WO2016200063A1 - 리포좀 및 리포좀-폴리머 하이브리드를 이용한 바이러스 검출방법 - Google Patents

리포좀 및 리포좀-폴리머 하이브리드를 이용한 바이러스 검출방법 Download PDF

Info

Publication number
WO2016200063A1
WO2016200063A1 PCT/KR2016/004956 KR2016004956W WO2016200063A1 WO 2016200063 A1 WO2016200063 A1 WO 2016200063A1 KR 2016004956 W KR2016004956 W KR 2016004956W WO 2016200063 A1 WO2016200063 A1 WO 2016200063A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
liposome
glycero
phosphatidylcholine
liposomes
Prior art date
Application number
PCT/KR2016/004956
Other languages
English (en)
French (fr)
Inventor
정봉현
정찬호
배판기
Original Assignee
재단법인 바이오나노헬스가드연구단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 바이오나노헬스가드연구단 filed Critical 재단법인 바이오나노헬스가드연구단
Publication of WO2016200063A1 publication Critical patent/WO2016200063A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses

Definitions

  • the present invention relates to a virus detection method using liposomes or liposome-polymer hybrids, and more particularly, to samples that are presumed to contain liposomes or liposome-polymer hybrids and viruses containing an electrochemically active substrate. After contacting, the present invention relates to a virus detection method comprising detecting the presence or absence of a virus through a change in current caused by the release of an electrochemically active substrate contained in a liposome or a liposome-polymer hybrid.
  • Liposomes are W / O / W type emulsions proposed by Bangham in the 1960s (J. Mol . Biol ., 13: 238, 1965), in which amphiphilic phospholipids are self-arranged by hydrophobic forces in the water phase.
  • the phospholipid membrane constituting the liposome has the same structure as the cell, and is easily used for cell introduction, and has a large space for supporting a water-soluble substance therein compared to other structures, so that it is used as a carrier and carrier for the water-soluble substance (Eur. J. Pharm . Biopham, 62: 110, 2006 ; Nat Rev. Drug Discov, 145:... 4, 1979).
  • liposomes are nano-sized (1 ⁇ m or less) capsules as phospholipid delivery and mediators, and they can contain both lipophilic and hydrophilic functional materials, so they are suitable for living organisms similar to human skin cells. It is a substance that, when added to a hydrophilic formulation, remains suspended and has surface stability.
  • Liposomes are spherical vesicles in which the phospholipid bilayer surrounds the water phase.
  • the lipid membrane is an amphiphilic phospholipid consisting of two hydrophobic fatty acid groups and a hydrophilic phosphate group, which forms a double membrane in aqueous solution, which forms closed vesicles like artificial cells.
  • the non-polar fatty acid tail faces the inside of the membrane and the polar head faces outward.
  • Incorporating drugs into such liposomes has been attracting attention as a structure of particle bodies prepared by assembling with polymers, drugs, and antigens, as it can enhance the therapy by reducing the toxicity of drugs and increasing their effects.
  • Liposomes are fully enclosed structures that include a lipid bilayer membrane containing encapsulated aqueous medium. Liposomes may comprise many concentric lipid bilayers (multilamellar vesicles or MLVs) or single membrane bilayers (unilamellar vesicles) separated by an aqueous phase.
  • the lipid bilayer consists of two lipid monolayers with hydrophobic "tail” and hydrophilic "head” regions. In the membrane bilayer, the hydrophobic “tails” in the lipid monolayer are arranged towards the center of the bilayer and the hydrophilic “heads” are arranged towards the aqueous phase.
  • the basic structure of liposomes can be prepared by known methods. For example, lipid molecules suspended in an organic solvent are evaporated under reduced pressure to form a dry film in a vessel, and an appropriate amount of aqueous phase is added to the vessel and the mixture is stirred. The mixture can then be prepared by standing without shaking for a time sufficient to form a multilamellar vesicle. Unilamella vesicles can also be prepared by known techniques (eg, US Pat.
  • Liposome-polymer hybrids are biofilm mimetic amphiphilic structures composed of low amounts of lipids (eg, phospholipids) and high molecular weight polymers (eg, amphiphilic block copolymers).
  • the liposome-polymer hybrid is composed of a lipid component having a biological function (receptor, molecular recognition, etc.) and a polymer having a structural function (structural stability, etc.) can be prepared to bind to the target material (Olubummo A1 et al. , Langmuir, 30 (1): .
  • Liposomes or liposome-polymer hybrids can be designed for diagnostic purposes.
  • Liposomes or liposome-polymer hybrids can be covalently bound to proteins, antibodies and immunoglobulins.
  • thiolated IgG or Protein A can be covalently bound to lipid vesicles and the thiolated antibody or Fab 'fragment can be bound to liposomes or liposome-polymer hybrids.
  • biosensor systems information is easier and more useful for analyzing data by detecting signals using the properties of nanomaterials that display color, fluorescence, or electromagnetic signals at the cellular or in vivo level.
  • Can provide Chemical and biosensors are materials or devices that detect and measure information from an object to be measured and change the measurable amount into a usable signal.
  • the sensor acquires information from the target, the sensor converts the signals into recognizable signals such as color, fluorescence, and electrical signals to assist human judgment.
  • the sensor recognizes the target material, it sends a signal through a signal converter for human recognition.
  • sensors used in biosensors require high selectivity and sensitivity to target materials to be detected.
  • Enzymes and antibodies have excellent substrate specificity and high binding capacity, but have the disadvantage of low stability and high price when immobilized in a sensor device.
  • Nanobiosensors are biosensors that are improved by advanced nanotechnology, which converts reactions by binding to biocognitive materials into signals, and refers to sensors that can quickly test specific materials. This is the same principle as the enzyme-substrate complex of the biological concept, in which one ligand is only reactive with one substance having a specific component for the ligand and measures the degree of reactivity.
  • Miniaturized biosensor using nanotechnology minimizes human injury and enables painless human diagnosis and has the advantage of directly analyzing single cells.
  • biosensors with improved operating characteristics such as high stability, fast response time, high sensitivity, and high selectivity using nanotechnology enable continuous measurement of human diagnosis and single-molecule analysis.
  • Detection of influenza viruses is most likely due to high specificity and sensitivity (0.01 to 100 pfu (plaque forming units) / mL) and assays based on reverse transcription polymerase chain reaction (RT-PCR).
  • RT-PCR reverse transcription polymerase chain reaction
  • the disadvantage is the need for expensive equipment and reagents.
  • rapid influenza detection tests are mainly performed by LFIA (Lateral Flow Immunoassay), which can detect viruses using virus-specific antibodies.
  • RIDTs can only detect relatively high concentrations of virus (10 3 -10 4 pfu / mL) (Kwon, D. et al., J. Clin . Microbiol . 49: 437-438, 2011; Su, LC et al., Anal.
  • biosensors that can detect infectious agents at low concentrations (number of objects), have high reproducibility, and can be realized at low cost and miniaturization (Grieshaber, D.). et al., Sensors , 8: 1400-1458, 2008). Unlike conventional fluorescence-based sensors, the biosensor can detect a biological sample that is cloudy or shows autofluorescence using an electrochemical method without a pretreatment process using a small amount of sample.
  • amperometric sensors or impedimetric sensors using bioreceptors have been developed, they have low sensitivity (10 3 pfu / mL) and have difficulty in increasing the stability of functionalized electrodes with biosensors (Karerich-Pedersen, K. et al. , Biosens . Bioelectron . 49: 374-379, 2013; Caygill, RL et al., Anal. Chim. Acta ., 681: 8-15, 2010).
  • Korean Patent No. 1561395 treats a hemagglutinin-specific degrading enzyme to activate a virus and contacts the activated virus with amphiphilic particles under acidic conditions of pH 4-8.
  • a virus detection method for detecting the presence or absence of a virus by detecting a change in fluorescence intensity emitted by self-quenching dye present in sex particles by dequenching.
  • detection methods essentially include viral hemagglutinin degrading enzymes and require conditions for bringing the activated virus into contact with the amphiphilic particles under acidic conditions. Therefore, the additional use of a reagent such as hemagglutinin degrading enzyme is inexpensive in terms of cost, and the process of forming and maintaining conditions suitable for detection is complicated and inefficient.
  • the present inventors have made intensive efforts to develop a method for easily detecting a target virus in a short time.
  • the inventors have incorporated an electrochemically active substrate into liposomes or liposome-polymer hybrids and are specific to viruses. Preparing liposomes or liposome-polymer hybrids that bind to them, and then liposomes or liposome-polymer hybrids when the virus binds to its liposomes or liposome-polymer hybrids containing an electrochemically active substrate through its own lipid membrane or membrane protein. By releasing the embedded electrochemically active substrate, it was confirmed that the virus can be easily detected by showing a change in current, thereby completing the present invention.
  • the present invention includes an electrochemically active substrate, includes a liposome or a liposome-polymer hybrid, and when the virus binds to the liposome or the liposome-polymer hybrid, the liposome or Provided are a virus detecting composition and a kit for detecting a virus, wherein the electrochemically active substrate contained in the liposome-polymer hybrid exhibits a current change.
  • the present invention also includes the steps of (a) containing an electrochemically active substrate and contacting a liposome or a liposome-polymer hybrid with a virus-containing putative sample; And (b) it provides a virus detection method comprising the step of confirming the current change in accordance with the contact of (a).
  • ELMID Electroactive Liposome-Mediated Influenza Detection
  • FIG. 2 shows particle size analysis and polydispersity index of the liposomes for detecting viruses containing K 4 Fe (CN) 6 (Potassium ferrocyanide (II)) by dynamic light scattering (DLS). And zeta potential (Z potential).
  • CN CN 6
  • Potassium ferrocyanide (II) Dynamic light scattering
  • Z potential zeta potential
  • Figure 3 shows cryo-TEM (cryogenic transmission electron microscopy) images of influenza-responosive liposomes (scale bar: 100 nm).
  • FIG. 4 shows cryo-TEM images of 2009 pandemic H1N1 virus (A / california / 07/2009) bound to influenza-responosive liposomes (yellow dashed line: virus; scale bar: 100 nm).
  • Figure 5 shows the electrochemical reaction of the influenza-responsive liposomes before and after lyophilization, liposomes before and after freezing at 2009 pandemic H1N1 virus (A / california / 07/2009, 5.2 ⁇ 10 6 pfu / mL) and 37 °C After reaction for 30 minutes, it was measured by cyclic voltammetry (error bar: standard deviation of 3 independent experiments).
  • FIG. 6 is a cyclic voltammetry method for confirming the change in current generated when a sample containing influenza, a target virus, is added using an influenza-responsive liposome containing K 4 Fe (CN) 6 (Potassium ferrocyanide (II)).
  • CN CN
  • II Potassium ferrocyanide
  • Figure 7 shows the electrochemical reaction before and after the heat treatment of influenza-responsive liposomes, 2009 pandemic H1N1 virus (A / california / 07/2009, 5.2 ⁇ 10 6 pfu / mL) treated for 10 minutes at 100 °C to liposomes Peak currents when added (error bar: standard deviation of 3 independent experiments).
  • Figure 8 shows the sensitivity and specificity of the ELMID method of Figure 1,
  • (a) is a 2009 pandemic H1N1 virus (A / california / 07/2009, 5.2 ⁇ 10 6 pfu / mL) diluted at 10-fold intervals or Medium (control; gray) was added to the influenza-reactive liposomes, reacted at 37 ° C. for 30 minutes, and confirmed by cyclic voltammetry
  • (b) shows the peak current of (a) by virus concentration
  • ( c) is the addition of various species of influenza A and influenza B to the influenza-reactive liposomes, reacted at 37 ° C.
  • Figure 9 shows the detection of influenza virus contained in the NP (nasopharyngeal) swab sample using the ELMID method, (a) adding the NP swab sample to influenza-reactive liposomes, and lab-scale three-electrode system (glassy cyclic voltammetry using a carbon electrode, followed by peak current, and (b) shows an image of a screen-printed electrode (SPE) useful for point-of-care detection. c) shows that the NP swab sample was added to influenza-reactive liposomes, reacted at 35 ° C. for 30 minutes, and then the peak current was monitored on the SPE by cyclic voltammetry (error bar: 3 independent times). Standard deviation of the experiment).
  • SPE screen-printed electrode
  • the present invention relates to a virus detection method using a liposome or a liposome-polymer hybrid, and more particularly, a sample presumed to contain a liposome or a liposome-polymer hybrid and a virus containing an electrochemically active substrate. After contacting, the present invention relates to a virus detection composition, and a virus detection method using the same, wherein the presence or absence of a virus is detected through a change in current caused by the contact.
  • receptor is a component of the membrane, consisting of proteins, lipids, carbohydrates, and combinations thereof.
  • lipid refers to a compound soluble in organic solvents, such as fats, waxes, steroids, sterols, glycolipids, terpenes, fats. Fat-soluble vitamins, prostaglandins, carotene, and the like, but are not limited thereto.
  • sample may be from, but is not limited to, a biological or environmental source.
  • biological sources body fluids of animals, plants, microorganisms, May be obtained from tissues, gases, and may include plasma, serum, etc.
  • environmental sources it may include soil, water, crystals, food, industrial products, and the like.
  • the average diameter of liposomes containing K 4 Fe (CN) 6 prepared for the detection of viruses is 142.3 ⁇ 5.2nm (by DLS (Dynamic light) scattering), zeta potential of -58.96 ⁇ 3.9 mV, polydispersity index (PI) of 0.1047 ⁇ 0.09 (higher PI increases the aggregation of liposomes), and the number of ferrocyanide ions per liposome It was found to be 1.2 ⁇ 10 5 (see Example 1).
  • the influenza virus can be contacted and release of the embedded electrochemically active substrate without including an enzyme that degrades HA of the influenza virus.
  • the negative charge of the liposome or liposome-polymer hybrid is sufficient to maintain the negative charge before detection by color development, for example, to maintain the negative charge in the sample state for detecting the electrochemically active substrate, or various experimental conditions possible before the electrical signal detection It is sufficient to maintain the negative charge under, but not limited to.
  • virus detection according to virus concentration is possible, and even at a low virus concentration of 5.2 ⁇ 10 pfu / mL.
  • the virus was found to be detectable. It is 100 times more sensitive than virus influenza detection tests (RIDTs), and the measurement (diagnosis) time is about 30 minutes, similar to the existing method (see Example 4).
  • influenza-responsive liposomes specifically react to influenza virus, and RSV (Human respiratory syncytial virus) ) And no cross-reaction (see Example 4).
  • influenza virus contained in the nasopharyngeal swab sample by ELMID method as shown in Figure 9a ((i) lab-scale three-electrode system), the lowest value The lower the Ct value, the higher the virus concentration; the distribution of Ct values in the used NP swab sample ranges from 9.09 to 24.37, while the influenza negative shows the highest peak current. It appeared similar to the media negative control (media CTL) (see Example 5).
  • FIG. 9C ((ii) SPE, screen-printed electrode), a liposome: virus volume ratio of 7: 1 was used to increase the signal intensity, which was similar to the lab-scale three-electrode system. The result was obtained.
  • the present invention in one aspect, includes an electrochemically active substrate, comprises a liposome or a liposome-polymer hybrid, and when the virus binds to the liposome or the liposome-polymer hybrid, the liposome or liposome
  • the present invention relates to a virus detection composition and a detection kit, wherein the electrochemically active substrate contained in the polymer hybrid exhibits a current change while being released.
  • the virus may bind to liposomes or liposome-polymer hybrids through viral lipid membranes or membrane proteins.
  • the viral membrane protein may be characterized as being HA (hemagglutinin).
  • the lipid membrane may be characterized in that the PC (Phosphatidylcholine), PI (Phosphoinositides), PS (Phosphatidylserine), PE (Phosphatidylethanolamine), SM (Sphingomyelin).
  • the liposome-polymer hybrid is a biofilm-like amphiphilic structure composed of a low amount of lipids (eg, phospholipids) and high molecular weight polymers (eg, amphiphilic block copolymers).
  • lipids eg, phospholipids
  • high molecular weight polymers eg, amphiphilic block copolymers
  • the liposome-polymer hybrid may be made of a lipid component having a biological function (receptor, molecular recognition, etc.) and a polymer having a structural function (structural stability, etc.) and may be manufactured to bind to a target material (Olubummo A1 et al., Langmuir , 30 (1): 259-67, 2014; Schulz M et al., Angew Chem Int Ed Engl ., 52 (6): 1829-33, 2013; Miglena I et al., Faraday Discuss. Chem . Soc ., 81: 303-311, 1986; Binder WH et al., Angew Chem . 115 (47): 5980-6007, 2003; Binder WH et al., Angew Chem Int Ed Engl ., 42 (47): 5802-27, 2003).
  • the influenza virus can be contacted and release of the embedded electrochemically active substrate without including an enzyme that degrades HA of the influenza virus.
  • the negative charge of the liposome or liposome-polymer hybrid is sufficient to maintain the negative charge before detection by color development, for example, to maintain the negative charge in the sample state for detecting the electrochemically active substrate, or various experimental conditions possible before the electrical signal detection It is sufficient to maintain the negative charge under, but not limited to.
  • the electrochemically active substrate is K 4 Fe (CN) 6 (Potassium ferrocyanide (II)), Ascorbic acid (Ascorbic acid), Ru (NH 3 ) 6 Cl 3 (Hexaammineruthenium (III) chloride), Ferrocene, ferrocene derivatives, quinones, quinone derivatives, ruthenium ammine complexes, osmium (II), osmium (III), osmium (IV) complexes osmium complex, metallocene, metallocene derivatives, potassium hexa-cyanoferrate (II), Melola's blue, Prussian blue (Prussian blue) dichlorophenolindophenol (DCPIP), o-phenylenediamine (o-PDA), 3,4-dihydroxybenzaldehyde (3,4-hydroxybenzaldehyde 4-DHB)), viologen, 7,7,8,8-tetracyanoquinodimethan
  • the liposome or the liposome-polymer hybrid containing the electrochemically active substrate may be further characterized by containing the target receptor.
  • the target receptor may be characterized in that it binds to the lipid membrane or membrane protein of the virus.
  • the target receptor is GT1b (Ganglioside GT1b), GD1b (Ganglioside GD1b), GQ1b (Ganglioside GQ1b), phosphatidylcholine (Phosphatidylcholine), GM2 (Ganglioside GM2), GM1 (Ganglioside GM1), GD1D (Glio) GB3 (Ganglioside GB3), GB4 (Ganglioside GB4), Sphingolipid (3'-sulfogalactosyl-ceramide) and may be selected from the group consisting of cholesterol (cholesterol).
  • cholesterol cholesterol
  • the current change is cyclic voltammetry, square wave voltammetry, normal pulse voltammetry, differential pulse voltammetry. Or it may be characterized by checking by impedance (impedance).
