 4 in FIG. 23 (A) is perpendicular to the optical axis C.
  • the light ray on the optical axis C travels without being refracted by the incident surface 41.
  • the light beam 700a is emitted as light parallel to the optical axis C.
  • the focal point of the projection lens 6 coincides with the condensing point F7.
  • the incident surface 41 of the transmissive element 4 is rotated, for example, 30 degrees counterclockwise with respect to the optical axis C when viewed from the ⁇ X axis direction.
  • the light ray 700b the light ray on the optical axis C travels by being refracted in the + Y-axis direction at the incident surface 41.
  • the center (optical axis Cp) of the projection lens 6 is positioned in the ⁇ Y-axis direction with respect to the light beam on the optical axis C. Therefore, the light beam 700b emitted from the projection lens 6 moves in the ⁇ Y axis direction with respect to the optical axis Cp.
  • the incident surface 41 of the transmissive element 4 is rotated, for example, 30 degrees clockwise with respect to the optical axis C when viewed from the ⁇ X axis direction.
  • the light ray 700c the light ray on the optical axis C travels by being refracted in the ⁇ Y-axis direction at the incident surface 41.
  • the center (optical axis Cp) of the projection lens 6 is positioned in the + Y-axis direction with respect to the light beam on the optical axis C.
  • the light ray 700c emitted from the projection lens 6 moves in the + Y-axis direction with respect to the optical axis Cp.
  • the headlamp device 107 also performs the same operation when the transmissive element 4 is disposed between the condensing lens 37 and the condensing point F7.
  • the incident surface 41 of the transmissive element 4 is perpendicular to the optical axis C
  • the light beam 700a emitted from the light source 27 is emitted from the projection lens 6 as light parallel to the optical axis Cp. Is done.
  • the incident surface 41 of the transmissive element 4 rotates counterclockwise with respect to the optical axis C when viewed from the ⁇ X axis direction
  • the light beam 700b emitted from the light source 27 is transmitted from the projection lens 6 to the optical axis Cp. Is emitted as light inclined in the ⁇ Y-axis direction.
  • the incident surface 41 of the transmissive element 4 rotates clockwise with respect to the optical axis C as viewed from the ⁇ X axis direction
  • the light beam 700c emitted from the light source 27 is transmitted from the projection lens 6 to the optical axis Cp.
  • it is emitted as light inclined in the + Y-axis direction.
  • the angle of the light emitted from the projection lens 6 with respect to the optical axis Cp varies depending on the thickness or refractive index of the transmission element 4.
  • the transmissive element 4 is described as a parallel plate.
  • the light ray 700a, the light ray 700b, and the light ray 700c are condensed at the condensing point F7.
  • the light beam 700a, the light beam 700b, and the light beam 700c are collimated by the projection lens 6.
  • the position of the condensing point F7 where the light rays 700a, 700b, and 700c converge may be moved. That is, the focal position of the projection lens 6 may not coincide with the condensing point F7.
  • the focal position of the projection lens 6 may not coincide with the condensing point F7.
  • FIG. 24 is a configuration diagram schematically showing the main configuration of the fourth modification.
  • the transmissive element 4 and the projection lens 6 are the same as those in the seventh embodiment.
  • the headlamp device 108 includes light sources 2r, 2g, 2b, collimating lenses 20r, 20g, 20b, a transmissive element 4, and a projection lens 6.
  • the headlamp device 108 can include the condenser lens 38 or the diffusing element 58.
  • the light source 2r, the light source 2b, and the light source 2g are light sources that emit light having different wavelengths, for example.
  • the light source 2r emits light in the red wavelength band.
  • the light source 2g emits light in the green wavelength band.
  • the light source 2b emits light in a blue wavelength band.
  • the blue wavelength range is 430 nm to 485 nm.
  • the green wavelength range is 500 nm to 570 nm.
  • the red wavelength range is 600 nm to 650 nm.
  • the light sources 2r, 2g, 2b are arranged side by side in the Y-axis direction.
  • the light sources 2r, 2g, 2b are arranged at regular intervals, for example.
  • the light sources 2 are arranged in 3 rows and 1 column.
  • FIG. 24 there are three rows in the Y-axis direction and one column in the X direction.
  • the light sources 2 may be arranged in a matrix of 3 rows and 3 columns. For example, there are 3 rows in the Y-axis direction and 3 columns in the X-axis direction.
  • the optical axis Cs of the light source 2g coincides with the optical axis C of the condenser lens 38.
  • the light source 2r is arranged in the + Y-axis direction of the light source 2g.
  • the light source 2b is arranged in the ⁇ Y axis direction of the light source 2g.
  • the optical axes Cs of the light sources 2r and 2b are parallel to the optical axis Cs of the light source 2g.
  • the light sources 2r, 2g, and 2b will be described as laser light sources.
  • the light sources 2r, 2g, 2b may be light emitting diodes.
  • the light emitted from the light sources 2r, 2g, 2b is collimated by the collimating lenses 20r, 20g, 20b.
  • the collimating lenses 20r, 20g, and 20b emit light parallel to the optical axis Cs.
  • the optical axis Cs is the optical axis of the light sources 2r, 2g, 2b.
  • the collimating lens 20r is disposed on the + Z axis direction side of the light source 2r.
  • the collimating lens 20g is disposed on the + Z axis direction side of the light source 2g.
  • the collimating lens 20b is disposed on the + Z axis direction side of the light source 2b.
  • the optical axis Ca of the collimating lens 20r coincides with the optical axis Cs of the light source 2r.
  • the optical axis Ca of the collimating lens 20g coincides with the optical axis Cs of the light source 2g.
  • the optical axis Ca of the collimating lens 20b coincides with the optical axis Cs of the light source 2b.
  • the diffusing element 58 is disposed at a position where the light is collected by the condensing lens 38. However, as described in the seventh embodiment, the diffusing element 58 can be omitted. In Modification 4, the effect when the diffusing element 58 is employed is described together with the effect when the plurality of light sources 2r, 2g, and 2b are employed.
  • the light emitted from the collimating lenses 20r, 20g, and 20b is condensed at the position of the diffusing element 58 by the condenser lens 38.
  • the light emitted from the collimating lenses 20r, 20g, and 20b reaches the diffusion element 58 after passing through the transmission element 4.
  • the transmissive element 4 may be between the diffusing element 58 (condensing position) and the projection lens 6.
  • the light emitted from the collimating lenses 20r, 20g, and 20b enters the condenser lens 38 as parallel light. For this reason, the light emitted from the collimating lenses 20r, 20g, and 20b is condensed at one condensing point.
  • the transmission element 4 swings about an axis S2 parallel to the X axis.
  • the transmissive element 4 moves the condensing position of the light emitted from the light sources 2r, 2g, 2b in the Y-axis direction.
  • the transmission element 4 may be swung around an axis parallel to the Y axis, and the arrival position of the light emitted from the light sources 2r, 2g, 2b may be moved in the X axis direction.
  • the light emitted from the condensing lens 38 reaches the transmissive element 4.
  • the transmissive element 4 swings about an axis S2 parallel to the X axis.
  • the transmissive element 4 moves the condensing position on the diffusing element 58 in the Y-axis direction.
  • the light emission position on the diffusing element 58 is moved by the movement of the condensing position.
  • the headlamp device 108 moves the light distribution of the light emitted from the projection lens 6 by moving the light emission position on the diffusing element 58.
  • the headlamp device 108 moves the light distribution emitted from the projection lens 6 in the Y-axis direction by moving the light emission position on the diffusing element 58 in the Y-axis direction. ing.
  • the divergence angles of the light sources 2r, 2g, and 2b are small. For this reason, the condensing lens 38 can be omitted.
  • the collimating lenses 20r and 20b that are not arranged on the optical axis C are decentered in the direction of the optical axis C. That is, the collimating lens 20r is decentered in the ⁇ Y axis direction.
  • the optical axis Ca of the collimating lens 20r is translated in the ⁇ Y axis direction.
  • the collimating lens 20b is decentered in the + Y axis direction.
  • the optical axis Ca of the collimating lens 20b is translated in the + Y-axis direction. Thereby, the light from the light sources 2r, 2g, 2b may reach the diffusing element 58.
  • the distance in the Z-axis direction can be shortened by using the condenser lens 38. That is, the distance in the Z-axis direction from the collimating lenses 20r, 20g, and 20b to the diffusing element 58 can be shortened. For this reason, the headlamp apparatus 108 can be reduced in size.
  • the light source 2r, the light source 2g, and the light source 2b are arranged side by side in the Y-axis direction.
  • the light sources 2r, 2g, and 2b may be arranged in any manner.
  • the light sources 2r, 2g, and 2b may be arranged at the position of the apex of an equilateral triangle centered on the optical axis C on a plane perpendicular to the optical axis C.
  • the headlamp device 108 is not provided with the diffusing element 58, the effect of moving the light emitted from the projection lens 6 in the Y-axis direction can be obtained.
  • color unevenness may occur in the light emitted from the projection lens 6.
  • the diffusing element 58 By disposing the diffusing element 58 between the transmissive element 4 and the projection lens 6, color unevenness of light emitted from the projection lens 6 is suppressed.
  • the diffusing element 58 may be disposed between the light sources 2r, 2g, 2b and the projection lens 6. However, it is preferable to dispose the diffusing element 58 between the transmissive element 4 and the projection lens 6. This is because the size of the light beam is the smallest.
  • FIG. 25A, FIG. 25B, and FIG. 25C are diagrams showing an example of a ray tracing result showing the operation of the fourth modification.
  • the transmissive element 4 in FIG. 25A is arranged perpendicular to the optical axis C.
  • the transmissive element 4 in FIG. 25B rotates counterclockwise as viewed from the ⁇ X-axis direction with respect to the state of FIG.
  • the transmissive element 4 in FIG. 25C rotates clockwise with respect to the state of FIG. 25A when viewed from the ⁇ X axis direction.
  • the rotation angle of the transmissive element 4 in FIGS. 25B and 25C is, for example, 30 degrees.
  • optical paths after passing through the transmissive element 4 in FIGS. 25A, 25B, and 25C are different.
  • the light beams 800ar, 800ag, and 800ab are condensed at the position of the optical axis C on the diffusing element 58.
  • the light rays 800br, 800bg, and 800bb in FIG. 25B are refracted in the + Y-axis direction at the incident surface 41 and travel.
  • the light beams 800br, 800bg, and 800bb are condensed from the position of the optical axis C on the diffusing element 58 to the position in the + Y-axis direction.
  • the light rays 800cr, 800cg, and 800cb in FIG. 25C are refracted in the ⁇ Y axis direction on the incident surface 41 and travel.
  • the light rays 800cr, 800cg, and 800cb are condensed from the position of the optical axis C on the diffusing element 58 to the position in the ⁇ Y axis direction.
  • rays 800ar, 800ag, 800ab, 800br, 800bg, 800bb, 800cr, 800cg, and 800cb emitted from the centers of the light sources 2r, 2g, and 2b are shown. It is described.
  • the light rays 800ar, 800br, and 800cr are light rays emitted from the light source 2r.
  • Light rays 800ag, 800bg, and 800cg are light rays emitted from the light source 2g.
  • Light rays 800ab, 800bb, and 800cb are light rays emitted from the light source 2b.
  • the light emitted from the light sources 2r, 2g, 2b travels in the + Z-axis direction at a radiation angle centered on the optical axis Cs of each light source 2r, 2g, 2b.
  • the light traveling in the + Z-axis direction is collimated by the collimating lenses 20r, 20g, and 20b.
  • the collimated light (parallel light) travels in the + Z-axis direction.
  • the light (parallel light) traveling in the + Z-axis direction enters the condenser lens 38.
  • the light (parallel light) incident on the condenser lens 38 is condensed at the position of the diffusing element 58.
  • the incident surface 41 of the transmission element 4 is perpendicular to the optical axis C.
  • the light ray 800ar, the light ray 800ag, and the light ray 800ab are refracted by the incident surface 41.
  • the light beams 800ar, 800ag, and 800ab travel so as to be condensed on the optical axis C at the position of the diffusing element 58.
  • the condensing positions of the light beams 800ar, 800ag, and 800ab are on the optical axis C.
  • the light beams 800ar, 800ag, and 800ab are condensed at the position of the optical axis C on the diffusing element 58.
  • the incident surface 41 of the transmissive element 4 is rotated 30 degrees counterclockwise with respect to the optical axis C as viewed from the ⁇ X axis direction. For this reason, the condensing positions of the light beams 800br, 800bg, and 800bb move in the + Y-axis direction with respect to the optical axis C.
  • the light beams 800br, 800bg, and 800bb are condensed from the optical axis C on the diffusing element 58 to a position in the + Y-axis direction.
  • the incident surface 41 of the transmissive element 4 is rotated 30 degrees clockwise with respect to the optical axis C when viewed from the ⁇ X axis direction. Therefore, the condensing positions of the light beams 800cr, 800cg, and 800cb move in the ⁇ Y-axis direction with respect to the optical axis C.
  • the light beams 800cr, 800cg, and 800cb are condensed at a position in the ⁇ Y-axis direction from the optical axis C on the diffusing element 58.
  • the incident surface 41 of the transmission element 4 is perpendicular to the optical axis C
  • the light beams 800ar, 800ag, 800ab emitted from the light sources 2r, 2g, 2b are transmitted along the optical axis C on the diffusing element 58. Concentrate at the position.
  • the light beams 800br, 800bg, and 800bb emitted from the light sources 2r, 2g, and 2b are The light is condensed at a position in the + Y-axis direction from the optical axis C on the diffusing element 58.
  • the incident surface 41 of the transmissive element 4 rotates clockwise with respect to the optical axis C as viewed from the ⁇ X-axis direction
  • the light beams 800cr, 800cg, and 800cb emitted from the light sources 2r, 2g, and 2b are diffused.
  • the light is condensed from the optical axis C on the element 58 to a position in the ⁇ Y-axis direction.
  • the transmissive element 4 is described as a parallel plate.
  • the light beams 800ar, 800ag, 800ab, 800br, 800bg, 800bb, 800cr, 800cg, and 800cb are condensed on the diffusing element 58.
  • the condensing positions of the light beams 800ar, 800ag, 800ab, 800br, 800bg, 800bb, 800cr, 800cg, and 800cb may not be on the diffusing element 58. That is, the condensing positions of the light beams 800ar, 800ag, 800ab, 800br, 800bg, 800bb, 800cr, 800cg, and 800cb may move in the direction of the optical axis C with respect to the diffusing element 58.
  • FIG. 16 is used as a ray tracing diagram for explaining the effect of the fourth modification.
  • the phosphor element 5 in FIG. 16 will be described by replacing it with a diffusing element 58.
  • the diffusion element 58 is disposed on the optical axis C.
  • the diffusion element 58 is disposed at a position where the light emitted from the light sources 2r, 2g, and 2b is collected. For this reason, the light condensed on the region 5a, the region 5b, or the region 5c is light obtained by combining the light emitted from the light source 2r, the light source 2g, and the light source 2b. For this reason, the light emitted from the diffusing element 58 is light obtained by combining the light emitted from the light source 2r, the light source 2g, and the light source 2b.
  • the light beam 1400a emitted from the region 5a corresponds to light obtained by combining the light beam 800ar, the light beam 800ag, and the light beam 800ab in FIG.
  • the light obtained by combining the light beam 800ar, the light beam 800ag, and the light beam 800ab travels in parallel to the optical axis Cp.
  • the light beam 1400b emitted from the region 5b corresponds to light obtained by combining the light beam 800br, the light beam 800bg, and the light beam 800bb in FIG.
  • the combined light beam 800br, light beam 800bg, and light beam 800bb passes through the projection lens 6 and then travels at an angle in the ⁇ Y-axis direction with respect to the optical axis Cp.
  • the light beam 1400c emitted from the region 5c corresponds to light obtained by combining the light beam 800cr, the light beam 800cg, and the light beam 800cb in FIG.
  • the light obtained by combining the light ray 800cr, the light ray 800cg, and the light ray 800cb travels through the projection lens 6 and then has an angle in the + Y-axis direction with respect to the optical axis Cp.
  • the traveling direction of the light beam can be changed depending on the position of the light beam emitted from the diffusing element 58 on the diffusing element 58. That is, the irradiation position of the light from the projection lens 6 can be changed by moving the light emitted from the light sources 2r, 2g, and 2b on the diffusing element 58.
  • the headlamp device 108 can project the light emitted from the light sources 2r, 2g, and 2b toward the traveling direction side of the vehicle when the driver is traveling on a curve.
  • the traveling direction side of the vehicle is a direction in which the vehicle turns. As a result, the visibility of the driver with respect to the traveling direction of the vehicle can be improved.
  • the headlamp device 108 can change the position of light irradiation with a simple configuration. That is, the headlamp device 108 can control light distribution.
  • the AFS or the light source 2r, 2g, 2b, the collimating lenses 20r, 20g, 20b, the condensing lens 38, the transmissive element 4, and the diffusing element 58 are arranged in this order.
  • ADB is realized.
  • the color temperature of the white light emitted from the projection lens 6 can be changed by changing the output values (light amounts) of the light sources 2r, 2g, and 2b. Thereby, in addition to the change of the light distribution, the change of the color temperature can also be realized.
  • FIG. 26 is an explanatory diagram showing a simulation result by ray tracing of the headlamp device 109 shown in the fifth modification.
  • the projection lens 6 is omitted.
  • the reflection surface 491 of the reflection element 49 is inclined 45 degrees with respect to the optical axis C when viewed from the ⁇ X axis direction. For this reason, light reaching from the ⁇ Y axis direction is reflected in the + Z axis direction. This state is set as a reference position of the reflecting surface 491.
  • the reflection surface 491 of the reflection element 49 rotates counterclockwise with respect to the reference position of the reflection surface 491 when viewed from the ⁇ X axis direction.
  • the reflection surface 491 of the reflection element 49 is inclined by 47 degrees with respect to the optical axis C when viewed from the ⁇ X axis direction.
  • the reflection surface 491 of the reflection element 49 rotates clockwise with respect to the reference position of the reflection surface 491 when viewed from the ⁇ X axis direction.
  • the reflection surface 491 of the reflection element 49 is inclined 43 degrees with respect to the optical axis C when viewed from the ⁇ X axis direction.
  • FIG. 26 shows a configuration when the transmissive element 4 of FIG. 15 is replaced with a reflective element 49. Constituent elements other than the reflective element 49 are the same as those of the headlamp device 105, and thus the same reference numerals are used.
  • the headlamp device 107 includes a light source 27, a condenser lens 37, a transmissive element 4, and a projection lens 6.
  • the light emitted from the light source 27 travels in the + Y-axis direction at a radiation angle centered on the optical axis Cs. That is, the light source 27 emits light in the + Y axis direction.
  • the light traveling in the + Y-axis direction is changed to condensed light by the condenser lens 37. Then, the condensed light travels in the + Y axis direction.
  • the light (condensed light) traveling in the + Y-axis direction reaches the reflecting surface 491 of the reflecting element 49.
  • the light that reaches the reflection surface 491 is reflected by the reflection surface 491.
  • the light reflected by the reflecting surface 491 travels in the + Z axis direction.
  • the condensed light is collimated by the projection lens 6 (not shown).
  • the collimated light (parallel light) travels in the + Z axis direction.
  • the light emitted from the light source 27 in the + Y-axis direction is condensed by the condenser lens 37.
  • the light condensed by the condenser lens 37 is condensed on the optical axis Cp.
  • the light 900 a emitted from the condenser lens 37 is reflected by the reflecting surface 491 of the reflecting element 49.
  • the traveling direction of the central ray of the light 900a reflected by the reflecting surface 491 is changed by 90 degrees on the reflecting surface 491.
  • the light 900 a reflected by the reflecting surface 491 is collected on the optical axis Cp of the projection lens 6.
  • the optical axis C of the condenser lens 37 is bent 90 degrees by the reflecting element 49.
  • the optical axis C of the condenser lens 37 from the reflecting element 49 to the projection lens 6 is a state in which the optical axis C is bent by 90 degrees by the reflecting element 49.
  • the optical axis is as shown in FIG. That is, it is assumed that the optical axis C of the condenser lens 37 does not change from the state of FIG. 26A even when the reflecting element 49 rotates.
  • the optical axis C on the projection lens 6 side from the reflective element 49 coincides with the optical axis Cp.
  • the rotation axis of the reflection element 49 is, for example, a third axis perpendicular to the optical axis of the projection lens.
  • the reflective element 49 rotates counterclockwise from the reference position of the reflective surface 491 when viewed from the ⁇ X-axis direction.
  • the light condensed by the condenser lens 37 is condensed on the + Y axis side with respect to the optical axis Cp. That is, the condensing position of the light condensed by the condensing lens 37 moves in the + Y axis direction from the optical axis Cp.
  • the angle between the optical axis C bent 90 degrees by the reflecting element 49 and the reflecting element 49 (reflecting surface 491) is larger than 45 degrees.
  • the reflective element 49 (reflective surface 491) in FIG. 26B is inclined by 47 degrees with respect to the optical axis C, for example. That is, the reflective element 49 (reflective surface 491) in FIG. 26B is inclined 47 degrees with respect to the optical axis Cp.
  • the central ray of the light beam 900b reflected by the reflecting element 49 is inclined by 4 degrees in the + Y-axis direction with respect to the optical axis C and proceeds in the + Z-axis direction. Then, the light beam 900b reflected by the reflecting element 49 is condensed on the + Y axis direction side with respect to the condensing position when the reflecting surface 491 is the reference position.
  • the reflective element 49 rotates clockwise from the reference position of the reflective surface 491 when viewed from the ⁇ X-axis direction.
  • the light condensed by the condenser lens 37 is condensed on the ⁇ Y axis side with respect to the optical axis Cp. That is, the condensing position of the light condensed by the condensing lens 37 moves in the ⁇ Y axis direction from the optical axis Cp.
  • the angle between the optical axis C bent 90 degrees by the reflecting element 49 and the reflecting element 49 (reflecting surface 491) is smaller than 45 degrees.
  • the reflective element 49 (reflective surface 491) in FIG. 26C is inclined by 43 degrees with respect to the optical axis C, for example. That is, the reflective element 49 (reflective surface 491) in FIG. 26C is inclined 43 degrees with respect to the optical axis Cp.
  • the central ray of the light beam 900c reflected by the reflecting element 49 is inclined by 4 degrees in the ⁇ Y axis direction with respect to the optical axis C and proceeds in the + Z axis direction.
  • the light beam 900c reflected by the reflecting element 49 is condensed toward the ⁇ Y axis direction side with respect to the condensing position when the reflecting surface 491 is the reference position.
  • the size of the headlamp device in the Y-axis direction increases.
  • the size of the headlamp device in the Z-axis direction is reduced.
  • each component is arranged in the Z-axis direction (the direction of the optical axis Cp).
  • the constituent elements can be arranged at a position deviating from the optical axis Cp.
  • the amount of movement of light with respect to the swing angle of the transmissive element 4 is smaller than the amount of movement of light with respect to the swing angle of the reflective element 49. That is, when the reflective element 49 is used, the amount of movement of light with respect to the swing angle increases. For this reason, for example, when used for a headlight that assumes a projection distance equivalent to 25 m, the adjustment accuracy of the reflection element 49 is made higher than the adjustment accuracy of the transmission element 4.
  • FIG. 26 does not show the projection lens 6.
  • the projection lens 6 is disposed on the + Z axis side of the light collection position F7.
  • the interval between the condensing position F7 and the projection lens 6 is 5 mm.
  • the transmission element 4 can change the amount of movement with respect to the swing angle by changing the thickness or the refractive index.
  • the transmittance of the transmissive element 4 is generally higher. For this reason, when considering the light utilization efficiency, it is preferable to use the transmissive element 4.
  • ⁇ Appendix 1> A light source that emits excitation light; A wavelength selection unit that emits light of different color temperatures by entering the excitation light; and A projection lens that projects the light of the different color temperature emitted from the wavelength selection unit,
  • the wavelength selection unit includes a condensing optical element and a fluorescence generation unit,
  • the fluorescence generating unit has a different color temperature of emitted light depending on the region where the excitation light is incident,
  • the condensing optical element condenses the excitation light emitted from the light source,
  • the condensed excitation light is a headlamp device that selectively reaches the region.
  • the fluorescence generating unit includes a phosphor element that emits fluorescence, The phosphor element includes the region emitting light of different color temperatures;
  • the fluorescence generating unit includes a phosphor element that emits fluorescence,
  • the phosphor element includes the region emitting light of different color temperatures;
  • the headlamp device according to supplementary note 1, wherein the condensing optical element rotates around an axis perpendicular to the optical axis of the condensing optical element to selectively cause the condensed light to reach the region.
  • the fluorescence generating unit includes a phosphor element that emits fluorescence and a wavelength selection element that reflects light other than the selected wavelength by selecting a wavelength of light to be transmitted,
  • the wavelength selection element includes regions that transmit light of different wavelengths,
  • the fluorescence generating unit includes a phosphor element that emits fluorescence and a wavelength selection element that reflects light other than the selected wavelength by selecting a wavelength of light to be transmitted,
  • the wavelength selection element includes regions that transmit light of different wavelengths,
  • the headlamp device according to supplementary note 1, wherein the condensing optical element rotates around an axis perpendicular to the optical axis of the condensing optical element to selectively cause the condensed light to reach the region.
  • the fluorescence generating unit includes a phosphor element that emits fluorescence,
  • the phosphor element includes the region emitting light of different color temperatures;
  • the fluorescence generation unit includes a phosphor element that emits fluorescence and a transmission element that enters the condensed light and emits the light toward the phosphor element.
  • the transmission element rotates around an axis perpendicular to the optical axis of the condensing optical element;
  • the phosphor element includes the region emitting light of different color temperatures;
  • the headlamp device according to supplementary note 1, wherein the condensed light selectively reaches the region by rotating the transmission element about the axis.
  • the fluorescence generation unit includes a wavelength selection element that selects a wavelength of light to be transmitted and reflects light other than the selected wavelength.
  • the fluorescence generating unit includes a phosphor element that emits fluorescence,
  • the phosphor element includes the region emitting light of different color temperatures;
  • the fluorescence generation unit includes a wavelength selection element that selects a wavelength of light to be transmitted and reflects light other than the selected wavelength.
  • the headlamp device according to any one of appendices 2, 3, 6 or 9, wherein the wavelength selection element is disposed between the condensing optical element and the phosphor element.
  • the fluorescence generating unit includes a phosphor element that emits fluorescence and a wavelength selection element that reflects light other than the selected wavelength by selecting a wavelength of light to be transmitted,
  • the wavelength selection element includes regions that transmit light of different wavelengths,
  • ⁇ Appendix 12> A light source that emits excitation light; A condensing optical element that converts the excitation light that has entered the excitation light and exited from the light source into condensed light, and then exits; A transmissive element that enters the condensed light, rotates about an axis perpendicular to the optical axis of the condensing optical element, and emits the condensed light; and A phosphor element that emits fluorescence by entering light emitted from the transmission element; The phosphor element includes a region that emits light of the same color temperature, A headlamp device that selectively causes the condensed light to reach the region by rotating the transmission element about the axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

