WO2016199643A1 - 水素充填用ホース - Google Patents

水素充填用ホース Download PDF

Info

Publication number
WO2016199643A1
WO2016199643A1 PCT/JP2016/066230 JP2016066230W WO2016199643A1 WO 2016199643 A1 WO2016199643 A1 WO 2016199643A1 JP 2016066230 W JP2016066230 W JP 2016066230W WO 2016199643 A1 WO2016199643 A1 WO 2016199643A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hose
fiber
less
wire
Prior art date
Application number
PCT/JP2016/066230
Other languages
English (en)
French (fr)
Inventor
克昌 石井
郁真 遊佐
柴野 宏明
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016020574A external-priority patent/JP6103088B2/ja
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to EP16807350.0A priority Critical patent/EP3309438B1/en
Priority to US15/579,912 priority patent/US10584810B2/en
Priority to KR1020177033791A priority patent/KR102012885B1/ko
Publication of WO2016199643A1 publication Critical patent/WO2016199643A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/085Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more braided layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/085Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more braided layers
    • F16L11/086Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more braided layers two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/02Layer formed of wires, e.g. mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/02Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof made from particular materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/06Braid or lace serving particular purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/085Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more braided layers
    • F16L11/087Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more braided layers three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/20Metallic fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/14Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/01Surface features
    • D10B2403/012Alike front and back faces
    • D10B2403/0122Smooth surfaces, e.g. laminated or coated
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/12Vehicles

