WO2016197390A1 - 信道译码的方法、装置和系统 - Google Patents

信道译码的方法、装置和系统 Download PDF

Info

Publication number
WO2016197390A1
WO2016197390A1 PCT/CN2015/081352 CN2015081352W WO2016197390A1 WO 2016197390 A1 WO2016197390 A1 WO 2016197390A1 CN 2015081352 W CN2015081352 W CN 2015081352W WO 2016197390 A1 WO2016197390 A1 WO 2016197390A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft value
decoding
data block
historical
demodulation soft
Prior art date
Application number
PCT/CN2015/081352
Other languages
English (en)
French (fr)
Inventor
严凯
薛菊华
李明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580001236.XA priority Critical patent/CN107005254B/zh
Priority to PCT/CN2015/081352 priority patent/WO2016197390A1/zh
Publication of WO2016197390A1 publication Critical patent/WO2016197390A1/zh
Priority to US15/833,560 priority patent/US10284331B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/3746Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35 with iterative decoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/3769Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35 using symbol combining, e.g. Chase combining of symbols received twice or more
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/6306Error control coding in combination with Automatic Repeat reQuest [ARQ] and diversity transmission, e.g. coding schemes for the multiple transmission of the same information or the transmission of incremental redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0059Convolutional codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/41Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors
    • H03M13/4115Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors list output Viterbi decoding

Definitions

  • Embodiments of the present invention relate to the field of communications, and in particular, to a method, an apparatus, and a system for channel decoding.
  • the universal mobile telecommunications system (UMTS) is currently the most widely used third generation (3G) mobile phone technology.
  • UMTS the verification result and the decoded data are transmitted to the receiving end for radio link control (radio link control, RLC) via the medium access control (MAC) layer.
  • RLC radio link control
  • MAC medium access control
  • HSPA high speed packet access
  • HARQ hybrid automatic repeat request
  • the performance gain brought by HSPA cannot be obtained due to The HARQ of the MAC layer cannot be supported.
  • the retransmission rate of the RLC layer is higher than that of the MAC layer supporting HARQ, and since the retransmission time of the RLC layer is long, these do not support the quality of service of the MAC layer HARQ. QoS) will be affected.
  • the embodiments of the present invention provide a method, an apparatus, and a system for channel decoding, so as to improve the decoding success rate and improve the service quality for services that do not support MAC layer HARQ.
  • an embodiment of the present invention provides a device for channel decoding, where the device includes:
  • a decoding information acquiring unit configured to acquire decoding information of the first channel decoding of the data block, where the decoding information of the first channel decoding includes a decoding result of the first channel decoding of the data block as well as Demodulation soft value of the data block;
  • a sequence number obtaining unit configured to: if the decoding result of the decoding of the first channel decoding of the data block acquired by the decoding result acquiring unit fails, according to the decoding result of the first channel decoding of the data block Obtaining a reference sequence number of the data block;
  • a historical soft value obtaining unit configured to acquire at least one matching historical demodulation soft value in the historical demodulation soft value record table according to the reference sequence number of the data block acquired by the sequence number obtaining unit, where the history
  • the demodulation soft value record table includes at least one historical demodulation soft value record, each of the historical demodulation soft value records including a historical demodulation soft value and a reference sequence number of the data block corresponding to the historical demodulation soft value;
  • a soft value combining unit configured to combine the demodulation soft value of the data block and the at least one matched historical demodulation soft value obtained by the historical soft value obtaining unit to obtain a combined demodulation soft value of the data block;
  • a second channel decoding unit configured to perform second channel decoding on the combined demodulation soft value of the data block obtained by the soft value combining unit.
  • the first channel decoding includes:
  • the high-level decoding includes: parallel list VA decoding or serial list VA decoding.
  • the historical soft value obtaining unit is specifically configured to:
  • the soft value merging unit is specifically configured to:
  • demodulating the demodulated soft value of the data block by combining the demodulation soft value of the data block and the at least one matched historical demodulation soft value according to a quality threshold.
  • the high-level decoding includes: parallel list VA decoding or serial list VA decoding.
  • the apparatus further includes:
  • a soft value adding unit configured to add a second historical demodulation soft value record to the historical demodulation soft value record table, where the second channel decoding unit fails to decode, the second historical demodulation soft value
  • the recorded reference sequence number is a reference sequence number of the data block
  • the demodulation soft value of the second historical demodulation soft value record is a demodulation soft value of the data block.
  • the apparatus further includes:
  • a soft value deleting unit configured to delete the at least one first historical demodulation soft value record in the historical demodulation soft value record table if the second channel decoding unit decodes successfully.
  • the service type of the data block is signaling or R99 packet service.
  • the channel decoding apparatus is deployed in a base station, or a controller, or Mobile terminal.
