WO2016200064A1 - 리포좀 및 리포좀-폴리머 하이브리드를 이용한 박테리아 검출방법 - Google Patents
리포좀 및 리포좀-폴리머 하이브리드를 이용한 박테리아 검출방법 Download PDFInfo
- Publication number
- WO2016200064A1 WO2016200064A1 PCT/KR2016/004965 KR2016004965W WO2016200064A1 WO 2016200064 A1 WO2016200064 A1 WO 2016200064A1 KR 2016004965 W KR2016004965 W KR 2016004965W WO 2016200064 A1 WO2016200064 A1 WO 2016200064A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liposome
- glycero
- phosphatidylcholine
- bacteria
- liposomes
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/48—Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
Definitions
- the present invention relates to a method for detecting bacteria using liposomes or liposome-polymer hybrids, and more particularly, to samples containing liposomes or liposome-polymer hybrids and bacteria containing an electrochemically active substrate.
- the present invention relates to a method for detecting bacteria, wherein the contact detects the presence or absence of bacteria through a change in current caused by release of an electrochemically active substrate contained in a liposome or a liposome-polymer hybrid.
- Liposomes are W / O / W type emulsions proposed by Bangham in the 1960s ( J. Mol . Biol ., 13: 238, 1965), in which amphiphilic phospholipids are self-arranged by hydrophobic forces in the water phase.
- the phospholipid membrane constituting the liposome has the same structure as the cell, and is easily used for cell introduction, and has a large space for supporting a water-soluble substance therein compared to other structures, so that it is used as a carrier and carrier for the water-soluble substance ( Eur . J. Pharm . Biopham, 62: 110, 2006 ; Nat Rev. Drug Discov, 145:... 4, 1979).
- liposomes are nano-sized (1 ⁇ m or less) capsules as phospholipid delivery and mediators, and they can contain both lipophilic and hydrophilic functional materials, so they are suitable for living organisms similar to human skin cells. It is a substance that, when added to a hydrophilic formulation, remains suspended and has surface stability.
- Liposomes are spherical vesicles in which the phospholipid bilayer surrounds the water phase.
- the lipid membrane is an amphiphilic phospholipid consisting of two hydrophobic fatty acid groups and a hydrophilic phosphate group, which forms a double membrane in aqueous solution, which forms closed vesicles like artificial cells.
- the non-polar fatty acid tail faces the inside of the membrane and the polar head faces outward.
- Incorporating drugs into such liposomes has been attracting attention as a structure of particle bodies prepared by assembling with polymers, drugs, and antigens, as it can enhance the therapy by reducing the toxicity of drugs and increasing their effects.
- Liposomes are fully enclosed structures that include a lipid bilayer membrane containing encapsulated aqueous medium. Liposomes may comprise many concentric lipid bilayers (multilamellar vesicles or MLVs) or single membrane bilayers (unilamellar vesicles) separated by an aqueous phase.
- the lipid bilayer consists of two lipid monolayers with hydrophobic "tail” and hydrophilic "head” regions. In the membrane bilayer, the hydrophobic “tails” in the lipid monolayer are arranged towards the center of the bilayer and the hydrophilic “heads” are arranged towards the aqueous phase.
- the basic structure of liposomes can be prepared by known methods. For example, lipid molecules suspended in an organic solvent are evaporated under reduced pressure to form a dry film in a vessel, and an appropriate amount of aqueous phase is added to the vessel and the mixture is stirred. The mixture can then be prepared by standing without shaking for a time sufficient to form a multilamellar vesicle. Unilamella vesicles can also be prepared by known techniques (eg, US Pat.
- Liposome-polymer hybrids are biofilm mimetic amphiphilic structures composed of low amounts of lipids (eg, phospholipids) and high molecular weight polymers (eg, amphiphilic block copolymers).
- the liposome-polymer hybrid is composed of a lipid component having a biological function (receptor, molecular recognition, etc.) and a polymer having a structural function (structural stability, etc.) can be prepared to bind to the target material (Olubummo A1 et al. , Langmuir, 30 (1): .
- Liposomes or liposome-polymer hybrids can be designed for diagnostic purposes.
- Liposomes or liposome-polymer hybrids can be covalently bound to proteins, antibodies and immunoglobulins.
- thiolated IgG or Protein A can be covalently bound to lipid vesicles and the thiolated antibody or Fab 'fragment can be bound to liposomes or liposome-polymer hybrids.
- biosensor systems information is easier and more useful for analyzing data by detecting signals using the properties of nanomaterials that display color, fluorescence, or electromagnetic signals at the cellular or in vivo level.
- Can provide Chemical and biosensors are materials or devices that detect and measure information from an object to be measured and change the measurable amount into a usable signal.
- the sensor acquires information from the target, the sensor converts the signals into recognizable signals such as color, fluorescence, and electrical signals to assist human judgment.
- the sensor recognizes the target material, it sends a signal through a signal converter for human recognition.
- sensors used in biosensors require high selectivity and sensitivity to target materials to be detected.
- Enzymes and antibodies have excellent substrate specificity and high binding capacity, but have the disadvantage of low stability and high price when immobilized in a sensor device.
- Polydiacetylene which is being studied as a sensor material, is made by photopolymerization of self-assembled diacetylene monomers. When the diacetylene monomers are systematically arranged and the distance between molecules is close enough, 1,4-addition polymerization occurs by ultraviolet exposure at 254 nm, resulting in a PDA having double and triple bonds alternately present in the polymer main chain (Okada, S et al., Accounts Chem Res, 31 (5): 229-239, 1998).
- Nanobiosensors are biosensors that are improved by advanced nanotechnology, which converts reactions by binding to biocognitive materials into signals, and refers to sensors that can quickly test specific materials. This is the same principle as the enzyme-substrate complex of the biological concept, in which one ligand is only reactive with one substance having a specific component for the ligand and measures the degree of reactivity.
- Miniaturized biosensor using nanotechnology minimizes human injury and enables painless human diagnosis and has the advantage of directly analyzing single cells.
- biosensors with improved operating characteristics such as high stability, fast response time, high sensitivity, and high selectivity using nanotechnology enable continuous measurement of human diagnosis and single-molecule analysis.
- Bacterial toxins are mainly composed of hydrophilic protein (s), which are also essential components of the membrane. All bacterial toxins interact with target cells by recognizing surface receptors that are lipids or lipid derivatives. Most bacterial toxins are pore forming toxins (PFTs) and are inserted into the lipid bilayer by oligomerize. Pore formation consists of the formation of a beta-barrel structure, in which enzyme subunits of the pore-forming toxin are translocated into cells, which may soon be involved in the physiological activity of the target cell. (B. Geny et al., J. Biol. Cell , 98: 667-678, 2006).
- PFTs pore forming toxins
- Vibrio cholera (Vibrio cholerae ) is the causative agent of cholera and is the cause of disease worldwide. Vibrio cholera is found mainly in saltwater seawater, especially in bays and estuaries. It is mainly transmitted to food media such as fish and shellfish, but rarely, it is known that infection by direct contact with feces or vomiting of patients or pathogens.
- Cholera has a high mortality rate of 40-50% unless properly treated with a fatal disease in humans. Vibrio cholera has long been known to cause illness in humans. Until 1817, cholera was an endemic disease that remained only in India, but since 1817 it has spread worldwide. In 1991, more than 390,000 patients were reported in 10 South American countries due to the O1 epidemic in Vibrio cholera, and more than 147,000 patients were reported worldwide in 1997. In particular, O139 was first discovered in India in 1992, and according to the World Health Organization's report of cholera outbreaks, El Tor cholera occurred worldwide in 2001.
- Vibrio cholera is a gram negative bacillus, taxonomically belonging to the Vibrionaceae family of the gamma group of the proteobacteria .
- Vibrio cholera has subspecies classification as serotypes, of which the epidemic serotype is O1, serotype O1, which is also known as the classical cholera from classical organisms and its biological It can be divided into El Tor, a variant.
- O1 El Tor is the seventh pandemic at the moment.
- Cholera toxin is an AB5 complex consisting of six subunits, where A has enzymatic activity and B has receptor binding capacity.
- the cholera toxin may be derived from excreta or infected intestine, and the GM1 ganglioside, which is a lipid receptor of intestinal cells, and the cholera toxin B subunit are mutually interconnected. It has been reported to work.
- biosensors that can detect infectious agents at low concentrations (number of objects), have high reproducibility, and can be realized at low cost and miniaturization (Grieshaber, D.). et al., Sensors , 8: 1400-1458, 2008). Unlike conventional fluorescence-based sensors, the biosensor can detect a biological sample that is cloudy or shows autofluorescence using an electrochemical method without a pretreatment process using a small amount of sample.
- amperometric sensors or impedimetric sensors using bioreceptors have been developed, they have low sensitivity (10 3 pfu / mL) and have difficulty in increasing the stability of functionalized electrodes with biosensors (Karerich-Pedersen, K. et al. , Biosens . Bioelectron . 49: 374-379, 2013; Caygill, RL et al., Anal. Chim. Acta ., 681: 8-15, 2010).
- the present inventors have made intensive efforts to develop a method for easily detecting a target bacterium.
- the inventors have incorporated an electrochemically active substrate into a liposome or a liposome-polymer hybrid and specifically associated with the bacterium. After binding liposomes or liposome-polymer hybrids are produced, and when bacteria bind to liposomes or liposome-polymer hybrids containing an electrochemically active substrate through their lipid membranes or membrane proteins, they are contained in liposomes or liposome-polymer hybrids. As the electrochemically active substrate is released, it is confirmed that bacteria can be easily detected by showing a change in current, thereby completing the present invention.
- An object of the present invention is to provide a composition for detection, a kit for detection and a method for detecting bacteria using the same for easily detecting bacteria.
- the present invention contains an electrochemically active substrate, comprises a liposome or a liposome-polymer hybrid, wherein the bacteria in the liposome or liposome-polymer hybrid through a lipid membrane or a membrane protein
- the present invention provides a composition for detecting bacteria and a kit for detecting bacteria, wherein the electrochemically active substrate contained in the liposome or the liposome-polymer hybrid is released and exhibits a current change.
- the present invention also provides a method comprising the steps of: (a) contacting a liposome or liposome-polymer hybrid containing a electrochemically active substrate and having a negative charge with a putative sample containing bacteria; And (b) provides a method for detecting bacteria comprising the step of confirming the current change in accordance with the contact of (a).
- Figure 2 shows the stability of the liposome size according to the storage period of the liposome for detecting bacteria containing K 3 Fe (CN) 6 (Potassium ferricyanide (III)).
- Figure 3 shows the loading efficiency of 1.286mM K 3 Fe (CN) 6 (Potassium ferricyanide (III)) of the liposomes for bacterial detection.
- K 3 Fe (CN) 6 Potassium ferricyanide (III)) with the liposome with the target bacteria (Vibrio Collet ray imply (Vibrio cholerae )) or CT (Cholera Toxin) to show the change in the current when added to the sample containing toxin confirmed by cyclic voltammetry (cyclic voltammetry).
- the present invention relates to a method for detecting bacteria using liposomes or liposome-polymer hybrids, and more particularly, to samples containing liposomes or liposome-polymer hybrids and bacteria containing an electrochemically active substrate. After contact, the present invention relates to a composition for detecting bacteria, and a method for detecting bacteria using the same, wherein the presence or absence of bacteria is detected through a change in current caused by the contact (see FIG. 1).
- toxin refers to a compound that exhibits a deleterious effect on one or more biological system (s) derived from a plant, animal or microorganism, and is an endotoxin, LPS (lipopolysaccharide), exotoxin, which is a microbial toxin. (exotoxin) venom.
- receptor is a component of the membrane, consisting of proteins, lipids, carbohydrates, and combinations thereof.
- lipid refers to a compound soluble in organic solvents, such as fats, waxes, steroids, sterols, glycolipids, terpenes, fats. Fat-soluble vitamins, prostaglandins, carotene, and the like, but are not limited thereto.
- sample may be from, but is not limited to, a biological or environmental source.
- biological sources body fluids of animals, plants, microorganisms, May be obtained from tissues, gases, and may include plasma, serum, etc.
- environmental sources it may include soil, water, crystals, food, industrial products, and the like.
- liposomes containing K 3 Fe (CN) 6 (Potassium ferricyanide (III)) were prepared.
- the diameter of the liposome containing K 3 Fe (CN) 6 prepared for the detection of bacteria was about 50 to 200 nm (data not shown).
- the liposome containing K 3 Fe (CN) 6 which is a liposome for bacteria detection, has a stability determined by the size of the liposome even after two weeks in a refrigerated state compared to the control (liposomes immediately after preparation).
- the amount of 1.286mM Fe ions that can be contained in the liposomes was found to be 25.72%, the encapsulation efficiency of the Fe ions (NH 4 ) 2 SO 4 (Ammonium sulfate) It was found to increase using the graded method (data not shown).
- the present invention includes an electrochemically active substrate, includes a liposome or a liposome-polymer hybrid, and binds the liposome or the liposome-polymer hybrid to a liposome or a liposome-polymer hybrid through a lipid membrane or a membrane protein.
- the present invention relates to a composition for detecting bacteria and a kit for detecting bacteria, wherein the electrochemically active substrate contained in the liposome or the liposome-polymer hybrid exhibits a current change.
- the liposome-polymer hybrid may be characterized in that the biofilm mimetic amphiphilic structure composed of a low amount of lipids (eg, phospholipids) and high molecular weight polymers (eg, block copolymers).
- lipids eg, phospholipids
- high molecular weight polymers eg, block copolymers
- the liposome-polymer hybrid is composed of a lipid component having a biological function (receptor, molecular recognition, etc.) and a polymer having a structural function (structural stability, etc.) can be prepared to bind to the target material (Olubummo A1 et al., Langmuir , 30 (1): 259-67, 2014; Schulz M et al., Angew Chem Int Ed Engl ., 52 (6): 1829-33, 2013; Miglena I et al., Faraday Discuss. Chem . Soc . 81: 303-311, 1986; Binder WH et al., Angew Chem. 115 (47): 5980-6007, 2003; Binder WH et al., Angew Chem Int Ed Engl ., 42 (47): 5802-27, 2003).
- the electrochemically active substrate is K 3 Fe (CN) 6 (Potassium ferricyanide (III)), ascorbic acid (Ascorbic acid), Ru (NH 3 ) 6 Cl 3 (Hexaammineruthenium (III) chloride), Ferrocene, ferrocene derivatives, quinones, quinone derivatives, ruthenium ammine complexes, osmium (II), osmium (III), osmium (IV) complexes osmium complex, metallocene, metallocene derivatives, potassium hexa-cyanoferrate (II), Melola's blue, Prussian blue (Prussian blue) dichlorophenolindophenol (DCPIP), o-phenylenediamine (o-PDA), 3,4-dihydroxybenzaldehyde (3,4-hydroxybenzaldehyde 4-DHB)), viologen, 7,7,8,8-tetracyanoquinodimethane
- the liposome or the liposome-polymer hybrid containing the electrochemically active substrate may be further characterized by containing the target receptor.