Definitions

  • the present invention relates to a hydrogen filling hose. More specifically, the present invention relates to a hydrogen filling hose capable of improving pressure resistance and durability while suppressing turbulence of a reinforcing layer at a portion where a hose fitting is tightened and dimensional change due to internal pressure. It relates to hoses.
  • a hose fitting consisting of a nipple and a socket is attached to the end of this hose.
  • a hose fitting When attaching a hose fitting to a hose, generally hold the end of the hose between the nipple and the socket, pressurize the outer peripheral surface of the socket, deform the socket to reduce its diameter, and crimp it. Yes. Since the hydrogen filling hose as described above is required to have high pressure resistance, it is necessary to improve the pull-out resistance and sealing performance of the hose fittings accordingly, and the caulking force increases accordingly. If the caulking force is excessive, the braided structure of the reinforcing layer (particularly the outermost reinforcing layer) is disturbed.
  • the inner surface layer receives a larger internal pressure, so that the dimensional change (expansion deformation, etc.) becomes easier.
  • the inner surface layer in contact with hydrogen becomes brittle because it becomes a low temperature below freezing (for example, about minus 40 ° C.), and damage is likely to occur even if the dimensional change is small. Therefore, in order to improve the pressure resistance and durability of the hose, it is necessary to suppress the dimensional change of the hose.
  • a hose provided with a fiber reinforcing layer formed by braiding PBO fibers has excellent pressure resistance and durability.
  • the reinforcing layer is composed only of a fiber reinforcing layer braided with such high-strength fibers, it becomes difficult to ensure sufficient pressure resistance and durability when the flowing hydrogen has a higher pressure than before. Since it becomes difficult to suppress the dimensional change of the inner surface layer, improvement is desired.
  • An object of the present invention is to provide a hydrogen filling hose capable of improving pressure resistance and durability while suppressing disturbance of a reinforcing layer at a portion where a hose fitting is crimped and dimensional change due to internal pressure.
  • the hydrogen filling hose of the present invention at least two reinforcing layers are coaxially laminated between an inner surface layer and an outer surface layer that are coaxially laminated, and the inner surface layer is 90 ° C.
  • Gas permeability coefficient of dry hydrogen gas at 1 ⁇ 10 ⁇ 8 cc ⁇ cm / cm 2 ⁇ sec.
  • the other reinforcing layer is a fiber blade layer formed by braiding high-strength fibers.
  • the inner layer has a gas permeability coefficient of 1 ⁇ 10 ⁇ 8 cc ⁇ cm / cm 2 ⁇ sec. Since it is formed of a thermoplastic resin having a hydrogen gas barrier property of not more than cmHg, excellent hydrogen gas permeability can be obtained. Further, since the outermost reinforcing layer is a wire blade layer, even if a hose fitting is strongly caulked at the end of the hose, the braided structure is less likely to be disturbed than in the case of a fiber blade layer. Since the reinforcing layer on the inner peripheral side of the wire blade layer is a fiber blade layer formed by braiding high-strength fibers, it has appropriate pressure resistance. Therefore, even if the hydrogen flowing through the hose becomes a high pressure, the braided structure of the entire reinforcing layer is hardly disturbed.
  • an inner layer is formed of a thermoplastic resin having a good hydrogen gas barrier property, and a wire blade layer is disposed as a reinforcing layer on the outermost periphery with a fiber blade layer interposed therebetween. Brittleness is suppressed. This structure also contributes to improving the durability of the hose.
  • the inner layer has a thickness of 0.5 mm to 1.5 mm and an inner diameter of 5 mm to 9 mm. According to this specification, it is possible to increase the flow rate of hydrogen while ensuring the durability of the inner surface layer.
  • the wire diameter of the metal wire is 0.25 mm to 0.4 mm, the braid angle is 45 ° to 55 °, and the braid density of the wire blade layer is 70% or more. . According to this specification, it becomes easy to ensure the flexibility of the hose and the durability of the metal wire while suppressing the dimensional change of the hose due to the internal pressure.
  • the fiber blade layer is at least two layers, the wire diameter of the high-strength fibers constituting the fiber blade layer is 0.25 mm or more and 0.30 mm or less, and the braid angle of the innermost fiber blade layer is 45 °.
  • the specification may be such that the braid angle of the second fiber blade layer on the inner peripheral side is 50 ° or more and 60 ° or less. According to this specification, it becomes easy to ensure the flexibility of the hose and the durability of the high-strength fiber while suppressing the dimensional change of the hose due to the internal pressure.
  • the wire diameter of the metal wire is 0.25 mm to 0.4 mm
  • the braid angle is more than 55 ° and 60 ° or less
  • the braid density of the wire blade layer is 70% or more. You can also. According to this specification, it is more and more advantageous to secure the flexibility of the hose and the durability of the metal wire while suppressing the dimensional change of the hose due to the internal pressure.
  • the fiber blade layer is at least three layers, the wire diameter of the high-strength fibers constituting the fiber blade layer is 0.25 mm or more and 0.30 mm or less, and the braid angle of the innermost fiber blade layer is 43 °.
  • the braiding angle of the second inner fiber blade layer is 45 ° or more and 55 ° or less, and the third braiding angle of the inner fiber blade layer is 50 ° or more and 60 ° or less. It can also be a specification that is. According to this specification, it becomes easier to secure the flexibility of the hose and the durability of the high-strength fiber while suppressing the dimensional change of the hose due to the internal pressure.
  • the high-strength fiber for example, polyparaphenylene benzbisoxazole (PBO) fiber is used.
  • PBO polyparaphenylene benzbisoxazole
  • FIG. 1 is a side view illustrating a hydrogen filling hose according to the present invention by partially cutting it.
  • FIG. 2 is a cross-sectional view of the hose of FIG.
  • FIG. 3 is an explanatory view illustrating a dispenser installed in the hydrogen station.
  • FIG. 4 is a side view illustrating another embodiment of the hydrogen filling hose of the present invention with a part cut away.
  • a hydrogen filling hose 1 (hereinafter referred to as a hose 1) of the present invention includes an inner surface layer 2 and a reinforcing layer 3 (first fiber blade layer 3a, 2 fiber blade layer 3b, wire blade layer 3m), and outer surface layer 4 are coaxially laminated.
  • a one-dot chain line CL in FIG. 1 indicates the hose axis.
  • the inner surface layer 2 has a gas permeability coefficient of 1 ⁇ 10 ⁇ 8 cc ⁇ cm / cm 2 ⁇ sec. -It is formed with the thermoplastic resin which is below cmHg.