  • the virus is influenza virus (influenza virus), rubella virus (rubella virus), varicella-zoster virus (varicella-zoster virus), HAV (hepatitis A), HBV (hepatitis B), HSV ( herpes simplex virus, poliovirus, small pox, human immunodeficiency virus, HIV, vaccinia virus, rabies virus, Epstein Barr virus, Leo It may be characterized in that it is selected from the group consisting of a virus (reovirus) and rhinovirus (rhinovirus).
  • the liposome is phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylinositol (PI), egg phosphatidylcholine (EPC) , Egg phosphatidylglycerol (EPG), egg phosphatidylethanolamine (EPE), egg phosphatidylserine (EPS), egg phosphatidyl acid (EPA), egg phosphatidyl inositol (EPI), soy phosphatidylcholine (SPC), soy phosphatidylglycerol (SPG) Soy phosphatidylethanolamine (SPE), soy phosphatidylserine (SPS), soy phosphatidyl acid (SPA), soy phosphatidylinositol (SPI), dipalmito
  • the liposome-polymer hybrid is, for example, phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidic acid (PA), phosphatidyl inositol (PI) ), Egg phosphatidylcholine (EPC), egg phosphatidylglycerol (EPG), egg phosphatidylethanolamine (EPE), egg phosphatidylserine (EPS), egg phosphatidyl acid (EPA), egg phosphatidyl inositol (EPI), soy phosphatidylcholine (SPC) Soy phosphatidylglycerol (SPG), soy phosphatidylethanolamine (SPE), soy phosphatidylserine (SPS), soy phosphatidyl acid (SPA), soy phosphatidyl inos
  • PC
  • Influenza viruses are inserted into host cells through receptor-mediated endocytosis, in which the virus converts HA 0 to HA 1 / HA 2 through trypsin-mediated proteolytic cleavage at low pH, resulting in a host cell membrane. Enable fusion (Skehel, JJ et al., Annu . Rev. Biochem ., 69: 531-569, 2000; White, J. et al., J. Cell. Biol ., 89: 674-679, 1981 ).
  • the influenza virus can be contacted to release the contained electrochemically active substrate without including an enzyme that degrades HA of the influenza virus.
  • the negative charge of the liposome or liposome-polymer hybrid is sufficient to maintain the negative charge before detection by the current change, for example, various experimental conditions possible to maintain the negative charge in the sample state for detecting the current change or before detecting the current change. It is sufficient to maintain the negative charge under, but not limited to.
  • the present invention provides a method comprising the steps of: (a) containing an electrochemically active substrate and contacting a liposome or a liposome-polymer hybrid with a virus-containing putative sample; And (b) relates to a virus detection method comprising the step of confirming the current change in accordance with the contact of (a).
  • the influenza virus can be contacted and release of the embedded electrochemically active substrate without including an enzyme that degrades HA of the influenza virus.
  • the negative charge of the liposome or liposome-polymer hybrid is sufficient to maintain the negative charge before detection by color development, for example, to maintain the negative charge in the sample state for detecting the electrochemically active substrate, or various experimental conditions possible before the electrical signal detection It is sufficient to maintain the negative charge under, but not limited to.
  • the electrochemically active substrate is K 4 Fe (CN) 6 (Potassium ferrocyanide (II)), Ascorbic acid (Ascorbic acid), Ru (NH3) 6Cl3 (Hexaammineruthenium (III) chloride), Ferrocene (ferrocene) ), Ferrocene derivatives, quinones, quinone derivatives, ruthenium ammine complexes, osmium (II), osmium (III), osmium (IV) complex , Metallocene, metallocene derivatives, potassium hexa-cyanoferrate (II), Melola's blue, Prussian blue Dichlorophenolindophenol (DCPIP), o-phenylenediamine (o-PDA), 3,4-dihydroxybenzaldehyde (3,4-DHB) )), Viologen, 7,7,8,8-tetracyanoquinodimethane (7,7,8,8-tetracyanoquino
  • the liposome or the liposome-polymer hybrid containing the electrochemically active substrate may be further characterized by containing the target receptor.
  • the target receptor may be characterized in that it binds to the lipid membrane or membrane protein of the virus.
  • the viral membrane protein may be characterized as being HA (hemagglutinin).
  • the lipid membrane may be characterized in that the PC (Phosphatidylcholine), PI (Phosphoinositides), PS (Phosphatidylserine), PE (Phosphatidylethanolamine), SM (Sphingomyelin).
  • the target receptor is GT1b (Ganglioside GT1b), GD1b (Ganglioside GD1b), GQ1b (Ganglioside GQ1b), phosphatidylcholine (Phosphatidylcholine), GM2 (Ganglioside GM2), GM1 (Ganglioside GM1), GD1D (Glio) GB3 (Ganglioside GB3), GB4 (Ganglioside GB4), Sphingolipid (3'-sulfogalactosyl-ceramide) and may be selected from the group consisting of cholesterol (cholesterol).
  • cholesterol cholesterol
  • the current change of step (b) indicates that when the virus binds to the liposome or liposome-polymer hybrid through the lipid membrane or membrane protein, the electrochemically active substrate contained in the liposome is released to show the current change. It can be characterized.
  • checking whether the current changes in the step (b) may be performed through an oxidation or reduction reaction.
  • the current change is cyclic voltammetry, square wave voltammetry, normal pulse voltammetry, differential pulse voltammetry. Or it may be characterized by checking by impedance (impedance).
  • the virus is influenza virus (influenza virus), rubella virus (rubella virus), varicella-zoster virus (varicella-zoster virus), HAV (hepatitis A), HBV (hepatitis B), HSV ( herpes simplex virus, poliovirus, small pox, human immunodeficiency virus, HIV, vaccinia virus, rabies virus, Epstein Barr virus, Leo It may be characterized in that it is selected from the group consisting of a virus (reovirus) and rhinovirus (rhinovirus).
  • the liposome is phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylinositol (PI), egg phosphatidylcholine (EPC) , Egg phosphatidylglycerol (EPG), egg phosphatidylethanolamine (EPE), egg phosphatidylserine (EPS), egg phosphatidyl acid (EPA), egg phosphatidyl inositol (EPI), soy phosphatidylcholine (SPC), soy phosphatidylglycerol (SPG) Soy phosphatidylethanolamine (SPE), soy phosphatidylserine (SPS), soy phosphatidyl acid (SPA), soy phosphatidylinositol (SPI), dipalmito
  • the liposome-polymer hybrid is, for example, phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidic acid (PA), phosphatidyl inositol (PI) ), Egg phosphatidylcholine (EPC), egg phosphatidylglycerol (EPG), egg phosphatidylethanolamine (EPE), egg phosphatidylserine (EPS), egg phosphatidyl acid (EPA), egg phosphatidyl inositol (EPI), soy phosphatidylcholine (SPC) Soy phosphatidylglycerol (SPG), soy phosphatidylethanolamine (SPE), soy phosphatidylserine (SPS), soy phosphatidyl acid (SPA), soy phosphatidyl inos
  • PC
  • Influenza viruses are inserted into host cells through receptor-mediated endocytosis, in which the virus converts HA 0 to HA 1 / HA 2 through trypsin-mediated proteolytic cleavage at low pH, resulting in a host cell membrane. Enable fusion (Skehel, JJ et al., Annu . Rev. Biochem . , 69: 531-569, 2000; White, J. et al., J. Cell. Biol. , 89: 674-679, 1981 ).
  • the influenza virus can be contacted to release the contained electrochemically active substrate without including an enzyme that degrades HA of the influenza virus.
  • the negative charge of the liposome or liposome-polymer hybrid is sufficient to maintain the negative charge before detection by the current change, for example, various experimental conditions possible to maintain the negative charge in the sample state for detecting the current change or before detecting the current change. It is sufficient to maintain the negative charge under, but not limited to.
  • liposomes or liposome-polymer hybrids may contain (capture) various molecules such as absorbers, fluorescent materials, electrochemicals, or chemiluminescent materials in the inner aqueous phase. It is possible to change the composition of liposomes and the ability to capture a large number of substances, it is possible to obtain amplified signals and instantaneous signal can detect a small amount of virus in a short time.
  • Example 1 Preparation of liposomes or liposome-polymer hybrids containing K 4 Fe (CN) 6 (Potassium ferrocyanide (II))
  • For virus detection liposomes 80 mol% POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, Avanti Polar Lipids Inc., USA), 20 mol% POPG (1-palmitoyl-2-oleoyl-sn-glycero Dissolved in chloroform using -3-phospho- (1'-rac-glycero), Avanti Polar Lipids Inc., USA), and then evaporated the chloroform for at least 1 hour under reduced pressure, and the chloroform was evaporated. Drying in a vacuum oven for 1 day to form a thin lipid film.
  • Liposome suspensions were prepared by dispersing 0-50 ⁇ M K 4 Fe (CN) 6 (Potassium ferrocyanide (II)) (Sigma-Aldrich, USA) for 10 minutes with an ultrasonicator (Jeiotech, Korea). Here, the process of freezing and thawing for the preparation of liposomes of a single lipid layer was repeated five times.
  • the liposomes of the same size were prepared after passing through a 100-200 nm pore size filter using a Mini-Extruder (Avanti Polar Lipids Inc., USA) for the production of uniform size liposomes.
  • liposomes containing POPC / POPG (molar ratio 4: 1) prepared as liposomes for virus detection were named influenza-responsive liposomes.
  • Figure 3 shows the cryo-TEM (cryogenic transmission electron microscopy) image of influenza-responsive liposomes.
  • a method for preparing a liposome-polymer hybrid is prepared by dissolving an appropriate amount of lipid components (PC, PE, PS, etc.) in chloroform-methanol, depositing it on a platinum electrode, applying an electric field, and adding distilled water.
  • liposome electroformation (Olubummo A1 et al., Langmuir , 30 (1): 259-67, 2014; Schulz M et al., Angew) Chem Int Ed Engl . , 52 (6): 1829-33, 2013; Miglena I et al., Faraday Discuss. Chem .
  • the liposome is a lipid receptor (Ganglioside GT1b), GD1b (Ganglioside GD1b), GQ1b (Ganglioside GQ1b), Phosphatidylcholine (GM2), GM2 (Ganglioside GM2), Specific to GM1 (Ganglioside GM1), GD1a (Ganglioside GD1a), GB3 (Ganglioside GB3), GB4 (Ganglioside GB4), Sphingolipid (3'-sulfogalactosyl-ceramide), Cholesterol, or Virus Binding proteins, lipids and glycosylation moieties were prepared.
  • the average diameter of liposomes containing K 4 Fe (CN ) 6 prepared for the detection of viruses is 142.3 ⁇ 5.2nm (by DLS (Dynamic light scattering), Zeta Potential) Silver -58.96 ⁇ 3.9mV, polydispersity index (PI) was 0.1047 ⁇ 0.09 (higher PI increased the aggregation of liposomes), and the number of ferrocyanide ions per liposome was 1.2 ⁇ 10 5 appear.
  • Table 1 shows the results of predicting the number of K 4 Fe (CN) 6 (Potassium ferrocyanide (II)) contained in the virus detection liposomes.
  • C Fe is determined by comparing the standard ferrocyanide concentration and the standard curve of peak current.
  • Influenza viruses prepared by conventional methods in the art are treated to liposomes containing K 4 Fe (CN) 6 (Potassium ferrocyanide (II)) at an appropriate concentration and exposure time and subjected to cyclic voltammetry [Fe ( CN) 6 ] 4- (ferrocyanide) release (degree) was measured to detect the virus.
  • a method of detecting influenza virus using liposomes containing ferrocyanide was named ELMID (Electroactive Liposome-Mediated Influenza Detection) (see FIG. 1).
  • liposomes encompassing the K 4 Fe (CN) 6 is liposomes encompassing K 4 Fe (CN) 6 - may be replaced by the polymer hybrid.
  • a buffer citrate-phosphate buffer, pH 5.0
  • Liposomes containing K 4 Fe (CN) 6 may be prepared to further contain virus specific membrane proteins, lipid membranes or glycosylation moieties.
  • the electrochemical cell is then filled with a sample containing the liposomes and virus, and the potential is set by bringing three electrodes (glassy carbon, reference electrode (Ag / AgCl) and counter electrode (Pt)) into contact with the solution.
  • the oxidation and reduction currents were measured by cyclic voltammetry (CV) by adjusting (eg, -0.2 V and 0.6 V at 100 mVs -1 vs. Ag / AgCl).
  • CV cyclic voltammetry
  • the differential pulse current curve can be obtained by applying a voltage in a suitable range to the electrochemically active substrate to the working electrode through a constant potential.
  • pandemic H1N1 virus (A / california / 07/2009, 5.2 ⁇ 10 6 pfu / mL; red) or medium (control; gray) was added to the influenza-reactive liposomes, followed by 30 min reaction at 37 ° C., followed by circulating voltage Amperometric confirmation of the release of ferrocyanide (degree).
  • pandemic H1N1 virus (A / california / 07/2009, 5.2 ⁇ 10 6 pfu / mL; red) or medium (control; grey) is added to the influenza-responsive liposomes and then reacted at 37 ° C. for 0-60 minutes, The release of ferrocyanide was confirmed by cyclic voltammetry at 5 minute intervals.
  • Influenza viruses are inserted into host cells through receptor-mediated endocytosis, in which the virus converts HA 0 to HA 1 / HA 2 through trypsin-mediated proteolytic cleavage at low pH, resulting in a host cell membrane. Enable fusion (Skehel, JJ et al., Annu . Rev. Biochem ., 69: 531-569, 2000; White, J. et al., J. Cell. Biol. , 89: 674-679, 1981 ).
  • Liposomes with negative charges have been reported to bind and fuse with viruses even at low or neutral pH (Haywood, AM et al., Proc . Natl . Acad . Sci. USA , 82: 4611-4615, 1985; Nussbaum, O. et al., J. Gen. Virol . 73: 2831-2837, 1992). Therefore, in order to confirm the release of pH-dependent ferrocyanide from the negatively charged influenza-responsive liposome prepared in Example 1, the reaction was performed at 37 ° C.
  • pandemic H1N1 virus (A / california / 07/2009, 5.2 ⁇ 10 6 pfu / mL) was added 20 ⁇ L of TPCK-trypsin (Thermo Fisher Scientific, 0.1 unit / ⁇ L) and treated at 37 ° C. for 30 minutes. . Then, trypsin-treated 2009 pandemic H1N1 virus was added to liposomes, and reacted at 37 ° C. for 30 minutes, and then the release of ferrocyanide was confirmed by cyclic voltammetry.
  • TPCK-trypsin Thermo Fisher Scientific, 0.1 unit / ⁇ L
  • the virus membrane protein HA hemagglutinin
  • the virus was heated and reacted with liposomes. That is, 2009 pandemic H1N1 virus (A / california / 07/2009, 5.2 ⁇ 10 6 pfu / mL) (control: unheat-treated virus) treated for 10 minutes at 100 ° C. was added to liposomes to inactivate the HA of the virus. The peak currents measured by cyclic voltammetry were compared (see Geiss, GK et al., J. Virol . 75: 4321-4331, 2001).
  • the ELMID method was able to detect the virus independent of the HA activity of the virus when measuring the binding between the virus and liposomes by cyclic voltammetry.
  • liposomes encompassing the K 4 Fe (CN) 6 is liposomes encompassing K 4 Fe (CN) 6 - may be replaced by the polymer hybrid.
  • Lyophilization of influenza-responsive liposomes is accomplished using Freeze drier (FDU-2100, EYELA, Japan), (i) freezing at -80 ° C for 2 hours, and (ii) vacuum at -80 ° C overnight. After drying in the state, (iii) secondary drying overnight at 25 ° C. When hydrating lyophilized liposomes, lyophilized liposomes were added to the same volume of distilled water and shaken carefully to obtain hydrated liposomes.
  • Freeze drier FDU-2100, EYELA, Japan
  • virus titer The detection of virus according to virus type (influenza A, influenza B, RSV A and RSV B) and virus titer was compared by cyclic voltammetry.
  • the liposome containing K 4 Fe (CN) 6 may be replaced with a liposome-polymer hybrid containing K 4 Fe (CN) 6 .
  • Sensitivity 2009 pandemic H1N1 virus (A / california / 07/2009, 5.2 ⁇ 10 6 pfu / mL) diluted in 10-fold intervals, medium (Media CTL, negative control) or Triton X at appropriate concentration -100 (positive control) was added to 100 mM KCl and 100 mM CP buffer (citrate-phosphate buffer, pH 5.0) containing influenza-responsive liposomes, reacted at 37 ° C for 30 minutes, and then detected by cyclic voltammetry. It was confirmed.
  • the virus can be detected according to the virus concentration (titer), and the virus can be detected even at a low virus concentration of 5.2 ⁇ 10 pfu / mL.
  • This virus was 100 times more sensitive than conventional rapid influenza detection tests (RIDTs), and the measurement (diagnosis) took about 30 minutes.
  • the viral load contained in the nasal swab or throat swab of a typical influenza infected patient is 10 to 10 4 pfu / mL (Suess, T. et al. PLoS One 7: e51653, 2012).
  • the ELMID method is very useful for virus detection.
  • the virus can be detected using the cyclic voltammetry regardless of influenza virus species. That is, the ELMID method is a very useful virus detection method in that the virus can be detected irrespective of the mutant type of the viral membrane protein expressed in the newly appearing mutant influenza virus.
  • ELMID Electroactive Liposome-Mediated Influenza Detection
  • RSV Human
  • ELMID detection of RSV Weissenhorn, W. et al., FEBS Lett ., 581: 2150-2155, 2007; Bawage, SS et al., Adv . Virol . , 2013: 595768, 2013; Chaiwatpongsakorn, S. et al., J. Virol ., 85: 3968-3977, 2011).
  • influenza-responsive liposomes were found to specifically react to influenza virus and not cross-react with RSV.
  • Table 2 shows the electrochemical reactions of 14 influenza viruses using the ELMID method.
  • liposomes containing K 4 Fe (CN) 6 used for virus detection can be replaced with liposome-polymer hybrids containing K 4 Fe (CN) 6 .
  • FIG. 9C SPE, screen-printed electrode
  • a liposome: virus volume ratio of 7: 1 was used to increase the signal intensity. Similar results to the lab-scale three-electrode system were obtained. .
  • parainfluenza parainfluenza type 3 virus was added to influenza-reactive liposomes, and then reacted at 37 ° C. for 30 minutes, and then the release (degree) of K 4 Fe (CN) 6 was confirmed by cyclic voltammetry.
  • Each control group 'Media CTRL' means no virus
  • 'HPIV3' means parainfluenza type 3 virus (6 ⁇ 10 4 pfu / ml)
  • '' influenza 'means 2009 pandemic H1N1 virus (A / california / 07/2009, meaning 2.72 ⁇ 10 5 pfu / mL).
  • influenza-responsive liposomes were confirmed to specifically react to influenza virus and not cross-react with parainfluenza type 3.
  • MDCK Mesh-Darby Canine Kidney, ATCC CCL-344
  • ATCC American Type Culture Collection
  • MDCK cells 10% FBS ( cultured in MEM medium (Minimal Essential Medium) (Gibco BRL, Grand Island, USA) containing fetal bovine serum), 1x antibiotic-antimycotic mixture, 1x MEM vitamin solution, and 50 ⁇ g / ml gentamicin.
  • FBS cultured in MEM medium (Minimal Essential Medium) (Gibco BRL, Grand Island, USA) containing fetal bovine serum
  • 1x antibiotic-antimycotic mixture 1x MEM vitamin solution
  • 50 ⁇ g / ml gentamicin 50 ⁇ g / ml gentamicin.
  • Nasopharyngeal (NP) samples were collected from seven patients with symptoms of influenza virus, and the samples were added to virus transport media (UTM, Copan Diagnostics Inc., USA) and stored at -70 ° C.
  • virus transport media ULM, Copan Diagnostics Inc., USA
  • the AdvanSure RV real-time PCR kit LG Life Sciences, Korea
  • the Ct (threshold cycle) value was obtained according to the instruction manual of the SLAN Real-Time Quantitative PCR Detection System.
  • a positive response to influenza virus was determined by using a cut-off of Ct of 25.
  • Virus detection method using a liposome or liposome-polymer hybrid containing an electrochemically active substrate according to the present invention is not electrochemically active substrate out of the liposome or liposome-polymer hybrid, high stability to oxygen or chemical reaction, When the virus binds to liposomes or liposome-polymer hybrids, the virus detection signal is markedly high because the electrochemically active substrate contained in the liposomes or liposome-polymer hybrids reacts with the electroinductive substance to show a change in current.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 리포좀 또는 리포좀-폴리머 하이브리드를 이용한 바이러스 검출방법에 관한 것으로, 더욱 자세하게는 전기화학적 활성기질이 내포된 리포좀 또는 리포좀-폴리머 하이브리드(liposome-polymer hybrid)와 바이러스를 함유하는 것으로 추정되는 시료를 접촉시킨 다음, 상기 접촉으로 리포좀 또는 리포좀-폴리머 하이브리드에 내포된 전기화학적 활성기질의 방출에 따른 전류 변화를 통해 바이러스의 유무를 검출하는 것을 특징으로 하는 바이러스 검출방법에 관한 것이다. 본 발명에 따른 전기화학적 활성기질을 내포하는 리포좀 또는 리포좀-폴리머 하이브리드를 이용한 바이러스의 검출방법은 상기 리포좀 또는 리포좀-폴리머 하이브리드에 바이러스가 결합할 경우, 리포좀 또는 리포좀-폴리머 하이브리드에 내포된 전기화학적 활성기질이 방출되어 전류 변화를 나타냄으로써 바이러스 검출신호가 현저히 높은 것으로 나타났다.