  • an embodiment of the present invention provides a method for channel decoding, where the method includes:
  • the historical demodulation soft value record table includes at least one historical demodulation soft value record,
  • Each of the historical demodulation soft value records includes a historical demodulation soft value and a reference sequence number of the data block corresponding to the historical demodulation soft value;
  • a second channel decoding is performed on the combined demodulation soft values of the data blocks.
  • the first channel decoding includes:
  • the high-level decoding includes: parallel list VA decoding or serial list VA decoding.
  • the demodulating soft value of the data block and the at least one The matched historical demodulation soft values are combined to obtain the demodulated soft values of the combined data blocks, including:
  • the second channel decoding includes:
  • the high-level decoding includes: parallel list VA decoding or serial list VA decoding.
  • the method further includes:
  • the second channel decoding fails, adding a second historical demodulation soft value record in the historical demodulation soft value record table, where the reference sequence number of the second historical demodulation soft value record is the data block
  • the reference sequence number, the demodulation soft value of the second historical demodulation soft value record is a demodulation soft value of the data block.
  • the method further includes:
  • the service type of the data block is signaling or R99 packet service.
  • an embodiment of the present invention provides a channel decoding system, where the system includes:
  • a demodulator configured to demodulate the received data block to obtain a demodulated soft value of the data block
  • a first channel decoding device configured to decode a demodulation soft value of the data block obtained by the demodulator
  • the method, the device and the system of the embodiment of the present invention for a service that does not support MAC layer HARQ and is an RLC AM, if the decoding fails, when the data block is retransmitted, the solution received by the data block once or more times is received. Adjusting the soft value and adding one decoding after merging can improve the decoding success rate, thereby Reduce the number of data block retransmissions and improve service quality.
  • FIG. 1 is a structural diagram of an apparatus for channel decoding according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of an apparatus for channel decoding according to another embodiment of the present invention.
  • FIG. 3 is a structural diagram of a channel decoding system according to another embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for channel decoding according to another embodiment of the present invention.
  • the method, device and system in the embodiments of the present invention may be implemented by a radio access network device, or may be implemented by a mobile terminal.
  • the radio access network device includes not limited to any one of the following or more than one common implementation, such as a base station NodeB or a radio network controller RNC or a control node of other access network devices.
  • FIG. 1 is a structural diagram of a channel decoding apparatus according to an embodiment of the present invention.
  • the channel decoding apparatus may be deployed in a radio access network device, such as a base station, or a controller, etc., for processing a received mobile terminal.
  • the uplink data may also be deployed on the mobile terminal for processing downlink data sent by the received radio access network device.
  • the apparatus may include a decoding information acquisition unit 101, a sequence number acquisition unit 102, a history soft value acquisition unit 103, a soft value combining unit 104, and a second channel decoding unit 105.
  • the decoding information acquiring unit 101 is configured to acquire decoding information of the first channel decoding of the data block, where the decoding information of the first channel decoding of the data block includes translation of the first channel decoding of the data block.
  • the code result and the demodulation soft value of the data block may be signaling or R99 packet service, that is, a service that does not support MAC layer HARQ and uses the RLC AM entity.
  • the decoding information acquiring unit 101 may acquire one-time decoding information of the data block from the physical layer of the receiving end, and may also acquire secondary decoding information of the data block from the RLC layer of the receiving end.
  • the physical layer of the receiving end can decode the data block once by using a traditional Viterbi algorithm (VA), or a high-order decoder, such as a parallel list VA.
  • VA Viterbi algorithm
  • a high-order decoder such as a parallel list VA.
  • VA Parallel list VA, PLVA
  • SLVA serial list VA
  • the data block may be performed by deploying VA at the RLC layer, or a high-order decoder such as PLVA or SLVA. Sub-decoding.
  • the decoding information acquiring unit 101 acquires the decoding information of the data block from the RLC layer, and the first channel decoding of the data block may be the VA decoding of the RLC layer, or may be the decoding of the high-order decoder of the RLC layer. .
  • the sequence number obtaining unit 102 is configured to: if the decoding result of the first channel decoding of the data block acquired by the decoding information acquiring unit 101 fails, the reference sequence of the data block is obtained according to the decoding result of the first channel decoding. number.
  • the reference sequence number of the data block may be extracted from the decoding result.
  • the reference sequence number can be obtained from the specified bit position of the decoding result. If the decoding result is correctly verified, the RLC protocol data unit of the data block is obtained at the specified bit position of the decoding result (protocol) Data unit, PDU) sequence number, and if the decoding result fails to be verified, the reference sequence number as the data block and the real serial number of the data block are obtained from the specified bit position in the decoding result. Compared to a certain probability of error.
  • the obtained RLC PDU sequence number of the data block is 010010001001
  • the decoding result fails to be verified
  • the obtained RLC PDU sequence number of the data block is 001010101001
  • the lower 5 bits of the reference sequence number of the data block obtained in the case of the failure of the decoding result verification are the same as the lower 5 bits of the RLC PDU sequence number when the decoding result of the data block is correct, but the upper bits have errors.