- the target receptor may be characterized in that it binds to pore forming toxin, which is a membrane protein of bacteria.
- the target receptor is GT1b (Ganglioside GT1b), GD1b (Ganglioside GD1b), GQ1b (Ganglioside GQ1b), phosphatidylcholine (Phosphatidylcholine), GM2 (Ganglioside GM2), GM1 (Ganglioside GM1), GD1D (Glio) GB3 (Ganglioside GB3), GB4 (Ganglioside GB4), Sphingolipid (3'-sulfogalactosyl-ceramide) and may be selected from the group consisting of cholesterol (cholesterol).
- cholesterol cholesterol
- the pore forming toxin is tetanus toxin (Tetanus), botulinum toxin (botulinum toxin), alpha toxin (alpha toxin), delta toxin, cholera toxin (cholera toxin), pertu It may be characterized in that it is selected from the group consisting of citus toxin (pertussis toxin), Shiga toxin, heat-labile enterotoxin (LT) and streptolysin O (streptolysin O).
- the bacterial lipid membrane may be characterized in that the PC (Phosphatidylcholine), PI (Phosphoinositides), PS (Phosphatidylserine), PE (Phosphatidylethanolamine) or SM (Sphingomyelin).
- PC Phosphatidylcholine
- PI Phosphoinositides
- PS Phosphatidylserine
- PE Phosphatidylethanolamine
- SM Sphingomyelin
- pores are formed in the liposomes or liposome-polymer hybrids, and the electricity contained in the liposomes or liposome-polymer hybrids. It may be characterized by indicating a change in current as the chemically active substrate is released.
- the pores of the liposomes or liposome-polymer hybrids may be formed by combining the liposomes or liposome-polymer hybrids with the pore forming toxin of bacteria.
- the current change is cyclic voltammetry, square wave voltammetry, normal pulse voltammetry, differential pulse voltammetry. Or it may be characterized by checking by impedance (impedance).
- the bacterium is Clostridium tetani , Clostridium botulinum , Clostridium perfringens , Vibrio cholera ( Vibrio) cholerae ), Bordetella pertussis , Shigella dysenteriae ), Escherichia coli and Streptococcus pyogenes ( Streptococcus pyogene s) may be characterized in that it is selected from the group consisting of.
- the liposome is phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylinositol (PI), egg phosphatidylcholine (EPC) , Egg phosphatidylglycerol (EPG), egg phosphatidylethanolamine (EPE), egg phosphatidylserine (EPS), egg phosphatidyl acid (EPA), egg phosphatidyl inositol (EPI), soy phosphatidylcholine (SPC), soy phosphatidylglycerol (SPG) Soy phosphatidylethanolamine (SPE), soy phosphatidylserine (SPS), soy phosphatidyl acid (SPA), soy phosphatidylinositol (SPI), dipalmito
- the liposome-polymer hybrid is, for example, phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidic acid (PA), phosphatidyl inositol (PI) ), Egg phosphatidylcholine (EPC), egg phosphatidylglycerol (EPG), egg phosphatidylethanolamine (EPE), egg phosphatidylserine (EPS), egg phosphatidyl acid (EPA), egg phosphatidyl inositol (EPI), soy phosphatidylcholine (SPC) Soy phosphatidylglycerol (SPG), soy phosphatidylethanolamine (SPE), soy phosphatidylserine (SPS), soy phosphatidyl acid (SPA), soy phosphatidyl inos
- PC
- the liposomes or liposome-polymer hybrids can be negatively charged, for example, and the negatively charged liposomes or liposome-polymer hybrids can come into contact with the virus to release the embedded electrochemically active substrate.
- the negative charge of the liposome or liposome-polymer hybrid is sufficient to maintain the negative charge before detection by color development, for example, to maintain the negative charge in the sample state for detecting the electrochemically active substrate, or various experimental conditions possible before the electrical signal detection It is sufficient to maintain the negative charge under, but not limited to.
- the present invention provides a method for preparing a bacterium comprising: (a) contacting a liposome or liposome-polymer hybrid containing a electrochemically active substrate with a negative charge and a putative sample containing bacteria; And (b) relates to a method for detecting bacteria comprising the step of confirming the current change in accordance with the contact of (a).
- the electrochemically active substrate is K 3 Fe (CN) 6 (Potassium ferricyanide (III)), ascorbic acid (Ascorbic acid), Ru (NH 3 ) 6 Cl 3 (Hexaammineruthenium (III) chloride), Ferrocene, ferrocene derivatives, quinones, quinone derivatives, ruthenium ammine complexes, osmium (II), osmium (III), osmium (IV) complexes osmium complex, metallocene, metallocene derivatives, potassium hexa-cyanoferrate (II), Melola's blue, Prussian blue (Prussian blue) dichlorophenolindophenol (DCPIP), o-phenylenediamine (o-PDA), 3,4-dihydroxybenzaldehyde (3,4-hydroxybenzaldehyde 4-DHB)), viologen, 7,7,8,8-tetracyanoquinodimethane
- the liposome or the liposome-polymer hybrid containing the electrochemically active substrate may be further characterized by containing the target receptor.
- the target receptor may be characterized in that it binds to pore forming toxin, which is a membrane protein of bacteria.
- the target receptor is GT1b (Ganglioside GT1b), GD1b (Ganglioside GD1b), GQ1b (Ganglioside GQ1b), phosphatidylcholine (Phosphatidylcholine), GM2 (Ganglioside GM2), GM1 (Ganglioside GM1), GD1D (Glio) GB3 (Ganglioside GB3), GB4 (Ganglioside GB4), Sphingolipid (3'-sulfogalactosyl-ceramide) and may be selected from the group consisting of cholesterol (cholesterol).
- cholesterol cholesterol
- the pore forming toxin is tetanus toxin (Tetanus), botulinum toxin (botulinum toxin), alpha toxin (alpha toxin), delta toxin, cholera toxin (cholera toxin), pertu It may be characterized in that it is selected from the group consisting of citus toxin (pertussis toxin), Shiga toxin, heat-labile enterotoxin (LT) and streptolysin O (streptolysin O).
- the bacterial lipid membrane may be characterized in that the PC (Phosphatidylcholine), PI (Phosphoinositides), PS (Phosphatidylserine), PE (Phosphatidylethanolamine) or SM (Sphingomyelin).
- PC Phosphatidylcholine
- PI Phosphoinositides
- PS Phosphatidylserine
- PE Phosphatidylethanolamine
- SM Sphingomyelin
- the current change in the step (b) is when the bacteria bind to the liposome or liposome-polymer hybrid through a lipid membrane or membrane protein, the pores (pore) is formed in the liposome or liposome-polymer hybrid, liposomes
- the electrochemically active substrate contained in the may be characterized in that it represents a change in current.
- checking whether the current changes in the step (b) may be performed through an oxidation or reduction reaction.
- the pores of the liposomes or liposome-polymer hybrids may be formed by combining the liposomes or liposome-polymer hybrids with the pore forming toxin of bacteria.
- the liposomes or liposome-polymer hybrids can be negatively charged, for example, and the negatively charged liposomes or liposome-polymer hybrids can come into contact with the virus to release the embedded electrochemically active substrate.
- the negative charge of the liposome or liposome-polymer hybrid is sufficient to maintain the negative charge before detection by color development, for example, to maintain the negative charge in the sample state for detecting the electrochemically active substrate, or various experimental conditions possible before the electrical signal detection It is sufficient to maintain the negative charge under, but not limited to.
- the current change is cyclic voltammetry, square wave voltammetry, normal pulse voltammetry, differential pulse voltammetry. Or it may be characterized by checking by impedance (impedance).
- the bacterium is Clostridium tetani , Clostridium botulinum , Clostridium perfringens , Vibrio cholera ( Vibrio) cholerae ), Bordetella pertussis , Shigella dysenteriae ), Escherichia coli and Streptococcus pyogenes can be characterized in that it is selected from the group consisting of.
- the liposome is phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylinositol (PI), egg phosphatidylcholine (EPC) , Egg phosphatidylglycerol (EPG), egg phosphatidylethanolamine (EPE), egg phosphatidylserine (EPS), egg phosphatidyl acid (EPA), egg phosphatidyl inositol (EPI), soy phosphatidylcholine (SPC), soy phosphatidylglycerol (SPG) Soy phosphatidylethanolamine (SPE), soy phosphatidylserine (SPS), soy phosphatidyl acid (SPA), soy phosphatidylinositol (SPI), dipalmito
- the liposome-polymer hybrid is, for example, phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidic acid (PA), phosphatidyl inositol (PI) ), Egg phosphatidylcholine (EPC), egg phosphatidylglycerol (EPG), egg phosphatidylethanolamine (EPE), egg phosphatidylserine (EPS), egg phosphatidyl acid (EPA), egg phosphatidyl inositol (EPI), soy phosphatidylcholine (SPC) Soy phosphatidylglycerol (SPG), soy phosphatidylethanolamine (SPE), soy phosphatidylserine (SPS), soy phosphatidyl acid (SPA), soy phosphatidyl inos
- PC
- liposomes or liposome-polymer hybrids may contain (capture) various molecules such as absorbers, fluorescent materials, electrochemicals, or chemiluminescent materials in the inner aqueous phase.
- various molecules such as absorbers, fluorescent materials, electrochemicals, or chemiluminescent materials in the inner aqueous phase.
- Example 1 Preparation of liposomes or liposome-polymer hybrids containing K 3 Fe (CN) 6 (Potassium ferricyanide (III))
- Liposome suspensions were prepared by dispersing 0-50 ⁇ M K 3 Fe (CN) 6 (Potassium ferricyanide (III)) (Sigma-Aldrich, USA) for 10 minutes with an ultrasonicator (Jeiotech, Korea). Here, the process of freezing and thawing for the preparation of liposomes of a single lipid layer was repeated five times. In addition, the liposomes of the same size were prepared after passing through a 100-200 nm pore size filter using a Mini-Extruder (Avanti Polar Lipids Inc., USA) for the production of uniformly sized liposomes.
- a method for preparing a liposome-polymer hybrid is prepared by dissolving an appropriate amount of lipid components (PC, PE, PS, etc.) in chloroform-methanol, depositing it on an anode, then applying an electric field and adding distilled water.
- liposome electroformation (Olubummo A1 et al., Langmuir , 30 (1): 259-67, 2014; Schulz M et al., Angew) Chem Int Ed Engl ., 52 (6): 1829-33, 2013; Miglena I et al., Faraday Discuss. Chem .
- the liposome is a lipid receptor (Ganglioside GT1b), GD1b (Ganglioside GD1b), GQ1b (Ganglioside GQ1b), Phosphatidylcholine (GM2), GM2 (Ganglioside GM2), Specific to GM1 (Ganglioside GM1), GD1a (Ganglioside GD1a), GB3 (Ganglioside GB3), GB4 (Ganglioside GB4), Sphingolipid (3'-sulfogalactosyl-ceramide), Cholesterol, or Bacteria Binding proteins, lipids and glycosylation moieties were prepared.
- the diameter of the liposome containing K 3 Fe (CN) 6 prepared for the detection of bacteria was about 50 to 200 nm (data not shown).
- liposomes containing K 3 Fe (CN) 6 a liposome for bacteria detection, compared to the control (liposomes immediately after preparation), the stability (stability) determined by the size of the liposome even after two weeks in refrigerated state was found to be similar.
- the amount of 1.286mM Fe ions that can be contained in the liposomes was found to be 25.72%, the encapsulation efficiency of the Fe ions (NH 4 ) 2 SO 4 (Ammonium sulfate) It was found to increase using the graded method (data not shown).
- Liposomes containing K 3 Fe (CN) 6 (Potassium ferricyanide (III)) and lipid receptors and bacteria or their proteins, pore-forming toxins (PFTs), were used at appropriate concentrations and exposure times.
- the lipid receptor GM1 and the bacterium Vibrio cholerae were used.
- liposomes encompassing the K 3 Fe (CN) 6 is liposomes encompassing K 3 Fe (CN) 6 - may be replaced by the polymer hybrid.
- a gap is generated in the liposome due to the binding between the liposome containing the K 3 Fe (CN) 6 (Potassium ferricyanide (III)) and the GM1 lipid receptor and the Vibrio cholelei toxin.
- the change in the current was confirmed by cyclic voltammetry (CV) using a three-electrode system, thereby detecting the Vibrio cholerae.
- the electrochemically active substrate does not flow out of the liposome or the liposome-polymer hybrid, it is highly stable to oxygen or a chemical reaction.
- the electrochemically active substrates contained in liposomes or liposome-polymer hybrids react with electro-induced substances to show a change in current, resulting in significantly higher bacterial detection signals. Appeared.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Urology & Nephrology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Medicinal Preparation (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명은 리포좀 또는 리포좀-폴리머 하이브리드를 이용한 박테리아 검출방법에 관한 것으로, 더욱 자세하게는 전기화학적 활성기질이 내포된 리포좀 또는 리포좀-폴리머 하이브리드(liposome-polymer hybrid)와 박테리아를 함유하는 것으로 추정되는 시료를 접촉시킨 다음, 상기 접촉으로 리포좀 또는 리포좀-폴리머 하이브리드에 내포된 전기화학적 활성기질의 방출에 따른 전류 변화를 통해 박테리아의 유무를 검출하는 것을 특징으로 하는 박테리아 검출방법에 관한 것이다. 본 발명에 따른 전기화학적 활성기질을 내포하는 리포좀 또는 리포좀-폴리머 하이브리드를 이용한 박테리아의 검출방법은 상기 리포좀 또는 리포좀-폴리머 하이브리드에 박테리아가 지질막 또는 막단백질을 통해 결합할 경우, 리포좀 또는 리포좀-폴리머 하이브리드에 내포된 전기화학적 활성기질이 방출되어 전류 변화를 나타냄으로써 박테리아 검출신호가 현저히 높은 것으로 나타났다.
Description
본 발명은 리포좀 또는 리포좀-폴리머 하이브리드를 이용한 박테리아 검출방법에 관한 것으로, 더욱 자세하게는 전기화학적 활성기질이 내포된 리포좀 또는 리포좀-폴리머 하이브리드(liposome-polymer hybrid)와 박테리아를 함유하는 것으로 추정되는 시료를 접촉시킨 다음, 상기 접촉으로 리포좀 또는 리포좀-폴리머 하이브리드에 내포된 전기화학적 활성기질의 방출에 따른 전류 변화를 통해 박테리아의 유무를 검출하는 것을 특징으로 하는 박테리아 검출방법에 관한 것이다.