Description

리포좀 및 리포좀-폴리머 하이브리드를 이용한 바이러스 검출방법
본 발명은 리포좀 또는 리포좀-폴리머 하이브리드를 이용한 바이러스 검출방법에 관한 것으로, 더욱 자세하게는 전기화학적 활성기질이 내포된 리포좀 또는 리포좀-폴리머 하이브리드(liposome-polymer hybrid)와 바이러스를 함유하는 것으로 추정되는 시료를 접촉시킨 다음, 상기 접촉으로 리포좀 또는 리포좀-폴리머 하이브리드에 내포된 전기화학적 활성기질의 방출에 따른 전류 변화를 통해 바이러스의 유무를 검출하는 것을 특징으로 하는 바이러스 검출방법에 관한 것이다.
리포좀은 1960년대 뱅험이 제안한 W/O/W 형태의 에멀젼으로서(J. Mol . Biol ., 13: 238, 1965), 양친매성의 인지질이 수상에서 소수성의 힘에 의해 자가배열되어 있는 구조체이다. 리포좀을 구성하고 있는 인지질막은 세포의 구조와 동일하여, 세포이입이 쉽고, 다른 구조체에 비해 내부에 수용성 물질을 담지할 수 있는 공간이 커서 수용성 물질의 전달체 및 담지체로 사용되고 있다(Eur. J. Pharm . Biopham ., 62:110, 2006; Nat. Rev. Drug Discov., 145:4, 1979).
일반적으로 리포좀(Liposome)은 인지질로 구성된 전달 및 매개체로써 나노 크기(1μm 이하)의 캡슐형상이며, 리포좀 내부에는 친유성과 친수성의 기능성 물질을 모두 함유시킬 수 있어 인체의 피부 세포와 유사한 생체에 적합성 물질이며 친수성 제형에 첨가하면 부유상태로 존재하게 되어 표면 안정성을 지닌다.
리포좀은 인지질 이중막이 수상을 둘러싸고 있는 구형의 소포(vesicle)이다. 지질막의 구성 성분은 두개의 소수성 지방산 그룹과 친수성의 인산기 그룹으로 이루어진 양친매성 인지질이며, 수용액에서 이중막을 형성하고 이것은 인공적인 세포처럼 닫힌 구조의 소포를 형성하기도 한다. 이중막 구조에서 비극성인 지방산 꼬리부분은 막의 안쪽을 향하고 극성인 머리 부분은 바깥쪽을 향하게 된다. 이러한 리포좀에 약물을 넣는 것은 약물의 독성을 감소시키고 이의 효과를 증가시킴으로써 치료요법을 강화시킬 수 있으므로, 고분자, 약물, 항원과 조립되어 제조되는 입자체의 구조로서 주목받고 있다.
리포좀은 포집된 수성 매질을 포함하는 지질 이중막(lipid bilayer membrane)을 포함하는 완전히 폐쇄된 구조이다. 리포좀은 수성상에 의하여 분리된 많은 동심 지질 이중층(멀티라멜라 소포 또는 MLV) 또는 단일 막 이중층(유니라멜라 소포)을 포함할 수 있다. 지질 이중층은 소수성 "꼬리(tail)" 영역과 친수성 "머리(head)" 영역을 갖는 2개 지질 단일층(monolayer)으로 구성된다. 막 이중층에서, 지질 단일층에서 소수성 "꼬리"는 상기 이중층의 중심쪽으로 향하여 배열되어 있고, 상기 친수성 "머리"는 수성상쪽으로 향하여 배열되어 있다.
리포좀의 기본구조는 알려진 방법에 의하여 제조될 수 있다. 예를 들면, 유기 용매 중에 현탁된 지질 분자를 감압하에 증발시켜 용기 내에 건조 필름을 형성하고, 적절한 양의 수성상을 상기 용기에 첨가한 후 혼합물을 교반한다. 그후, 상기 혼합물을 멀티라멜라 소포가 형성되기에 충분한 시간 동안 요동없이 방치함으로써 제조될 수 있다. 또한, 유니라멜라 소포도 알려진 기술에 의하여 제조될 수 있다(예, 미국특허 제4522803호).
리포좀-폴리머 하이브리드(liposome-polymer hybrid)는 저분량의 지질(예컨대, 인지질) 및 고분자량의 폴리머(예컨대, amphiphilic block copolymer)로 구성된 생체막 모방 양친매성 구조체이다. 상기 리포좀-폴리머 하이브리드는 생물학적 기능(리셉터, 분자인식 등)을 가지는 지질 성분과 구조적 기능(구조적 안정성 등)을 가지는 폴리머로 구성되어 표적 물질과 결합할 수 있도록 제조될 수 있다(Olubummo A1 et al., Langmuir, 30(1):259-67, 2014; Schulz M et al., Angew Chem Int Ed Engl., 52(6):1829-33, 2013; Miglena I et al., Faraday Discuss. Chem . Soc., 81:303-311, 1986; Binder WH et al., Angew Chem ., 115(47):5980-6007, 2003; Binder WH et al., Angew Chem Int Ed Engl., 42(47):5802-27, 2003).
단백질이 접합된 리포좀 또는 리포좀-폴리머 하이브리드는 진단용으로 설계될 수 있다. 리포좀 또는 리포좀-폴리머 하이브리드는 단백질, 항체 및 면역글로불린에 공유적으로 결합될 수 있다. 예를 들면, 티올화된 IgG 또는 단백질 A는 지질 소포에 공유적으로 결합될 수 있고, 티올화된 항체 또는 Fab' 단편은 리포좀 또는 리포좀-폴리머 하이브리드에 결합될 수 있다.
바이오센서 시스템의 경우 세포 수준(cellular level)이나 생체 내 수준(in vivo level)에서 색, 형광 또는 전자기적 신호를 띠는 나노물질의 특성을 이용하여 신호를 검출함으로써 데이터를 분석하는데 보다 쉽고 유용한 정보를 제공해 줄 수 있다. 화학 및 바이오센서는 측정 대상물로부터 정보를 감지, 측정하여 그 측정량을 인식 가능한 유용한 신호로 변화하는 물질 또는 장치이다. 센서는 표적(target)으로부터 정보를 획득할 때 색, 형광, 전기적 신호 등과 같이 인식 가능한 신호로 변환시켜 인간의 판단을 돕는다. 센서가 표적 물질을 인식하면 사람이 인식할 수 있도록 신호 변환기를 통해서 신호를 보내게 된다. 특히, 바이오센서에 이용되는 센서는 검출하고자 하는 표적 물질에 대한 높은 선택성과 감도가 요구된다. 효소와 항체의 경우 뛰어난 기질 특이성과 높은 결합력을 가지고 있으나 센서 장치에 고정화되었을 때 안정성이 떨어지고 가격이 비싼 단점을 지닌다.
나노바이오센서란 첨단 나노기술에 의해 개선된 바이오센서로서 생체인지물질과의 결합에 의한 반응을 신호로 변환시키며, 특정한 물질에 대해 빠른 검사가 가능한 센서를 가리킨다. 이는 생물학적 개념의 효소-기질 복합체와 같은 원리로 하나의 리간드는 상기 리간드에 대한 특이 성분을 가지는 한 가지 물질에 대해서만 반응성을 보이며, 그 반응성 정도를 측정한다는 원리이다. 나노기술을 응용한 소형화된 바이오센서는 인체손상을 극소화하여 무통 인체진단을 가능하게 하며, 단일 세포를 직접 분석할 수 있다는 장점을 가지고 있다. 또한 나노기술을 응용한 높은 안정성, 빠른 응답시간, 고감도, 높은 선택성 등 동작특성이 향상된 바이오센서는 인체진단의 연속측정을 가능하게 하며 단분자 단위의 분석을 수행할 수 있게 한다.
인플루엔자 바이러스의 검출방법은 높은 특이도(specificity)와 민감도(sensitivity)로 인해(0.01~100pfu(plaque forming units)/mL), RT-PCR(reverse transcription polymerase chain reaction)을 기반으로 하는 어세이가 가장 적합한 방법으로 사용되고 있으나(Peaper, D. R. et al., Clin . Lab. Med., 34:365-385, 2014; Rheem, I. et al., Ann. Lab. Med ., 32:399-406, 2012). 고가의 장비와 시약을 필요로 하는 단점이 있다. 반면, RIDTs(rapid influenza detection tests)는 바이러스 특이적인 항체를 이용하여 바이러스 검출이 가능한 신속진단검사(LFIA, Lateral Flow Immunoassay)가 주를 이룬다. 이 방법은 상대적으로 저렴하고 휴대가 편한 장비 및 시약을 이용하며 처리시간이 30분 정도로 신속한 장점이 있다(Centers for Disease Control and Prevention(CDC), MMWR Morb .Mortal. Wkly. Rep. 61:873-876, 2012). 다만, RIDTs는 비교적 높은 농도의 바이러스 검출(103-104 pfu/mL)만이 가능하고(Kwon, D. et al., J. Clin . Microbiol. 49:437-438, 2011; Su, L. C. et al., Anal. Chem., 84:3914-3920, 2012), 바이러스의 실질적인 양성판정의 기준이 20~90%로 넓은 범위에서 이루어지는 것으로 보고된 바 있어(Grijalva, C. G. et al., Pediatrics, 119:e6-e11, 2007; Hurt, A. C. et al., J. Clin . Virol ., 39:132-135, 2007; Uyeki, T. M. et al., Clin . Infect. Dis ., 48:e89-e92, 2009), 바이러스 감염에 대한 양성 여부에 대한 오판정이 생길 수 있다. 따라서, 높은 특이도로 간편하게 바이러스를 검출할 수 있는 방법이 필요한 실정이다.
기존의 RIDTs를 대체할 수 있는 방법으로 낮은 농도(개체수)의 감염원의 검출이 가능하고, 높은 재현성을 가지며, 낮은 비용과 소형화로 실현 가능한 전기화학적 바이오센서(electorchemical biosensors)가 있다(Grieshaber, D. et al., Sensors, 8:1400-1458, 2008). 상기 바이오센서는 소량의 시료를 이용하여 기존의 형광을 기반으로 하는 센서와는 달리 전처리 과정 없이 전기화학적 방법을 통해 혼탁하거나 자가형광을 나타내는 생물학적 시료의 검출이 가능하다
바이오리셉터를 이용한 amperometric 센서 또는 impedimetric 센서가 개발된 바 있으나, 민감도(103pfu/mL)가 낮고, 바이오센서로 기능화된 전극의 안정도를 높이는데 어려운 점이 있다(Kiilerich-Pedersen, K. et al., Biosens . Bioelectron. 49:374-379, 2013; Caygill, R. L. et al., Anal. Chim. Acta., 681: 8-15, 2010).
현재 대부분의 바이러스 검출방법은 금속, 고분자 중합체 등 인체에 유해한 물질을 사용하고 있고, 정확한 분자생물학적 진단을 위해서 바이러스 유래 단백질 또는 핵산을 정제한 다음, 항체 또는 프로브를 이용해야 하는 불편함이 항시 존재하고, 분석 전과정이 적게는 1일, 많게는 일주일 이상 소요된다.
바이러스 검출과 관련하여, 대한민국 등록특허 제1561395호는 바이러스의 헤마글루티닌에 특이적인 분해효소를 처리하여 바이러스를 활성화시키고, 활성화된 바이러스를 pH4~8의 산성 조건 하에서 양친성 입자와 접촉시킴으로써 양친성 입자 내부에 존재하는 자기-소광된 염료가 탈소광되어 방출하는 형광 강도의 변화를 검출함으로써, 바이러스의 존재 유무를 검출하는 바이러스 검출방법을 개시한다. 이러한 검출 방법은 바이러스 헤마글루티닌 분해효소를 필수적으로 포함하며, 활성화된 바이러스를 산성 조건하에서 양친성 입자와 접촉시키는 조건을 필요로 한다. 따라서, 헤마글루티닌 분해효소와 같은 시약을 추가 사용하여야 함에 따라 비용면에서 비경제적이고, 검출에 적합한 조건 형성 및 유지 과정이 복잡하여 비효율적인 측면이 있다.
이러한 기술적 배경 하에서, 본 발명자들은 표적 바이러스를 단시간 내에 쉽게 검출할 수 있는 방법을 개발하고자 예의 노력한 결과, 리포좀 또는 리포좀-폴리머 하이브리드(liposome-polymer hybrid) 내부에 전기화학적 활성기질을 내포하고 바이러스와 특이적으로 결합하는 리포좀 또는 리포좀-폴리머 하이브리드를 제조한 다음, 전기화학적 활성기질을 내포하는 리포좀 또는 리포좀-폴리머 하이브리드에 바이러스가 자체의 지질막 또는 막단백질을 통해 결합할 경우, 리포좀 또는 리포좀-폴리머 하이브리드에 내포된 전기화학적 활성기질이 방출되면서 전류 변화를 나타냄으로써 바이러스를 쉽게 검출할 수 있음을 확인하고, 본 발명을 완성하게 되었다.
발명의 요약
본 발명의 목적은 바이러스를 용이하게 검출하기 위한 검출용 조성물, 검출용 키트 및 이들을 이용한 바이러스 검출방법을 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은 전기화학적 활성기질을 내포하고, 리포좀 또는 리포좀-폴리머 하이브리드(liposome-polymer hybrid)를 포함하고, 상기 리포좀 또는 리포좀-폴리머 하이브리드에 바이러스가 결합할 경우, 리포좀 또는 리포좀-폴리머 하이브리드에 내포된 전기화학적 활성기질이 방출되면서 전류 변화를 나타내는 것을 특징으로 하는 바이러스 검출용 조성물 및 검출용 키트를 제공한다.
본 발명은 또한, (a) 전기화학적 활성기질을 내포하고, 리포좀 또는 리포좀-폴리머 하이브리드와 바이러스 함유 추정 시료를 접촉시키는 단계; 및 (b) 상기 (a)의 접촉에 따른 전류 변화를 확인하는 단계를 포함하는 바이러스의 검출방법을 제공한다.
도 1은 전기화학 활성기질인 K4Fe(CN)6(Potassium ferrocyanide(II))가 내포된 리포좀을 바이러스와 접촉(결합)시켰을 때 리포좀에 내포된 전기화학적 활성기질이 방출되면서 전류 변화를 나타낸 것이다. 여기서, K4Fe(CN)6 (이하, ferrocyanide이라 함)을 내포하는 리포좀을 이용하여 인플루엔자 바이러스를 검출하는 방법을 ELMID(Electroactive Liposome-Mediated Influenza Detection) 방법이라 명명하였다.
도 2는 K4Fe(CN)6(Potassium ferrocyanide(II))가 내포된 바이러스 검출용 리포좀의 특성을 동적광산란법(DLS, Dynamic light scattering)에 의한 입자크기 분석, 다분산지수(polydispersity Index) 및 제타 포텐셜(Z potential)로 나타낸 것이다. (a) K4Fe(CN)6이 내포되지 않은 리포좀; (b) K4Fe(CN)6이 내포된 리포좀.
도 3은 인플루엔자-반응 리포좀(influenza-responosive liposome)의 cryo-TEM(cryogenic transmission electron microscopy) 이미지를 나타낸 것이다(스케일 바: 100nm).
도 4는 인플루엔자-반응 리포좀(influenza-responosive liposome)에 결합된 2009 pandemic H1N1 바이러스(A/california/07/2009)의 cryo-TEM 이미지를 나타낸 것이다(황색 점선: 바이러스; 스케일 바: 100nm).
도 5는 인플루엔자-반응 리포좀의 동결건조 전후에 따른 전기화학적 반응을 나타낸 것으로, 동결전후의 리포좀을 2009 pandemic H1N1 바이러스(A/california/07/2009, 5.2×106pfu/mL)과 37℃에서 30분간 반응시킨 후 순환전압전류법으로 측정한 것을 나타낸 것이다(에러 바(error bar): 3회 독립 실험의 표준편차).
도 6은 K4Fe(CN)6(Potassium ferrocyanide(II))가 내포된 인플루엔자-반응 리포좀을 사용하여 표적 바이러스인 인플루엔자가 포함된 시료를 첨가하였을 때 나타나는 전류 변화를 순환전압전류법으로 확인한 것으로, (a)는 2009 pandemic H1N1 바이러스(A/california/07/2009, 5.2×106pfu/mL; 적색) 또는 배지(대조군; 회색)를 인플루엔자-반응 리포좀에 첨가하고, 37℃에서 30분간 반응시킨 다음, 순환전압전류법으로 확인한 것이고, (b)는 시간경과에 따른 K4Fe(CN)6가 내포된 인플루엔자-반응 리포좀으로부터 ferrocyanide의 방출을 확인한 것이며, (c)는 리포좀에 결합된 2009 pandemic H1N1 바이러스(황색 점선)의 TEM(transmission electron microscopy) 이미지를 나타낸 것이고(스케일 바: 100nm), (d)는 인플루엔자-반응 리포좀으로부터 pH 의존적인 ferrocyanide의 방출을 확인하기 위해 pH 4.5~7.0의 버퍼에 37℃에서 30분간 반응시킨 다음, 순환전압전류법으로 확인한 것이며, (e)는 트립신 처리된 2009 pandemic H1N1 바이러스를 리포좀에 첨가한 다음, 순환전압전류법으로 확인하고 피크 전류(peak current)로 나타낸 것이다.
도 7은 인플루엔자-반응 리포좀의 열처리 전후에 따른 전기화학적 반응을 나타낸 것으로, 100℃에서 10분간 처리된 2009 pandemic H1N1 바이러스(A/california/07/2009, 5.2×106pfu/mL)을 리포좀에 첨가했을때의 피크 전류를 비교한 것이다(에러 바(error bar): 3회 독립 실험의 표준편차).
도 8은 도 1의 ELMID 방법의 민감도와 특이도를 나타낸 것으로, (a)는 10배 간격으로 단계 희석된 2009 pandemic H1N1 바이러스(A/california/07/2009, 5.2×106pfu/mL) 또는 배지(대조군; 회색)를 인플루엔자-반응 리포좀에 첨가하고, 37℃에서 30분간 반응시킨 다음, 순환전압전류법으로 확인한 것이고, (b)는 (a)의 피크 전류를 바이러스 농도별로 나타낸 것이며, (c)는 인플루엔자 A 및 인플루엔자 B의 다양한 종을 인플루엔자-반응 리포좀에 첨가하고, 37℃에서 30분간 반응시킨 다음, 순환전압전류법으로 확인하고 피크 전류로 나타낸 것이고, (d)는 RSV A 및 RSV B를 다양한 농도로 인플루엔자-반응 리포좀에 첨가하고, 35℃에서 30분간 반응시킨 다음, 순환전압전류법으로 확인하고 피크 전류로 나타낸 것이다(에러 바(error bar): 3회 독립 실험의 표준편차).
도 9는 ELMID 방법을 이용하여 NP(nasopharyngeal) swab 시료에 포함된 인플루엔자 바이러스의 검출을 나타낸 것으로, (a)는 인플루엔자-반응 리포좀에 NP swab 시료를 첨가하고, lab-scale three-electrode system(glassy carbon electrode)를 이용하여 순환전압전류법으로 확인한 다음, 피크 전류로 나타낸 것이고, (b)는 POC(Point-of-care) 검출용으로 유용한 SPE(screen-printed electrode)의 이미지를 나타낸 것이며, (c)는 NP swab 시료를 인플루엔자-반응 리포좀에 첨가하고, 35℃에서 30분간 반응시킨 다음, 순환전압전류법으로 피크 전류를 SPE 상에서 모니터링한 것을 나타낸 것이다(에러 바(error bar): 3회 독립 실험의 표준편차).
도 10은 파라인플루엔자 (parainfluenza type 3) 바이러스를 인플루엔자-반응 리포좀에 첨가하여 반응시킨 후 순환전압전류법으로 K4Fe(CN)6의 방출 여부(정도)를 확인한 결과를 나타낸 것이다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명은 리포좀 또는 리포좀-폴리머 하이브리드(liposome-polymer hybrid)를 이용한 바이러스 검출방법에 관한 것으로, 더욱 자세하게는 전기화학적 활성기질이 내포된 리포좀 또는 리포좀-폴리머 하이브리드와 바이러스를 함유하는 것으로 추정되는 시료를 접촉시킨 다음, 상기 접촉에 따른 전류의 변화를 통해 바이러스의 유무를 검출하는 것을 특징으로 하는 바이러스 검출용 조성물, 및 이를 이용한 바이러스 검출방법에 관한 것이다.
용어 "수용체(receptor)"는 막(membrane)을 구성하는 성분으로서, 단백질, 지질, 탄수화물 및 이들의 조합으로 구성된다.
용어 "지질(lipid)"은 유기용매에 용해가능한 화합물을 의미하며, 예컨대 지방(fats), 왁스(waxes), 스테로이드(steroids), 스테롤(sterol), 당지질(glycolipids), 테르펜(terpenes), 지방-수용성 비타민(fat-soluble vitamins), 프로스타글란딘(prostaglandins), 카로틴(carotene) 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
용어 "시료", "표본(specimen) 또는 "샘플(sample)"이란, 생물학적 또는 환경학적 소스로부터 유래한 것일 수 있으나, 이에 한정되는 것은 아니다. 생물학적 소스의 경우, 동물, 식물, 미생물의 체액, 조직, 가스로부터 수득할 수 있으며, 혈장, 혈청 등을 포함할 수 있다. 환경학적 소스의 경우, 흙, 물, 크리스탈, 음식물, 공업산물 등을 포함할 수 있다.
본 발명의 일 실시예에서는, 도 2 및 표 1에 나타난 바와 같이, 바이러스의 검출을 위해 제조한 K4Fe(CN)6를 내포하는 리포좀의 평균 직경은 142.3±5.2nm(by DLS(Dynamic light scattering)), 제타 포텐셜은 -58.96±3.9mV, 다분산지수(polydispersity index, PI)는 0.1047±0.09로 나타났으며(PI가 클수록 리포좀의 응집(aggregation) 심화), 리포좀 당 ferrocyanide 이온의 수는 1.2×105인 것으로 나타났다(실시예 1 참조).
본 발명의 다른 실시예에서는, K4Fe(CN)6를 내포하는 리포좀을 이용하여 바이러스의 검출 여부를 확인하였다. 더욱 자세하게는, K4Fe(CN)6를 내포하는 리포좀과 인플루엔자 바이러스 간의 접촉(결합)에 영향을 미칠 수 있는 조건을 확인하고자 (i)~(v)의 조건으로 실험을 수행하였다.
(i) 인플루엔자 바이러스의 결합으로 K4Fe(CN)6가 내포된 인플루엔자-반응 리포좀으로부터 ferrocyanide의 방출 여부를 확인한 결과, 도 4, 도 6a 및 도 6c에 나타난 바와 같이, K4Fe(CN)6(Potassium ferrocyanide(II))이 내포된 리포좀과 인플루엔자 바이러스 간의 접촉(결합)으로 인해 리포좀으로부터 ferrocyanide이 방출되어 이에 따른 전류 변화를 삼전극 시스템을 이용한 순환전압전류법(Cyclic Voltammetry, CV)으로 확인 가능하여 바이러스의 검출이 가능하였다(대조군(바이러스 부재) 대비 실험군(바이러스 첨가)의 CV redox 신호가 3배 정도 증가함). 아울러, 바이러스 특이적 결합단백질, ssDNA 또는 aptamer와 같은 바이오리셉터가 부재하고, 인지질막으로 구성된 리포좀을 이용하더라도 바이러스 검출이 가능하였다(실시예 2-1 참조).