  • This gas permeability coefficient is a value measured according to JIS K7126.
  • the thermoplastic resin include nylon (nylon 6, nylon 66, nylon 11, etc.), polyacetal, ethylene vinyl alcohol copolymer, and the like.
  • the inner diameter of the inner surface layer 2 (that is, the inner diameter of the hose 1) is set to, for example, 4.5 mm to 12 mm, more preferably 5 mm to 9 mm.
  • the layer thickness of the inner surface layer 2 is set to, for example, 0.5 mm to 2.0 mm, more preferably 0.5 mm to 1.5 mm. In order to suppress the dimensional change of the inner surface layer 2, it is preferable to increase the layer thickness. On the other hand, in order to ensure the flexibility of the hose 1, it is preferable to reduce the thickness of the inner surface layer 2. In order to increase the flow rate of hydrogen H while ensuring the durability of the inner surface layer 2, the inner layer 2 may have a thickness of 0.5 mm to 1.5 mm and an inner diameter of 5 mm to 9 mm.
  • the outer surface layer 4 is made of a thermoplastic resin.
  • the thermoplastic resin include polyurethane and polyester.
  • the layer thickness of the outer surface layer 4 is set to, for example, 0.2 mm or more and 1.0 mm or less, more preferably 0.5 mm or more and 0.8 mm or less.
  • the outer diameter of the outer surface layer 4 (that is, the outer diameter of the hose 1) is set to, for example, 12 mm or more and 18 mm or less, more preferably 15 mm or more and 17 mm or less.
  • At least two reinforcing layers 3 are provided, and the outermost one layer is a wire blade layer 3m formed by braiding metal wires m.
  • the other reinforcing layers 3 are fiber blade layers 3a and 3b formed by braiding high-strength fibers f.
  • the reinforcing layer 3 has three layers, and is configured by laminating two fiber blade layers 3a and 3b and a wire blade layer 3m in order from the inner peripheral side.
  • the fiber blade layers 3a and 3b are not limited to two layers, and may be one layer, three layers or more.
  • the high strength fiber f is a fiber having a tensile strength of 2 GPa or more.
  • Examples of the high-strength fibers f include polyparaphenylene benzbisoxazole fibers (PBO fibers), aramid fibers, and carbon fibers.
  • the wire diameter of the high-strength fiber f is, for example, not less than 0.25 mm and not more than 0.30 mm.
  • the braid angle Af of the first fiber blade layer 3a is, for example, 45 ° to 55 °
  • the braid angle Af of the second fiber blade layer 3b is, for example, 50 ° to 60 °.
  • the braid angle Af of the second fiber blade layer 3b is set larger than the braid angle Af of the first fiber blade layer 3a.
  • the braid angle Af of the innermost first fiber blade layer 3a is set to 45 ° to 55 °
  • the braid angles of the second fiber blade layer 3b and other fiber blade layers Af is set to 50 ° or more and 60 ° or less.
  • the braid angle Af is set larger as the fiber blade layer is arranged on the outer peripheral side.
  • the braid density is difficult to define because the high-strength fibers f serving as constituent members are braided in a deformed state (crushed state). Accordingly, when the number of driven parts (the number of high-strength fibers f wound around each reinforcing layer) is defined in place of the braid density, when the outer diameter of the outer peripheral surface around which the high-strength fibers f are wound is 7 mm, the number of driven parts is 54 or more, for example. 90 or less. When the outer diameter of the outer peripheral surface around which the high-strength fiber f is wound is 10 mm and 12 mm, the number of driving is, for example, 72 or more and 120 or less and 90 or more and 150 or less, respectively.
  • the wire diameter of the high-strength fiber f is 0.25 mm or more and 0.30 mm or less, it is easy to ensure the flexibility of the hose 1 and the durability of the high-strength fiber f while suppressing the dimensional change of the hose 1 due to internal pressure.
  • the metal wire m for example, steel wire, stainless steel wire, piano wire or the like is used.
  • the wire diameter of the metal wire m is, for example, not less than 0.25 mm and not more than 0.4 mm, more preferably not less than 0.3 mm and not more than 0.35 mm.
  • the braid angle Am is, for example, 45 ° to 55 °
  • the braid density Dm in the wire blade layer 3m is, for example, 70% to 100%, more preferably 80% to 95%.
  • the braid density Dm indicates the area ratio of the metal wire m in the wire blade layer 3m as a percentage, and is 100% when the gap between the metal wires m is zero.
  • the hose fitting 6 is attached by crimping the hose at both ends.
  • Hydrogen H at a low temperature (for example, minus 40 ° or more and minus 20 ° or less) and high pressure (for example, 45 MPa or more and 87.5 MPa or less) is supplied and filled from the dispenser 5 to the vehicle 7 through the hose 1.
  • the inner surface layer 2 is formed of a thermoplastic resin having a good hydrogen gas barrier property as described above, excellent hydrogen gas permeability can be obtained. That is, since the hydrogen H flowing through the hose 1 is sufficiently barriered by the inner surface layer 2, the amount of hydrogen H that permeates to the outer peripheral side of the inner surface layer 2 can be reduced.
  • the outermost reinforcing layer is the wire blade layer 3 m
  • the braided structure of the crimped portion of the hose 1 is less likely to be disturbed than in the case of the reinforcing layer braided fiber.
  • the inner peripheral side of the wire blade layer 3m is the fiber blade layers 3a and 3b formed by braiding the high-strength fibers f, it has appropriate pressure resistance. Therefore, even if the hydrogen H flowing through the hose 1 becomes high pressure, the braided structure of the entire reinforcing layer 3 is hardly disturbed.
  • the braided structure is not greatly disturbed even if the reinforcing layer 3 is caulked in this way, the original performance of the reinforcing layer 3 can be sufficiently exhibited. Therefore, it is advantageous to improve the pressure resistance and durability of the hose 1. Even if the flowing hydrogen H becomes higher in pressure, the dimensional change of the inner surface layer 2 can be suppressed by the reinforcing layer 3.
  • the wire blade layer 3m which has been postponed in the past, is used. ing.
  • the load acting on the hose 1 due to the internal pressure is substantially borne by the first fiber blade layer 3a and the second fiber blade layer 3b. This solves the above-mentioned specific problem.
  • the wire blade layer 3m has a structure that does not substantially bear the load acting on the hose 1 due to the internal pressure. Therefore, even if the metal wire m constituting the wire blade layer 3m is hydrogen embrittled, there is no immediate trouble in using the hose 1. .
  • the flexibility of the hose 1 is sufficiently secured.
  • the wire blade layer 3m does not substantially bear the load acting on the hose 1 due to the internal pressure, it is not necessary to provide the wire blade layer 3m in multiple layers. It also contributes to the development.