리포좀은 1960년대 뱅험이 제안한 W/O/W 형태의 에멀젼으로서(J.
Mol
.
Biol., 13: 238, 1965), 양친매성의 인지질이 수상에서 소수성의 힘에 의해 자가배열되어 있는 구조체이다. 리포좀을 구성하고 있는 인지질막은 세포의 구조와 동일하여, 세포이입이 쉽고, 다른 구조체에 비해 내부에 수용성 물질을 담지할 수 있는 공간이 커서 수용성 물질의 전달체 및 담지체로 사용되고 있다(Eur
. J.
Pharm
.
Biopham., 62:110, 2006; Nat. Rev. Drug Discov., 145:4, 1979).
일반적으로 리포좀(Liposome)은 인지질로 구성된 전달 및 매개체로써 나노 크기(1μm 이하)의 캡슐형상이며, 리포좀 내부에는 친유성과 친수성의 기능성 물질을 모두 함유시킬 수 있어 인체의 피부 세포와 유사한 생체에 적합성 물질이며 친수성 제형에 첨가하면 부유상태로 존재하게 되어 표면 안정성을 지닌다.
리포좀은 인지질 이중막이 수상을 둘러싸고 있는 구형의 소포(vesicle)이다. 지질막의 구성 성분은 두개의 소수성 지방산 그룹과 친수성의 인산기 그룹으로 이루어진 양친매성 인지질이며, 수용액에서 이중막을 형성하고 이것은 인공적인 세포처럼 닫힌 구조의 소포를 형성하기도 한다. 이중막 구조에서 비극성인 지방산 꼬리부분은 막의 안쪽을 향하고 극성인 머리 부분은 바깥쪽을 향하게 된다. 이러한 리포좀에 약물을 넣는 것은 약물의 독성을 감소시키고 이의 효과를 증가시킴으로써 치료요법을 강화시킬 수 있으므로, 고분자, 약물, 항원과 조립되어 제조되는 입자체의 구조로서 주목받고 있다.
리포좀은 포집된 수성 매질을 포함하는 지질 이중막(lipid bilayer membrane)을 포함하는 완전히 폐쇄된 구조이다. 리포좀은 수성상에 의하여 분리된 많은 동심 지질 이중층(멀티라멜라 소포 또는 MLV) 또는 단일 막 이중층(유니라멜라 소포)을 포함할 수 있다. 지질 이중층은 소수성 "꼬리(tail)" 영역과 친수성 "머리(head)" 영역을 갖는 2개 지질 단일층(monolayer)으로 구성된다. 막 이중층에서, 지질 단일층에서 소수성 "꼬리"는 상기 이중층의 중심쪽으로 향하여 배열되어 있고, 상기 친수성 "머리"는 수성상쪽으로 향하여 배열되어 있다.
리포좀의 기본구조는 알려진 방법에 의하여 제조될 수 있다. 예를 들면, 유기 용매 중에 현탁된 지질 분자를 감압하에 증발시켜 용기 내에 건조 필름을 형성하고, 적절한 양의 수성상을 상기 용기에 첨가한 후 혼합물을 교반한다. 그후, 상기 혼합물을 멀티라멜라 소포가 형성되기에 충분한 시간 동안 요동없이 방치함으로써 제조될 수 있다. 또한, 유니라멜라 소포도 알려진 기술에 의하여 제조될 수 있다(예, 미국특허 제4522803호).
리포좀-폴리머 하이브리드(liposome-polymer hybrid)는 저분량의 지질(예컨대, 인지질) 및 고분자량의 폴리머(예컨대, amphiphilic block copolymer)로 구성된 생체막 모방 양친매성 구조체이다. 상기 리포좀-폴리머 하이브리드는 생물학적 기능(리셉터, 분자인식 등)을 가지는 지질 성분과 구조적 기능(구조적 안정성 등)을 가지는 폴리머로 구성되어 표적 물질과 결합할 수 있도록 제조될 수 있다(Olubummo A1 et al.,
Langmuir, 30(1):259-67, 2014; Schulz M et al.,
Angew
Chem
Int
Ed Engl., 52(6):1829-33, 2013; Miglena I et al., Faraday Discuss.
Chem
.
Soc., 81:303-311, 1986; Binder WH et al.,
Angew
Chem
., 115(47):5980-6007, 2003; Binder WH et al., Angew Chem Int Ed Engl., 42(47):5802-27, 2003).
단백질이 접합된 리포좀 또는 리포좀-폴리머 하이브리드는 진단용으로 설계될 수 있다. 리포좀 또는 리포좀-폴리머 하이브리드는 단백질, 항체 및 면역글로불린에 공유적으로 결합될 수 있다. 예를 들면, 티올화된 IgG 또는 단백질 A는 지질 소포에 공유적으로 결합될 수 있고, 티올화된 항체 또는 Fab' 단편은 리포좀 또는 리포좀-폴리머 하이브리드에 결합될 수 있다.
바이오센서 시스템의 경우 세포 수준(cellular level)이나 생체 내 수준(in vivo level)에서 색, 형광 또는 전자기적 신호를 띠는 나노물질의 특성을 이용하여 신호를 검출함으로써 데이터를 분석하는데 보다 쉽고 유용한 정보를 제공해 줄 수 있다. 화학 및 바이오센서는 측정 대상물로부터 정보를 감지, 측정하여 그 측정량을 인식 가능한 유용한 신호로 변화하는 물질 또는 장치이다. 센서는 표적(target)으로부터 정보를 획득할 때 색, 형광, 전기적 신호 등과 같이 인식 가능한 신호로 변환시켜 인간의 판단을 돕는다. 센서가 표적 물질을 인식하면 사람이 인식할 수 있도록 신호 변환기를 통해서 신호를 보내게 된다. 특히, 바이오센서에 이용되는 센서는 검출하고자 하는 표적 물질에 대한 높은 선택성과 감도가 요구된다. 효소와 항체의 경우 뛰어난 기질 특이성과 높은 결합력을 가지고 있으나 센서 장치에 고정화되었을 때 안정성이 떨어지고 가격이 비싼 단점을 지닌다.
센서 소재로 연구되고 있는 폴리다이아세틸렌(polydiacetylene, PDA)은 자기 조립된 다이아세틸렌(diacetylene) 단량체의 광중합에 의해 만들어진다. 다이아세틸렌 단량체들이 조직적으로 배열되고, 분자 간의 거리가 충분히 가까울 경우 254nm의 자외선 노광에 의해 1,4-첨가 중합이 일어나 고분자 주쇄에 이중 결합과 삼중 결합이 교대로 존재하는 PDA가 만들어진다(Okada, S. et al., Accounts
Chem
Res, 31(5):229-239, 1998).
나노바이오센서란 첨단 나노기술에 의해 개선된 바이오센서로서 생체인지물질과의 결합에 의한 반응을 신호로 변환시키며, 특정한 물질에 대해 빠른 검사가 가능한 센서를 가리킨다. 이는 생물학적 개념의 효소-기질 복합체와 같은 원리로 하나의 리간드는 상기 리간드에 대한 특이 성분을 가지는 한 가지 물질에 대해서만 반응성을 보이며, 그 반응성 정도를 측정한다는 원리이다. 나노기술을 응용한 소형화된 바이오센서는 인체손상을 극소화하여 무통 인체진단을 가능하게 하며, 단일 세포를 직접 분석할 수 있다는 장점을 가지고 있다. 또한 나노기술을 응용한 높은 안정성, 빠른 응답시간, 고감도, 높은 선택성 등 동작특성이 향상된 바이오센서는 인체진단의 연속측정을 가능하게 하며 단분자 단위의 분석을 수행할 수 있게 한다.
박테리아 독소는 주로 친수성 단백질(들)로 구성되어 있으며, 이는 막의 필수 구성요소이기도 하다. 모든 박테리아 독소는 지질 또는 지질 유도체인 표면 수용체를 인지함으로써 표적 세포와 상호작용을 한다. 대부분의 박테리아 독소는 기공 형성 독소(pore forming toxin, PFT)이고, 올리고머화(oligomerize)로 지질 이중층에 삽입된다. 기공 형성은 베타-베럴(beta-barrel) 구조의 형성으로 이루어지며, 이때 기공 형성 독소의 효소 서브유니트(subunit)가 세포 내로 위치이동(translocation)되고, 이는 곧 표적 세포의 생리적인 활성에 관여할 수 있게 된다(B. Geny et al., J. Biol. Cell, 98:667-678, 2006).
비브리오 콜레라에(Vibrio
cholerae)는 콜레라의 원인균으로 현재도 전 세계적으로 질병을 일으키고 있는 세균이다. 비브리오 콜레라에는 주로 염분기가 있는 해수에서 발견되며, 특히 만이나 강어귀 등에서 많이 발견되고 있다. 주로 어패류 등의 식품매개로 전파되나 드물게 환자 또는 병원체 보유자의 대변이나 구토물과 직접 접촉에 의한 감염도 가능한 것으로 알려져 있다.
콜레라는 인간에게 치명적인 질병으로 적절히 치료하지 않으면 40∼50%의 높은 치사율을 보인다. 비브리오 콜레라에는 아주 오래 전부터 인간에게 병을 일으킨 것으로 알려져 있는데, 1817년 전까지는 콜레라는 인도지역에만 머물러 있는 풍토성 질병이었으나 1817년 이후에는 전 세계적으로 확산되었다. 1991년 비브리오 콜레라에 O1형의 유행으로 남아메리카 10개국에서 39만명 이상의 환자가 발생하였으며, 1997년에 전 세계적으로 14만 7천명 이상의 환자가 보고된 바 있다. 특히 1992년 인도에서 O139형이 처음 발견되었으며 세계보건기구(World Health Organization)의 콜레라 발생 현황 보고에 의하면, 2001년에는 전 세계적으로 엘토르(El Tor)형 콜레라가 발생하였다.
비브리오 콜레라에는 그람음성(gram negative) 간균으로, 분류학적으로는 프로테오박테리아 중 감마 그룹(gamma group)의 Vibrionaceae 과에 속한다. 비브리오 콜레라에는 혈청형으로 종 이하수준의 분류를 하고 있는데 이 중 유행을 일으키는 혈청형은 O1이며, 혈청형 O1은 또한 두개의 생물형, 즉 인도지방 등에서 유래한 진성콜레라균(classical)과 이의 생물학적 변형인 엘 토르(El Tor)로 나눌 수 있다. O1 El Tor는 현재 진행 중인 7번째 유행(pandemic)의 주역이다.
콜레라 독소(Cholera toxin)는 6개의 서브유니트(subunit)로 구성된 AB5복합체이며, 여기서 A는 효소 활성을 가지면, B는 수용체 결합능을 가진다. 상기 콜레라 독소는 배설물 또는 감염된 장기(infected intestine)로부터 유래할 수 있으며, 장세포(intestinal cell)의 지질 수용체(lipid receptor)인 GM1 갱글리오시드(ganglioside)와 콜레라 독소 B 서브유니트(subunit)가 상호작용하는 것으로 보고된 바 있다.
한편, 생화학적 방법을 이용한 종래의 검사방법은 숙련된 기술과 많은 노력 및 시간을 요한다. 이러한 단점을 극복하고자, 정확 및 신속하고 간편한 비브리오 콜레라에의 검출을 목적으로 한 유전자에 의한 검사방법이 시도되고 있다. 또한, 콜레라 증상의 원인인 콜레라 독소를 암호화하는 유전자를 검출하는 프라이머가 이미 존재한다(참조: Lockman H. et al., J.
Biol
.
Chem., 258:13722-13726, 1983). 그러나 상기 프라이머로는 콜레라 독소 유전자를 가지지 않고 다른 독소를 만드는 비브리오 콜레라에를 검출하는 것은 불가능하다.
기존의 RIDTs를 대체할 수 있는 방법으로 낮은 농도(개체수)의 감염원의 검출이 가능하고, 높은 재현성을 가지며, 낮은 비용과 소형화로 실현 가능한 전기화학적 바이오센서(electorchemical biosensors)가 있다(Grieshaber, D. et al., Sensors, 8:1400-1458, 2008). 상기 바이오센서는 소량의 시료를 이용하여 기존의 형광을 기반으로 하는 센서와는 달리 전처리 과정 없이 전기화학적 방법을 통해 혼탁하거나 자가형광을 나타내는 생물학적 시료의 검출이 가능하다
바이오리셉터를 이용한 amperometric 센서 또는 impedimetric 센서가 개발된 바 있으나, 민감도(103pfu/mL)가 낮고, 바이오센서로 기능화된 전극의 안정도를 높이는데 어려운 점이 있다(Kiilerich-Pedersen, K. et al.,
Biosens
.
Bioelectron. 49:374-379, 2013; Caygill, R. L. et al., Anal. Chim. Acta., 681: 8-15, 2010).
현재 대부분의 박테리아 검출방법은 금속, 고분자 중합체 등 인체에 유해한 물질을 사용하고 있고, 정확한 분자생물학적 진단을 위해서 박테리아 유래 단백질 또는 핵산을 정제한 다음, 항체 또는 프로브를 이용해야 하는 불편함이 항시 존재하고, 분석 전과정이 적게는 1일, 많게는 일 주일 이상 소요된다.
이러한 기술적 배경 하에서, 본 발명자들은 표적 박테리아를 쉽게 검출할 수 있는 방법을 개발하고자 예의 노력한 결과, 리포좀 또는 리포좀-폴리머 하이브리드(liposome-polymer hybrid) 내부에 전기화학적 활성기질을 내포하고 박테리아와 특이적으로 결합하는 리포좀 또는 리포좀-폴리머 하이브리드를 제조한 다음, 전기화학적 활성기질을 내포하는 리포좀 또는 리포좀-폴리머 하이브리드에 박테리아가 자체의 지질막 또는 막단백질을 통해 결합할 경우, 리포좀 또는 리포좀-폴리머 하이브리드에 내포된 전기화학적 활성기질이 방출되면서 전류 변화를 나타냄으로써 박테리아를 쉽게 검출할 수 있음을 확인하고, 본 발명을 완성하게 되었다.