(ii) 시간경과에 따른 K4Fe(CN)6가 내포된 인플루엔자-반응 리포좀의 ferrocyanide 방출 여부를 확인한 결과, 도 6b에 나타난 바와 같이, 바이러스 첨가 후 바이러스의 결합으로 리포좀으로부터 ferrocyanide의 방출되는 최적 온도 및 시간은 37℃ 및 35분임을 확인하였다(실시예 2-2 참조).
(iii) 인플루엔자-반응 리포좀의 pH 의존적 ferrocyanide의 방출 여부를 확인한 결과, 도 6d에 나타난 바와 같이, pH를 증가시키면 ferrocyanide의 방출량은 감소하나, 중성 pH에서도 ferrocyanide의 방출이 있음을 확인하였다(실시예 2-3 참조).
(iv) 인플루엔자 바이러스의 트립신 처리 전후에 따른 인플루엔자-반응 리포좀의 ferrocyanide 방출 여부를 확인한 결과, 도 6e에 나타난 바와 같이, 트립신 처리와 무관하게 리포좀으로부터 ferrocyanide의 방출이 있음을 확인하였다. 따라서, ELMID 방법은 바이러스와 리포좀 결합시 트립신에 의한 바이러스 HA 단백질의 구조변화가 없더라도 바이러스의 검출이 가능한 방법임을 확인하였다(실시예 2-4 참조).
(v) 인플루엔자 바이러스의 열처리 전후에 따른 인플루엔자-반응 리포좀의 전기화학적 반응을 확인한 결과, 도 7에 나타난 바와 같이, ELMID 방법으로 바이러스 및 리포좀 간의 결합 여부를 순환전압전류법으로 측정 시 바이러스의 HA 활성에 비의존적으로 바이러스를 검출할 수 있었다(실시예 2-5 참조).
본 발명의 리포좀 또는 리포좀-폴리머 하이브리드가 음전하를 가지는 경우, 인플루엔자 바이러스의 HA를 분해하는 효소를 포함하지 않고도 인플루엔자 바이러스가 접촉하여 내포된 전기화학적 활성기질 방출이 가능하게 된다.
여기서, 상기 리포좀 또는 리포좀-폴리머 하이브리드의 음전하는 발색에 의한 검출 전 음전하를 유지하면 충분하며, 예를 들어 전기화학적 활성기질 검출하기 위한 시료 상태에서 음전하를 유지하거나, 전기 신호 검출 전 가능한 다양한 실험 조건하에서 음전하를 유지하면 충분하며, 이에 한정되는 것은 아니다.
본 발명의 또 다른 실시예에서는, 리포좀의 동결건조에 따른 바이러스의 검출 여부를 확인한 결과, 도 5에 나타난 바와 같이, 리포좀을 동결건조할 경우, 동결건조 전의 리포좀에 비해 리포좀으로부터 ferrocyanide 이온이 소량으로 자연 방출되는 것이 확인되었으나, 바이러스와 리포좀 간의 결합여부를 순환전압전류법으로 바이러스를 검출하는데는 별 차이가 없음을 확인하였다(실시예 3 참조).
본 발명의 또 다른 실시예에서는, ELMID 방법의 민감도를 확인한 결과, 도 8a 및 도 8b에 나타난 바와 같이, 바이러스 농도(titer)에 따른 바이러스 검출이 가능하고, 낮은 바이러스 농도인 5.2×10pfu/mL에서도 바이러스가 검출 가능한 것으로 확인되었다. 이는 바이러스 검출에 있어 기존 RIDTs(rapid influenza detection tests)에 비해 100배 가량 민감도가 높고, 측정(진단) 시간은 기존방법과 유사하게 약 30분 정도 소요되었다(실시예 4 참조).
본 발명의 또 다른 실시예에서는, ELMID 방법의 특이도를 확인한 결과, 표 2 및 도 8c에 나타난 바와 같이, 인플루엔자 바이러스 종과 무관하게 순환전압전류법을 이용한 바이러스 검출이 가능한 것으로 확인되었다(실시예 4 참조).
본 발명의 또 다른 실시예에서는, 상이한 바이러스 간의 교차반응(cross-reactivity)을 확인한 결과, 도 8d에 나타난 바와 같이, 인플루엔자-반응 리포좀은 인플루엔자 바이러스에 특이적으로 반응하고, RSV(Human respiratory syncytial virus)와 교차반응하지 않는 것으로 확인되었다(실시예 4 참조).
본 발명의 또 다른 실시예에서는, ELMID 방법으로 NP(nasopharyngeal) swab 시료에 포함된 인플루엔자 바이러스를 검출한 결과, 도 9a에 나타난 바와 같이((i) lab-scale three-electrode system), 가장 낮은 값의 Ct(Ct값이 낮을수록 바이러스 농도가 높아짐; 사용된 NP swab 시료의 Ct값의 분포는 9.09~24.37임)는 가장 높은 피크 전류(peak current)를 나타낸 반면, 인플루엔자 음성 실험군(influenza negative)은 배지 음성대조군(media CTL)과 유사하게 나타났다(실시예 5 참조). 또한, 도 9c에 나타난 바와 같이((ii) SPE, screen-printed electrode), 신호강도를 증가시키기 위해 리포좀:바이러스의 부피비율을 7:1로 반응시킨 결과, lab-scale three-electrode system과 유사한 결과를 얻었다.
즉, 소형화된 장비(ii)인 SPE를 이용하더라도 일반적인 실험실 장비(i)인 lab-scale three-electrode system과 대등하게, NP swab 시료로부터 유래된 소량의 바이러스를 인플루엔자-반응 리포좀과의 반응 및 순환전압전류법으로 검출할 수 있음을 확인하였다(실시예 5 참조).
따라서, 본 발명은 일 관점에서, 전기화학적 활성기질을 내포하고, 리포좀 또는 리포좀-폴리머 하이브리드(liposome-polymer hybrid)를 포함하고, 상기 리포좀 또는 리포좀-폴리머 하이브리드에 바이러스가 결합할 경우, 리포좀 또는 리포좀-폴리머 하이브리드에 내포된 전기화학적 활성기질이 방출되면서 전류 변화를 나타내는 것을 특징으로 하는 바이러스 검출용 조성물 및 검출용 키트에 관한 것이다.
본 발명에 있어서, 상기 바이러스는 바이러스 지질막 또는 막단백질을 통해 리포좀 또는 리포좀-폴리머 하이브리드에 결합할 수 있다. 이때, 상기 바이러스 막단백질은 HA(hemagglutinin)인 것을 특징으로 할 수 있다. 상기 지질막은 PC(Phosphatidylcholine), PI(Phosphoinositides), PS(Phosphatidylserine), PE(Phosphatidylethanolamine), SM(Sphingomyelin)인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 리포좀-폴리머 하이브리드(liposome-polymer hybrid)는 저분량의 지질(예컨대, 인지질) 및 고분자량의 폴리머(예컨대, amphiphilic block copolymer)로 구성된 생체막 모방 양친매성 구조체인 것을 특징으로 할 수 있으며, 상기 리포좀-폴리머 하이브리드는 생물학적 기능(리셉터, 분자인식 등)을 가지는 지질 성분과 구조적 기능(구조적 안정성 등)을 가지는 폴리머로 구성되어 표적 물질과 결합할 수 있도록 제조될 수 있다(Olubummo A1 et al., Langmuir, 30(1):259-67, 2014; Schulz M et al., Angew Chem Int Ed Engl., 52(6):1829-33, 2013; Miglena I et al., Faraday Discuss. Chem . Soc., 81:303-311, 1986; Binder WH et al., Angew Chem ., 115(47):5980-6007, 2003; Binder WH et al., Angew Chem Int Ed Engl., 42(47):5802-27, 2003).
본 발명의 리포좀 또는 리포좀-폴리머 하이브리드가 음전하를 가지는 경우, 인플루엔자 바이러스의 HA를 분해하는 효소를 포함하지 않고도 인플루엔자 바이러스가 접촉하여 내포된 전기화학적 활성기질 방출이 가능하게 된다.
여기서, 상기 리포좀 또는 리포좀-폴리머 하이브리드의 음전하는 발색에 의한 검출 전 음전하를 유지하면 충분하며, 예를 들어 전기화학적 활성기질 검출하기 위한 시료 상태에서 음전하를 유지하거나, 전기 신호 검출 전 가능한 다양한 실험 조건하에서 음전하를 유지하면 충분하며, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 전기화학적 활성기질은 K4Fe(CN)6(Potassium ferrocyanide(II)), 아스코르빈산(Ascorbic acid), Ru(NH3)6Cl3(Hexaammineruthenium(III) chloride), 페로센(ferrocene), 페로센 유도체(ferrocene derivatives), 퀴논(quinones), 퀴논 유도체(quinone derivatives), 루세늄 아민 복합체(ruthenium ammine complexes), 오스뮴(II), 오스뮴(III), 오스뮴(IV) 복합체(osmium complex), 메탈로센(metallocene), 메탈로센 유도체(metallocene derivatives), 포타슘헥사시아노페레이트(II)(Potassium hexa-cyanoferrate(II)), 멜돌라 블루(Melola's blue), 프루시안 블루(Prussian blue) 디클로로페놀인도피놀 (dichlorophenolindophenol(DCPIP)), o-페닐렌다이아민(o-phenylenediamine(o-PDA), 3,4-디하이드록시벤즈알데하이드(3,4-hydroxybenzaldehyde(3,4-DHB)), 비오로겐(viologen), 7,7,8,8-테트라시아노퀴노디메탄(7,7,8,8-tetracyanoquinodimethane(TCNQ)), 테트라티아풀발렌(tetrathiafulvalene(TTF)), N-메틸아시디니움(N-methylacidinium(NMA+)), 테트라티아테트라센(tetrathiatetracene(TTT)), N-메틸페나지니움(N-methylphenazinium(NMP+)), 3-메틸-2-벤조티오조리논히드라존(3-methyl-2-benzothiozolinonehydrazone), 2-메톡시-4-아릴페놀(2-methoxy-4-allylphenol), 4-아미노안티피린(4-aminoantipyrin (AAP)), 디메틸아닐린(dimethylaniline), 4-아미노안티피렌(4-aminoantipyrene), 4-메톡시나프톨(4-methylnaphthol), 3,3',5,5'-테트라메틸벤지딘(3,3‘,5,5-tetramethylbenzidine(TMB)), 2,2-아지노-디-[3-에틸-벤즈티아졸린술포네이트](2,2-azinodi-[3-ethylbenzthiazolinesulfonate]), o-디아지니딘(odianisidine), o-톨루이딘(o-toluidine), 2,4-디클로로페놀(2,4-dichlorophenol), 4-아미노페나존(4-aminophenazone) 및 벤지딘(benzidine)으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 전기화학적 활성기질을 내포하는 리포좀 또는 리포좀-폴리머 하이브리드는 표적 수용체를 추가로 내포하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 표적 수용체는 바이러스의 지질막 또는 막단백질과 결합하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 표적 수용체는 GT1b(Ganglioside GT1b), GD1b(Ganglioside GD1b), GQ1b(Ganglioside GQ1b), 포스파티딜콜린(Phosphatidylcholine), GM2(Ganglioside GM2), GM1(Ganglioside GM1), GD1a(Ganglioside GD1a), GB3(Ganglioside GB3), GB4(Ganglioside GB4), 스핑고리피드(Sphingolipid(3’-sulfogalactosyl-ceramide)) 및 콜레스테롤(cholesterol)로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 전류 변화는 순환전압전류법(cyclic voltammetry), 네모파전압전류법(square wave voltammetry), 정상펄스전압전류법(normal pulse voltammetry), 펄스차이전압전류법(differential pulse voltammetry) 또는 임피던스(impedance)로 확인하는 것을 특징으로 하는 할 수 있다.
본 발명에 있어서, 상기 바이러스는 인플루엔자 바이러스(influenza virus), 루벨라 바이러스(rubella virus), 바리셀라-조스타 바이러스(varicella-zoster virus), HAV(hepatitis A), HBV(hepatitis B), HSV(herpes simplex virus), 폴리오바이러스(poliovirus), 천연두 바이러스(small pox), HIV(human immunodeficiency virus), 백시니아 바이러스(vaccinia virus), 공수병 바이러스(rabies virus), 엡스타인바 바이러스(Epstein Barr virus), 레오바이러스(reovirus) 및 리노바이러스(rhinovirus)로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 리포좀은 포스파티딜콜린(PC), 포스파티딜글리세롤(PG), 포스파티딜에탄올아민(PE), 포스파티딜세린(PS), 포스파티드산(PA), 포스파티딜이노시톨(PI), 달걀 포스파티딜콜린(EPC), 달걀 포스파티딜글리세롤(EPG), 달걀 포스파티딜에탄올아민(EPE), 달걀 포스파티딜세린(EPS), 달걀 포스파티드산(EPA), 달걀 포스파티딜이노시톨(EPI), 콩 포스파티딜콜린(SPC), 콩 포스파티딜글리세롤(SPG), 콩 포스파티딜에탄올아민(SPE), 콩 포스파티딜세린(SPS), 콩 포스파티드산(SPA), 콩 포스파티딜이노시톨(SPI), 다이팔미토일포스파티딜콜린(DPPC), 1,2-다이올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 다이미리스토일포스파티딜콜린(DMPC), 다이팔미토일포스파티딜글리세롤(DPPG), 다이올렐포스파티딜글리세롤(DOPG), 다이미리스토일포스파티딜글리세롤(DMPG), 헥사데실포스포콜린(HEPC), 수소화된 콩 포스파티딜콜린(HSPC), 다이스테아로일포스파티딜콜린(DSPC), 다이스테아로일포스파티딜글리세롤(DSPG), 다이올레일포스파티딜에탄올아민(DOPE), 팔미토일스테아로일포스파티딜콜린(PSPC), 팔미토일스테아로일포스파티딜글리세롤(PSPG), 모노올레오일포스파티딜에탄올아민(MOPE), 1-팔미토일-2-올레오일-sn-글리세로-3-포스파티딜콜린(POPC), 폴리에틸렌글리콜 다이스테아로일포스파티딜에탄올아민(PEG-DSPE), 다이팔미토일포스파티딜세린(DPPS), 1,2-다이올레오일-sn-글리세로-3-포스파티딜세린(DOPS), 다이미리스토일포스파티딜세린(DMPS), 다이스테아로일포스파티딜세린(DSPS), 다이팔미토일포스파티드산(DPPA), 1,2-다이올레오일-sn-글리세로-3-포스파티드산(DOPA), 다이미리스토일포스파티드산(DMPA), 다이스테아로일포스파티드산(DSPA), 다이팔미토일포스파티딜이노시톨(DPPI), 1,2-다이올레오일-sn-글리세로-3-포스파티딜이노시톨(DOPI), 다이미리스토일포스파티딜이노시톨(DMPI), 다이스테아로일포스파티딜이노시톨(DSPI), POPE(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycero) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하나, 이에 한정되지 아니하고, 바람직하게는 DPPC(1,2-dipalmitoyl-sn-glycero-3-phosphocholine), DSPC(1,2-distearoyl-sn-glycero-3-phosphocholine), POPC(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) 및 POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycero)로 구성된 군에서 선택되는 1종 이상을 포함한다.
본 발명에 있어서, 상기 리포좀-폴리머 하이브리드는 예를 들어, 포스파티딜콜린(PC), 포스파티딜글리세롤(PG), 포스파티딜에탄올아민(PE), 포스파티딜세린(PS), 포스파티드산(PA), 포스파티딜이노시톨(PI), 달걀 포스파티딜콜린(EPC), 달걀 포스파티딜글리세롤(EPG), 달걀 포스파티딜에탄올아민(EPE), 달걀 포스파티딜세린(EPS), 달걀 포스파티드산(EPA), 달걀 포스파티딜이노시톨(EPI), 콩 포스파티딜콜린(SPC), 콩 포스파티딜글리세롤(SPG), 콩 포스파티딜에탄올아민(SPE), 콩 포스파티딜세린(SPS), 콩 포스파티드산(SPA), 콩 포스파티딜이노시톨(SPI), 다이팔미토일포스파티딜콜린(DPPC), 1,2-다이올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 다이미리스토일포스파티딜콜린(DMPC), 다이팔미토일포스파티딜글리세롤(DPPG), 다이올렐포스파티딜글리세롤(DOPG), 다이미리스토일포스파티딜글리세롤(DMPG), 헥사데실포스포콜린(HEPC), 수소화된 콩 포스파티딜콜린(HSPC), 다이스테아로일포스파티딜콜린(DSPC), 다이스테아로일포스파티딜글리세롤(DSPG), 다이올레일포스파티딜에탄올아민(DOPE), 팔미토일스테아로일포스파티딜콜린(PSPC), 팔미토일스테아로일포스파티딜글리세롤(PSPG), 모노올레오일포스파티딜에탄올아민(MOPE), 1-팔미토일-2-올레오일-sn-글리세로-3-포스파티딜콜린(POPC), 폴리에틸렌글리콜 다이스테아로일포스파티딜에탄올아민(PEG-DSPE), 다이팔미토일포스파티딜세린(DPPS), 1,2-다이올레오일-sn-글리세로-3-포스파티딜세린(DOPS), 다이미리스토일포스파티딜세린(DMPS), 다이스테아로일포스파티딜세린(DSPS), 다이팔미토일포스파티드산(DPPA), 1,2-다이올레오일-sn-글리세로-3-포스파티드산(DOPA), 다이미리스토일포스파티드산(DMPA), 다이스테아로일포스파티드산(DSPA), 다이팔미토일포스파티딜이노시톨(DPPI), 1,2-다이올레오일-sn-글리세로-3-포스파티딜이노시톨(DOPI), 다이미리스토일포스파티딜이노시톨(DMPI), 다이스테아로일포스파티딜이노시톨(DSPI), POPE(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycero) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 리포좀; 및 폴리머 예를 들어 양친매성 블록공중합체, 폴리이소부틸렌-블록-폴리에틸렌옥사이드 공중합체, 폴리부타디엔-b-폴리에틸렌옥사이드 공중합체, 폴리디메틸실록세인-g-폴리에틸렌옥사이드 공중합체, 폴리(2-메틸옥사졸린)-b-폴리이메틸실록세인-b-폴리(2-메틸옥사졸린)의 공중합체 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 폴리머의 혼합물일 수 있다.
구체적으로, 지질인 DPPC(1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine)와 양친매성 블록 폴리머인 polyisobutylene-block-polyethyleneoxide copolymer의 혼합물, 또는 지질인 POPC와 양친매성 블록 폴리머인 polybutadiene-b-polyethylene oxide의 혼합물, DPPC와 poly(dimethylsiloxane)-g-poly(ethylene oxide)의 혼합물, 및 DPPC 혹은 PE와 poly(2-methyloxazolene)-b-poly(dimethylsiloxane)-b-poly(2-methyloxazoline)의 혼합물로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 한정되는 것은 아니다.
인플루엔자 바이러스는 receptor-mediated endocytosis를 통해 숙주세포내로 삽입되는데, 이 과정에서 바이러스는 낮은 pH에서 트립신 분할(trypsin-mediated proteolytic cleavage)을 통해 HA0를 HA1/HA2로 전환시켜 숙주세포 막과의 융합이 가능하도록 한다(Skehel, J. J. et al., Annu . Rev. Biochem., 69:531-569, 2000; White, J. et al., J. Cell. Biol., 89:674-679, 1981).
본 발명의 리포좀 또는 리포좀-폴리머 하이브리드가 음전하를 가지는 경우, 인플루엔자 바이러스의 HA를 분해하는 효소를 포함하지 않고도 인플루엔자 바이러스가 접촉하여 내포된 전기화학적 활성기질의 방출이 가능하게 된다.
여기서, 상기 리포좀 또는 리포좀-폴리머 하이브리드의 음전하는 전류 변화에 의한 검출 전 음전하를 유지하면 충분하며, 예를 들어 전류 변화를 검출하기 위한 시료 상태에서 음전하를 유지하거나, 전류 변화 검출 전 가능한 다양한 실험 조건하에서 음전하를 유지하면 충분하며, 이에 한정되는 것은 아니다.
본 발명은 다른 관점에서, (a) 전기화학적 활성기질을 내포하고, 리포좀 또는 리포좀-폴리머 하이브리드와 바이러스 함유 추정 시료를 접촉시키는 단계; 및 (b) 상기 (a)의 접촉에 따른 전류 변화를 확인하는 단계를 포함하는 바이러스의 검출방법에 관한 것이다.
본 발명의 리포좀 또는 리포좀-폴리머 하이브리드가 음전하를 가지는 경우, 인플루엔자 바이러스의 HA를 분해하는 효소를 포함하지 않고도 인플루엔자 바이러스가 접촉하여 내포된 전기화학적 활성기질 방출이 가능하게 된다.