照明装置は、光を発する光源と、前記光源から出射された前記光を集光光に変換して出射する集光光学素子と、前記集光光を投射する投射レンズとを備え、前記集光光の集光位置は、前記集光光学素子と前記投射レンズとの間に位置し、前記集光位置を前記投射レンズの光軸に垂直な方向に移動させる。また、前記光軸の方向において、前記集光位置は、前記投射レンズの焦点位置と一致する。あるいは、前記集光光学素子は、集光光学素子の光軸に垂直な第1の軸を中心に回転する。または、前記集光光学素子は、集光光学素子の光軸に垂直な方向に移動する。さらに、前記投射レンズの光軸に垂直な第2の軸を中心に回転可能に支持されて、前記集光光を透過する透過素子を備える。

Description

前照灯装置及び照明装置
 光源及び光学素子を用いた前照灯装置及び照明装置に関する。
 近年、車用の運転状況に応じて照射方向を含めた配光パターンを変更できる前照灯装置の要望が高まっている。
 また、照明装置においても同様の要望がある。例えば、商品などの展示において、商品を照らす光の色、照明光のスポットサイズまたは照明位置などの変更によって、展示効果を向上している。
 また、店舗などに設置されているダウンライト(照明装置)では、手動で照射方向を変更することが主流である。そのため、利便性の向上のために、自動で照射方向を変更できることが要求されている。
 これらのように、配光または照明位置などを変更できる照明装置は、車両用のみならず、他の照明装置においても用途が拡大されている。
 照射方向を変更できる照明装置に関して、車両用の前照灯装置を例とすると、一例として、特許文献1が挙げられる。特許文献1には、半導体発光素子、リフレクタ及び投影レンズを一体的に揺動回転することで、第一サブランプユニットの照射方向を左右方向又は上下方向に変更する機構が開示されている。また、レンズホルダに保持された投影レンズのみが上下にレべリング駆動することで照射方向を変更する機構が開示されている。
特開2009-87811号公報(第2図、第8図)
 しかしながら、特許文献1の構成は、半導体発光素子、リフレクタ及び投影レンズを同時に揺動回転させている。このため、照射方向を変更するための機構が複雑になる。また、一般的な前照灯装置の投影レンズの大きさは大きい。このため、投影レンズのみをレべリング駆動する場合には、前照灯装置の正面視の大きさが大きくなると共に、駆動機構にかかる負荷が大きいという問題が生じる。
 光を発する光源と、前記光源から出射された前記光を集光光に変換して出射する集光光学素子と、前記集光光を投射する投射レンズとを備え、前記集光光の集光位置は、前記集光光学素子と前記投射レンズとの間に位置し、前記集光位置を前記投射レンズの光軸に垂直な方向に移動させる照明装置。
 装置の大型化を抑えた簡易な構成で、照射方向を変更できる照明装置を実現できる。
本発明に係る実施の形態1の前照灯装置1の主要構成を概略的に示す構成図である。 蛍光体素子の構成を説明する説明図である。 変形例1の前照灯装置1の別の構成を概略的に示す構成図である。 変形例2の前照灯装置1の主要構成を概略的に示す構成図である。 波長選択素子の構成を説明する説明図である。 変形例2の領域7bを通過する光の蛍光体素子出射後の波長特性の一例を示す図である。 変形例2の領域7bにおける透過-波長特性の一例を示す図である。 変形例2の領域7aを通過する光の蛍光体素子出射後の波長特性の一例を示す図である。 変形例2の領域7aにおける透過-波長特性の一例を示す図である。 変形例2の領域7cを通過する光の蛍光体素子出射後の波長特性の一例を示す図である。 変形例2の領域7cにおける透過-波長特性の一例を示す図である。 本発明に係る実施の形態2の前照灯装置101の主要構成を概略的に示す構成図である。 本発明に係る実施の形態3の前照灯装置102の主要構成を概略的に示す構成図である。 本発明に係る実施の形態4の前照灯装置103の主要構成を概略的に示す構成図である。 本発明の効果を示す光線追跡によるシミュレーション結果を示す説明図である。 本実施の形態4の効果を説明する光線の概略図である。 別の場合の構成例を示す前照灯装置104の概略的な構成図である。 本発明に係る実施の形態5の前照灯装置104aの主要構成を概略的に示す構成図である。 本実施の形態5の円板の概略図である。 変形例3の円板の概略図である。 本発明に係る実施の形態6の前照灯装置105の主要構成を概略的に示す構成図である。 本発明に係る実施の形態7の前照灯装置107の主要構成を概略的に示す構成図である。 本実施の形態7の光線追跡によるシミュレーション結果を示す説明図である。 変形例4の主要構成を概略的に示す構成図である。 変形例4の光線追跡によるシミュレーション結果を示す説明図である。 変形例5の特徴を示す光線追跡によるシミュレーション結果を示す説明図である。
 近年、前照灯装置から出射される照明光の色温度の選択肢を増やすことが、市場要求として高まっている。
 例えば、特開2012-221634号公報には、蛍光体素子に照射する励起光源の集光スポットサイズを変化させる前照灯が開示されている。この前照灯は、異なるピーク波長の蛍光を発する第1発光部及び第2発光部を有している。そして、第1発光部におけるレーザー光の照射範囲を一定にして、第2発光部に照射されるレーザー光の照射範囲を変化させている。つまり、この前照灯は、中心に位置する蛍光体素子(第1発光部)と、周辺に位置する蛍光体素子(第2発光部)との励起されるスペクトルが異なることを利用して色温度を変化させている。
 しかしながら、特開2012-221634号公報に記載の前照灯では、前照灯の中心から出射される光と周辺から出射される光とでは、光の色が異なる。これによって、被写体に到達する光の色温度が中心と周辺とで異なるという問題が発生する。
 以下に示す実施の形態1から5の照明装置は、光の色温度の均一性を増して、照明装置(前照灯装置を含む)から投射される光の色温度を変化させることが可能となる。
 以下に示す実施の形態では、車両用の前照灯装置を例として、図面を参照しながら説明する。なお、説明を容易にするためにXYZ座標を用いて説明する。
 車両の左右方向をY軸方向とする。車両前方に対して右側を+Y軸方向とし、車両前方に対して左側を-Y軸方向とする。ここで、「前方」とは、車両の進行方向をいう。つまり、「前方」とは、前照灯装置が光を照射する方向である。
 車両の上下方向をX軸方向とする。上側を+X軸方向とし、下側を-X軸方向とする。「上側」とは空の方向であり、「下側」とは地面(路面等)の方向である。
 車両の進行方向をZ軸方向とする。進行方向を+Z軸方向とし、反対の方向を-Z軸方向とする。+Z軸方向を「前方」とよび、-Z軸方向を「後方」とよぶ。つまり、+Z軸方向は前照灯装置が光を照射する方向である。つまり、+Z軸方向は照明装置が光を照射する方向である。
 また、以下の記載における実施の形態それぞれに変形例がある場合でも、変形例は連番とする。
実施の形態1.
 図1は、実施の形態1の前照灯装置1の主要構成を概略的に示す構成図である。図1に示されるように、前照灯装置1は、光源2、集光レンズ3及び投射レンズ6を備えている。集光レンズ3は、波長選択部11に備えられている。また、波長選択部11は、蛍光発生部51を備えることができる。また、蛍光発生部51は、蛍光体素子5を備えている。
<光源2>
 光源2は、励起光となる光を発する。光源2は、例えば、レーザーダイオードなどの、励起用の光源である。
 光源2は、例えば、中心波長が405nmの紫外の光又は中心波長が450nmの青の光などを発する。
 光源2の光軸Csは、光源2の発光面の発光領域の中心を通り、発光面に垂直である。
<波長選択部11>
 波長選択部11は、蛍光体の発する蛍光の波長を選択する。そして、波長選択部11は、選択された蛍光を投射光として放射する。図1では、投射光は+Z軸方向に放射される。
 波長選択部11は、光源2の+Z軸方向に配置されている。波長選択部11は、光学的に、光源2の+Z軸方向に配置されている。つまり、光源2から出射された光の進行方向を鏡などを用いて変更することができる。
 波長選択部11は、図1の例では、集光レンズ3及び蛍光発生部51を備えている。
<集光レンズ3>
 集光レンズ3は、光源2から射出された光を集光する。
 集光レンズ3は、蛍光発生部51(蛍光体素子5)に対して、光源2側に配置されている。
 集光レンズ3は、集光光学素子の一例である。
 以下の実施の形態では、例えば、集光レンズ3の光軸Cは、Z軸に平行である。以下の実施の形態では、例えば、光軸Cは、光軸Cs及び光軸Cpと一致している。光軸Cpは、後述する投射レンズ6の光軸である。
 なお、以下の各実施の形態において、例えば、鏡などを用いて光軸C,Cs,Cpを曲げることができる。しかし、各図では、光軸C,Cs,Cpが直線であるとして説明する。
 図1では、集光レンズ3は、平凸形状として示されている。しかし、集光レンズ3は、両凸形状であってもよい。
 入射光を蛍光発生部51の蛍光体素子5に集光すれば、集光レンズ3の形状は任意であって良い。つまり、集光レンズ3を2枚とする構成でも構わない。
 集光レンズ3は、光軸Cに対して直交する方向に移動することができる。例えば、図1では、光軸Cに直交する方向は、Y軸方向である。つまり、図1では、一例として、集光レンズ3は、Y軸方向に移動できる。
 例えば、集光レンズ3の光軸Cが投射レンズ6の光軸Cpと一致する位置を、集光レンズ3の基準位置とする。
 これによって、集光レンズ3は、励起光源2から出射された励起光の集光位置を、蛍光体素子5上でY軸方向に移動させることができる。なお、集光レンズ3が2枚で構成される際には、2枚を一体化してY軸方向に移動させる。
<蛍光発生部51と蛍光体素子5>
 蛍光発生部51は、集光レンズ3から出射された集光光を蛍光体素子5に受けて、異なる波長の光を出射する。
 蛍光発生部51は、蛍光体素子5を備えている。図2は、蛍光体素子5の構成の一例を示す説明図である。図2は、蛍光体素子5を-Z軸方向から見た図である。光軸Cは、Z軸に平行であるため、図2では、黒丸で示している。
 蛍光体素子5は、複数の領域に分かれている。蛍光体素子5は、光軸Cに対して垂直な方向に、複数の領域に分かれている。例えば、蛍光体素子5は、Y軸方向に3つの領域に分かれている。例えば、蛍光体素子5は、領域5a、領域5b及び領域5cを備えている。
 領域5aは、例えば、6000Kの蛍光を発する。領域5bは、例えば、4000Kの蛍光を発する。領域5cは、例えば、2500Kの蛍光を発する。
 集光レンズ3が基準位置にある場合には、領域5aは、集光レンズ3の光軸C上に配置されている。領域5bは、例えば、光軸Cに対して、+Y軸方向側に配置されている。領域5cは、例えば、光軸Cに対して、-Y軸方向側に配置されている。
 また、領域5aは、投射レンズ6の光軸Cp上に配置されている。領域5bは、例えば、光軸Cpに対して、+Y軸方向側に配置されている。領域5cは、例えば、光軸Cpに対して、-Y軸方向側に配置されている。
 なお、蛍光体素子5の領域は、2つでも構わない。また、用途によって、蛍光発生部5の領域は、X軸方向に分割されてもよい。この場合には、例えば、集光レンズ3が基準位置にある場合の光軸Cは、2つの領域のうちの1つの領域を通る。
 蛍光体素子5上の励起光の集光径は、例えば、φ0.5mmである。
<投射レンズ6>
 投射レンズ6は、蛍光発生部51の発した蛍光を+Z軸方向に投射する。投射レンズ6は、投射レンズ6の光軸Cp方向において、投射レンズ6の焦点位置に形成された配光パターンを前方に投影する。例えば、蛍光体素子5の発光面上に投射レンズ6の焦点が位置すると、投射レンズ6は、蛍光体素子5の発光面に形成された光強度分布に対応した像を投影する。
 このように、蛍光体素子5の発光面の像を投影することで、容易に配光パターンを形成することができる。つまり、円形のスポットを形成する場合には、円形状に光強度分布を形成するように円形状の発光面を持つ蛍光体素子5を採用することができる。つまり、投射レンズ6は、発光面の形状に基づいた像を投影することができる。投射レンズ6は、発光面の発光部分の形状に基づいた像を投影することができる。光軸Cpの方向において、集光位置は、投射レンズの焦点位置と一致する。
<前照灯装置1の動作>
 次に前照灯装置1の動作について説明する。
 集光レンズ3は、例えば、Y軸方向に移動する。
 集光レンズ3を+Y軸方向に移動させると、集光レンズ3から出射された光は、+Y軸方向に傾いて進行する。このため、集光レンズ3は、励起光を蛍光体素子5の領域5bに集光させることができる。
 また、集光レンズ3が-Y軸方向に移動すると、集光レンズ3から出射された光は、-Y軸方向に傾いて進行する。このため、集光レンズ3は、励起光を蛍光体素子5の領域5cに集光させることができる。なお、集光レンズ3の移動量は、蛍光体素子5上での励起光の集光位置に応じて設定される。
 図16は、蛍光体素子5から+Z軸方向に進行する光線の光線軌跡の概略図である。
 図16では、実施の形態1の集光レンズ3が基準位置にある場合と同様に、光軸Cpは光軸Cと一致している。
 領域5b,5cから出射する光1400b,1400cは、蛍光体素子5上で、光軸C上に位置していない。このため、通常、領域5b,5cから出射した光1400b,1400cは、投射レンズ6を透過した後に、光軸Cpに対して角度を有している。つまり、領域5b,5cから出射した光1400b,1400cは、投射レンズ6を透過した後で、光軸Cpに対して平行な光とはならない。
 しかし、蛍光体素子5から投射レンズ6までの距離を長くすることで、照射位置上での光1400aの位置に対する光1400b,1400cの位置が、実際に使用する上で問題無い程度とすることができる。つまり、蛍光体素子5を3つの領域5a,5b,5cに分割した場合でも、各領域5a,5b,5cから出射される光は、投射レンズ6により、光軸Cpに対して実際に使用する上で問題ない程度の平行な光となる。
 例えば、欧州の場合には、蛍光体素子5から+Z軸方向に60mm離れた位置に投射レンズ6を配置することができる。なお、配光のずれ量は0.5度としている。
 ここで、各実施の形態において、「照射位置」とは、前照灯装置(照明装置)から投射された光を照射する位置である。例えば、車両での照射位置は、道路交通規則等で規定されている。例えば、欧州では、UNECE(United Nations Economic Commission for Europe)が定める自動車用の前照灯装置の光度の計測位置は光源から25mの位置である。日本では、日本工業標準調査会(JIS)が定める光度の計測位置は光源から10mの位置である。
 一方、投射光の方向を積極的に変更する場合には、蛍光体素子5から投射レンズ6までの距離を短くすることができる。また、蛍光体素子5から投射レンズ6までの距離を連続的または段階的に変更することで、配光方向の変更量を可変とすることができる。
 以上の動作により、集光レンズ3の光軸Cが投射レンズ6の光軸Cpと一致する場合には、光源2から出射した励起光は、蛍光体素子5の領域5aに集光する。集光レンズ3の光軸Cが光軸Cpに対して、+Y軸方向に移動した場合には、光源2から出射した励起光は、蛍光体素子5の領域5bに集光する。集光レンズ3の光軸Cが光軸Cpに対して、-Y軸方向に移動した場合には、光源2から出射した励起光は、蛍光体素子5の領域5cに集光する。
 つまり、集光レンズ3をY軸方向に移動させることにより、励起光の蛍光体素子5上での集光位置を変化させることが可能になる。このため、3種類の色温度を切り替えることが可能となる。また、各領域の間に隙間を設けること、又は、各領域の間にアルミコーティング層を設けることなどすれば、異なる色温度の光を混色することがない。このため、投射レンズ6から出射した光の色ムラの発生が抑制される。
 なお、蛍光体素子5の領域は、数に制限はなく、2つでも4つでも構わない。蛍光体素子5と投射レンズ6との間隔は、使用上で問題ない平行度の光となる距離である。このため、特に、蛍光体素子5は常に光軸Cp上に配置されるため、投射レンズ6を透過した後に、光軸Cpに対して平行な光となる。
<変形例1>
 図3は、本発明に係る実施の形態1の前照灯装置1の別の構成を概略的に示す構成図である。図3では、図1における蛍光発生部51を別の構成である蛍光発生部52としたものである。
 図3に示すように、蛍光発生部52では、蛍光体素子5の光源2側に、波長選択素子700が配置されている。波長選択素子700は、集光レンズ3と蛍光体素子5との間に配置されている。図3では、波長選択素子700は、蛍光体素子5の-Z軸側の面上に配置されている。
 波長選択素子700は、光源2の発する励起光の波長以外の波長の光を反射する。つまり、波長選択素子700は、光源2の発する励起光を透過する。そして、波長選択素子700は、例えば、蛍光体素子5の発する蛍光を反射する。
 波長選択素子700を配置することにより、蛍光体素子5から光源2側に放射された蛍光が波長選択素子700によって投射レンズ6側に反射される。このため、光の利用効率が高くなる。
 また、波長選択素子700は、複数の領域を有していても構わない。波長選択素子700の領域は、例えば、蛍光体素子5と同様に3つである。蛍光体素子5の各領域から光源2側に放射された蛍光は、波長選択素子700の対応する領域で、投射レンズ6側に反射される。
 これにより、蛍光体素子5の各領域から発せられる蛍光と波長選択素子700で反射した光との混合光によって、前照灯装置1から出射される光の色が決定される。このため、前照灯装置1から出射される光の色の設定範囲を広げることができる。
 例えば、この構成では、波長選択素子700の各領域は、対応する蛍光体素子5の領域で発せられる蛍光の持つ波長の光のみを反射するように設定することができる。つまり、変形例1の構成は、蛍光体素子5から出射される蛍光の効率を向上させることができる。
<変形例2>
 図4は、変形例2に係る前照灯装置1の主要構成を概略的に示す構成図である。蛍光発生部53の構成が実施の形態1と異なる。その他の構成要素は同等のため、その説明を省略する。
 変形例2の蛍光発生部53は、蛍光体素子53aが複数の領域に分割されていない点で異なる。つまり、蛍光体素子53aは1つの領域で形成されている。また、蛍光発生部53は、波長選択素子7を備えている点で蛍光発生部51と異なる。
 図4に示すように、波長選択素子7は蛍光体素子53aの-Z軸方向側に配置されている。波長選択素子7は、集光レンズ3と蛍光体素子53aとの間に配置されている。図4では、波長選択素子7は、蛍光体素子53aの-Z軸側の面上に配置されている。
 このため、光源2から出射した光は、波長選択素子7を透過した後に、蛍光体素子53aに到達する。
 図5は、波長選択素子7の構成を説明する説明図である。図5は、波長選択素子7を-Z軸方向から見た図である。光軸Cは、Z軸に平行であるため、図5では、黒丸で示している。
 波長選択素子7は、Y軸方向に3つの領域7a,7b,7cに分割されている。
 領域7a,7b,7cは、互いに波長選択特性が異なる。つまり、領域7a,7b,7cは、互いに透過する波長領域が異なる。
 図6は、領域7aを通過して蛍光体素子53aから出射した後の光の波長特性の一例を示す図である。図6の縦軸は、相対光強度(相対エネルギー)を示している。図6の特性は、最大光強度で正規化されている。このため、縦軸の最大値は、「1」である。図6の横軸は、波長[nm]を示している。
 図6において、光源2から出射された励起光のスペクトルは、440nmから460nmまでの波長に表された曲線30aである。また、蛍光体素子53aによって励起された蛍光のスペクトルは、470nmから780nmまでの波長に表された曲線50aである。
 図7は、波長選択素子7の領域7aにおける透過率-波長特性の一例を示す図である。図7の縦軸は、透過率[%]を示している。図7の横軸は、波長[nm]を示している。
 図7において、実際の透過率-波長特性(波長に対する透過率の特性)は、変化点に置いて透過率の値が安定するまで5nmから10nmを必要とする。このため、変化点では曲線となる。説明の便宜上、図7では、変化点において透過率の値が安定するまでの波長幅を考慮していない。
 図7は、波長選択素子7の領域7aが465nmよりも短波長側の光を100%透過する特性を表している。また、図7は、領域7aが465nmよりも長波長側の光を100%反射する特性を表している。
 つまり、波長選択素子7は、領域7aで、光源2から出射された励起光を全て透過する。
 そして、領域7aを透過した光の一部は、蛍光体素子53aで励起光として使用される。蛍光体素子53aで励起された蛍光は、-Z軸方向にも進行する。しかし、-Z軸方向にも進行した蛍光は、領域7aで反射される。
 領域7aで反射された蛍光は、+Z軸方向に進む。これによって、光源2から出射した励起光は、例えば、色温度5000Kの蛍光に変換されて、蛍光体素子53a(蛍光発生部53)から出射される。
 図8は、領域7bを通過して蛍光体素子53aから出射した後の光の波長特性の一例を示す図である。図8の縦軸は、相対光強度(相対エネルギー)を示している。図8の特性は、最大光強度で正規化されている。このため、縦軸の最大値は、「1」である。図8の横軸は、波長[nm]を示している。
 図8において、光源2から出射された励起光のスペクトルは、440nmから460nmまでの波長に表された曲線30bである。また、蛍光体素子53aにより励起された蛍光のスペクトルは、470nmから780nmまでの波長に表された曲線50bである。
 図9は、波長選択素子7の領域7bにおける透過率-波長特性(波長に対する透過率の特性)の一例を示す図である。図9の縦軸は、透過率[%]を示している。図9の横軸は、波長[nm]を示している。
 図7と同様に、図9でも、変化点において透過率の値が安定するまでの波長幅を考慮していない。
 図9は、波長選択素子7の領域7bが530nmよりも短波長側の光を100%透過する特性を表している。そして、図9は、領域7bが530nmよりも長波長側の光を100%反射する特性を表している。
 つまり、波長選択素子7は、領域7bで、光源2から出射された励起光を全て透過する。