  • the historical soft value obtaining unit 103 is configured to obtain at least one matched historical demodulation soft value in the historical demodulation soft value record table according to the reference sequence number acquired by the sequence number obtaining unit 102.
  • the historical demodulation soft value record table includes at least one historical demodulation soft value record, and each of the historical demodulation soft value records includes a reference sequence number and a demodulation soft value of the data block corresponding to the reference sequence number.
  • the historical demodulation soft value record table is used for recording the demodulation soft value and the corresponding reference sequence number of the channel decoding apparatus that failed to decode the received data block before the current decoding. Since the demodulation soft value of each data block obtained does not additionally carry the RLC PDU sequence number for the service that does not support the MAC layer HARQ, the reference sequence number extracted in the failed decoding result may be used as the decoding failure. The demodulation soft value corresponds to the reference sequence number.
  • the RLC layer For services that do not support MAC layer HARQ and use the RLC AM entity, if its data block decoding fails, the RLC layer performs at least one retransmission until the decoding succeeds or the retransmission upper limit is reached. Therefore, in the historical demodulation soft value recording table, the demodulated soft value decoded when the data block is transmitted multiple times and the reference sequence number of each decoding may be recorded. For example, if the data block is retransmitted twice and still fails to decode, the historical demodulation soft value record table records the demodulated soft value of the initial transmission of the data block and the corresponding decoding result in the initial transmission.
  • the reference sequence number, the demodulation soft value of the first retransmission of the data block and the corresponding reference sequence number in the decoding result at the time of the first retransmission, and the demodulation softness of the second retransmission of the data block The corresponding reference sequence number in the decoded result of the value and its second retransmission.
  • the lower bits of the reference sequence number may be matched and acquired. If the low bits are the same, it can be considered as different decoding values after the same data block is retransmitted.
  • the historical soft value obtaining unit 103 may determine at least one first historical demodulation soft value record in the historical demodulation soft value record according to the reference sequence number of the data block, and acquire each The demodulated soft values of the first historical demodulation soft value records are used as matching historical demodulation soft values.
  • the binary 0th to Mth bits of the reference sequence number of each first historical demodulation soft value record are the same as the binary 0th to Mth bits of the reference sequence number of the data block, that is,
  • the historical demodulation soft value record of the lower M+1 bit of the sequence number and the lower M+1 bit of the reference sequence number of the data block is determined as the first historical demodulation soft value record, where M is greater than 0 and A positive integer less than or equal to N, where N is the binary length of the reference sequence number of the data block, typically N is less than or equal to 12.
  • the low M+1 bit is the same, it can be regarded as different decoding values of the RLC PDU sequence number when the same data block is transmitted differently, so that the corresponding demodulation soft value can be considered as the same data block when transmitting differently. Demodulate the soft value.
  • the soft value combining unit 104 is configured to combine the demodulation soft value of the data block and the at least one matching historical demodulation soft value acquired by the historical soft value obtaining unit 103 to obtain a combined demodulation soft value of the data block.
  • the demodulated soft value of the data block and the at least one matched historical demodulation soft value can be combined in a variety of ways. For example, adding the demodulated soft value of the data block and the acquired at least one matching historical demodulation soft value to obtain a combined demodulation soft value of the data block; and, for example, according to the quality threshold, in the acquired one or Among the more than one matched historical demodulation soft values, the historical demodulation soft value satisfying the quality threshold requirement and the demodulation soft value of the data block are added to obtain a combined demodulation soft value of the data block. It should be noted that the above are merely examples, and the present invention is not limited thereto.
  • the second channel decoding unit 105 is configured to perform second channel decoding on the combined demodulation soft value of the data block obtained by the soft value combining unit 104.
  • the second channel decoding may be deployed in the physical layer using VA decoding or high-order decoding, or may be deployed in the RLC layer using VA decoding or high-order decoding.
  • the channel decoding device in the embodiment of the present invention may be deployed on the NodeB, and the second channel decoding is deployed in the RLC layer.
  • the channel decoding apparatus of the embodiment of the present invention may be deployed on the RNC.
  • the channel decoding apparatus in the embodiment of the present invention may be deployed on a mobile terminal, and the second channel decoding apparatus may be deployed in a physical layer using VA or high-order decoding, or may be deployed in an RLC layer.
  • VA or high Order decoding may be deployed in the physical layer using VA decoding or high-order decoding.
  • the channel decoding apparatus may further include a soft value adding unit, configured to add a second historical solution in the historical demodulation soft value record table.
  • a soft value record wherein a reference sequence number of the second historical demodulation soft value record is a reference sequence number of the data block, and a demodulation soft value of the second historical demodulation soft value record is a demodulation soft value of the data block . That is to say, the soft value adding unit may add the demodulation soft value and the reference sequence number of the data block as a historical demodulation soft value record in the historical demodulation soft value record table for the next data block retransmission decoding. When combined decoding is used.