여기서, 상기 리포좀 또는 리포좀-폴리머 하이브리드의 음전하는 발색에 의한 검출 전 음전하를 유지하면 충분하며, 예를 들어 전기화학적 활성기질 검출하기 위한 시료 상태에서 음전하를 유지하거나, 전기 신호 검출 전 가능한 다양한 실험 조건하에서 음전하를 유지하면 충분하며, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 전기화학적 활성기질은 K4Fe(CN)6(Potassium ferrocyanide(II)), 아스코르빈산(Ascorbic acid), Ru(NH3)6Cl3(Hexaammineruthenium(III) chloride), 페로센(ferrocene), 페로센 유도체(ferrocene derivatives), 퀴논(quinones), 퀴논 유도체(quinone derivatives), 루세늄 아민 복합체(ruthenium ammine complexes), 오스뮴(II), 오스뮴(III), 오스뮴(IV) 복합체(osmium complex), 메탈로센(metallocene), 메탈로센 유도체(metallocene derivatives), 포타슘헥사시아노페레이트(II)(Potassium hexa-cyanoferrate(II)), 멜돌라 블루(Melola's blue), 프루시안 블루(Prussian blue) 디클로로페놀인도피놀 (dichlorophenolindophenol(DCPIP)), o-페닐렌다이아민(o-phenylenediamine(o-PDA), 3,4-디하이드록시벤즈알데하이드(3,4-hydroxybenzaldehyde(3,4-DHB)), 비오로겐(viologen), 7,7,8,8-테트라시아노퀴노디메탄(7,7,8,8-tetracyanoquinodimethane(TCNQ)), 테트라티아풀발렌(tetrathiafulvalene(TTF)), N-메틸아시디니움(N-methylacidinium(NMA+)), 테트라티아테트라센(tetrathiatetracene(TTT)), N-메틸페나지니움(N-methylphenazinium(NMP+)), 3-메틸-2-벤조티오조리논히드라존(3-methyl-2-benzothiozolinonehydrazone), 2-메톡시-4-아릴페놀(2-methoxy-4-allylphenol), 4-아미노안티피린(4-aminoantipyrin (AAP)), 디메틸아닐린(dimethylaniline), 4-아미노안티피렌(4-aminoantipyrene), 4-메톡시나프톨(4-methylnaphthol), 3,3',5,5'-테트라메틸벤지딘(3,3‘,5,5-tetramethylbenzidine(TMB)), 2,2-아지노-디-[3-에틸-벤즈티아졸린술포네이트](2,2-azinodi-[3-ethylbenzthiazolinesulfonate]), o-디아지니딘(odianisidine), o-톨루이딘(o-toluidine), 2,4-디클로로페놀(2,4-dichlorophenol), 4-아미노페나존(4-aminophenazone) 및 벤지딘(benzidine)으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 전기화학적 활성기질을 내포하는 리포좀 또는 리포좀-폴리머 하이브리드는 표적 수용체를 추가로 내포하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 표적 수용체는 바이러스의 지질막 또는 막단백질과 결합하는 것을 특징으로 하는 할 수 있다. 이때, 상기 바이러스 막단백질은 HA(hemagglutinin)인 것을 특징으로 할 수 있다. 상기 지질막은 PC(Phosphatidylcholine), PI(Phosphoinositides), PS(Phosphatidylserine), PE(Phosphatidylethanolamine), SM(Sphingomyelin)인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 표적 수용체는 GT1b(Ganglioside GT1b), GD1b(Ganglioside GD1b), GQ1b(Ganglioside GQ1b), 포스파티딜콜린(Phosphatidylcholine), GM2(Ganglioside GM2), GM1(Ganglioside GM1), GD1a(Ganglioside GD1a), GB3(Ganglioside GB3), GB4(Ganglioside GB4), 스핑고리피드(Sphingolipid(3’-sulfogalactosyl-ceramide)) 및 콜레스테롤(cholesterol)로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 (b) 단계의 전류 변화는 상기 리포좀 또는 리포좀-폴리머 하이브리드에 바이러스가 지질막 또는 막단백질을 통해 결합할 경우, 리포좀에 내포된 전기화학적 활성기질이 방출되면서 전류 변화를 나타내는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 (b) 단계의 전류 변화 여부 확인은 산화 또는 환원 반응을 통해 수행되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 전류 변화는 순환전압전류법(cyclic voltammetry), 네모파전압전류법(square wave voltammetry), 정상펄스전압전류법(normal pulse voltammetry), 펄스차이전압전류법(differential pulse voltammetry) 또는 임피던스(impedance)로 확인하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 바이러스는 인플루엔자 바이러스(influenza virus), 루벨라 바이러스(rubella virus), 바리셀라-조스타 바이러스(varicella-zoster virus), HAV(hepatitis A), HBV(hepatitis B), HSV(herpes simplex virus), 폴리오바이러스(poliovirus), 천연두 바이러스(small pox), HIV(human immunodeficiency virus), 백시니아 바이러스(vaccinia virus), 공수병 바이러스(rabies virus), 엡스타인바 바이러스(Epstein Barr virus), 레오바이러스(reovirus) 및 리노바이러스(rhinovirus)로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 리포좀은 포스파티딜콜린(PC), 포스파티딜글리세롤(PG), 포스파티딜에탄올아민(PE), 포스파티딜세린(PS), 포스파티드산(PA), 포스파티딜이노시톨(PI), 달걀 포스파티딜콜린(EPC), 달걀 포스파티딜글리세롤(EPG), 달걀 포스파티딜에탄올아민(EPE), 달걀 포스파티딜세린(EPS), 달걀 포스파티드산(EPA), 달걀 포스파티딜이노시톨(EPI), 콩 포스파티딜콜린(SPC), 콩 포스파티딜글리세롤(SPG), 콩 포스파티딜에탄올아민(SPE), 콩 포스파티딜세린(SPS), 콩 포스파티드산(SPA), 콩 포스파티딜이노시톨(SPI), 다이팔미토일포스파티딜콜린(DPPC), 1,2-다이올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 다이미리스토일포스파티딜콜린(DMPC), 다이팔미토일포스파티딜글리세롤(DPPG), 다이올렐포스파티딜글리세롤(DOPG), 다이미리스토일포스파티딜글리세롤(DMPG), 헥사데실포스포콜린(HEPC), 수소화된 콩 포스파티딜콜린(HSPC), 다이스테아로일포스파티딜콜린(DSPC), 다이스테아로일포스파티딜글리세롤(DSPG), 다이올레일포스파티딜에탄올아민(DOPE), 팔미토일스테아로일포스파티딜콜린(PSPC), 팔미토일스테아로일포스파티딜글리세롤(PSPG), 모노올레오일포스파티딜에탄올아민(MOPE), 1-팔미토일-2-올레오일-sn-글리세로-3-포스파티딜콜린(POPC), 폴리에틸렌글리콜 다이스테아로일포스파티딜에탄올아민(PEG-DSPE), 다이팔미토일포스파티딜세린(DPPS), 1,2-다이올레오일-sn-글리세로-3-포스파티딜세린(DOPS), 다이미리스토일포스파티딜세린(DMPS), 다이스테아로일포스파티딜세린(DSPS), 다이팔미토일포스파티드산(DPPA), 1,2-다이올레오일-sn-글리세로-3-포스파티드산(DOPA), 다이미리스토일포스파티드산(DMPA), 다이스테아로일포스파티드산(DSPA), 다이팔미토일포스파티딜이노시톨(DPPI), 1,2-다이올레오일-sn-글리세로-3-포스파티딜이노시톨(DOPI), 다이미리스토일포스파티딜이노시톨(DMPI), 다이스테아로일포스파티딜이노시톨(DSPI), POPE(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycero) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하나, 이에 한정되지 아니하고, 바람직하게는 DPPC(1,2-dipalmitoyl-sn-glycero-3-phosphocholine), DSPC(1,2-distearoyl-sn-glycero-3-phosphocholine), POPC(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) 및 POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycero)로 구성된 군에서 선택되는 1종 이상을 포함한다.
본 발명에 있어서, 상기 리포좀-폴리머 하이브리드는 예를 들어, 포스파티딜콜린(PC), 포스파티딜글리세롤(PG), 포스파티딜에탄올아민(PE), 포스파티딜세린(PS), 포스파티드산(PA), 포스파티딜이노시톨(PI), 달걀 포스파티딜콜린(EPC), 달걀 포스파티딜글리세롤(EPG), 달걀 포스파티딜에탄올아민(EPE), 달걀 포스파티딜세린(EPS), 달걀 포스파티드산(EPA), 달걀 포스파티딜이노시톨(EPI), 콩 포스파티딜콜린(SPC), 콩 포스파티딜글리세롤(SPG), 콩 포스파티딜에탄올아민(SPE), 콩 포스파티딜세린(SPS), 콩 포스파티드산(SPA), 콩 포스파티딜이노시톨(SPI), 다이팔미토일포스파티딜콜린(DPPC), 1,2-다이올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 다이미리스토일포스파티딜콜린(DMPC), 다이팔미토일포스파티딜글리세롤(DPPG), 다이올렐포스파티딜글리세롤(DOPG), 다이미리스토일포스파티딜글리세롤(DMPG), 헥사데실포스포콜린(HEPC), 수소화된 콩 포스파티딜콜린(HSPC), 다이스테아로일포스파티딜콜린(DSPC), 다이스테아로일포스파티딜글리세롤(DSPG), 다이올레일포스파티딜에탄올아민(DOPE), 팔미토일스테아로일포스파티딜콜린(PSPC), 팔미토일스테아로일포스파티딜글리세롤(PSPG), 모노올레오일포스파티딜에탄올아민(MOPE), 1-팔미토일-2-올레오일-sn-글리세로-3-포스파티딜콜린(POPC), 폴리에틸렌글리콜 다이스테아로일포스파티딜에탄올아민(PEG-DSPE), 다이팔미토일포스파티딜세린(DPPS), 1,2-다이올레오일-sn-글리세로-3-포스파티딜세린(DOPS), 다이미리스토일포스파티딜세린(DMPS), 다이스테아로일포스파티딜세린(DSPS), 다이팔미토일포스파티드산(DPPA), 1,2-다이올레오일-sn-글리세로-3-포스파티드산(DOPA), 다이미리스토일포스파티드산(DMPA), 다이스테아로일포스파티드산(DSPA), 다이팔미토일포스파티딜이노시톨(DPPI), 1,2-다이올레오일-sn-글리세로-3-포스파티딜이노시톨(DOPI), 다이미리스토일포스파티딜이노시톨(DMPI), 다이스테아로일포스파티딜이노시톨(DSPI), POPE(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycero) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 리포좀; 및 폴리머 예를 들어 양친매성 블록공중합체, 폴리이소부틸렌-블록-폴리에틸렌옥사이드 공중합체, 폴리부타디엔-b-폴리에틸렌옥사이드 공중합체, 폴리디메틸실록세인-g-폴리에틸렌옥사이드 공중합체, 폴리(2-메틸옥사졸린)-b-폴리이메틸실록세인-b-폴리(2-메틸옥사졸린)의 공중합체 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 폴리머의 혼합물 일 수 있다.
구체적으로, 지질인 DPPC(1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine)와 양친매성 블록 폴리머인 polyisobutylene-block-polyethyleneoxide copolymer의 혼합물, 또는 지질인 POPC와 양친매성 블록 폴리머인 polybutadiene-b-polyethylene oxide의 혼합물, DPPC와 poly(dimethylsiloxane)-g-poly(ethylene oxide)의 혼합물, 및 DPPC 혹은 PE와 poly(2-methyloxazolene)-b-poly(dimethylsiloxane)-b-poly(2-methyloxazoline)의 혼합물로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 한정되는 것은 아니다.
인플루엔자 바이러스는 receptor-mediated endocytosis를 통해 숙주세포내로 삽입되는데, 이 과정에서 바이러스는 낮은 pH에서 트립신 분할(trypsin-mediated proteolytic cleavage)을 통해 HA0를 HA1/HA2로 전환시켜 숙주세포 막과의 융합이 가능하도록 한다(Skehel, J. J. et al., Annu . Rev. Biochem ., 69:531-569, 2000; White, J. et al., J. Cell. Biol., 89:674-679, 1981).
본 발명의 리포좀 또는 리포좀-폴리머 하이브리드가 음전하를 가지는 경우, 인플루엔자 바이러스의 HA를 분해하는 효소를 포함하지 않고도 인플루엔자 바이러스가 접촉하여 내포된 전기화학적 활성기질의 방출이 가능하게 된다.
여기서, 상기 리포좀 또는 리포좀-폴리머 하이브리드의 음전하는 전류 변화에 의한 검출 전 음전하를 유지하면 충분하며, 예를 들어 전류 변화를 검출하기 위한 시료 상태에서 음전하를 유지하거나, 전류 변화 검출 전 가능한 다양한 실험 조건하에서 음전하를 유지하면 충분하며, 이에 한정되는 것은 아니다.
본 발명에서 리포좀 또는 리포좀-폴리머 하이브리드는 내부 수상에 흡광물질, 형광물질, 전기화학물질, 또는 화학발광물질 등과 같은 다양한 분자들을 내포(포집)할 수 있다. 많은 수의 물질을 포집하는 능력 및 리포좀의 조성에 변화를 가할 수 있으므로, 증폭된 신호 및 순간적인 신호의 획득이 가능하므로 단시간 내에 미량의 바이러스의 검출이 가능하다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예 1: K4Fe(CN)6(Potassium ferrocyanide(II))를 내포하는 리포좀 또는 리포좀-폴리머 하이브리드의 제조방법
바이러스 검출용 리포좀의 경우 80mol% POPC(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, Avanti Polar Lipids Inc., USA), 20mol% POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycero), Avanti Polar Lipids Inc., USA)을 이용하여 클로로포름에 용해시킨 다음, 감압장치 하에서 클로로포름을 1시간 이상 증발시키고, 클로로포름이 증발된 상기 복합체를 25℃ 진공 오븐에서 하루 동안 건조시켜 얇은 지질막을 형성시켰다. 상기 지질막에 0∼50μM의 K4Fe(CN)6(Potassium ferrocyanide(II)) (Sigma-Aldrich, USA)을 첨가하여 초음파기(Jeiotech, Korea)로 10분간 분산시켜 리포좀 현탁액을 제조하였다. 여기서, 단일 지질층의 리포좀 제조를 위해 얼리고 녹이는 과정을 5회 반복하였다. 또한, 균일한 크기의 리포좀 제조를 위해 Mini-Extruder(Avanti Polar Lipids Inc., USA)를 사용하여 100∼200nm pore size filter에 통과시킨 다음 동일한 크기의 리포좀을 제조하였다. 상기 제조된 K4Fe(CN)6를 내포하는 리포좀을 탈염 컬럼(desalting column, GE Healthcare, UK)을 이용하여 잔여 K4Fe(CN)6를 제거하고 4℃에 ∼2주까지 냉장 보관하였다. K4Fe(CN)6를 내포한 리포좀은 DLS(dynamic light scattering, Otsuka, Japan)를 이용하여 리포좀의 크기를 측정하였다.
여기서, 바이러스 검출용 리포좀으로 제조된 POPC/POPG(molar ratio 4:1)를 함유하는 리포좀을 인플루엔자-반응 리포좀(influenza-responsive liposome)이라 명명하였다. 도 3은 인플루엔자-반응 리포좀의 cryo-TEM(cryogenic transmission electron microscopy) 이미지를 나타낸 것이다.
한편, 리포좀-폴리머 하이브리드의 제조방법은 적절 함량의 지질성분(PC, PE, PS 등)을 클로로포름-메탄올에 용해시킨 후 백금 전극에 침전(deposit)시킨 다음, 전기장을 걸어주고 증류수를 첨가하여 제조하는 리포좀 전기주조법(Liposome electroformation)을 이용하거나(Olubummo A1 et al., Langmuir, 30(1):259-67, 2014; Schulz M et al., Angew Chem Int Ed Engl ., 52(6):1829-33, 2013; Miglena I et al., Faraday Discuss. Chem . Soc., 81:303-311, 1986; Binder WH et al., Angew Chem., 115(47):5980-6007, 2003; Binder WH et al., Angew Chem Int Ed Engl., 42(47):5802-27, 2003), 적절 함량의 지질성분(PC, PE, PS 등)을 클로로포름-메탄올에 용해시킨 후 감압장치 하에서 용매를 증발시켜 만든 얇은 지질막에 폴리머 나노입자 현탁액(aqueous polymeric nanoparticle suspension)을 넣어 제조하는 2단계 리포좀 제조법(Two-step method)을 이용하였다(Kunn Hadinoto et al., European Journal of Pharmaceutics and Biopharmaceutics, 85(3):427-43,2013).
필요에 따라, 상기 리포좀은 당업계의 통상적인 방법으로 지질 수용체(lipid receptor)인 GT1b(Ganglioside GT1b), GD1b(Ganglioside GD1b), GQ1b(Ganglioside GQ1b), 포스파티딜콜린(Phosphatidylcholine), GM2(Ganglioside GM2), GM1(Ganglioside GM1), GD1a(Ganglioside GD1a), GB3(Ganglioside GB3), GB4(Ganglioside GB4), 스핑고리피드(Sphingolipid(3’-sulfogalactosyl-ceramide)), 콜레스테롤(cholesterol), 또는 바이러스에 특이적으로 결합 가능한 단백질, 지질, 당쇄 모이티(glycosylation moiety)를 포함하여 제조하였다.
한편, 도 2 및 표 1에 나타난 바와 같이, 바이러스의 검출을 위해 제조한 K4Fe(CN)6를 내포하는 리포좀의 평균 직경은 142.3±5.2nm(by DLS(Dynamic light scattering)), 제타 포텐셜은 -58.96±3.9mV, 다분산지수(polydispersity index, PI)는 0.1047±0.09로 나타났으며(PI가 클수록 리포좀의 응집(aggregation) 심화), 리포좀 당 ferrocyanide 이온의 수는 1.2×105인 것으로 나타났다.
표 1은 바이러스 검출용 리포좀에 내포된 K4Fe(CN)6(Potassium ferrocyanide(II))의 개수를 예측한 결과를 나타낸 것이다.
Figure PCTKR2016004956-appb-T000001
여기서, AL,av는 POPC 및 POPG에 대해 각각 0.72nm2 및 0.66nm2의 head group 면적을 이용하여 계산(POPC:POPG=4:1 in molar ratio)한 것이고, NL은 NL=(4π/AL,av){(DP/2)2 + ((DP/2)-l)2}의 수학식으로 계산(l: 리포좀 막의 bilayer 두께; l=3.7nm)한 것이며, Cv는 Cv=CL/NL의 수학식으로 계산한 것이고, CFe는 확인된 ferrocyanide 농도 및 피크 전류(peak current)의 표준곡선과 비교하여 결정한 것이다.
실시예 2: 바이러스의 검출방법
당업계의 통상적인 방법으로 제조된 인플루엔자 바이러스를 적절한 농도(titer)와 노출 시간으로 K4Fe(CN)6(Potassium ferrocyanide(II))을 내포하는 리포좀에 처리하고 순환전압전류법으로 [Fe(CN)6]4-(ferrocyanide)의 방출 여부(정도)를 측정하여 바이러스를 검출하였다. 이와 같이 ferrocyanide을 내포하는 리포좀을 이용하여 인플루엔자 바이러스를 검출하는 방법을 ELMID(Electroactive Liposome-Mediated Influenza Detection)이라 명명하였다(도 1 참조). 여기서, 상기 K4Fe(CN)6을 내포하는 리포좀은 K4Fe(CN)6을 내포하는 리포좀-폴리머 하이브리드로 대체 가능하다.
반응 조건
실시예 1의 방법으로 제조된 K4Fe(CN)6을 내포하는 리포좀 100μl, 인플루엔자 바이러스(표 2 참조)를 5.2×10~5.2×106 TCID50/ml 농도로 100μl, 100mM KCl 및 100mM C-P 버퍼(citrate-phosphate buffer, pH 5.0) 100μl를 혼합하여 37℃에서 30분간 반응시켜 바이러스와 리포좀이 결합하도록 하였다(음성대조군: 바이러스 부재(도 8에 'Media CTL' 또는 'Media'로 표기); 양성대조군: 바이러스 대신 0.1% Triton X-100 처리하여 공극 생성(데이터 미도시)).
