WO2016111572A1 - 바이러스 검출용 키트 - Google Patents

바이러스 검출용 키트 Download PDF

Info

Publication number
WO2016111572A1
WO2016111572A1 PCT/KR2016/000163 KR2016000163W WO2016111572A1 WO 2016111572 A1 WO2016111572 A1 WO 2016111572A1 KR 2016000163 W KR2016000163 W KR 2016000163W WO 2016111572 A1 WO2016111572 A1 WO 2016111572A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
probe
biomolecule
polymer
kit
Prior art date
Application number
PCT/KR2016/000163
Other languages
English (en)
French (fr)
Inventor
함승주
김현욱
김지혜
송대섭
Original Assignee
연세대학교 산학협력단
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160002305A external-priority patent/KR101790088B1/ko
Application filed by 연세대학교 산학협력단, 한국생명공학연구원 filed Critical 연세대학교 산학협력단
Priority to JP2017555190A priority Critical patent/JP6494794B2/ja
Priority to EP16735193.1A priority patent/EP3244211A4/en
Priority to CN201680005366.5A priority patent/CN107430129A/zh
Publication of WO2016111572A1 publication Critical patent/WO2016111572A1/ko
Priority to US15/643,832 priority patent/US20170307612A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances

Definitions

  • the present invention relates to a virus detection kit, a virus detection method, a virus detection composition and a method for producing a virus detection kit.
  • Viruses are infectious agents that are smaller than bacteria. It consists of genetic material RNA or DNA and the protein surrounding the genetic material. Viruses can be divided into plant viruses, animal viruses, and bacterial viruses (phages) according to the type of host. However, in most cases, depending on the type of nucleic acid, it is divided into DNA virus and RNA virus, which are further subdivided into river, neck, and fruit.
  • avian influenza is an acute viral infectious disease caused by the infection of the Avian influenza virus in chickens, ducks, or wild birds and rarely causes infection in humans.
  • Avian influenza viruses are classified into three types according to pathogenicity: high pathogenic, low pathogenic, and non-pathogenic, and human infections of highly pathogenic avian influenza A (H5N1), which may be transmitted to humans from late 2003 to February 2008. More than 640 cases have been reported.
  • Avian influenza causes enormous economic damage due to high mortality and low egg production rates of algae, and is unlikely to cause human infection, but high mortality when infected. Since the development of the underlying vaccine is difficult and the rate of spread is very high, it is necessary to minimize disease spread and economic loss through early diagnosis.
  • immunological detection methods such as enzyme-linked immunosorbent assay (ELISA), enzyme immunoassay (EIA) and immunofluorescence assay (IFA), and RNA detection by RT-PCR are known.
  • ELISA enzyme-linked immunosorbent assay
  • EIA enzyme immunoassay
  • IFA immunofluorescence assay
  • the present invention is to provide a virus detection kit, a virus detection method and a virus detection composition capable of efficiently detecting a virus within a short time.
  • the present invention includes a biomolecule that specifically reacts with a surface protein of a virus and a probe that reacts with a virus activated by the biomolecule, wherein the probe comprises a virus detection kit including a marker bound to an amphiphilic polymer. to provide.
  • the present invention also includes a biomolecule that specifically reacts with a surface protein of a virus and a probe that reacts with a virus activated by the biomolecule, wherein the probe comprises a marker bound to an amphiphilic polymer.
  • a biomolecule that specifically reacts with a surface protein of a virus and a probe that reacts with a virus activated by the biomolecule, wherein the probe comprises a marker bound to an amphiphilic polymer.
  • the invention also comprises contacting a sample obtained from an individual with a biomolecule that specifically reacts with a surface protein of a virus and contacting a probe that reacts the sample contacted with the biomolecule with a virus activated by the biomolecule. Including the step of, wherein the probe provides a virus detection method comprising a marker bound to the amphiphilic polymer.
  • the present invention also provides a method for preparing a virus detection probe or detection kit comprising the step of binding an amphiphilic polymer and a marker.
  • the virus can be detected in a short time and with high efficiency at a low cost, and the initial release of the marker is suppressed as compared with the conventional virus detection kit, thereby increasing detection sensitivity and accuracy, and dialysis (washing) in the manufacturing process. Since it does not need to implement, manufacturing efficiency can be improved.
  • FIG. 1 is a view showing the structure of a probe according to an embodiment of the present invention.
  • the scale bar represents 100nm.
  • 3 is a view showing an image of a probe according to an embodiment of the present invention, the scale bar represents 100nm.
  • the scale bar represents 100nm.
  • 5 is a graph illustrating a comparison of average sizes of probes according to an embodiment of the present invention.
  • viruses including the influenza virus and the Ebola virus, are involved in the release of hemagglutinin (HA), a mature protein that binds to the host cell for host cell invasion, and the release of mature virions from the host cell.
  • HA hemagglutinin
  • Neuraminidase an M2 ion channel that regulates the balance of hydrogen ion concentrations
  • RNP Rabonucleoprotein
  • the inventors have studied to develop a method for early detection of viruses based on the common characteristics of the viruses described above. As a result, the virus is activated using a probe capable of activating the virus through a biomolecule that specifically reacts with the surface protein of the virus and detecting the presence or absence of the virus by reacting with the activated virus. It was confirmed that the present invention was completed.
  • the present invention includes a biomolecule that specifically reacts with a surface protein of a virus, and a probe that reacts with a virus activated by the biomolecule, wherein the probe includes a marker coupled to an amphiphilic polymer.
  • a biomolecule that specifically reacts with a surface protein of a virus
  • a probe that reacts with a virus activated by the biomolecule, wherein the probe includes a marker coupled to an amphiphilic polymer.
  • Probes of the invention include " labelers bound to amphiphilic polymers. &Quot;
  • the "labeled conjugated with an amphiphilic polymer” may be “an amphiphilic conjugated with a label”.
  • the term “probe” refers to a substance capable of detecting the presence of the virus or an active virus by reacting with a virus activated by a biomolecule that specifically reacts with a surface protein of the virus. . If the probe is a substance other than the virus or an inactive virus, the probe has a superior ability to react with the active virus, or a substance that can specifically detect the presence of the active virus by reacting specifically with the active virus. All are included and the kind and form are not specifically limited. In the present specification, the probe is used interchangeably with "detector”.
  • the probe of the present invention that includes the "labeled conjugate with an amphiphilic polymer" since the marker is directly bonded to the polymer which forms a membrane and serves as a capsule or a carrier, it is possible to control the initial release of the marker during the detection process. It is possible to improve the detection sensitivity and accuracy, it is possible to omit the process of dialysis in the manufacturing step has an excellent manufacturing efficiency effect.
  • bonds means that atoms or ions meet to form a molecule. As long as atoms or ions between the amphiphilic polymer and the marker are bonded to each other, they are not limited to the type of bonds including covalent bonds, ionic bonds, metal bonds, and coordination bonds.
  • the bond may be an ester bond, an amide bond, an imine bond, a hydrazone bond or an acetal bond.
  • the "label” means a substance that can determine or enable the reaction of the probe with the active virus.
  • the type of the marker is not particularly limited and may be used without limitation as long as it is a marker that enables the identification or change of the probe according to the change before and after the reaction of the probe.
  • the marker may further include a marker (second marker) different from the marker (first marker) bound to the amphiphilic polymer.
  • the second marker may be in a form bonded or supported with a polymer. That is, the probe of the present invention may further include a first marker bound to an amphiphilic polymer and a second marker supported on the inside of the probe, or a hydrophilic polymer bound to a first marker and a hydrophilic polymer bound to a second marker. Each may include.
  • the marker may comprise at least one selected from the group consisting of self-quenched dyes, fluorescent dyes, electrochemiluminescent materials, quenchers, luminescent dyes and phosphorescent dyes. Can be.
  • the marker bound to the amphiphilic polymer may be one or more.
  • one or more different materials may be combined with an amphiphilic polymer among the same kind of markers.
  • the first marker when the first marker is a fluorescent dye, the second marker may be a quencher, and according to another embodiment, when the first marker is a quencher, the second marker may be a fluorescent dye.
  • the probe may comprise a dye coupled with the amphiphilic polymer and / or a quencher coupled with the amphiphilic polymer.
  • the dye refers to a material that selectively absorbs or emits light of a specific wavelength.
  • the light of the specific wavelength may be ultraviolet light, infrared light or visible light.
  • the self-quenched dye refers to a material that exhibits quenching when the dyes are in close proximity to each other, and fluoresces by dequenching when the aggregated dyes are released and spread. .
  • the self-quenching dye is 3,3-dioctadecyloxacarbocyanine perchlorate (Dio; Dioc), 3,3-diooctadecyl-5,5-di ( 4-sulfophenyl) oxacarbocyanine sodium salt (3,3 -dioctadecyl-5,5-di (4-sulfophenyl) oxacarbocyanine sodium salt), 4- (4- (dihexadecylamino) styryl) -N- Methylpyridinium iodide (4- (4- (dihexadecylamino) styryl) -N-methylpyridinium iodide; DiA; 4-Di-16-ASP), 4- (4- (didecylamino) styryl) -N- Methylpyridinium iodide (4- (4- (didec
  • the electrochemiluminescent material includes, but is not limited to, tris (2,2'-bipyridyl) ruthenium (II) [Ru (bpy) 32+].
  • the fluorescent dye refers to a material having a property of absorbing the wavelength included in the light to change the color light to re-radiate. Fluorescent dyes are also called luminescent dyes, and can be used without limitation fluorescent dyes commonly known in the art. In one embodiment, the fluorescent dye is Texas red, fluorescein, 4-chloro-7-nitrobenzofurazan (NBD-Cl), luminol It may be at least one selected from the group consisting of a compound containing a fullerene and an aromatic group.
  • a quencher refers to a substance that removes excited energy of a molecule and inhibits luminescence or fluorescence.
  • the quencher is commonly known in the art to which the present invention pertains, and can be used without limitation in its kind.
  • the quencher may be one or more selected from the group consisting of BHQ-1, BHQ-2, and BHQ-3.
  • a phosphorescent dye means a material that exhibits a luminance effect by changing and re-radiating wavelengths absorbed in the illumination light.
  • sulfide minerals X m Z n
  • Z is a non-metal element
  • alkaline earth metal sulfide but is not limited thereto.
  • amphiphilic is also referred to as amphiphilic, and means having both hydrophilic and hydrophobic properties.
  • an amphiphilic particle means the particle which has the area
  • the amphiphilic polymer may be selected from the group consisting of A-B type block copolymers including hydrophilic polymer A and hydrophobic polymer B, triple block copolymers of B-A-B type, lipid polymers, and combinations thereof.
  • the hydrophilic polymer is polyalkylene glycol (PAG), polyacrylic acid (PAA), polyacrylonitrile (PAN), polyethylene oxide (PEO), polyvinylacetate (PVAc), polyethylene glycol (PEG), It may be at least one selected from the group consisting of polyvinylpyrrolidone, polyacrylamide, polyvinyl alcohol (PVA) and hydrophilic polyamino acid.
  • the hydrophilic polymer is monomethoxy polyethylene glycol, monoacetoxy polyethylene glycol, polyethylene glycol, copolymer of polyethylene and propylene glycol, polyvinylpyrrolidone, polyglutamine, polyglutamic acid, polythreonine, polyasparagine, polyarginine And it may be one or more selected from the group consisting of polyserine.
  • the hydrophilic A block can have a number average molecular weight of 200 to 50,000 Daltons or 1,000 to 20,000 Daltons.
  • the hydrophobic polymer may be used without limitation so long as it is a material capable of forming an amphiphilic polymer together with the hydrophilic polymer.
  • the hydrophobic polymer B block can be one or more selected from the group consisting of polyesters, polyanhydrides, hydrophobic polyamino acids, polyorthoesters, and polyphosphazines.
  • the hydrophobic polymer B block is made of polyleucine, polyisoleucine, polyvaline, polyphenylalanine, polyproline, polyglycine, polymethionine, polytryptophan, polyalanine, polylactide, polyglycolide, polycaprolactone, poly Dioxan-2-one, copolymer of polylactide and glycolide, copolymer of polylactide and dioxan-2-one, copolymer of polylactide and caprolactone, and air of polyglycolide and caprolactone It may be one or more selected from the group consisting of coalescing.
  • the hydrophobic polymer includes a derivative thereof. Hydrophobic B blocks have a number average molecular weight of 50 to 50,000 Daltons, or 200 to 20,000 Daltons.
  • lipid polymer is also referred to as "lipid". If it is possible to form the membrane structure of the bilayer includes phospholipids, lipoproteins, glycolipids, cationic lipids and the like, but is not limited to the kind.
  • the lipids include both naturally derived derivatives and synthesized lipid derivatives.
  • the phospholipids include glycerophos pholipids and sphingophospholipids (Phosphosphingolipids).
  • the glycerophospholipid may be a diacrylglyceride structure, specifically phosphatidate (Phosphatidic acid, PA), lecithin (lecithin, Phosphatidylcholine (PC), cephalin) and phosphinositides (Phosphoinositides).
  • the cephalin phospholipids include phosphatidylserine (PS) and phosphatidylethanolamine (PE).
  • the phosphoinositides phospholipids include phosphatidylinositol (PI), phosphatidylinositol phosphate (PIP), phosphatidylinositol bisphosphate (PIP2), and phosphatidyl inositol triphosphate; do.
  • the sphingophospholipids include ceramide phosphorylcholine (Sphingomyelin, SPH), ceramide phosphorylethanolamine (Sphingomyelin, Cer-PE) and ceramide phosphoryllipid.
  • the synthetic phospholipid derivative is not limited to the kind, but in one embodiment 1,2-didodecanoy-sn-glycero-3-phosphocholine (EPC, 1,2-didodecanoyl-sn-glycero-3- ethylphosphocholine), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine), 1-palmitoyl-2-oleoyl-sn Glycerol-3-phosphoethanolamine (POPE, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-phospho- L-serine (POPS, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine) may be selected from the group consisting of.
  • Probes according to an embodiment of the present invention can be prepared using a known method freely.
  • a method of dispersing an amphiphilic block copolymer including a hydrophilic region and a hydrophobic region in an aqueous solution and applying ultrasonic waves a method of dispersing or dissolving the organic solvent in an organic solvent and then extracting or evaporating the organic solvent with excess water, and an organic solvent.
  • Prepared by dispersing or dissolving in water, and dialysis with excess water, dispersing or dissolving in an organic solvent, strongly evaporating the solvent using a homogenizer or a high pressure emulsifier, or thin film hydration. can do.
  • the probe according to this example of the present invention may be one in which an amphiphilic block or polymer including a hydrophilic region and a hydrophobic region is self-assembled and granulated.
  • the probe of the present invention may exhibit various structures or forms depending on the type of virus or virus surface protein to be detected, the type of polymer used, and the method of preparation.
  • the probe may exhibit a membrane structure.
  • membrane structure refers to a structure surrounded by a membrane or a shell. Encapsulation particles such as vesicles, artificial cells, or microcapsules are included without limitation.
  • the membrane structure is used in combination with a shell structure.
  • the membrane structure includes a structure including a fluid or a separate configuration therein.
  • the membrane includes a mono layer or bilayer structure.
  • the mono layer is a membrane structure including a "hydrophobic region-hydrophilic region", and in one embodiment, may be a structure including a hydrophobic core and a hydrophilic shell in an aqueous solution.
  • the bilayer is a film structure including "hydrophilic region-hydrophobic region-hydrophobic region-hydrophilic region". In one embodiment, the bilayer may be a form in which two mono layers are combined. In addition, the bilayer may have a structure including a hydrophilic core, a hydrophobic region surrounding the hydrophilic core, and a hydrophilic shell surrounding the hydrophobic region.
  • the membrane structure includes both a single membrane and a multi membrane having two or more single membranes.
  • the particle having a single layer may be a particle having a multi layer.
  • the single layer and the multi layer are concepts distinct from a single layer and a double layer. Specifically, a particle including only one layer of a bilayer structure has a single layer, and a particle including a layer of a monolayer structure is surrounded by a layer of a single layer structure, and means a particle having a multilayer structure. .
  • the probe having the membrane structure may be prepared by a conventional method to which the present invention belongs, and according to one embodiment, microfludization, high-pressure homogenization, and emulsion using microfluidization equipment It may be prepared using an emulsion method or ultrasonic waves, but is not limited thereto.
  • Particles having the membrane structure may be included in the probe of the present invention, but not all.
  • it may be a vesicle (micelle), micelles (micelle), polymersomes (polymersome), colloidsome (colloidsome), vesicles (vesicle), liposomes (droposome) or droplets (droplet), but is limited to the above examples It doesn't happen.
  • the kit of the present invention may comprise one type of probe having different membrane structures from each other.
  • micelle is meant a particle having a hydrophobic core and a hydrophilic shell.
  • the micelle may be a micelle of a surfactant or a polymer self-assembled micelle.
  • the micelles also include a multi-layered form including two or more monolayers.
  • the micelles include, but are not limited to, spherical, ellipsoidal, or cylindrical.
  • the probe of the micelle structure may further include components such as a marker and an inorganic particle in the hydrophobic core region.
  • the "polymersome” means a particle having a double layer membrane structure having a "hydrophilic region-hydrophobic region-hydrophobic region-hydrophilic region” and including a polymer or a copolymer in the hydrophobic and hydrophilic regions.
  • the polymer or copolymer may include artificially synthesized ones and lipids together, or artificially synthesized ones. Artificially synthesized is meant to include all polymers and copolymers except for naturally occurring lipids.
  • the polymersome includes both a single layer of a double layer membrane structure and a multi layer including two or more layers.
  • the polymersome may include a polymer or copolymer artificially synthesized from liposomes.
  • the polymersome may also include a single layer consisting of a bilayer type membrane and a multi-layer type including two or more single layers of the double layer.
  • liposome means a particle having at least one lipid bilayer. If it has a lipid film that mimics an amphipathic biofilm, it includes both single and multiple membranes.
  • the method for forming liposomes is well known in the art, and can be obtained by suspending phospholipids in aqueous salt solution, or aqueous solution containing phospholipids by sonication, but the present invention is not limited by the preparation method.
  • the "colloidsome” means a colloidal particle having a size of 1 nm to 1000 nm or a structure in which the particle size is tightly packed.
  • a colloidal particle having a size of 1 nm to 1000 nm or a structure in which the particle size is tightly packed.
  • a structure in which the particle size is tightly packed may comprise a single layer and a bilayer. It also includes both single and multiple films.
  • the "droplet” means to exhibit a drop shape in the membrane structure particles. It includes monolayers and bilayers, and includes both monolayers and multilayers.
  • Probes of the present invention can be classified according to the shape (shape), but is not limited to the above shape.
  • shape of the probe includes rods, spheres, rings, flats, cylinders, ellipses, membrane enclosed shapes, and combinations thereof.
  • the rod shape refers to a straight shape such as a rod, rod or pole.
  • the spherical shape means a round shape, and includes both a perfect sphere and an incomplete sphere.
  • the ring shape generally means a shape in which a center is empty in a spherical or circular shape.
  • the flat form refers to a thin flat plate, a plate shape.
  • the plate-shaped probe may be in the form of a plate-like probe coated on or outside the substrate or carrier.
  • the amphiphilic particles when the amphiphilic particles satisfy a mass fraction of 0.25 to 0.40 calculated according to Equation 1 below, the amphiphilic particles exhibit a polymersome morphology and the mass fraction is greater than 0.40 and not more than 0.70 Amphiphilic particles exhibit a micelle structure.
  • Mass fraction mass of hydrophilic polymer / (mass of hydrophilic polymer + mass of hydrophobic polymer)
  • the amphiphilic particles exhibit a polymersome form when the mass% satisfies 25% to 40%, and the amphiphilic particles when the mass% is greater than 40% and 70% or less. Represents a micelle structure.
  • the size of the probe is not limited.
  • the probe may be nano or micro particles, for example the average particle diameter may be 50 to 10000 nm.
  • the probe may further include an inorganic particle selected from gold, silver, and a combination thereof in order to more clearly determine whether the reaction with the virus.
  • the kit or composition of the present invention may include only one type of the probe or two or more types of probes together.
  • virus refers to an obligatory intracellular parasite, having DNA or RNA as a nucleic acid, proliferation beginning with nucleic acid, not proliferating by dividing, and having no enzyme system necessary for ATP production. it means.
  • the virus of the present invention includes a naked virus and an enveloped virus, and specifically, the virus according to an embodiment of the present invention may be an enveloped virus.
  • the envelope virus is specifically a DNA virus including a herpesvirus, a poxvirus and a hepadnavirus, a flavivirus, a togavirus, a coronavirus, Including hepatitis D, orthomyxovirus, paramyxovirus, rhabdovirus, bunyavirus, filovirus and retrovirus Include all that belong to the RNA virus.
  • the orosomicovirus includes all viruses included in influenza virus A, influenza virus B, influenza virus C, isavirus, sogotovirus and quaranjavirus.
  • the coronavirus includes all viruses included in alpha coronavirus, beta coronavirus, beta coronavirus, gamma coronavirus and delta coronavirus.
  • the paramyxoviruses include all viruses included in the paramyxoviruses, rubula virus, mobilebivirus and pneumoviruses.
  • the virus includes nucleic acids and proteins surrounding them.
  • the proteins of the virus protect the viral genome, are involved in the adsorption of viral particles into the cell, determine the antigenicity of the virus, and synthesize structural proteins and proteins and nucleic acids that maintain the shape of the virus.
  • Non-structural proteins which are related proteins.
  • a "surface protein of a virus” refers to the structural protein.
  • a “surface protein” may be a glycoprotein that has the specific antigenicity of a virus, is involved in the adsorption of the virus and the fusion of infected cells, and is a fusion protein involved in the fusion to cells. (fusion protein).
  • the surface protein of the virus may be hemagglutinin (HA), spike protein (spike protein) or F protein (F protein).
  • HA hemagglutinin
  • spike protein spike protein
  • F protein F protein
  • the virus of the present invention may be to include a surface protein that causes membrane fusion by adsorbing to the cell membrane of the host cell.
  • the virus of the present invention may include a surface protein having a property of adsorbing and / or membrane fusion with a cell membrane of a host cell when the surface protein existing in an inactive state is changed to an active form by a biomolecule. have.
  • the "virus” may be an influenza virus or a highly pathogenic influenza virus.
  • Influenza viruses are "surface proteins of the virus” and include the glycoprotein hemagglutinin (HA). When hemagglutinin is expressed as a polypeptide (precursor HA0) and then the cleavage site of HAO is divided into HA1 and HA2 by proteolysis, a fusion peptide composed of hydrophobic amino acid residues under acidic conditions ( fusion peptide) is activated.
  • HA differs in amino acid composition of the cleavage site and amino acid composition of the fusion peptide depending on the pathogenicity of the influenza virus.
  • the "virus” may be a corona virus.