  • the reinforcing layer 3 has four layers, and is configured by laminating three fiber blade layers 3 a, 3 b, 3 c and a wire blade layer 3 m in order from the inner peripheral side. Yes.
  • the wire diameter of the high-strength fiber f is, for example, not less than 0.25 mm and not more than 0.30 mm.
  • the braid angle Af of the first fiber blade layer 3a is, for example, 43 ° to 55 °
  • the braid angle Af of the second fiber blade layer 3b is, for example, 45 ° to 55 °
  • the braid of the third fiber blade layer 3c is, for example, not less than 50 ° and not more than 60 °.
  • the difference between the braid angle Af of the first fiber blade layer 3a and the braid angle Af of the second fiber blade layer 3b is 4 ° or more, the braid angle Af of the second fiber blade layer 3b and the braid of the third fiber blade layer 3c.
  • the difference from the angle Af is preferably 4 ° or more.
  • the outer diameter of the outer peripheral surface around which the high-strength fibers f are wound is 7 mm.
  • the number of driving is, for example, 54 or more and 90 or less.
  • the number of driving is, for example, 72 or more and 120 or less and 90 or more and 150 or less, respectively.
  • the wire diameter of the metal wire m is, for example, 0.25 mm to 0.4 mm, more preferably 0.3 mm to 0.35 mm.
  • the braid angle Am is, for example, more than 55 ° and 60 ° or less, and the braid density Dm in the wire blade layer 3m is, for example, 70% or more and 100% or less, more preferably 80% or more and 95% or less.
  • the braiding angle Am of the metal wire m is larger than that of the previous embodiment, and the stationary angle (54.7 °) or more is set. Further, the number of fiber blade layers 3a, 3b, and 3c is set to be larger, and the setting of the braiding angle Af of these fiber blade layers 3a, 3b, and 3c is also different.
  • the hose 1 of this embodiment has a higher breakdown pressure than the hose 1 of the previous embodiment. Moreover, the dimensional change rate when the internal pressure acts on the hose 1 is further reduced, the dimensional stability is further improved, and the distortion of the inner surface layer 2 can be reduced.
  • the breaking pressure of the hose 1 is improved by the synergistic effect of increasing the number of the fiber blade layers 3a, 3b, 3c and setting the braid angle Af to a predetermined value.
  • the braiding angle Am of the metal wire m is equal to or greater than the static angle (54.7 °)
  • the braid angle Am tends to approach the static angle to the wire blade layer 3m. Suppresses the diameter expansion of the hose 1.
  • the dimensional change rate of the hose 1 is reduced, and the distortion (expansion change) of the inner surface layer 2 can be effectively reduced. Accordingly, the durability of the hose 1 is improved, and it becomes more and more advantageous to extend the service life.
  • the inner surface layer 2 becomes a low temperature below the freezing point, so that the inner surface layer 2 becomes brittle at a low temperature and is easily damaged. Therefore, if the diameter expansion deformation of the inner surface layer 2 can be sufficiently suppressed as in this embodiment, the hose 1 is extremely practical.
  • the hydrogen 1 is supplied from the dispenser 5 to the vehicle 7 and charged with the hose 1. It is difficult to generate unnecessary force in the longitudinal direction. In connection with this, it becomes advantageous also in preventing generation
  • Example 1 four types of analysis models having the same structure as the hose illustrated in FIG. 1 (Examples 1 to 3 and Comparative Examples) were produced by changing only the specifications of the reinforcing layer, and the disturbance of the reinforcing layer and the inner surface
  • the amount of change in diameter expansion (size change) of the layer was analyzed and evaluated.
  • the first layer in Table 1 means the innermost peripheral layer
  • the second layer means a layer laminated on the outer peripheral surface of the first layer
  • the third layer means the outermost peripheral layer.
  • the gas permeability coefficient of dry hydrogen at 90 ° C. of the inner layer was 1 ⁇ 10 ⁇ 8 cc ⁇ cm / cm 2 ⁇ sec. -It is below cmHg.
  • test samples were prepared for these four types, and the pressure resistance of the hose assembly in which hose fittings having the same specifications were crimped to the hose ends with the same crimping force was evaluated.
  • the breaking pressure was measured in accordance with the method described in JIS K6330-2. These evaluation results are shown in Table 1.
  • the burst pressure was evaluated as an index with a comparative example being 100 as a reference. The larger the index, the better the pressure resistance. The failure mode is also described.
  • Hose fittings of the same specifications are attached to the end of the hose with the same caulking force and the blade structure is distorted in the outermost reinforcing layer when the internal pressure of the hose is 80 MPa (up / down fluctuation) was evaluated as an index using the comparative example as a standard of 100. A smaller index indicates less disturbance.
  • Example 2 in addition to the above-described test sample (Example 3) in which the reinforcing layer was the first fiber blade layer, the second fiber blade layer, and the wire blade layer from the inner peripheral side, Three types of test samples (Examples 4 to 6) in which only the specification of the reinforcing layer was changed as shown in Table 2 were made into one fiber blade layer, second fiber blade layer, third fiber blade layer, and wire blade layer.
  • the pressure resistance of the hose assembly in which hose fittings with the same specifications are crimped to the end of the hose with the same crimping force and the dimensional change (length change when the hose is pressurized) Rate and outer diameter change rate) and the inner diameter layer expansion change.
  • the gas permeability coefficient of dry hydrogen at 90 ° C. of the inner layer was 1 ⁇ 10 ⁇ 8 cc ⁇ cm / cm 2 ⁇ sec. -It was below cmHg.
  • the breaking pressure was measured in accordance with the method described in JIS K6330-2. These evaluation results are shown in Table 2. Each evaluation result was evaluated as an index using Example 3 as a standard of 100. The larger the index, the better the pressure resistance, and the smaller the index, the smaller the dimensional change rate and the diameter expansion change amount.
  • Examples 4 to 6 are superior in pressure resistance compared to Example 3, dimensional changes (length change rate and outer diameter change rate) when the hose is pressurized, and inner layer diameter change. You can see that the amount is small.
  • the change in diameter expansion (distortion) of the inner surface layer during pressurization of the hose is suppressed, the hose life span becomes longer, and if the change in diameter expansion of the inner surface layer is reduced by about 30%, the hose life span becomes 1 It was also possible to grasp that it was more than 5 times. Therefore, according to Examples 4 to 6, the hose life time is significantly improved as compared with Example 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Abstract