 そして、領域7bを透過した光の一部は、蛍光体素子53aで励起光として使用される。蛍光体素子53aで励起された蛍光は、-Z軸方向にも進行する。しかし、-Z軸方向に進行した蛍光の内、530nmより長波長の蛍光は、領域7bで反射される。そして、530nmより短波長の蛍光は、領域7bを透過して-Z軸方向に進行する。
 領域7bで反射された蛍光は、+Z軸方向に進む。これによって、光源2から出射した励起光は、例えば、色温度4400Kの蛍光に変換されて、蛍光体素子53a(蛍光発生部53)から出射する。
 ここで、一例として、蛍光体素子53aで励起されて+Z軸方向に出射する蛍光を50%とした。また、-Z軸方向に出射して、波長選択素子7で反射されて、+Z軸方向に進行する蛍光を50%とした。
 なお、蛍光体素子53aで励起され、-Z軸方向に進行する蛍光は、蛍光体素子53aの散乱特性等に依存するため、50%とは限らない。ここでは、一例として50%とした。
 これによって、図8の470nmから530nmまでのスペクトルは、図6のスペクトルと比較して、半減する。
 図10は、領域7cを通過して蛍光体素子53aから出射した後の光の波長特性の一例を示す図である。図10の縦軸は、相対光強度(相対エネルギー)を示している。図10の特性は、最大光強度で正規化されている。このため、縦軸の最大値は、「1」である。図10の横軸は、波長[nm]を示している。
 図10において、光源2から出射された励起光のスペクトルは、440nmから460nmまでの波長に表された曲線30cである。また、蛍光体素子53aにより励起された蛍光のスペクトルは、470nmから780nmまでの波長に表された曲線50cである。
 図11は、波長選択素子7の領域7cにおける透過率-波長特性(波長に対する透過率の特性)の一例を示す図である。図11の縦軸は、透過率[%]を示している。図11の横軸は、波長[nm]を示している。
 図7と同様に、図11でも、変化点において透過率の値が安定するまでの波長幅を考慮していない。
 図11は、波長選択素子7の領域7cが540nmよりも短波長側の光を100%透過する特性を表している。そして、図11は、領域7cが540nmから595nmまでの波長の光を100%反射する特性を表している。そして、図11は、領域7cが595nmよりも長波長側の光を100%透過する特性を表している。
 つまり、波長選択素子7は、領域7cで、光源2から出射された励起光を全て透過する。
 そして、領域7cを透過した光の一部は、蛍光体素子53aで励起光として使用される。蛍光体素子53aで励起された蛍光は、-Z軸方向にも進行する。しかし、-Z軸方向に進行した蛍光の内、540nmから595nmまでの波長の蛍光は、領域7cで反射される。そして、540nmより短波長の蛍光と595nmよりも長波長の蛍光とは、領域7bを透過して-Z軸方向に進行する。
 領域7cで反射された蛍光は、+Z軸方向に進む。これによって、光源2から出射した励起光は、例えば、色温度5900Kの蛍光に変換されて、蛍光体素子53a(蛍光発生部53)から出射する。
 ここで、一例として、蛍光体素子53aで励起されて+Z軸方向に出射する蛍光を50%とした。また、-Z軸方向に出射して、波長選択素子7で反射されて、+Z軸方向に進行する蛍光を50%とした。
 なお、蛍光体素子53aで励起され、-Z軸方向に進行する蛍光は、蛍光体素子53aの散乱特性等に依存するため、50%とは限らない。ここでは、一例として50%とした。
 これによって、図10の470nmから540nmまでのスペクトルと、595nmから780nmまでのスペクトルとは、図6のスペクトルと比較して、半減する。
 上述したように、変形例2の構成では、蛍光体素子53aは領域に分割されていない。つまり、蛍光体素子53aは、一種類の蛍光を発している。しかし、波長選択素子7を領域7a、領域7b及び領域7cに分けることによって、蛍光発生部53は、異なる色温度の光を投射レンズ6に向けて出射することが可能となる。
 また、集光レンズ3をY軸方向に移動させることにより、異なる色温度の光を選択することが可能となる。ここでは、色温度が4400K、5000K及び5900Kの場合を示した。しかし、蛍光体素子53aの特性又は波長選択素子7の領域7a,7b,7cの透過率-波長特性を考慮することにより、変形例2と異なる色温度の光を出射させることが可能となる。なお、「透過率-波長特性」は、波長に対する透過率の特性のことである。
 つまり、波長選択素子7が領域に分割されていることによって、蛍光体素子53aから放射される光の色温度を、波長選択素子7の領域ごとに変化させることが可能となる。また、波長選択素子7が領域に分割されていることによって、色ムラを抑制することができる。
実施の形態2.
 図12は、実施の形態2の前照灯装置101の主要構成を概略的に示す構成図である。
 図12に示されるように、前照灯装置101は、光源2、集光レンズ3及び投射レンズ6を備えている。集光レンズ3は、波長選択部12に備えられている。また、波長選択部12は、蛍光発生部51を備えることができる。また、蛍光発生部51は、蛍光体素子5を備えている。
 実施の形態1と同様に車両用の前照灯装置を例として、図面を参照しながら本発明の実施の形態の例を説明する。なお、以下の実施の形態の説明においては、説明を容易にするために実施の形態1と同様のXYZ座標を用いて説明する。
 実施の形態1の構成要素と同一の構成要素には同一の符号を付しその説明を省略する。実施の形態1と同様の構成要素は、光源2、蛍光発生部51及び投射レンズ6である。蛍光発生部51が備える蛍光体素子5も、実施の形態1と同様である。
 また、集光レンズ3自体は、実施の形態1と同様である。そのため、実施の形態2では、実施の形態1と同じ符号3を用いている。ただし、後述するように、集光レンズ3を動かす方法は実施の形態1と異なる。
 実施の形態1と同じ構成要素の構成、機能又は動作等は、実施の形態2で説明を省いた場合でも、実施の形態1の記載を代用する。また、実施の形態2の中で説明した、実施の形態1に関する記載は、実施の形態1の説明として用いる。ここで、「動作」とは、光の挙動を含む。
<光源2>
 光源2は、励起光となる光を発する。光源2は、励起用の光源である。
 上述のように、光源2は、実施の形態1と同様であるため、実施の形態1で説明した内容を代用して、その説明を省略する。
<波長選択部12>
 波長選択部12は、蛍光体の発する蛍光の波長を選択する。そして、波長選択部12は、選択された蛍光を投射光として放射する。波長選択部12は、図12の例では、集光レンズ3及び蛍光発生部51を備えている。
<集光レンズ3>
 集光レンズ3は、光源2から射出された光を集光する。
 上述のように、集光レンズ3自体は、実施の形態1と同様であるため、実施の形態1で説明した内容を代用して、その説明を省略する。なお、集光レンズ3の動作は、実施の形態1と異なるため、以下で説明する。
 集光レンズ3は、光軸Cを通り、例えば、X軸に平行な軸S1を中心軸として揺動することができる。軸S1は、C軸に対して直交している。図12では、例えば、軸S1は、集光レンズ3の入射面上に位置している。軸S1とは、言いかえれば光軸Cに垂直な第1の軸である。
 「揺動」とは、揺れ動くことである。例えば、図12では、-X軸方向側から見て、集光レンズ3が、軸S1を回転軸として、時計回り又は反時計回りに一定の角度だけ回転することである。ここでは、例えば、一定の角度は、90度よりも小さい角度である。通常では、例えば、一定の角度は、5度である。
 集光レンズ3が軸S1を中心に揺動することで、光源2から出射された励起光の蛍光体素子5上での集光位置をY軸方向に動かすことができる。
 なお、例えば、集光レンズ3が2枚で構成される場合には、2枚のレンズを一体化する。そして、軸S1は、光源2側のレンズの入射面上に位置するように設定される。
 なお、軸S1は、集光レンズ3の出射面上に位置していても構わない。
<蛍光発生部51>
 蛍光発生部51は、実施の形態1と同様であるため、実施の形態1で説明した内容を代用して、その説明を省略する。
 実施の形態1の集光レンズ3が基準位置にある場合と同様に、領域5aは、集光レンズ3の光軸C上に配置されている。また、領域5bは、例えば、光軸Cに対して、+Y軸方向側に配置されている。領域5cは、例えば、光軸Cに対して、-Y軸方向側に配置されている。
<投射レンズ6>
 投射レンズ6は、蛍光発生部51の発した蛍光を+Z軸方向に投射する。つまり、投射レンズ6は、投射レンズ6の光軸Cp方向において、投射レンズ6の焦点位置に形成された配光パターンを前方に投影する。投射レンズ6も、実施の形態1と同様であるため、実施の形態1で説明した内容を代用して、その説明を省略する。
<前照灯装置101の動作>
 次に前照灯装置101の動作について説明する。
 軸S1を中心軸として、-X軸方向から見て、集光レンズ3を反時計まわりに回転させると、集光レンズ3から出射された光は、+Y軸方向に傾いて進行する。このため、集光レンズ3は、励起光を蛍光体素子5の領域5bに集光させることができる。なお、軸S1を中心軸として、-X軸方向から見て、集光レンズ3を反時計まわりに回転させた場合を、「+Y軸方向に揺動させる」という。
 また、軸S1を中心軸として、-X軸方向から見て、集光レンズ3を時計まわりに回転させると、集光レンズ3から出射された光は、-Y軸方向に傾いて進行する。このため、集光レンズ3は、励起光を蛍光体素子5の領域5cに集光させることができる。なお、軸S1を中心軸として、-X軸方向から見て、集光レンズ3を時計まわりに回転させた場合を、「-Y軸方向に揺動させる」という。
 なお、揺動角度は、蛍光体素子5上の集光位置に応じて設定される。
 また、揺動の中心軸S1を、集光レンズ3の出射面側に配置した場合には、集光レンズ3の入射面上の光軸Cの位置は、Y軸方向で、集光レンズ3の回転方向と逆の方向に移動する。
 このため、中心軸S1を集光レンズ3の出射面側に配置した場合には、例えば、軸S1を中心軸として、-X軸方向から見て、集光レンズ3を反時計まわりに回転させると、集光レンズ3から出射された光は、-Y軸方向に傾いて進行する。また、軸S1を中心軸として、-X軸方向から見て、集光レンズ3を時計まわりに回転させると、集光レンズ3から出射された光は、+Y軸方向に傾いて進行する。
 つまり、揺動の中心軸S1を、集光レンズ3の出射面側に配置した場合には、集光レンズ3の入射面側に配置した場合と異なる動作を示す。
 なお、揺動の中心軸S1を、集光レンズ3の入射面側に配置した場合には、集光レンズ3の入射面上の光軸Cの位置は変化せず、集光レンズ3の揺動のみが光線方向に影響して、光線の収差への影響が小さい。このため、揺動の中心軸S1を、集光レンズ3の入射面側に配置することが好ましい。なお、使用方法または構成上の制約条件などによって、中心軸S1を、集光レンズ3の出射面側に配置することはできる。
 領域5b,5cから出射した光は、投射レンズ6の光軸Cp上に位置していない。このため、通常、領域5b,5cから出射した光は、投射レンズ6を透過した後に、光軸Cpに対して角度を有している。つまり、領域5b,5cから出射した光は、投射レンズ6を透過した後で、光軸Cpに対して平行な光とはならない。なお、実施の形態2では、実施の形態1と同様に、投射レンズ6の光軸Cpは、集光レンズ3の光軸Cと一致している。
 しかし、実施の形態1で説明したように、蛍光体素子5から投射レンズ6までの距離を長くすることで照射位置上での光の位置が、実際に使用する上で問題無い程度とすることができる。つまり、蛍光体素子5を3つの領域5a,5b,5cに分割した場合でも、各領域5a,5b,5cから出射される光は、投射レンズ6により、光軸Cpに対して実際に使用する上で問題ない程度の平行な光となる。
 一方、投射光の方向を積極的に変更する場合には、蛍光体素子5から投射レンズ6までの距離を短くすることができる。また、蛍光体素子5から投射レンズ6までの距離を連続的または段階的に変更することで、配光方向の変更量を可変とすることができる。
 ここで、実施の形態1で説明した。蛍光発生部52を実施の形態2で適用することも可能であり、同様の効果が得られる。
 以上の動作により、集光レンズ3の光軸Cが投射レンズ6の光軸CpとY軸方向で一致する場合には、光源2から出射した励起光は、蛍光体素子5の領域5aに集光する。集光レンズ3の光軸Cが投射レンズ6の光軸Cpに対して、+Y軸方向に揺動した場合には、光源2から出射した励起光は、蛍光体素子5の領域5bに集光する。集光レンズ3の光軸Cが投射レンズ6の光軸Cpに対して、-Y軸方向に揺動した場合には、光源2から出射した励起光は、蛍光体素子5の領域5cに集光する。
 つまり、集光レンズ3を、軸S1を中心軸として揺動させることによって、蛍光体素子5上の集光位置を変化させることができる。このため、3種類の色温度を切り替えることが可能となる。また、実施の形態1と同様に、各領域の間に隙間などを設けることで、異なる色温度の光を混色することがないため、投射レンズ6から出射した光の色ムラの発生が抑制される。
 なお、蛍光体素子5の領域は、数に制限はなく、2つでも4つでも構わない。蛍光体素子5と投射レンズ6との間隔は、使用上で問題ない平行度の光となる距離である。このため、特に、蛍光体素子5は常に光軸Cp上に配置されるため、投射レンズ6を透過した後に、光軸Cpに対して平行な光となる。
 実施の形態1で説明した変形例1及び変形例2の蛍光発生部52,53を実施の形態2で適用することも可能であり、同様の効果が得られる。
実施の形態3.
 図13は、本発明に係る実施の形態3の前照灯装置102の主要構成を概略的に示す構成図である。
 図13に示されるように、前照灯装置102は、光源2、波長選択部13及び投射レンズ6を備えている。波長選択部13は、集光レンズ3および蛍光発生部54を備えている。蛍光発生部54は、蛍光体素子5を備えている。
 実施の形態1と同様に車両用の前照灯装置を例として、図面を参照しながら本発明の実施の形態の例を説明する。なお、以下の実施の形態の説明においては、説明を容易にするために実施の形態1と同様のXYZ座標を用いて説明する。
 実施の形態1の構成要素と同一の構成要素には同一の符号を付しその説明を省略する。実施の形態1と同様の構成要素は、光源2及び投射レンズ6である。
 なお、蛍光発生部54は、実施の形態1の蛍光発生部51と異なるが、蛍光発生部54が備える蛍光体素子5自体は、実施の形態1と同様である。そのため、実施の形態3では、実施の形態1と同じ符号5を用いている。ただし、後述するように、実施の形態1と異なり、蛍光体素子5は移動できるように保持されている。
 また、集光レンズ3自体は、実施の形態1と同様である。そのため、実施の形態3では、実施の形態1と同じ符号3を用いている。ただし、後述するように、実施の形態1と異なり、集光レンズ3は固定されている。例えば、集光レンズ3は、光軸Cに垂直な方向に固定されている。または、集光レンズ3は、光軸Cに垂直な軸まわりの回転方向に固定されている。
 実施の形態1、2と同じ構成要素の構成、機能又は動作等は、実施の形態3で説明を省いた場合でも、実施の形態1、2の記載を代用する。また、実施の形態3の中で説明した、実施の形態1、2に関する記載は、実施の形態1の説明として用いる。ここで、「動作」とは、光の挙動を含む。
<光源2>
 光源2は、励起光となる光を発する。光源2は、励起用の光源である。
 上述のように、光源2は、実施の形態1と同様であるため、実施の形態1で説明した内容を代用して、その説明を省略する。
<波長選択部13>
 波長選択部13は、蛍光体の発する蛍光の波長を選択する。そして、波長選択部13は、選択された蛍光を投射光として放射する。波長選択部13は、図13の例では、集光レンズ3及び蛍光発生部54を備えている。
<集光レンズ3>
 集光レンズ3は、光源2から射出された光を集光する。
 上述のように、集光レンズ3自体は、実施の形態1と同様であるため、実施の形態1で説明した内容を代用して、その説明を省略する。
<蛍光発生部54>
 蛍光発生部54は、実施の形態1と同様の蛍光体素子5を備えている。そのため、蛍光体素子5自体に関しては、実施の形態1で説明した内容を代用して、その説明を省略する。
 蛍光体素子5は、光軸Cに対して直交する方向に移動することができる。例えば、図13では、光軸Cに直交する方向は、Y軸方向に移動する。
 例えば、蛍光体素子5の中心軸が集光レンズ3の光軸Cと一致する位置を、蛍光体素子5の基準位置とする。つまり、蛍光体素子5の基準位置は、領域5aが光軸C上にある位置である。
 実施の形態1及び2では、集光レンズ3を動かして、励起光の蛍光体素子5上での集光位置を移動させていた。一方、実施の形態3では、集光レンズ3を固定して、蛍光体素子5を動かすことで、励起光の蛍光体素子5上での集光位置を移動させている。この点で実施の形態1及び2と異なる。
 つまり、実施の形態1及び2では、蛍光体素子5に対して、集光レンズ3を動かしている。一方、実施の形態3では、集光レンズ3に対して、蛍光体素子5を動かしている。
<投射レンズ6>
 投射レンズ6は、蛍光発生部54の発した蛍光を+Z軸方向に投射する。つまり、投射レンズ6は、投射レンズ6の光軸Cp方向において、投射レンズ6の焦点位置に形成された配光パターンを前方に投影する。投射レンズ6も、実施の形態1と同様であるため、実施の形態1で説明した内容を代用して、その説明を省略する。
<前照灯装置102の動作>
 次に前照灯装置102の動作について説明する。
 蛍光体素子5は、例えば、Y軸方向に移動する。
 蛍光体素子5を+Y軸方向に移動させると、集光レンズ3から出射された光は、領域5cに集光する。
 蛍光体素子5を-Y軸方向に移動させると、集光レンズ3から出射された光は、領域5bに集光する。
 蛍光体素子5を、基準位置から移動させなければ、集光レンズ3から出射された光は、領域5aに集光する。つまり、蛍光体素子5が基準位置に位置すれば、集光レンズ3から出射された光は、領域5aに集光する。
 なお、蛍光体素子5のY軸方向への移動量は、蛍光体素子5の領域5a,5b,5cが光軸C上となるように設定される。
 領域5a,5b,5cから出射した光は、投射レンズ6の光軸Cp上に位置する。このため、投射レンズ6を透過した後に、光軸Cpに対して平行な光となる。
 これにより、蛍光体素子5から投射レンズ6までの距離を長くする等の制約条件が緩和される。
 実施の形態1及び2で示したように、実施の形態1および実施の形態2の場合には、投射レンズ6から出射された光は、厳密には、光軸Cpと平行とならなかった。しかし、実施の形態3では、投射レンズ6から出射された光は、光軸Cpと平行となる。
 ここで、実施の形態1で説明した変形例1及び変形例2を実施の形態3で適用することも可能であり、同様の効果が得られる。
 つまり、蛍光発生部52で示した波長選択素子700と蛍光体素子5との組み合わせを実施の形態3の蛍光体素子5に適用できる。また、蛍光発生部53で示した波長選択素子7と蛍光体素子53aとの組み合わせを実施の形態3の蛍光体素子5に適用できる。
 以上の動作により、蛍光体素子5が基準位置にあり、領域5aが光軸C上にある場合には、光源2から出射した励起光は、領域5aに集光する。蛍光体素子5が基準位置から+Y軸方向に移動して、領域5cが光軸C上にある場合には、光源2から出射した励起光は、領域5cに集光する。蛍光体素子5が基準位置から-Y軸方向に移動して、領域5bが光軸C上にある場合には、光源2から出射した励起光は、領域5bに集光する。
 つまり、蛍光体素子5を光軸Cに対してY軸方向に移動させることにより、集光レンズ3から出射された励起光を集光させる蛍光体素子5上の領域5a,5b,5cを変更することができる。このため、3種類の色温度を切り替えることが可能となる。また、異なる色温度の光を混色することがないため、投射レンズ6から出射した光の色ムラの発生が抑制される。
 なお、蛍光体素子5の領域は、数に制限はなく、2つでも4つでも構わない。特に、蛍光体素子540は常に光軸Cp上に配置されるため、投射レンズ6を透過した後に、光軸Cpに対して平行な光となる。
実施の形態4.
 図14は、本発明に係る実施の形態4の前照灯装置103の主要構成を概略的に示す構成図である。
 図14に示されるように、前照灯装置103は、光源2、集光レンズ3、透過素子4及び投射レンズ6を備えている。前照灯装置103は、蛍光発生部51を備えられる。蛍光発生部51は、蛍光体素子5を備えている。蛍光発生部51は、波長選択部14に備えられている。また、集光レンズ3および透過素子4も波長選択部14に備えられている。
 実施の形態1と同様に車両用の前照灯装置を例として、図面を参照しながら本発明の実施の形態の例を説明する。なお、以下の実施の形態の説明においては、説明を容易にするために実施の形態1と同様のXYZ座標を用いて説明する。
 実施の形態1の構成要素と同一の構成要素には同一の符号を付しその説明を省略する。実施の形態1と同様の構成要素は、光源2、蛍光発生部51及び投射レンズ6である。
 なお、蛍光発生部51が備える蛍光体素子5も、実施の形態1と同様である。
 また、集光レンズ3自体は、実施の形態1と同様である。そのため、実施の形態3では、実施の形態1と同じ符号3を用いている。ただし、後述するように、実施の形態1と異なり、集光レンズ3は固定されている。つまり、実施の形態3と同様に、集光レンズ3は固定されている。
 実施の形態1から3のうちの1つの実施の形態と同じ構成要素の構成、機能又は動作等は、実施の形態4で説明を省いた場合でも、実施の形態1から3の記載を代用する。また、実施の形態4の中で説明した、実施の形態1から3のに関する記載は、対応する実施の形態1から3の説明として用いる。ここで、「動作」とは、光の挙動を含む。
<光源2>
 光源2は、励起光となる光を発する。光源2は、励起用の光源である。
 上述のように、光源2は、実施の形態1と同様であるため、実施の形態1で説明した内容を代用して、その説明を省略する。
<波長選択部14>
 波長選択部14は、蛍光体の発する蛍光の波長を選択する。そして、波長選択部14は、選択された蛍光を投射光として放射する。波長選択部14は、図14の例では、集光レンズ3、透過素子4及び蛍光発生部51を備えている。
<集光レンズ3>