  • the channel decoding apparatus may further include a soft value deleting unit. If the second channel decoding unit 105 decodes successfully, the soft value deleting unit may be used to perform historical demodulation soft for combining. The first historical demodulation soft value record corresponding to the value is deleted. Since the data block is successfully decoded, the historical demodulated soft value record matching the data block can be deleted to save storage space. The first historical demodulation soft value record may be deleted, or only the first historical demodulation soft value record corresponding to the historical demodulation soft value participating in the merge may be deleted. The invention is not limited to this.
  • the soft value deletion unit may also be used to delete the third historical demodulation soft value record to save storage space.
  • the apparatus of the embodiment of the present invention for a service that does not support MAC layer HARQ and is an RLC AM, when the data block is retransmitted, if the decoding fails, the demodulated soft value received by the data block once or more times is received. Adding a decoding after merging can improve the decoding success rate, thereby reducing the number of data block retransmissions and improving the service quality.
  • FIG. 2 is a structural diagram of a channel decoding apparatus according to another embodiment of the present invention.
  • the channel decoding apparatus may be deployed in a radio access network device, such as a base station, or a controller, etc., for processing a received mobile terminal to send.
  • the uplink data may also be deployed on the mobile terminal for processing downlink data sent by the received radio access network device.
  • the device can include: a bus 201, and
  • the processor 201 connected to the bus 201 is a memory 203 connected to the bus 201.
  • the processor 202 calls, by using the bus 201, a program stored in the memory 203, for acquiring decoding information of the first channel decoding of the data block, where the decoding information of the first channel decoding of the data block includes the a decoding result of the first channel decoding of the data block and a demodulation soft value of the data block; if the decoding result of the decoding of the first channel decoding of the data block fails, the processor 202 is based on the first channel of the data block Decoding the decoded result to obtain a reference sequence number of the data block, and acquiring at least one matching historical demodulation soft value in the historical demodulation soft value record table according to the reference sequence number of the data block, wherein the historical demodulation soft
  • the value record table includes at least one historical demodulation soft value record, each historical demodulation soft value record including a historical demodulation soft value and a reference sequence number corresponding to the historical demodulation soft value, and the processor 202 solves the data block The softening value and the at least
  • the service type of the data block may be signaling or R99 packet service, that is, a service that does not support MAC layer HARQ and uses the RLC AM entity.
  • the processor 202 may acquire one-time decoding information of the data block from the physical layer of the receiving end, or acquire secondary decoding information of the data block from the RLC layer of the receiving end.
  • the physical layer of the receiving end can decode the data block by using a conventional VA decoding, or a high-order decoder, such as a PLVA or a SLVA, to decode the data block.
  • the first channel decoding of the data block may be VA decoding of the physical layer or high-order decoder decoding of the physical layer.
  • the data block may be performed by deploying VA at the RLC layer, or a high-order decoder such as PLVA or SLVA. Sub-decoding.
  • the processor 202 acquires the decoding information of the data block from the RLC layer, and the first channel decoding of the data block may be the VA decoding of the RLC layer or the high-order decoder decoding of the RLC layer.
  • the reference sequence number of the data block can be obtained from the specified bit position of the decoding result, and if the decoding result is correctly verified, the RLC PDU of the data block is obtained at the specified bit position of the decoding result.
  • the processor 202 may determine at least one first historical demodulation soft value record in the historical demodulation soft value record according to the reference sequence number of the data block, and acquire each first historical demodulation soft value record.
  • the demodulated soft value is used as a matching historical demodulation soft value.
  • the binary 0th to Mth bits of the reference sequence number of each first historical demodulation soft value record are the same as the binary 0th to Mth bits of the reference sequence number of the data block, that is,
  • the historical demodulation soft value record of the lower M+1 bit of the sequence number and the lower M+1 bit of the reference sequence number of the data block is determined as the first historical demodulation soft value record, where M is greater than 0 and A positive integer less than or equal to N, where N is the binary length of the reference sequence number of the data block, typically N is less than or equal to 12.
  • the low M+1 bit is the same, it can be regarded as different decoding values of the RLC PDU sequence number when the same data block is transmitted differently, so that the corresponding demodulation soft value can be considered as the same data block when transmitting differently. Demodulate the soft value.
  • the processor 202 can also combine the demodulated soft values of the data block and the at least one matched historical demodulation soft value in a variety of ways. For example, adding the demodulated soft value of the data block and the acquired at least one matching historical demodulation soft value to obtain a combined demodulation soft value of the data block; and, for example, according to the quality threshold, in the acquired one or Among the more than one matched historical demodulation soft values, the historical demodulation soft value satisfying the quality threshold requirement and the demodulation soft value of the data block are added to obtain a combined demodulation soft value of the data block. It should be noted that the above are merely examples, and the present invention is not limited thereto.