ホース金具を加締める部分での補強層の乱れおよび内圧による寸法変化を抑制しつつ耐圧性および耐久性を向上させることができる水素充填用ホースを提供する。90℃での乾燥水素ガスのガス透過係数が1×10-8cc・cm/cm2・sec.・cmHg以下の熱可塑性樹脂製の内面層(2)と、熱可塑性樹脂製の外面層(4)との間に、少なくとも2層の補強層(3)を同軸状に積層し、補強層(3)のうち最外周に金属ワイヤ(m)を編組して形成されたワイヤブレード層(3m)を用い、その他の補強層(3)にPBO繊維等の高強度繊維(f)を編組して形成された繊維ブレード層(3a、3b)を用いた。

Description

水素充填用ホース
 本発明は、水素充填用ホースに関し、さらに詳しくは、ホース金具を加締める部分での補強層の乱れおよび内圧による寸法変化を抑制しつつ、耐圧性および耐久性を向上させることができる水素充填用ホースに関するものである。
 近年、燃料電池自動車等の開発が盛んに行なわれている。これに伴って、水素ステーションに設置されたディスペンサから燃料電池自動車等に水素ガスを充填するホースの開発も進められている。この水素充填用ホースには、優れた耐水素ガス透過性が求められる。また、燃料電池自動車等の走行距離を長くするには、高圧で水素ガスを燃料タンクに充填する必要があるため、水素充填用ホースには、70MPa以上の高い内圧に耐え得る実用性が必要とされている。ホースの耐圧性を向上させるには補強層を強化することが一般的な手法であるが、補強層の構成部材として金属製の補強材を採用すると水素によって脆化するためホースの耐用期間が短くなることが懸念される。そこで、すべての補強材をポリパラフェニレンベンズビスオキサゾール(PBO)繊維を編組して形成することが提案されている(特許文献1、2参照)。
 このホースの端部には、ニップルとソケットからなるホース金具が取り付けられる。ホース金具をホースに取り付ける際には、一般的に、ニップルとソケットとの間にホースの端部を挟んだ状態にして、ソケットの外周面を加圧してソケットを縮径変形させて加締めている。上記のような水素充填用ホースには高い耐圧性が求められるため、ホース金具の耐抜け性、シール性も相応に向上させる必要があり、これに伴い加締め力が増大する。加締め力が過大になると、補強層(特に最外周の補強層)の編組構造が乱れる。また、ホースを流れる水素が高圧になるに連れてホースの寸法変化(拡径および軸方向収縮、或いは、縮径および軸方向伸長)の量が増大するため、ホース金具によって加締めた部分の補強層の編組構造が乱れ易くなる。このような編組構造の乱れはホースの耐圧性や耐久性を低下させる要因になる。
 また、水素が高圧になる程、内面層はより大きな内圧を受けるので寸法変化(拡径変形など)し易くなる。水素に接する内面層は氷点下の低温(例えばマイナス40℃程度)になるので脆くなり、寸法変化量が小さくても損傷が生じ易くなる。それ故、ホースの耐圧性や耐久性を向上させるにはホースの寸法変化を抑える必要がある。
 PBO繊維を編組して形成された繊維補強層を備えたホースは優れた耐圧性、耐久性を有している。しかしながら、補強層がこのような高強度繊維を編組した繊維補強層のみで構成されたホースでは、流れる水素が従来よりも高圧になると十分な耐圧性、耐久性を確保することが難しくなる。内面層の寸法変化を抑えることも難しくなるため、改良が望まれている。
日本国特開2010-31993号公報 日本国特開2011-158054号公報
 本発明の目的は、ホース金具を加締める部分での補強層の乱れおよび内圧による寸法変化を抑制しつつ、耐圧性および耐久性を向上させることができる水素充填用ホースを提供することにある。
 上記目的を達成するため本発明の水素充填用ホースは、同軸状に積層された内面層と外面層との間に、少なくとも2層の補強層が同軸状に積層され、前記内面層が90℃における乾燥水素ガスのガス透過係数が1×10-8cc・cm/cm2・sec.・cmHg以下の熱可塑性樹脂により形成され、前記外面層が熱可塑性樹脂により形成された水素充填用ホースにおいて、前記補強層のうち最外周の補強層が金属ワイヤを編組して形成されたワイヤブレード層であり、その他の補強層が高強度繊維を編組して形成された繊維ブレード層であることを特徴とする。
 本発明によれば、内面層が、90℃における乾燥水素ガスのガス透過係数が1×10-8cc・cm/cm2・sec.・cmHg以下である水素ガスバリア性が良好な熱可塑性樹脂により形成されるので、優れた耐水素ガス透過性を得ることができる。また、最外層の補強層がワイヤブレード層なので、ホース端部にホース金具を強く加締めても、繊維ブレード層の場合に比して編組構造が乱れ難い。そして、ワイヤブレード層の内周側の補強層が高強度繊維を編組して形成された繊維ブレード層なので相応の耐圧性を有している。それ故、ホースを流れる水素が高圧になっても補強層全体の編組構造が乱れ難くなる。
 したがって、補強層の本来の性能を十分に発揮させることができ、ホースの耐圧性、耐久性を向上させるには有利になる。水素がより高圧になっても補強層によって内面層の寸法変化を抑えることも可能になる。また、水素ガスバリア性が良好な熱可塑性樹脂により内面層を形成し、繊維ブレード層を介在させて最外周の補強層としてワイヤブレード層を配置することで、流れる水素からワイヤブレード層を遠ざけて水素脆化を抑制している。この構造もホースの耐久性向上に寄与している。
 ここで、例えば前記内面層の層厚が0.5mm以上1.5mm以下であり、内径が5mm以上9mm以下である仕様にする。この仕様によれば、内面層の耐久性を確保しつつ、水素の流量を増大させることが可能になる。
 前記金属ワイヤの線径が0.25mm以上0.4mm以下であり、その編組角度が45°以上55°以下であり、前記ワイヤブレード層の編組密度が70%以上である仕様にすることもできる。この仕様によれば、内圧によるホースの寸法変化を抑えつつホースの柔軟性および金属ワイヤの耐久性を確保し易くなる。
 前記繊維ブレード層が少なくとも2層であり、これら繊維ブレード層を構成する前記高強度繊維の線径が0.25mm以上0.30mm以下であり、最内周の繊維ブレード層の編組角度が45°以上55°以下であり、2番目に内周側の繊維ブレード層の編組角度が50°以上60°以下である仕様にすることもできる。この仕様によれば、内圧によるホースの寸法変化を抑えつつホースの柔軟性および高強度繊維の耐久性を確保し易くなる。
 或いは、前記金属ワイヤの線径が0.25mm以上0.4mm以下であり、その編組角度が55°超60°以下であり、前記ワイヤブレード層の編組密度が70%以上である仕様にすることもできる。この仕様によれば、内圧によるホースの寸法変化を抑えつつホースの柔軟性および金属ワイヤの耐久性を確保するには益々有利なる。
 前記繊維ブレード層が少なくとも3層であり、これら繊維ブレード層を構成する前記高強度繊維の線径が0.25mm以上0.30mm以下であり、最内周の繊維ブレード層の編組角度が43°以上55°以下であり、2番目に内周側の繊維ブレード層の編組角度が45°以上55°以下であり、3番目に内周側の繊維ブレード層の編組角度が50°以上60°以下である仕様にすることもできる。この仕様によれば、内圧によるホースの寸法変化を抑えつつホースの柔軟性および高強度繊維の耐久性を益々確保し易くなる。
 前記高強度繊維としては、例えばポリパラフェニレンベンズビスオキサゾール(PBO)繊維を用いる。
図1は本発明の水素充填用ホースを一部切開して例示する側面図である。 図2は図1のホースの横断面図である。 図3は水素ステーションに設置されたディスペンサを例示する説明図である。 図4は本発明の水素充填用ホースの別の実施形態を一部切開して例示する側面図である。
 以下、本発明の水素充填用ホースを図に示した実施形態に基づいて説明する。
 図1、図2に例示するように、本発明の水素充填用ホース1(以下、ホース1という)は、内周側から順に、内面層2、補強層3(第1繊維ブレード層3a、第2繊維ブレード層3b、ワイヤブレード層3m)、外面層4が同軸状に積層された構造となっている。図1の一点鎖線CLは、ホース軸心を示している。
