WO2016197781A1 - 风道风阻的无极可调式方法及装置 - Google Patents
风道风阻的无极可调式方法及装置 Download PDFInfo
- Publication number
- WO2016197781A1 WO2016197781A1 PCT/CN2016/081757 CN2016081757W WO2016197781A1 WO 2016197781 A1 WO2016197781 A1 WO 2016197781A1 CN 2016081757 W CN2016081757 W CN 2016081757W WO 2016197781 A1 WO2016197781 A1 WO 2016197781A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bracket
- wind resistance
- ventilation
- air duct
- baffle
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B1/00—Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
- H02B1/56—Cooling; Ventilation
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20009—Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
- H05K7/20136—Forced ventilation, e.g. by fans
- H05K7/20145—Means for directing air flow, e.g. ducts, deflectors, plenum or guides
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20009—Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
- H05K7/20209—Thermal management, e.g. fan control
Definitions
- This article relates to, but is not limited to, the field of electronic equipment, and more particularly to an infinitely adjustable method and apparatus for optimizing air duct wind resistance of a duct air duct and a heat dissipation capability.
- Embodiments of the present invention provide an infinitely adjustable method and apparatus for air duct wind resistance, which can quickly adjust air duct wind resistance, control air volume flowing to a specific component, and distribute more air volume to components with large heat dissipation requirements to ensure product specificity.
- the infinitely adjustable device for air duct wind resistance provided by the embodiment of the invention has the advantages of simple structure and convenient operation, and can realize air volume on demand distribution and wind resistance stepless adjustment.
- An embodiment of the present invention provides an infinitely adjustable method for air duct wind resistance, which includes the following step:
- providing a windage adjustment mechanism with adjustable ventilation area on the air channel of the component includes the following steps:
- a baffle parallel to the bracket is disposed on the air duct, and has a second venting hole disposed to be paired with the first venting hole;
- the bracket is configured to adjust the ventilation area of the bracket by aligning or staggering the second ventilation hole and the first ventilation hole paired with the second ventilation hole.
- changing the ventilation area of the windage adjustment mechanism includes driving the baffle to slide relative to the bracket to change a ventilation area by a feed mechanism.
- the embodiment of the present invention further provides an infinitely adjustable device for air duct wind resistance, comprising: a wind resistance adjusting mechanism disposed on a wind channel of the component, configured to have an adjustable ventilation area; and configured to change the wind resistance adjusting mechanism. a feeding mechanism of the ventilation area; wherein, the ventilation area of the wind resistance adjusting mechanism is changed by the feeding mechanism according to the heat dissipation requirement of the component, so as to adjust the wind resistance on the air passage.
- the wind resistance adjusting mechanism comprises: a bracket having a first ventilation hole; a baffle parallel to the bracket, having a second ventilation hole disposed to be paired with the first ventilation hole; wherein, The second venting opening and the first venting hole paired therewith are aligned or staggered to adjust the ventilation area of the bracket.
- the baffle is slidably coupled to the bracket.
- the bracket has a rail slot
- the baffle is disposed in the rail slot.
- the wind resistance adjusting mechanism further comprises: a panel having a side plate located at one end of the bracket and perpendicular thereto.
- the feeding mechanism includes: being mounted on the baffle and extending toward the side plate a screw; a nut that cooperates with the screw and is located outside the side plate; an elastic member that is fitted over the screw and located between the side plate and the screw head of the screw.
- the feeding mechanism includes: a nut mounted on the baffle and having a central axis perpendicular to the side plate; a screw mounted on the side plate and configured to cooperate with a nut; An elastic member on the screw and between the side plate and the nut.
- the infinitely adjustable method and device for air duct wind resistance achieves the advancement of the internal wind resistance stepless adjustment technology of the electronic device, optimizes the air duct layout inside the electronic device, and improves the overall device. Cooling capacity.
- FIG. 1 is a perspective view of an infinitely adjustable device for air duct wind resistance according to an embodiment of the present invention
- FIG. 2 is a schematic structural view of a bracket according to an embodiment of the present invention.
- FIG. 3 is a schematic structural view of a baffle according to an embodiment of the present invention.
- Figure 4a is a top plan view of the infinitely adjustable device of Figure 1;
- Figure 4b is an enlarged view of a portion A of Figure 4a;
- FIG. 5a is a schematic structural view showing a ventilation area of a wind resistance adjusting mechanism according to an embodiment of the present invention
- FIG. 5b is a schematic structural view of the wind resistance adjusting mechanism of the embodiment of the present invention with a minimum ventilation area
- FIG. 6 is a schematic structural view of an infinitely adjustable device inserted into a single-frame insertion box according to an embodiment of the present invention
- FIG. 7 is a flow chart of an infinitely adjustable method of air duct wind resistance according to an embodiment of the present invention.
- the embodiment of the invention provides an infinitely adjustable method for air duct wind resistance, which can be applied to a situation in which the wind resistance of each slot component of the insertion box is freely adjusted, for example, for the heat dissipation requirement of the specific slot component of the insertion box, the component wind
- the road is adjusted for precise wind resistance; it can also be used in air duct experiments, such as There is no extremely adjustable wind resistance required for the output experiment, which precisely controls the air flow to the fixed section, providing a perfect test environment for thermal testing under different wind resistance; of course, it can also be applied to other wind speed adjustments according to heat dissipation requirements. Case.
- the method of the embodiment of the present invention will be described by taking the wind resistance adjustment at the component of the slot in the slot as an example.
- the infinitely adjustable method of the embodiment of the present invention includes the following steps:
- the infinitely adjustable method of the embodiment of the invention comprises the following steps.
- a wind resistance adjustment mechanism with adjustable ventilation area is arranged on the air duct of the component
- a baffle disposed on the air passage and arranged along the bracket and having the second venting hole is disposed such that the length extending direction of the baffle is parallel to the extending direction of the length of the bracket.
- the size of the second ventilation hole on the baffle is the same as the size of the first ventilation hole on the bracket, and the number of the second ventilation holes may be the same as or different from the number of the first ventilation holes.