  • the processor 202 may perform second channel decoding by using VA decoding or high-order decoding in the physical layer, or VA decoding or high-order decoding in the RLC layer.
  • the channel decoding apparatus of the embodiment of the present invention may be deployed on the NodeB, and the processor 202 is
  • the RLC layer performs the second channel decoding by using VA decoding or high-order decoding
  • the channel decoding apparatus of the embodiment of the present invention may be deployed on the RNC.
  • the channel decoding apparatus of the embodiment of the present invention may be deployed on a mobile terminal, and the second channel decoding may use VA or high-order decoding in the physical layer, or may adopt VA or high in the RLC layer. Order decoding. It should be noted that this is just an example. Embodiments of the invention are not limited thereto.
  • the processor 202 may further add a second historical demodulation soft value record in the historical demodulation soft value record table, where the reference sequence number of the second historical demodulation soft value record is For the reference sequence number of the data block, the demodulation soft value of the second historical demodulation soft value record is the demodulation soft value of the data block. That is, the processor 202 can add the demodulation soft value and the reference sequence number of the data block as a historical demodulation soft value record in the historical demodulation soft value record table for use in the next data block retransmission decoding. Use for combined decoding.
  • the processor 202 may also delete the first historical demodulation soft value record corresponding to the historical demodulation soft value for the merge. Since the data block is successfully decoded, the processor 202 can delete the historical demodulation soft value record corresponding to the historical demodulation soft value matched with the data block to save storage space.
  • the processor 202 may also be configured to delete the third historical demodulation soft value record to save storage space.
  • the apparatus of the embodiment of the present invention for a service that does not support MAC layer HARQ and is an RLC AM, when the data block is retransmitted, if the decoding fails, the demodulated soft value received by the data block once or more times is received. Adding a decoding after merging can improve the decoding success rate, thereby reducing the number of data block retransmissions and improving the service quality.
  • FIG. 3 is a schematic diagram of a channel decoding system according to an embodiment of the present invention.
  • the channel decoding system is configured to process a data block received by a receiving end, and may include: a demodulator 301, first. Channel decoding device 302, second channel decoding device 303. among them,
  • the demodulator 301 is configured to demodulate the received data block to obtain a demodulated soft value.
  • the first channel decoding means 302 is configured to decode the demodulated soft value of the data block obtained by the demodulator 301.
  • the first channel decoding device 302 can use VA or high-order decoding, such as PLVA decoding or SLVA decoding.
  • the first channel decoding device 302 may perform the demodulation soft value of the data block obtained by the demodulator 301 at the physical layer by using VA or higher-order decoding. If the physical layer is successfully decoded, the decoding result is reported to the RLC layer by the MAC layer, and is forwarded by the RLC layer to the upper layer protocol entity for processing. Alternatively, if the physical layer decoding fails, the first channel decoding means 302 passes the decoding result of the data block and the demodulated soft value to the second channel decoding means 303 for processing.
  • the first channel decoding device 302 may further deploy VA or high-order decoding in the RLC layer, and the data is The physical layer decoding result of the block and the demodulation soft value are subjected to secondary decoding. If the secondary decoding of the RLC layer fails, the first channel decoding means 302 passes the decoding result of the data block and the demodulated soft value to the second channel decoding means 303 for processing.
  • the second channel decoding device 303 is configured to perform demodulation soft-value combining decoding when the first channel decoding device 302 fails to decode, and the second channel decoding device 303 may be the channel translation shown in FIG. 1 or FIG.
  • the code device has been described in the foregoing embodiment and will not be described again.
  • the service type of the data block may be signaling or R99 packet service, that is, a service that does not support MAC layer HARQ and uses the RLC AM entity.
  • the decoding fails, when the data block is retransmitted, the demodulated soft value received by the data block once or more times is received. Adding a decoding after merging can improve the decoding success rate, thereby reducing the number of data block retransmissions and improving the service quality.
  • the method may be used by a radio access network device, such as a base station, or a controller to process uplink data sent by a received mobile terminal.
  • the mobile terminal can also be used to process the downlink data sent by the received radio access network device.
  • the method includes:
  • Step 401 Acquire coding information of the first channel decoding of the data block, where the decoding information of the first channel decoding of the data block includes the decoding result of the first channel decoding of the data block and the data block Demodulate the soft value.
  • the service type of the data block may be signaling or R99 packet service, that is, a service that does not support MAC layer HARQ and uses the RLC AM entity.
  • the decoding information of the first channel decoding of the data block may be one-time decoding information of acquiring a data block from a physical layer of the receiving end, or may be obtaining secondary decoding information of the data block from an RLC layer of the receiving end.
  • the traditional VA decoding can be used in the physical layer or the RLC layer, or the data block can be decoded by using a high-order decoder such as PLVA or SLVA.