발명의 요약
본 발명의 목적은 박테리아를 용이하게 검출하기 위한 검출용 조성물, 검출용 키트 및 이들을 이용한 박테리아 검출방법을 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은 전기화학적 활성기질을 내포하고, 리포좀 또는 리포좀-폴리머 하이브리드(liposome-polymer hybrid)를 포함하고, 상기 리포좀 또는 리포좀-폴리머 하이브리드에 박테리아가 지질막 또는 막단백질을 통해 결합할 경우, 리포좀 또는 리포좀-폴리머 하이브리드에 내포된 전기화학적 활성기질이 방출되면서 전류 변화를 나타내는 것을 특징으로 하는 박테리아 검출용 조성물 및 검출용 키트를 제공한다.
본 발명은 또한, (a) 전기화학적 활성기질을 내포하고, 음전하를 가지는 리포좀 또는 리포좀-폴리머 하이브리드와 박테리아 함유 추정 시료를 접촉시키는 단계; 및 (b) 상기 (a)의 접촉에 따른 전류 변화를 확인하는 단계를 포함하는 박테리아의 검출방법을 제공한다.
도 1은 전기화학 활성기질인 K3Fe(CN)6(Potassium ferricyanide(III))가 내포된 리포좀을 박테리아 또는 그의 단백질인 PFTs(pore-forming toxins)와 결합시켰을 때 형성되는 공극(pore)을 통해 리포좀에 내포된 전기화학적 활성기질이 방출되면서 전류 변화를 나타낸 것이다.
도 2는 K3Fe(CN)6(Potassium ferricyanide(III))가 내포된 박테리아 검출용 리포좀의 보관기간에 따른 리포좀 크기의 안정도(stability)를 나타낸 것이다.
도 3은 박테리아 검출용 리포좀의 1.286mM K3Fe(CN)6(Potassium ferricyanide(III))의 로딩 효율(loading efficiency)을 나타낸 것이다.
도 4는 K3Fe(CN)6(Potassium ferricyanide(III))가 내포된 리포좀을 사용하여 표적 박테리아(비브리오 콜레래이(Vibrio
cholerae)) 또는 CT(Cholera Toxin) 독소가 포함된 시료를 첨가하였을 때 나타나는 전류 변화를 순환전압전류법(cyclic voltammetry)으로 확인한 것을 나타낸 것이다.
발명의 상세한 설명 및 바람직한
구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명은 리포좀 또는 리포좀-폴리머 하이브리드(liposome-polymer hybrid)를 이용한 박테리아 검출방법에 관한 것으로, 더욱 자세하게는 전기화학적 활성기질이 내포된 리포좀 또는 리포좀-폴리머 하이브리드와 박테리아를 함유하는 것으로 추정되는 시료를 접촉시킨 다음, 상기 접촉에 따른 전류의 변화를 통해 박테리아의 유무를 검출하는 것을 특징으로 하는 박테리아 검출용 조성물, 및 이를 이용한 박테리아 검출방법에 관한 것이다(도 1 참조).
본 명세서에서 사용되는 용어 "독소"는 식물, 동물 또는 미생물로부터 유래한 하나 이상의 생물학적 시스템(들)에 유해한 효과를 나타내는 화합물을 의미하며, 미생물 독소인 내독소(endotoxin)인 LPS(lipopolysaccharide), 외독소(exotoxin)인 독액(venom) 등이 있다.
용어 "수용체(receptor)"는 막(membrane)을 구성하는 성분으로서, 단백질, 지질, 탄수화물 및 이들의 조합으로 구성된다.
용어 "지질(lipid)"은 유기용매에 용해가능한 화합물을 의미하며, 예컨대 지방(fats), 왁스(waxes), 스테로이드(steroids), 스테롤(sterol), 당지질(glycolipids), 테르펜(terpenes), 지방-수용성 비타민(fat-soluble vitamins), 프로스타글란딘(prostaglandins), 카로틴(carotene) 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
용어 "시료", "표본(specimen) 또는 "샘플(sample)"이란, 생물학적 또는 환경학적 소스로부터 유래한 것일 수 있으나, 이에 한정되는 것은 아니다. 생물학적 소스의 경우, 동물, 식물, 미생물의 체액, 조직, 가스로부터 수득할 수 있으며, 혈장, 혈청 등을 포함할 수 있다. 환경학적 소스의 경우, 흙, 물, 크리스탈, 음식물, 공업산물 등을 포함할 수 있다.
본 발명의 일 실시예에서는, K3Fe(CN)6(Potassium ferricyanide(III))를 내포하는 리포좀을 제조하고자 하였다. 그 결과, 박테리아의 검출을 위해 제조한 K3Fe(CN)6를 내포하는 리포좀의 직경은 약 50∼200nm이었다(데이터 미도시).
한편, 도 2에 나타난 바와 같이, 박테리아 검출용 리포좀인 K3Fe(CN)6를 내포하는 리포좀은 대조군(제조 직후의 리포좀)에 비해 냉장 상태에서 2주가 지나도 리포좀의 크기로 판단한 안정도(stability)는 유사한 것으로 확인되었다. 아울러, 도 3에 나타난 바와 같이, 1.286mM Fe 이온이 리포좀에 내포될 수 있는 양은 25.72%로 나타났으며, 상기 Fe 이온의 포획율(encapsulation efficiency)은 (NH4)2SO4(Ammonium sulfate) 그레이던트 방법을 이용하면 증가하는 것으로 확인되었다(데이터 미도시).
본 발명의 다른 실시예에서는, K3Fe(CN)6를 내포하는 리포좀을 이용하여 박테리아의 검출 여부를 확인하였다. 그 결과, 도 4에 나타난 바와 같이, K3Fe(CN)6 및 GM1 지질 수용체가 내포된 리포좀과 비브리오 콜레래이 독소 간의 결합으로 인해 리포좀에 공극이 발생되고, 이에 따른 전류 변화를 삼전극 시스템을 이용한 순환전압전류법(Cyclic Voltammetry, CV)으로 확인 가능하여 비브리오 콜레래이의 검출이 가능하였다(실시예 2 참조).
따라서, 본 발명은 일 관점에서, 전기화학적 활성기질을 내포하고, 리포좀 또는 리포좀-폴리머 하이브리드(liposome-polymer hybrid)를 포함하고, 상기 리포좀 또는 리포좀-폴리머 하이브리드에 박테리아가 지질막 또는 막단백질을 통해 결합할 경우, 리포좀 또는 리포좀-폴리머 하이브리드에 내포된 전기화학적 활성기질이 방출되면서 전류 변화를 나타내는 것을 특징으로 하는 박테리아 검출용 조성물 및 검출용 키트에 관한 것이다.
본 발명에 있어서, 상기 리포좀-폴리머 하이브리드(liposome-polymer hybrid)는 저분량의 지질(예컨대, 인지질) 및 고분자량의 폴리머(예컨대, block copolymer)로 구성된 생체막 모방 양친매성 구조체인 것을 특징으로 할 수 있으며, 상기 리포좀-폴리머 하이브리드는 생물학적 기능(리셉터, 분자인식 등)을 가지는 지질 성분과 구조적 기능(구조적 안정성 등)을 가지는 폴리머로 구성되어 표적 물질과 결합할 수 있도록 제조될 수 있다(Olubummo A1 et al.,
Langmuir
, 30(1):259-67, 2014; Schulz M et al.,
Angew
Chem
Int
Ed
Engl., 52(6):1829-33, 2013; Miglena I et al., Faraday Discuss.
Chem
.
Soc
., 81:303-311, 1986; Binder WH et al.,
Angew
Chem., 115(47):5980-6007, 2003; Binder WH et al.,
Angew
Chem
Int
Ed
Engl., 42(47):5802-27, 2003).
본 발명에 있어서, 상기 전기화학적 활성기질은 K3Fe(CN)6(Potassium ferricyanide(III)), 아스코르빈산(Ascorbic acid), Ru(NH3)6Cl3(Hexaammineruthenium(III) chloride), 페로센(ferrocene), 페로센 유도체(ferrocene derivatives), 퀴논(quinones), 퀴논 유도체(quinone derivatives), 루세늄 아민 복합체(ruthenium ammine complexes), 오스뮴(II), 오스뮴(III), 오스뮴(IV) 복합체(osmium complex), 메탈로센(metallocene), 메탈로센 유도체(metallocene derivatives), 포타슘헥사시아노페레이트(II)(Potassium hexa-cyanoferrate(II)), 멜돌라 블루(Melola's blue), 프루시안 블루(Prussian blue) 디클로로페놀인도피놀 (dichlorophenolindophenol(DCPIP)), o-페닐렌다이아민(o-phenylenediamine(o-PDA), 3,4-디하이드록시벤즈알데하이드(3,4-hydroxybenzaldehyde(3,4-DHB)), 비오로겐(viologen), 7,7,8,8-테트라시아노퀴노디메탄(7,7,8,8-tetracyanoquinodimethane(TCNQ)), 테트라티아풀발렌(tetrathiafulvalene(TTF)), N-메틸아시디니움(N-methylacidinium(NMA+)), 테트라티아테트라센(tetrathiatetracene(TTT)), N-메틸페나지니움(N-methylphenazinium(NMP+)), 3-메틸-2-벤조티오조리논히드라존(3-methyl-2-benzothiozolinonehydrazone), 2-메톡시-4-아릴페놀(2-methoxy-4-allylphenol), 4-아미노안티피린(4-aminoantipyrin (AAP)), 디메틸아닐린(dimethylaniline), 4-아미노안티피렌(4-aminoantipyrene), 4-메톡시나프톨(4-methylnaphthol), 3,3',5,5'-테트라메틸벤지딘(3,3‘,5,5-tetramethylbenzidine(TMB)), 2,2-아지노-디-[3-에틸-벤즈티아졸린술포네이트](2,2-azinodi-[3-ethylbenzthiazolinesulfonate]), o-디아지니딘(odianisidine), o-톨루이딘(o-toluidine), 2,4-디클로로페놀(2,4-dichlorophenol), 4-아미노페나존(4-aminophenazone) 및 벤지딘(benzidine)으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 전기화학적 활성기질을 내포하는 리포좀 또는 리포좀-폴리머 하이브리드는 표적 수용체를 추가로 내포하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 표적 수용체는 박테리아의 막단백질인 기공 형성 독소(pore forming toxin)와 결합하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 표적 수용체는 GT1b(Ganglioside GT1b), GD1b(Ganglioside GD1b), GQ1b(Ganglioside GQ1b), 포스파티딜콜린(Phosphatidylcholine), GM2(Ganglioside GM2), GM1(Ganglioside GM1), GD1a(Ganglioside GD1a), GB3(Ganglioside GB3), GB4(Ganglioside GB4), 스핑고리피드(Sphingolipid(3’-sulfogalactosyl-ceramide)) 및 콜레스테롤(cholesterol)로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 기공 형성 독소(pore forming toxin)는 파상풍 독소(Tetanus), 보툴리눔 독소(botulinum toxin), 알파 독소(alpha toxin), 델타 독소(delta toxin), 콜레라 독소(cholera toxin), 퍼투시스 독소(pertussis toxin), 시가 독소(shiga toxin), 이열성 장관독소(heat-labile enterotoxin: LT) 및 스트렙토라이신 O(streptolysin O)로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 박테리아 지질막은 PC(Phosphatidylcholine), PI(Phosphoinositides), PS(Phosphatidylserine), PE(Phosphatidylethanolamine) 또는 SM(Sphingomyelin)인 것을 특징으로 할 수 있다.
본 발명에 있어서, 박테리아가 지질막 또는 막단백질을 통해 상기 리포좀 또는 리포좀-폴리머 하이브리드와 결합할 경우, 리포좀 또는 리포좀-폴리머 하이브리드에 공극(pore)이 형성되고, 리포좀 또는 리포좀-폴리머 하이브리드에 내포된 전기화학적 활성기질이 방출되면서 전류 변화를 나타내는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 리포좀 또는 리포좀-폴리머 하이브리드의 공극(pore)은 리포좀 또는 리포좀-폴리머 하이브리드와 박테리아의 기공 형성 독소(pore forming toxin)의 결합에 의해 형성되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 전류 변화는 순환전압전류법(cyclic voltammetry), 네모파전압전류법(square wave voltammetry), 정상펄스전압전류법(normal pulse voltammetry), 펄스차이전압전류법(differential pulse voltammetry) 또는 임피던스(impedance)로 확인하는 것을 특징으로 하는 할 수 있다.
본 발명에 있어서, 상기 박테리아는 클로스트리듐 테타니(Clostridium
tetani), 클로스트리디움 보툴리눔(Clostridium
botulinum), 클로스트리듐 퍼프린겐스(Clostridium
perfringens), 비브리오 콜레래이(Vibrio
cholerae), 보르데텔라 퍼투시스(Bordetella
pertussis), 쉬겔라 디센테리애(Shigella
dysenteriae), 대장균(Escherichia
coli) 및 스트렙토코쿠스 파이오제네스(Streptococcus
pyogenes)로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 리포좀은 포스파티딜콜린(PC), 포스파티딜글리세롤(PG), 포스파티딜에탄올아민(PE), 포스파티딜세린(PS), 포스파티드산(PA), 포스파티딜이노시톨(PI), 달걀 포스파티딜콜린(EPC), 달걀 포스파티딜글리세롤(EPG), 달걀 포스파티딜에탄올아민(EPE), 달걀 포스파티딜세린(EPS), 달걀 포스파티드산(EPA), 달걀 포스파티딜이노시톨(EPI), 콩 포스파티딜콜린(SPC), 콩 포스파티딜글리세롤(SPG), 콩 포스파티딜에탄올아민(SPE), 콩 포스파티딜세린(SPS), 콩 포스파티드산(SPA), 콩 포스파티딜이노시톨(SPI), 다이팔미토일포스파티딜콜린(DPPC), 1,2-다이올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 다이미리스토일포스파티딜콜린(DMPC), 다이팔미토일포스파티딜글리세롤(DPPG), 다이올렐포스파티딜글리세롤(DOPG), 다이미리스토일포스파티딜글리세롤(DMPG), 헥사데실포스포콜린(HEPC), 수소화된 콩 포스파티딜콜린(HSPC), 다이스테아로일포스파티딜콜린(DSPC), 다이스테아로일포스파티딜글리세롤(DSPG), 다이올레일포스파티딜에탄올아민(DOPE), 팔미토일스테아로일포스파티딜콜린(PSPC), 팔미토일스테아로일포스파티딜글리세롤(PSPG), 모노올레오일포스파티딜에탄올아민(MOPE), 1-팔미토일-2-올레오일-sn-글리세로-3-포스파티딜콜린(POPC), 폴리에틸렌글리콜 다이스테아로일포스파티딜에탄올아민(PEG-DSPE), 다이팔미토일포스파티딜세린(DPPS), 1,2-다이올레오일-sn-글리세로-3-포스파티딜세린(DOPS), 다이미리스토일포스파티딜세린(DMPS), 다이스테아로일포스파티딜세린(DSPS), 다이팔미토일포스파티드산(DPPA), 1,2-다이올레오일-sn-글리세로-3-포스파티드산(DOPA), 다이미리스토일포스파티드산(DMPA), 다이스테아로일포스파티드산(DSPA), 다이팔미토일포스파티딜이노시톨(DPPI), 1,2-다이올레오일-sn-글리세로-3-포스파티딜이노시톨(DOPI), 다이미리스토일포스파티딜이노시톨(DMPI), 다이스테아로일포스파티딜이노시톨(DSPI), POPE(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycero) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하나, 이에 한정되지 아니하고, 바람직하게는 DPPC(1,2-dipalmitoyl-sn-glycero-3-phosphocholine), DSPC(1,2-distearoyl-sn-glycero-3-phosphocholine), POPC(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) 및 POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycero)로 구성된 군에서 선택되는 1종 이상을 포함한다.