  • Corona virus includes a spike protein as a surface protein, and the spike protein includes S 1 and S 2 sites. When the S1 site of the spike protein binds to the host cell, it is cleaved into S 1 and S 2 by protease, and the hydrophobic site at the end of S2 is exposed and activated.
  • the "virus” may be a paramyxovirus.
  • Paramyxoviruses include HN proteins as surface proteins.
  • the HN protein is an adhesion (or adsorption) protein that attaches or adsorbs a virus to a host cell.
  • the virus is present as a precursor HN 0 in the virus inactive state, but is activated when the amino acid residue is removed from the C -terminal by hydrolysis.
  • Paramyxoviruses also include F proteins as surface proteins.
  • the F protein is present as precursor F 0 in the virus inactive state, but is cleaved into F 1 and F 2 by biomolecules, and then activated into a new N -terminal form F 1 .
  • the F protein includes both a polybasic residue and a monobasic residue at the cleavage site. Preferably it may be an F protein having a polybasic residue.
  • reaction means that a substance is brought into contact with another substance and a change in physical and / or chemical state such as state, color, shape or chemical bond occurs or a phenomenon thereof.
  • the state changes to an activated virus such as the surface protein of the virus is changed to form a fusion peptide.
  • the reaction of the activated virus with the probe may be a fusion reaction or an aggregation reaction.
  • the fusion reaction may be a phenomenon in which an active virus and a part of the probe of the present invention are combined.
  • the fusion reaction may be understood to include a phenomenon in which the substance inside the probe is discharged out by the fusion.
  • the active virus can be detected by confirming whether the active virus and the probe are fused using the principle that the fusion peptide present in the surface protein of the active virus fuses the cell membrane of the endosome.
  • the aggregation reaction refers to a phenomenon in which molecules or particles are stuck together in a solution.
  • the aggregation reaction refers to a phenomenon in which the stability of the probe of the present invention is lowered by a virus to be detected, so that the probes agglomerate and / or precipitate.
  • biomolecule refers to a molecule necessary for the structure, function, information transmission, and the like of an organism.
  • the biomolecule may include specific structures and / or sites for performing functions, information transfer, and the like.
  • the specific structure of such biomolecules is the driving force for reaction through intermolecular binding reaction.
  • Biomolecules include amino acids and proteins, sugars and carbohydrates, fatty acids and lipids, nucleotides and nucleic acids, and the like, and include both those made in vivo and / or artificially synthesized.
  • the "biomolecule” may be an enzyme that is a protein consisting of about 62 to 2500 amino acid residues.
  • the enzyme may be a proteolytic enzyme.
  • the first synthesized form is inactivated, but when a specific site is removed (or cleaved), a proteolytic enzyme cleaves the specific site to activate the inactivated protein.
  • proteolytic enzymes can be used without limitation as long as they can cut a specific site.
  • the proteolytic enzyme comprises one or more selected from the group consisting of furin, trypsin, serine, endoprotease and carboxypeptidase.
  • the proteolytic enzymes include both derivatives or modified forms.
  • proteolytic enzymes include recombinant human purine, recombinant mouse purine, trypsin-EDTA, acetylated trypsin, TPCK-trypsin, N-tosyl-L-phenylalanine chloromethyl ketone-trypsin, Trypsin-acrylic, Purin like protease, Kex2 proteases, transmembrane protease serine, TMPRSS2, TMPRSS4, tryptase clara, plasmin, serine proteases ( serine protease, subtilisin like endoprotease, carboxypeptidase, and combinations thereof.
  • trypsin when trypsin reacts with hemagglutinin (HA), the glycoprotein of influenza virus, the enzymatic action of trypsin occurs at His57-Asp102-Ser195 and the enzymatic action of purine is His194-Asp153-Ser368 Takes place in position. Since trypsin can degrade both hemagglutinin of high and low pathogenic influenza viruses, trypsin can be used to detect high and low pathogenic influenza viruses. In addition, since purine can decompose only hemagglutinin of the highly pathogenic influenza virus, it is possible to detect the highly pathogenic influenza virus using purine.
  • HA hemagglutinin
  • the action of the hydrolase occurs at the boundary between the sites of S1 and S2. Therefore, the corona virus is activated as the hydrophobic site of S2 is exposed after cleavage by the action of the hydrolase, and can be detected using the probe of the present invention.
  • the biomolecule that reacts with the surface protein of the paramyxovirus may be a protease or carboxylpeptidase capable of cleavage at an arginine residue at the C -terminus.
  • the protease can recognize and cleave an F protein comprising an RXK / RR array.
  • it may be a purine or subtilisin-like endoprotease.
  • the term "active virus” or “activated virus” means a virus whose surface protein is activated by a biomolecule that specifically reacts with the surface protein of the virus.
  • the activation of the surface protein of the virus means that the surface protein of the virus has been changed into a state capable of reacting with, for example, specifically reacting with a host cell and / or a probe.
  • “Activation of the virus” herein means a process in which the inactive virus is converted into the active virus. In order to cause the virus to be infected, the process of activating the virus is necessary. Therefore, by detecting the presence of the active virus, it is possible to determine whether the virus is infected.
  • activation of the viral surface protein means that the fusion protein or fusion peptide present in the viral surface protein is capable of causing a fusion reaction with the membrane of the host cell or the surface of the probe of the present invention.
  • hemagglutinin which is an activated virus
  • HA is a surface protein that is degraded by an enzyme to expose a fusion peptide present inside of hemagglutinin in an inactive form. Means converted to.
  • enzymes that specifically cleave the cleavage site of HA include purine and / or trypsin. Since purine can only degrade hemagglutinin of the highly pathogenic influenza virus, the influenza virus is highly pathogenic when HA of the influenza virus is degraded by purine. In addition, since trypsin can degrade both hemagglutinin of high and low pathogenic influenza viruses, trypsin exhibits high pathogenicity or low pathogenicity when degraded by trypsin.
  • the cleavage site of the low pathogenic influenza virus consists of -R- at the C-terminus, and the cleavage site of the high pathogenic influenza virus consists of R / K-R-K-K-R.
  • HA When HA is activated by an enzyme that specifically cleaves a cleavage site of HA, rearrangement of HA occurs and the fusion peptide in HA is exposed outward to become an active virus.
  • the reaction of the probe with the influenza virus occurs by the fusion peptide of the influenza virus.
  • Virus infection can be detected by measuring a signal that changes in response to the probe's response.
  • the activated virus means that the surface protein S protein is converted from the inactive form to the form in which the hydrophobic region existing inside the spike protein is exposed.
  • the protein is cleaved into S1 and S2 by a protease, and the hydrophobic portion at the end of S2 is exposed to activate the virus.
  • the hydrophobic region exposed at the S2 is attached to the hydrophobic region in the cell membrane of the host cell, and the other side is conformed to a structural change in which the center of the S2 region is folded in a state in which the hydrophobic region is combined with the viral outer membrane. Accordingly, when the probe of the present invention and the activated corona virus react, the stability of the probe is changed to generate various signals, and the change of the probe can be detected by measuring the change.
  • the virus activated in paramyxovirus refers to a state in which the C -terminal residue of the HN protein is removed by a biomolecule. Specifically, when the HN protein is inactivated (HN 0 ) and about 90 residues of the C -terminus are removed, the HN protein is activated to attach the paramyxovirus to the host cell or the target membrane.
  • an active paramyxovirus means a state in which F protein is cleaved into F 1 and F 2 by biomolecules. In inactive paramyxoviruses, the F protein is cleaved into F 1 and F 2 upon encountering biomolecules in the precursor F 0 state and becomes an active virus that can fuse with the cell membrane of the host cell.
  • membrane fusion is initiated by forming an active surface protein containing SS-binding chains F 1 and F 2 and fixing the N -terminal residue of F 1 , which exhibits broad hydrophobicity, to the cell membrane of the host cell or the cell membrane of the target. Therefore, paramyxovirus is activated by the biomolecule of the present invention reacts with the surface protein, and the activated virus reacts with the probe of the present invention, causing a change in the probe. Thus, the virus can be detected by measuring the change.
  • the kit or composition may further comprise an acidic substance of pH 6 or below.
  • an acidic substance having a pH of 6 or less may be an acidic solution
  • an acidic solution of the pH range may be included in the kit, or may be prepared and used directly when used.
  • An acid solution having a pH of 6 or less can be used without limitation as long as it satisfies the above pH conditions.
  • Commercially available stock solutions may be used or may be prepared and used directly.
  • a stock solution, which is a concentrated acidic solution may be used after dilution in water to pH 6 or less.
  • the acidic solution may be pH 4 to 6 or pH 5 to pH 5.7. Since the range is similar to the pH range in the host cell, the detection efficiency can be enhanced.
  • kits and compositions of the present invention may further comprise a reaction aid.
  • the reaction adjuvant may be a reaction adjuvant of the biomolecule to assist the reaction of the biomolecule and the virus, or may be a reaction aid to assist the reaction of the probe and the target molecule. As one specific example, it may be an adjuvant that assists the reaction of the protease and the surface protein, or an adjuvant that assists the reaction of the probe with a target molecule including an active virus-activated surface protein or an antigenic protein of the active virus. .
  • the term "adjuvant" is meant to include all if it can increase the detection sensitivity and / or specificity of the virus through the above action. Examples of increasing the detection sensitivity and / or specificity of the virus include acting to speed up the reaction, lowering the minimum value at which the reaction occurs, or inhibiting the reaction other than the reaction of the surface protein with the biomolecule, but the mechanism is limited. It doesn't work. Adjuvants include any and all types so long as the detection sensitivity and / or specificity can be increased according to the type of biomolecule and the surface protein reacting with the biomolecule.
  • the adjuvant may be a ketone.
  • ketone compound examples include, but are not limited to, phenylethyl chloromethyl ketone, tosyl phenylalanyl chloromethyl ketone (TPCK, Tosyl phenylalanyl chloromethyl ketone) and combinations thereof.
  • TPCK tosyl phenylalanyl chloromethyl ketone
  • ketone may be further included as an adjuvant in detecting influenza virus.
  • HA hemagglutinin
  • the present invention relates to a virus detection method.
  • the detection method of the present invention includes contacting a sample biomolecule and contacting a sample in contact with the biomolecule with a probe. Specifically, contacting a sample obtained from the individual with a biological molecule that specifically reacts with the surface protein of the virus; And contacting a sample in contact with the biomolecule with a probe that reacts with a virus activated by the biomolecule, wherein the probe comprises a marker associated with an amphiphilic polymer.
  • the detection method of the present invention can detect a virus by confirming whether or not a reaction occurs by the contact.
  • the active virus can be detected by checking whether a fusion reaction between the active virus and the probe is performed using the principle that the fusion peptide present in the surface protein of the active virus fuses the cell membrane of the endosome.
  • the active virus can be detected by checking whether the fusion peptide present in the surface protein of the active virus lowers the stability of the probe by checking whether the probe is aggregated.
  • a method for checking the presence or absence of a reaction may measure a signal or a change caused by the reaction.
  • a signal that changes when the active virus reacts with a probe may include fluorescence intensity, luminescence intensity, phosphorescence intensity, absorbance intensity, electrical signal, surface-enhanced Raman spectroscopy (SERS) signal, and FET (field). -effect transistor), one or more variations selected from the group consisting of color and dispersion of the probe, but is not limited thereto.
  • a marker such as a self-quenching dye bound to the polymer of the probe may be caused by a reaction with the probe by an active virus. Is emitted or exposed outside the probe. In the probe to which the marker is exposed or released, fluorescence is generated by dequenching. Therefore, the presence or absence of a virus can be detected by measuring the change in fluorescence intensity.
  • the fluorescent dye bound to the polymer of the probe by the polymer membrane collapse of the probe particles to the outside of the membrane
  • the fluorescent dye supported on the exposure or inside the probe is eluted to the outside of the polymer membrane
  • the luminescence intensity, phosphorescence intensity and absorbance intensity also vary depending on the wavelength as well as the fluorescence intensity, these can be measured to detect whether the virus is infected.
  • luminol and fullerene can detect color changes with the naked eye without measuring fluorescence intensity by a special device.
  • a fluorescent dye and a quencher are included in one probe as a marker
  • the active virus reacts with the probe, if the polymer membrane does not collapse, the quencher and the fluorescent dye are present inside the membrane and do not emit light.
  • the fluorescence intensity of the probe changes, so the presence or absence of the virus can be detected by measuring the change.
  • fluorescent dyes it may also include electrochemiluminescent materials such as tris (2,2'-bipyridyl) ruthenium (II) [Ru (bpy) 32+]), in which case the color change can be observed with the naked eye.
  • electrochemiluminescent materials such as tris (2,2'-bipyridyl) ruthenium (II) [Ru (bpy) 32+]), in which case the color change can be observed with the naked eye.
  • Viruses can also be detected by measuring electrical signals using nanogap sensors.
  • the electrical signal may be measured by measuring a change in current or by using a field-effect transistor (FET).
  • FET field-effect transistor
  • the nanogap sensor refers to a sensor including an electrode having a gap gap of about 100 nm or less.
  • fluorescent dyes are used as markers to determine whether or not the probes react
  • fluorescent dyes are released inside the probes and are located in the nanogap of the nanogap sensor.
  • the current change of metal particles such as gold, silver, chromium, titanium, platinum, copper, palladium, indium tin oxide (ITO), or aluminum, which is pre-located in the nanogap sensor, it is detected whether the virus is infected. can do.
  • the average particle diameter of the metal particles may be several nanometers, for example, 2 to 4 nm.
  • Viruses can also be detected by measuring surface enhanced Raman spectroscopic signals.
  • a substrate that can be combined with a sample can be used.
  • the substrate may be nanoparticles, colloids, liquid phase, but is not limited thereto.
  • a fluorescent dye when used as a marker for determining whether the probe is fused, when the active virus reacts with the probe, the fluorescent dye inside the probe is released. After the released fluorescent dye is combined with the substrate, metal particles are introduced again into the fluorescent dye bonded with the substrate.
  • Raman spectroscopy can be amplified by introducing metal particles such as gold and silver. Thereafter, by measuring the Raman spectrum of the fluorescent dye with a Raman spectroscopy, it is possible to detect whether the virus is infected.
  • the virus may be detected by checking whether the probe is agglomerated, that is, a change in the degree of dispersion. For example, when the probe contains inorganic particles, aggregation of the particles occurs as the stability of the probe is lowered by the active virus.
  • At least one or more steps can be performed under conditions of pH 6 or below.
  • it may be performed under acidic conditions of pH 4 to pH 6, pH 5 to pH 5.5.
  • performing in an acidic condition can provide conditions very similar to the environment in the host cell, there is an advantage that can increase the detection accuracy.
  • FIG. 3 A schematic diagram of the influenza detection method according to an embodiment of the present invention is shown in FIG. 3.
  • a sample obtained from an individual is placed in a well with purine and / or trypsin to activate the influenza virus present in the sample.
  • a probe according to an embodiment of the present invention.
  • influenza virus is present, the reaction of the active influenza virus and the probe occurs by the fusion peptide, and the presence or absence of influenza virus can be determined by measuring a signal that changes depending on the reaction.
  • the reaction of the active influenza virus with the probe may be fusion or aggregation.
  • the reaction of the active influenza virus and the probe and the signal changing accordingly are as described above.
  • sample means that which has been taken to represent the parent for detection of the virus.
  • the sample can be a saliva, oral mucosa or manure sample.
  • the present invention also relates to a virus detecting composition
  • a virus detecting composition comprising a biomolecule that specifically reacts with a surface protein of a virus and a probe that reacts with a virus activated by the biomolecule. All of the contents described above with respect to the virus detection kit and the virus detection method may be applied or mutatis mutandis to the virus detection composition.
  • the present invention also relates to a method for producing a virus detection probe or detection kit comprising the step of binding a label with an amphiphilic polymer.
  • the method comprises combining the amphiphilic polymer with the first marker and forming the particles of the membrane structure with the marker combined with the amphiphilic polymer.
  • the method may further include dispersing the amphiphilic polymer and the second marker to which the first marker is bound in the solvent before the particle forming step.
  • a probe carrying the second markers may be prepared.
  • the step of combining the amphiphilic polymer and the first marker may comprise the step of dispersing in a solvent to form particles of the membrane structure.
  • Forming the particles of the membrane structure may be performed according to the method for forming colloid, liposome, micelle or polymersome which are commonly used in the field of the present invention, for example, a parent including a hydrophilic region and a hydrophobic region Dispersing the block copolymer in an aqueous solution and then applying ultrasonic waves, dispersing or dissolving it in an organic solvent, extracting or evaporating the organic solvent with an excess of water, dispersing or dissolving in an organic solvent and dialysis with an excess of water, After dispersing or dissolving in an organic solvent, the solvent may be strongly evaporated using a homogenizer or a high pressure emulsifier, or thin film hydration may be used to prepare particles having a membrane structure.
  • the amphiphilic polymer that is not bonded to the marker and the amphiphilic polymer to which the marker is bonded may be used by mixing a polymer ratio in a weight ratio of 1: 1 to 10.
  • the probe according to the manufacturing method of the present invention directly forms a membrane and is directly bonded to a polymer which acts as a capsule or a carrier, the marker can be controlled during the detection process and the release of the marker is controlled. Since there is no need to go through the dialysis step in the manufacturing step there is an advantage that the manufacturing efficiency of the virus detection kit is excellent.
  • virus detection kit and the virus detection method may be applied or mutatis mutandis to the virus detection probe manufacturing method.
  • a fluorescent dye was bound to a marker, and a probe of micelle or polymersome form was prepared in which a quencher was carried therein.
  • mPEG-NH 2 is Laysan bio
  • Cy5.5-NHS ester is GE Healthcare
  • BHQ3-NHS ester is iosearch Technologies
  • 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide and dimethylsulfoxide are Sigma Aldrich It was purchased from and used.
  • the probe was prepared by preparing 10 mg of mPEG-b-PLeu and mPEG-b-PLeu-fluorescent dye conjugate in a polymer 1: 1 ratio, mixing with 0.04 mg of BHQ3-NHS ester and dialysis to form particles. . After the dialysis step, the washing step was omitted.
  • the shape of the prepared probe was confirmed by a transmission electron microscope (TEM) image and is shown in FIG. 2, and the average diameter of the prepared probe particle was measured by using dynamic light scattering (DLS).
  • TEM transmission electron microscope
  • DLS dynamic light scattering
  • the probe in the form of a polymersome of the probes had a molecular weight of 6500 g / mol
  • the micelle type of the probe had a molecular weight of 3300 g / mol.
  • a probe was prepared in the same manner as in Preparation Example 1, except that the quencher was bonded to the amphiphilic polymer and the fluorescent dye was supported.
  • mPEG-NH 2 is Laysan bio
  • Cy5.5-NHS ester is GE Healthcare
  • BHQ3-NHS ester is iosearch Technologies
  • 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide and dimethylsulfoxide are Sigma Aldrich It was purchased from and used.
  • Probe by the method of preparing 10 mg of mPEG-b-PLeu and mPEG-b-PLeu- quencher conjugate in a polymer ratio of 1: 1, mixed with 0.04 mg of cy5.5-NHS ester, and dialyzing to form particles was prepared.
  • the shape of the prepared probe was confirmed by a transmission electron microscope (TEM) image, and the result is shown in FIG. 3, and the average diameter of the probe was measured by using dynamic light scattering (DLS).
  • TEM transmission electron microscope
  • a probe was prepared in the same manner as in Preparation Example 1, except that the probe was prepared using a polymer having a fluorescent dye bonded thereto and a polymer having a quencher coupled thereto.
  • mPEG-NH 2 is Laysan bio
  • Cy5.5-NHS ester is GE Healthcare
  • BHQ3-NHS ester is iosearch Technologies
  • 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide and dimethylsulfoxide are Sigma Aldrich It was purchased from and used.
  • the shape of the prepared probe was confirmed by a transmission electron microscope (TEM) image, and FIG. 4 was shown, and the average diameter of the prepared probe particle was measured by using dynamic light scattering (DLS).
  • TEM transmission electron microscope
  • DLS dynamic light scattering
  • the virus to be detected is H5N1_01, H5N1_02 and H5N6 as three types of highly pathogenic influenza viruses, and H1N1_01, H1N1_02, H2N1, H2N4, H3N8, H5N2, H5N9, H5N3, H5N3, H5N1_01, H5N1_02, and H5N6.
  • Furin and trypsin which can specifically degrade hemagglutinin, a surface protein of influenza virus, were used as biomolecules that react with viruses.
  • the low pathogenic influenza virus was supplied by Green Cross Veterinary Medicine and the high pathogenic virus was provided by Hanoi University of Agriculture. pH conditions were performed at an appropriate pH using an acid stock solution.
  • Enzymes for each treatment group were put in one well in a 96-well plate and the target virus was put into contact with the enzyme-loaded well. Then, after contacting the probe of the present invention, the fluorescence intensity change of the probe was measured (Ex: 675 nm, Em: 694 nm).
  • the detection environment (the pH condition of the well) was divided into pH 5.5 and pH 7.4, and according to each pH condition, 1) Purine alone group, 2) Trypsin alone group, 3) Purine and trypsin Experiments were performed in the treatment group, 4) purine and fecal treatment group, 5) trypsin and fecal treatment group, and 6) fecal single treatment group (enzyme-free). The results are shown in Tables 1 and 2 below.
  • the fluorescence change of the prop was not observed in the untreated enzyme group and the non-acidic experimental group.
  • the acidic conditions were satisfied in the high pathogenic influenza virus test group
  • the probe and trypsin were treated together
  • the fluorescence change was confirmed in both the high and low pathogenic influenza test groups
  • purine when treated with purine, the fluorescence change was confirmed only in the high pathogenic influenza test group. It became. It can be seen that trypsin can detect both high and low pathogenic influenza, and using purine can detect low pathogenic influenza.
  • the enzyme and feces were treated together, it was confirmed that the fluorescence change was detected in the presence of acidic conditions and enzymes, and thus it was confirmed that the detection capability could be maintained even when mixing with other substances.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Plasma & Fusion (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 바이러스 검출용 키트, 바이러스검출용 조성물 및 바이러스 검출방법에 관한 것이다. 본 발명에 따르면, 저가의 비용으로 바이러스 바이러스를 단시간 내에 고효율로 검출할 수 있고, 민감도 및 정확도가 더욱 향상된 키트를 제조 할 수 있다.