  • the first channel decoding of the data block may be VA decoding or higher order decoder decoding of the physical layer, or VA or higher order decoder decoding of the RLC layer.
  • Step 402 If the decoding result of the decoding of the first channel decoding of the data block acquired in step 401 fails, the reference sequence number of the data block is obtained according to the decoding result of the decoding of the first channel.
  • the reference sequence number of the data block may be extracted from the decoding result.
  • the reference sequence number can be obtained from the specified bit position of the decoding result, and if the decoding result is correctly verified, the RLC PDU sequence number of the data block is obtained at the specified bit position of the decoding result, and In the case where the decoding result verification fails, the reference sequence number as the data block is obtained from the specified bit position in the decoding result, and there is a certain probability of error compared with the real sequence number of the data block.
  • the obtained RLC PDU sequence number of the data block is 010010001001
  • the obtained RLC PDU sequence number of the data block is 001010101001
  • the lower 5 bits of the reference sequence number of the obtained data block are the same as the lower 5 bits of the RLC PDU sequence number when the decoding result of the data block is correct, but the high bit has an error.
  • Step 403 Acquire at least one matching historical demodulation soft value in the historical demodulation soft value record table according to the reference sequence number acquired in step 402.
  • the historical demodulation soft value record table includes at least one historical demodulation soft value record, and each of the historical demodulation soft value records includes a reference sequence number and a demodulation soft value of the data block corresponding to the reference sequence number.
  • the historical demodulation soft value record table is used for recording the demodulation soft value and the corresponding reference sequence number of the channel decoding apparatus that failed to decode the received data block before the current decoding. Because it is not supported In the MAC layer HARQ service, the demodulated soft value of each data block obtained does not additionally carry the RLC PDU sequence number. Therefore, the reference sequence number extracted from the failed decoding result can be used as the demodulation soft for decoding failure. The reference sequence number corresponding to the value.
  • the RLC layer For services that do not support MAC layer HARQ and use the RLC AM entity, if its data block decoding fails, the RLC layer performs at least one retransmission until the decoding succeeds or the retransmission upper limit is reached. Therefore, in the historical demodulation soft value recording table, the demodulated soft value decoded when the data block is transmitted multiple times and the reference sequence number of each decoding may be recorded.
  • the lower bits of the reference sequence number may be matched and acquired. If the low bits are the same, it can be considered as different decoding values after the same data block is retransmitted.
  • At least one first historical demodulation soft value record may be determined in the historical demodulation soft value record according to the reference sequence number of the data block, and the demodulation soft value of each first historical demodulation soft value record is obtained as a matching history. Demodulate the soft value.
  • the binary 0th to Mth bits of the reference sequence number of each first historical demodulation soft value record are the same as the binary 0th to Mth bits of the reference sequence number of the data block, that is,
  • the historical demodulation soft value record of the lower M+1 bit of the sequence number and the lower M+1 bit of the reference sequence number of the data block is determined as the first historical demodulation soft value record, where M is greater than 0 and A positive integer less than or equal to N, where N is the binary length of the reference sequence number of the data block, typically N is less than or equal to 12.
  • the low M+1 bit is the same, it can be regarded as different decoding values of the RLC PDU sequence number when the same data block is transmitted differently, so that the corresponding demodulation soft value can be considered as the same data block when transmitting differently. Demodulate the soft value.
  • Step 404 Combine the demodulation soft value of the data block with the at least one matching historical demodulation soft value obtained in step 403 to obtain a combined demodulation soft value of the data block.
  • the demodulated soft value of the data block and the at least one matched historical demodulation soft value can be combined in a variety of ways. For example, the demodulated soft value of the data block and the obtained historical solution of at least one match
  • the softening values are added to obtain the combined demodulation soft value of the data block; for example, according to the quality threshold, the historical demodulation softness satisfying the quality threshold requirement is selected among the acquired historical demodulation soft values of one or more matches.
  • the value is added to the demodulated soft value of the data block to obtain a combined demodulation soft value for the data block. It should be noted that the above are merely examples, and the present invention is not limited thereto.
  • Step 405 Perform second channel decoding on the combined demodulation soft value of the data block obtained in step 404.
  • the second channel decoding may be deployed in the physical layer using VA decoding or high-order decoding, or may be deployed in the RLC layer using VA decoding or high-order decoding.
  • the channel decoding device in the embodiment of the present invention may be deployed on the NodeB, and the second channel decoding is deployed in the RLC layer.
  • the channel decoding apparatus of the embodiment of the present invention may be deployed on the RNC.
  • the channel decoding apparatus in the embodiment of the present invention may be deployed on a mobile terminal, and the second channel decoding apparatus may be deployed in a physical layer using VA or high-order decoding, or may be deployed in an RLC layer.
  • VA or high order decoding may be deployed in the physical layer using VA decoding or high-order decoding.
  • step 406 may also be included.