본 발명에 있어서, 상기 리포좀-폴리머 하이브리드는 예를 들어, 포스파티딜콜린(PC), 포스파티딜글리세롤(PG), 포스파티딜에탄올아민(PE), 포스파티딜세린(PS), 포스파티드산(PA), 포스파티딜이노시톨(PI), 달걀 포스파티딜콜린(EPC), 달걀 포스파티딜글리세롤(EPG), 달걀 포스파티딜에탄올아민(EPE), 달걀 포스파티딜세린(EPS), 달걀 포스파티드산(EPA), 달걀 포스파티딜이노시톨(EPI), 콩 포스파티딜콜린(SPC), 콩 포스파티딜글리세롤(SPG), 콩 포스파티딜에탄올아민(SPE), 콩 포스파티딜세린(SPS), 콩 포스파티드산(SPA), 콩 포스파티딜이노시톨(SPI), 다이팔미토일포스파티딜콜린(DPPC), 1,2-다이올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 다이미리스토일포스파티딜콜린(DMPC), 다이팔미토일포스파티딜글리세롤(DPPG), 다이올렐포스파티딜글리세롤(DOPG), 다이미리스토일포스파티딜글리세롤(DMPG), 헥사데실포스포콜린(HEPC), 수소화된 콩 포스파티딜콜린(HSPC), 다이스테아로일포스파티딜콜린(DSPC), 다이스테아로일포스파티딜글리세롤(DSPG), 다이올레일포스파티딜에탄올아민(DOPE), 팔미토일스테아로일포스파티딜콜린(PSPC), 팔미토일스테아로일포스파티딜글리세롤(PSPG), 모노올레오일포스파티딜에탄올아민(MOPE), 1-팔미토일-2-올레오일-sn-글리세로-3-포스파티딜콜린(POPC), 폴리에틸렌글리콜 다이스테아로일포스파티딜에탄올아민(PEG-DSPE), 다이팔미토일포스파티딜세린(DPPS), 1,2-다이올레오일-sn-글리세로-3-포스파티딜세린(DOPS), 다이미리스토일포스파티딜세린(DMPS), 다이스테아로일포스파티딜세린(DSPS), 다이팔미토일포스파티드산(DPPA), 1,2-다이올레오일-sn-글리세로-3-포스파티드산(DOPA), 다이미리스토일포스파티드산(DMPA), 다이스테아로일포스파티드산(DSPA), 다이팔미토일포스파티딜이노시톨(DPPI), 1,2-다이올레오일-sn-글리세로-3-포스파티딜이노시톨(DOPI), 다이미리스토일포스파티딜이노시톨(DMPI), 다이스테아로일포스파티딜이노시톨(DSPI), POPE(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycero) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 리포좀; 및 폴리머 예를 들어 양친매성 블록공중합체, 폴리이소부틸렌-블록-폴리에틸렌옥사이드 공중합체, 폴리부타디엔-b-폴리에틸렌옥사이드 공중합체, 폴리디메틸실록세인-g-폴리에틸렌옥사이드 공중합체, 폴리(2-메틸옥사졸린)-b-폴리이메틸실록세인-b-폴리(2-메틸옥사졸린)의 공중합체 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 폴리머의 혼합물 일 수 있다.
구체적으로, 지질인 DPPC(1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine)와 양친매성 블록 폴리머인 polyisobutylene-block-polyethyleneoxide copolymer의 혼합물, 또는 지질인 POPC와 양친매성 블록 폴리머인 polybutadiene-b-polyethylene oxide의 혼합물, DPPC와 poly(dimethylsiloxane)-g-poly(ethylene oxide)의 혼합물, 및 DPPC 혹은 PE와 poly(2-methyloxazolene)-b-poly(dimethylsiloxane)-b-poly(2-methyloxazoline)의 혼합물로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 한정되는 것은 아니다.
상기 리포좀 또는 리포좀-폴리머 하이브리드는 예를 들어 음전하를 띨 수 있으며, 음전하를 가지는 리포좀 또는 리포좀-폴리머 하이브리드가 바이러스와 접촉하여 내포된 전기화학적 활성기질 방출이 가능하게 된다.
여기서, 상기 리포좀 또는 리포좀-폴리머 하이브리드의 음전하는 발색에 의한 검출 전 음전하를 유지하면 충분하며, 예를 들어 전기화학적 활성기질 검출하기 위한 시료 상태에서 음전하를 유지하거나, 전기 신호 검출 전 가능한 다양한 실험 조건하에서 음전하를 유지하면 충분하며, 이에 한정되는 것은 아니다.
본 발명은 다른 관점에서, (a) 전기화학적 활성기질을 내포하고, 음전하를 가지는 리포좀 또는 리포좀-폴리머 하이브리드와 박테리아 함유 추정 시료를 접촉시키는 단계; 및 (b) 상기 (a)의 접촉에 따른 전류 변화를 확인하는 단계를 포함하는 박테리아의 검출방법에 관한 것이다.
본 발명에 있어서, 상기 전기화학적 활성기질은 K3Fe(CN)6(Potassium ferricyanide(III)), 아스코르빈산(Ascorbic acid), Ru(NH3)6Cl3(Hexaammineruthenium(III) chloride), 페로센(ferrocene), 페로센 유도체(ferrocene derivatives), 퀴논(quinones), 퀴논 유도체(quinone derivatives), 루세늄 아민 복합체(ruthenium ammine complexes), 오스뮴(II), 오스뮴(III), 오스뮴(IV) 복합체(osmium complex), 메탈로센(metallocene), 메탈로센 유도체(metallocene derivatives), 포타슘헥사시아노페레이트(II)(Potassium hexa-cyanoferrate(II)), 멜돌라 블루(Melola's blue), 프루시안 블루(Prussian blue) 디클로로페놀인도피놀 (dichlorophenolindophenol(DCPIP)), o-페닐렌다이아민(o-phenylenediamine(o-PDA), 3,4-디하이드록시벤즈알데하이드(3,4-hydroxybenzaldehyde(3,4-DHB)), 비오로겐(viologen), 7,7,8,8-테트라시아노퀴노디메탄(7,7,8,8-tetracyanoquinodimethane(TCNQ)), 테트라티아풀발렌(tetrathiafulvalene(TTF)), N-메틸아시디니움(N-methylacidinium(NMA+)), 테트라티아테트라센(tetrathiatetracene(TTT)), N-메틸페나지니움(N-methylphenazinium(NMP+)), 3-메틸-2-벤조티오조리논히드라존(3-methyl-2-benzothiozolinonehydrazone), 2-메톡시-4-아릴페놀(2-methoxy-4-allylphenol), 4-아미노안티피린(4-aminoantipyrin (AAP)), 디메틸아닐린(dimethylaniline), 4-아미노안티피렌(4-aminoantipyrene), 4-메톡시나프톨(4-methylnaphthol), 3,3',5,5'-테트라메틸벤지딘(3,3‘,5,5-tetramethylbenzidine(TMB)), 2,2-아지노-디-[3-에틸-벤즈티아졸린술포네이트](2,2-azinodi-[3-ethylbenzthiazolinesulfonate]), o-디아지니딘(odianisidine), o-톨루이딘(o-toluidine), 2,4-디클로로페놀(2,4-dichlorophenol), 4-아미노페나존(4-aminophenazone) 및 벤지딘(benzidine)으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 전기화학적 활성기질을 내포하는 리포좀 또는 리포좀-폴리머 하이브리드는 표적 수용체를 추가로 내포하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 표적 수용체는 박테리아의 막단백질인 기공 형성 독소(pore forming toxin)와 결합하는 것을 특징으로 하는 할 수 있다.
본 발명에 있어서, 상기 표적 수용체는 GT1b(Ganglioside GT1b), GD1b(Ganglioside GD1b), GQ1b(Ganglioside GQ1b), 포스파티딜콜린(Phosphatidylcholine), GM2(Ganglioside GM2), GM1(Ganglioside GM1), GD1a(Ganglioside GD1a), GB3(Ganglioside GB3), GB4(Ganglioside GB4), 스핑고리피드(Sphingolipid(3’-sulfogalactosyl-ceramide)) 및 콜레스테롤(cholesterol)로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 기공 형성 독소(pore forming toxin)는 파상풍 독소(Tetanus), 보툴리눔 독소(botulinum toxin), 알파 독소(alpha toxin), 델타 독소(delta toxin), 콜레라 독소(cholera toxin), 퍼투시스 독소(pertussis toxin), 시가 독소(shiga toxin), 이열성 장관독소(heat-labile enterotoxin: LT) 및 스트렙토라이신 O(streptolysin O)로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 박테리아 지질막은 PC(Phosphatidylcholine), PI(Phosphoinositides), PS(Phosphatidylserine), PE(Phosphatidylethanolamine) 또는 SM(Sphingomyelin)인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 (b) 단계의 전류 변화는 상기 리포좀 또는 리포좀-폴리머 하이브리드에 박테리아가 지질막 또는 막단백질을 통해 결합할 경우, 리포좀 또는 리포좀-폴리머 하이브리드에 공극(pore)이 형성되고, 리포좀에 내포된 전기화학적 활성기질이 방출되면서 전류 변화를 나타내는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 (b) 단계의 전류 변화 여부 확인은 산화 또는 환원 반응을 통해 수행되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 리포좀 또는 리포좀-폴리머 하이브리드의 공극(pore)은 리포좀 또는 리포좀-폴리머 하이브리드와 박테리아의 기공 형성 독소(pore forming toxin)의 결합에 의해 형성되는 것을 특징으로 할 수 있다.
상기 리포좀 또는 리포좀-폴리머 하이브리드는 예를 들어 음전하를 띨 수 있으며, 음전하를 가지는 리포좀 또는 리포좀-폴리머 하이브리드가 바이러스와 접촉하여 내포된 전기화학적 활성기질 방출이 가능하게 된다.
여기서, 상기 리포좀 또는 리포좀-폴리머 하이브리드의 음전하는 발색에 의한 검출 전 음전하를 유지하면 충분하며, 예를 들어 전기화학적 활성기질 검출하기 위한 시료 상태에서 음전하를 유지하거나, 전기 신호 검출 전 가능한 다양한 실험 조건하에서 음전하를 유지하면 충분하며, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 전류 변화는 순환전압전류법(cyclic voltammetry), 네모파전압전류법(square wave voltammetry), 정상펄스전압전류법(normal pulse voltammetry), 펄스차이전압전류법(differential pulse voltammetry) 또는 임피던스(impedance)로 확인하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 박테리아는 클로스트리듐 테타니(Clostridium
tetani), 클로스트리디움 보툴리눔(Clostridium
botulinum), 클로스트리듐 퍼프린겐스(Clostridium
perfringens), 비브리오 콜레래이(Vibrio
cholerae), 보르데텔라 퍼투시스(Bordetella
pertussis), 쉬겔라 디센테리애(Shigella
dysenteriae), 대장균(Escherichia
coli) 및 스트렙토코쿠스 파이오제네스(Streptococcus
pyogenes)로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 리포좀은 포스파티딜콜린(PC), 포스파티딜글리세롤(PG), 포스파티딜에탄올아민(PE), 포스파티딜세린(PS), 포스파티드산(PA), 포스파티딜이노시톨(PI), 달걀 포스파티딜콜린(EPC), 달걀 포스파티딜글리세롤(EPG), 달걀 포스파티딜에탄올아민(EPE), 달걀 포스파티딜세린(EPS), 달걀 포스파티드산(EPA), 달걀 포스파티딜이노시톨(EPI), 콩 포스파티딜콜린(SPC), 콩 포스파티딜글리세롤(SPG), 콩 포스파티딜에탄올아민(SPE), 콩 포스파티딜세린(SPS), 콩 포스파티드산(SPA), 콩 포스파티딜이노시톨(SPI), 다이팔미토일포스파티딜콜린(DPPC), 1,2-다이올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 다이미리스토일포스파티딜콜린(DMPC), 다이팔미토일포스파티딜글리세롤(DPPG), 다이올렐포스파티딜글리세롤(DOPG), 다이미리스토일포스파티딜글리세롤(DMPG), 헥사데실포스포콜린(HEPC), 수소화된 콩 포스파티딜콜린(HSPC), 다이스테아로일포스파티딜콜린(DSPC), 다이스테아로일포스파티딜글리세롤(DSPG), 다이올레일포스파티딜에탄올아민(DOPE), 팔미토일스테아로일포스파티딜콜린(PSPC), 팔미토일스테아로일포스파티딜글리세롤(PSPG), 모노올레오일포스파티딜에탄올아민(MOPE), 1-팔미토일-2-올레오일-sn-글리세로-3-포스파티딜콜린(POPC), 폴리에틸렌글리콜 다이스테아로일포스파티딜에탄올아민(PEG-DSPE), 다이팔미토일포스파티딜세린(DPPS), 1,2-다이올레오일-sn-글리세로-3-포스파티딜세린(DOPS), 다이미리스토일포스파티딜세린(DMPS), 다이스테아로일포스파티딜세린(DSPS), 다이팔미토일포스파티드산(DPPA), 1,2-다이올레오일-sn-글리세로-3-포스파티드산(DOPA), 다이미리스토일포스파티드산(DMPA), 다이스테아로일포스파티드산(DSPA), 다이팔미토일포스파티딜이노시톨(DPPI), 1,2-다이올레오일-sn-글리세로-3-포스파티딜이노시톨(DOPI), 다이미리스토일포스파티딜이노시톨(DMPI), 다이스테아로일포스파티딜이노시톨(DSPI), POPE(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycero) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하나, 이에 한정되지 아니하고, 바람직하게는 DPPC(1,2-dipalmitoyl-sn-glycero-3-phosphocholine), DSPC(1,2-distearoyl-sn-glycero-3-phosphocholine), POPC(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) 및 POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycero)로 구성된 군에서 선택되는 1종 이상을 포함한다.