 集光レンズ3は、光源2から射出された光を集光する。
 上述のように、集光レンズ3自体は、実施の形態1と同様であるため、実施の形態1で説明した内容を代用して、その説明を省略する。また、集光レンズ3は、実施の形態3と同様に、光源2に対して固定されている。
<透過素子4>
 透過素子4は、集光レンズ3から出射された励起光の進行方向を変更する。
 透過素子4は、例えば、板状の光学素子である。実施の形態4では、透過素子4を平行平板として説明する。なお、光の出射面が入射面に対して傾斜している透過素子を採用することはできる。
 透過素子4は、X軸に平行な軸S2を中心として揺動する。例えば、図14では、-X軸方向から見て、透過素子4は、軸S2を回転軸として、時計回り又は反時計回りに一定の角度だけ回転することができる。軸S2とは、言いかえれば光軸Cに垂直な第2の軸である。
 図14では、例えば、軸S2は光軸Cに直交している。「直交」とは、直角に交わることである。つまり、図14では、X軸方向から見ると、軸S2は光軸C上にある。
 また、図14では、軸S2は、透過素子4の入射面上に位置している。しかし、透過素子4の出射面上に位置してもよい。
 透過素子4の材料は、例えば、屈折率1.52の硝子である。なお、屈折作用を有する材料であれば硝子に限らない。ただし、光の利用効率を考慮すると、透過率が高いことが好ましい。
<蛍光発生部51>
 蛍光発生部51は、実施の形態1と同様であるため、実施の形態1で説明した内容を代用して、その説明を省略する。
 実施の形態1の集光レンズ3が基準位置にある場合と同様に、領域5aは、集光レンズ3の光軸C上に配置されている。また、領域5bは、例えば、光軸Cに対して、+Y軸方向側に配置されている。領域5cは、例えば、光軸Cに対して、-Y軸方向側に配置されている。実施の形態1の集光レンズ3の基準位置は、実施の形態1で集光レンズ3が回転していない状態の位置である。
<投射レンズ6>
 投射レンズ6は、蛍光体素子5の発した蛍光を+Z軸方向に投射する。投射レンズ6も、実施の形態1と同様であるため、実施の形態1で説明した内容を代用して、その説明を省略する。
<前照灯装置103の動作>
 次に前照灯装置103の動作について説明する。
 図15(A)、図15(B)及び図15(C)は、本実施の形態4の前照灯装置103の動作を説明する光線追跡のシミュレーション結果である。
 図15(A)では、透過素子4は、光軸Cに対して垂直である。
 図15(B)では、透過素子4は、図15(A)の状態に対して、-X軸方向から見て、反時計回りに回転している。
 図15(C)では、透過素子4は、図15(A)の状態に対して、-X軸方向から見て、時計回りに回転している。
 図15(B)及び図15(C)では、一例として、回転角度は、共に30度である。
 図15(A)、図15(B)及び図15(C)の光路は、おのおの異なる。そのため、図15(A)における光線を光線300aとする。図15(B)における光線を光線300bとする。図15(C)における光線を光線300cとする。図15(A)、図15(B)及び図15(C)では、光源2の中心から放射された光線300a,300b,300cを記載している。
 光源2から出射された光は、光軸Cを中心とした放射角度で+Z軸方向に進行する。
 +Z軸方向に進行した光は、集光レンズ3に入射する。
 集光レンズ3に入射した光は、集光される。
 図15(A)の場合には、透過素子4の入射面41は、光軸Cに対して垂直である。光線300aの内、光軸C上の光線は、入射面41で屈折することなく進行する。このため、光線300aの集光位置は、光軸C上となる。図15(A)では、光線300aは、蛍光体素子5の領域5aに集光する。
 図15(B)の場合には、透過素子4の入射面41は、-X軸方向から見て、光軸Cに対して反時計回りに30度回転している。光線300bの内、光軸C上の光線は、入射面41で+Y軸方向に屈折して進行する。このため、光線300bの集光位置は、光軸Cに対して+Y軸方向に移動する。図15(B)では、光線300bは、蛍光体素子5の領域5bに集光する。
 図15(C)の場合には、透過素子4の入射面41は、-X軸方向から見て、光軸Cに対して時計回りに30度回転している。光線300cの内、光軸C上の光線は、入射面41で-Y軸方向に屈折して進行する。このため、光線300cの集光位置は、光軸Cに対して-Y軸方向に移動する。図15(C)では、光線300cは、蛍光体素子5の領域5cに集光する。
 以上の動作により、透過素子4の入射面41が光軸Cと垂直な場合には、光源2から出射した光線300aは、蛍光体素子5の領域5aに集光する。透過素子4の入射面41が光軸Cに対して、-X軸方向から見て反時計回りに回転した場合には、光源2から出射した光線300bは、蛍光体素子5の領域5bに集光する。透過素子4の入射面41が光軸Cに対して、-X軸方向から見て時計回りに回転した場合には、光源2から出射した光線300cは、蛍光体素子5の領域5cに集光する。
 つまり、透過素子4を揺動させることによって、集光レンズ3から出射された励起光の蛍光体素子5上の集光位置を変化させることが可能になる。このため、3種類の色温度を切り替えることが可能となる。また、異なる色温度の光を混色することがないため、投射レンズ6から出射した光の色ムラの発生が抑制される。
 なお、透過素子4の厚み又は屈折率により、蛍光体素子5のそれぞれの領域5a,5b,5cに集光するための最適な回転角度は変化する。また、領域5a,5b,5cの位置によっても、蛍光体素子5のそれぞれの領域5a,5b,5cに集光するための最適な回転角度は変化する。
 上述の説明では、各光線300a,300b,300cは、蛍光体素子5の各領域5a,5b,5c上に集光している。しかし、光線300a,300b,300cの集光位置が蛍光体素子5上でなくても構わない。つまり、光線300a,300b,300cの集光位置が蛍光体素子5に対して、光軸Cの方向に移動しても構わない。各光線300a,300b,300cの光束が、各領域5a,5b,5cの範囲内に到達すればよい。つまり、各光線300a,300b,300cのスポット径が、各領域5a,5b,5cの範囲内に収まればよい。
 次に、本実施の形態4の効果に関して説明する。
 透過素子4の回転角度を調節することにより、異なる色温度の光を投射レンズ6から出射することが可能となる。また、光を混色することが無いため、色温度ムラを低減できる。また、透過素子4を回転させるという簡易な動作で実現が可能であり、装置の小型化が容易となる。また、簡易な動作のため、駆動機構の簡素化が容易であり、部品点数の削減又は組立性の改善により、低コスト化が図れる。
 以上より、透過素子4の回転角度を調節することにより、異なる色温度を選択できると共に、投射レンズ6から出射した光の色ムラの発生を抑えた前照灯装置が実現できる。
 なお、透過素子4の位置は、集光レンズ3と蛍光体素子5との間であることが望ましい。光源2から射出された光300a,300b,300cを集光レンズ3により集光している。このため、透過素子4を小さい部品で実現することができる。
 ここで、実施の形態1で説明した。変形例1又は変形例2を実施の形態4に適用することも可能であり、同様の効果が得られる。
 つまり、蛍光発生部52で示した波長選択素子700と蛍光体素子5との組み合わせを実施の形態4の蛍光体素子5に適用できる。また、蛍光発生部53で示した波長選択素子7と蛍光体素子53aとの組み合わせを実施の形態4の蛍光体素子5に適用できる。
 ここで、図17に透過素子4と蛍光体素子502との間に集光レンズ3bを配置した場合の構成を示す。図17は、透過素子4に平行光を入射させた場合の構成例を示す前照灯装置104の概略的な構成図である。
 前照灯装置104は、光源2と透過素子4との間に、平行化レンズ3aを備えている。また、前照灯装置104は、透過素子4と蛍光体素子502との間に、集光レンズ3bを備えている。
 平行化レンズ3aは、光源2から出射された光を平行光にする。集光レンズ3bは、透過素子4を透過した平行光を集光する。
 この場合には、光源2から出射された光は、平行化レンズ3aで平行化され透過素子4に到達する。そして、透過素子4の軸S2を中心とした回転に応じて、平行化レンズ3aから出射した平行光は、Y軸方向に移動して集光レンズ3bに到達する。
 集光レンズ3bは、入射した平行光を集光レンズ3bの光軸C上に集光させる。そのため、光線300a,300b,300cは、透過素子4の回転に関わらず、光軸C上に集光する。このため、光線300bを領域5bに到達させることができない。また、光線300cを領域5cに到達させることができない。そして、前照灯装置から投射される光の色温度を変化させることができない。
実施の形態5.
 図18は、本発明に係る実施の形態5の前照灯装置104aの主要構成を概略的に示す構成図である。
 図18に示されるように、前照灯装置104aは、光源2、波長選択部15及び投射レンズ6を備えている。波長選択部15は、集光レンズ3および蛍光発生部55を備えている。蛍光発生部55は、蛍光体素子540を備えている。蛍光発生部55は、波長選択素子710を備えることができる。
 実施の形態1と同様に車両用の前照灯装置を例として、図面を参照しながら本発明の実施の形態の例を説明する。なお、以下の実施の形態の説明においては、説明を容易にするために実施の形態1と同様のXYZ座標を用いて説明する。
 実施の形態1の構成要素と同一の構成要素には同一の符号を付しその説明を省略する。実施の形態1と同様の構成要素は、光源2及び投射レンズ6である。
 なお、集光レンズ3自体は、実施の形態1と同様である。そのため、実施の形態5では、実施の形態1と同じ符号3を用いている。ただし、後述するように、実施の形態1と異なり、集光レンズ3は固定されている。つまり、実施の形態3と同様に、集光レンズ3は固定されている。
 実施の形態1から4のうちの1つの実施の形態と同じ構成要素の構成、機能又は動作等は、実施の形態5で説明を省いた場合でも、実施の形態1から4の記載を代用する。また、実施の形態5の中で説明した、実施の形態1から4に関する記載は、対応する実施の形態1から4の説明として用いる。ここで、「動作」とは、光の挙動を含む。
 <光源2>
 光源2は、励起光となる光を発する。光源2は、励起用の光源である。
 上述のように、光源2は、実施の形態1と同様であるため、実施の形態1で説明した内容を代用して、その説明を省略する。
<波長選択部15>
 波長選択部15は、蛍光体の発する蛍光の波長を選択する。そして、波長選択部15は、選択された蛍光を投射光として放射する。波長選択部15は、集光レンズ3及び蛍光発生部55を備えている。
<集光レンズ3>
 集光レンズ3は、光源2から射出された光を集光する。
 上述のように、集光レンズ3自体は、実施の形態1と同様であるため、実施の形態1で説明した内容を代用して、その説明を省略する。また、集光レンズ3は、実施の形態3と同様に、光源2に対して固定されている。
 実施の形態1の集光レンズ3が基準位置にある場合と同様に、集光レンズ3の光軸Cは、投射レンズ6の光軸Cpと一致している。
<蛍光発生部55>
 蛍光発生部55は、波長選択素子710及び蛍光体素子540を備えている。
 波長選択素子710及び蛍光体素子540は、軸S3を中心に回転する。軸S3は、例えば、Z軸に平行である。つまり、軸S3は、例えば、光軸Cに平行である。軸S3は、例えば、光軸Cpに平行である。
 波長選択素子710は、蛍光体素子540に対して、集光レンズ3側に配置されている。つまり、蛍光体素子540は、波長選択素子710の+Z軸方向側に配置されている。蛍光体素子540は、波長選択素子710の投射レンズ6側に配置されている。
 波長選択素子710は、例えば、硝子基材に波長選択特性を有するコーティングが施されている。
 波長選択素子710は、例えば、光の入射面側又は光の出射面側に、蛍光体素子540が塗布されている。蛍光体素子540は、例えば、同心円状に塗布されている。
 つまり、図18では、波長選択素子710は、蛍光体素子540と一体となっている。
 図19は、本実施の形態5の波長選択素子710及び蛍光体素子540の概略図である。図19は、波長選択素子710及び蛍光体素子540を+Z軸側から見た図である。
 蛍光体素子540は、図19に示すように、例えば、円周方向に3つの領域に分かれている。
 例えば、蛍光体素子540は、領域540a、領域540b及び領域540cを備えている。蛍光体素子540は、軸S3を中心に、放射状に分割された領域540a、領域540b及び領域540cを備えている。つまり、領域540a,540b,540cは、扇形形状をしている。扇形形状の中心角は、例えば、120度である。
 領域540aは、例えば、6000Kの蛍光を発する。領域540bは、例えば、4000Kの蛍光を発する。領域540cは、例えば、2500Kの蛍光を発する。
 領域540a、領域540b及び540cは、回転することで、各領域540a,540,540cが光軸C上に位置するように配置されている。蛍光体素子540は、領域540a、領域540b及び540cが光軸C上に位置するように、回転される。
 これによって、蛍光体素子540は、異なる波長の蛍光を発生させることが可能となる。この点で実施の形態1と異なる。
 なお、蛍光体素子540の領域は、数に制限はなく、2つでも4つでも構わない。特に、蛍光体素子540は常に光軸Cp上に配置される。このため、投射レンズ6を透過した後に、蛍光体素子540から放射された蛍光は、光軸Cpに対して平行な光となる。
 これによって、領域540a,540b,540cから出射した光は、投射レンズ6を透過した後に光軸Cpと平行になる。
 蛍光体素子540上の集光径は、例えば、φ0.5mmである。
 また、本実施の形態5では、波長選択素子710を備えている。そして、蛍光体素子540は、波長選択素子710の上に塗布されている。しかし、波長選択特性を有しない硝子基材の上に、蛍光体素子540を塗布しても構わない。
<投射レンズ6>
 投射レンズ6は、蛍光発生部55の発した蛍光を+Z軸方向に投射する。投射レンズ6も、実施の形態1と同様であるため、実施の形態1で説明した内容を代用して、その説明を省略する。
<前照灯装置104aの動作>
 次に前照灯装置104aの動作について説明する。
 蛍光体素子540は、軸S3を中心に回転する。軸S3は、例えば、光軸Cに平行である。
 蛍光体素子540の領域540aが光軸C上に位置した場合には、集光レンズ3から出射した光は、領域540a上に集光する。蛍光体素子540の領域540bが光軸C上に位置した場合には、集光レンズ3から出射した光は、領域540b上に集光する。蛍光体素子540の領域540cが光軸C上に位置した場合には、集光レンズ3から出射した光は、領域540c上に集光する。
 蛍光体素子540の領域540a,540b,540cが光軸C上に位置するように、蛍光体素子540の回転角度を設定する。
 領域540a,540b,540cから出射した光は、光軸Cp上に位置する。このため、投射レンズ6を透過した後の光線は、光軸Cpに対して平行となる。
 これによって、蛍光体素子540から投射レンズ6までの距離を長くする等の制約条件が緩和される。
 以上の動作により、蛍光体素子540の領域540aが光軸C上に配置された場合には、光源2から出射した励起光は、領域540a上に集光する。蛍光体素子540の領域540bが光軸C上に配置された場合には、光源2から出射した励起光は、領域540b上に集光する。蛍光体素子540の領域540cが光軸C上に配置された場合には、光源2から出射した励起光は、領域540c上に集光する。
 つまり、軸S3を中心として蛍光体素子540を回転させることによって、蛍光体素子540の光軸C上の領域を、領域540a,540b,540cに変更して、集光レンズ3から出射された励起光を集光させることができる。
 このため、3種類の色温度を切り替えることが可能となる。また、異なる色温度の光を混色することがないため、投射レンズ6から出射した光の色ムラの発生が抑制される。
<変形例3>
 図20は、変形例3の波長選択素子711及び蛍光体素子550の概略図である。図20は、波長選択素子711及び蛍光体素子550を+Z軸側から見た図である。図18に示す前照灯装置104aの内、蛍光発生部55の波長選択素子711及び蛍光体素子550のみ異なるため、図18に示す前照灯装置104aと異なる点のみ説明する。
 蛍光発生部55は、波長選択素子710に代えて、波長選択素子711を備える。また、蛍光発生部55は、蛍光体素子540に代えて、蛍光体素子550を備える。
 波長選択素子711及び蛍光体素子550は、軸S3を中心に回転する。軸S3は、例えば、Z軸に平行である。つまり、軸S3は、例えば、光軸Cに平行である。軸S3は、例えば、光軸Cpに平行である。
 蛍光体素子550は、波長選択素子711の+Z軸方向側に位置している。
 波長選択素子711は、例えば、硝子基材に波長選択特性を有するコーティングが施されている。波長選択特性を有するコーティングは、波長選択素子711の+Z軸側又は-Z軸側のどちらに施されても構わない。
 なお、領域711a,711b,711cは、実施の形態1の変形例2で示した領域7a,7b,7cと同様の波長選択特性を有していてもよい。そうすれば、実施の形態1の変形例2と同様の波長の光を出射することができる。
 蛍光体素子550は、例えば、波長選択素子711の光の入射面側に塗布されている。つまり、蛍光体素子550は、波長選択素子711の+Z軸方向側の面上に塗布されている。図20では、蛍光体素子550は、軸S3に対して、波長選択素子711上に同心円上に塗布されている。
 図20では、蛍光体素子550は、例えば、波長選択素子711の+Z軸方向側の面上に直接塗布されている。つまり、波長選択素子711は、蛍光体素子550と一体となっている。
 変形例3では、蛍光体素子550は、1つの蛍光体で形成されている。
 そして、波長選択素子711が領域711a、領域711b及び領域711cに分割されている。
 波長選択素子711は、図20に示すように、例えば、円周方向に3つの領域に分かれている。
 例えば、波長選択素子711は、軸S3を中心に、放射状に分割された領域711a、領域711b及び領域711cを備えている。つまり、領域711a,711b,711cは、扇形形状をしている。そして、中心角は、例えば、120度である。
 軸S3を中心に、波長選択素子711を回転させることによって、光軸C上に位置する領域711a,711b,711cを変更することができる。
 実施の形態5で示した構成を用いれば、光源2と連動させて、時分割の制御をすることが可能となる。
 つまり、任意の領域540a,540b,540cが光軸C上に配置された際に、光源2から光が出射される。また、変形例3では、任意の領域711a,711b,711cが光軸C上に配置された際に、光源2から光が出射される。
 実施の形態5で示した構成では、領域540a、領域540b及び領域540cから出射される異なる波長の光を時分割で投射レンズ6に入射させることができる。また、変形例3で示した構成では、領域711a、領域711b及び領域711cから出射される異なる波長の光を時分割で投射レンズ6に入射させることができる。
 「時分割」とは、1つの装置において、2つ以上の処理を時間的にずらして交互に遂行することである。ここでは、蛍光発生部55は、異なる波長の光を時間的にずらして投射レンズ6に入射させることができる
 このため、複数の色温度の光の投射を実現することが可能となる。また、投射レンズ6に入射する光束の中心光線は、光軸Cp上に位置する。このため、光軸Cpに対して平行度の高い光を、投射レンズ6から出射させることができる。ここで、「中心光線」とは、集光レンズ3の光軸Cを通る光線のことである。
 変形例3では、波長選択素子711を3分割した場合に関して述べた。しかし、2分割又は4分割等でもよく、3分割に限るものではない。
実施の形態6
 図21は、本発明に係る実施の形態6の前照灯装置105の主要構成を概略的に示す構成図である。
 図21に示されるように、前照灯装置105は、光源2、集光レンズ3、透過素子4及び投射レンズ6を備えている。前照灯装置105は、蛍光体素子560を備えることができる。前照灯装置105は、蛍光発生部56を備えられる。蛍光発生部56は、蛍光体素子560を備えている。なお、前照灯装置105は、波長選択部を備えていない。つまり、前照灯装置105は、投射光の波長を変更することはできない。
 実施の形態1と同様に車両用の前照灯装置を例として、図面を参照しながら本発明の実施の形態の例を説明する。なお、以下の実施の形態の説明においては、説明を容易にするために実施の形態1と同様のXYZ座標を用いて説明する。
 実施の形態1の構成要素と同一の構成要素には同一の符号を付しその説明を省略する。実施の形態1と同様の構成要素は、光源2及び投射レンズ6である。
 なお、集光レンズ3自体は、実施の形態1と同様である。そのため、実施の形態6では、実施の形態1と同じ符号3を用いている。ただし、後述するように、実施の形態1と異なり、集光レンズ3は固定されている。
 また、透過素子4は、実施の形態4で説明した透過素子4と同様である。このため、実施の形態4の説明と重複する部分の説明は、実施の形態4の説明を代用して、実施の形態6では省略する。
 実施の形態1から5のうちの1つの実施の形態と同じ構成要素の構成、機能又は動作等は、実施の形態6で説明を省いた場合でも、実施の形態1から5の記載を代用する。また、実施の形態6の中で説明した、実施の形態1から5に関する記載は、対応する実施の形態1から5の説明として用いる。ここで、「動作」とは、光の挙動を含む。
 図21に示されるように、前照灯装置105の蛍光体素子560は、1つの蛍光体で形成されている。前照灯装置105は、蛍光体素子5が蛍光体素子560に変更された点で、実施の形態4の前照灯装置103と異なる。
 図21の前照灯装置105は、実施の形態4と同様に、軸S2を中心に透過素子4を揺動させることによって、光源2から出射された光の蛍光体素子560上での集光位置をY軸方向に移動させる。
 実施の形態6の効果を説明する。
 図16を、実施の形態6の効果を説明する光線追跡図として用いる。図16において、蛍光体素子5を、蛍光体素子560として説明する。