  • Step 406 Add a second historical demodulation soft value record in the historical demodulation soft value record table, where the reference sequence number of the second historical demodulation soft value record is the reference sequence number of the data block, and the second history demodulation
  • the demodulation soft value of the soft value record is the demodulation soft value of the data block. That is to say, the soft value adding unit may add the demodulation soft value and the reference sequence number of the data block as a historical demodulation soft value record in the historical demodulation soft value record table for the next data block retransmission decoding. When combined decoding is used.
  • step 407 may also be included.
  • Step 407 Delete the first historical demodulation soft value record corresponding to the historical demodulation soft value for the combination determined in step 403. Since the data block is successfully decoded, the historical demodulated soft value record matching the data block can be deleted to save storage space.
  • optional steps 408 may also be included on the basis of steps 401 to 405.
  • Step 408 If the third historical demodulation soft value record save time exceeds the time threshold T, the soft value is deleted.
  • the unit can also be used to delete the third historical demodulation soft value record to save storage space.
  • the decoding when the data block is retransmitted, if the decoding fails, the demodulated soft value received by the data block once or more times is received. Adding a decoding after merging can improve the decoding success rate, thereby reducing the number of data block retransmissions and improving the service quality.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • Computer readable media includes computer storage media and Communication medium, wherein the communication medium includes any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • the desired program code and any other medium that can be accessed by the computer may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Abstract

本发明实施例公开了信道译码的方法、装置和系统。一种信道译码的装置,包括,译码信息获取单元,用于获取数据块的第一信道译码的译码信息;序列号获取单元,用于如果所述数据块的第一信道译码的译码结果校验失败,获取所述数据块的参考序列号;历史软值获取单元,用于根据所述数据块的参考序列号在历史解调软值记录表中获取至少一个匹配的历史解调软值;软值合并单元,用于将所述数据块的解调软值和至少一个匹配的历史解调软值进行合并得到所述数据块的合并解调软值;第二信道译码单元,用于对所述数据块的合并解调软值进行第二信道译码。本发明实施例还公开了信道译码的方法和系统。

Description

信道译码的方法、装置和系统 技术领域
本发明实施例涉及通信领域,尤其涉及信道译码的方法、装置和系统。
背景技术
通用移动通信系统(universal mobile telecommunications system,UMTS)是当前最广泛采用的一种第三代(the third generation,3G)移动电话技术。在UMTS中,接收端物理层完成数据译码后,将校验结果和译码的数据经媒体接入控制(medium access control,MAC)层传递到接收端的无线链路控制(radio link control,RLC)层,对于确认模式(acknowledged mode,AM)的RLC实体,如果物理层译码失败,则会要求发送端的RLC实体进行数据重传以提高译码成功率。