상기 K4Fe(CN)6을 내포하는 리포좀은 추가로 바이러스 특이적인 막단백질, 지질막 또는 당쇄 모이티(glycosylation moiety)를 내포할 수 있도록 제조될 수 있다.
그 다음, 전기화학 셀에 상기 리포좀과 바이러스가 포함된 시료를 채우고, 세 개의 전극(작업 전극(glassy carbon), 기준 전극(Ag/AgCl) 및 상대 전극(Pt))을 용액과 접하게 하여 전위 설정을 조정(예컨대, -0.2V 및 0.6V at 100mVs-1 vs. Ag/AgCl)하여 산화, 환원 전류를 순환전압전류법(Cyclic Voltammetry, CV)으로 측정하였다. 여기서, 전기화학적 활성기질이 반응할 수 있는 적절한 범위의 전압을 일정전위기를 통해 작업 전극에 인가함으로써 시차펄스 전류 곡선을 얻을 수 있다.
더욱 자세하게는, K4Fe(CN)6를 내포하는 리포좀과 인플루엔자 바이러스 간의 결합에 영향을 미칠 수 있는 조건을 확인하고자 실시예 2-1~실시예 2-5의 조건으로 실험을 수행하였다.
실시예 2-1: 인플루엔자 바이러스의 결합으로 K4Fe(CN)6가 내포된 인플루엔자-반응 리포좀으로부터 ferrocyanide의 방출
2009 pandemic H1N1 바이러스(A/california/07/2009, 5.2×106pfu/mL; 적색) 또는 배지(대조군; 회색)를 인플루엔자-반응 리포좀에 첨가한 다음, 37℃에서 30분간 반응시킨 후 순환전압전류법으로 ferrocyanide의 방출 여부(정도)를 확인하였다.
그 결과, 도 4, 도 6a 및 도 6c에 나타난 바와 같이, K4Fe(CN)6(Potassium ferrocyanide(II))이 내포된 리포좀과 인플루엔자 바이러스 간의 결합으로 인해 리포좀으로부터 ferrocyanide이 방출되어 이에 따른 전류 변화를 삼전극 시스템을 이용한 순환전압전류법(Cyclic Voltammetry, CV)으로 확인 가능하여 바이러스의 검출이 가능하였다(대조군(바이러스 부재) 대비 실험군(바이러스 첨가)의 CV redox 신호가 3배 정도 증가함). 따라서, 바이러스 특이적 결합단백질, ssDNA 또는 aptamer와 같은 바이오리셉터가 부재하고, 인지질막으로 구성된 리포좀을 이용하더라도 바이러스 검출이 가능하였다.
실시예 2-2: 시간경과에 따른 K4Fe(CN)6가 내포된 인플루엔자-반응 리포좀의 ferrocyanide 방출
2009 pandemic H1N1 바이러스(A/california/07/2009, 5.2 × 106pfu/mL; 적색) 또는 배지(대조군; 회색)를 인플루엔자-반응 리포좀에 첨가한 다음, 37℃에서 0~60분간 반응시키면서, 5분 간격으로 순환전압전류법으로 ferrocyanide의 방출 여부(정도)를 확인하였다.
그 결과, 도 6b에 나타난 바와 같이, 바이러스 첨가 후 바이러스의 결합으로 리포좀으로부터 ferrocyanide의 방출되는 최적 온도 및 시간은 37℃ 및 35분임을 확인하였다.
실시예 2-3: 인플루엔자-반응 리포좀의 pH 의존적 ferrocyanide의 방출
인플루엔자 바이러스는 receptor-mediated endocytosis를 통해 숙주세포내로 삽입되는데, 이 과정에서 바이러스는 낮은 pH에서 트립신 분할(trypsin-mediated proteolytic cleavage)을 통해 HA0를 HA1/HA2로 전환시켜 숙주세포 막과의 융합이 가능하도록 한다(Skehel, J. J. et al., Annu . Rev. Biochem., 69:531-569, 2000; White, J. et al., J. Cell. Biol., 89:674-679, 1981).
반면, 음전하를 가지는 리포좀은 낮은 pH 또는 중성 pH에서도 바이러스와 결합 및 융합가능한 것으로 보고된 바 있다(Haywood, A. M. et al., Proc . Natl . Acad . Sci. USA, 82:4611-4615, 1985; Nussbaum, O. et al., J. Gen. Virol. 73:2831-2837, 1992). 따라서, 실시예 1에서 제조된 음전하를 가지는 인플루엔자-반응 리포좀으로부터 pH 의존적 ferrocyanide의 방출 여부를 확인하기 위해 pH 4.5~7.0의 버퍼에 37℃에서 30분간 반응시킨 다음, 200mM Na2HPO4(sodium phosphate dibasic)을 첨가하여 pH7.0으로 조절한 다음 순환전압전류법으로 ferrocyanide의 방출 여부(정도)를 확인하였다.
그 결과, 도 6d에 나타난 바와 같이, pH를 증가시키면 ferrocyanide의 방출량은 감소하나, 중성 pH에서도 ferrocyanide의 방출이 있음을 확인하였다. 이는 중성 pH에서 바이러스 HA 단백질의 구조 변화가 없더라도 바이러스와 리포좀의 결합이 가능하여 ferrocyanide의 방출이 이루어진 결과임을 알 수 있었다.
실시예 2-4: 인플루엔자 바이러스의 트립신 처리 전후에 따른 인플루엔자-반응 리포좀의 ferrocyanide 방출
트립신 처리에 따른 인플루엔자 바이러스 HA0의 HA1/HA2로의 전환 여부가 바이러스와 리포좀 간의 융합에 미치는 영향을 확인하였다.
500μL의 2009 pandemic H1N1 바이러스(A/california/07/2009, 5.2 × 106pfu/mL)에 20μL의 TPCK-trypsin(Thermo Fisher Scientific, 0.1unit/μL)을 첨가하고, 37℃에서 30분간 처리하였다. 그 다음, 트립신 처리된 2009 pandemic H1N1 바이러스를 리포좀에 첨가하고, 37℃에서 30분간 반응시킨 다음, 순환전압전류법으로 ferrocyanide의 방출 여부(정도)를 확인하였다.
그 결과, 도 6e에 나타난 바와 같이, 트립신 처리와 무관하게 리포좀으로부터 ferrocyanide의 방출이 있음을 확인하였다. 따라서, ELMID(Electroactive Liposome-Mediated Influenza Detection)는 바이러스와 리포좀 결합시 HA0의 HA1/HA2로의 전환없이 바이러스의 검출이 가능한 방법임을 확인하였다.
실시예 2-5: 인플루엔자 바이러스의 열처리 전후에 따른 인플루엔자-반응 리포좀의 전기화학적 반응
인플루엔자 바이러스와 리포좀 간의 결합에서 바이러스의 막단백질인 HA(hemagglutinin)의 활성 여부가 결합 및 검출에 영향을 미치는지 확인하기 위해 바이러스에 열을 가하고 리포좀과 반응시켰다. 즉, 바이러스의 HA를 불활성화시키기 위해 100℃에서 10분간 처리된 2009 pandemic H1N1 바이러스(A/california/07/2009, 5.2 × 106pfu/mL)(대조군: 열처리 되지 않은 바이러스)를 리포좀에 첨가했을때 순환전압전류법으로 측정되는 피크 전류를 비교하였다(Geiss, G. K. et al., J. Virol. 75:4321-4331, 2001 참고).
그 결과, 도 7에 나타난 바와 같이, ELMID 방법으로 바이러스 및 리포좀 간의 결합 여부를 순환전압전류법으로 측정 시 바이러스의 HA 활성에 비의존적으로 바이러스를 검출할 수 있었다.
실시예 3: 리포좀의 동결건조에 따른 인플루엔자 바이러스의 검출
실시예 1에서 제조된 바이러스 검출용 리포좀을 장시간 동안 4℃에 보관하게 되면 ferrocyanide 이온이 자연적으로 방출(데이터 미도시)되는 것으로 나타나 리포좀을 동결건조하여 리포좀의 보관기간을 연장하고자 하였다. 여기서, 상기 K4Fe(CN)6을 내포하는 리포좀은 K4Fe(CN)6을 내포하는 리포좀-폴리머 하이브리드로 대체 가능하다.
인플루엔자-반응 리포좀의 동결건조(lyophilization)는, Freeze drier(FDU-2100, EYELA, Japan)을 이용하여, (i) -80℃에서 2시간 동안 냉동시키고, (ii) -80℃에서 하룻밤 동안 진공상태에서 건조시킨 다음, (iii) 25℃에서 하룻밤 동안 2차 건조시켰다. 동결건조된 리포좀을 수화(hydration)할 경우, 같은 부피의 증류수에 동결건조된 리포좀을 첨가하고 조심히 진탕하여 수화된 리포좀을 수득하였다. 그 다음, 동결전후의 리포좀을 2009 pandemic H1N1 바이러스(A/california/07/2009, 5.2 × 106pfu/mL)과 37℃에서 30분간 반응시킨 후 순환전압전류법으로 ferrocyanide의 방출 여부(정도)를 측정하였다.
그 결과, 도 5에 나타난 바와 같이, 리포좀을 동결건조시킬 경우, 동결건조 전의 리포좀에 비해 리포좀으로부터 ferrocyanide 이온이 소량으로 자연 방출되는 것이 확인되었으나, 바이러스와 리포좀 간의 결합여부를 순환전압전류법으로 바이러스를 검출하는데는 별 차이가 없음을 확인하였다.
실시예 4: ELMID(Electroactive Liposome-Mediated Influenza Detection)의 민감도 및 특이도
바이러스 유형(인플루엔자 A, 인플루엔자 B, RSV A 및 RSV B) 및 바이러스 농도(titer)에 따른 바이러스의 검출을 순환전압전류법으로 비교하였다. 여기서, 상기 K4Fe(CN)6을 내포하는 리포좀은 K4Fe(CN)6을 내포하는 리포좀-폴리머 하이브리드로 대체가능하다.
(1) 민감도(sensitivity): 10배 간격으로 단계 희석된 2009 pandemic H1N1 바이러스(A/california/07/2009, 5.2 × 106pfu/mL, 배지(Media CTL, 음성대조군) 또는 적정 농도의 Triton X-100(양성대조군)을 인플루엔자-반응 리포좀을 함유하는 100mM KCl 및 100mM C-P 버퍼(citrate-phosphate buffer, pH 5.0)에 첨가하고, 37℃에서 30분간 반응시킨 다음, 순환전압전류법으로 바이러스의 검출 여부를 확인하였다.
그 결과, 도 8a 및 도 8b에 나타난 바와 같이, 바이러스 농도(titer)에 따른 바이러스 검출이 가능하고, 낮은 바이러스 농도인 5.2×10pfu/mL에서도 바이러스가 검출 가능한 것으로 확인되었다. 이는 바이러스 검출에 있어 기존 RIDTs(rapid influenza detection tests)에 비해 100배 정도 민감도가 높고, 측정(진단) 시간은 비슷하게 약 30분 정도 소요되었다.
따라서, 일반적인 인플루엔자 감염 환자의 nasal swab 또는 throat swab에 포함된 바이러스 로드(virus load)가 10~104pfu/mL인 점(Suess, T. et al. PLoS One 7:e51653, 2012)을 감안하면 ELMID 방법은 바이러스 검출에 매우 유용하다.
(2) 특이도(specificity): 표 2에 기재된 다양한 인플루엔자 바이러스 종(인플루엔자 A 및 인플루엔자 B)을 인플루엔자-반응 리포좀을 함유하는 100mM KCl 및 100mM C-P 버퍼(citrate-phosphate buffer, pH 5.0)에 첨가하고, 37℃에서 30분간 반응시킨 다음, 순환전압전류법으로 바이러스의 검출 여부를 확인하였다.
그 결과, 표 2 및 도 8c에 나타난 바와 같이, 인플루엔자 바이러스 종과 무관하게 순환전압전류법을 이용한 바이러스 검출이 가능한 것으로 확인되었다. 즉, ELMID 방법은 새로 출현 가능한 돌연변이 인플루엔자 바이러스에서 발현되는 바이러스 막단백질의 돌연변이형과 무관하게 바이러스 검출이 가능하다는 점에서 매우 유용한 바이러스 검출방법이다.
(3) 교차반응(cross-reactivity): ELMID(Electroactive Liposome-Mediated Influenza Detection)는 바이러스 지질막과 숙주세포 지질막의 융합에 의한 검출을 기반으로 하고 있기 때문에 바이러스 지질막과 숙주세포 지질막이 융합가능한 RSV(Human respiratory syncytial virus)를 대상으로 ELMID를 적용하여 RSV 검출여부를 확인하였다(Weissenhorn, W. et al., FEBS Lett., 581:2150-2155, 2007; Bawage, S. S. et al., Adv . Virol ., 2013:595768, 2013; Chaiwatpongsakorn, S. et al., J. Virol., 85:3968-3977, 2011).
먼저, 두 종의 RSV인 RSV A 및 RSV B를 고농도와 저농도로 인플루엔자-반응 리포좀에 첨가하고, 35℃에서 30분간 반응시킨 다음, 순환전압전류법으로 확인하였다(RSV 시료에 대한 Ct(threshold cycle): RSV A High =15.43, RSV A Low = 23.32, RSV B High = 17.85, RSV B Low = 22.48; 대조군인 'Media'는 바이러스의 부재를 의미하며, 'influenza control'은 2009 pandemic H1N1 바이러스(A/california/07/2009, 2.72 × 105pfu/mL를 의미함).
그 결과, 도 8d에 나타난 바와 같이, 인플루엔자-반응 리포좀은 인플루엔자 바이러스에 특이적으로 반응하고, RSV와 교차반응하지 않는 것으로 확인되었다.
표 2는 ELMID 방법을 이용하여 14 종의 인플루엔자 바이러스의 전기화학반응을 나타낸 것이다.
Figure PCTKR2016004956-appb-T000002
실시예 5: ELMID로 NP(nasopharyngeal) swab 시료에 포함된 인플루엔자 바이러스 검출
ELMID을 이용하여 NP(nasopharyngeal) swab 시료에 포함된 인플루엔자 바이러스를 검출할 때 2가지 방법을 사용할 수 있다. 여기서, 바이러스 검출에 이용되는 K4Fe(CN)6을 내포하는 리포좀은 K4Fe(CN)6을 내포하는 리포좀-폴리머 하이브리드로 대체가능하다.
(i) 일반적인 실험실 장비 이용: 인플루엔자-반응 리포좀에 NP swab 시료를 첨가하고, lab-scale three-electrode system(glassy carbon electrode)를 이용하여 순환전압전류법으로 확인하는 방법(실시예 2 또는 실시예 4 참조).
(ii) 소형화된 장비 이용: POC(Point-of-care) 검출용으로 유용한 SPE(screen-printed electrode)를 이용하여 순환전압전류법으로 확인하는 것으로, 간략히 설명하면, 인플루엔자-반응 리포좀을 함유하는 100mM KCl 및 100mM C-P 버퍼(citrate-phosphate buffer, pH 5.0) 45μL에 NP swab 시료 5μL를 첨가하고(이때 리포좀:바이러스의 부피 비율은 7:1로 함), 35℃에서 30분간 반응시킨 다음, 상기 50μL의 반응물을 SPE에 연결되어 있는 센서 주입구에 주입하고, 순환전압전류법으로 100mVs-1의 scanning rate로 0.1~0.4V에서 스캐닝하여 피크 전류를 모니터링하였다(시료에 포함된 바이러스 농도(titer): Ct(threshold cycle): A = N/A, B =N/A, C = 9.09, D = 18.14, E = 18.60, F = 22.32, G =24.37)(상기 SPE는, 도 9b에 나타난 바와 같이, carbon working electrode, carbon counter electrode, 및 Ag/AgCl reference electrode로 구성되어 있으며, Zensor R&D(Taichung, Taiwan)로부터 구매하였다)(도 9b 참조).
그 결과, 도 9a에 나타난 바와 같이(lab-scale three-electrode system), 가장 낮은 값의 Ct(Ct값이 낮을수록 바이러스 농도가 높아짐; 사용된 NP swab 시료의 Ct값의 분포는 9.09~24.37임)는 가장 높은 피크 전류를 나타낸 반면, 인플루엔자 음성 실험군(influenza negative)은 배지 음성대조군(media CTL)과 유사하게 나타났다.
또한, 도 9c에 나타난 바와 같이(SPE, screen-printed electrode), 신호강도를 증가시키기 위해 리포좀: 바이러스의 부피비율을 7:1로 반응시킨 결과, lab-scale three-electrode system과 유사한 결과를 얻었다.
따라서, 소형화된 장비(ii)를 이용하더라도 일반적인 실험실 장비(i)와 대등하게, NP swab 시료로부터 유래된 소량의 인플루엔자 바이러스를 인플루엔자-반응 리포좀과의 반응 및 순환전압전류법으로 검출할 수 있음을 확인하였다.
실시예 6: ELMID의 파라인플루엔자(parainfluenza type 3) 바이러스에 대한 교차 반응 실험
먼저, 파라인플루엔자 (parainfluenza type 3) 바이러스를 인플루엔자-반응 리포좀에 첨가한 다음, 37℃에서 30분간 반응시킨 후 순환전압전류법으로 K4Fe(CN)6의 방출 여부(정도)를 확인하였다. (각각 대조군인 'Media CTRL'는 바이러스의 부재를 의미하며, ‘HPIV3’은 parainfluenza type 3 바이러스 (6 × 104pfu/ml)을 의미하며, “'influenza”'은 2009 pandemic H1N1 바이러스(A/california/07/2009, 2.72 × 105pfu/mL를 의미함).
그 결과, 도 10에 나타난 바와 같이, 인플루엔자-반응 리포좀은 인플루엔자 바이러스에 특이적으로 반응하고, parainfluenza type 3와 교차반응하지 않는 것으로 확인되었다.
세포 배양
본 발명에서 이용된 바이러스의 배양, 증폭 및 검출용 세포주는 MDCK(Madin-Darby Canine Kidney, ATCC CCL-34)(American Type Culture Collection (ATCC)(Rockville, USA)이며, MDCK 세포는 10% FBS(fetal bovine serum), 항생제(1x antibiotic-antimycotic mixture), 1x MEM 비타민 용액, 및 50μg/ml gentamicin을 함유하는 MEM 배지(Minimal Essential Medium)(Gibco BRL, Grand Island, USA)에서 배양되었다.
바이러스
(i) 인플루엔자 A/California/07/2009(H1N1), A/Brisbane/10/2007(H3N2), A/Puerto Rico/8/1934(H1N1), B/Florida/04/2006, 및 B/Brisbane/60/2008은 질병관리본부(한국)으로부터 제공받았고, 인플루엔자 A/swine/Korea/GC0503/2005(H1N1), A/swine/Korea/GC0502/2005(H1N2), A/swine/Korea/GC0407/2005(H3N2), A/equine/Kyonggi/SA1/2011(H3N8), A/canine/Korea/01/2007(H3N2), A/canine/Korea/MV1/2012(H3N2), A/feline/Korea/01/2010(H3N2), A/aquatic bird/Korea/CN5/2009(H6N5), 및 A/chicken/Korea/S1/2003(H9N2)은 송대섭 교수(고려대학교)로부터 제공받았다(표 2 참조). 모든 인플루엔자 바이러스는 MDCK 세포에서 배양하여 증폭시키고, virus stock은 분주하여 -70℃에 보관하였고, 바이러스 농도는 MDCK 세포를 이용하여 plaque assay로 측정하였다.
(ii) Human respiratory syncytial virus(RSV) A 및 B 종은 External Quality Assurance Program으로부터 제공받았고, 바이러스 농도(Viral titers)는 UTM virus transport media에 단계 희석된 바이러스를 AdvanSure RV realtime PCR kit를 이용하여 측정하였다.
(iii) 파라인플루엔자 바이러스 (Human parainfluenza virus type 3, ATCC VR-93)는 LLC-MK2 Derivative (ATCC CCL-7.1) (American Type Culture Collection (ATCC) (Rockville, USA) 세포주에서 배양, 증식하였으며, 파라인플루엔자바이러스 숙주세포는 10% FBS (fetal bovine serum), 항생제 (antibiotic-antimycotic mixture), 및 50 μg/ml gentamicin을 함유하는 MEM 배지 (Minimal Essential Medium) (Gibco BRL, Grand Island, USA)에서 배양되었다. FBS가 첨가되지 않은 세포배양액을 이용하여 바이러스를 증식하였으며, 1시간 흡착 후 바이러스 배양액을 첨가하여 50% 세포병변이 나타날때까지 배양 후 바이러스를 분리하여 실험에 사용하였다.
NP(nasopharyngeal) swab 수집
인플루엔자 바이러스에 감염 증세를 보이는 7명의 환자로부터 NP(nasopharyngeal) 시료를 수집하고, 상기 시료를 virus transport media(UTM, Copan Diagnostics Inc., USA)에 첨가하여 -70℃에 보관하였다. 각기 시료의 인플루엔자 바이러스를 정량하기 위해서 AdvanSure RV real-time PCR kit(LG Life Sciences, Korea)를 이용하고, SLAN Real-Time Quantitative PCR Detection System의 사용설명서에 따라 Ct(threshold cycle) 값을 구하고, 상기 Ct값 25를 cut-off으로 하여 인플루엔자 바이러스에 대한 양성 반응 여부를 판별하였다.
본 발명에 따른 전기화학적 활성기질을 내포하는 리포좀 또는 리포좀-폴리머 하이브리드를 이용한 바이러스의 검출방법은 전기화학적 활성기질이 리포좀 또는 리포좀-폴리머 하이브리드 밖으로 유출되지 않아 산소 또는 화학반응에 대한 안정성이 높고, 상기 리포좀 또는 리포좀-폴리머 하이브리드에 바이러스가 결합할 경우, 리포좀 또는 리포좀-폴리머 하이브리드에 내포된 전기화학적 활성기질이 전기유도물질과 반응하여 전류 변화를 나타냄으로써 바이러스 검출신호가 현저히 높은 것으로 나타났다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (29)