 内面層2は、90℃における乾燥水素ガスのガス透過係数が1×10-8cc・cm/cm2・sec.・cmHg以下である熱可塑性樹脂により形成されている。このガス透過係数は、JIS K7126に準拠して測定した値である。この熱可塑性樹脂としては、ナイロン(ナイロン6、ナイロン66、ナイロン11等)、ポリアセタール、エチレンビニルアルコール共重合体等を例示することができる。
 このように水素ガスバリア性が良好な樹脂を内面層2に用いることにより、優れた耐水素ガス透過性を得ることができる。内面層2の内径(即ち、ホース1の内径)は例えば、4.5mm以上12mm以下、より好ましくは5mm以上9mm以下に設定される。内面層2の内径が大きくなる程、水素Hの流量を増大させるには有利になり、内径が小さくなる程、耐圧性を確保するには有利になる。
 内面層2の層厚は例えば、0.5mm以上2.0mm以下、より好ましくは0.5mm以上1.5mm以下に設定される。内面層2の寸法変化を抑制するには層厚を厚くすることが好ましい。一方、ホース1の柔軟性を確保するには、内面層2の層厚を薄くすることが好ましい。内面層2の耐久性を確保しつつ、水素Hの流量を増大させるには、内面層2の層厚を0.5mm以上1.5mm以下、内径を5mm以上9mm以下にするとよい。
 外面層4は、熱可塑性樹脂により形成されている。この熱可塑性樹脂としては、ポリウレタン、ポリエステル等を例示することができる。外面層4の層厚は例えば、0.2mm以上1.0mm以下、より好ましくは0.5mm以上0.8mm以下に設定される。外面層4の外径(即ち、ホース1の外径)は例えば、12mm以上18mm以下、より好ましくは15mm以上17mm以下に設定される。外面層4の層厚が大きくなる程、ホース1の耐候性を確保するには有利になり、外径が小さくなる程、柔軟性を確保するには有利になる。ホース1の耐候性と柔軟性を両立させるには、外面層4の層厚および外径を上述した範囲に設定することが好ましい。
 補強層3は少なくとも2層設けられ、そのうち最外周の1層は、金属ワイヤmを編組して形成されたワイヤブレード層3mになる。その他の補強層3は、高強度繊維fを編組して形成された繊維ブレード層3a、3bになっている。この実施形態では、補強層3が3層であり、内周側から順に、2層の繊維ブレード層3a、3b、ワイヤブレード層3mを積層して構成されている。繊維ブレード層3a、3bは2層に限らず、1層や3層或いはそれ以上の積層数にすることもできる。
 高強度繊維fとは引張り強度が2GPa以上の繊維である。高強度繊維fとしては、例えばポリパラフェニレンベンズビスオキサゾール繊維(PBO繊維)、アラミド繊維、炭素繊維等を例示できる。
 高強度繊維fの線径は例えば0.25mm以上0.30mm以下である。第1繊維ブレード層3aの編組角度Afは例えば45°以上55°以下であり、第2繊維ブレード層3bの編組角度Afは例えば50°以上60°以下である。第1繊維ブレード層3aの編組角度Afよりも第2繊維ブレード層3bの編組角度Afを大きくする。繊維ブレード層が3層以上存在する場合は、最内周の第1繊維ブレード層3aの編組角度Afを45°以上55°以下とし、第2繊維ブレード層3bおよびその他の繊維ブレード層の編組角度Afを50°以上60°以下にする。そして、外周側に配置される繊維ブレード層になる程、編組角度Afを大きく設定する。
 繊維ブレード層3a、3bの場合は、構成部材となる高強度繊維fが変形した状態(潰れた状態)で編組されるので、編組密度を規定することが難しい。そこで、編組密度に代えて打込み本数(各補強層に巻き付ける高強度繊維fの本数)で規定すると、高強度繊維fを巻き付ける外周面の外径が7mmの場合は、打込み本数は例えば54本以上90本以下となる。高強度繊維fを巻き付ける外周面の外径が10mm、12mmの場合の打込み本数は例えばそれぞれ72本以上120本以下、90本以上150本以下となる。
 高強度繊維fの線径を0.25mm以上0.30mm以下にすると、内圧によるホース1の寸法変化を抑えつつホース1の柔軟性および高強度繊維fの耐久性を確保し易くなる。
 金属ワイヤmとしては、例えば鋼線、ステンレス鋼線、ピアノ線等を用いる。金属ワイヤmの線径は例えば0.25mm以上0.4mm以下、より好ましくは0.3mm以上0.35mm以下である。編組角度Amは例えば45°以上55°以下であり、ワイヤブレード層3mにおける編組密度Dmは例えば70%以上100%以下、より好ましくは80%以上95%以下にする。編組密度Dmとは、ワイヤブレード層3mにおける金属ワイヤmの面積割合を百分率で示すものであり、金属ワイヤmどうしのすき間がゼロの場合は100%になる。
 金属ワイヤmの線径が小さい程、編組密度Dmを大きくして、ホース1の耐圧性と柔軟性を適度に両立させることが望ましい。編組密度Dmが70%未満であると十分な耐圧性を確保することが難しくなる。一方、編組密度Dfが100%に近づく程、柔軟性が低下するが実用に支障が生じることはない。金属ワイヤmの線径を0.25mm以上0.4mm以下、編組角度Amを45°以上55°以下、かつ、ワイヤブレード層3mの編組密度Dmを70%以上すれば、内圧によるホース1の寸法変化を抑えつつホース1の柔軟性および金属ワイヤmの耐久性を確保し易くなる。
 図3に例示するように、このホース1が水素ステーションに設置されるディスペンサ5に装備される場合には、ホース両端にホース金具6が加締めて取付けられる。ホース1を通じてディスペンサ5から車両7へ低温(例えばマイナス40°以上マイナス20°以下)で高圧(例えば45MPa以上87.5MPa以下)の水素Hが供給、充填される。
 このホース1によれば、内面層2が、上述したように水素ガスバリア性が良好な熱可塑性樹脂により形成されるので、優れた耐水素ガス透過性を得ることができる。即ち、ホース1を流れる水素Hが内面層2によって十分にバリアされるので、内面層2の外周側に透過する水素Hの量を低減させることができる。
 また、最外層の補強層がワイヤブレード層3mなので、ホース金具6を強く加締めても、繊維を編組した補強層の場合に比してホース1の加締めた部分の編組構造が乱れ難い。そして、ワイヤブレード層3mの内周側が高強度繊維fを編組して形成された繊維ブレード層3a、3bなので相応の耐圧性を有している。それ故、ホース1を流れる水素Hが高圧になっても補強層3全体の編組構造が乱れ難くなる。
 このように補強層3を加締めても編組構造が大きく乱れることがないので、補強層3の本来の性能を十分に発揮させることができる。したがって、ホース1の耐圧性、耐久性を向上させるには有利になる。流れる水素Hがより高圧になっても補強層3によって内面層2の寸法変化を抑えることも可能になる。
 水素Hを車両7に充填する場合には、非常に低温(例えばマイナス40℃~マイナス20℃)の水素Hが内面層2に接触して流れるので内面層2は低温脆化する。また、この水素Hは高圧(例えば45MPa以上87.5MPa以下)なので、内面層2にはこの圧力が内圧として作用する。この内圧によって内面層2は寸法変化するが低温脆化しているので、常温では問題とならない小さな寸法変形量であっても、この使用条件では破損する可能性が高くなる。
 さらには、水素Hは最も小さい分子なので、比較的容易に内面層2に侵入することができる。そのため、内面層2の損傷が微小であっても、そこを起点にして水素Hが大量に侵入し、破損が益々大きくなるという悪循環になる。水素Hが流れるホース1にはこのような特有の問題が生じる。
 本発明では補強層3として、高強度繊維fを編組して形成した第1繊維ブレード層3a、第2繊維ブレード層3bに加えて、従来採用が見送られていたワイヤブレード層3mを敢えて採用している。そして、内圧によりホース1に作用する負荷は、実質的に第1繊維ブレード層3aおよび第2繊維ブレード層3bが負担する。これにより、上述の特有の問題を解決している。
 そして、ワイヤブレード層3mは、内圧によりホース1に作用する負荷を実質的に負担しない構造にしている。それ故、仮に、ワイヤブレード層3mを構成する金属ワイヤmが水素脆化した場合であっても、ホース1の使用に直ちに支障が生じることはない。      