본 발명에 있어서, 상기 리포좀-폴리머 하이브리드는 예를 들어, 포스파티딜콜린(PC), 포스파티딜글리세롤(PG), 포스파티딜에탄올아민(PE), 포스파티딜세린(PS), 포스파티드산(PA), 포스파티딜이노시톨(PI), 달걀 포스파티딜콜린(EPC), 달걀 포스파티딜글리세롤(EPG), 달걀 포스파티딜에탄올아민(EPE), 달걀 포스파티딜세린(EPS), 달걀 포스파티드산(EPA), 달걀 포스파티딜이노시톨(EPI), 콩 포스파티딜콜린(SPC), 콩 포스파티딜글리세롤(SPG), 콩 포스파티딜에탄올아민(SPE), 콩 포스파티딜세린(SPS), 콩 포스파티드산(SPA), 콩 포스파티딜이노시톨(SPI), 다이팔미토일포스파티딜콜린(DPPC), 1,2-다이올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 다이미리스토일포스파티딜콜린(DMPC), 다이팔미토일포스파티딜글리세롤(DPPG), 다이올렐포스파티딜글리세롤(DOPG), 다이미리스토일포스파티딜글리세롤(DMPG), 헥사데실포스포콜린(HEPC), 수소화된 콩 포스파티딜콜린(HSPC), 다이스테아로일포스파티딜콜린(DSPC), 다이스테아로일포스파티딜글리세롤(DSPG), 다이올레일포스파티딜에탄올아민(DOPE), 팔미토일스테아로일포스파티딜콜린(PSPC), 팔미토일스테아로일포스파티딜글리세롤(PSPG), 모노올레오일포스파티딜에탄올아민(MOPE), 1-팔미토일-2-올레오일-sn-글리세로-3-포스파티딜콜린(POPC), 폴리에틸렌글리콜 다이스테아로일포스파티딜에탄올아민(PEG-DSPE), 다이팔미토일포스파티딜세린(DPPS), 1,2-다이올레오일-sn-글리세로-3-포스파티딜세린(DOPS), 다이미리스토일포스파티딜세린(DMPS), 다이스테아로일포스파티딜세린(DSPS), 다이팔미토일포스파티드산(DPPA), 1,2-다이올레오일-sn-글리세로-3-포스파티드산(DOPA), 다이미리스토일포스파티드산(DMPA), 다이스테아로일포스파티드산(DSPA), 다이팔미토일포스파티딜이노시톨(DPPI), 1,2-다이올레오일-sn-글리세로-3-포스파티딜이노시톨(DOPI), 다이미리스토일포스파티딜이노시톨(DMPI), 다이스테아로일포스파티딜이노시톨(DSPI), POPE(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycero) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 리포좀; 및 폴리머 예를 들어 양친매성 블록공중합체, 폴리이소부틸렌-블록-폴리에틸렌옥사이드 공중합체, 폴리부타디엔-b-폴리에틸렌옥사이드 공중합체, 폴리디메틸실록세인-g-폴리에틸렌옥사이드 공중합체, 폴리(2-메틸옥사졸린)-b-폴리이메틸실록세인-b-폴리(2-메틸옥사졸린)의 공중합체 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 폴리머의 혼합물 일 수 있다.
구체적으로, 지질인 DPPC(1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine)와 양친매성 블록 폴리머인 polyisobutylene-block-polyethyleneoxide copolymer의 혼합물, 또는 지질인 POPC와 양친매성 블록 폴리머인 polybutadiene-b-polyethylene oxide의 혼합물, DPPC와 poly(dimethylsiloxane)-g-poly(ethylene oxide)의 혼합물, 및 DPPC 혹은 PE와 poly(2-methyloxazolene)-b-poly(dimethylsiloxane)-b-poly(2-methyloxazoline)의 혼합물로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 리포좀 또는 리포좀-폴리머 하이브리드는 내부 수상에 흡광물질, 형광물질, 전기화학물질, 또는 화학발광물질 등과 같은 다양한 분자들을 내포(포집)할 수 있다. 많은 수의 물질을 포집하는 능력 및 리포좀의 조성에 변화를 가할 수 있으므로, 증폭된 신호 및 순간적인 신호의 획득이 가능하므로 단시간 내에 미량의 박테리아의 검출이 가능하다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예 1: K3Fe(CN)6(Potassium ferricyanide(III))를 내포하는 리포좀 또는 리포좀-폴리머 하이브리드의 제조방법
박테리아 검출용 리포좀의 경우 10mol% DPPC(1,2-dipalmitoyl-sn-glycero-3-phosphocholine, Avanti Polar Lipids Inc., USA), 42.5mol% DSPC(1,2-distearoyl-sn-glycero-3-phosphocholine, Avanti Polar Lipids Inc., USA), 42.5mol% 콜레스테롤(cholesterol)(Sigma, USA), 5mol% GM1(GM1 Ganglioside, Avanti Polar Lipids Inc., USA)을 이용하여 클로로포름에 용해시킨 다음, 감압장치 하에서 클로로포름을 1시간 이상 증발시키고, 클로로포름이 증발된 상기 복합체를 25℃ 진공 오븐에서 하루 동안 건조시켜 얇은 지질막을 형성시켰다. 상기 지질막에 0∼50μM의 K3Fe(CN)6(Potassium ferricyanide(III))(Sigma-Aldrich, USA)을 첨가하여 초음파기(Jeiotech, Korea)로 10분간 분산시켜 리포좀 현탁액을 제조하였다. 여기서, 단일 지질층의 리포좀 제조를 위해 얼리고 녹이는 과정을 5회 반복하였다. 또한, 균일한 크기의 리포좀 제조를 위해 Mini-Extruder(Avanti Polar Lipids Inc., USA)를 사용하여 100∼200nm pore size filter에 통과시킨 다음 동일한 크기의 리포좀을 제조하였다. 상기 제조된 K3Fe(CN)6를 내포하는 리포좀을 탈염 컬럼(desalting column, GE Healthcare, UK)을 이용하여 잔여 K3Fe(CN)6를 제거하고 4℃에 ∼2주까지 냉장 보관하였다. K3Fe(CN)6를 내포한 리포좀은 DLS(dynamic light scattering, Otsuka, Japan)를 이용하여 리포좀의 크기를 측정하였다.
한편, 리포좀-폴리머 하이브리드의 제조방법은 적절 함량의 지질성분(PC, PE, PS 등)을 클로로포름-메탄올에 용해시킨 후 백극 전극에 침전(deposit)시킨 다음, 전기장을 걸어주고 증류수를 첨가하여 제조하는 리포좀 전기주조법(Liposome electroformation)을 이용하거나(Olubummo A1 et al.,
Langmuir, 30(1):259-67, 2014; Schulz M et al.,
Angew
Chem
Int
Ed
Engl., 52(6):1829-33, 2013; Miglena I et al., Faraday Discuss.
Chem
.
Soc., 81:303-311, 1986; Binder WH et al., Angew
Chem., 115(47):5980-6007, 2003; Binder WH et al.,
Angew
Chem
Int
Ed Engl., 42(47):5802-27, 2003), 적절 함량의 지질성분(PC, PE, PS 등)을 클로로포름-메탄올에 용해시킨 후 감압장치 하에서 용매를 증발시켜 만든 얇은 지질막에 폴리머 나노입자 현탁액(aqueous polymeric nanoparticle suspension)을 넣어 제조하는 2단계 리포좀 제조법(Two-step method)을 이용하였다(Kunn Hadinoto et al., European Journal of Pharmaceutics and Biopharmaceutics, 85(3):427-43,2013).
필요에 따라, 상기 리포좀은 당업계의 통상적인 방법으로 지질 수용체(lipid receptor)인 GT1b(Ganglioside GT1b), GD1b(Ganglioside GD1b), GQ1b(Ganglioside GQ1b), 포스파티딜콜린(Phosphatidylcholine), GM2(Ganglioside GM2), GM1(Ganglioside GM1), GD1a(Ganglioside GD1a), GB3(Ganglioside GB3), GB4(Ganglioside GB4), 스핑고리피드(Sphingolipid(3’-sulfogalactosyl-ceramide)), 콜레스테롤(cholesterol), 또는 박테리아에 특이적으로 결합 가능한 단백질, 지질, 당쇄 모이티(glycosylation moiety)를 포함하여 제조하였다.
그 결과, 박테리아의 검출을 위해 제조한 K3Fe(CN)6를 내포하는 리포좀의 직경은 약 50∼200nm이었다(데이터 미도시).
아울러, 도 2에 나타난 바와 같이, 박테리아 검출용 리포좀인 K3Fe(CN)6를 내포하는 리포좀은 대조군(제조 직후의 리포좀)에 비해 냉장 상태에서 2주가 지나도 리포좀의 크기로 판단한 안정도(stability)는 유사한 것으로 확인되었다. 아울러, 도 3에 나타난 바와 같이, 1.286mM Fe 이온이 리포좀에 내포될 수 있는 양은 25.72%로 나타났으며, 상기 Fe 이온의 포획율(encapsulation efficiency)은 (NH4)2SO4(Ammonium sulfate) 그레이던트 방법을 이용하면 증가하는 것으로 확인되었다(데이터 미도시).
실시예 2: 박테리아의 검출방법
K3Fe(CN)6(Potassium ferricyanide(III)) 및 지질 수용체(lipid receptor)를 내포하는 리포좀과 박테리아 또는 그의 단백질인 PFTs(pore-forming toxins)를 적절한 농도와 노출 시간으로 처리하여 사용하였다. 본 실시예에서는 지질 수용체인 GM1 및 박테리아인 비브리오 콜레래이(Vibrio cholerae)를 사용하였다. 여기서, 상기 K3Fe(CN)6을 내포하는 리포좀은 K3Fe(CN)6을 내포하는 리포좀-폴리머 하이브리드로 대체가능하다.
반응 조건
실시예 1의 방법으로 제조된 K3Fe(CN)6 및 GM1 지질 수용체를 내포하는 리포좀 50μl, 비브리오 콜레래이(Vibrio cholerae)의 CT(Cholera Toxin, Sigma, 미국)를 1ng/ml∼100μg/ml 농도로 10μl, 100mM PBS(Phosphate buffered saline, pH 7.4) 10μl, 100mM 염화칼슘(potassium chloride) 수용액 10μl를 혼합하여 37℃에서 30분간 반응시켜 비브리오 콜레래이와 리포좀이 결합하도록 하여 리포좀에 공극(pore)이 생성되도록 하였다(음성대조군: 독소 부재; 양성대조군: 독소 대신 0.1% Triton X-100 처리; 비교군: CT subunit B, E.
coli, DT(Diphteria Toxin) 또는 TT(Tetanus Toxin) 처리). 그 다음, 전기화학 셀에 상기 리포좀과 비브리오 콜레래이가 포함된 시료를 채우고, 세 개의 전극(작업 전극(glassy carbon), 기준 전극(Ag/AgCl) 및 상대 전극(Pt))을 용액과 접하게 하여 전위 설정을 조정하여 산화, 환원 전류를 순환전압전류법(Cyclic Voltammetry, CV)으로 측정하였다. 여기서, 전기화학적 활성기질이 반응할 수 있는 적절한 범위의 전압을 일정전위기를 통해 작업 전극에 인가함으로써 시차펄스 전류 곡선을 얻을 수 있었다.
그 결과, 도 4에 나타난 바와 같이, K3Fe(CN)6(Potassium ferricyanide(III)) 및 GM1 지질 수용체가 내포된 리포좀과 비브리오 콜레래이 독소 간의 결합으로 인해 리포좀에 공극이 발생되고, 이에 따른 전류 변화를 삼전극 시스템을 이용한 순환전압전류법(Cyclic Voltammetry, CV)으로 확인 가능하여 비브리오 콜레래이의 검출이 가능하였다.
본 발명에 따른 전기화학적 활성기질을 내포하는 리포좀 또는 리포좀-폴리머 하이브리드를 이용한 박테리아의 검출방법은 전기화학적 활성기질이 리포좀 또는 리포좀-폴리머 하이브리드 밖으로 유출되지 않아 산소 또는 화학반응에 대한 안정성이 높고, 상기 리포좀 또는 리포좀-폴리머 하이브리드에 박테리아가 지질막 또는 막단백질을 통해 결합할 경우, 리포좀 또는 리포좀-폴리머 하이브리드에 내포된 전기화학적 활성기질이 전기유도물질과 반응하여 전류 변화를 나타냄으로써 박테리아 검출신호가 현저히 높은 것으로 나타났다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
Claims (30)
- 전기화학적 활성기질을 내포하고, 음전하를 가지는 리포좀 또는 리포좀-폴리머 하이브리드(liposome-polymer hybrid)를 포함하고, 상기 리포좀 또는 리포좀-폴리머 하이브리드에 박테리아가 지질막 또는 막단백질을 통해 결합할 경우, 리포좀 또는 리포좀-폴리머 하이브리드에 내포된 전기화학적 활성기질이 방출되면서 전류 변화를 나타내는 것을 특징으로 하는 박테리아 검출용 조성물.
- 제1항에 있어서, 상기 전기화학적 활성기질은 K3Fe(CN)6(Potassium ferricyanide(III)), 아스코르빈산(Ascorbic acid), Ru(NH3)6Cl3(Hexaammineruthenium(III) chloride), 페로센(ferrocene), 페로센 유도체(ferrocene derivatives), 퀴논(quinones), 퀴논 유도체(quinone derivatives), 루세늄 아민 복합체(ruthenium ammine complexes), 오스뮴(II), 오스뮴(III), 오스뮴(IV) 복합체(osmium complex), 메탈로센(metallocene), 메탈로센 유도체(metallocene derivatives), 포타슘헥사시아노페레이트(II)(Potassium hexa-cyanoferrate(II)), 멜돌라 블루(Melola's blue), 프루시안 블루(Prussian blue) 디클로로페놀인도피놀 (dichlorophenolindophenol(DCPIP)), o-페닐렌다이아민(o-phenylenediamine(o-PDA), 3,4-디하이드록시벤즈알데하이드(3,4-hydroxybenzaldehyde(3,4-DHB)), 비오로겐(viologen), 7,7,8,8-테트라시아노퀴노디메탄(7,7,8,8-tetracyanoquinodimethane(TCNQ)), 테트라티아풀발렌(tetrathiafulvalene(TTF)), N-메틸아시디니움(N-methylacidinium(NMA+)), 테트라티아테트라센(tetrathiatetracene(TTT)), N-메틸페나지니움(N-methylphenazinium(NMP+)), 3-메틸-2-벤조티오조리논히드라존(3-methyl-2-benzothiozolinonehydrazone), 2-메톡시-4-아릴페놀(2-methoxy-4-allylphenol), 4-아미노안티피린(4-aminoantipyrin (AAP)), 디메틸아닐린(dimethylaniline), 4-아미노안티피렌(4-aminoantipyrene), 4-메톡시나프톨(4-methylnaphthol), 3,3',5,5'-테트라메틸벤지딘(3,3‘,5,5-tetramethylbenzidine(TMB)), 2,2-아지노-디-[3-에틸-벤즈티아졸린술포네이트](2,2-azinodi-[3-ethylbenzthiazolinesulfonate]), o-디아지니딘(odianisidine), o-톨루이딘(o-toluidine), 2,4-디클로로페놀(2,4-dichlorophenol), 4-아미노페나존(4-aminophenazone) 및 벤지딘(benzidine)으로 구성된 군에서 선택되는 것을 특징으로 하는 박테리아 검출용 조성물.