 蛍光体素子560は、1つの領域で構成されている。このため、領域5a、領域5b及び領域5cは、同じ波長帯域の光を放射する。
 領域5aから放射された光線1400aは、投射レンズ6を透過した後に、光軸Cpと平行に進行している。領域5bから放射された光線1400bは、投射レンズ6を透過した後に、光軸Cpに対して角度を有して-Y軸方向に進行している。領域5cから放射された光線1400cは、投射レンズ6を透過した後に、光軸Cpに対して角度を有して+Y軸方向に進行している。
 これによって、蛍光体素子560から出射する光線の位置によって、光線の進行する方向を制御できる。つまり、蛍光体素子560の発光する領域5a,5b,5cを変更することで、光を照射する位置を制御できる。
 例えば、前照灯装置105は、ドライバーがカーブを走行している時に、車両の進行方向側に光源2から出射された光を投射することができる。車両の進行方向側は、車両が旋回する方向である。これによって、車両の進行方向に対するドライバーの視認性を向上させることが可能となる。
 前照灯装置105は、簡易な構成で、光を照射する位置を変更することができる。つまり、前照灯装置105は、配光を制御することが可能となる。
 つまり、前照灯装置105を、この構成によって、AFS(Adaptive Front-Lighting System)として使用することができる。AFSは、夜道でカーブを曲がるときに、ステアリングの切れ角又は車速等を感知して、ヘッドランプの照射方向を曲がる方向に向ける配光可変ヘッドランプである。
 前照灯装置105は、透過素子4を揺動させるという簡易な構成で、配光を変更することができる。更に、前照灯装置105は、透過素子4を揺動させるので、配光可変ヘッドランプを小型化することができる。
 例えば、前照灯装置105は、透過素子4を連続的に左右方向に往復動作で揺動させることができる。前方に人が存在する場合には、前照灯装置105は、人が存在する領域を避けるように、透過素子4を揺動させて、光を投射することができる。また、前照灯装置105は、人が存在する方向に、投射した光が到達する場合には、光源2を消灯させることができる。
 つまり、前照灯装置105を、この構成により、ADB(Adaptive Driving Beam)として使用することができる。ADBは、ハイビームで走行中に、対向車又は前走車など前方車両が出現した際に、車載カメラで前方車両の位置を検知して、その領域のみを遮光して、他の領域はハイビームで照射するヘッドランプシステムである。
 また、前照灯装置105は、透過素子4の回転角度を調節することにより、道路のカーブに合わせた方向に、配光を制御することが可能となる。また、前照灯装置105は、透過素子4の回転角度を調節することにより、道路の幅に合わせて配光を制御することが可能となる。
 例えば、狭い幅の道路では、透過素子4の回転角度を狭くする。一方、広い幅の道路では、透過素子4の回転角度を広くする。これにより、道路の幅に応じた配光制御が可能となる。つまり、連続的に透過素子4の回転角度を変更することで、道路の幅に対応した配光を実現することができる。
 本実施の形態6では、集光レンズ3から出射された光を透過素子4に到達させている。そして、透過素子4をX軸に平行な軸を中心に揺動させている。そして、蛍光体素子560上での集光位置をY軸方向に移動させている。蛍光体素子560上での光の放射位置を、Y軸方向に移動させることで、投射レンズ6から出射された光の配光を、Y軸方向に移動させている。
 本実施の形態6では、透過素子4をX軸に平行な軸を中心に揺動させて、光源2から出射された光の到達位置をY軸方向に移動させている。しかし、透過素子4をY軸に平行な軸を中心に揺動させて、光源2から出射された光の到達位置をX軸方向に移動させてもよい。
 なお、集光レンズ3は、光源2から出射された光を平行化する平行化レンズでもよい。その場合には、蛍光体素子560上での光束径は、集光レンズ3の場合の光束径と比較して大きくなる。そのため、投射レンズ6から出射された光の平行度は低下する。そして、配光パターンの中心光度が低下する。高い中心光度が要求されるハイビームの場合には、集光レンズ3を平行化レンズとすることは好ましくない。しかし、広い範囲を照明する配光パターンの場合には、集光レンズ3の代わりに平行化レンズを採用することは有効である。
 また、集光レンズ3を採用した前照灯装置と平行化レンズを採用した前照灯装置とで1つの配光パターンを形成することができる。この場合には、平行化レンズを採用した前照灯装置は、全体の配光パターンの形状を形成する。そして、集光レンズ3を採用した前照灯装置は、全体の配光パターンの中に高照度領域を形成する。
 また、集光レンズ3は、平行化レンズと集光レンズの2枚構成でも構わない。これによって、光源2から集光レンズ3までの間隔を、自由に設定することができる。例えば、平行化レンズと集光レンズ3との間に、光線を折り曲げるミラーを配置することができる。そして、前照灯装置1の投射方向(Z軸方向)の大きさを小さくすることができる。「光線を折り曲げる」とは、反射によって、光線の方向を変更することである。
 また、透過素子4を、集光レンズ3から投射レンズ6までの間に配置すれば、上述の効果は得られる。しかし、透過素子4を蛍光体素子560と投射レンズ6との間に配置することは好ましくない。なぜなら、蛍光体素子560で励起された光(蛍光)は、一般的に散乱して蛍光体素子560から放射される。つまり、蛍光体素子560から放射される光は、散乱光である。このため、光の広がりは大きい。蛍光体素子560と投射レンズ6との間隔が広くなると、励起された光の投射レンズ6に到達する光束量が低下する。そして、前照灯装置1の光利用効率が低下する。なお、光の利用効率が許容範囲内である等の場合には、透過素子4を蛍光体素子560と投射レンズ6との間に配置することは可能である。
 集光レンズ3の集光位置は、蛍光体素子560上であることが好ましい。そして、投射レンズ6の焦点位置は蛍光体素子560上にあることが好ましい。なお、蛍光体素子560上とは、蛍光体素子560の表面のことである。これにより、最も集光した光が蛍光体素子560で蛍光に変換されて出射されることになる。そして、投射レンズ6から出射される光の平行度を、高めることができる。なお、蛍光体素子560の温度上昇などにより、性能の劣化などが考えられる場合には、集光レンズ3の集光位置を、蛍光体素子560上からずらすことができる。
 本実施の形態6では、前照灯装置を例として説明した。しかし、実施の形態6の構成は、照明装置として使用することも可能である。例えば、実施の形態6の構成は、被写体の移動にあわせて光を照射する照明装置に利用できる。また、実施の形態6の構成は、照明の投射位置を時間的に変化させることによって、照明演出効果が向上する。そして、本実施の形態6の構成を採用した照明装置は、より演出効果の高い照明を実現することができる。
 また、上述の実施の形態で、光の色温度を変更できる前照灯装置を説明した。これらの前照灯装置を照明装置として使用することも可能である。つまり、投射される照明光の色を、時間的に変化させることによって、照明演出効果が向上する。そして、上述の光の色温度を変更できる実施の形態の構成を採用した照明装置は、より演出効果の高い照明を実現することができる。
実施の形態7
 図22は、本発明に係る実施の形態7の前照灯装置107の主要構成を概略的に示す構成図である。
 図22に示されるように、前照灯装置107は、光源27、集光レンズ37、透過素子4、及び投射レンズ6を備えている。
 実施の形態1の構成要素と同一の構成要素には同一の符号を付し、その説明を省略する。実施の形態1と同様の構成要素は、投射レンズ6である。
 また、透過素子4は、実施の形態4または6で説明した透過素子4と同様である。このため、実施の形態4または6の説明と重複する部分の説明は、実施の形態4または6の説明を代用して、実施の形態7では省略する。
 実施の形態1から6のうちの1つの実施の形態と同じ構成要素の構成、機能又は動作等は、実施の形態7で説明を省いた場合でも、実施の形態1から6の記載を代用する。また、実施の形態7の中で説明した、実施の形態1から6に関する記載は、対応する実施の形態1から6の説明として用いる。ここで、「動作」とは、光の挙動を含む。
 光源27は、白色の光を出射する。光源27は、白色を発する発光ダイオードである。例えば、光源27は、青色の発光ダイオードと黄色の蛍光体とを備える。この場合には、光源27は、青色の発光ダイオードで黄色の蛍光体を励起する。または、光源27は、紫外の発光ダイオードと白色の蛍光体とを備える。この場合には、光源27は、紫外の発光ダイオードで白色の蛍光体を励起する。
 実施の形態6と異なり、光源27は励起光源ではない。前照灯装置107は、蛍光体素子を備えていない。前照灯装置107は、蛍光発生部を備えていない。
 集光レンズ37は、実施の形態6と同様でも構わない。しかし、光源27は、光源2と比較して発散角が大きい。このため、光源27の大きさが光源2と同じで、光の取り込み効率を高める場合には、集光レンズ37の大きさは、集光レンズ3よりも大きくなる。このため、集光レンズ37を実施の形態6の集光レンズ3と区別している。
 集光レンズ37は、光源27から出射された光を集光点F7に集光する。集光点F7は、透過素子4と投射レンズ6との間に位置している。図22では、集光点F7は、投射レンズ6の光軸Cp上に位置している。
 集光レンズ37は、レンズを2枚使用する構成でも構わない。これによって、光源2と集光レンズ37との間隔を変更することが可能となる。例えば、平行化レンズと集光レンズとの間に光線を折り曲げるミラーを配置することで、前照灯装置107の投射レンズ6の光軸方向(Z軸方向)の大きさを小さくできる。
 また、集光レンズ37は、ハイブリッドレンズを1枚用いる構成としても構わない。ここで言うハイブリッドレンズは、例えば、光の透過特性と全反射特性とを備えるレンズである。つまり、集光レンズ37は、屈折と全反射とを利用した光学素子とすることができる。例えば、この光学素子は、発散角の小さな光を屈折によって集光し、発散角の大きな光を全反射によって集光することができる。
 図22に示す前照灯装置107は、実施の形態6と同様に、軸S2を中心に透過素子4を揺動させる。これによって、前照灯装置107は、光源27から出射された光の集光点F7をY軸方向に移動させる。Y軸方向は、光軸Cpと軸S2を含む平面に垂直な方向である。
 実施の形態7の効果を説明する。
 図16を、実施の形態7の効果を説明する光線追跡図として用いる。図16において、蛍光体素子5上の各領域5a,5b,5cの位置に集光点F7が移動したとして説明する。なお、上述のように、実施の形態7では、蛍光体素子5は用いられていない。
 集光点F7は、光軸Cp上で光源27から出射した光が集光する点となる。このため、集光点F7が各領域5a,5b,5cの位置に移動した場合には、光源27から出射された光が、各領域5a,5b,5cの位置から放射されたことと同等となる。
 領域5aの位置から放射された光線1400aは、投射レンズ6を透過した後に、光軸Cpと平行に進行している。領域5bの位置から放射された光線1400bは、投射レンズ6を透過した後に、光軸Cpに対して角度を有して-Y軸方向に進行している。領域5cの位置から放射された光線1400cは、投射レンズ6を透過した後に、光軸Cpに対して角度を有して+Y軸方向に進行している。
 集光点F7の位置によって、集光点F7から出射する光線の進行する方向は変更される。つまり、集光点F7のY軸方向の位置を変更することで、光源27から出射された光が照射される位置を移動させることができる。
 例えば、前照灯装置107は、ドライバーがカーブを走行している時に、車両の進行方向側に光源2から出射された光を投射することができる。車両の進行方向側は、車両が旋回する方向である。これによって、車両の進行方向に対するドライバーの視認性を向上させることが可能となる。
 前照灯装置107は、簡易な構成で、光を照射する位置を変更することができる。つまり、前照灯装置107は、配光を制御できる。
 本実施の形態7では、透過素子4をX軸に平行な軸を中心に揺動させて、光源27から出射された光の到達位置をY軸方向に移動させている。しかし、透過素子4をY軸に平行な軸を中心に揺動させて、光源27から出射された光の到達位置をX軸方向に移動させてもよい。
 本実施の形態7の前照灯装置107は、集光レンズ37から出射された光を透過素子4に到達させている。そして、前照灯装置107は、透過素子4をX軸に平行な軸を中心に揺動させている。ここで、X軸は、投射レンズ6の光軸Cpに垂直な軸である。そして、前照灯装置107は、集光点F7をY軸方向に移動させている。ここで、Y軸は、光軸CpとX軸とに垂直な軸である。集光点F7をY軸方向に移動させて、光の照射位置(放射方向)をY軸方向に移動さることで、前照灯装置107は、投射レンズ6から出射された光の配光をY軸方向に移動させている。
 なお、光源27が発光ダイオードのように発散角が大きい場合には、集光レンズ37を平行化レンズとすることは好ましくない。平行化レンズは、光源27から出射された光を平行光にする。これは、光源27に発光ダイオードを採用すると、集光レンズ37に到達する光束径が大きくなるため、投射レンズ6から出射される光の平行度が低下するからである。なお、光の平行度の低下が許容範囲である場合には、光源27が発光ダイオードの場合でも、平行化レンズを採用できる。
 透過素子4は、集光レンズ37と投射レンズ6との間であれば、どこに配置されても構わない。つまり、透過素子4の位置は、光学的には、特に制限はない。実施の形態6とは異なり、蛍光体素子560によって、光は散乱しない。つまり、集光点F7を通過する光線の光の広がりは、散乱光よりも小さくなる。
 実施の形態1の場合と比較して、集光点F7と投射レンズ6との間隔を大きくしても、光利用効率に影響がない。このため、蛍光体素子560を配置した場合と比較して、集光点F7から投射レンズ6までの間隔を大きくすることが可能となる。投射レンズ6から出射される光線の平行度を高くする場合には、集光点F7と投射レンズ6との間隔は広いことが好ましい。
 図23は、集光点F7と投射レンズ6との間に透過素子4を配置した場合の光線追跡結果を示す図である。
 図23(A)、図23(B)及び図23(C)は、本実施の形態7の光線追跡によるシミュレーション結果を示す説明図である。
 図23(A)における透過素子4は、光軸Cに対して垂直である。
 図23(B)における透過素子4は、図23(A)の状態に対して、-X軸方向から見て、反時計回りに回転している。
 図23(C)における透過素子4は、図23(A)の状態に対して、-X軸方向から見て、時計回りに回転している。
 図23(B)及び図23(C)における透過素子4の回転角度は、例えば、共に30度である。
 図23(A)、図23(B)及び図23(C)の投射レンズ6を透過した後の光路は、おのおの異なる。図23(A)の光線700aは、光軸Cpと平行に進行している。図23(B)の光線700bは、光軸Cpに対して角度を有して-Y軸方向に進行している。図23(C)の光線700cは、光軸Cpに対して角度を有して+Y軸方向に進行している。
 図23(A)、図23(B)及び図23(C)では、光源27の中心から放射された光線700a,700b,700cを記載している。ここで、光源27の中心は、集光レンズ37の光軸C上にある。以下において、光源27の光軸C上の位置から出射された光について説明する。
 光源27から出射された光は、光軸Cを中心とした放射角度で+Z軸方向に進行する。
 +Z軸方向に進行した光は、集光レンズ37に入射する。
 集光レンズ37に入射した光は、光軸C上に集光される。
 図23(A)における透過素子4の入射面41は、光軸Cに対して垂直である。光線700aの内、光軸C上の光線は、入射面41で屈折することなく進行する。このため、光線700aは、投射レンズ6を通過後、光軸Cに平行な光となって出射する。ここで、投射レンズ6の焦点は、集光点F7と一致している。
 図23(B)における透過素子4の入射面41は、-X軸方向から見て、例えば、光軸Cに対して反時計回りに30度回転している。光線700bの内、光軸C上の光線は、入射面41で+Y軸方向に屈折して進行する。このため、投射レンズ6の中心(光軸Cp)は、光軸C上の光線に対して-Y軸方向に位置することになる。このため、投射レンズ6を出射した光線700bは、光軸Cpに対して-Y軸方向に移動する。
 図23(C)における透過素子4の入射面41は、-X軸方向から見て、例えば、光軸Cに対して時計回りに30度回転している。光線700cの内、光軸C上の光線は、入射面41で-Y軸方向に屈折して進行する。このため、投射レンズ6の中心(光軸Cp)は、光軸C上の光線に対して+Y軸方向に位置することになる。このため、投射レンズ6を出射した光線700cは、光軸Cpに対して+Y軸方向に移動する。
 なお、透過素子4を集光レンズ37と集光点F7との間に配置した場合も、前照灯装置107は、同様の動作を示す。
 以上の動作によって、透過素子4の入射面41が光軸Cに対して垂直な場合には、光源27から出射された光線700aは、投射レンズ6から光軸Cpに対して平行な光として出射される。
 透過素子4の入射面41が光軸Cに対して、-X軸方向から見て、反時計回りに回転した場合には、光源27から出射された光線700bは、投射レンズ6から光軸Cpに対して-Y軸方向に傾斜した光として出射される。
 透過素子4の入射面41が光軸Cに対して、-X軸方向から見て、時計回りに回転した場合には、光源27から出射された光線700cは、投射レンズ6から光軸Cpに対して+Y軸方向に傾斜した光として出射される。
 なお、透過素子4の厚さ又は屈折率により、投射レンズ6から出射する光の光軸Cpに対する角度は変化する。また、説明を簡単にするために、透過素子4は平行平板として説明されている。
 上述の説明では、光線700a、光線700b、及び光線700cは、集光点F7に集光している。そして、光線700a、光線700b、及び光線700cは、投射レンズ6によって平行光にされている。
 しかし、光線700a,700b,700cが集光する集光点F7の位置を移動させてもよい。つまり、投射レンズ6の焦点位置が集光点F7と一致しなくても構わない。集光点F7と投射レンズ6との間隔を狭くして、投射レンズ6から出射される光を発散光とすることができる。
<変形例4>
 図24は、変形例4の主要構成を概略的に示す構成図である。透過素子4および投射レンズ6は、実施の形態7と同様である。
 図24に示されるように、前照灯装置108は、光源2r,2g,2b、平行化レンズ20r,20g,20b、透過素子4及び投射レンズ6を備えている。前照灯装置108は、集光レンズ38又は拡散素子58を備えることができる。
 光源2r、光源2b、及び光源2gは、例えば、各々波長が異なる光を発する光源である。例えば、光源2rは、赤色の波長帯域の光を発する。光源2gは、緑色の波長帯域の光を発する。光源2bは、青色の波長帯域の光を発する。
 例えば、青色の波長域は、430nm~485nmである。緑色の波長域は、500nm~570nmである。また、赤色の波長域は、600nm~650nmである。
 光源2r,2g,2bは、Y軸方向に並べて配置されている。光源2r,2g,2bは、例えば、等間隔に配置されている。なお、変形例4では、光源2を3行1列に配列している。図24では、Y軸方向に3行で、X方向に1列である。しかし、光源2を3行3列のマトリックス状に配列しても構わない。例えば、Y軸方向に3行で、X軸方向に3列である。
 光源2gの光軸Csは、集光レンズ38の光軸Cと一致している。光源2rは、光源2gの+Y軸方向に配置されている。光源2bは、光源2gの-Y軸方向に配置されている。光源2r,2bの光軸Csは、光源2gの光軸Csに対して平行である。
 変形例4では、光源2r,2g,2bは、レーザー光源として説明する。なお、光源2r,2g,2bは、発光ダイオードでも構わない。
 光源2r,2g,2bから出射された光は、平行化レンズ20r,20g,20bによって平行化される。そして、平行化レンズ20r,20g,20bは、光軸Csに対して平行な光を出射する。光軸Csは、光源2r,2g,2bの光軸である。
 平行化レンズ20rは、光源2rの+Z軸方向側に配置されている。平行化レンズ20gは、光源2gの+Z軸方向側に配置されている。平行化レンズ20bは、光源2bの+Z軸方向側に配置されている。
 平行化レンズ20rの光軸Caは、光源2rの光軸Csと一致している。平行化レンズ20gの光軸Caは、光源2gの光軸Csと一致している。平行化レンズ20bの光軸Caは、光源2bの光軸Csと一致している。
 変形例4では、集光レンズ38によって、光が集光される位置に、拡散素子58が配置されている。しかし、上述の実施の形態7で説明したように、拡散素子58を省くことができる。変形例4では、拡散素子58を採用した場合の効果を、複数の光源2r,2g,2bを採用した場合の効果と併せて説明している。
 平行化レンズ20r,20g,20bから出射した光は、集光レンズ38によって、拡散素子58の位置に集光される。平行化レンズ20r,20g,20bから出射した光は、透過素子4を透過した後に、拡散素子58に到達する。なお、実施の形態7と同様に、透過素子4は、拡散素子58(集光位置)と投射レンズ6との間でも構わない。
 平行化レンズ20r,20g,20bから出射した光は、平行光として集光レンズ38に入射する。このため、平行化レンズ20r,20g,20bから出射した光は、1つの集光点に集光する。
 透過素子4は、X軸に平行な軸S2を中心に揺動する。透過素子4は、光源2r,2g,2bから出射された光の集光位置を、Y軸方向に移動させる。しかし、透過素子4をY軸に平行な軸を中心に揺動させて、光源2r,2g,2bから出射された光の到達位置を、X軸方向に移動させてもよい。