 補強層3の最外周の1層のみをワイヤブレード層3mにして、その他の補強層3は繊維ブレード層3a、3bにしているので、ホース1の柔軟性も十分に確保している。このように、内圧によりホース1に作用する負荷をワイヤブレード層3mが実質的に負担する構造ではないので、ワイヤブレード層3mを多層にして設ける必要がなく、ホース1の柔軟性だけでなく軽量化にも寄与している。
 図4に例示するホース1の実施形態では、補強層3が4層であり、内周側から順に、3層の繊維ブレード層3a、3b、3c、ワイヤブレード層3mを積層して構成されている。
 高強度繊維fの線径は例えば0.25mm以上0.30mm以下である。第1繊維ブレード層3aの編組角度Afは例えば43°以上55°以下であり、第2繊維ブレード層3bの編組角度Afは例えば45°以上55°以下であり、第3繊維ブレード層3cの編組角度Afは例えば50°以上60°以下である。第1繊維ブレード層3aの編組角度Afよりも第2繊維ブレード層3bの編組角度Afを大きく、第2繊維ブレード層3bの編組角度Afよりも第3繊維ブレード層3cの編組角度Afを大きくするとよい。例えば、第1繊維ブレード層3aの編組角度Afと第2繊維ブレード層3bの編組角度Afとの差は4°以上、第2繊維ブレード層3bの編組角度Afと第3繊維ブレード層3cの編組角度Afとの差を4°以上にするとよい。
 繊維ブレード層3a、3b、3cは、編組密度に代えて打込み本数(各補強層に巻き付ける高強度繊維fの本数)で規定すると、高強度繊維fを巻き付ける外周面の外径が7mmの場合は、打込み本数は例えば54本以上90本以下となる。高強度繊維fを巻き付ける外周面の外径が10mm、12mmの場合の打込み本数は例えばそれぞれ72本以上120本以下、90本以上150本以下となる。
 金属ワイヤmの線径は例えば0.25mm以上0.4mm以下、より好ましくは0.3mm以上0.35mm以下である。編組角度Amは例えば55°超60°以下であり、ワイヤブレード層3mにおける編組密度Dmは例えば70%以上100%以下、より好ましくは80%以上95%以下にする。
 この実施形態は先の実施形態に比して、金属ワイヤmの編組角度Amが大きくなっているとともに、静止角度(54.7°)以上に設定されている。また、繊維ブレード層3a、3b、3cの層数がより多く設定されていて、これら繊維ブレード層3a、3b、3cの編組角度Afの設定も異なっている。
 この仕様の相違に起因して、この実施形態のホース1は先の実施形態のホース1に比して破壊圧が向上する。また、ホース1に内圧が作用した際の寸法変化率がより小さくなって寸法安定性がさらに向上し、内面層2の歪みも低減させることができる。
 詳述すると、ホース1に内圧が作用した際には、編組角度Afが実質的に静止角度以下に設定されている第1繊維ブレード層3aおよび第2繊維ブレード層3bは、その編組角度Afが静止角度に近づこうとして拡径し、作用した内圧を第3繊維ブレード層3cおよびワイヤブレード層3mに効率的に伝える。これにより、特定の補強層3が過度の耐圧負担をすることなく、それぞれの補強層3(3a、3b、3c、3m)の性能をバランスよく機能させることが可能になる。これに加えて、繊維ブレード層3a、3b、3cの層数が増加し、かつ、所定の編組角度Afに設定していることの相乗効果によってホース1の破壊圧が向上する。
 また、金属ワイヤmの編組角度Amが静止角度(54.7°)以上になっているので、ホース1に内圧が作用した際には、編組角度Amは静止角度に近づこうとしてワイヤブレード層3mがホース1の拡径を抑制する。その結果、ホース1の寸法変化率が小さくなり、内面層2の歪み(拡径変化)も効果的に低減させることができる。これに伴い、ホース1の耐久性が向上して耐用期間を長くするには益々有利になる。
 ホース1に水素が流れている際には、内面層2が氷点下以下の低温になるため内面層2が低温脆化して損傷し易い状態となる。それ故、この実施形態のように内面層2の拡径変形を十分に抑えることが可能であればホース1としては極めて実用性が高くなる。
 また、内圧作用時のホース1の寸法変化率が低減してホース1の長手方向の変化が抑制されると、ディスペンサ5から車両7へ水素Hを供給、充填している最中に、ホース1には長手方向の不要な力が発生し難くなる。これに伴い、ホース1とホース金具6と接続状態に不具合を生じさせようとする力の発生を防止するにも有利になる。
 図1に例示したホースと同様の構造の解析モデルを、表1に示すように補強層の仕様のみを変えて4種類(実施例1~3、比較例)作製し、補強層の乱れ、内面層の拡径変化量(寸法変化量)を解析評価した。表1の第1層は最内周層、第2層は第1層の外周面に積層された層、第3層は最外周層を意味している。内面層の90℃における乾燥水素のガス透過係数は1×10-8cc・cm/cm2・sec.・cmHg以下である。また、この4種類について試験サンプルを作製して同一仕様のホース金具を同一の加締め力によりホース端部に加締めて取付けたホースアッセンブリの耐圧性を評価した。耐圧性試験は、JIS K6330-2に記載の方法に準拠して破壊圧を測定したものである。これらの評価結果を表1に示す。破壊圧は比較例を基準の100として指数評価した。指数が大きい程、耐圧性がよいことを示す。破壊モードも併せて記載した。
[補強層の乱れ]
 同一仕様のホース金具を同一加締め力でホース端部に加締めて取り付け、ホース内圧を80MPaにした場合の最外周の補強層の加締められた部分のブレード構造の乱れ具合(上下変動量)を、比較例を基準の100として指数評価した。指数が小さい程、乱れ具合が少ないことを示す。
[内面層の拡径変化量]
 上記の補強層の乱れの評価と同じ条件下における内面層の内径の拡径変化量を、比較例を基準の100として指数評価した。指数が小さい程、拡径変化量が少ないことを示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、実施例1~3は比較例に比して最外周の補強層の編組構造の乱れが小さく、内面層の拡径変化量が小さいことが分かる。また、実施例1~3のホースは、破壊モードがホース本体破壊であり補強層の本来の性能を十分に発揮することができ、優れた耐圧性を有することが確認できた。
 次に表2に示すように、補強層を内周側から第1繊維ブレード層、第2繊維ブレード層、ワイヤブレード層とした上述の試験サンプル(実施例3)に加えて、補強層を第1繊維ブレード層、第2繊維ブレード層、第3繊維ブレード層、ワイヤブレード層にして、補強層の仕様のみを表2のように異ならせた3種類の試験サンプル(実施例4~6)を作製して合計4種類の試験サンプルについて、同一仕様のホース金具を同一の加締め力によりホース端部に加締めて取付けたホースアッセンブリの耐圧性、ホースの加圧時の寸法変化(長さ変化率と外径変化率)および内面層の拡径変化量を評価した。内面層の90℃における乾燥水素のガス透過係数は1×10-8cc・cm/cm2・sec.・cmHg以下であった。耐圧性試験は、JIS K6330-2に記載の方法に準拠して破壊圧を測定したものである。これらの評価結果を表2に示す。それぞれの評価結果は実施例3を基準の100として指数評価した。指数が大きい程、耐圧性に優れていることを示し、指数が小さい程、寸法変化率、拡径変化量が小さいことを示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、実施例4~6は実施例3に比して耐圧性に優れ、ホースの加圧時の寸法変化(長さ変化率と外径変化率)および内面層の拡径変化量が小さいことが分かる。尚、ホース加圧時の内面層の拡径変化量(歪み)を抑制するとホース耐用期間が長くなることが分かっており、内面層の拡径変化量が30%程度低減するとホース耐用期間が1.5倍以上になることも把握できた。それ故、実施例4~6によれば、実施例3に比してホース耐用期間が大幅に向上する。
1 水素充填用ホース
2 内面層
3 補強層
3a 第1繊維ブレード層
3b 第2繊維ブレード層
3c 第3繊維ブレード層
3m ワイヤブレード層
4 外面層
5 ディスペンサ
6 ホース金具
7 車両
f 高強度繊維
m 金属ワイヤ
CL ホース軸心