- a row of second ventilation holes is disposed on the baffle, and a row of first ventilation holes is disposed on the bracket, and the number of the second ventilation holes is the same as the number of the first ventilation holes, and adjacent
- the spacing between the two first venting holes is equal to the spacing between the adjacent two second venting holes.
- the plurality of second ventilation holes on the baffle and the plurality of first ventilation holes on the bracket are paired one by one so as to pass two ventilations of one pair
- the holes are aligned or staggered so that the first vent is completely exposed, partially exposed, or completely blocked by the baffle.
- the portions of the air duct located at both sides of the wind resistance adjusting mechanism are communicated such that the air passage is in a fully open or half open state; and when the first vent hole is completely blocked by the baffle
- the air passages are closed.
- the ventilation area of the bracket can be determined by whether the first vent hole is exposed and exposed, and the ventilating area is the ventilating area of the wind resistance adjusting mechanism.
- the baffle is driven to slide relative to the bracket by the feeding mechanism, so that the position of any one of the second venting holes on the baffle is changed relative to the position of the first venting hole matched with the bracket, ie, changing The exposed state of the first ventilation hole achieves the purpose of changing the ventilation area of the wind resistance adjustment mechanism.
- the heat dissipation requirement of the component may be determined by detecting a temperature value of the component or the like. For example, when the temperature value of the component exceeds the preset high temperature value and the component is urgently required to dissipate heat, the baffle on the component air passage can be moved by the feeding mechanism to any of the second ventilation holes and the bracket thereon. Where the first venting holes of the second venting holes are completely aligned, since the size of the second venting holes is the same as the size of the first venting holes, the first venting holes are completely exposed at this time, and the ventilating area of the cradle is maximized. That is, the ventilation resistance adjustment mechanism has the largest ventilation area (as shown in Figure 5a).
- the baffle when the temperature value of the component is lower than the preset low temperature value, the baffle may be moved by the feeding mechanism to any of the second ventilation holes and the first ventilation paired with the second ventilation hole The position where the hole is completely staggered, that is, the first vent hole is completely blocked by the second connecting portion 133 of the baffle and is not exposed.
- the ventilation area of the bracket is the smallest, that is, the ventilation area of the wind resistance adjusting mechanism is the smallest (the ventilation area is 0, as shown in Figure 5b).
- the baffle when the temperature value of the component is between the preset high temperature value and the preset low temperature value, the baffle may be moved by the feeding mechanism to any of the second ventilation holes and the bracket on the second ventilation
- the first venting hole of the hole pair is partially aligned and partially offset.
- a part of the first venting hole is exposed and the other part is completely blocked by the second connecting portion of the baffle, and the ventilating area of the bracket is at a maximum and a minimum.
- the ventilation area of the wind resistance adjustment mechanism is between the maximum and the minimum.
- the wind resistance on the air passage of the component to be cooled changes: when the ventilation area is maximum, the air passage is completely open, the wind resistance on the air passage is the smallest, and the wind flows along the air passage to be cooled.
- the ventilation area is reduced, the air passage is in a half-open or closed state, the wind resistance on the air passage is increased, and the wind flows to other heat-dissipating components having a small wind resistance.
- the method of the embodiment of the present invention adjusts the distance that the baffle moves relative to the bracket at any time by the heat dissipation requirement of the component, and adjusts the size of the exposed first vent hole by the moving distance of the baffle relative to the bracket, that is, the bracket can be adjusted.
- the ventilation area ie, the ventilation area of the wind resistance adjustment mechanism
- the air duct resistance is increased, so that more air volume can be distributed to components with less wind resistance and higher heat dissipation requirements, ensuring heat dissipation requirements of specific components of the product, realizing management of the air duct, and effectively ensuring heat dissipation of each component. Demand and service life.
- an embodiment of the present invention provides an embodiment of the apparatus suitable for the above method.
- the air duct provided by the embodiment of the present invention is provided.
- the insertion box 2 can be a single-frame insertion box; a feed mechanism configured to change the ventilation area of the wind resistance adjustment mechanism 1; wherein the feed mechanism is configured to: change according to the heat dissipation requirement of the component
- the ventilation area of the wind resistance adjusting mechanism 1 is to adjust the wind resistance on the air passage.
- the windage adjustment mechanism 1 of the embodiment of the present invention includes: a bracket 12 having a first ventilation hole 123; a baffle 13 parallel to the bracket 12, and having a first ventilation hole 123 The paired second ventilation holes 134; wherein the bracket 12 is disposed to adjust the ventilation area of the bracket 12 by aligning or staggering the second ventilation holes 134 and the first ventilation holes 123 paired therewith.
- the wind resistance adjustment mechanism 1 further includes a panel 11 having a side panel 111 at one end of the bracket 12 and perpendicular thereto.
- the panel 11 of the wind resistance adjusting mechanism 1 of the embodiment of the present invention has a horizontal bottom plate 112 and a side plate 111 vertically disposed on one side of the upper surface of the bottom plate 112.
- the panel 11 can be detachably connected to the frame of the insertion box 2, such as by bolt connection, or can be fixedly connected to the frame of the insertion box 2 by welding, and is arranged to be disposed on the wind resistance adjusting mechanism 1 thereon.
- the panel 11 is arranged such that when it is mounted in the insertion box 2, its length direction of the side plate 111 should be parallel to the direction in which the length of the air duct of the insertion box 2 extends.
- the bracket 12 of the embodiment of the present invention is optionally mounted on the panel 11 and connected to the bottom plate 112 or the side panel 111 of the panel 11.
- the bracket 12 is disposed opposite the air duct, which is a U-shaped structure, that is, has a U-shaped rail groove, and can serve as a guide rail when the shutter 13 moves.
- a row of first ventilation holes 123 are formed on the bracket 12 opposite to the air duct.
- the portion of the bracket 12 between the adjacent two first ventilation holes 123 is a first connecting portion 122, and two of the brackets 12
- the side is provided with connection holes 121, 124 which are provided to connect the shutters 13, respectively.
- the connecting hole 121 is disposed on a side of the bracket 12 adjacent to the side plate 111, and an opening thereof is located at an end of the bracket 12, and the connecting hole 124 is disposed at the bracket The other side of 12 is away from the other side of the side panel 111.