- 제1항에 있어서, 상기 리포좀 또는 리포좀-폴리머 하이브리드는 음전하를 가지는 것을 특징으로 하는 박테리아 검출용 조성물.
- 제1항에 있어서, 상기 전기화학적 활성기질을 내포하는 리포좀 또는 리포좀-폴리머 하이브리드는 표적 수용체를 추가로 내포하는 것을 특징으로 하는 박테리아 검출용 조성물.
- 제4항에 있어서, 상기 표적 수용체는 박테리아의 막단백질인 기공 형성 독소 (pore forming toxin)와 결합하는 것을 특징으로 하는 박테리아 검출용 조성물.
- 제4항에 있어서, 상기 표적 수용체는 GT1b(Ganglioside GT1b), GD1b(Ganglioside GD1b), GQ1b(Ganglioside GQ1b), 포스파티딜콜린(Phosphatidylcholine), GM2(Ganglioside GM2), GM1(Ganglioside GM1), GD1a(Ganglioside GD1a), GB3(Ganglioside GB3), GB4(Ganglioside GB4), 스핑고리피드(Sphingolipid(3’-sulfogalactosyl-ceramide)) 및 콜레스테롤(cholesterol)로 구성된 군에서 선택되는 것을 특징으로 하는 박테리아 검출용 조성물.
- 제5항에 있어서, 상기 기공 형성 독소(pore forming toxin)는 파상풍 독소(Tetanus), 보툴리눔 독소(botulinum toxin), 알파 독소(alpha toxin), 델타 독소(delta toxin), 콜레라 독소(cholera toxin), 퍼투시스 독소(pertussis toxin), 시가 독소(shiga toxin), 이열성 장관독소(heat-labile enterotoxin: LT) 및 스트렙토라이신 O(streptolysin O)로 구성된 군에서 선택되는 것을 특징으로 하는 박테리아 검출용 조성물.
- 제1항에 있어서, 상기 박테리아 지질막은 PC (Phosphatidylcholine), PI (Phosphoinositides), PS (Phosphatidylserine), PE (Phosphatidylethanolamine) 또는 SM (Sphingomyelin)인 것을 특징으로 하는 박테리아 검출용 조성물.
- 제1항에 있어서, 상기 박테리아가 지질막 또는 막단백질을 통해 상기 리포좀 또는 리포좀-폴리머 하이브리드와 결합할 경우, 리포좀 또는 리포좀-폴리머 하이브리드에 공극(pore)이 형성되고, 리포좀 또는 리포좀-폴리머 하이브리드에 내포된 전기화학적 활성기질이 방출되면서 전류 변화를 나타내는 것을 특징으로 하는 박테리아 검출용 조성물.
- 제9항에 있어서, 상기 리포좀 또는 리포좀-폴리머 하이브리드의 공극(pore)은 리포좀 또는 리포좀-폴리머 하이브리드와 박테리아의 기공 형성 독소(pore forming toxin)의 결합에 의해 형성되는 것을 특징으로 하는 박테리아 검출용 조성물.
- 제1항에 있어서, 상기 전류 변화는 순환전압전류법(cyclic voltammetry), 네모파전압전류법(square wave voltammetry), 정상펄스전압전류법(normal pulse voltammetry), 펄스차이전압전류법(differential pulse voltammetry) 또는 임피던스(impedance)로 확인하는 것을 특징으로 하는 박테리아 검출용 조성물.
- 제1항에 있어서, 상기 박테리아는 클로스트리듐 테타니(Clostridium tetani), 클로스트리디움 보툴리눔(Clostridium botulinum), 클로스트리듐 퍼프린겐스(Clostridium perfringens), 비브리오 콜레래이(Vibrio cholerae), 보르데텔라 퍼투시스(Bordetella pertussis), 쉬겔라 디센테리애(Shigella dysenteriae), 대장균(Escherichia coli) 및 스트렙토코쿠스 파이오제네스(Streptococcus pyogenes)로 구성된 군에서 선택되는 것을 특징으로 하는 박테리아 검출용 조성물.
- 제1항에 있어서, 상기 리포좀은 포스파티딜콜린(PC), 포스파티딜글리세롤(PG), 포스파티딜에탄올아민(PE), 포스파티딜세린(PS), 포스파티드산(PA), 포스파티딜이노시톨(PI), 달걀 포스파티딜콜린(EPC), 달걀 포스파티딜글리세롤(EPG), 달걀 포스파티딜에탄올아민(EPE), 달걀 포스파티딜세린(EPS), 달걀 포스파티드산(EPA), 달걀 포스파티딜이노시톨(EPI), 콩 포스파티딜콜린(SPC), 콩 포스파티딜글리세롤(SPG), 콩 포스파티딜에탄올아민(SPE), 콩 포스파티딜세린(SPS), 콩 포스파티드산(SPA), 콩 포스파티딜이노시톨(SPI), 다이팔미토일포스파티딜콜린(DPPC), 1,2-다이올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 다이미리스토일포스파티딜콜린(DMPC), 다이팔미토일포스파티딜글리세롤(DPPG), 다이올렐포스파티딜글리세롤(DOPG), 다이미리스토일포스파티딜글리세롤(DMPG), 헥사데실포스포콜린(HEPC), 수소화된 콩 포스파티딜콜린(HSPC), 다이스테아로일포스파티딜콜린(DSPC), 다이스테아로일포스파티딜글리세롤(DSPG), 다이올레일포스파티딜에탄올아민(DOPE), 팔미토일스테아로일포스파티딜콜린(PSPC), 팔미토일스테아로일포스파티딜글리세롤(PSPG), 모노올레오일포스파티딜에탄올아민(MOPE), 1-팔미토일-2-올레오일-sn-글리세로-3-포스파티딜콜린(POPC), 폴리에틸렌글리콜 다이스테아로일포스파티딜에탄올아민(PEG-DSPE), 다이팔미토일포스파티딜세린(DPPS), 1,2-다이올레오일-sn-글리세로-3-포스파티딜세린(DOPS), 다이미리스토일포스파티딜세린(DMPS), 다이스테아로일포스파티딜세린(DSPS), 다이팔미토일포스파티드산(DPPA), 1,2-다이올레오일-sn-글리세로-3-포스파티드산(DOPA), 다이미리스토일포스파티드산(DMPA), 다이스테아로일포스파티드산(DSPA), 다이팔미토일포스파티딜이노시톨(DPPI), 1,2-다이올레오일-sn-글리세로-3-포스파티딜이노시톨(DOPI), 다이미리스토일포스파티딜이노시톨(DMPI), 다이스테아로일포스파티딜이노시톨(DSPI), POPE(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycero) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 박테리아 검출용 조성물.
- 제1항에 있어서, 상기 리포좀-폴리머 하이브리드는 포스파티딜콜린(PC), 포스파티딜글리세롤(PG), 포스파티딜에탄올아민(PE), 포스파티딜세린(PS), 포스파티드산(PA), 포스파티딜이노시톨(PI), 달걀 포스파티딜콜린(EPC), 달걀 포스파티딜글리세롤(EPG), 달걀 포스파티딜에탄올아민(EPE), 달걀 포스파티딜세린(EPS), 달걀 포스파티드산(EPA), 달걀 포스파티딜이노시톨(EPI), 콩 포스파티딜콜린(SPC), 콩 포스파티딜글리세롤(SPG), 콩 포스파티딜에탄올아민(SPE), 콩 포스파티딜세린(SPS), 콩 포스파티드산(SPA), 콩 포스파티딜이노시톨(SPI), 다이팔미토일포스파티딜콜린(DPPC), 1,2-다이올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 다이미리스토일포스파티딜콜린(DMPC), 다이팔미토일포스파티딜글리세롤(DPPG), 다이올렐포스파티딜글리세롤(DOPG), 다이미리스토일포스파티딜글리세롤(DMPG), 헥사데실포스포콜린(HEPC), 수소화된 콩 포스파티딜콜린(HSPC), 다이스테아로일포스파티딜콜린(DSPC), 다이스테아로일포스파티딜글리세롤(DSPG), 다이올레일포스파티딜에탄올아민(DOPE), 팔미토일스테아로일포스파티딜콜린(PSPC), 팔미토일스테아로일포스파티딜글리세롤(PSPG), 모노올레오일포스파티딜에탄올아민(MOPE), 1-팔미토일-2-올레오일-sn-글리세로-3-포스파티딜콜린(POPC), 폴리에틸렌글리콜 다이스테아로일포스파티딜에탄올아민(PEG-DSPE), 다이팔미토일포스파티딜세린(DPPS), 1,2-다이올레오일-sn-글리세로-3-포스파티딜세린(DOPS), 다이미리스토일포스파티딜세린(DMPS), 다이스테아로일포스파티딜세린(DSPS), 다이팔미토일포스파티드산(DPPA), 1,2-다이올레오일-sn-글리세로-3-포스파티드산(DOPA), 다이미리스토일포스파티드산(DMPA), 다이스테아로일포스파티드산(DSPA), 다이팔미토일포스파티딜이노시톨(DPPI), 1,2-다이올레오일-sn-글리세로-3-포스파티딜이노시톨(DOPI), 다이미리스토일포스파티딜이노시톨(DMPI), 다이스테아로일포스파티딜이노시톨(DSPI), POPE(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycero) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 리포좀; 및 양친매성 블록공중합체, 폴리이소부틸렌-블록-폴리에틸렌옥사이드 공중합체, 폴리부타디엔-b-폴리에틸렌옥사이드 공중합체, 폴리디메틸실록세인-g-폴리에틸렌옥사이드 공중합체, 폴리(2-메틸옥사졸린)-b-폴리이메틸실록세인-b-폴리(2-메틸옥사졸린)의 공중합체 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 폴리머의 혼합물인 것을 특징으로 하는 박테리아 검출용 조성물.
- 제1항 내지 제14항 중 어느 한 항의 조성물을 포함하는 박테리아 검출용 키트.
- 다음 단계를 포함하는 박테리아의 검출방법:(a) 전기화학적 활성기질을 내포하고, 음전하를 가지는 리포좀 또는 리포좀-폴리머 하이브리드와 박테리아 함유 추정 시료를 접촉시키는 단계; 및(b) 상기 (a)의 접촉에 따른 전류 변화를 확인하는 단계.
- 제16항에 있어서, 상기 전기화학적 활성기질은 K3Fe(CN)6(Potassium ferricyanide(III)), 아스코르빈산(Ascorbic acid), Ru(NH3)6Cl3(Hexaammineruthenium(III) chloride), 페로센(ferrocene), 페로센 유도체(ferrocene derivatives), 퀴논(quinones), 퀴논 유도체(quinone derivatives), 루세늄 아민 복합체(ruthenium ammine complexes), 오스뮴(II), 오스뮴(III), 오스뮴(IV) 복합체(osmium complex), 메탈로센(metallocene), 메탈로센 유도체(metallocene derivatives), 포타슘헥사시아노페레이트(II)(Potassium hexa-cyanoferrate(II)), 멜돌라 블루(Melola's blue), 프루시안 블루(Prussian blue) 디클로로페놀인도피놀 (dichlorophenolindophenol(DCPIP)), o-페닐렌다이아민(o-phenylenediamine(o-PDA), 3,4-디하이드록시벤즈알데하이드(3,4-hydroxybenzaldehyde(3,4-DHB)), 비오로겐(viologen), 7,7,8,8-테트라시아노퀴노디메탄(7,7,8,8-tetracyanoquinodimethane(TCNQ)), 테트라티아풀발렌(tetrathiafulvalene(TTF)), N-메틸아시디니움(N-methylacidinium(NMA+)), 테트라티아테트라센(tetrathiatetracene(TTT)), N-메틸페나지니움(N-methylphenazinium(NMP+)), 3-메틸-2-벤조티오조리논히드라존(3-methyl-2-benzothiozolinonehydrazone), 2-메톡시-4-아릴페놀(2-methoxy-4-allylphenol), 4-아미노안티피린(4-aminoantipyrin (AAP)), 디메틸아닐린(dimethylaniline), 4-아미노안티피렌(4-aminoantipyrene), 4-메톡시나프톨(4-methylnaphthol), 3,3',5,5'-테트라메틸벤지딘(3,3‘,5,5-tetramethylbenzidine(TMB)), 2,2-아지노-디-[3-에틸-벤즈티아졸린술포네이트](2,2-azinodi-[3-ethylbenzthiazolinesulfonate]), o-디아지니딘(odianisidine), o-톨루이딘(o-toluidine), 2,4-디클로로페놀(2,4-dichlorophenol), 4-아미노페나존(4-aminophenazone) 및 벤지딘(benzidine)으로 구성된 군에서 선택되는 것을 특징으로 하는 박테리아의 검출방법.
- 제16항에 있어서, 상기 전기화학적 활성기질을 내포하는 리포좀 또는 리포좀-폴리머 하이브리드는 표적 수용체를 추가로 내포하는 것을 특징으로 하는 박테리아의 검출방법.
- 제18항에 있어서, 상기 표적 수용체는 박테리아의 막단백질인 기공 형성 독소(pore forming toxin)와 결합하는 것을 특징으로 하는 박테리아의 검출방법.
- 제18항에 있어서, 상기 표적 수용체는 GT1b(Ganglioside GT1b), GD1b(Ganglioside GD1b), GQ1b(Ganglioside GQ1b), 포스파티딜콜린(Phosphatidylcholine), GM2(Ganglioside GM2), GM1(Ganglioside GM1), GD1a(Ganglioside GD1a), GB3(Ganglioside GB3), GB4(Ganglioside GB4), 스핑고리피드(Sphingolipid(3’-sulfogalactosyl-ceramide)) 및 콜레스테롤(cholesterol)로 구성된 군에서 선택되는 것을 특징으로 하는 박테리아의 검출방법.