Claims (7)

  1.  同軸状に積層された内面層と外面層との間に、少なくとも2層の補強層が同軸状に積層され、前記内面層が90℃における乾燥水素ガスのガス透過係数が1×10-8cc・cm/cm2・sec.・cmHg以下の熱可塑性樹脂により形成され、前記外面層が熱可塑性樹脂により形成された水素充填用ホースにおいて、
     前記補強層のうち最外周の補強層が金属ワイヤを編組して形成されたワイヤブレード層であり、その他の補強層が高強度繊維を編組して形成された繊維ブレード層であることを特徴とする水素充填用ホース。
  2.  前記内面層の層厚が0.5mm以上1.5mm以下であり、内径が5mm以上9mm以下である請求項1に記載の水素充填用ホース。
  3.  前記金属ワイヤの線径が0.25mm以上0.4mm以下であり、その編組角度が45°以上55°以下であり、前記ワイヤブレード層の編組密度が70%以上である請求項1または2に記載の水素充填用ホース。
  4.  前記繊維ブレード層が少なくとも2層であり、これら繊維ブレード層を構成する前記高強度繊維の線径が0.25mm以上0.30mm以下であり、最内周の繊維ブレード層の編組角度が45°以上55°以下であり、2番目に内周側の繊維ブレード層の編組角度が50°以上60°以下である請求項1~3のいずれかに記載の水素充填用ホース。
  5.  前記金属ワイヤの線径が0.25mm以上0.4mm以下であり、その編組角度が55°超60°以下であり、前記ワイヤブレード層の編組密度が70%以上である請求項1または2に記載の水素充填用ホース。
  6.  前記繊維ブレード層が少なくとも3層であり、これら繊維ブレード層を構成する前記高強度繊維の線径が0.25mm以上0.30mm以下であり、最内周の繊維ブレード層の編組角度が43°以上55°以下であり、2番目に内周側の繊維ブレード層の編組角度が45°以上55°以下であり、3番目に内周側の繊維ブレード層の編組角度が50°以上60°以下である請求項1、2または5のいずれかに記載の水素充填用ホース。
  7.  前記高強度繊維がポリパラフェニレンベンズビスオキサゾール(PBO)繊維である請求項1~6のいずれかに記載の水素充填用ホース。
PCT/JP2016/066230 2015-06-09 2016-06-01 水素充填用ホース WO2016199643A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16807350.0A EP3309438B1 (en) 2015-06-09 2016-06-01 Hydrogen-dispensing hose
US15/579,912 US10584810B2 (en) 2015-06-09 2016-06-01 Hydrogen-dispensing hose
KR1020177033791A KR102012885B1 (ko) 2015-06-09 2016-06-01 수소 충전용 호스

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015116763 2015-06-09
JP2015-116763 2015-06-09
JP2016-020574 2016-02-05
JP2016020574A JP6103088B2 (ja) 2015-06-09 2016-02-05 水素充填用ホース

Publications (1)

Publication Number Publication Date
WO2016199643A1 true WO2016199643A1 (ja) 2016-12-15

Family

ID=57503961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066230 WO2016199643A1 (ja) 2015-06-09 2016-06-01 水素充填用ホース

Country Status (2)

Country Link
EP (1) EP3309438B1 (ja)
WO (1) WO2016199643A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11085560B2 (en) 2017-05-16 2021-08-10 The Yokohama Rubber Co., Ltd. High-pressure hose

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3099409B1 (fr) * 2019-07-30 2021-10-01 Arkema France Structure multicouche pour le transport ou le stockage de l’hydrogene
FR3114768B1 (fr) * 2020-10-01 2023-09-29 Arkema France Structure multicouche pour le transport ou le stockage de l’hydrogene
DE102022213894A1 (de) 2022-12-19 2024-06-20 Contitech Deutschland Gmbh Armatur zum Anschließen eines Schlauches, insbesondere für Hoch-druck-Wasserstoff-Fluidleitungen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912260Y1 (ja) * 1970-09-18 1974-03-26
JPS544090B2 (ja) * 1975-05-01 1979-03-02
JPS62108685U (ja) * 1985-12-26 1987-07-11
JPH0380095B2 (ja) * 1981-09-14 1991-12-20 Parker Hannifin Corp
JPH11141751A (ja) * 1997-09-05 1999-05-28 Yokohama Rubber Co Ltd:The 高圧ゴムホース
JP2010031993A (ja) * 2008-07-30 2010-02-12 Yokohama Rubber Co Ltd:The 水素充填用ホース
WO2011067798A1 (en) * 2009-12-04 2011-06-09 Errecinque S.R.L Multi -layer tube, in particular for transporting gases in liquid state

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914518A (ja) * 1995-04-28 1997-01-17 Yokohama Rubber Co Ltd:The 補強高圧ホース

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912260Y1 (ja) * 1970-09-18 1974-03-26
JPS544090B2 (ja) * 1975-05-01 1979-03-02
JPH0380095B2 (ja) * 1981-09-14 1991-12-20 Parker Hannifin Corp
JPS62108685U (ja) * 1985-12-26 1987-07-11
JPH11141751A (ja) * 1997-09-05 1999-05-28 Yokohama Rubber Co Ltd:The 高圧ゴムホース
JP2010031993A (ja) * 2008-07-30 2010-02-12 Yokohama Rubber Co Ltd:The 水素充填用ホース
WO2011067798A1 (en) * 2009-12-04 2011-06-09 Errecinque S.R.L Multi -layer tube, in particular for transporting gases in liquid state

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3309438A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11085560B2 (en) 2017-05-16 2021-08-10 The Yokohama Rubber Co., Ltd. High-pressure hose

Also Published As

Publication number Publication date
EP3309438A4 (en) 2019-01-16
EP3309438A1 (en) 2018-04-18
EP3309438B1 (en) 2022-02-23

Similar Documents

Publication Publication Date Title
JP6103088B2 (ja) 水素充填用ホース
EP3627026B1 (en) High-pressure hose
WO2016199643A1 (ja) 水素充填用ホース
JP6926413B2 (ja) ホース
JP2005282703A (ja) 金属蛇腹管複合ホース
JP6152887B2 (ja) 高圧ホース
JP5647392B2 (ja) 水素充填用ホース
JP2004150606A (ja) 蛇腹金属管付ホース
WO2012115224A1 (ja) 樹脂製フューエルインレットパイプおよびその製法
JP5549247B2 (ja) 水素充填用ホースとホース金具のアッセンブリ品の製造方法
JP6152886B2 (ja) 水素充填用ホース
JP6720826B2 (ja) 水素充填用ホース
EP3233469B1 (en) Low extractable curb pump hose
JP2007333183A (ja) 液圧回路の衝撃圧吸収装置
JP2005282702A (ja) 金属蛇腹管複合ホース
JP2018031397A (ja) ホース
CN113710944A (zh) 全橡胶低硫和提取的ped软管
JP7356009B2 (ja) 水素充填用ホース
CN217927610U (zh) 一种管路连接组件及车辆
KR20230140907A (ko) 하이브리드 보강층을 갖는 고압호스
JP2019194487A (ja) 水素充填用ホース
JP2006266349A (ja) 高圧ゴムホース
JP2002174369A (ja) フレキシブル不透過膜及び不透過性ホース

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177033791

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15579912

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016807350

Country of ref document: EP