- the baffle 13 of the embodiment of the present invention is disposed in the sliding rail groove of the bracket 12, and has a body that can smoothly slide along the bracket 12 in the horizontal direction.
- the body of the baffle 13 is provided with a second venting hole 134 facing the air passage.
- the portion of the baffle 13 between the two adjacent second venting holes 134 is a second connecting portion 133.
- the structural size and the number of the second ventilation holes 134 are the same as the structural size and the number of the first ventilation holes 123, and the spacing between the adjacent two second ventilation holes 134 is between the adjacent two first ventilation holes 123.
- the pitches are equal, that is, the width of the second connecting portion 133 between the two second vent holes 134 and the first connecting portion 122 between the two first vent holes 123 are equal.
- the two sides of the body of the baffle 13 are provided with buckles 131 and 135 disposed to connect with the connecting holes 121 and 124 on both sides of the bracket 12, and the buckles 131 and 135 are opposite to the body of the baffle toward the bracket 12 Bend.
- the buckle 131 is disposed on a side of the baffle 13 adjacent to the side plate 111, and the buckle 135 is disposed on the other side of the baffle 13 away from the side plate 111, and the buckle 131 is inserted into the connecting hole. In the 121, the buckle 135 is inserted into the connecting hole 124.
- the baffle 13 By inserting the baffle 13 into the U-shaped bracket 12, the baffle 13 can be slid along the bracket 12 according to the heat dissipation requirement of the component, so that the second venting hole 134 of the baffle 13 and the first venting opening 123 of the bracket 12 Align or stagger to achieve the purpose of adjusting the ventilation area.
- the apparatus of the embodiment of the present invention further includes a feed mechanism configured to drive the baffle 13 to move relative to the bracket 12.
- the feeding mechanism may adopt the following structure, which includes: being mounted on the buckle 131 of the baffle 13 and facing the side plate a screw 132 extending in the direction of 111, the end of which can pass through the side plate 111 and protrude toward the outside of the side plate; a nut 15 that cooperates with the screw 132 and is located outside the side plate 111; and is fitted to the screw 132 and located at the side plate 111 and the screw 132
- the resilient member employs a spring 14.
- the baffle 13 when installed, the baffle 13 can be inserted into the bracket 12, and the spring 14 can be placed on the screw 132 and placed between the side plate 111 and the screw head of the screw 132, and then the nut 15 (the nut) The loosening nut can be screwed onto the screw 132 to connect the side plate 111 with the baffle 13 and finally the bracket 12 is fixed to the side plate 111 of the panel 11 by riveting or welding, and the panel 11 is mounted in the plug.
- the frame of the case 2 is fixed, and the side plate 111 is fixed relative to the insertion box.
- the baffle 13 can be moved on the bracket 12 in a horizontal direction, for example, when the nut 15 is turned left to the end and loosened on the screw 132 (as shown in FIG. 5a),
- the first ventilation hole 123 on the bracket 12 and the matching second ventilation hole 134 on the baffle 13 are completely aligned, when the first ventilation hole 123 is completely exposed, the ventilation area of the bracket 12 is maximized, so that the air passage is ventilated.
- the volume is also the largest, the air duct wind resistance is the smallest, the wind can flow to the components of the slot; and when the nut 15 is turned right and screwed on the screw 132 (as shown in Fig.
- the first ventilation on the bracket 12 at this time The hole 123 and the matching second vent hole 134 on the baffle 13 are completely staggered, that is, the first vent hole 123 is blocked by the second connecting portion 133 on the baffle 13, and the first vent hole 123 is completely blocked.
- the bracket 12 has the smallest ventilation area (the ventilation area is 0), so that the ventilation of the air duct is also minimized, and the air duct wind resistance is the largest, so that the wind flows toward the components of the other slots.
- the feeding mechanism of the embodiment of the present invention may further adopt a structure (not shown) in which the mounting positions of the nut and the screw are interchanged, that is, the nut is fixedly mounted on the outside of the buckle 131 of the baffle, and The central axis of the nut is perpendicular to the side plate, the screw is mounted to the side plate and extends toward the buckle direction, and the spring is placed over the screw and placed between the side plate and the nut.
- the movement of the baffle is driven by screwing the screw, and the movement principle thereof is similar to the above, and will not be repeated here.
- the external force for rotating the nut or the screw of the feed mechanism may be by human power, by means of electric power, or by electromagnetic force or the like, and its structure will not be described here.
- the nut 15 When the air-conditioning adjustment mechanism 1 of the embodiment of the present invention is in the empty slot position (ie, there is no heat dissipation air volume requirement), the nut 15 can be right-rotated to be fully screwed on the screw 132, so that the original would enter
- the air volume of the slot can be reasonably distributed to the components of the other slots of the slot; when the slot of the windage adjustment mechanism 1 of the embodiment of the present invention is a real component, the airflow resistance of the air duct can be reasonably adjusted according to the actual heat dissipation requirement of the component. , in turn, precisely control the amount of air flowing to the components of the tank.
- the device of the embodiment of the invention can be used for freely adjusting the wind resistance of each slot of the insertion box, for example, for the heat dissipation requirement of a specific slot of the insertion box, the precise wind resistance adjustment is performed, and the left-handed nut represents the wind resistance reduction. (The air duct opens and becomes larger), the right-handed nut represents the increase of wind resistance (ie, the air passage is closed).
- the screwing amount of the nut can be matched with the wind resistance, such as the nut right-handed.
- 40% of the precession amount represents 40% of the maximum wind resistance of the corresponding wind resistance, and the nut is turned right to the screw
- the upper part represents the corresponding wind resistance as the maximum wind resistance (that is, the air duct is completely closed); it can also be used in the air duct experiment, through which the wind resistance required for the experiment can be quickly and unrestricted, and the flow direction fixed section can be precisely controlled.
- the air volume provides a perfect test environment for thermal testing under different wind resistances.
- the device and the method according to the embodiment of the present invention have simple structure and convenient operation, can realize air volume on demand distribution and wind resistance can be adjusted infinitely, and obtain an improvement on the internal wind resistance resistance adjustment technology of the electronic device.