Description

바이러스 검출용 키트
본 발명은 바이러스 검출용 키트, 바이러스 검출방법, 바이러스 검출용 조성물 및 바이러스 검출용 키트의 제조방법에 관한 것이다.
바이러스는 세균보다 크기가 작은 전염성 병원체이다. 유전물질인 RNA 또는 DNA와 그 유전물질을 둘러싸고 있는 단백질로 구성된다. 바이러스는 숙주의 종류에 따라서 식물 바이러스, 동물 바이러스 및 세균 바이러스(파지)로 구분할 수 있다. 그러나, 대부분의 경우 핵산의 종류에 따라 DNA바이러스 아문과 RNA바이러스 아문으로 나뉘며, 이들은 다시 강, 목, 과로 세분화된다.
이러한 바이러스 중에서, 조류 인플루엔자는 닭, 오리, 또는 야생 조류에서 조류 인플루엔자 바이러스(Avian influenza virus)의 감염으로 인해 발생하는 급성 바이러스성 전염병이며 드물게 사람에서도 감염증을 일으킨다. 조류 인플루엔자 바이러스는 병원성에 따라 고병원성, 저병원성 및 비병원성의 3 종류로 구분되며, 2003년 말부터 2008년 2월까지 사람에게 전염될 수도 있는 고병원성 조류 인플루엔자 바이러스(highly pathogenic avian influenza A, H5N1)의 인체 감염 사례가 640건 이상 보고되었다. 조류 인플루엔자는 조류의 높은 폐사율과 산란율 저하로 막대한 경제적 피해를 야기하며, 인체 감염 가능성이 높은 것은 아니지만, 인체에 감염되는 경우 높은 사망률을 나타낸다. 근본적인 백신 개발이 어렵고, 확산 속도가 매우 빠르므로 조기 진단을 통해 질병의 확산 및 경제적 손실을 최소화하는 것이 필요하다.
이와 같은 바이러스의 진단 방법으로는 효소 결합 면역 흡수 검정법(ELISA), 효소 면역 검정법(EIA) 및 면역 형광 검정법(IFA) 등의 면역학적 검출방법과 RT-PCR에 의한 RNA 검출방법 등이 알려졌으나, 이러한 방법은 바이러스 진단에 과도한 시간이 소요되거나, 고가의 검사 비용이 필요하거나, 비특이적 반응으로 인한 특이도 및 민감도가 저하되는 등의 문제가 있다.
따라서, 저비용으로 단시간 내에 효율적으로 바이러스를 검출하는 방법의 개발이 필요한 실정이다.
본 발명은 단시간 내에 효율적으로 바이러스의 검출이 가능한 바이러스 검출용 키트, 바이러스의 검출방법 및 바이러스 검출용 조성물을 제공하고자 한다.
본 발명은 바이러스의 표면 단백질과 특이적으로 반응하는 생체 분자 및 상기 생체 분자에 의해 활성화된 바이러스와 반응하는 프로브를 포함하고, 상기 프로브는 양친성 고분자와 결합된 표지자를 포함하는 바이러스 검출용 키트를 제공한다.
본 발명은 또한, 바이러스의 표면 단백질과 특이적으로 반응하는 생체 분자 및 상기 생체 분자에 의해 활성화된 바이러스와 반응하는 프로브를 포함하고, 상기 프로브는 양친성 고분자와 결합된 표지자를 포함하는 바이러스 검출용 조성물을 제공한다.
본 발명은 또한, 개체로부터 수득한 시료를 바이러스의 표면 단백질과 특이적으로 반응하는 생체 분자와 접촉시키는 단계 및 상기 생체 분자와 접촉된 시료를 상기 생체 분자에 의해 활성화된 바이러스와 반응하는 프로브를 접촉시키는 단계를 포함하고, 상기 프로브는 양친성 고분자와 결합된 표지자를 포함하는 바이러스 검출방법을 제공한다.
본 발명은 또한, 양친성 고분자와 표지자를 결합시키는 단계를 포함하는 바이러스 검출용 프로브 또는 검출용 키트의 제조방법을 제공한다.
본 발명에 따르면, 저가의 비용으로 바이러스를 단시간 내에 고효율로 검출할 수 있고, 종래 바이러스 검출 키트와 비교하여 표지자의 초기 방출이 억제되어 검출 민감도 및 정확도를 높고, 제조과정에서 투석(세척)하는 단계를 실시하지 않아도 되므로 제조 효율을 향상시킬 수 있다.
도 1은 본 발명의 일 예에 따른 프로브의 구조를 보여주는 도면이다.
도 2는 본 발명의 일 예에 따른 프로브의 이미지를 보여주는 도면이고, 기준자(scale bar)는 100nm를 나타낸다.
도 3은 본 발명의 일 예에 따른 프로브의 이미지를 보여주는 도면이고, 기준자(scale bar)는 100nm를 나타낸다.
도 4는 본 발명의 일 예에 따른 프로브의 이미지를 보여주는 도면이고, 기준자(scale bar)는 100nm를 나타낸다.
도 5는 본 발명의 일 예에 따른 프로브의 평균 사이즈의 비교를 나타내는 그래프이다.
인플루엔자 바이러스, 에볼라 바이러스를 포함하여 모든 바이러스는 숙주 세포 침입을 위하여 숙주 세포에 결합하는 표면 단백질인 헤마글루티닌(hemagglutinin, HA), 성숙한 비리온(virion)들이 숙주 세포로부터 빠져나오는 데에 관여하는 뉴라미니다아제(neuraminidase), 수소 이온 농도의 균형을 조절하는 M2 이온 채널, 바이러스의 유전 정보를 간직하고 있는 RNP(Ribonucleoprotein) 등으로 이루어져 있다. 본 발명자들은 위에서 기술한 바이러스의 공통된 특성에 기초하여, 바이러스를 조기에 검출할 수 있는 방법을 개발하고자 연구하였다. 그 결과, 바이러스의 표면 단백질과 특이적으로 반응하는 생체 분자를 통하여 바이러스를 활성화하고, 이렇게 활성화된 바이러스와 반응하여 상기 바이러스의 존재 여부를 검출할 수 있는 프로브를 이용하여, 간단한 방법으로 바이러스를 검출할 수 있음을 확인하고 본 발명을 완성하였다.
따라서, 본 발명은 바이러스의 표면 단백질과 특이적으로 반응하는 생체 분자 및 상기 생체 분자에 의하여 활성화된 바이러스와 반응하는 프로브를 포함하고, 상기 프로브는 양친성 고분자와 결합된 표지자를 포함하는 바이러스 검출용 키트를 제공한다.
본 발명의 프로브는 "양친성 고분자와 결합된 표지자"를 포함한다. 상기 "양친성 고분자와 결합된 표지자"는 "표지자가 결합된 양친성 고분자" 일 수 있다.
본 발명에서 사용된 용어, "프로브"는 바이러스의 표면 단백질과 특이적으로 반응하는 생체 분자에 의하여 활성화된 바이러스와 반응하여, 상기 바이러스 또는 활성형 바이러스의 존재 여부를 검출할 수 있는 물질을 의미한다. 프로브는 바이러스 이외의 물질 또는 비활성형 바이러스와 비교하여 활성형 바이러스와의 반응 능력이 월등히 우수하거나, 활성형 바이러스와 특이적으로 반응하여, 활성형 바이러스의 존재 여부를 유의하게 검출할 수 있는 물질이면 모두 포함되고, 그 종류 및 형태는 특별히 제한되지 않는다. 본 명세서에서 상기 프로브는 "검출인자"와 혼용하여 사용된다.
"양친성 고분자와 결합된 표지자"를 포함하는 본 발명의 프로브의 경우, 막을 형성하여 캡슐 역할 또는 담체 역할을 하는 고분자와 표지자가 직접 결합되어 있으므로, 검출 과정에서 표지자가 초기에 방출되는 것을 제어할 수 있어, 검출 민감도 및 정확도를 향상시킬 수 있고, 제조단계에서 투석하는 과정을 생략할 수 있어 제조효율이 우수한 효과가 있다.
본 발명에서 사용된 용어 "결합"은 원자나 이온이 만나 분자를 형성하는 것을 의미한다. 상기 양친성 고분자와 표지자 사이의 원자 또는 이온이 만나서 형성할 수 있는 형태의 결합이면 공유 결합, 이온 결합, 금속 결합 및 배위 결합 등을 포함한 결합의 종류에 제한되지 않는다.
예를 들어, 상기 결합은 에스터 결합, 아마이드 결합, 이민 결합, 하이드라존 결합 또는 아세탈 결합일 수 있다.
본 발명에서 "표지자"는 프로브와 활성형 바이러스의 반응여부를 판별할 수 있는 또는 있게 해주는 물질을 의미한다. 표지자의 종류는 특별히 제한되지 않으며, 프로브의 반응 전 후의 변화에 따라 프로브의 변화 또는 신호를 확인할 수 있게 해주는 표지자이면 제한 없이 이용 가능하다.
본 발명의 구체예에 따라, 상기 표지자는 양친성 고분자에 결합된 표지자(제1 표지자)와 다른 종류의 표지자(제2 표지자)를 더 포함할 수 있다.
상기 제 2 표지자는 고분자와 결합 또는 담지 된 형태일 수 있다. 즉, 본 발명의 프로브는 양친성 고분자와 결합된 제1 표지자와 상기 프로브의 내부에 담지하여 제2 표지자를 더 포함하거나, 또는 제1 표지자가 결합된 친수성 고분자 및 제2 표지자가 결합된 친수성 고분자를 각각 포함할 수 있다.
본 발명의 일 구체예에 따라, 상기 표지자는 자기-소광된 염료(self-quenched dye), 형광 염료, 전기화학발광 물질, 소광제, 발광 염료 및 인광 염료로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다.
상기 양친성 고분자에 결합된 표지자는 1 종 이상 일 수 있다. 또한, 같은 종류의 표지자 중에서도 1 이상의 서로 다른 물질이 각각 양친성 고분자와 결합된 형태일 수 있다. 일 구체예에 따라 제1 표지자가 형광염료인 경우, 제 2 표지자는 소광제 일 수 있고, 다른 구체예에 따라 제1 표지자가 소광제인 경우, 제 2 표지자가 형광 염료일 수 있다.
본 발명의 일 구체예에 따라, 상기 프로브는 양친성 고분자와 결합된 염료 및/또는 양친성 고분자와 결합된 소광제를 포함할 수 있다.
본 발명에서 염료는 특정 파장의 광을 선택적으로 흡수 또는 방출하는 물질을 의미한다. 상기 특정 파장의 광은 자외선광, 적외선광 또는 가시광 일 수 있다.
본 발명에서, 자기-소광된 염료는 염료(self-quenched dye)가 서로 인접한 위치에 있는 경우에는 소광 작용이 일어나고, 뭉쳐있는 염료가 방출되어 퍼지게 되면 탈소광 작용에 의하여 형광이 나타나는 물질을 의미한다.
한 구체예에서, 자기-소광된 염료는 3,3-디옥타데실옥사카보시아닌 퍼클로레이트(3,3 -Dioctadecyloxacarbocyanine Perchlorate; Dio; Dioc), 3,3-디옥타데실-5,5-디(4-설포페닐)옥사카보시아닌 소듐염(3,3 -dioctadecyl-5,5 -di(4-sulfophenyl)oxacarbocyanine sodium salt), 4-(4-(디헥사데실아미노)스티릴)-N-메틸피리디늄 이오다이드(4-(4-(dihexadecylamino)styryl)-N-methylpyridinium iodide; DiA; 4-Di-16-ASP), 4-(4-(디데실아미노)스티릴)-N-메틸피리디늄 이오다이드(4-(4-(Didecylamino)Styryl)-N-Methylpyridinium Iodide; 4-Di-10-ASP), 1,1-디옥타데실-3,3,3,3-테트라메틸인도카보시아닌 퍼클로레이트(1,1 -dioctadecyl-3,3,3,3 -tetramethylindocarbocyanine perchlorate; Dil), 1,1-디옥타데실-6,6-디(4-설포페닐)-3,3,3,3-테트라메틸인도카보시아닌 (1,1 -Dioctadecyl-6,6 -Di(4-Sulfophenyl)-3,3,3,3-tetramethylindocarbocyanine), 4,4-디이소티오시아나토스틸벤-2,2-디설폰산 디소듐염(4,4 -diisothiocyanatostilbene-2,2 -disulfonicacid disodium salt; DIDS), 1,1-디옥타데실-3,3,3,3-테트라메틸인도트리카보시아닌 이오다이드(1,1 -dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide; DiR), 1,1-디올레일-3,3,3,3-테트라메틸인도카보시아닌(1,1 -dioleyl-3,3,3,3-tetramethylindocarbocyanine), 플루오레신 (fluorescein), 보디피 (BODYPY), 테트라메틸로다민 (Trtramethylrhodamine), 옥타데실 로다민 B 클로라이드(R18), 알렉사(Alexa), 시아닌(Cyanine) 및 알로피코시아닌(allopicocyanine)으로 이루어진 군으로부터 선택되는 하나 이상일 수 있다. 상기 형광 염료의 평균 입경은 200nm 이하, 또는 50nm 내지 10000nm일 수 있다.
한 구체예에서, 전기화학발광 물질은, 이에 제한되는 것은 아니나, 트리스(2,2'-비피리딜)루테늄 (II) [Ru(bpy)32+]을 포함한다.
한 구체예에서, 형광 염료(dye)는 광에 포함된 파장을 흡수하여 색광을 바꾸어 재방사하는 성질을 갖는 물질을 의미한다. 형광 염료는 발광염료 라고도 하며, 본 발명이 속하는 분야에 통상적으로 알려져 있는 형광 염료를 제한 없이 이용할 수 있다. 한 구체예에서, 형광 염료는 텍사스 레드(Texas red), 플루오레세인(fluorescein), 4-클로로-7-니트로벤조퓨라잔(4-chloro-7-nitrobenzofurazan; NBD-Cl), 루미놀(luminol), 플러렌(fullerene) 및 방향족기를 포함하는 화합물로 이루어진 군으로부터 선택되는 하나 이상일 수 있다.
한 구체예에서, 소광제(quencher)는 분자의 들뜸 에너지를 제거하고, 발광 또는 형광을 저해하는 물질을 의미한다. 상기 소광제는 본 발명이 속하는 분야에 통상적으로 알려져 있고, 그 종류에 제한없이 사용할 수 있다. 한 구체예에 따라, 소광제는 BHQ-1, BHQ-2, 및 BHQ-3로 이루어진 군에서 선택되는 하나 이상의 것 일 수 있다.
한 구체예에서, 인광 염료는 조명광 안에서 흡수한 파장을 바꾸어 재방사 함으로써 광휘성 효과를 나타내는 물질을 의미한다. 일 예로, 황화광물(XmZn X는 금속원소, Z는 비금속원소) 또는 알칼리토금속의 황화물 일 수 있으나, 그 종류에 제한되지 않는다.
본 발명에서 사용된 용어 "양친성" 이란 양친매성이라고도 하며, 친수성과 소수성의 성질을 모두 가진 것을 의미한다. 또한, 양친성 입자는 친수성을 나타내는 영역과 소수성을 나타내는 영역을 갖는 입자를 의미한다. 상기 양친성 고분자는 친수성 고분자 A 및 소수성 고분자 B를 포함하는 A-B 타입의 블록 공중합체, B-A-B 타입의 삼중 블록 공중합체, 지질 고분자 및 이들의 조합으로 이루어진 군에서 선택된 것 일 수 있다.
한 구체예에서, 친수성 고분자는 폴리알킬렌글리콜(PAG), 폴리아크릴릭애시드(PAA), 폴리아크릴로니트릴(PAN), 폴리에틸렌옥사이드(PEO), 폴리비닐아세테이트(PVAc), 폴리에틸렌글리콜(PEG), 폴리비닐피롤리돈, 폴리아크릴아미드, 폴리비닐알코올(PVA) 및 친수성 폴리아미노산으로 이루어진 군에서 선택되는 하나 이상일 수 있다. 바람직하게는, 친수성 고분자는 모노메톡시폴리에틸렌글리콜, 모노아세톡시폴리에틸렌글리콜, 폴리에틸렌글리콜, 폴리에틸렌과 프로필렌글리콜의 공중합체, 폴리비닐피롤리돈, 폴리글루타민, 폴리글루탐산, 폴리트레오닌, 폴리아스파라긴, 폴리아르기닌 및 폴리세린으로 이루어진 군으로부터 선택되는 하나 이상일 수 있다. 친수성 A 블록은 200 내지 50,000 달톤 또는 1,000 내지 20,000 달톤의 수 평균 분자량을 가질 수 있다.