 変形例4では、集光レンズ38から出射した光は、透過素子4に到達している。そして、透過素子4は、X軸に平行な軸S2を中心に揺動している。そして、透過素子4は、拡散素子58上での集光位置をY軸方向に移動させている。集光位置の移動によって、拡散素子58上での発光位置が移動する。拡散素子58上での光の放射位置が移動することで、前照灯装置108は、投射レンズ6から出射する光の配光を移動させている。変形例4では、拡散素子58上での光の放射位置がY軸方向に移動することで、前照灯装置108は、投射レンズ6から出射する光の配光を、Y軸方向に移動させている。
 なお、レーザー光源の場合には、光源2r,2g,2bの発散角は小さい。このため、集光レンズ38を省くことができる。集光レンズ38を用いずに、光軸C上に配置されていない平行化レンズ20r,20bを光軸Cの方向に偏芯させる。つまり、平行化レンズ20rを-Y軸方向に偏芯させる。平行化レンズ20rの光軸Caを-Y軸方向に平行移動させる。また、平行化レンズ20bを+Y軸方向に偏芯させる。平行化レンズ20bの光軸Caを+Y軸方向に平行移動させる。これによって、光源2r,2g,2bからの光を拡散素子58に到達させてもよい。
 但し、集光レンズ38を用いた方がZ軸方向の距離を短くすることが可能である。つまり、平行化レンズ20r,20g,20bから拡散素子58までのZ軸方向の距離を短くすることができる。このため、前照灯装置108を小型化できる。
 変形例4では、Y軸方向に光源2r、光源2g、及び光源2bを並べて配置している。しかし、光源2r,2g,2bの配置は、どのような配置でも構わない。例えば、光軸Cに垂直な平面上で、光軸Cを中心とした正三角形の頂点の位置に、光源2r,2g,2bを配置してもよい。
 例えば、前照灯装置108に拡散素子58が備えられていない場合でも、投射レンズ6から出射する光をY軸方向に移動させる効果は得られる。ただし、3つの単色光を用いて合成する場合には、投射レンズ6から出射される光に、色ムラが発生する可能性がある。
 拡散素子58を透過素子4と投射レンズ6との間に配置することによって、投射レンズ6から出射する光の色ムラは抑制される。なお、拡散素子58は、光源2r,2g,2bから投射レンズ6までの間に配置されればよい。しかし、拡散素子58を透過素子4と投射レンズ6との間に配置することが好ましい。これは、光束の大きさが最も小さくなるためである。
 図25(A)、図25(B)、及び図25(C)は、変形例4の動作を示す光線追跡結果の一例を示す図である。
 図25(A)における透過素子4は、光軸Cに対して垂直に配置されている。
 図25(B)における透過素子4は、図25(A)の状態に対して、-X軸方向から見て、反時計回りに回転している。
 図25(C)における透過素子4は、図25(A)の状態に対して、-X軸方向から見て、時計回りに回転している。
 図25(B)及び図25(C)における透過素子4の回転角度は、例えば、共に30度である。
 図25(A)、図25(B)及び図25(C)の透過素子4を透過した後の光路は、おのおの異なる。
 図25(A)における光線800ar,800ag,800abは、入射面41で屈折して進行する。そして、光線800ar,800ag,800abは、拡散素子58上の光軸Cの位置に集光する。
 図25(B)における光線800br,800bg,800bbは、入射面41で+Y軸方向に屈折して進行する。そして、光線800br,800bg,800bbは、拡散素子58上の光軸Cの位置から+Y軸方向の位置に集光する。
 図25(C)における光線800cr,800cg,800cbは、入射面41で-Y軸方向に屈折して進行する。そして、光線800cr,800cg,800cbは、拡散素子58上の光軸Cの位置から-Y軸方向の位置に集光する。
 図25(A)、図25(B)及び図25(C)では、光源2r,2g,2bの中心から放射された光線800ar,800ag,800ab,800br,800bg,800bb,800cr,800cg,800cbを記載している。
 光線800ar,800br,800crは、光源2rから出射された光線である。光線800ag,800bg,800cgは、光源2gから出射された光線である。光線800ab,800bb,800cbは、光源2bから出射された光線である。
 光源2r,2g,2bから出射された光は、各々の光源2r,2g,2bの光軸Csを中心とした放射角度で+Z軸方向に進行する。
 +Z軸方向に進行した光は、平行化レンズ20r,20g,20bによって平行化される。そして、平行化された光(平行光)は、+Z軸方向に進行する。
 +Z軸方向に進行した光(平行光)は、集光レンズ38に入射する。
 集光レンズ38に入射した光(平行光)は、拡散素子58の位置に集光される。
 図25(A)の場合には、透過素子4の入射面41は、光軸Cに対して垂直である。光線800ar、光線800ag、及び光線800abは、入射面41で屈折する。そして、光線800ar,800ag,800abは、拡散素子58の位置で光軸C上に集光するように進行する。このため、光線800ar,800ag,800abの集光位置は、光軸C上となる。図25(A)では、光線800ar,800ag,800abは、拡散素子58上の光軸Cの位置に集光する。
 図25(B)の場合には、透過素子4の入射面41は、-X軸方向から見て、光軸Cに対して反時計回りに30度回転している。このため、光線800br,800bg,800bbの集光位置は、光軸Cに対して+Y軸方向に移動する。図25(B)では、光線800br,800bg,800bbは、拡散素子58上の光軸Cから+Y軸方向の位置に集光する。
 図25(C)の場合には、透過素子4の入射面41は、-X軸方向から見て、光軸Cに対して時計回りに30度回転している。このため、光線800cr,800cg,800cbの集光位置は、光軸Cに対して-Y軸方向に移動する。図25(C)では、光線800cr,800cg,800cbは、拡散素子58上の光軸Cから-Y軸方向の位置に集光する。
 以上の動作によって、透過素子4の入射面41が光軸Cと垂直な場合には、光源2r,2g,2bから出射された光線800ar,800ag,800abは、拡散素子58上の光軸Cの位置に集光する。
 透過素子4の入射面41が光軸Cに対して、-X軸方向から見て反時計回りに回転した場合には、光源2r,2g,2bから出射された光線800br,800bg,800bbは、拡散素子58上の光軸Cから+Y軸方向の位置に集光する。
 透過素子4の入射面41が光軸Cに対して、-X軸方向から見て時計回りに回転した場合には、光源2r,2g,2bから出射された光線800cr,800cg,800cbは、拡散素子58上の光軸Cから-Y軸方向の位置に集光する。
 つまり、透過素子4を揺動させることによって、集光レンズ38から出射した励起光の拡散素子58上の集光位置を変化させることが可能になる。
 なお、透過素子4の厚さ又は屈折率によって、拡散素子58に集光する位置が変化する。このため、透過素子4の回転角度は変更される。また、説明を簡単にするために、透過素子4は平行平板として説明されている。
 上述の説明では、光線800ar,800ag,800ab,800br,800bg,800bb,800cr,800cg,800cbは、拡散素子58上に集光している。しかし、光線800ar,800ag,800ab,800br,800bg,800bb,800cr,800cg,800cbの集光位置は、拡散素子58上でなくても構わない。つまり、光線800ar,800ag,800ab,800br,800bg,800bb,800cr,800cg,800cbの集光位置は、拡散素子58に対して、光軸Cの方向に移動しても構わない。
 図16を、変形例4の効果を説明する光線追跡図として使用する。図16における蛍光体素子5を、拡散素子58に置き換えて説明する。
 拡散素子58は、光軸C上に配置されている。そして、拡散素子58は、光源2r,2g,2bから出射された光が集光する位置に配置されている。このため、領域5a、領域5b又は領域5cに集光した光は、光源2r、光源2g、及び光源2bから出射された光を合成した光となる。そのため、拡散素子58から放射される光は、光源2r、光源2g、及び光源2bから出射された光を合成した光となる。
 領域5aから放射された光線1400aは、図25(A)における光線800ar、光線800ag、及び光線800abを合成した光に該当する。光線800ar、光線800ag、及び光線800abを合成した光は、光軸Cpに対して平行に進行する。
 領域5bから放射された光線1400bは、図25(B)における光線800br、光線800bg、及び光線800bbを合成した光に該当する。光線800br、光線800bg、及び光線800bbを合成した光は、投射レンズ6を透過した後に、光軸Cpに対して-Y軸方向に角度を有して進行する。
 領域5cから放射された光線1400cは、図25(C)における光線800cr、光線800cg、及び光線800cbを合成した光に該当する。光線800cr、光線800cg、及び光線800cbを合成した光は、投射レンズ6を透過した後に、光軸Cpに対して+Y軸方向に角度を有して進行する。
 これによって、拡散素子58から出射する光線の拡散素子58上の位置によって、光線の進行する方向を変更できる。つまり、拡散素子58上で光源2r,2g,2bから出射された光を移動させることで、投射レンズ6からの光の照射位置を変更することができる。
 例えば、前照灯装置108は、ドライバーがカーブを走行している時に、車両の進行方向側に光源2r,2g,2bから出射された光を投射することができる。車両の進行方向側は、車両が旋回する方向である。これによって、車両の進行方向に対するドライバーの視認性を向上させることが可能となる。
 前照灯装置108は、簡易な構成で、光を照射する位置を変更することができる。つまり、前照灯装置108は、配光を制御することができる。
 以上より、変形例4では、光源2r,2g,2b、平行化レンズ20r,20g,20b、集光レンズ38、透過素子4そして拡散素子58の順に、各構成要素を配置することによって、AFS又はADBを実現している。
 また、光源2r,2g,2bの各々の出力値(光量)を変化させることによって、投射レンズ6から出射される白色光の色温度を変更することができる。これによって、配光の変更に加えて、色温度の変更も実現できる。
<変形例5>
 図26は、変形例5に示す前照灯装置109の光線追跡によるシミュレーション結果を示す説明図である。なお、図26では、投射レンズ6を省いている。
 図26(A)では、反射素子49の反射面491は、-X軸方向から見て、光軸Cに対して45度傾いている。このため、-Y軸方向から到達した光は、+Z軸方向に反射される。この状態を反射面491の基準位置とする。
 図26(B)では、反射素子49の反射面491は、-X軸方向から見て、反射面491の基準位置に対して反時計回りに回転している。図26(B)では、反射素子49の反射面491は、-X軸方向から見て、光軸Cに対して47度傾いている。
 図26(C)では、反射素子49の反射面491は、-X軸方向から見て、反射面491の基準位置に対して時計回りに回転している。図26(C)では、反射素子49の反射面491は、-X軸方向から見て、光軸Cに対して43度傾いている。
 図26は、図15の透過素子4を反射素子49に置き換えた際の構成を示している。反射素子49以外の構成要素に関しては、前照灯装置105と同様のため、同符号を示す。
 図22に示されるように、前照灯装置107は、光源27、集光レンズ37、透過素子4及び投射レンズ6を備えている。
 変形例5において、光源27から出射された光は、光軸Csを中心とした放射角度で+Y軸方向に進行する。つまり、光源27は、+Y軸方向に光を出射する、
 +Y軸方向に進行した光は、集光レンズ37によって、集光光に変更される。そして、集光光は、+Y軸方向に進行する。
 +Y軸方向に進行した光(集光光)は、反射素子49の反射面491に到達する。反射面491に到達した光は、反射面491で反射される。そして、反射面491で反射された光は、+Z軸方向に進行する。
 +Z軸方向に進行した光は、集光する。
 集光した光は、投射レンズ6(図示せず)によって、平行化される。平行化された光(平行光)は、+Z軸方向に進行する。
 図26(A)に示すように、光源27から+Y軸方向に出射された光は、集光レンズ37で集光される。集光レンズ37で集光された光は、光軸Cp上に集光する。
 集光レンズ37を出射した光900aは、反射素子49の反射面491で反射される。反射面491で反射された光900aの中心光線は、反射面491で、進行方向を90度変更される。反射面491で反射された光900aは、投射レンズ6の光軸Cp上に集光される。
 なお、図26(A)において、集光レンズ37の光軸Cは、反射素子49によって、90度曲げられている。以下において、反射素子49が回転軸を中心に回転しても、反射素子49から投射レンズ6までの集光レンズ37の光軸Cは、光軸Cが反射素子49によって90度曲げられた状態(図26(A)の状態)の光軸とする。つまり、集光レンズ37の光軸Cは、反射素子49が回転した場合でも、図26(A)の状態から変化しないとして説明する。また、図26では、反射素子49から投射レンズ6側の光軸Cは、光軸Cpと一致している。なお、反射素子49の回転軸は、例えば、投射レンズの光軸に垂直な第3の軸である。
 また、図26(B)に示すように、-X軸方向から見て、反射素子49は、反射面491の基準位置から反時計回りに回転している。この場合には、集光レンズ37で集光された光は、光軸Cpよりも+Y軸側に集光する。つまり、集光レンズ37で集光された光の集光位置は、光軸Cpよりも+Y軸方向に移動する。
 図26(B)では、反射素子49によって90度曲げられた光軸Cと反射素子49(反射面491)との角度は、45度よりも大きくなっている。図26(B)における反射素子49(反射面491)は、例えば、光軸Cに対して47度傾いている。つまり、図26(B)における反射素子49(反射面491)は、光軸Cpに対して47度傾いている。
 このため、反射素子49で反射された光線900bの光束の中心光線は、光軸Cに対して+Y軸方向に4度傾いて+Z軸方向に進行する。そして、反射素子49で反射された光線900bは、反射面491が基準位置の場合の集光位置に対して+Y軸方向側に集光する。
 また、図26(C)に示すように、-X軸方向から見て、反射素子49は、反射面491の基準位置から時計回りに回転している。この場合には、集光レンズ37で集光された光は、光軸Cpよりも-Y軸側に集光する。つまり、集光レンズ37で集光された光の集光位置は、光軸Cpよりも-Y軸方向に移動する。
 図26(C)では、反射素子49によって90度曲げられた光軸Cと反射素子49(反射面491)との角度は、45度よりも小さくなっている。図26(C)における反射素子49(反射面491)は、例えば、光軸Cに対して43度傾いている。つまり、図26(C)における反射素子49(反射面491)は、光軸Cpに対して43度傾いている。
 このため、反射素子49で反射された光線900cの光束の中心光線は、光軸Cに対して-Y軸方向に4度傾いて+Z軸方向に進行する。そして、反射素子49で反射された光線900cは、反射面491が基準位置の場合の集光位置に対して-Y軸方向側に集光する。
 このように、反射素子49を用いた場合には、Y軸方向の前照灯装置の大きさが大きくなる。しかし、Z軸方向の前照灯装置の大きさは小さくなる。
 透過素子4を用いた場合には、各構成要素をZ軸方向(光軸Cpの方向)に配置している。反射素子49を用いた場合には、光軸Cpから外れた位置に構成要素を配置することができる。
 なお、図26の構成を図15の構成と比較すると、透過素子4の揺動角度に対する光の移動量は、反射素子49の揺動角度に対する光の移動量よりも小さい。つまり、反射素子49を用いた場合には、揺動角度に対する光の移動量が大きくなる。このため、例えば、25m相当の投射距離を想定しているヘッドライトに使用する際には、反射素子49の調整精度を、透過素子4の調整精度よりも高くする。
 図26には、投射レンズ6を図示していない。投射レンズ6は、集光位置F7の+Z軸側に配置される。しかし、例えば、集光位置F7と投射レンズ6との間隔を5mmとする。この場合には、前照灯装置の25m先での光の移動距離は、集光位置F7を含む光軸Cpに垂直な平面(集光面Pf)上での光の移動距離の5000倍となる。これは、25m/5mm=5000の計算から求められる。従って、光源2からの光が集光面Pf上で1mm移動すると、前照灯装置の25m先での光の到達位置は5m移動する。
 これによって、細かく配光を制御する場合には、透過素子4を用いる方が容易である。また、透過素子4は、厚さ又は屈折率を変更することによって、揺動角度に対する移動量を変更することができる。
 さらに、反射素子49の反射率(97%)と透過素子4の透過率(99%)を比較すると、透過素子4の透過率の方が一般的には高い。このため、光の利用効率を考慮する場合には、透過素子4を用いる方が好ましい。
<付記>
 以上の各実施の形態を基にして、以下の内容を付記として記載する。
<付記1>
 励起光を発する光源と、
 前記励起光を入射して異なる色温度の光を出射する波長選択部と、
 前記波長選択部から出射された前記異なる色温度の光を投射する投射レンズとを備え、
 前記波長選択部は、集光光学素子及び蛍光発生部を備え、
 前記蛍光発生部は、前記励起光が入射する領域によって、出射する光の色温度が異なり、
 前記集光光学素子は、前記光源から出射した励起光を集光し、
 集光された前記励起光は、前記領域に選択的に到達する前照灯装置。
<付記2>
 前記蛍光発生部は、蛍光を発する蛍光体素子を備え、
 前記蛍光体素子は、異なる色温度の光を発する前記領域を含み、
 前記集光光学素子が前記集光光学素子の光軸に垂直な方向に移動することにより、前記集光光を、前記領域に選択的に到達させる付記1に記載の前照灯装置。
<付記3>
 前記蛍光発生部は、蛍光を発する蛍光体素子を備え、
 前記蛍光体素子は、異なる色温度の光を発する前記領域を含み、
 前記集光光学素子が前記集光光学素子の光軸に垂直な軸を中心に回転することにより、前記集光光を、前記領域に選択的に到達させる付記1に記載の前照灯装置。
<付記4>
 前記蛍光発生部は、蛍光を発する蛍光体素子及び透過する光の波長を選択して、選択された前記波長以外の光を反射する波長選択素子を備え、
 前記波長選択素子は、異なる波長の光を透過する領域を含み、
 前記集光光学素子が前記集光光学素子の光軸に垂直な方向に移動することにより、前記集光光を、前記領域に選択的に到達させる付記1に記載の前照灯装置。
<付記5>
 前記蛍光発生部は、蛍光を発する蛍光体素子及び透過する光の波長を選択して、選択された前記波長以外の光を反射する波長選択素子を備え、
 前記波長選択素子は、異なる波長の光を透過する領域を含み、
 前記集光光学素子が前記集光光学素子の光軸に垂直な軸を中心に回転することにより、前記集光光を、前記領域に選択的に到達させる付記1に記載の前照灯装置。
<付記6>
 前記蛍光発生部は、蛍光を発する蛍光体素子を備え、
 前記蛍光体素子は、異なる色温度の光を発する前記領域を含み、
 前記蛍光体素子が前記集光光学素子の光軸に垂直な方向に移動することにより、前記集光光を、前記領域に選択的に到達させる付記1に記載の前照灯装置。
<付記7>
 前記蛍光発生部は、蛍光を発する蛍光体素子及び前記集光光を入射して前記蛍光体素子に向けて出射する透過素子を備え、
 前記透過素子は、前記集光光学素子の光軸に垂直な軸を中心に回転し、
 前記蛍光体素子は、異なる色温度の光を発する前記領域を含み、
 前記透過素子が前記軸を中心に回転することにより、前記集光光を、前記領域に選択的に到達させる付記1に記載の前照灯装置。
<付記8>
 前記蛍光発生部は、透過する光の波長を選択して、選択された前記波長以外の光を反射する波長選択素子を備え、
 前記波長選択素子は、前記透過素子と前記蛍光体素子との間に配置されている付記7に記載の前照灯装置。
<付記9>
 前記蛍光発生部は、蛍光を発する蛍光体素子を備え、
 前記蛍光体素子は、異なる色温度の光を発する前記領域を含み、
 前記蛍光体素子が前記集光光学素子の光軸に平行な軸を中心に回転することにより、前記集光光を、前記領域に選択的に到達させる付記1に記載の前照灯装置。
<付記10>
 前記蛍光発生部は、透過する光の波長を選択して、選択された前記波長以外の光を反射する波長選択素子を備え、
 前記波長選択素子は、前記集光光学素子と前記蛍光体素子との間に配置されている付記2、3、6又は9のいずれか1つに記載の前照灯装置。
<付記11>
 前記蛍光発生部は、蛍光を発する蛍光体素子及び透過する光の波長を選択して、選択された前記波長以外の光を反射する波長選択素子を備え、
 前記波長選択素子は、異なる波長の光を透過する領域を含み、
 前記波長選択素子が前記集光光学素子の光軸に平行な軸を中心に回転することにより、前記集光光を、前記領域に選択的に到達させる付記1に記載の前照灯装置。
<付記12>
 励起光を発する光源と、
 前記励起光を入射して前記光源から出射した励起光を集光光に変換して出射する集光光学素子と、
 前記集光光を入射し、前記集光光学素子の光軸に垂直な軸を中心に回転して、前記集光光を出射する透過素子と、
 前記透過素子から出射された光を入射し蛍光を発する蛍光体素子とを備え、
 前記蛍光体素子は、同じ色温度の光を発する領域を含み、
 前記透過素子が前記軸を中心に回転することにより、前記集光光を、前記領域に選択的に到達させる前照灯装置。
 なお、上述の各実施の形態においては、「平行」または「垂直」などの部品間の位置関係又は部品の形状を示す用語を用いている場合がある。これらは、製造上の公差や組立て上のばらつきなどを考慮した範囲を含む。このため、請求の範囲に部品間の位置関係または部品の形状を示す記載した場合には、これらの記載は、製造上の公差又は組立て上のばらつき等を考慮した範囲を含む。
 また、以上のように本発明の実施の形態について説明したが、本発明はこれらの実施の形態に限るものではない。
  1 前照灯装置
  2 光源
  3 集光レンズ
  4 透過素子
  5 蛍光体素子
  5a 蛍光体素子5の領域
  5b 蛍光体素子5の領域
  5c 蛍光体素子5の領域
  6 投射レンズ
  C 光軸