- the air duct layout inside the electronic device can be optimized to improve the overall heat dissipation capability of the device.
- the above embodiment can quickly adjust the air duct wind resistance, control the air flow to a specific component, and distribute more air volume to components with larger heat dissipation requirements to ensure the heat dissipation requirements of specific components of the product.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
本文公开了一种风道风阻的无极可调式方法及装置,其方法包括如下步骤:在元件的风道上设置通风面积可调的风阻调节机构;根据元件的散热需求,改变风阻调节机构的通风面积;通过改变风阻调节机构的通风面积,调节风道上的风阻。
Description
本文涉及但不限于电子设备领域,尤其涉及用于优化插箱风道、提升散热能力的风道风阻的无极可调式方法及其装置。
随着电子通讯设备的整机功耗越来越大,插箱的散热问题呈日益严峻的趋势。相关技术中,插箱内部每个槽位的风阻都是固定不变的,其具体风阻值主要由插箱架构及单板上器件布局所决定。然而在实际应用场景中,插箱的每个槽位对散风量的需求并不完全一致,尤其对于多框式插箱,由于级联效应,通常会出现上框槽位(下风口)散热压力大,不同功能单板的风量、风压需求差异也很巨大的情况,因此在整机风冷散热能力固定的情况下,如何通过精细化控制单槽位风量、进而提升整机设备的热适应性成为亟待解决的课题。
其次,电子产品热学实验过程中(例如单板开发过程中),为了精确、快速的获取风量、风压对具体单板、芯片的散热影响,也极其需要搭建一种风阻可调的实验环境。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种风道风阻的无极可调式方法及装置,其可以快速调节风道风阻,控制流向特定元件的风量,将较多的风量分配到散热需求较大的元件,保证产品特定元件的散热需求;此外,本发明实施例提供的风道风阻的无极可调式装置,其结构简单、操作便利,可以实现风量按需分配及风阻无极可调。
本发明一方面实施例提供一种风道风阻的无极可调式方法,其包括如下
步骤:
在元件的风道上设置通风面积可调的风阻调节机构;
根据元件的散热需求,改变风阻调节机构的通风面积;
通过改变风阻调节机构的通风面积,调节风道上的风阻。
可选地,在元件的风道上设置通风面积可调的风阻调节机构包括如下步骤:
在所述风道上安置具有第一通风孔的支架;
在所述风道上安置与所述支架平行的挡板,其具有设置为与第一通风孔配对的第二通风孔;
其中,所述支架设置为:通过使所述第二通风孔和与其配对的第一通风孔位置对齐或错开,使所述支架的通风面积可调。
可选地,改变风阻调节机构的通风面积包括通过进给机构驱动所述挡板相对所述支架滑动改变通风面积。
另一方面,本发明实施例还提供一种风道风阻的无极可调式装置,其包括:安置在元件的风道上的风阻调节机构,设置为其通风面积可调;设置为改变风阻调节机构的通风面积的进给机构;其中,设置为:根据元件的散热需求,通过所述进给机构改变所述风阻调节机构的通风面积,以便调节所述风道上的风阻。
可选地,所述风阻调节机构包括:具有第一通风孔的支架;与支架平行的挡板,其具有设置为与第一通风孔配对的第二通风孔;其中,设置为:通过使所述第二通风孔和与其配对的第一通风孔位置对齐或错开,使所述支架的通风面积可调。
可选地,所述挡板与所述支架滑动连接。
可选地,所述支架具有滑轨槽,所述挡板安置在滑轨槽内。
可选地,所述风阻调节机构还包括:面板,具有位于所述支架一端且与其垂直的侧板。
可选地,所述进给机构包括:安装于所述挡板上且朝所述侧板方向延伸
的螺杆;与螺杆配合且位于所述侧板外侧的螺母;套装在螺杆上且位于所述侧板与螺杆的螺杆头之间的弹性件。
或者,可选地,所述进给机构包括:安装于所述挡板上且其中心轴垂直于所述侧板的螺母;安装于所述侧板上设置为与螺母配合的螺杆;套装在螺杆上且位于所述侧板与所述螺母之间的弹性件。
与相关技术相比,采用本发明实施例的风道风阻的无极可调式方法及装置,取得了电子设备内部风阻无极调整技术的进步,优化了电子设备内部的风道布局,提高了设备的整体散热能力。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是本发明实施例风道风阻的无极可调式装置的透视图;
图2是本发明实施例的支架的结构示意图;
图3是本发明实施例的挡板的结构示意图;
图4a是图1所示无极可调式装置的俯视图;
图4b是图4a中的A部分放大图;
图5a是本发明实施例的风阻调节机构的通风面积最大时的结构示意图;
图5b是本发明实施例的风阻调节机构的通风面积最小时的结构示意图;
图6是本发明实施例的无极可调式装置插入单框插箱中的结构示意图;
图7是本发明实施例的风道风阻的无极可调式方法的流程图。
下文中将结合附图对本发明的实施方式进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明实施例提供一种风道风阻的无极可调式方法,其可以应用于具有自由调节插箱每个槽位元件风阻的情况,如,针对插箱具体槽位元件的散热需求,对元件风道进行精确风阻调节;还可以应用于风道实验中,如,快速
并无极可调的输出实验所需的风阻,进而精确控制流向固定截面的风量,为不同风阻下的热测试提供完美的测试环境;当然,还可以应用于其它的、根据散热需求对风阻进行调节的情况。下面,仅以在插箱一槽位的元件处需进行风阻调节为例,对本发明实施例的方法进行描述。
如图7所示,本发明实施例的无极可调式方法包括如下步骤:
在元件的风道上设置通风面积可调的风阻调节机构;
根据元件的散热需求,改变风阻调节机构的通风面积;
通过改变风阻调节机构的通风面积,调节风道上的风阻。
可选地,本发明实施例的无极可调式方法包括如下步骤。
S1、在元件的风道上设置通风面积可调的风阻调节机构;包括:
在插箱任一个槽位的待散热元件的风道上安置具有第一通风孔的支架,并且,使支架上的第一通风孔正对着风道;
在上述风道上安置与支架并排且具有第二通风孔的挡板,设置为:使挡板的长度延伸方向与支架的长度延伸方向平行。