한 구체예에서, 소수성 고분자는 친수성 고분자와 함께 양친성 고분자를 형성할 수 있는 물질이면 제한 없이 이용 가능하다. 한 구체예에서, 소수성 고분자 B 블록은 폴리에스테르, 폴리언하이드라이드, 소수성 폴리아미노산, 폴리오르소에스테르 및 폴리포스파진으로 이루어진 군으로부터 선택되는 하나 이상일 수 있다. 바람직하게는, 소수성 고분자 B 블록은 폴리루신, 폴리이소루신, 폴리발린, 폴리페닐알라닌, 폴리프롤린, 폴리글리신, 폴리메티오닌, 폴리트립토판, 폴리알라닌, 폴리락타이드, 폴리글리콜라이드, 폴리카프로락톤, 폴리디옥산-2-온, 폴리락타이드와 글리콜라이드의 공중합체, 폴리락타이드와 디옥산-2-온의 공중합체, 폴리락타이드와 카프로락톤의 공중합체, 및 폴리글리콜라이드와 카프로락톤의 공중합체로 이루어진 군으로부터 선택되는 하나 이상일 수 있다. 또한 상기 소수성 고분자는 그 유도체를 포함한다. 소수성 B 블록은 50 내지 50,000 달톤, 또는 200 내지 20,000 달톤의 수 평균 분자량을 갖는다.
본 명세서에서 사용한 용어, "지질 고분자"는 "지질"이라고도 한다. 이중층의 막 구조를 형성할 수 있는 것이라면 인지질, 지질단백질, 당지질, 양이온성 지질 등을 모두 포함하며, 그 종류에 제한되지 않는다. 또한, 상기 지질은 자연적으로 유도되어 얻어진 것 및 합성된 지질 유도체를 모두 포함한다. 상기 인지질(phospholipids)은 글리세로인지질(glycerophos pholipids) 및 스핑고인지질(spingophospholipid, Phosphosphingolipid)을 포함한다. 상기 글리세로인지질은 다이아크릴글리세라이드 구조를 갖는 것일 수 있고, 구체적으로 포스파티산(phosphatidate, Phosphatidic acid, PA), 레시틴(lecithin, Phosphatidylcholine, PC), 세팔린(cephalin) 및 포스포이노시티드류(Phosphoinositides)를 포함한다. 상기 세팔린 인지질은 포스파티딜세린(Phosphatidylserine, PS) 및 포스파티딜에탄올아민(Phosphatidylethanolamine, PE)을 포함한다. 또한, 상기 포스포이노시티드류 인지질은 포스파티딜이노시톨(Phosphatidylinositol, PI), 포스파티딜이노시톨 포스페이트(Phosphatidylinositol phosphate, PIP), 포스파티딜이노시톨 이인산(Phosphatidylinositol bisphosphate, PIP2) 및 포스파티딜이노시톨 삼인산(Phosphatidylinositol triphosphate, PIP3)을 포함한다. 상기 스핑고인지질은 세라마이드 포스포릴콜린(Ceramide phosphorylcholine, Sphingomyelin, SPH), 세라마이드 포스포리레타노라민(Ceramide phosphorylethanolamine, Sphingomyelin, Cer-PE) 및 세라마이드 포스포리피드(Ceramide phosphoryllipid)를 포함한다.
상기 합성 인지질 유도체는 그 종류에 제한되는 것은 아니나, 일 구체예로 1,2-다이도데카노이-sn-글리세로-3-포스포콜린(EPC, 1,2-didodecanoyl-sn-glycero-3-ethylphosphocholine), 1,2-다이올레오일-sn-글리세로-3-포스포콜린(DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine), 1-팔미토일-2-올레오일-sn-글리세로-3-포스포에타놀라민(POPE, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), 1-팔미토일-2-올레오일-sn-글리세로-3-포스포-L-세린(POPS, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine)으로 이루어진 군에서 선택된 것 일 수 있다.
본 발명의 일 예에 따른 프로브는 공지된 방법을 자유롭게 이용하여 제조할 수 있다. 예를 들어, 친수성 영역과 소수성 영역을 포함하는 양친성 블록 공중합체를 수용액에 분산시킨 뒤 초음파를 가하는 방법, 유기용매에 분산 또는 용해 시킨 뒤 과량의 물로 유기용매를 추출 또는 증발시키는 방법, 유기용매에 분산 또는 용해시킨 뒤 과량의 물로 투석하는 방법, 유기용매에 분산 또는 용해시킨 뒤 균질기 또는 고압유화기를 이용하여 강하게 용매를 증발시키는 방법, 또는 얇은 필름 수화법(Thin film hydration) 등을 사용하여 제조할 수 있다.
본 발명의 이 예에 따른 프로브는 친수성 영역과 소수성 영역을 포함하는 양친성 블록 또는 고분자가 자가조립하여 입자화된 것 일 수 있다.
본 발명의 프로브는 검출 대상 바이러스 또는 바이러스의 표면 단백질의 종류, 사용되는 고분자의 종류, 제조방법에 따라 다양한 구조 또는 형태를 나타낼 수 있다.
본 발명의 일 구체예에서, 프로브는 막(membrane) 구조를 나타낼 수 있다.
본 발명에서 사용한 용어, "막(membrane) 구조"란 막 또는 쉘(shell)에 의하여 내부가 둘러싸여 있는 구조를 의미한다. 베지클(vesicel), 인공세포(artificial cell) 또는 마이크로캡슐 같은 캡슐 형태의 입자(encapsulation particle)는 그 종류를 제한하지 않고 모두 포함한다. 본 명세서에서 상기 막 구조는 쉘(shell) 구조와 혼용하여 사용한다. 상기 막 구조는 상기 내부에는 유체 또는 별도의 구성을 포함하는 구조까지 포함한다.
상기 막(membrane)은 단일층(mono layer) 또는 이중층(bilayer) 구조를 포함한다. 상기 단일층(mono layer)은 "소수성 영역-친수성 영역"을 포함하는 막 구조로, 일 구체예로 수용성 용액 내에서 소수성 코어와 친수성 쉘을 포함하는 구조일 수 있다. 상기 이중층(bilayer)은 "친수성 영역-소수성 영역-소수성 영역-친수성 영역"을 포함하는 막 구조이다. 일 구체예로, 상기 이중층(bilayer)은 상기 단일층(mono layer) 2 개가 결합된 형태일 수 있다. 또한, 상기 이중층(bilayer)은 친수성 코어와 상기 친수성 코어를 둘러싸고 있는 소수성 영역 및 상기 소수성 영역을 둘러싸고 있는 친수성 쉘을 포함하는 구조일 수 있다.
상기 막(membrane) 구조는 단일막(single membrane)및 단일막을 2 이상 있는 다중막(multi membrane)을 모두 포함한다. 일 예로, 단일막을 갖는 입자가 다시 하나의 단일막으로 둘러싸인 경우, 다중막을 갖는 입자가 될 수 있다. 상기 단일막 및 다중막은 단일층 및 이중층과 구별되는 개념이다. 구체적으로, 이중층(bilayer) 구조의 막을 하나만 포함하는 입자는 단일막을 갖는 것이며, 단일층(monolayer) 구조의 막을 포함하는 입자를 다시 단일층 구조의 막이 둘러싸고 있는 입자는 다중막 구조의 입자를 의미한다.
상기 막 구조를 갖는 프로브는 본 발명이 속하는 통상의 방법에 의하여 제조될 수 있고, 일 구체예에 따라 미세용액화 장비를 이용한 미세유동화 방법(microfludization), 초고압 균질법(High-pressure homogenization), 에멀전법(Emulsion method) 또는 초음파 등을 이용하여 제조할 수 있으나, 이에 제한되는 것은 아니다.
상기 막구조를 갖는 입자는 그 종류에 제한되지 모두 본 발명의 프로브에 포함될 수 있다. 일 구체예로 베지클(vesicle), 마이셀(micelle), 폴리머좀(polymersome), 콜로이드좀(colloidsome), 베지클(vesicle), 리포좀(liposome) 또는 액적(droplet) 일 수 있으나, 상기 예에 제한되는 것은 아니다. 본 발명의 키트는 서로 상이한 막 구조를 갖는 1 종 이사의 프로브를 포함할 수 있다.
상기 "마이셀(micelle)"은 소수성 코어와 친수성 쉘을 갖는 입자를 의미한다. 한 구체예에서, 상기 마이셀은 계면활성제의 마이셀 또는 고분자 자기조립 마이셀 일 수 있다. 자기조립에 의한 마이셀의 경우 공중합체를 형성하는 고분자의 종류에 따라 다양한 형태를 띌 수 있고, 그 형태에 제한을 받는 것은 아니다. 상기 마이셀은 단일층(monolayer)을 2 이상 포함하는 다중막 형태도 포함한다. 상기 마이셀은 그 형태의 제한은 없으나, 일 예에 따라 구형, 타원형(ellipsoid) 또는 실리더형(cylinder)을 포함한다. 상기 마이셀 구조의 프로브는 소수성 코어 영역에 표지자 및 무기 입자와 같은 구성을 더 포함할 수 있다.
상기 "폴리머좀(polymersome)"은 "친수성 영역-소수성 영역-소수성 영역-친수성 영역"을 갖는 2중층 막 구조를 갖고, 상기 소수성 및 친수성 영역에 고분자 또는 공중합체를 포함하는 입자를 의미한다. 상기 고분자 또는 공중합체는 인위적으로 합성된 것과 지질(lipid)을 함께 포함하거나, 인위적으로 합성된 것 포함하는 것 일 수 있다. 상기 인위적으로 합성된 것은 자연적으로 발생하는 지질(lipid)을 제외한 모든 고분자 및 공중합체를 포함하는 의미이다. 상기 폴리머좀은 이중층 막구조의 단일막 및 단일막을 2이상 포함하는 다중막을 모두 포함한다.
상기 폴리머좀은 리포좀과 구분하여 인위적으로 합성된 고분자 또는 공중합체를 포함할 수 있다. 상기 폴리머좀은 이중층 형태의 막으로만 이루어진 단일막 및 상기 2중층의 단일막을 2 이상 포함하는 다중막 형태도 포함한다.
상기 "리포좀(liposome)"은 적어도 하나의 지질 이중층을 갖는 입자를 의미한다. 양친매성의 생체막을 모방한 지질막을 갖는 것이라면, 단일막 및 다중막을 모두 포함한다. 리포좀을 형성하는 방법은 당업계에 잘 알려져있고, 통상적으로 인지질을 염류 수용액 중에 현탁하거나, 인지질을 포함하는 수용액을 초음파 처리 등을 하여 수득할 수 있으나, 제조방법에 의하여 본 발명이 제한되지 않는다.
상기 "콜로이드좀"은 1nm 내지 1000nm 크기의 콜로이드상 입자 또는 상기 입차가 치밀하게 패킹된 구조물을 의미한다. 막을 형성하는 친수성 및 소수성 영역의 고분자의 종류에 따라서 단일층 및 이중층을 포함할 수 있다. 또한 단일막 및 다중막을 모두 포함한다.
상기 "액적(droplet)"은 상기 막 구조 입자 중에서 물방울 모양의 형태를 나타내는 것을 의미한다. 단일층 및 이중층을 포함하고, 단일막 및 다중막을 모두 포함한다.
본 발명의 프로브는 형태(shape)에 따라서 구분할 수 있으나, 상기 형태에 제한되는 것은 아니다. 일 구체예에서, 상기 프로브의 형태(shape)는 로드(rod), 구, 링(ring), 판(flat), 실린더, 타원형, 막으로 둘러싸인 형태 및 이들의 조합을 포함한다.
상기 로드(rod)형태는 막대, 봉 또는 장대와 같은 일직선 모양의 형태를 총칭하는 의미이다. 상기 구 형태는 둥근 모양의 형태를 의미하는 것으로, 완전 구형과 불완전 구형을 모두 포함한다. 상기 링(ring) 형태는 일반적으로 구 또는 원형의 모양에서 가운데가 비어있는 형태를 의미한다. 상기 판(flat) 형태는 얇고 평평한 모양의 평판, 판상의 형태를 의미한다. 일 구체예에 따라, 판 형태의 프로브는 기재 또는 담체의 상부 또는 외부에 판 형의 프로브가 코팅 된 형태 일 수 있다.
본 발명의 일 구체예에서, 양친성 입자가 하기 식 1에 따라 계산된 질량 분율(mass fraction)이 0.25 내지 0.40을 만족할 때, 양친성 입자는 폴리머좀 형태를 나타내고, 질량 분율이 0.40 초과 0.70 이하일 때 양친성 입자는 마이셀 구조를 나타낸다.
[식 1]
질량 분율(mass fraction)=친수성 고분자의 질량/(친수성 고분자의 질량 + 소수성 고분자의 질량)
또한, 상기 질량 분율을 질량 %(percent)로 나타내는 경우, 질량%가 25% 내지 40%을 만족할 때, 양친성 입자는 폴리머좀 형태를 나타내고, 질량%가 40% 초과 70% 이하일 때 양친성 입자는 마이셀 구조를 나타낸다.
한 구체예에서, 프로브의 크기는 제한되지 않는다. 프로브는 나노 또는 마이크로 입자일 수 있으며, 예를 들어 평균 입경은 50 내지 10000 nm일 수 있다.
본 발명의 다른 일 예에 따르면, 프로브는 바이러스와의 반응 여부를 더욱 명확하게 판단하기 위하여 금, 은 및 이들의 조합에서 선택된 무기 입자를 더 포함할 수 있다.
본 발명의 키트 또는 조성물은 상기 프로브를 단일 종류만 포함하거나, 2 종류 이상의 프로브를 함께 포함할 수 있다.
본 발명에서 사용한 용어 "바이러스"는 편성 세포 내 기생체(obligatory intracellular parasite)로서 핵산으로 DNA 또는 RNA을 갖고, 증식은 핵산으로 시작되고 2분열법으로 증식되지 않으며 ATP 생산에 필요한 효소계를 갖고 있지 않은 것을 의미한다.
본 발명의 바이러스는 노출 바이러스(naked virus)와 외막 바이러스(enveloped virus)를 포함하고, 구체적으로 본 발명의 일 예에 따른 바이러스는 외막 바이러스(enveloped virus) 일 수 있다.
상기 외막 바이러스는 구체적으로 헤르페스바이러스(herpesvirus), 폭스바이러스(poxvirus) 및 헤파드나바이러스(hepadnavirus)를 포함하는 DNA 바이러스와 플라비바이러스(flavivirus), 토가바이러스(togavirus), 코로나바이러스(coronavirus), 헤파티티스 D(hepatitis D), 오소믹소바이러스(orthomyxovirus), 파라믹소바이러스(paramyxovirus), 랍도바이러스(rhabdovirus), 분야바이러스(bunyavirus), 필로바이러스(filovirus) 및 레트로바이러스(retrovirus)를 포함하는 RNA 바이러스에 속하는 것이면 모두 포함한다.
상기 오소믹소바이러스는 인플루엔자 바이러스 A, 인플루엔자 바이러스 B, 인플루엔자 바이러스 C, 이사바이러스(isavirus), 소고토바이러스(thogotovirus) 및 퀴아란자바이러스(quaranjavirus) 속에 포함되는 모든 바이러스를 포함한다.
상기 코로나바이러스는 알파코로나바이러스(alphacoronavirus), 베타코로나바이러스(betacoronavirus), 감마코로나바이러스(gammacoronavirus) 및 델타코로나바이러스(deltacoronavirus) 속에 포함되는 모든 바이러스를 포함한다.
상기 파라믹소바이러스는 파라믹소바이러스, 루불라바이러스, 모빌리바이러스 및 뉴모바이러스 속에 포함되는 모든 바이러스를 포함한다.