Claims (14)

  1.  光を発する光源と、
     前記光源から出射された前記光を集光光に変換して出射する集光光学素子と、
     前記集光光を投射する投射レンズとを備え、
     前記集光光の集光位置は、前記集光光学素子と前記投射レンズとの間に位置し、
     前記集光位置を前記投射レンズの光軸に垂直な方向に移動させる照明装置。
  2.  前記光軸の方向において、前記集光位置は、前記投射レンズの焦点位置と一致する請求項1に記載の照明装置。
  3.  前記集光光学素子は、集光光学素子の光軸に垂直な第1の軸を中心に回転する請求項1または2に記載の照明装置。
  4.  前記集光光学素子は、集光光学素子の光軸に垂直な方向に移動する請求項1または2に記載の照明装置。
  5.  前記投射レンズの光軸に垂直な第2の軸を中心に回転可能に支持されて、前記集光光を透過する透過素子を備える請求項1または2に記載の照明装置。
  6.  前記投射レンズの光軸に垂直な第3の軸を中心に回転可能に支持されて、前記集光光を反射する反射素子を備える請求項1または2に記載の照明装置。
  7.  前記光源から出射された光を励起光として入射して、蛍光を発する蛍光体素子を備え、
     前記集光位置の移動により、前記蛍光体素子に到達する前記集光光の位置が移動する請求項1から6のいずれか1項に記載の照明装置。
  8.  前記蛍光体素子は、異なる色温度の光を発する複数の第1の領域を含み、
     前記集光位置の移動により、前記蛍光体素子に到達する前記集光光が、前記第1の領域に到達する請求項7に記載の照明装置。
  9.  透過する光の波長を選択して、選択された波長以外の光を反射する波長選択素子を備え、
     前記波長選択素子は、前記集光光学素子と前記蛍光体素子との間に配置されている請求項7から8のいずれか1項に記載の照明装置。
  10.  前記波長選択素子は、異なる波長の光を透過する複数の第2の領域を含む請求項9に記載の照明装置。
  11.  前記集光光を散乱させて散乱光とする拡散素子を備え、
     前記散乱光は、前記投射レンズに入射する請求項1から6のいずれか1項に記載の照明装置。
  12.  前記光軸の方向において、前記拡散素子は、前記投射レンズの焦点位置に配置されている請求項11に記載の照明装置。
  13.  前記光源から出射された光を平行光に変換する平行化レンズを備え、
     前記光源は、複数備えられ、
     前記平行化レンズから出射した前記光源に対応した複数の平行光は、互いに平行であり、
     前記集光光学素子は、前記平行化レンズから出射した光を集光する請求項1から12のいずれか1項に記載の照明装置。
  14.  請求項1から13のいずれか1項に記載の照明装置を搭載した前照灯装置。
PCT/JP2016/067634 2015-06-16 2016-06-14 前照灯装置及び照明装置 WO2016204139A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680030323.2A CN107614968B (zh) 2015-06-16 2016-06-14 前照灯装置及照明装置
JP2016567872A JP6127224B1 (ja) 2015-06-16 2016-06-14 前照灯装置及び照明装置
US15/560,727 US10288245B2 (en) 2015-06-16 2016-06-14 Headlight with illumination device having rotatable transmissive element for shifting light concentration position
DE112016002739.7T DE112016002739B4 (de) 2015-06-16 2016-06-14 Scheinwerfervorrichtung und Beleuchtungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015121029 2015-06-16
JP2015-121029 2015-06-16