其中,可选地,挡板上的第二通风孔的尺寸与支架上的第一通风孔的尺寸相同,而第二通风孔的数量可以与第一通风孔的数量相同或不同。可选地,本发明实施例在挡板上设置一排第二通风孔、在支架上设置一排第一通风孔,且第二通风孔的数量和第一通风孔的数量相同,而相邻的两个第一通风孔之间的间距和相邻的两个第二通风孔之间的间距相等。
可选地,将支架和挡板安置于风道上时,挡板上的多个第二通风孔和支架上的多个第一通风孔要一一配对,以便通过让一一配对的两个通风孔位置对齐或错开,使第一通风孔被完全露出、部分露出或被挡板完全堵住。当第一通风孔被完全露出或部分露出时,风道的位于风阻调节机构两侧的部分相连通,使得风道处于完全打开或半打开状态;而当第一通风孔被挡板完全堵住时,风道的位于风阻调节机构两侧的部分不能连通,使得风道处于关闭状态。而通过第一通风孔是否被露出及露出尺寸的大小,可以确定支架的通风面积(该通风面积即为风阻调节机构的通风面积)。
S2、根据元件的散热需求,改变风阻调节机构的通风面积,包括:
根据待散热元件的散热需求,通过进给机构驱动挡板相对支架滑动,使得挡板上的任一个第二通风孔的位置相对支架上与其配对的第一通风孔的位置发生改变,即,改变第一通风孔的露出状态,达到改变风阻调节机构通风面积的目的。
其中,可选地,可以通过检测元件的温度值等确定元件的散热需求。如,当元件的温度值超过预设高温值、急需对元件进行散热时,可以通过进给机构将该元件风道上的挡板移动到使其上的任一个第二通风孔和支架上与该第二通风孔配对的第一通风孔完全对齐的位置,由于第二通风孔的尺寸和第一通风孔的尺寸相同,因此,此时第一通风孔被完全露出,支架的通风面积为最大,即风阻调节机构通风面积最大(如图5a所示)。
可选地,当元件的温度值低于预设低温值时,可以通过进给机构将挡板移动到使其上的任一个第二通风孔和支架上与第二通风孔配对的第一通风孔完全错开的位置,即,第一通风孔被挡板的第二连接部133完全堵住而未露出,此时,支架的通风面积为最小,即风阻调节机构通风面积为最小(通风面积为0,如图5b所示)。
可选地,当元件的温度值处于预设高温值和预设低温值之间时,可以通过进给机构将挡板移动至使其上的任一个第二通风孔和支架上与第二通风孔配对的第一通风孔一部分对齐、一部分错开的位置,此时,第一通风孔的一部分露出、另一部分被挡板的第二连接部完全堵住,则支架的通风面积处于最大和最小之间,即风阻调节机构的通风面积处于最大和最小之间。
S3、通过改变风阻调节机构的通风面积,调节风道上的风阻,包括:
随着风阻调节机构通风面积的改变,使得待散热元件风道上的风阻发生变化:当通风面积为最大时,风道处于完全打开状态,风道上的风阻最小,风会沿着风道流向待散热元件;当通风面积减小时,风道处于半打开或闭合状态,风道上的风阻增大,风会流向风阻较小的其它散热元件。
综上,本发明实施例的方法,通过元件的散热需求随时调节挡板相对支架移动的距离,并通过挡板相对支架的移动距离调节第一通风孔被露出尺寸的大小,即可以调节支架的通风面积(即风阻调节机构的通风面积),进而可以将风道内的风量进行合理分配,如,使风阻调节机构的通风面积减小、
使风道阻力变大,以便较多风量可以被分配到风阻较小的、散热需求较大的元件处,保证产品特定元件的散热需求,实现对风道的管理,有效保证每个元件的散热需求和使用寿命。
本发明实施例除了提供上述的对风道风阻进行无极可调的方法之外,还提供一种适用于上述方法的装置的实施例,如图1所示,为本发明实施例提供的风道风阻的无极可调式装置的透视图,由图1可知,本发明实施例的装置包括:设置为安置在插箱2任一个槽位的待散热元件的风道上的风阻调节机构1,其通风面积可调,如图6所示,该插箱2可以为单框插箱;设置为改变风阻调节机构1的通风面积的进给机构;其中,进给机构设置为:根据元件的散热需求,改变风阻调节机构1的通风面积,以便调节风道上的风阻。
可选地,如图1所示,本发明实施例的风阻调节机构1包括:具有第一通风孔123的支架12;与支架12平行的挡板13,其具有设置为与第一通风孔123配对的第二通风孔134;其中,支架12设置为:通过使第二通风孔134和与其配对的第一通风孔123位置对齐或错开,使支架12的通风面积可调。可选地,风阻调节机构1还包括面板11,具有位于支架12一端且与其垂直的侧板111。
可选地,本发明实施例风阻调节机构1的面板11具有水平的底板112和垂直设置于底板112上表面一侧的侧板111。该面板11可以与插箱2的框体可拆卸连接在一起,如通过螺栓连接,也可以通过焊接的方式与插箱2框体固定连接在一起,设置为在其上安置风阻调节机构1的其它构件。可选地,面板11设置为在其安装于插箱2内时,应使其侧板111的长度延伸方向与插箱2风道的长度延伸方向平行。
如图2所示,可选地,本发明实施例的支架12安装于面板11上,其与面板11的底板112或侧板111连接。支架12正对着风道设置,其为U型结构,即,具有呈U形的滑轨槽,可以充当挡板13移动时的导轨。在支架12上设置有正对着风道开设的一排第一通风孔123,支架12的位于相邻两个第一通风孔123之间的部分为第一连接部122,在支架12的两侧分别设置设置为连接挡板13的连接孔121、124。可选地,连接孔121设置在支架12的靠近侧板111的一侧,且其开口位于支架12的端部,而连接孔124设置在支架
12的远离侧板111的另一侧。
可选地,如图3所示,本发明实施例的挡板13安置在支架12的滑轨槽内,具有可沿着支架12在水平方向上顺畅滑动的本体。挡板13的本体上设置有一排正对着风道的第二通风孔134,挡板13的本体位于相邻两个第二通风孔134之间的部分为第二连接部133。第二通风孔134的结构尺寸和数量与第一通风孔123的结构尺寸和数量相同,且相邻两个第二通风孔134之间的间距与相邻两个第一通风孔123之间的间距相等,即,位于两个第二通风孔134之间的第二连接部133和位于两个第一通风孔123之间的第一连接部122的宽度相等。
可选地,挡板13的本体的两侧设置有设置为与支架12两侧的连接孔121、124连接的卡扣131、135,卡扣131、135相对挡板的本体朝着支架12方向弯折。可选地,卡扣131设置在挡板13的靠近侧板111的一侧,而卡扣135设置在挡板13的远离侧板111的另一侧,设置为:卡扣131插入在连接孔121内,卡扣135插入在连接孔124内。
通过将挡板13插入在U形的支架12内,可以根据元件的散热需求,使挡板13沿着支架12滑动,以便挡板13的第二通风孔134与支架12的第一通风孔123对齐或错开,从而达到调整通风面积的目的。
而为了实现挡板13相对支架12水平移动,可选地,本发明实施例的装置还包括设置为驱动挡板13相对支架12移动的进给机构。
如图1、图4a、图4b、图5a、图5b所示,可选地,该进给机构可以采用如下的结构,其包括:安装于挡板13的卡扣131上、且朝侧板111方向延伸的螺杆132,其末端可穿过侧板111并朝侧板外侧伸出;与螺杆132配合且位于侧板111外侧的螺母15;以及套装在螺杆132且位于侧板111与螺杆132的螺杆头之间的弹性件。可选地,弹性件采用弹簧14。