- 제19항에 있어서, 상기 기공 형성 독소(pore forming toxin)는 파상풍 독소(Tetanus), 보툴리눔 독소(botulinum toxin), 알파 독소(alpha toxin), 델타 독소(delta toxin), 콜레라 독소(cholera toxin), 퍼투시스 독소(pertussis toxin), 시가 독소(shiga toxin), 이열성 장관독소(heat-labile enterotoxin: LT) 및 스트렙토라이신 O(streptolysin O)로 구성된 군에서 선택되는 것을 특징으로 하는 박테리아의 검출방법.
- 제15항에 있어서, 상기 박테리아 지질막은 PC (Phosphatidylcholine), PI (Phosphoinositides), PS (Phosphatidylserine), PE (Phosphatidylethanolamine) 또는 SM (Sphingomyelin)인 것을 특징으로 하는 박테리아의 검출방법.
- 제16항에 있어서, 상기 (b) 단계의 전류 변화는 상기 리포좀 또는 리포좀-폴리머 하이브리드에 박테리아가 지질막 또는 막단백질을 통해 결합할 경우, 리포좀 또는 리포좀-폴리머 하이브리드에 공극(pore)이 형성되고, 리포좀에 내포된 전기화학적 활성기질이 방출되면서 전류 변화를 나타내는 것을 특징으로 하는 박테리아의 검출방법.
- 제16항에 있어서, 상기 (b) 단계의 전류 변화 여부 확인은 산화 또는 환원 반응을 통해 수행되는 것을 특징으로 하는 박테리아의 검출방법.
- 제24항에 있어서, 상기 리포좀 또는 리포좀-폴리머 하이브리드의 공극(pore)은 리포좀 또는 리포좀-폴리머 하이브리드와 박테리아의 기공 형성 독소(pore forming toxin)의 결합에 의해 형성되는 것을 특징으로 하는 박테리아의 검출방법.
- 제16항에 있어서, 상기 리포좀 또는 리포좀-폴리머 하이브리드는 음전하를 가지는 것을 특징으로 하는 박테리아의 검출방법.
- 제16항에 있어서, 상기 전류 변화는 순환전압전류법(cyclic voltammetry), 네모파전압전류법(square wave voltammetry), 정상펄스전압전류법(normal pulse voltammetry), 펄스차이전압전류법(differential pulse voltammetry) 또는 임피던스(impedance)로 확인하는 것을 특징으로 하는 박테리아의 검출방법.
- 제16항에 있어서, 상기 박테리아는 클로스트리듐 테타니(Clostridium tetani), 클로스트리디움 보툴리눔(Clostridium botulinum), 클로스트리듐 퍼프린겐스(Clostridium perfringens), 비브리오 콜레래이(Vibrio cholerae), 보르데텔라 퍼투시스(Bordetella pertussis), 쉬겔라 디센테리애(Shigella dysenteriae), 대장균(Escherichia coli) 및 스트렙토코쿠스 파이오제네스(Streptococcus pyogenes)로 구성된 군에서 선택되는 것을 특징으로 하는 박테리아의 검출방법.
- 제16항에 있어서, 상기 리포좀은 포스파티딜콜린(PC), 포스파티딜글리세롤(PG), 포스파티딜에탄올아민(PE), 포스파티딜세린(PS), 포스파티드산(PA), 포스파티딜이노시톨(PI), 달걀 포스파티딜콜린(EPC), 달걀 포스파티딜글리세롤(EPG), 달걀 포스파티딜에탄올아민(EPE), 달걀 포스파티딜세린(EPS), 달걀 포스파티드산(EPA), 달걀 포스파티딜이노시톨(EPI), 콩 포스파티딜콜린(SPC), 콩 포스파티딜글리세롤(SPG), 콩 포스파티딜에탄올아민(SPE), 콩 포스파티딜세린(SPS), 콩 포스파티드산(SPA), 콩 포스파티딜이노시톨(SPI), 다이팔미토일포스파티딜콜린(DPPC), 1,2-다이올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 다이미리스토일포스파티딜콜린(DMPC), 다이팔미토일포스파티딜글리세롤(DPPG), 다이올렐포스파티딜글리세롤(DOPG), 다이미리스토일포스파티딜글리세롤(DMPG), 헥사데실포스포콜린(HEPC), 수소화된 콩 포스파티딜콜린(HSPC), 다이스테아로일포스파티딜콜린(DSPC), 다이스테아로일포스파티딜글리세롤(DSPG), 다이올레일포스파티딜에탄올아민(DOPE), 팔미토일스테아로일포스파티딜콜린(PSPC), 팔미토일스테아로일포스파티딜글리세롤(PSPG), 모노올레오일포스파티딜에탄올아민(MOPE), 1-팔미토일-2-올레오일-sn-글리세로-3-포스파티딜콜린(POPC), 폴리에틸렌글리콜 다이스테아로일포스파티딜에탄올아민(PEG-DSPE), 다이팔미토일포스파티딜세린(DPPS), 1,2-다이올레오일-sn-글리세로-3-포스파티딜세린(DOPS), 다이미리스토일포스파티딜세린(DMPS), 다이스테아로일포스파티딜세린(DSPS), 다이팔미토일포스파티드산(DPPA), 1,2-다이올레오일-sn-글리세로-3-포스파티드산(DOPA), 다이미리스토일포스파티드산(DMPA), 다이스테아로일포스파티드산(DSPA), 다이팔미토일포스파티딜이노시톨(DPPI), 1,2-다이올레오일-sn-글리세로-3-포스파티딜이노시톨(DOPI), 다이미리스토일포스파티딜이노시톨(DMPI), 다이스테아로일포스파티딜이노시톨(DSPI), POPE(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycero) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 박테리아의 검출방법.
- 제16항에 있어서, 상기 리포좀-폴리머 하이브리드는 포스파티딜콜린(PC), 포스파티딜글리세롤(PG), 포스파티딜에탄올아민(PE), 포스파티딜세린(PS), 포스파티드산(PA), 포스파티딜이노시톨(PI), 달걀 포스파티딜콜린(EPC), 달걀 포스파티딜글리세롤(EPG), 달걀 포스파티딜에탄올아민(EPE), 달걀 포스파티딜세린(EPS), 달걀 포스파티드산(EPA), 달걀 포스파티딜이노시톨(EPI), 콩 포스파티딜콜린(SPC), 콩 포스파티딜글리세롤(SPG), 콩 포스파티딜에탄올아민(SPE), 콩 포스파티딜세린(SPS), 콩 포스파티드산(SPA), 콩 포스파티딜이노시톨(SPI), 다이팔미토일포스파티딜콜린(DPPC), 1,2-다이올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 다이미리스토일포스파티딜콜린(DMPC), 다이팔미토일포스파티딜글리세롤(DPPG), 다이올렐포스파티딜글리세롤(DOPG), 다이미리스토일포스파티딜글리세롤(DMPG), 헥사데실포스포콜린(HEPC), 수소화된 콩 포스파티딜콜린(HSPC), 다이스테아로일포스파티딜콜린(DSPC), 다이스테아로일포스파티딜글리세롤(DSPG), 다이올레일포스파티딜에탄올아민(DOPE), 팔미토일스테아로일포스파티딜콜린(PSPC), 팔미토일스테아로일포스파티딜글리세롤(PSPG), 모노올레오일포스파티딜에탄올아민(MOPE), 1-팔미토일-2-올레오일-sn-글리세로-3-포스파티딜콜린(POPC), 폴리에틸렌글리콜 다이스테아로일포스파티딜에탄올아민(PEG-DSPE), 다이팔미토일포스파티딜세린(DPPS), 1,2-다이올레오일-sn-글리세로-3-포스파티딜세린(DOPS), 다이미리스토일포스파티딜세린(DMPS), 다이스테아로일포스파티딜세린(DSPS), 다이팔미토일포스파티드산(DPPA), 1,2-다이올레오일-sn-글리세로-3-포스파티드산(DOPA), 다이미리스토일포스파티드산(DMPA), 다이스테아로일포스파티드산(DSPA), 다이팔미토일포스파티딜이노시톨(DPPI), 1,2-다이올레오일-sn-글리세로-3-포스파티딜이노시톨(DOPI), 다이미리스토일포스파티딜이노시톨(DMPI), 다이스테아로일포스파티딜이노시톨(DSPI), POPE(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), POPG(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycero) 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 리포좀; 및 양친매성 블록공중합체, 폴리이소부틸렌-블록-폴리에틸렌옥사이드 공중합체, 폴리부타디엔-b-폴리에틸렌옥사이드 공중합체, 폴리디메틸실록세인-g-폴리에틸렌옥사이드 공중합체, 폴리(2-메틸옥사졸린)-b-폴리이메틸실록세인-b-폴리(2-메틸옥사졸린)의 공중합체 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 폴리머의 혼합물인 것을 특징으로 하는 박테리아의 검출방법.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20150082788 | 2015-06-11 | ||
KR10-2015-0082788 | 2015-06-11 | ||
KR1020160056900A KR101755408B1 (ko) | 2015-06-11 | 2016-05-10 | 리포좀 또는 리포좀 폴리머 하이브리드를 이용한 박테리아 검출방법 |
KR10-2016-0056900 | 2016-05-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016200064A1 true WO2016200064A1 (ko) | 2016-12-15 |
Family
ID=57503606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/004965 WO2016200064A1 (ko) | 2015-06-11 | 2016-05-12 | 리포좀 및 리포좀-폴리머 하이브리드를 이용한 박테리아 검출방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016200064A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114306641A (zh) * | 2022-02-17 | 2022-04-12 | 大连民族大学 | 一种胆固醇氨基衍生物-蔗糖酯型阳离子脂质体/基因复合物及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR980010417A (ko) * | 1996-07-13 | 1998-04-30 | 구자홍 | 전기화학식 면역 바이오센서 |
KR100762202B1 (ko) * | 2005-10-18 | 2007-10-04 | 건국대학교 산학협력단 | 용혈성 미생물을 선택적으로 탐지하는 방법 |
US7829272B2 (en) * | 2007-05-24 | 2010-11-09 | Nanotrope Inc. | Viral detection liposomes and method |
JP5047783B2 (ja) * | 2004-05-13 | 2012-10-10 | サントル・ナシオナル・ドゥ・ラ・ルシェルシュ・シアンティフィーク(セーエヌエールエス) | ターゲット存在物をおとり存在物へ結合させるための装置、および該装置を使用する検出方法 |
JP2013061325A (ja) * | 2011-08-22 | 2013-04-04 | Liposome Engineering Laboratory | リポソームを用いた酵素免疫測定技術LELIA(Liposome−basedEnzyme−LinkedImmunoAssay) |
-
2016
- 2016-05-12 WO PCT/KR2016/004965 patent/WO2016200064A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR980010417A (ko) * | 1996-07-13 | 1998-04-30 | 구자홍 | 전기화학식 면역 바이오센서 |
JP5047783B2 (ja) * | 2004-05-13 | 2012-10-10 | サントル・ナシオナル・ドゥ・ラ・ルシェルシュ・シアンティフィーク(セーエヌエールエス) | ターゲット存在物をおとり存在物へ結合させるための装置、および該装置を使用する検出方法 |
KR100762202B1 (ko) * | 2005-10-18 | 2007-10-04 | 건국대학교 산학협력단 | 용혈성 미생물을 선택적으로 탐지하는 방법 |
US7829272B2 (en) * | 2007-05-24 | 2010-11-09 | Nanotrope Inc. | Viral detection liposomes and method |
JP2013061325A (ja) * | 2011-08-22 | 2013-04-04 | Liposome Engineering Laboratory | リポソームを用いた酵素免疫測定技術LELIA(Liposome−basedEnzyme−LinkedImmunoAssay) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114306641A (zh) * | 2022-02-17 | 2022-04-12 | 大连民族大学 | 一种胆固醇氨基衍生物-蔗糖酯型阳离子脂质体/基因复合物及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | Recent progress in fluorescent probes for bacteria | |
Viswanathan et al. | Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode | |
Nimse et al. | Biological applications of functionalized calixarenes | |
Qu et al. | An electrochemical immunosensor based on enzyme-encapsulated liposomes and biocatalytic metal deposition | |
Thamphiwatana et al. | Phospholipase A2-responsive antibiotic delivery via nanoparticle-stabilized liposomes for the treatment of bacterial infection | |
Sträuber et al. | Viability states of bacteria—specific mechanisms of selected probes | |
CN104053497B (zh) | 多重体:包封的微滴网络 | |
KR101814495B1 (ko) | 바이러스 검출용 키트 | |
Hollmann et al. | Characterization of liposomes coated with S-layer proteins from lactobacilli | |
CN111500284B (zh) | 一种包封石墨烯量子点的纳米脂质体及制备以及其在生物酶活性检测中的应用 | |
Yamanaka et al. | Solid phase immobilization of optically responsive liposomes in sol-gel materials for chemical and biological sensing | |
US20220401558A1 (en) | Nanotube trans-membrane channels mimicking biological porins | |
Kubesch et al. | Interaction of polymyxin B nonapeptide with anionic phospholipids | |
Senarath-Yapa et al. | Preparation and characterization of poly (lipid)-coated, fluorophore-doped silica nanoparticles for biolabeling and cellular imaging | |
US20130316008A1 (en) | Multicompartmentalized vesicular structure and a method for forming the same | |
KR101755408B1 (ko) | 리포좀 또는 리포좀 폴리머 하이브리드를 이용한 박테리아 검출방법 | |
Brock et al. | Mechanism of cell penetration by permeabilization of late endosomes: interplay between a multivalent TAT peptide and bis (monoacylglycero) phosphate | |
Thet et al. | An electrochemical sensor concept for the detection of bacterial virulence factors from Staphylococcus aureus and Pseudomonas aeruginosa | |
Bardonnet et al. | Pre-formulation of liposomes against Helicobacter pylori: characterization and interaction with the bacteria | |
Kim et al. | Performance of an electrochemical sensor with different types of liposomal mediators for the detection of hemolytic bacteria | |
WO2016200064A1 (ko) | 리포좀 및 리포좀-폴리머 하이브리드를 이용한 박테리아 검출방법 | |
Krivic et al. | Erythro-PmBs: a selective polymyxin B delivery system using antibody-conjugated hybrid erythrocyte liposomes | |
Liu et al. | Growing a nucleotide/lanthanide coordination polymer shell on liposomes | |
Damiati | Can we rebuild the Cell Membrane? | |
WO1999045391A1 (en) | Membrane pore inhibiting agents for treating infection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16807705 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16807705 Country of ref document: EP Kind code of ref document: A1 |