Publications (1)

Publication Number Publication Date
WO2016204139A1 true WO2016204139A1 (ja) 2016-12-22

Family

ID=57545917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067634 WO2016204139A1 (ja) 2015-06-16 2016-06-14 前照灯装置及び照明装置

Country Status (5)

Country Link
US (1) US10288245B2 (ja)
JP (2) JP6127224B1 (ja)
CN (1) CN107614968B (ja)
DE (1) DE112016002739B4 (ja)
WO (1) WO2016204139A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107830491A (zh) * 2017-10-24 2018-03-23 郴州智上光电科技有限公司 一种增加led汽车灯的光通量利用率的方法及led汽车灯
WO2018150814A1 (ja) * 2017-02-16 2018-08-23 パナソニックIpマネジメント株式会社 光源装置および投光装置
WO2018154992A1 (ja) * 2017-02-27 2018-08-30 株式会社ジャパンディスプレイ 表示装置
WO2018199163A1 (ja) * 2017-04-27 2018-11-01 大日本印刷株式会社 照明装置
CN108844035A (zh) * 2017-04-04 2018-11-20 大众汽车有限公司 机动车的扫描大灯
JP2018190664A (ja) * 2017-05-10 2018-11-29 ウシオ電機株式会社 蛍光光源装置
WO2018216456A1 (ja) * 2017-05-26 2018-11-29 株式会社小糸製作所 光学ユニット
US11313969B2 (en) 2019-10-28 2022-04-26 Veoneer Us, Inc. LiDAR homodyne transceiver using pulse-position modulation
US11326758B1 (en) * 2021-03-12 2022-05-10 Veoneer Us, Inc. Spotlight illumination system using optical element
US11460550B2 (en) 2017-09-19 2022-10-04 Veoneer Us, Llc Direct detection LiDAR system and method with synthetic doppler processing
US11474218B2 (en) 2019-07-15 2022-10-18 Veoneer Us, Llc Scanning LiDAR system and method with unitary optical element
US11480659B2 (en) 2017-09-29 2022-10-25 Veoneer Us, Llc Detection system with reflective member illuminated from multiple sides
US11579257B2 (en) 2019-07-15 2023-02-14 Veoneer Us, Llc Scanning LiDAR system and method with unitary optical element
US11585901B2 (en) 2017-11-15 2023-02-21 Veoneer Us, Llc Scanning lidar system and method with spatial filtering for reduction of ambient light
US11732858B2 (en) 2021-06-18 2023-08-22 Veoneer Us, Llc Headlight illumination system using optical element

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017117027B3 (de) * 2017-07-27 2018-12-13 SMR Patents S.à.r.l. Projektionsvorrichtung, Rückblickvorrichtung und Kraftfahrzeug
JP6979168B2 (ja) * 2017-08-03 2021-12-08 大日本印刷株式会社 照明装置
JP7075842B2 (ja) * 2018-07-20 2022-05-26 スタンレー電気株式会社 車両用灯具
US10907798B2 (en) * 2019-06-13 2021-02-02 The Kirlin Company System and method for adjusting beam size while maintaining beam brightness
JP2021033133A (ja) * 2019-08-27 2021-03-01 株式会社ライトショー・テクノロジー 光源装置および投射型表示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006113297A (ja) * 2004-10-14 2006-04-27 Seiko Epson Corp 光走査装置、およびプロジェクタ
JP2007052957A (ja) * 2005-08-17 2007-03-01 Marumo Denki Kk Ledスポットライト
WO2008114502A1 (ja) * 2007-03-19 2008-09-25 Panasonic Corporation レーザ照明装置及び画像表示装置
JP2009224039A (ja) * 2008-03-13 2009-10-01 Koito Mfg Co Ltd 車両用前照灯
WO2009131126A1 (ja) * 2008-04-22 2009-10-29 株式会社小糸製作所 車両用灯具
JP2011142000A (ja) * 2010-01-07 2011-07-21 Stanley Electric Co Ltd 光源装置および照明装置
JP2012074354A (ja) * 2010-08-31 2012-04-12 Sharp Corp 照明装置、前照灯および移動体
JP2015015128A (ja) * 2013-07-04 2015-01-22 株式会社タムロン 照明装置、照明システム、撮像用照明装置および撮像システム
JP2015513187A (ja) * 2012-03-09 2015-04-30 コーニンクレッカ フィリップス エヌ ヴェ 色調整可能な発光装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19530008B4 (de) * 1995-08-16 2005-02-03 Automotive Lighting Reutlingen Gmbh Beleuchtungseinrichtung für Fahrzeuge mit einer reflektierenden Umlenkvorrichtung
JPH116603A (ja) 1997-06-17 1999-01-12 Mitsubishi Heavy Ind Ltd ミストキャッチャ
JP2003295112A (ja) * 2002-04-05 2003-10-15 Canon Inc 走査型画像表示光学系、走査型画像表示装置および画像表示システム
JP2004347777A (ja) 2003-05-21 2004-12-09 Olympus Corp 全反射蛍光顕微鏡
JP4024721B2 (ja) * 2003-06-20 2007-12-19 株式会社小糸製作所 車両用灯具及び光源モジュール
JP2005031529A (ja) * 2003-07-09 2005-02-03 Sony Corp 投射型画像表示装置
WO2007125485A1 (en) * 2006-05-02 2007-11-08 Koninklijke Philips Electronics N.V. Vehicle headlight
US7703947B2 (en) * 2006-11-07 2010-04-27 Omnicolor, L.P. Method and apparatus for bidirectional control of the color and diffusion of a light beam
JP4997052B2 (ja) 2007-10-01 2012-08-08 株式会社小糸製作所 車両用前照灯
JP2009199854A (ja) 2008-02-21 2009-09-03 Seiko Epson Corp プロジェクタ
JP5152586B2 (ja) 2008-09-30 2013-02-27 カシオ計算機株式会社 光源装置及びプロジェクタ
US8496352B2 (en) * 2010-02-26 2013-07-30 Texas Instruments Incorporated Wavelength conversion
CN102884478A (zh) 2010-05-21 2013-01-16 Nec显示器解决方案株式会社 照明光学系统以及使用其的投影仪
JP5573473B2 (ja) 2010-08-06 2014-08-20 セイコーエプソン株式会社 光源装置及びプロジェクター
US8708537B2 (en) * 2010-08-31 2014-04-29 Sharp Kabushiki Kaisha Lighting apparatus, headlamp, and mobile body
US8354784B2 (en) 2010-09-28 2013-01-15 Intematix Corporation Solid-state light emitting devices with photoluminescence wavelength conversion
EP2447600B1 (en) * 2010-10-29 2019-02-27 Stanley Electric Co., Ltd. Vehicle headlight
JP5647499B2 (ja) * 2010-12-01 2014-12-24 スタンレー電気株式会社 車両用灯具
EP2461090B1 (en) * 2010-12-01 2020-07-01 Stanley Electric Co., Ltd. Vehicle light
JP2012221634A (ja) 2011-04-05 2012-11-12 Sharp Corp 照明装置及び前照灯
CN105549311B (zh) * 2011-08-27 2018-11-13 深圳市光峰光电技术有限公司 投影系统及其发光装置
EP2664842B1 (en) * 2011-10-12 2018-12-05 Stanley Electric Co., Ltd. Vehicle lighting unit
DE102012203442B4 (de) * 2012-03-05 2021-08-05 Coretronic Corporation Beleuchtungsvorrichtung mit einer pumplaserreihe und verfahren zum betreiben dieser beleuchtungsvorrichtung
TWI469398B (zh) * 2012-07-12 2015-01-11 Lextar Electronics Corp 發光裝置
FR2993831B1 (fr) * 2012-07-27 2015-07-03 Valeo Vision Systeme d'eclairage adaptatif pour vehicule automobile
WO2015019537A1 (ja) * 2013-08-07 2015-02-12 パナソニックIpマネジメント株式会社 照明装置、車両およびその制御方法
DE102013226650A1 (de) * 2013-12-19 2015-06-25 Osram Gmbh Erzeugen eines Lichtabstrahlmusters durch Beleuchten einer Leuchtstofffläche
DE102013226614A1 (de) * 2013-12-19 2015-06-25 Osram Gmbh Beleuchtungseinrichtung
TWI489141B (zh) * 2014-06-13 2015-06-21 中強光電股份有限公司 照明裝置
TWI513938B (zh) * 2014-10-01 2015-12-21 錼創科技股份有限公司 光學模組
JP5991389B2 (ja) 2015-01-19 2016-09-14 セイコーエプソン株式会社 照明装置及びプロジェクター

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006113297A (ja) * 2004-10-14 2006-04-27 Seiko Epson Corp 光走査装置、およびプロジェクタ
JP2007052957A (ja) * 2005-08-17 2007-03-01 Marumo Denki Kk Ledスポットライト
WO2008114502A1 (ja) * 2007-03-19 2008-09-25 Panasonic Corporation レーザ照明装置及び画像表示装置
JP2009224039A (ja) * 2008-03-13 2009-10-01 Koito Mfg Co Ltd 車両用前照灯
WO2009131126A1 (ja) * 2008-04-22 2009-10-29 株式会社小糸製作所 車両用灯具
JP2011142000A (ja) * 2010-01-07 2011-07-21 Stanley Electric Co Ltd 光源装置および照明装置
JP2012074354A (ja) * 2010-08-31 2012-04-12 Sharp Corp 照明装置、前照灯および移動体
JP2015513187A (ja) * 2012-03-09 2015-04-30 コーニンクレッカ フィリップス エヌ ヴェ 色調整可能な発光装置
JP2015015128A (ja) * 2013-07-04 2015-01-22 株式会社タムロン 照明装置、照明システム、撮像用照明装置および撮像システム

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150814A1 (ja) * 2017-02-16 2018-08-23 パナソニックIpマネジメント株式会社 光源装置および投光装置
WO2018154992A1 (ja) * 2017-02-27 2018-08-30 株式会社ジャパンディスプレイ 表示装置
CN108844035A (zh) * 2017-04-04 2018-11-20 大众汽车有限公司 机动车的扫描大灯
JPWO2018199163A1 (ja) * 2017-04-27 2020-03-12 大日本印刷株式会社 照明装置
WO2018199163A1 (ja) * 2017-04-27 2018-11-01 大日本印刷株式会社 照明装置
US11732860B2 (en) 2017-04-27 2023-08-22 Dai Nippon Printing Co., Ltd. Illumination device
JP7022394B2 (ja) 2017-04-27 2022-02-18 大日本印刷株式会社 照明装置
JP2018190664A (ja) * 2017-05-10 2018-11-29 ウシオ電機株式会社 蛍光光源装置
JP7009465B2 (ja) 2017-05-26 2022-02-10 株式会社小糸製作所 光学ユニット
WO2018216456A1 (ja) * 2017-05-26 2018-11-29 株式会社小糸製作所 光学ユニット
US11353188B2 (en) 2017-05-26 2022-06-07 Koito Manufacturing Co., Ltd. Optical unit
JPWO2018216456A1 (ja) * 2017-05-26 2020-03-26 株式会社小糸製作所 光学ユニット
US11460550B2 (en) 2017-09-19 2022-10-04 Veoneer Us, Llc Direct detection LiDAR system and method with synthetic doppler processing
US11480659B2 (en) 2017-09-29 2022-10-25 Veoneer Us, Llc Detection system with reflective member illuminated from multiple sides
CN107830491A (zh) * 2017-10-24 2018-03-23 郴州智上光电科技有限公司 一种增加led汽车灯的光通量利用率的方法及led汽车灯
US11585901B2 (en) 2017-11-15 2023-02-21 Veoneer Us, Llc Scanning lidar system and method with spatial filtering for reduction of ambient light
US11579257B2 (en) 2019-07-15 2023-02-14 Veoneer Us, Llc Scanning LiDAR system and method with unitary optical element
US11474218B2 (en) 2019-07-15 2022-10-18 Veoneer Us, Llc Scanning LiDAR system and method with unitary optical element
US11313969B2 (en) 2019-10-28 2022-04-26 Veoneer Us, Inc. LiDAR homodyne transceiver using pulse-position modulation
US11326758B1 (en) * 2021-03-12 2022-05-10 Veoneer Us, Inc. Spotlight illumination system using optical element
US11732858B2 (en) 2021-06-18 2023-08-22 Veoneer Us, Llc Headlight illumination system using optical element

Also Published As

Publication number Publication date
DE112016002739B4 (de) 2021-12-09
JP6419248B2 (ja) 2018-11-07
US10288245B2 (en) 2019-05-14
JPWO2016204139A1 (ja) 2017-06-29
JP6127224B1 (ja) 2017-05-10
DE112016002739T5 (de) 2018-03-01
CN107614968A (zh) 2018-01-19
CN107614968B (zh) 2020-03-03
US20180051857A1 (en) 2018-02-22
JP2017120798A (ja) 2017-07-06

Similar Documents

Publication Publication Date Title
JP6419248B2 (ja) 前照灯装置及び照明装置
JP6542446B2 (ja) 前照灯モジュール
JP4024628B2 (ja) 車両用前照灯
JP6305660B2 (ja) 前照灯モジュール及び前照灯装置
JP4002159B2 (ja) 車両用前照灯
JP6324635B2 (ja) 前照灯モジュール及び前照灯装置
CN107960117B (zh) 前照灯模块及前照灯装置
JP6045719B2 (ja) 前照灯モジュール及び前照灯装置
CN102734732B (zh) 具有半导体光源的机动车头灯
JP2003065805A (ja) 照明及び表示装置
JP4008359B2 (ja) 車両用前照灯
WO2019049727A1 (ja) 車両用灯具
JP7218041B2 (ja) 車両用導光体及び車両用灯具ユニット
WO2015174312A1 (ja) 光源モジュールおよび車両用灯具
WO2021141052A1 (ja) 車両用灯具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016567872

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811613

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15560727

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016002739

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811613

Country of ref document: EP

Kind code of ref document: A1