可选地,安装时,可以将挡板13插入支架12上,再将弹簧14套在螺杆132上、并使其位于侧板111和螺杆132的螺杆头之间,然后将螺母15(该螺母可以采用松不脱螺母)拧在螺钉132上,以便将侧板111与挡板13连接在一起,最后将支架12通过铆接或焊接固定在面板11的侧板111上,而面板11安装在插箱2的框体上,且侧板111相对插箱固定不动。
可选地,当拧动螺母15时,可以带动挡板13在支架12上沿着水平方向移动,如,当螺母15左旋到底、在螺杆132上拧松时(如图5a所示),此时支架12上的第一通风孔123和挡板13上的匹配的第二通风孔134完全对齐,此时第一通风孔123被完全露出,则支架12的通风面积最大,使得风道的通风量也最大,风道风阻最小,风可以流向该槽位的元件处;而当螺母15右旋到底、拧紧在螺杆132上时(如图5b所示),此时支架12上的第一通风孔123和挡板13上的匹配的第二通风孔134完全错开,即,第一通风孔123被挡板13上的第二连接部133所挡住,此时第一通风孔123被完全挡住,则支架12的通风面积最小(通风面积为0),使得风道的通风量也最小,风道风阻最大,使得风朝着其它槽位的元件处流动。
可选地,本发明实施例的进给机构还可以采用将螺母、螺杆的安装位置互换的结构(图中未示出),即,将螺母固定安装在挡板的卡扣131外侧,且使螺母的中心轴垂直于侧板,将螺杆安装于侧板上且朝着卡扣方向延伸,将弹簧套装在螺杆上并使其位于侧板与螺母之间。采用该种结构,通过拧动螺杆带动挡板移动,其移动原理与上述类似,在此不再重述。
可选地,使进给机构的螺母或螺钉旋转的外力,可以借助于人力,也可以借助于电力,还可以借助于电磁力等,在此不对其结构进行描述。
下面,对本发明实施例的装置应用于单框插箱2(如图6所示)上的通风过程进行简要描述,包括:
当本发明实施例的风阻调节机构1所在槽位为空槽位时(即,此处无散热风量需求),可以右旋调节螺母15,使其完全拧紧在螺杆132上,进而使得原本会进入本槽位的风量可以合理分配到插箱其它槽位的元件处;当本发明实施例的风阻调节机构1所在槽位为真实元件时,可以根据元件的实际散热需求来合理调节其风道风阻,进而精确控制流向本槽位元件的风量。
本发明实施例的装置,既可以用于自由调节插箱每个槽位风阻的情况,如针对插箱具体某个槽位的散热需求,对其进行精确风阻调节,左旋螺母则代表风阻减小(风道打开变大),右旋螺母代表风阻增大(即风道关闭减小),设计时,也可以根据实际情,设定螺母的旋进量与风阻大小相匹配,如螺母右旋的旋进量40%代表对应风阻为最大风阻的40%,螺母右旋至拧紧在螺杆
上则代表对应风阻为最大风阻(即风道被完全关闭);也可以用于风道实验中,通过该装置,可以快速并无极可调的输出实验所需的风阻,进而精确控制流向固定截面的风量,为不同风阻下的热测试提供了完美的测试环境。
综上,采用本发明实施例所述装置和方法,与相关技术相比,其结构简单,操作便利,可以实现风量按需分配及风阻无极可调,取得对电子设备内部风阻无极调整技术的进步,可以优化电子设备内部的风道布局,提高设备的整体散热能力。
尽管上文对本发明作了详细说明,但本发明不限于此,本技术领域的技术人员可以根据本发明的原理进行修改,因此,凡按照本发明的原理进行的各种修改都应当理解为落入本发明的保护范围。
上述实施例可以快速调节风道风阻,控制流向特定元件的风量,将较多的风量分配到散热需求较大的元件,保证产品特定元件的散热需求。
Claims (10)
- 一种风道风阻的无极可调式方法,包括如下步骤:在元件的风道上设置通风面积可调的风阻调节机构;根据元件的散热需求,改变风阻调节机构的通风面积;通过改变风阻调节机构的通风面积,调节风道上的风阻。
- 根据权利要求1所述的方法,其中,在元件的风道上设置通风面积可调的风阻调节机构包括如下步骤:在所述风道上安置具有第一通风孔的支架;在所述风道上安置与所述支架平行的挡板,其具有设置为与第一通风孔配对的第二通风孔;其中,通过使所述第二通风孔和与其配对的第一通风孔位置对齐或错开,使所述支架的通风面积可调。
- 根据权利要求2所述的方法,其中,改变风阻调节机构的通风面积包括通过进给机构驱动所述挡板相对所述支架滑动改变通风面积。
- 一种风道风阻的无极可调式装置,包括:安置在元件的风道上的风阻调节机构,设置为其通风面积可调;设置为改变风阻调节机构的通风面积的进给机构;其中,进给机构,设置为根据元件的散热需求,改变所述风阻调节机构的通风面积,以便调节所述风道上的风阻。
- 根据权利要求4所述的无极可调式装置,其中,所述风阻调节机构包括:具有第一通风孔的支架;与支架平行的挡板,其具有设置为与第一通风孔配对的第二通风孔;其中,所述支架设置为:通过使所述第二通风孔和与其配对的第一通风孔位置对齐或错开,使所述支架的通风面积可调。
- 根据权利要求5所述的无极可调式装置,其中,所述挡板与所述支架 滑动连接。
- 根据权利要求6所述的无极可调式装置,其中,所述支架具有滑轨槽,所述挡板安置在滑轨槽内。
- 根据权利要求5或6或7所述的无极可调式装置,所述风阻调节机构还包括:面板,具有位于所述支架一端且与其垂直的侧板。
- 根据权利要求8所述的无极可调式装置,其中,所述进给机构包括:安装于所述挡板上且朝所述侧板方向延伸的螺杆;与螺杆配合且位于所述侧板外侧的螺母;套装在螺杆上且位于所述侧板与螺杆的螺杆头之间的弹性件。
- 根据权利要求8所述的无极可调式装置,其中,所述进给机构包括:安装于所述挡板上且其中心轴垂直于所述侧板的螺母;安装于所述侧板上设置为与螺母配合的螺杆;套装在螺杆上且位于所述侧板与所述螺母之间的弹性件。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610035159.6 | 2016-01-19 | ||
CN201610035159.6A CN106982537B (zh) | 2016-01-19 | 2016-01-19 | 风道风阻的无极可调式方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016197781A1 true WO2016197781A1 (zh) | 2016-12-15 |
Family
ID=57502836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/081757 WO2016197781A1 (zh) | 2016-01-19 | 2016-05-11 | 风道风阻的无极可调式方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106982537B (zh) |