상기 바이러스는 핵산과 이를 둘러싸고 있는 단백질을 포함한다. 이와 같은 바이러스의 단백질은 바이러스 유전체를 보호하고, 바이러스 입자가 세포에 흡착하는데 관여하며, 바이러스의 항원성을 결정하고, 바이러스의 형태를 유지하는 구조 단백질(structural protein)과 단백질과 핵산 등을 합성하는데 관련되는 단백질인 비구조 단백질(non-structural protein)을 포함한다.
본 발명에서 사용한 용어 "바이러스의 표면 단백질"은 상기 구조 단백질을 의미한다. 예를 들어, "표면 단백질"은 바이러스의 특이 항원성을 가지고 있고, 바이러스의 흡착과 감염된 세포의 융합에 관여하는 당단백질(glycoprotein)일 수 있고, 세포에의 융합(fusion)에 관여하는 융합 단백질(fusion protein)일 수 있다.
본 발명의 일 예에 따르면 상기 바이러스의 표면 단백질은 헤마글루티닌(HA), 스파이크 단백질(spike protein) 또는 F 단백질(F protein) 일 수 있다.
본 발명의 일 예에 따르면, 본 발명의 바이러스는 숙주세포의 세포막에 흡착하여 막융합을 일으키는 표면 단백질을 포함하는 것 일 수 있다. 구체적으로, 본 발명의 바이러스는 비활성형 상태로 존재하는 표면 단백질이 생체 분자에 의하여 활성형으로 변하면, 숙주세포의 세포막과 흡착 및/또는 막융합을 일으키는 성질을 갖는 표면 단백질을 포함하는 것 일 수 있다.
본 발명의 일 예에 따르면, "바이러스"는 인플루엔자 바이러스 또는 고병원성 인플루엔자 바이러스일 수 있다. 인플루엔자 바이러스는 "바이러스의 표면 단백질"로 당단백질인 헤마글루티닌(HA)을 포함한다. 헤마글루티닌은 하나의 폴리펩티드(전구체 HA0)로 발현된 후, 단백질 가수분해에 의하여 HAO의 절단 부위(cleavage site)가 HA1 및 HA2로 나누어지면, 산성 조건 하에서 소수성 아미노산 잔기들로 구성된 융합 펩타이드(fusion peptide)가 활성화된다. HA는 인플루엔자 바이러스의 병원성 정도에 따라 절단 부위의 아미노산과 융합 펩타이드의 아미노산 구성이 다르다.
본 발명의 다른 일 예에 따르면, "바이러스"는 코로나 바이러스 일 수 있다. 코로나 바이러스는 표면 단백질로 스파이크 단백질(spike protein)을 포함하고, 상기 스파이크 단백질은 S1과 S2 부위를 포함한다. 스파이크 단백질의 S1 부위가 숙주세포에 결합하면, 단백질 분해 효소(protease)에 의하여 S1과 S2로 절단되고, S2의 끝 부분에 있는 소수성 부위가 노출되어 활성화 된다.
본 발명의 또 다른 일 예에 따르면, "바이러스"는 파라믹소 바이러스 일 수 있다. 파라믹소 바이러스는 표면 단백질로 HN 단백질(HN protein)을 포함한다. HN 단백질은 바이러스를 숙주세포에 부착 또는 흡착시키는 부착(또는 흡착) 단백질로, 바이러스 비활성 상태에서는 전구체(precursor) HN0로 존재하나, 가수분해에 의하여 C-말단에서 아미노산 잔기가 제거되면 활성화 된다. 또한, 파라믹소 바이러스는 표면 단백질로 F 단백질(F protein)을 포함한다. F 단백질은 바이러스 비활성 상태에서 전구체 F0로 존재하나 생체분자에 의하여 F1과 F2로 절단된 후, 새로운 N-말단 형태의 F1으로 활성화 된다. 상기 F 단백질은 절단부위에 다염기성 잔기를 갖는 것과 단일염기성 잔기를 갖는 것으로 모두 포함한다. 바람직하게는 다염기성 잔기를 갖는 F 단백질 일 수 있다.
본 발명에서 사용한 용어, "반응"은 어떤 물질이 다른 물질과 접촉하여 상태, 색, 형상 또는 화학 결합 등의 물리 및/또는 화학적 상태의 변화가 일어나는 것 또는 그 현상을 의미한다. 일 구체 예에서 바이러스의 표면 단백질이 생체 분자와 반응하는 경우 바이러스의 표면 단백질이 변화되어 융합 펩타이드 등을 형성하는 등의 활성화된 바이러스로 상태 변화가 일어난다. 다른 구체 예에서 활성화된 바이러스와 프로브의 반응은 융합반응 또는 응집반응일 수 있다. 상기 융합반응은 한 구체예에 따라, 활성형 바이러스와 본 발명의 프로브의 일부가 결합되는 현상 일 수 있다. 융합반응은 융합에 의하여 프로브 내부의 물질 등이 밖으로 배출되는 현상까지 포함하는 것으로 이해될 수 있다. 일 예로, 활성형 바이러스의 표면 단백질에 존재하는 융합 펩타이드가 엔도좀의 세포막을 융합하는 원리를 이용하여, 활성형 바이러스와 프로브의 융합 여부를 확인함으로써 활성형 바이러스를 검출할 수 있다. 상기 응집반응은 용액 안에서 분자 또는 입자 등이 서로 달라붙어 뭉치는 현상을 의미한다. 본 발명의 한 구체예에서, 응집반응은 검출대상인 바이러스에 의하여 본 발명의 프로브의 안정성이 낮아져 프로브끼리 서로 뭉쳐서 응집 및/또는 침전되는 현상을 의미한다.
본 발명에서 사용한 용어, "생체 분자(biomolecule)"는 생물의 구조, 기능, 정보전달 등에 필요한 분자를 의미한다. 상기 생체 분자는 기능, 정보전달 등을 수행하기 위한 특이적 구조 및/또는 부위를 포함할 수 있다. 이러한 생체 분자의 특이적 구조는 분자간 결합 반응을 통하여 반응을 일으키는 원동력이다. 생체 분자는 아미노산과 단백질, 당과 탄수화물, 지방산과 지질, 및 뉴클레오티드와 핵산 등을 포함하고, 생체 내에서 만들어진 것 및/또는 인위적으로 합성된 것을 모두 포함한다. 본 발명의 일 예에 따르면, "생체 분자"는 약 62개 내지 2500개의 아미노산 잔기로 이루어진 단백질인 효소일 수 있다.
하나의 구체 예에서 효소는 단백질 분해 효소일 수 있다. 일 예로 최초 합성된 형태로는 비활성화되어 있으나, 특정 부위가 제거(또는 절단)되면 활성을 나타내는 단백질에서 단백질 분해 효소는 상기 특정 부위를 절단(cleave)하여 비활성화 단백질을 활성화시킨다. 단백질 분해 효소는 특정 부위를 절단할 수 있는 것이면 종류에 제한 없이 사용할 수 있다.
일 구체예에서 단백질 분해 효소는 퓨린(furin), 트립신(trypsin), 세린(serine), 엔도프로테아제(endoprotease) 및 카복시펩티다아제(carboxypeptidase)으로 이루어진 군에서 선택된 하나 이상을 포함한다. 상기 단백질 분해 효소는 유도체 또는 개질 된 형태를 모두 포함한다. 예를 들어, 단백질 분해 효소는 재조합 인간 퓨린, 재조합 마우스 퓨린, 트립신-EDTA, 아세틸화된 트립신, TPCK-트립신(N-tosyl-L-phenylalanine chloromethyl ketone-trypsin), 아크릴릭 트립신(Trypsin-acrylic), 퓨린형 프로테아제(Furin like protease), 켁스2 프로테아제(Kex2 proteases), 막통과 세린 프로테아제 (Transmembrane protease serine), TMPRSS2, TMPRSS4, 트립타아제 클라라(Tryptase clara), 플라즈민(plasmin), 세린계 프로테아제(serine protease), 서브틸리신형 엔도프로테아제(subtilisin like endoprotease), 카복시펩티다아제(carboxypeptidase) 및 이들의 조합을 포함할 수 있다.
일 구체예에서 트립신이 인플루엔자 바이러스의 당단백질인 헤마글루티닌(HA)과 반응하는 경우, 트립신의 효소 분해 작용은 His57-Asp102-Ser195 위치에서 일어나며, 퓨린의 효소 분해 작용은 His194-Asp153-Ser368 위치에서 일어난다. 트립신은 고병원성 및 저병원성 인플루엔자 바이러스의 헤마글루티닌을 모두 분해할 수 있기 때문에, 트립신을 이용하여 고/저병원성 인플루엔자 바이러스를 검출할 수 있다. 또한, 퓨린은 고병원성 인플루엔자 바이러스의 헤마글루티닌만을 분해할 수 있기 때문에, 퓨린을 이용하여 고병원성 인플루엔자 바이러스를 검출할 수 있다.
다른, 일 구체예에서 단백질 분해효소와 코로나 바이러스의 표면 단백질이 반응하는 경우, 가수분해 효소의 작용은 S1 과 S2의 부위의 경계에서 일어난다. 따라서, 상기 가수분해 효소의 작용에 의하여 절단 후 S2의 소수성 부위가 노출됨에 따라 코로나 바이러스가 활성화되어, 본 발명의 프로브를 이용하여 검출할 수 있다.
또 다른 일 구체예에서, 파라믹소 바이러스의 표면 단백질과 반응하는 생체분자는 C-말단(Carboxyl side)의 아르기닌 잔기에서 절단이 가능한 단백질 분해효소 또는 카르복시펩티다아제(carboxylpeptidase) 일 수 있다. 상기 단백질 분해효소는 R-X-K/R-R 배열 포함하는 F 단백질을 인식하여 절단할 수 있다. 구체적인 예로, 퓨린 또는 서브틸리신형 엔도프로테아제(subtilisin-like endoprotease) 일 수 있다.
본 발명에서 사용한 용어, "활성형 바이러스" 또는 "활성화된 바이러스"는 바이러스의 표면 단백질과 특이적으로 반응하는 생체 분자에 의하여 바이러스의 표면 단백질이 활성화된 바이러스를 의미한다. 여기서 바이러스의 표면 단백질이 활성화되었다는 것은 바이러스의 표면 단백질이 숙주세포 및/또는 프로브와 반응, 예를 들어 특이적으로 반응할 수 있는 상태로 변화되었다는 것을 의미한다. 여기서 "바이러스의 활성화"는 비활성형 바이러스가 상기 활성형 바이러스로 변환되는 과정을 의미한다. 바이러스가 감염을 일으키기 위해서는 바이러스의 활성화 과정이 필수적으로 요구되므로, 상기 활성형 바이러스의 존재 여부를 검출함으로써, 바이러스에 의한 감염 여부를 판별할 수 있다.
하나의 구체 예에서, 바이러스 표면 단백질이 활성화된 것이란 바이러스의 표면 단백질에 존재하는 융합단백질 또는 융합펩타이드가 숙주세포의 막 또는 본 발명의 프로브의 표면과 융합 반응을 일으킬 수 있는 상태임을 의미한다.
하나의 구체 예에서, 인플루엔자 바이러스의 경우, 활성화된 바이러스란 표면 단백질인 헤마글루티닌(HA)이 효소에 의해 분해되어, 비활성 형태에서 헤마글루티닌의 내부에 존재하는 융합 펩타이드가 노출된 형태로 변환된 것을 의미한다.
즉, 상기 HA의 절단 부위를 특이적으로 분해하는 효소에는 퓨린 및/또는 트립신이 포함된다. 퓨린은 고병원성 인플루엔자 바이러스의 헤마글루티닌만을 분해할 수 있기 때문에, 인플루엔자 바이러스의 HA가 퓨린에 의하여 분해되는 경우 상기 인플루엔자 바이러스는 고병원성을 나타낸다. 또한, 트립신은 고병원성 및 저병원성 인플루엔자 바이러스의 헤마글루티닌을 모두 분해할 수 있기 때문에, 트립신에 의하여 분해되는 경우에는 고병원성 또는 저병원성을 나타내게 된다. 저병원성 인플루엔자 바이러스의 절단 부위는 C-말단이 -R-로 이루어지며, 고병원성 인플루엔자 바이러스의 절단 부위는 R/K-R-K-K-R로 이루어진다.
HA의 절단 부위를 특이적으로 분해하는 효소에 의하여 HA가 활성화되면, HA의 재배열이 일어나 HA 내의 융합 펩타이드가 바깥쪽으로 노출되어 활성형 바이러스가 된다. 이와 같이, 산성 조건 하에서 활성화된 인플루엔자 바이러스가 본 발명의 일 예에 따른 프로브와 만나면, 인플루엔자 바이러스의 융합 펩타이드에 의하여 인플루엔자 바이러스와 프로브의 반응이 일어나게 된다. 프로브의 반응에 따라 변하는 신호를 측정함으로써 바이러스 감염 여부를 검출할 수 있다.
다른 구체 예에서, 코로나 바이러스의 경우 활성화된 바이러스란 표면 단백질인 스파이크 단백질(S protein)이 생체분자에 의해 비활성 형태에서 스파이크 단백질의 내부에 존재하던 소수성 부위가 노출된 형태로 변환된 것을 의미한다. 구체적으로, 스파이크 단백질의 S1 부분이 숙주세포와 결합하면, 단백질 분해효소(protease)에 의하여 S1과 S2로 절단되고, S2의 끝 부분에 있는 소수성 부위가 노출되어 바이러스가 활성화 된다. 상기 S2에서 노출된 소수성 부위가 숙주세포의 세포막 내 소수성 영역에 부착되고, 다른 한쪽은 바이러스 외막과 결합된 상태에서 S2 부위의 가운데가 접히는 구조변형(conformation change)이 일어나면서 막 융합이 일어난다. 따라서, 본 발명의 프로브와 활성화된 코로나 바이러스가 만나면 반응하면, 프로브의 안정성에 변화가 일어나 다양한 신호를 발생되고, 상기 변화를 측정함으로써 바이러스 감염 여부를 검출할 수 있다.
또 다른 구체예에서, 파라믹소바이러스에서 활성화된 바이러스란 HN 단백질이 생체분자에 의하여 C-말단의 잔기가 제거된 상태를 의미한다. 구체적으로, HN 단백질은 불활성화 상태(HN0)를 유지하고 있다가 C-말단의 약 90개의 잔기가 제거되면, HN 단백질이 활성화 되어 숙주세포 또는 표적의 막에 파라믹소바이러스가 부착하게 된다. 또한, 활성형 파라믹소바이러스는 F 단백질이 생체분자에 의하여 F1과 F2로 절단된 상태를 의미한다. 비활성형 파라믹소바이러스에서 F 단백질은 전구체 F0 상태에서, 생체분자와 만나면 F1과 F2로 절단되고, 숙주세포의 세포막과 융합할 수 있는 활성형 바이러스가 된다. 즉, SS-결합쇄 F1과 F2를 함유하는 활성 표면 단백질을 형성하고, 광범위한 소수성을 나타내는 F1N-말단 잔기를 숙주세포의 세포막 또는 타겟의 세포막에 고정하면서 막 융합이 시작된다. 따라서, 파라믹소바이러스는 본 발명의 생체분자가 표면 단백질과 반응하여 활성화 되고, 다시 활성화된 바이러스가 본 발명의 프로브와 반응하여, 프로브의 변화를 일으키게 된다. 따라서 상기 변화를 측정함으로써 바이러스를 검출할 수 있다.
본 발명의 한 구체예에서, 키트 또는 조성물은 pH 6 이하의 산성 물질을 추가로 포함할 수 있다. 예를 들어, pH 6 이하의 산성 물질은 산성 용액일 수 있으며, 상기 pH 범위의 산성 용액을 키트에 포함할 수도 있고, 사용시 직접 제조하여 사용할 수도 있다. pH 6 이하의 산성 용액은 상기 pH 조건을 만족하는 용액이면 제한 없이 사용할 수 있다. 시판되는 스톡 용액을 이용할 수도 있고, 직접 제조하여 사용할 수도 있다. 예를 들어, 진한 산성 용액인 스톡 용액(stock solution)을 pH 6 이하가 되도록 물에 희석하여 사용할 수 있다. 예를 들어, 상기 산성 용액은 pH 4 내지 6 또는 pH 5 내지 pH 5.7일 수 있다. 상기 범위가, 숙주 세포 내의 pH 범위와 유사하므로, 검출 효율을 높일 수 있다.
한 구체예에서, 본 발명의 키트 및 조성물은 반응 보조제를 추가로 포함할 수 있다.
상기 반응 보조제는 생체 분자와 바이러스의 반응을 도와주는 생체 분자의 반응 보조제 일 수 있고, 또는 프로브와 표적분자의 반응을 도와주는 반응 보조제 일 수 있다. 구체적인 일 예로, 단백질 분해 효소와 표면 단백질의 반응을 도와주는 보조제, 또는 프로브와 활성형 바이러스 활성화된 표면 단백질, 활성형 바이러스의 항원성 단백질을 포함하는 표적분자와의 반응을 도와주는 보조제 일 수 있다.