  1. 전기화학적 활성기질을 내포하는 리포좀 또는 리포좀-폴리머 하이브리드(liposome-polymer hybrid)를 포함하고, 상기 리포좀 또는 리포좀-폴리머 하이브리드에 바이러스가 결합할 경우, 리포좀 또는 리포좀-폴리머 하이브리드에 내포된 전기화학적 활성기질이 방출되면서 전류 변화를 나타내는 것을 특징으로 하는 바이러스 검출용 조성물.
  2. 제1항에 있어서, 상기 바이러스는 바이러스 지질막 또는 막단백질을 통해 리포좀 또는 리포좀-폴리머 하이브리드에 결합하는 것을 특징으로 하는 바이러스 검출용 조성물.
  3. 제1항에 있어서, 상기 전기화학적 활성기질은 K4Fe(CN)6(Potassium ferrocyanide(II)), 아스코르빈산(Ascorbic acid), Ru(NH3)6Cl3(Hexaammineruthenium(III) chloride), 페로센(ferrocene), 페로센 유도체(ferrocene derivatives), 퀴논(quinones), 퀴논 유도체(quinone derivatives), 루세늄 아민 복합체(ruthenium ammine complexes), 오스뮴(II), 오스뮴(III), 오스뮴(IV) 복합체(osmium complex), 메탈로센(metallocene), 메탈로센 유도체(metallocene derivatives), 포타슘헥사시아노페레이트(II)(Potassium hexa-cyanoferrate(II)), 멜돌라 블루(Melola's blue), 프루시안 블루(Prussian blue) 디클로로페놀인도피놀 (dichlorophenolindophenol(DCPIP)), o-페닐렌다이아민(o-phenylenediamine(o-PDA), 3,4-디하이드록시벤즈알데하이드(3,4-hydroxybenzaldehyde(3,4-DHB)), 비오로겐(viologen), 7,7,8,8-테트라시아노퀴노디메탄(7,7,8,8-tetracyanoquinodimethane(TCNQ)), 테트라티아풀발렌(tetrathiafulvalene(TTF)), N-메틸아시디니움(N-methylacidinium(NMA+)), 테트라티아테트라센(tetrathiatetracene(TTT)), N-메틸페나지니움(N-methylphenazinium(NMP+)), 3-메틸-2-벤조티오조리논히드라존(3-methyl-2-benzothiozolinonehydrazone), 2-메톡시-4-아릴페놀(2-methoxy-4-allylphenol), 4-아미노안티피린(4-aminoantipyrin (AAP)), 디메틸아닐린(dimethylaniline), 4-아미노안티피렌(4-aminoantipyrene), 4-메톡시나프톨(4-methylnaphthol), 3,3',5,5'-테트라메틸벤지딘(3,3‘,5,5-tetramethylbenzidine(TMB)), 2,2-아지노-디-[3-에틸-벤즈티아졸린술포네이트](2,2-azinodi-[3-ethylbenzthiazolinesulfonate]), o-디아지니딘(odianisidine), o-톨루이딘(o-toluidine), 2,4-디클로로페놀(2,4-dichlorophenol), 4-아미노페나존(4-aminophenazone) 및 벤지딘(benzidine)으로 구성된 군에서 선택되는 것을 특징으로 하는 바이러스 검출용 조성물.
  4. 제1항에 있어서, 상기 리포좀 또는 리포좀-폴리머 하이브리드는 음전하를 가지는 것을 특징으로 하는 바이러스 검출용 조성물.
  5. 제1항에 있어서, 상기 전기화학적 활성기질을 내포하는 리포좀 또는 리포좀-폴리머 하이브리드는 표적 수용체를 추가로 포함하는 것을 특징으로 하는 바이러스 검출용 조성물.
  6. 제5항에 있어서, 상기 표적 수용체는 바이러스의 지질막 또는 막단백질과 결합하는 것을 특징으로 하는 바이러스 검출용 조성물.cv
  7. 제5항에 있어서, 상기 표적 수용체는 GT1b(Ganglioside GT1b), GD1b(Ganglioside GD1b), GQ1b(Ganglioside GQ1b), 포스파티딜콜린(Phosphatidylcholine), GM2(Ganglioside GM2), GM1(Ganglioside GM1), GD1a(Ganglioside GD1a), GB3(Ganglioside GB3), GB4(Ganglioside GB4), 스핑고리피드(Sphingolipid(3’-sulfogalactosyl-ceramide)) 및 콜레스테롤(cholesterol)로 구성된 군에서 선택되는 것을 특징으로 하는 바이러스 검출용 조성물.
  8. 제1항에 있어서, 상기 전류 변화는 순환전압전류법(cyclic voltammetry), 네모파전압전류법(square wave voltammetry), 정상펄스전압전류법(normal pulse voltammetry), 펄스차이전압전류법(differential pulse voltammetry) 또는 임피던스(impedance)로 확인하는 것을 특징으로 하는 바이러스 검출용 조성물.
  9. 제1항에 있어서, 상기 바이러스는 인플루엔자 바이러스(influenza virus), 루벨라 바이러스(rubella virus), 바리셀라-조스타 바이러스(varicella-zoster virus), HAV(hepatitis A), HBV(hepatitis B), HSV(herpes simplex virus), 폴리오바이러스(poliovirus), 천연두 바이러스(small pox), HIV(human immunodeficiency virus), 백시니아 바이러스(vaccinia virus), 공수병 바이러스(rabies virus), 엡스타인바 바이러스(Epstein Barr virus), 레오바이러스(reovirus) 및 리노바이러스(rhinovirus)로 구성된 군에서 선택되는 것을 특징으로 하는 바이러스 검출용 조성물.
  10. 제1항에 있어서, 상기 리포좀은 포스파티딜콜린(PC), 포스파티딜글리세롤(PG), 포스파티딜에탄올아민(PE), 포스파티딜세린(PS), 포스파티드산(PA), 포스파티딜이노시톨(PI), 달걀 포스파티딜콜린(EPC), 달걀 포스파티딜글리세롤(EPG), 달걀 포스파티딜에탄올아민(EPE), 달걀 포스파티딜세린(EPS), 달걀 포스파티드산(EPA), 달걀 포스파티딜이노시톨(EPI), 콩 포스파티딜콜린(SPC), 콩 포스파티딜글리세롤(SPG), 콩 포스파티딜에탄올아민(SPE), 콩 포스파티딜세린(SPS), 콩 포스파티드산(SPA), 콩 포스파티딜이노시톨(SPI), 다이팔미토일포스파티딜콜린(DPPC), 1,2-다이올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 다이미리스토일포스파티딜콜린(DMPC), 다이팔미토일포스파티딜글리세롤(DPPG), 다이올렐포스파티딜글리세롤(DOPG), 다이미리스토일포스파티딜글리세롤(DMPG), 헥사데실포스포콜린(HEPC), 수소화된 콩 포스파티딜콜린(HSPC), 다이스테아로일포스파티딜콜린(DSPC), 다이스테아로일포스파티딜글리세롤(DSPG), 다이올레일포스파티딜에탄올아민(DOPE), 팔미토일스테아로일포스파티딜콜린(PSPC), 팔미토일스테아로일포스파티딜글리세롤(PSPG), 모노올레오일포스파티딜에탄올아민(MOPE), 1-팔미토일-2-올레오일-sn-글리세로-3-포스파티딜콜린(POPC), 폴리에틸렌글리콜 다이스테아로일포스파티딜에탄올아민(PEG-DSPE), 다이팔미토일포스파티딜세린(DPPS), 1,2-다이올레오일-sn-글리세로-3-포스파티딜세린(DOPS), 다이미리스토일포스파티딜세린(DMPS), 다이스테아로일포스파티딜세린(DSPS), 다이팔미토일포스파티드산(DPPA), 1,2-다이올레오일-sn-글리세로-3-포스파티드산(DOPA), 다이미리스토일포스파티드산(DMPA), 다이스테아로일포스파티드산(DSPA), 다이팔미토일포스파티딜이노시톨(DPPI), 1,2-다이올레오일-sn-글리세로-3-포스파티딜이노시톨(DOPI), 다이미리스토일포스파티딜이노시톨(DMPI), 다이스테아로일포스파티딜이노시톨(DSPI), POPE(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycero) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 바이러스 검출용 조성물.
  11. 제1항에 있어서, 상기 리포좀-폴리머 하이브리드는 포스파티딜콜린(PC), 포스파티딜글리세롤(PG), 포스파티딜에탄올아민(PE), 포스파티딜세린(PS), 포스파티드산(PA), 포스파티딜이노시톨(PI), 달걀 포스파티딜콜린(EPC), 달걀 포스파티딜글리세롤(EPG), 달걀 포스파티딜에탄올아민(EPE), 달걀 포스파티딜세린(EPS), 달걀 포스파티드산(EPA), 달걀 포스파티딜이노시톨(EPI), 콩 포스파티딜콜린(SPC), 콩 포스파티딜글리세롤(SPG), 콩 포스파티딜에탄올아민(SPE), 콩 포스파티딜세린(SPS), 콩 포스파티드산(SPA), 콩 포스파티딜이노시톨(SPI), 다이팔미토일포스파티딜콜린(DPPC), 1,2-다이올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 다이미리스토일포스파티딜콜린(DMPC), 다이팔미토일포스파티딜글리세롤(DPPG), 다이올렐포스파티딜글리세롤(DOPG), 다이미리스토일포스파티딜글리세롤(DMPG), 헥사데실포스포콜린(HEPC), 수소화된 콩 포스파티딜콜린(HSPC), 다이스테아로일포스파티딜콜린(DSPC), 다이스테아로일포스파티딜글리세롤(DSPG), 다이올레일포스파티딜에탄올아민(DOPE), 팔미토일스테아로일포스파티딜콜린(PSPC), 팔미토일스테아로일포스파티딜글리세롤(PSPG), 모노올레오일포스파티딜에탄올아민(MOPE), 1-팔미토일-2-올레오일-sn-글리세로-3-포스파티딜콜린(POPC), 폴리에틸렌글리콜 다이스테아로일포스파티딜에탄올아민(PEG-DSPE), 다이팔미토일포스파티딜세린(DPPS), 1,2-다이올레오일-sn-글리세로-3-포스파티딜세린(DOPS), 다이미리스토일포스파티딜세린(DMPS), 다이스테아로일포스파티딜세린(DSPS), 다이팔미토일포스파티드산(DPPA), 1,2-다이올레오일-sn-글리세로-3-포스파티드산(DOPA), 다이미리스토일포스파티드산(DMPA), 다이스테아로일포스파티드산(DSPA), 다이팔미토일포스파티딜이노시톨(DPPI), 1,2-다이올레오일-sn-글리세로-3-포스파티딜이노시톨(DOPI), 다이미리스토일포스파티딜이노시톨(DMPI), 다이스테아로일포스파티딜이노시톨(DSPI), POPE(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycero) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 리포좀; 및 양친매성 블록공중합체, 폴리이소부틸렌-블록-폴리에틸렌옥사이드 공중합체, 폴리부타디엔-b-폴리에틸렌옥사이드 공중합체, 폴리디메틸실록세인-g-폴리에틸렌옥사이드 공중합체, 폴리(2-메틸옥사졸린)-b-폴리이메틸실록세인-b-폴리(2-메틸옥사졸린)의 공중합체 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 폴리머의 혼합물인 것을 특징으로 하는 바이러스 검출용 조성물.
  12. 제6항에 있어서, 상기 바이러스 막단백질은 HA(hemagglutinin)인 것을 특징으로 하는 바이러스 검출용 조성물.
  13. 제6항에 있어서, 상기 바이러스 지질막은 PC(Phosphatidylcholine), PI(Phosphoinositides), PS(Phosphatidylserine), PE(Phosphatidylethanolamine) 또는 SM(Sphingomyelin)인 것을 특징으로 하는 바이러스 검출용 조성물.
  14. 제1항 내지 제13항 중 어느 한 항의 조성물을 포함하는 바이러스 검출용 키트.
  15. 다음 단계를 포함하는 바이러스의 검출방법:
    (a) 전기화학적 활성기질을 내포하고, 리포좀 또는 리포좀-폴리머 하이브리드와 바이러스 함유 추정 시료를 접촉시키는 단계; 및
    (b) 상기 (a)의 접촉에 따른 전류 변화를 확인하는 단계.
  16. 제15항에 있어서, 상기 바이러스는 바이러스 지질막 또는 막단백질을 통해 리포좀 또는 리포좀-폴리머 하이브리드에 결합하는 것을 특징으로 하는 바이러스의 검출방법.
  17. 제15항에 있어서, 상기 전기화학적 활성기질은 K4Fe(CN)6(Potassium ferrocyanide(II)), 아스코르빈산(Ascorbic acid), Ru(NH3)6Cl3(Hexaammineruthenium(III) chloride), 페로센(ferrocene), 페로센 유도체(ferrocene derivatives), 퀴논(quinones), 퀴논 유도체(quinone derivatives), 루세늄 아민 복합체(ruthenium ammine complexes), 오스뮴(II), 오스뮴(III), 오스뮴(IV) 복합체(osmium complex), 메탈로센(metallocene), 메탈로센 유도체(metallocene derivatives), 포타슘헥사시아노페레이트(II)(Potassium hexa-cyanoferrate(II)), 멜돌라 블루(Melola's blue), 프루시안 블루(Prussian blue) 디클로로페놀인도피놀 (dichlorophenolindophenol(DCPIP)), o-페닐렌다이아민(o-phenylenediamine(o-PDA), 3,4-디하이드록시벤즈알데하이드(3,4-hydroxybenzaldehyde(3,4-DHB)), 비오로겐(viologen), 7,7,8,8-테트라시아노퀴노디메탄(7,7,8,8-tetracyanoquinodimethane(TCNQ)), 테트라티아풀발렌(tetrathiafulvalene(TTF)), N-메틸아시디니움(N-methylacidinium(NMA+)), 테트라티아테트라센(tetrathiatetracene(TTT)), N-메틸페나지니움(N-methylphenazinium(NMP+)), 3-메틸-2-벤조티오조리논히드라존(3-methyl-2-benzothiozolinonehydrazone), 2-메톡시-4-아릴페놀(2-methoxy-4-allylphenol), 4-아미노안티피린(4-aminoantipyrin (AAP)), 디메틸아닐린(dimethylaniline), 4-아미노안티피렌(4-aminoantipyrene), 4-메톡시나프톨(4-methylnaphthol), 3,3',5,5'-테트라메틸벤지딘(3,3‘,5,5-tetramethylbenzidine(TMB)), 2,2-아지노-디-[3-에틸-벤즈티아졸린술포네이트](2,2-azinodi-[3-ethylbenzthiazolinesulfonate]), o-디아지니딘(odianisidine), o-톨루이딘(o-toluidine), 2,4-디클로로페놀(2,4-dichlorophenol), 4-아미노페나존(4-aminophenazone) 및 벤지딘(benzidine)으로 구성된 군에서 선택되는 것을 특징으로 하는 바이러스의 검출방법.
  18. 제15항에 있어서, 상기 리포좀은 포스파티딜콜린(PC), 포스파티딜글리세롤(PG), 포스파티딜에탄올아민(PE), 포스파티딜세린(PS), 포스파티드산(PA), 포스파티딜이노시톨(PI), 달걀 포스파티딜콜린(EPC), 달걀 포스파티딜글리세롤(EPG), 달걀 포스파티딜에탄올아민(EPE), 달걀 포스파티딜세린(EPS), 달걀 포스파티드산(EPA), 달걀 포스파티딜이노시톨(EPI), 콩 포스파티딜콜린(SPC), 콩 포스파티딜글리세롤(SPG), 콩 포스파티딜에탄올아민(SPE), 콩 포스파티딜세린(SPS), 콩 포스파티드산(SPA), 콩 포스파티딜이노시톨(SPI), 다이팔미토일포스파티딜콜린(DPPC), 1,2-다이올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 다이미리스토일포스파티딜콜린(DMPC), 다이팔미토일포스파티딜글리세롤(DPPG), 다이올렐포스파티딜글리세롤(DOPG), 다이미리스토일포스파티딜글리세롤(DMPG), 헥사데실포스포콜린(HEPC), 수소화된 콩 포스파티딜콜린(HSPC), 다이스테아로일포스파티딜콜린(DSPC), 다이스테아로일포스파티딜글리세롤(DSPG), 다이올레일포스파티딜에탄올아민(DOPE), 팔미토일스테아로일포스파티딜콜린(PSPC), 팔미토일스테아로일포스파티딜글리세롤(PSPG), 모노올레오일포스파티딜에탄올아민(MOPE), 1-팔미토일-2-올레오일-sn-글리세로-3-포스파티딜콜린(POPC), 폴리에틸렌글리콜 다이스테아로일포스파티딜에탄올아민(PEG-DSPE), 다이팔미토일포스파티딜세린(DPPS), 1,2-다이올레오일-sn-글리세로-3-포스파티딜세린(DOPS), 다이미리스토일포스파티딜세린(DMPS), 다이스테아로일포스파티딜세린(DSPS), 다이팔미토일포스파티드산(DPPA), 1,2-다이올레오일-sn-글리세로-3-포스파티드산(DOPA), 다이미리스토일포스파티드산(DMPA), 다이스테아로일포스파티드산(DSPA), 다이팔미토일포스파티딜이노시톨(DPPI), 1,2-다이올레오일-sn-글리세로-3-포스파티딜이노시톨(DOPI), 다이미리스토일포스파티딜이노시톨(DMPI), 다이스테아로일포스파티딜이노시톨(DSPI), POPE(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycero) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 바이러스의 검출방법.
  19. 제15항에 있어서, 상기 리포좀-폴리머 하이브리드는 포스파티딜콜린(PC), 포스파티딜글리세롤(PG), 포스파티딜에탄올아민(PE), 포스파티딜세린(PS), 포스파티드산(PA), 포스파티딜이노시톨(PI), 달걀 포스파티딜콜린(EPC), 달걀 포스파티딜글리세롤(EPG), 달걀 포스파티딜에탄올아민(EPE), 달걀 포스파티딜세린(EPS), 달걀 포스파티드산(EPA), 달걀 포스파티딜이노시톨(EPI), 콩 포스파티딜콜린(SPC), 콩 포스파티딜글리세롤(SPG), 콩 포스파티딜에탄올아민(SPE), 콩 포스파티딜세린(SPS), 콩 포스파티드산(SPA), 콩 포스파티딜이노시톨(SPI), 다이팔미토일포스파티딜콜린(DPPC), 1,2-다이올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 다이미리스토일포스파티딜콜린(DMPC), 다이팔미토일포스파티딜글리세롤(DPPG), 다이올렐포스파티딜글리세롤(DOPG), 다이미리스토일포스파티딜글리세롤(DMPG), 헥사데실포스포콜린(HEPC), 수소화된 콩 포스파티딜콜린(HSPC), 다이스테아로일포스파티딜콜린(DSPC), 다이스테아로일포스파티딜글리세롤(DSPG), 다이올레일포스파티딜에탄올아민(DOPE), 팔미토일스테아로일포스파티딜콜린(PSPC), 팔미토일스테아로일포스파티딜글리세롤(PSPG), 모노올레오일포스파티딜에탄올아민(MOPE), 1-팔미토일-2-올레오일-sn-글리세로-3-포스파티딜콜린(POPC), 폴리에틸렌글리콜 다이스테아로일포스파티딜에탄올아민(PEG-DSPE), 다이팔미토일포스파티딜세린(DPPS), 1,2-다이올레오일-sn-글리세로-3-포스파티딜세린(DOPS), 다이미리스토일포스파티딜세린(DMPS), 다이스테아로일포스파티딜세린(DSPS), 다이팔미토일포스파티드산(DPPA), 1,2-다이올레오일-sn-글리세로-3-포스파티드산(DOPA), 다이미리스토일포스파티드산(DMPA), 다이스테아로일포스파티드산(DSPA), 다이팔미토일포스파티딜이노시톨(DPPI), 1,2-다이올레오일-sn-글리세로-3-포스파티딜이노시톨(DOPI), 다이미리스토일포스파티딜이노시톨(DMPI), 다이스테아로일포스파티딜이노시톨(DSPI), POPE(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycero) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 리포좀; 및 양친매성 블록공중합체, 폴리이소부틸렌-블록-폴리에틸렌옥사이드 공중합체, 폴리부타디엔-b-폴리에틸렌옥사이드 공중합체, 폴리디메틸실록세인-g-폴리에틸렌옥사이드 공중합체, 폴리(2-메틸옥사졸린)-b-폴리이메틸실록세인-b-폴리(2-메틸옥사졸린)의 공중합체 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 폴리머의 혼합물인 것을 특징으로 하는 바이러스의 검출방법.
  20. 제15항에 있어서, 상기 리포좀 또는 리포좀-폴리머 하이브리드는 음전하를 가지는 것을 특징으로 하는 바이러스의 검출방법.
  21. 제15항에 있어서, 상기 전기화학적 활성기질을 내포하는 리포좀 또는 리포좀-폴리머 하이브리드는 표적 수용체를 추가로 내포하는 것을 특징으로 하는 바이러스의 검출방법.
  22. 제21항에 있어서, 상기 표적 수용체는 바이러스의 지질막 또는 막단백질과 결합하는 것을 특징으로 하는 바이러스의 검출방법.
  23. 제21항에 있어서, 상기 표적 수용체는 GT1b(Ganglioside GT1b), GD1b(Ganglioside GD1b), GQ1b(Ganglioside GQ1b), 포스파티딜콜린(Phosphatidylcholine), GM2(Ganglioside GM2), GM1(Ganglioside GM1), GD1a(Ganglioside GD1a), GB3(Ganglioside GB3), GB4(Ganglioside GB4), 스핑고리피드(Sphingolipid(3’-sulfogalactosyl-ceramide)) 및 콜레스테롤(cholesterol)로 구성된 군에서 선택되는 것을 특징으로 하는 바이러스의 검출방법.
  24. 제15항에 있어서, 상기 (b) 단계의 전류 변화는 상기 리포좀 또는 리포좀-폴리머 하이브리드에 바이러스가 지질막 또는 막단백질을 통해 결합할 경우, 리포좀에 내포된 전기화학적 활성기질이 방출되면서 전류 변화를 나타내는 것을 특징으로 하는 바이러스의 검출방법.
  25. 제15항에 있어서, 상기 (b) 단계의 전류 변화 여부 확인은 산화 또는 환원 반응을 통해 수행되는 것을 특징으로 하는 바이러스의 검출방법.
  26. 제15항에 있어서, 상기 (b) 단계의 전류 변화는 순환전압전류법(cyclic voltammetry), 네모파전압전류법(square wave voltammetry), 정상펄스전압전류법(normal pulse voltammetry), 펄스차이전압전류법(differential pulse voltammetry) 또는 임피던스(impedance)로 확인하는 것을 특징으로 하는 바이러스의 검출방법.
  27. 제15항에 있어서, 상기 바이러스는 인플루엔자 바이러스(influenza virus), 루벨라 바이러스(rubella virus), 바리셀라-조스타 바이러스(varicella-zoster virus), HAV(hepatitis A), HBV(hepatitis B), HSV(herpes simplex virus), 폴리오바이러스(poliovirus), 천연두 바이러스(small pox), HIV(human immunodeficiency virus), 백시니아 바이러스(vaccinia virus), 공수병 바이러스(rabies virus), 엡스타인바 바이러스(Epstein Barr virus), 레오바이러스(reovirus) 및 리노바이러스(rhinovirus)로 구성된 군에서 선택되는 것을 특징으로 하는 바이러스의 검출방법.
  28. 제15항에 있어서, 상기 바이러스 막단백질은 HA(hemagglutinin)인 것을 특징으로 하는 바이러스의 검출방법.
  29. 제15항에 있어서, 상기 바이러스 지질막은 PC(Phosphatidylcholine), PI(Phosphoinositides), PS(Phosphatidylserine), PE(Phosphatidylethanolamine) 또는 SM(Sphingomyelin)인 것을 특징으로 하는 바이러스의 검출방법.
PCT/KR2016/004956 2015-06-11 2016-05-12 리포좀 및 리포좀-폴리머 하이브리드를 이용한 바이러스 검출방법 WO2016200063A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150082788 2015-06-11
KR10-2015-0082788 2015-06-11
KR20160056901 2016-05-10
KR10-2016-0056901 2016-05-10