WO (1) | WO2016197781A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108598911A (zh) * | 2018-06-06 | 2018-09-28 | 浙江联能电气有限公司 | 一种具有多个可插拔模块的有源滤波柜 |
CN110494009A (zh) * | 2018-07-25 | 2019-11-22 | 中国航空工业集团公司西安飞行自动控制研究所 | 一种通风适配器结构 |
CN110852501A (zh) * | 2019-11-05 | 2020-02-28 | 辽宁工程技术大学 | 一种基于遗传算法的矿井降阻优化方法 |
CN113099676A (zh) * | 2021-03-30 | 2021-07-09 | 联想(北京)信息技术有限公司 | 一种电子设备 |
CN113194169A (zh) * | 2021-04-27 | 2021-07-30 | 努比亚技术有限公司 | 活动风道结构和终端 |
CN114058477A (zh) * | 2021-07-28 | 2022-02-18 | 山东泰山生力源集团股份有限公司 | 一种圆盘制曲机的布风风道及圆盘制曲机 |
CN114315115A (zh) * | 2021-12-14 | 2022-04-12 | 秦皇岛市运通玻璃机电技术有限公司 | 一种玻璃钢化炉淬冷风栅片喷孔可调节装置 |
CN114828593A (zh) * | 2022-06-07 | 2022-07-29 | 中邮通建设咨询有限公司 | 一种散热性好的智能信息化设备 |
CN117668949A (zh) * | 2023-11-24 | 2024-03-08 | 芯华章智能科技(上海)有限公司 | 用于箱体级联散热设计的方法、电子设备及存储介质 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107979950A (zh) * | 2017-11-13 | 2018-05-01 | 中国航空工业集团公司西安航空计算技术研究所 | 通风集成机架的自动分风装置 |
CN108024491A (zh) * | 2017-11-13 | 2018-05-11 | 中国航空工业集团公司西安航空计算技术研究所 | 一种可调节屏蔽效能的风冷机箱 |
CN109496116A (zh) * | 2018-12-29 | 2019-03-19 | 努比亚技术有限公司 | 移动终端的散热方法、移动终端及计算机可读存储介质 |
CN109981867A (zh) * | 2019-03-26 | 2019-07-05 | 努比亚技术有限公司 | 散热方法、移动终端及计算机可读存储介质 |
CN112996342A (zh) * | 2019-12-13 | 2021-06-18 | 中兴通讯股份有限公司 | 散热装置 |
CN113340037B (zh) * | 2021-06-15 | 2022-09-09 | 广东科美斯农业设备有限公司 | 一种通风保温自动调节式生鲜存储系统 |
CN114423242B (zh) * | 2022-01-25 | 2024-09-24 | 中国船舶集团有限公司第七二四研究所 | 一种模块插拔与风道开合联动装置 |
CN117847000B (zh) * | 2024-03-07 | 2024-06-21 | 山东省东澎冷暖工程有限公司 | 一种风机运行噪音检测装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040157543A1 (en) * | 2002-11-06 | 2004-08-12 | Bertin Ira L. | Automatic modular outlets for conditioned air, dampers, and modular return air grills |
CN101699941A (zh) * | 2009-11-09 | 2010-04-28 | 中国北车股份有限公司大连电力牵引研发中心 | 散热设备 |
CN102420487A (zh) * | 2011-11-01 | 2012-04-18 | 合肥海尔空调器有限公司 | 电机支架、及具有该电机支架的空调器室外机 |
CN104390332A (zh) * | 2014-10-29 | 2015-03-04 | 珠海格力电器股份有限公司 | 通风风道组件及空调器 |
CN204706808U (zh) * | 2015-05-28 | 2015-10-14 | 中国石油天然气股份有限公司 | 一种面板及具备该面板的箱式配电装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2687735Y (zh) * | 2004-03-22 | 2005-03-23 | 联想网御科技(北京)有限公司 | 机箱导风装置 |
CN201146656Y (zh) * | 2007-08-31 | 2008-11-05 | 中兴通讯股份有限公司 | 插箱气流导向装置 |
CN102480874B (zh) * | 2010-11-23 | 2016-03-23 | 赛恩倍吉科技顾问(深圳)有限公司 | 电子设备的机箱 |
CN103699192A (zh) * | 2012-09-28 | 2014-04-02 | 华为技术有限公司 | 内存风量控制装置 |
CN204188642U (zh) * | 2014-11-18 | 2015-03-04 | 大唐移动通信设备有限公司 | 一种机箱散热风量测试装置 |
CN204872134U (zh) * | 2015-06-19 | 2015-12-16 | 邱丽香 | 箱体通风结构 |
CN105188312B (zh) * | 2015-08-25 | 2018-06-29 | 贵州电网公司信息通信分公司 | 一种可调式通风装置及其控制系统 |
-
2016
- 2016-01-19 CN CN201610035159.6A patent/CN106982537B/zh active Active
- 2016-05-11 WO PCT/CN2016/081757 patent/WO2016197781A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040157543A1 (en) * | 2002-11-06 | 2004-08-12 | Bertin Ira L. | Automatic modular outlets for conditioned air, dampers, and modular return air grills |
CN101699941A (zh) * | 2009-11-09 | 2010-04-28 | 中国北车股份有限公司大连电力牵引研发中心 | 散热设备 |