본 발명에서 사용한 용어, 보조제는 상기 등의 작용을 통해서 바이러스의 검출 민감도 및/또는 특이도를 높일 수 있는 것이라면 모두 포함하는 의미이다. 상기 바이러스의 검출 민감도 및/또는 특이도를 높이는 것의 예로 반응의 속도를 빠르게 하거나, 반응이 일어나는 최소값을 낮추는 작용 또는 표면 단백질과 생체 분자의 반응 외에 다른 반응을 억제하는 작용이 있으나, 상기 메커니즘에 제한되지 않는다. 보조제는 생체 분자 및 이와 반응하는 표면 단백질의 종류에 따라서 검출 민감도 및/또는 특이도를 높일 수 있는 것이면 종류에 제한 없이 모두 포함한다.
상기 보조제는 케톤 일 수 있다.
상기 케톤 화합물의 예는 페닐에틸 클로로메틸 케톤, 토실 페닐알라닐 플로로메틸 케톤(TPCK, Tosyl phenylalanyl chloromethyl ketone) 및 이들의 조합을 포함하나, 이에 제한되는 것은 아니다.
본 발명의 일 구체예에서, 인플루엔자 바이러스 검출 시 보조제로 케톤을 더 포함할 수 있다. 이 경우, 다른 효소의 활성을 낮추고, 헤마글루티닌(HA) 분해 효소, 특히 트립신의 활성을 높여주어 키트의 민감도를 더욱 높일 수 있다.
본 발명은 바이러스 검출방법에 관한 것이다.
본 발명의 검출방법은 시료 생체 분자를 접촉시키는 단계 및 상기 생체 분자와 접촉된 시료를 프로브와 접촉시키는 단계를 포함한다. 구체적으로 개체로부터 수득한 시료를 바이러스의 표면 단백질과 특이적으로 반응하는 생체 분자와 접촉시키는 단계; 및 상기 생체 분자와 접촉된 시료를 상기 생체 분자에 의해 활성화된 바이러스와 반응하는 프로브를 접촉시키는 단계를 포함하고, 상기 프로브는 양친성 고분자와 결합된 표지자를 포함한다.
본 발명의 검출방법은 상기 접촉에 의하여 일어나는 반응의 여부를 확인함으로써 바이러스를 검출 할 수 있다. 일 예로, 활성형 바이러스의 표면 단백질에 존재하는 융합 펩타이드가 엔도좀의 세포막을 융합하는 원리를 이용하여, 활성형 바이러스와 프로브의 융합 반응 여부를 확인함으로써 활성형 바이러스를 검출할 수 있다. 다른 예로, 활성형 바이러스의 표면 단백질에 존재하는 융합 펩타이드가 프로브의 안정성을 낮추는 원리를 이용하여, 프로브의 응집 반응 여부를 확인함으로써 활성형 바이러스를 검출할 수 있다.
본 발명에서 반응의 여부를 확인하는 방법으로, 반응에 의하여 변하는 신호 또는 변화를 측정할 수 있다. 일 예로, 활성형 바이러스와 프로브가 반응하는 경우 변화하는 신호는, 형광 강도, 발광 강도, 인광 강도, 흡광 강도, 전기적 신호, 표면증강 라만 분광(surface-enhanced Raman spectroscopy; SERS) 신호, FET(field-effect transistor), 색 및 프로브의 분산도로 이루어진 군에서 선택된 하나 이상의 변화일 수 있으나, 이에 제한되는 것은 아니다.
예를 들어, 프로브의 반응 여부를 판별할 수 있는 표지자로 자기-소광된 염료를 이용하는 경우, 활성형 바이러스에 의하여 프로브와의 반응이 일어나, 프로브의 고분자에 결합된 자기-소광된 염료와 같은 표지자가 방출 또는 프로브 외부로 노출된다. 표지자가 노출 또는 방출된 프로브에서는 탈소광 작용에 의하여 형광이 나타나게 된다. 따라서, 형광 강도의 변화를 측정함으로써, 바이러스의 존재 여부를 검출할 수 있다.
또한, 프로브의 반응 여부를 판별할 수 있는 표지자로 형광 염료를 이용하는 경우, 활성형 바이러스에 의하여 프로브와의 반응이 일어나면, 프로브 입자의 고분자막 붕괴에 의하여 프로브의 고분자와 결합된 형광염료가 막 외부로 노출 또는 프로브 내부에 담지된 형광염료가 고분자 막 외부로 용출되게 되므로, 이 때의 형광 강도를 측정함으로써, 바이러스의 감염 여부를 검출할 수 있다. 발광 강도, 인광 강도, 흡광 강도 역시 형광 강도와 마찬가지로 파장에 따라 달라지기 때문에, 이들을 측정하여 바이러스의 감염 여부를 검출할 수 있다. 특히, 형광 염료 중에서, 루미놀이나 플러렌 등은 특별한 기기에 의한 형광 강도의 측정 없이, 육안으로도 색의 변화를 감지할 수 있다.
또한, 표지자로 형광 염료와 소광제 각각을 하나의 프로브에 포함하는 경우, 활성형 바이러스와 프로브의 반응이 일어나면, 고분자막의 붕괴되지 않는 경우 막 내부에 소광제와 형광염료가 함께 존재하면서 발광하지 않으나, 막 붕괴에 의하여 염료가 노출 또는 용출되는 경우 프로브의 형광 강도가 변화하므로, 상기 변화를 측정하여 바이러스의 존재 여부를 검출할 수 있다.
형광 염료 이외에도, 트리스(2,2'-비피리딜)루테늄 (II) [Ru(bpy)32+])와 같은 전기화학발광 물질을 포함할 수 있으며, 이 경우 육안으로 색의 변화 관찰이 가능하다.
또한, 나노갭 센서를 이용하여 전기적 신호를 측정함으로써 바이러스를 검출할 수 있다. 전기적 신호는 전류 변화를 측정하거나, 또는 FET (Field-effect transistor)를 이용하여 측정할 수도 있다. 나노갭 센서란 갭의 간격이 약 100nm 이하인 전극이 포함된 센서를 의미한다. 예를 들어, 프로브의 반응 여부를 판별할 수 있는 표지자로 형광 염료를 이용하는 경우, 활성형 바이러스와 프로브가 반응하면, 프로브 내부의 형광 염료가 방출되어 나노갭 센서의 나노갭에 위치하게 된다. 이 때, 나노갭 센서에 미리 위치시킨 금, 은, 크롬, 티타늄, 백금, 구리, 팔라디움, ITO(indium tin oxide), 또는 알루미늄 등의 금속 입자의 전류 변화를 측정함으로써, 바이러스의 감염 여부를 검출할 수 있다. 금속 입자의 평균 입경은 수 나노미터일 수 있으며, 예를 들어, 2 내지 4nm일 수 있다.
또한, 표면증강 라만 분광 신호를 측정하여 바이러스를 검출할 수 있다. 표면증강 라만 분광 신호를 측정하기 위하여, 시료와 결합 가능한 기재를 이용할 수 있다. 기재는 나노입자, 콜로이드, 액상 일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 프로브의 융합 여부를 판별할 수 있는 표지자로 형광 염료를 이용하는 경우, 활성형 바이러스와 프로브가 반응하면, 프로브 내부의 형광 염료가 방출된다. 방출된 형광 염료를 기재와 결합시킨 후, 상기 기재와 결합된 형광 염료에 다시 금속 입자를 도입한다. 금, 은 등의 금속 입자를 도입함으로써, 라만 분광을 증폭시킬 수 있다. 그 후, 라만 분광기로 상기 형광 염료의 라만 스펙트럼을 측정함으로써, 바이러스의 감염 여부를 검출할 수 있다.
다른 예로, 활성형 바이러스에 의하여 프로브의 응집이 일어남에 따라 프로브의 응집 여부, 즉, 분산도의 변화를 확인함으로써 바이러스를 검출할 수 있다. 예를 들어, 프로브가 무기 입자를 포함하는 경우, 활성형 바이러스에 의하여 프로브의 안정성이 낮아짐에 따라 상기 입자의 응집이 일어나게 된다.
한 구체예에서, 적어도 하나 이상의 단계는 pH 6 이하의 조건 하에서 수행될 수 있다. 예를 들어, pH 4 내지 pH 6, pH 5 내지 pH 5.5의 산성 조건 하에서 수행될 수 있다. 본 발명의 일 구체예로 인플루엔자 바이러스를 검출하는 경우, 산성 조건에서 수행하는 것이, 숙주 세포 내 환경과 매우 유사한 조건을 제공할 수 있어, 검출 정확도를 높일 수 있는 이점이 있다.
본 발명의 일 구체예에 따른 인플루엔자 검출 방법에 대한 모식도를 도 3에 나타내었다. 요약하면, pH 6 이하, pH 4 내지 pH 6, 또는 pH 5 내지 pH5.5 하에서, 퓨린 및/또는 트립신이 존재하는 웰에 개체로부터 수득한 시료를 넣어 상기 시료 내에 존재하는 인플루엔자 바이러스를 활성화한 후, 본 발명의 일 예에 따른 프로브를 처리한다. 인플루엔자 바이러스가 존재하는 경우, 융합 펩타이드에 의하여 활성형 인플루엔자 바이러스와 프로브의 반응이 일어나게 되고, 반응 여부에 따라 변하는 신호를 측정함으로써 인플루엔자 바이러스의 존재 유무를 알 수 있다. 상기에서 기술한 바와 같이, 활성형 인플루엔자 바이러스와 프로브의 반응은, 융합 또는 응집일 수 있다. 상기 활성형 인플루엔자 바이러스와 프로브의 반응 및 이에 따라 변하는 신호에 대하여는 전술한 바와 같다.
본 발명에서 사용한 용어, "시료"는 바이러스의 검출을 위해 모체를 대표하도록 채취된 것을 의미한다. 한 구체예에서, 시료는 타액, 구강 점막 또는 분뇨 시료일 수 있다.
본 발명은 또한, 바이러스의 표면 단백질과 특이적으로 반응하는 생체 분자 및 상기 생체분자에 의하여 활성화된 바이러스와 반응하는 프로브를 포함하는 바이러스 검출용 조성물에 관한 것이다. 상기에서 바이러스 검출 키트 및 바이러스 검출 방법에 대하여 기술한 모든 내용이 바이러스 검출용 조성물에도 적용 또는 준용될 수 있다.
본 발명은 또한, 양친성 고분자와 표지자를 결합시키는 단계를 포함하는 바이러스 검출용 프로브 또는 검출용 키트의 제조방법에 관한 것이다.
일 구체예에 따라, 양친성 고분자와 제1 표지자를 결합시키는 단계 및 상기 양친성 고분자와 결합된 표지자로 막구조의 입자를 형성하는 단계를 포함한다.
다른 일 구체예에 따라, 상기 입자 형성 단계 이전에 제1 표지자가 결합된 양친성 고분자 및 제2 표지자를 용매에 분산 시키는 단계를 더 포함할 수 있다. 상기 제2 표지자가 함께 분산된 용액으로부터 막 구조의 입자를 형성하면 제2 표지자가 담지된 프로브를 제조할 수 있다.
또 다른 일 구체예에 따라, 양친성 고분자와 제1 표지자를 결합시키는 단계, 양친성 고분자와 제2 표지자를 결합시키는 단계 및 상기 제1 표지자 결합된 양친성 고분자 및 제2 표지자 결합된 양친성 고분자를 용매에 분산시키고 막구조의 입자를 형성하는 단계를 포함할 수 있다.
상기 막구조의 입자를 형성하는 단계는 본 발명이 속하는 분야에서 통상적으로 사용되는 콜로이드, 리포좀, 마이셀 또는 폴리머좀을 형성하는 방법에 따라 수행할 수 있고, 일 예로 친수성 영역과 소수성 영역을 포함하는 양친성 블록 공중합체를 수용액에 분산시킨 뒤 초음파를 가하는 방법, 유기용매에 분산 또는 용해 시킨 뒤 과량의 물로 유기용매를 추출 또는 증발시키는 방법, 유기용매에 분산 또는 용해시킨 뒤 과량의 물로 투석하는 방법, 유기용매에 분산 또는 용해시킨 뒤 균질기 또는 고압유화기를 이용하여 강하게 용매를 증발시키는 방법, 또는 얇은 필름 수화법(Thin film hydration) 등을 사용하여 막 구조의 입자를 제조할 수 있다.
상기 막구조의 입자를 형성하는 단계에서 표지자가 결합되지 않은 양친성 고분자와 표지자가 결합된 양친성 고분자는 고분자 비율이 1 : 1 내지 10의 중량비 범위에서 혼합하여 사용될 수 있다.
본 발명의 제조방법에 따른 프로브는 막을 형성하여 캡슐 역할 또는 담체 역할을 하는 고분자와 표지자가 직접 결합되어 있으므로, 검출 과정에서 초기에 표지자가 방출되는 것을 제어할 수 있고, 표지자의 방출이 제어되므로, 제조단계에서 투석단계를 거치지 않아도 되므로 바이러스 검출용 키트의 제조 효율이 우수하다는 장점이 있다.
상기에서 바이러스 검출 키트 및 바이러스 검출 방법에 대하여 기술한 모든 내용이 바이러스 검출용 프로브 제조방법에도 적용 또는 준용될 수 있다.
이하, 본 발명을 실시예를 통하여 상세히 설명한다. 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 이들에 한정되는 것은 아니다.
[ 실시예 ]
[ 제조예 1] 친수성 고분자-소수성 고분자-형광염료가 결합된 고분자를 포함하는 입자 내부에 소광제를 담지한 프로브의 제조
양친성 공중합체를 이용하여, 표지자로 형광염료를 결합시키고, 그 내부에 소광제를 담지하고 있는 마이셀(Micelle) 또는 폴리머좀(Polymersome) 형태의 프로브를 제조하였다. mPEG-NH2는 Laysan bio, Cy5.5-NHS 에스터는 GE Healthcare, BHQ3-NHS 에스터는 iosearch Technologies, 1-에틸-3-(3-디메틸아미노프로필) 카보디이미드 및 다이메틸설폭사이드는 Sigma Aldrich에서 구입하여 사용하였다.
구체적으로, mPEG-b-PLeu 10 mg에 Cy5.5-NHS 에스터 2.5㎎ 및 1-에틸-3-(3-디메틸아미노프로필) 카보디이미드 8.9mg를 다이메틸설폭사이드 2mL에 녹인 후 12시간 상온에서 반응시켰다. 반응이 종료된 용액을 차가운 에틸 에테르 4mL로 침전시키고, 원심분리하여 상등액을 제거하였다. 동결건조 후, 친수성 고분자-소수성 고분자-형광염료 결합체를 얻었다.
mPEG-b-PLeu과 mPEG-b-PLeu-형광염료 결합체를 고분자 1:1 비율로하여 10 mg을 준비하고, BHQ3-NHS 에스터 0.04 mg와 혼합하고 투석하여 입자를 형성하는 방법으로 프로브를 제조 하였다. 투석 단계 이후, 세척 단계는 생략하였다.
제조된 프로브의 형상을 TEM(transmission electron microscope) 이미지로 확인하여 도 2에 나타내었고, 제조된 프로브 입자의 크기를 DLS(dynamic light scattering) 법을 이용하여 측정하여 평균 직경을 도 5에 나타내었다.
도 2 및 도 5에 나타낸 바와 같이, 불완전 구형 또는 타원형의 형태를 띄고, 평균 직경은 62.5±3.6 nm인 프로브가 제조되었음을 확인할 수 있었다.
또한, 상기 프로브 중에서 폴리머좀 형태의 프로브는 분자량이 6500 g/mol이었고, 마이셀 형태의 프로브는 분자량이 3300 g/mol 였다.
[ 제조예 2] 친수성 고분자-소수성 고분자- 소광제가 결합된 고분자를 포함하는 입자 내부에 형광염료를 담지한 프로브의 제조
양친성 고분자에 소광제를 결합시키고, 형광염료를 담지시킨 것 외에 제조예 1과 동일한 방법으로 프로브를 제조하였다.
mPEG-NH2는 Laysan bio, Cy5.5-NHS 에스터는 GE Healthcare, BHQ3-NHS 에스터는 iosearch Technologies, 1-에틸-3-(3-디메틸아미노프로필) 카보디이미드 및 다이메틸설폭사이드는 Sigma Aldrich에서 구입하여 사용하였다.
구체적으로, mPEG-b-PLeu 10 mg, BHQ3-NHS 에스터 1.8 mg 및 1-에틸-3-(3-디메틸아미노프로필) 카보디이미드 8.9mg을 다이메틸설폭사이드 2mL에 녹인 후 12시간 상온에서 반응시켰다. 반응이 종료된 용액을 차가운 에틸 에테르 4mL로 침전시키고 원심분리하여 상등액을 제거하였다. 동결건조 후, 친수성 고분자-소수성 고분자-소광제 결합체를 얻었다.