Publications (1)

Publication Number Publication Date
WO2016200063A1 true WO2016200063A1 (ko) 2016-12-15

Family

ID=57503346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004956 WO2016200063A1 (ko) 2015-06-11 2016-05-12 리포좀 및 리포좀-폴리머 하이브리드를 이용한 바이러스 검출방법

Country Status (1)

Country Link
WO (1) WO2016200063A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980010417A (ko) * 1996-07-13 1998-04-30 구자홍 전기화학식 면역 바이오센서
KR100762202B1 (ko) * 2005-10-18 2007-10-04 건국대학교 산학협력단 용혈성 미생물을 선택적으로 탐지하는 방법
US7829272B2 (en) * 2007-05-24 2010-11-09 Nanotrope Inc. Viral detection liposomes and method
JP5047783B2 (ja) * 2004-05-13 2012-10-10 サントル・ナシオナル・ドゥ・ラ・ルシェルシュ・シアンティフィーク(セーエヌエールエス) ターゲット存在物をおとり存在物へ結合させるための装置、および該装置を使用する検出方法
JP2013061325A (ja) * 2011-08-22 2013-04-04 Liposome Engineering Laboratory リポソームを用いた酵素免疫測定技術LELIA(Liposome−basedEnzyme−LinkedImmunoAssay)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980010417A (ko) * 1996-07-13 1998-04-30 구자홍 전기화학식 면역 바이오센서
JP5047783B2 (ja) * 2004-05-13 2012-10-10 サントル・ナシオナル・ドゥ・ラ・ルシェルシュ・シアンティフィーク(セーエヌエールエス) ターゲット存在物をおとり存在物へ結合させるための装置、および該装置を使用する検出方法
KR100762202B1 (ko) * 2005-10-18 2007-10-04 건국대학교 산학협력단 용혈성 미생물을 선택적으로 탐지하는 방법
US7829272B2 (en) * 2007-05-24 2010-11-09 Nanotrope Inc. Viral detection liposomes and method
JP2013061325A (ja) * 2011-08-22 2013-04-04 Liposome Engineering Laboratory リポソームを用いた酵素免疫測定技術LELIA(Liposome−basedEnzyme−LinkedImmunoAssay)

Similar Documents

Publication Publication Date Title
Zhuang et al. Liposome-amplified photoelectrochemical immunoassay for highly sensitive monitoring of disease biomarkers based on a split-type strategy
KR101814495B1 (ko) 바이러스 검출용 키트
Viswanathan et al. Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode
Connor et al. pH-sensitive immunoliposomes as an efficient and target-specific carrier for antitumor drugs
Schoen et al. Gene transfer mediated by fusion protein hemagglutinin reconstituted in cationic lipid vesicles
CN111500284B (zh) 一种包封石墨烯量子点的纳米脂质体及制备以及其在生物酶活性检测中的应用
Zheng et al. An ultrasensitive chemiluminescence immunosensor for PSA based on the enzyme encapsulated liposome
JPS61501897A (ja) 融合リポソ−ムおよびリポソ−ムの酸誘導融合方法
KR101755408B1 (ko) 리포좀 또는 리포좀 폴리머 하이브리드를 이용한 박테리아 검출방법
Nunes-Correia et al. Fluorescent probes for monitoring virus fusion kinetics: comparative evaluation of reliability
US9494524B2 (en) Assay for analytes based on aggregation
WO2016200063A1 (ko) 리포좀 및 리포좀-폴리머 하이브리드를 이용한 바이러스 검출방법
Groß et al. Phosphatidylserine-exposing extracellular vesicles in body fluids are an innate defence against apoptotic mimicry viral pathogens
Ballesteros et al. Autophagy protein LC3C binding to phospholipid and interaction with lipid membranes
WO2016111568A1 (ko) 바이러스 검출용 키트
WO2016200064A1 (ko) 리포좀 및 리포좀-폴리머 하이브리드를 이용한 박테리아 검출방법
Yoshida et al. Simple preparation and characterization of cationic liposomes associated with a monoclonal antibody against glioma-associated antigen (immunoliposomes)
WO2016137236A1 (ko) 리포좀 또는 리포좀-폴리머 하이브리드를 이용한 바이러스 검출방법
Kozuma et al. Fusion characteristics of a nuclear polyhedrosis virus in cultured cells: time course and effect of a synergistic factor and pH
Faggiano et al. Phospholipid components of the synthetic pulmonary surfactant CHF5633 probed by fluorescence spectroscopy
Muñoz-Barroso et al. Dynamic properties of Newcastle Disease Virus envelope and their relations with viral hemagglutinin-neuraminidase membrane glycoprotein
KR20180090513A (ko) 바이러스 검출용 키트
EP0258388A1 (en) Immunoliposome assay - methods and products
MacDonald Energy transfer measurements of fusion between Sendai virus and vesicles corrected for decreased absorption of acceptor probe.
WO2016111572A1 (ko) 바이러스 검출용 키트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807704

Country of ref document: EP

Kind code of ref document: A1