CN102420487A (zh) * | 2011-11-01 | 2012-04-18 | 合肥海尔空调器有限公司 | 电机支架、及具有该电机支架的空调器室外机 |
CN104390332A (zh) * | 2014-10-29 | 2015-03-04 | 珠海格力电器股份有限公司 | 通风风道组件及空调器 |
CN204706808U (zh) * | 2015-05-28 | 2015-10-14 | 中国石油天然气股份有限公司 | 一种面板及具备该面板的箱式配电装置 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108598911A (zh) * | 2018-06-06 | 2018-09-28 | 浙江联能电气有限公司 | 一种具有多个可插拔模块的有源滤波柜 |
CN110494009A (zh) * | 2018-07-25 | 2019-11-22 | 中国航空工业集团公司西安飞行自动控制研究所 | 一种通风适配器结构 |
CN110852501A (zh) * | 2019-11-05 | 2020-02-28 | 辽宁工程技术大学 | 一种基于遗传算法的矿井降阻优化方法 |
CN110852501B (zh) * | 2019-11-05 | 2023-09-22 | 辽宁工程技术大学 | 一种基于遗传算法的矿井降阻优化方法 |
CN113099676A (zh) * | 2021-03-30 | 2021-07-09 | 联想(北京)信息技术有限公司 | 一种电子设备 |
CN113194169A (zh) * | 2021-04-27 | 2021-07-30 | 努比亚技术有限公司 | 活动风道结构和终端 |
CN114058477A (zh) * | 2021-07-28 | 2022-02-18 | 山东泰山生力源集团股份有限公司 | 一种圆盘制曲机的布风风道及圆盘制曲机 |
CN114058477B (zh) * | 2021-07-28 | 2023-11-24 | 山东泰山生力源集团股份有限公司 | 一种圆盘制曲机的布风风道及圆盘制曲机 |
CN114315115A (zh) * | 2021-12-14 | 2022-04-12 | 秦皇岛市运通玻璃机电技术有限公司 | 一种玻璃钢化炉淬冷风栅片喷孔可调节装置 |
CN114828593A (zh) * | 2022-06-07 | 2022-07-29 | 中邮通建设咨询有限公司 | 一种散热性好的智能信息化设备 |
CN117668949A (zh) * | 2023-11-24 | 2024-03-08 | 芯华章智能科技(上海)有限公司 | 用于箱体级联散热设计的方法、电子设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN106982537B (zh) | 2021-04-20 |
CN106982537A (zh) | 2017-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016197781A1 (zh) | 风道风阻的无极可调式方法及装置 | |
US20080158814A1 (en) | Plug-in unit and electronic apparatus | |
US7611402B2 (en) | Apparatus for cooling electronics | |
US9267743B2 (en) | Housing for electronic equipment with variable coolant channel widths | |
US20090046430A1 (en) | Method and apparatus for providing supplemental cooling to server racks | |
US8711561B2 (en) | Cooling structure for electronic device | |
TW201205026A (en) | Air duct and electronic device using the same | |
CN104105382B (zh) | 散热片和包括该散热片的电力转换装置 | |
US20120075803A1 (en) | Mounting device and an air flow control device | |
JP5139370B2 (ja) | 制御盤 | |
CN113099676A (zh) | 一种电子设备 | |
TWI429392B (zh) | 導風罩 | |
WO2008098494A1 (fr) | Procédé et appareil de dissipation de chaleur de composant électrique sur une carte de circuits imprimés | |
EP2071910A4 (en) | METHOD FOR HEAT DISPOSAL FOR MOUNTING BOXES IN THE HOUSING AND AIR SUPPLY DEVICE | |
CN114326957B (zh) | 自适应导风装置以及服务器 | |
CN104584706A (zh) | 用于冷却的具有可调挡板的机箱 | |
EP2608259A2 (en) | Cooling device and electronic apparatus using same | |
CN212573401U (zh) | 一种互联网用的服务器散热导风装置 | |
CN107801356A (zh) | 风道可变式散热器 | |
JP3965683B2 (ja) | 冷却ユニット、それを用いた電子機器および冷却方法 | |
CN207410660U (zh) | 一种可调整风道的散热装置 | |
JP2004146631A (ja) | 電子機器 | |
JPH06120386A (ja) | Lsiの冷却方法及び電子回路パッケージ | |
CN2687735Y (zh) | 机箱导风装置 | |
CN100592241C (zh) | 散热装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16806679 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16806679 Country of ref document: EP Kind code of ref document: A1 |