mPEG-b-PLeu 과 mPEG-b-PLeu-소광제 결합체를 고분자 기준으로 1:1 비율하여 10 mg 준비하고, cy5.5-NHS 에스터 0.04 mg과 혼합하고, 투석하여 입자를 형성하는 방법으로 프로브를 제조하였다.
제조된 프로브의 형상을 TEM(transmission electron microscope) 이미지로 확인하여 도 3 나타내었고, 제조된 프로브 입자의 크기를 DLS(dynamic light scattering) 법을 이용하여 측정하여 평균 직경을 도 5에 나타내었다.
도 3 및 도 5에 나타낸 바와 같이, 불완전 구형 또는 타원형의 형태를 띄고, 평균 직경은 48.4±4.5 nm인 프로브가 제조되었음을 확인할 수 있었다.
[ 제조예 3] 친수성 고분자-소수성 고분자- 소광제가 결합된 고분자 및 친수성 고분자-소수성 고분자-형광염료가 결합된 고분자를 포함하는 프로브의 제조
형광염료가 결합된 고분자 및 소광제가 결합된 고분자를 이용하여 프로브를 제조한 것 외에, 제조예 1과 동일한 방법으로 프로브를 제조하였다.
mPEG-NH2는 Laysan bio, Cy5.5-NHS 에스터는 GE Healthcare, BHQ3-NHS 에스터는 iosearch Technologies, 1-에틸-3-(3-디메틸아미노프로필) 카보디이미드 및 다이메틸설폭사이드는 Sigma Aldrich에서 구입하여 사용하였다.
구체적으로, mPEG-b-PLeu 10 mg에 Cy5.5-NHS 에스터 2.5㎎ 및 1-에틸-3-(3-디메틸아미노프로필) 카보디이미드 8.9mg를 다이메틸설폭사이드 2mL에 녹인 후 12시간 상온에서 반응시켰다. 반응이 종료된 용액을 차가운 에틸 에테르 4mL로 침전시키고 원심분리하여 상등액을 제거하였다. 동결 건조 후, 친수성 고분자-소수성 고분자-형광염료 결합체를 얻었다.
mPEG-b-PLeu 10 mg에 BHQ3-NHS 에스터 1.8 mg 및 1-에틸-3-(3-디메틸아미노프로필) 카보디이미드 8.9mg을 다이메틸설폭사이드 2mL에 녹인 후 12시간 상온에서 반응시켰다. 반응이 종료된 용액을 차가운 에틸 에테르 4mL로 침전시키고 원심분리하여 상등액을 제거하였다. 동결건조 후, 친수성 고분자-소수성 고분자-소광제 결합체를 얻었다.
상기 각각 얻어진 결합체를 고분자를 기준으로 1:1 비율로 10mg을 준비하고, 투석하여 양친성 입자 프로브를 제조하였다.
제조된 프로브의 형상을 TEM(transmission electron microscope) 이미지로 확인하여 도 4 나타내었고, 제조된 프로브 입자의 크기를 DLS(dynamic light scattering) 법을 이용하여 측정하여 평균 직경을 도 5에 나타내었다.
도 4 및 도 5에 나타낸 바와 같이, 불완전 구형 또는 타원형의 형태를 띄고, 평균 직경은 52.7±2.2 nm인 프로브가 제조되었음을 확인할 수 있었다.
[ 실험예 1] 프로브의 바이러스 검출효과 확인
제조예 1의 방법에 의해 제조된 프로브에 의한 바이러스 검출효과를 확인 하였다.
구체적으로, 검출 대상 바이러스로는 3가지 타입의 고병원성 인플루엔자 바이러스로 H5N1_01, H5N1_02 및 H5N6, 11가지 타입의 저병원성 인플루엔자 바이러스로 H1N1_01, H1N1_02, H2N1, H2N4, H3N8, H5N2, H5N3, H7N9, H7N7, H9N2_01 및 H9N2_02에 대해서 실험을 실시하였다. 바이러스와 반응하는 생체 분자로 인플루엔자 바이러스의 표면 단백질인 헤마글루티닌을 특이적으로 분해할 수 있는 퓨린(furin)과 트립신(trypsin)을 이용하였다. 저병원성 인플루엔자 바이러스는 녹십자 수의약품에서, 고병원성 바이러스는 Hanoi university of agriculture에서 제공받아 사용하였다. pH 조건은 산성 스톡 용액(stock solution)을 이용하여 적정 pH에 맞추어 실시하였다.
96-well plate에서 하나의 well에 각 처리군에 맞는 효소를 넣고, 효소가 답지된 웰에 검출대상 바이러스를 넣어 접촉시켰다. 그 다음 본 발명의 프로브를 넣어 접촉 시킨 후, 상기 프로브의 형광 강도 변화를 측정 하였다(Ex: 675 nm, Em: 694 nm).
인플루엔자 바이러스 총 14종에 대해서, 검출 환경(well의 pH 조건)을 pH 5.5 및 pH 7.4로 구분하고, 각 pH 조건에 따라 1) 퓨린 단독 처리군, 2) 트립신 단독 처리군, 3) 퓨린 및 트립신 처리군, 4) 퓨린 및 분변 처리군, 5) 트립신 및 분변 처리군 및 6) 분변 단독 처리군(효소 미처리) 나누어서 실험을 실시하였다. 그 결과를 하기 표 1 및 표 2에 나타내었다.
Sample pH 5.5 pH 7.4 Furin + Trypsin 효소 미처리
Furin Trypsin Furin Trypsin pH 5.5 pH 7.4 pH 5.5 pH 7.4
H5N1_01 2841 2952 348 483 2521 371 540 497
H5N1_02 2133 2958 316 594 2858 573 469 451
H5N6 2415 2744 389 501 2384 408 406 544
H1N1_01 492 3353 316 573 4316 550 303 419
H1N1_02 594 4548 301 499 4429 409 371 374
H2N1 371 2213 306 552 2877 520 564 378
H2N4 426 4025 333 472 4800 427 457 585
H3N8 399 3600 423 348 3370 413 440 317
H5N2 429 2369 589 378 2124 473 427 576
H5N3 482 3252 595 587 4455 367 427 571
H7N9 545 3992 341 329 4045 572 391 397
H7N7 432 2605 308 434 2606 524 593 442
H9N2_01 353 3754 332 576 3534 451 451 382
H9N2_02 418 3282 551 370 3520 346 571 337
Sample 효소 + 분변(pH 5.5) 분변 처리군(효소미처리)
Furin Trypsin pH 5.5 pH 7.4
H5N1_01 2444 2662 358 477
H5N1_02 2281 2879 596 480
H5N6 2833 2732 419 551
H1N1_01 4152 3604 330 339
H1N1_02 4218 3701 399 340
H2N1 2285 2934 571 426
H2N4 3334 4147 354 565
H3N8 3050 4373 356 422
H5N2 2676 2927 487 429
H5N3 4043 3217 420 578
H7N9 4146 3871 358 357
H7N7 2632 2931 546 323
H9N2_01 3117 4842 433 386
H9N2_02 3748 4485 590 504
표 1 및 표 2에 나타낸 바와 같이, 효소 미처리군, 비산성조건 실험군에서는 프로프의 형광 변화가 관찰되지 않았다. 그러나, 고병원성 인플루엔자 바이러스 실험군에서 산성 조건이 만족된 경우, 프로브와 트립신을 함께 처리한 경우, 고병원성 및 저병원성 인플루엔자 실험군 모두에서 형광 변화가 확인 되었고, 퓨린을 처리한 경우에는 고병원성 인플루엔자 실험군에서만 형광 변화가 확인되었다. 트립신을 통해서는 고병원성 및 저병원성 인플루엔자를 모두 검출할 수 있고, 퓨린을 이용하는 경우 저병원성 인플루엔자를 검출 할 수 있음을 알 수 있다. 또한 효소와 분변을 함께 처리한 경우에도 산성 조건 및 효소가 존재하는 경우 형광 변화가 감지되는 것을 확인하였고, 이로써 다른 물질의 혼합에도 검출 능력을 유지할 수 있음을 확인 하였다.
[ 실험예 2] 프로브의 바이러스 검출효과 확인
제조예 2의 방법에 의해 제조된 프로브에 의한 바이러스 검출효과를 확인 하였다.
구체적인 실험 방법은 제조예1의 프로브 대신 제조예 2의 프로브를 사용한 것 외에는 상기 실험예 1과 동일한 조건으로 실험을 실시하였다. 형광 강도 측정 결과를 하기 표 3 및 표 4에 나타내었다.
Sample pH 5.5 pH 7.4 Furin + Trypsin 효소 미처리군
Furin Trypsin Furin Trypsin pH 5.5 pH 7.4 pH 5.5 pH 7.4
H5N1_01 4682 4001 459 557 4445 469 547 361
H5N1_02 4837 4544 480 588 4261 310 440 404
H5N6 2719 2761 399 302 2203 330 386 422
H1N1_01 374 4023 560 371 3632 353 513 505
H1N1_02 364 4719 306 529 4072 314 540 579
H2N1 333 2117 397 364 2788 479 353 473
H2N4 347 3090 377 400 4530 443 582 363
H3N8 442 4072 552 446 4537 479 507 442
H5N2 323 2340 438 388 2639 425 380 477
H5N3 590 4733 357 310 3136 395 447 584
H7N9 461 4599 537 562 4529 414 303 539
H7N7 401 2067 481 330 2187 330 389 595
H9N2_01 443 4577 591 365 4767 404 327 407
H9N2_02 571 4716 359 566 4144 386 533 354
sample 효소 + 분변(pH 5.5) 분변 처리군(효소 미처리)
Furin Trypsin pH 5.5 pH 7.4
H5N1_01 3762 4226 345 572
H5N1_02 3442 4806 523 545
H5N6 2821 2031 318 377
H1N1_01 4923 3062 449 507
H1N1_02 4376 4432 353 521
H2N1 2672 2526 550 396
H2N4 4433 3280 579 403
H3N8 4992 4650 350 337
H5N2 2104 2791 554 338
H5N3 4068 3311 541 318
H7N9 3216 4080 420 467
H7N7 2237 2287 373 375
H9N2_01 4322 3557 419 481
H9N2_02 4266 3219 339 423
표 3 및 표 4에 나타낸 바와 같이, 퓨린을 처리한 경우, 효소 미처리군, 비산성조건 실험군에서는 프로프의 형광 변화가 관찰되지 않았다. 그러나, 고병원성 인플루엔자 바이러스 실험군에서 산성 조건이 만족된 경우, 프로브와 트립신을 함께 처리한 경우, 고병원성 및 저병원성 인플루엔자 실험군 모두에서 형광 변화가 확인 되었고, 퓨린을 처리한 경우에는 고병원성 인플루엔자 실험군에서만 형광 변화가 확인되었다. 트립신을 통해서는 고병원성 및 저병원성 인플루엔자를 모두 검출할 수 있고, 퓨린을 이용하는 경우 저병원성 인플루엔자를 검출할 수 있음을 알 수 있다. 또한 효소와 분변을 함께 처리한 경우에도 산성 조건 및 효소가 존재하는 경우 형광 변화가 감지되는 것을 확인하였고, 이로써 다른 물질의 혼합에도 검출 능력을 유지할 수 있음을 확인 하였다.
[ 실험예 3] 프로브의 바이러스 검출효과 확인
제조예 3의 방법에 의해 제조된 프로브에 의한 바이러스 검출효과를 확인 하였다.
구체적인 실험 방법은 제조예1의 프로브 대신 제조예 3의 프로브를 사용한 것 외에는 상기 실험예 1과 동일한 조건으로 실험을 실시하였다. 형광 강도 측정 결과를 하기 표 5 및 표 6에 나타내었다.
Sample pH 5.5 pH 7.4 Furin + Trypsin 효소 미처리군
Furin Trypsin Furin Trypsin pH 5.5 pH 7.4 pH 5.5 pH 7.4
H5N1_01 4329 3406 412 594 3497 536 352 345
H5N1_02 4999 4360 342 381 3890 552 396 559
H5N6 2251 2030 328 426 2198 599 554 596
H1N1_01 327 3719 528 361 4656 321 426 338
H1N1_02 490 3152 391 407 4702 485 381 444
H2N1 569 2064 544 406 2655 381 503 395
H2N4 477 3458 482 595 3179 365 380 597
H3N8 313 3397 414 409 4690 320 588 387
H5N2 512 2671 388 586 2919 336 556 351
H5N3 377 3571 421 339 3437 579 478 407
H7N9 528 3249 554 586 3628 528 311 512
H7N7 575 2513 365 570 2470 326 577 386
H9N2_01 461 3514 375 596 3182 390 372 391
H9N2_02 306 3733 585 420 4052 317 475 500
Sample 효소 + 분변(pH 5.5) 분변 처리군(효소 미처리)
Furin Trypsin pH 5.5 pH 7.4
H5N1_01 4846 4804 540 308
H5N1_02 4335 3015 447 508
H5N6 2501 2584 477 317
H1N1_01 4964 4105 520 544
H1N1_02 3146 4577 521 387
H2N1 2286 2367 533 569
H2N4 4127 3409 540 454
H3N8 4245 3828 385 358
H5N2 2660 2614 509 430
H5N3 3157 3571 464 495
H7N9 3222 4952 565 577
H7N7 2175 2493 347 390
H9N2_01 4766 4463 583 450
H9N2_02 4607 4134 381 452
표 5 및 표 6에 나타낸 바와 같이, 퓨린을 처리한 경우, 효소 미처리군, 비산성조건 실험군에서는 프로프의 형광 변화가 관찰되지 않았다. 그러나, 고병원성 인플루엔자 바이러스 실험군에서 산성 조건이 만족된 경우, 프로브와 트립신을 함께 처리한 경우, 고병원성 및 저병원성 인플루엔자 실험군 모두에서 형광 변화가 확인 되었고, 퓨린을 처리한 경우에는 고병원성 인플루엔자 실험군에서만 형광 변화가 확인되었다. 트립신을 통해서는 고병원성 및 저병원성 인플루엔자를 모두 검출할 수 있고, 퓨린을 이용하는 경우 저병원성 인플루엔자를 검출할 수 있음을 알 수 있다. 또한 효소와 분변을 함께 처리한 경우에도 산성 조건 및 효소가 존재하는 경우 형광 변화가 감지되는 것을 확인하였고, 이로써 다른 물질의 혼합에도 검출 능력을 유지할 수 있음을 확인하였다.

Claims (15)

  1. 바이러스의 표면 단백질과 특이적으로 반응하는 생체 분자 및 상기 생체 분자에 의하여 활성화된 바이러스와 반응하는 프로브를 포함하고,
    상기 프로브는 양친성 고분자와 결합된 표지자를 포함하는 바이러스 검출용 키트.
  2. 제1항에 있어서,
    상기 표지자는 자기-소광된 염료(self-quenched dye), 형광 염료, 전기화학발광 물질, 소광제, 발광 염료 및 인광 염료로 이루어진 군에서 선택된 하나 이상인 바이러스 검출용 키트
  3. 제1항에 있어서,
    상기 프로브는 양친성 고분자와 결합된 염료 및 양친성 고분자와 결합된 소광제로 이루어진 군에서 선택된 하나 이상을 포함하는 바이러스 검출용 키트.
  4. 제1항에 있어서,
    상기 양친성 고분자는 친수성 고분자 A 및 소수성 고분자 B를 포함하는 A-B 타입의 블록 공중합체, B-A-B 타입의 삼중 블록 공중합체, 지질 고분자 및 이들의 조합으로 이루어진 군에서 선택되는 바이러스 검출용 키트.
  5. 제1항에 있어서,
    상기 프로브는 마이셀(micelle), 폴리머좀(polymersome), 콜로이드좀(colloidsome), 베지클(vesicle), 리포좀(liposome) 또는 액적(droplet)인 바이러스 검출용 키트.
  6. 제1항에 있어서,
    상기 바이러스는 인플루엔자 바이러스, 코로나 바이러스 또는 파라믹소 바이러스인 바이러스 검출용 키트.
  7. 제1항에 있어서,
    상기 바이러스의 표면 단백질과 특이적으로 반응하는 생체 분자는 효소인 바이러스 검출용 키트.
  8. 제7항에 있어서,
    상기 효소는 퓨린, 트립신, 세린, 엔도프로테아제(endoprotease) 및 카복시펩티다아제(carboxypeptidase)로 이루어진 군에서 선택된 하나 이상인 바이러스 검출용 키트.
  9. 제1항에 있어서,
    상기 키트는 pH 6 이하의 산성 물질을 추가로 포함하는 바이러스 검출용 키트.
  10. 제1항에 있어서,
    상기 키트는 반응 보조제를 추가로 포함하는 바이러스 검출용 키트.
  11. 바이러스의 표면 단백질과 특이적으로 반응하는 생체 분자 및 상기 생체 분자에 의하여 활성화된 바이러스와 반응하는 프로브를 포함하고,
    상기 프로브는 양친성 고분자와 결합된 표지자를 포함하는 바이러스 검출용 조성물.
  12. 개체로부터 수득한 시료를 바이러스의 표면 단백질과 특이적으로 반응하는 생체 분자와 접촉시키는 단계 및
    상기 생체 분자와 접촉된 시료를 상기 생체 분자에 의해 활성화된 바이러스와 반응하는 프로브를 접촉시키는 단계를 포함하고,
    상기 프로브는 양친성 고분자와 결합된 표지자를 포함하는 바이러스 검출방법.
  13. 제12항에 있어서,
    상기 접촉은 pH 6 이하의 조건 하에서 수행되는 것인 바이러스 검출방법.
  14. 제12항에 있어서,
    상기 검출방법은 시료와 접촉한 프로브의 변화를 측정하는 단계를 추가로 포함하는 바이러스 검출방법.
  15. 제14항에 있어서,
    상기 프로브의 변화는 형광 강도, 발광 강도, 인광 강도, 흡광 강도, 전기적 신호, 표면 증강 라만 분광(surface-enhanced Raman spectroscopy; SERS) 신호, 색 및 프로브의 분산도로 이루어진 군에서 하나 이상의 변화를 측정하는 것인 바이러스 검출방법.
PCT/KR2016/000163 2015-01-08 2016-01-08 바이러스 검출용 키트 WO2016111572A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017555190A JP6494794B2 (ja) 2015-01-08 2016-01-08 ウイルス検出用キット
EP16735193.1A EP3244211A4 (en) 2015-01-08 2016-01-08 Kit for detecting virus
CN201680005366.5A CN107430129A (zh) 2015-01-08 2016-01-08 病毒检测用试剂盒
US15/643,832 US20170307612A1 (en) 2015-01-08 2017-07-07 Kit for detecting virus

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2015-0002793 2015-01-08
KR20150002793 2015-01-08
KR10-2015-0008955 2015-01-19
KR10-2015-0008956 2015-01-19
KR20150008955 2015-01-19
KR20150008956 2015-01-19
KR1020160002305A KR101790088B1 (ko) 2015-01-08 2016-01-07 바이러스 검출용 키트
KR10-2016-0002305 2016-01-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/643,832 Continuation-In-Part US20170307612A1 (en) 2015-01-08 2017-07-07 Kit for detecting virus

Publications (1)

Publication Number Publication Date
WO2016111572A1 true WO2016111572A1 (ko) 2016-07-14

Family

ID=56356186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000163 WO2016111572A1 (ko) 2015-01-08 2016-01-08 바이러스 검출용 키트

Country Status (1)

Country Link
WO (1) WO2016111572A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090044763A (ko) * 2007-11-01 2009-05-07 대한민국(관리부서 : 농림수산식품부 국립수의과학검역원) 경쟁적효소면역측정법을 이용한 조류 인플루엔자 바이러스항체의 진단키트 및 이를 이용한 진단방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090044763A (ko) * 2007-11-01 2009-05-07 대한민국(관리부서 : 농림수산식품부 국립수의과학검역원) 경쟁적효소면역측정법을 이용한 조류 인플루엔자 바이러스항체의 진단키트 및 이를 이용한 진단방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BRANDENBURG, B. ET AL.: "Mechanisms of Hemagglutinin targeted Influenza Virus Neutralization", PLOS ONE, vol. 8, no. 12, 2013, pages 1 - 14, XP055466591 *
GAMBOTTO, A. ET AL.: "Human Infection with Highly Pathogenic H5N1 Influenza Virus", THE LANCET, vol. 371, 2008, pages 1464 - 1475, XP022622971 *
MTTTAL, A. ET AL.: "Kinetics of Influenza Hemagglutinin-Mediated Membrane Fusion as a Function of Technique", ANALYTICAL BIOCHEMISTRY, vol. 303, 2002, pages 145 - 152, XP055466590 *
See also references of EP3244211A4 *

Similar Documents

Publication Publication Date Title
US20170307612A1 (en) Kit for detecting virus
Eidelman et al. pH-dependent fusion induced by vesicular stomatitis virus glycoprotein reconstituted into phospholipid vesicles.
Tsurudome et al. Lipid interactions of the hemagglutinin HA2 NH2-terminal segment during influenza virus-induced membrane fusion.
Zick et al. Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion
Diego-Taboada et al. Protein free microcapsules obtained from plant spores as a model for drug delivery: ibuprofen encapsulation, release and taste masking
Koley et al. Nanostructures from Single Amino Acid‐Based Molecules: Stability, Fibrillation, Encapsulation, and Fabrication of Silver Nanoparticles
Costello et al. Single particle assay of coronavirus membrane fusion with proteinaceous receptor-embedded supported bilayers
Wang et al. Universal cell surface imaging for mammalian, fungal, and bacterial cells
JP6782218B2 (ja) 検出装置および検出方法
CN1713892A (zh) 高效融合小泡,其制备方法和含有该小泡的药物组合物
Derakhshan et al. State-of-the-Art of Nanodiagnostics and Nanotherapeutics against SARS-CoV-2
Düzgüneş et al. Membrane destabilization by N-terminal peptides of viral envelope proteins
Yamamoto et al. Microenvironment pH-induced selective cell death for potential cancer therapy using nanofibrous self-assembly of a peptide amphiphile
Singh et al. Dynamic Ca2+ sensitivity stimulates the evolved SARS-CoV-2 spike strain-mediated membrane fusion for enhanced entry
WO2016111572A1 (ko) 바이러스 검출용 키트
WO2016111568A1 (ko) 바이러스 검출용 키트
Tate et al. Peptidomimetic oligomers targeting membrane phosphatidylserine exhibit broad antiviral activity
Luan et al. Formation of membrane domains by the envelope proteins of vesicular stomatitis virus
Feinstein et al. Reactions of fluorescent probes with normal and chemically modified myelin
KR20180090513A (ko) 바이러스 검출용 키트
JP7050878B2 (ja) 検出装置および検出方法
KR102242449B1 (ko) 인플루엔자 바이러스의 뉴라미니다아제 저해제에 대한 내성 검출용 나노입자
Melo et al. Nanocytotoxicity: violacein and violacein-loaded poly (D, L-lactide-co-glycolide) nanoparticles acting on human leukemic cells
KR20180090509A (ko) 바이러스 검출용 키트
WO2016200063A1 (ko) 리포좀 및 리포좀-폴리머 하이브리드를 이용한 바이러스 검출방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555190

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016735193

Country of ref document: EP