由于在RLC层重传存在时间长,效率低的问题,UMTS中又引入了高速分组接入(high speed packet access,HSPA)技术,在MAC层支持混合自动重传请求(hybrid automatic repeat request,HARQ),使得数据的重传效率得到了明显提高,相应地降低了RLC层的重传率,提高了UMTS的性能。
然而,在UMTS系统中,对于不支持MAC层HARQ并且使用RLC AM实体的业务,例如,信令,及分组域(packet switched,PS)的R99业务等,无法获得HSPA带来的性能增益,由于不能支持MAC层的HARQ,相应地RLC层的重传率要高于支持MAC层HARQ的业务,并且由于RLC层的重传时间较长,这些不支持MAC层HARQ的业务质量(quality of service,QoS)将受到影响。
发明内容
有鉴于此,本发明实施例提供了信道译码的方法、装置和系统,以实现对于不支持MAC层HARQ的业务提升译码成功率,改善业务质量。
第一方面,本发明实施例提供了一种信道译码的装置,所述装置包括:
译码信息获取单元,用于获取数据块的第一信道译码的译码信息,其中,所述第一信道译码的译码信息包括所述数据块的第一信道译码的译码结果以及 所述数据块的解调软值;
序列号获取单元,用于如果所述译码结果获取单元获取的所述数据块的第一信道译码的译码结果校验失败,根据所述数据块的第一信道译码的译码结果获取所述数据块的参考序列号;
历史软值获取单元,用于根据所述序列号获取单元获取的所述数据块的参考序列号在历史解调软值记录表中获取至少一个匹配的历史解调软值,其中,所述历史解调软值记录表包括至少一个历史解调软值记录,每个所述历史解调软值记录包括历史解调软值和与该历史解调软值对应的数据块的参考序列号;
软值合并单元,用于将所述数据块的解调软值和所述历史软值获取单元获取的至少一个匹配的历史解调软值进行合并得到所述数据块的合并解调软值;
第二信道译码单元,用于对所述软值合并单元得到的所述数据块的合并解调软值进行第二信道译码。
在第一方面的第一种可能的实现方式中,所述第一信道译码,包括:
物理层维特比算法VA译码或者高阶译码;或者,
无线链路控制RLC层VA译码或者高阶译码;
其中,所述高阶译码包括:并行列表VA译码或者串行列表VA译码。
结合第一方面,或者第一方面第一种可能的实现方式,在第二种可能的实现方式中,所述历史软值获取单元具体用于:
根据所述数据块的参考序列号在所述历史解调软值记录表中确定至少一个第一历史解调软值记录,所述至少一个第一历史解调软值记录的参考序列号的二进制的第0位至第M位与所述数据块的参考序列号的二进制第0位至第M位相同,其中M为大于0且小于或者等于N的正整数,N为所述数据块的参考序列号的二进制长度;
从所述至少一个第一历史解调软值记录中获取该记录的解调软值作为所述至少一个匹配的历史解调软值。
结合第一方面,或者第一方面第一至第二种任意一种可能的实现方式,在第三种可能的实现方式中,所述软值合并单元,具体用于:
将所述数据块的解调软值和所述至少一个匹配的历史解调软值相加后得到所述数据块合并后的解调软值;或者,
将所述数据块的解调软值和所述至少一个匹配的历史解调软值根据质量门限合并得到所述数据块合并后的解调软值。
结合第一方面,或者第一方面第一至第三种任意一种可能的实现方式,在第四种可能的实现方式中,所述所述第二信道译码,包括:
物理层维特比算法VA译码或者高阶译码;或者,
无线链路控制RLC层VA译码或者高阶译码;
其中,所述高阶译码包括:并行列表VA译码或者串行列表VA译码。
结合第一方面,或者第一方面第一至第三种任意一种可能的实现方式,在第五种可能的实现方式中,所述装置还包括:
软值添加单元,用于若所述第二信道译码单元译码失败,在所述历史解调软值记录表中添加第二历史解调软值记录,所述第二历史解调软值记录的参考序列号为所述数据块的参考序列号,所述第二历史解调软值记录的解调软值为所述数据块的解调软值。
结合第一方面,或者第一方面第一至第五种任意一种可能的实现方式,在第六种可能的实现方式中,所述装置还包括:
软值删除单元,用于若所述第二信道译码单元译码成功,在所述历史解调软值记录表中删除所述至少一个第一历史解调软值记录。
结合第一方面,或者第一方面第一至第六种任意一种可能的实现方式,在第七种可能的实现方式中,所述数据块的业务类型为信令或者R99的分组业务。
结合第一方面,或者第一方面第一至第七种任意一种可能的实现方式,在第八种可能的实现方式中,所述信道译码装置部署于基站,或者,控制器,或者,移动终端。
第二方面,本发明实施例提供了一种信道译码的方法,所述方法包括:
获取数据块的第一信道译码的译码信息,其中,所述第一信道译码的译码信息包括所述数据块的第一信道译码的译码结果以及所述数据块的解调软值;
如果所述数据块的第一信道译码的译码结果校验失败,根据所述数据块的第一信道译码的译码结果获取所述数据块的参考序列号;
根据所述数据块的参考序列号在历史解调软值记录表中获取至少一个匹配的历史解调软值,其中,所述历史解调软值记录表包括至少一个历史解调软值记录,每个所述历史解调软值记录包括历史解调软值及与该历史解调软值对应的数据块的参考序列号;
将所述数据块的解调软值和所述至少一个匹配的历史解调软值进行合并得到所述数据块的合并解调软值;
对所述数据块的合并解调软值进行第二信道译码。
在第二方面的第一种可能的实现方式中,所述第一信道译码,包括:
物理层维特比算法VA译码或者高阶译码;或者,
无线链路控制RLC层VA译码或者高阶译码;
其中,所述高阶译码包括:并行列表VA译码或者串行列表VA译码。
结合第二方面,或者第二方面第一种可能的实现方式,在第二种可能的实现方式中,所述根据所述数据块的参考序列号在历史解调软值记录表中获取至少一个匹配的历史解调软值,包括:
根据所述数据块的参考序列号在所述历史解调软值记录表中确定至少一个第一历史解调软值记录,所述至少一个第一历史解调软值记录的参考序列号的二进制的第0位至第M位与所述数据块的参考序列号的二进制第0位至第M位相同,其中M为大于0且小于或者等于N的正整数,N为所述数据块的参考序列号的二进制长度;
从所述至少一个第一历史解调软值记录中获取该记录的解调软值作为所述至少一个匹配的历史解调软值。
结合第二方面,或者第二方面第一至第二种任意一种可能的实现方式,在第三种可能的实现方式中,所述将所述数据块的解调软值和所述至少一个匹配的历史解调软值进行合并得到所述数据块合并后的解调软值,包括:
将所述数据块的解调软值和所述至少一个匹配的历史解调软值相加后得到 所述数据块的合并解调软值;或者,
将所述数据块的解调软值和所述至少一个匹配的历史解调软值根据质量门限合并得到所述数据块的合并解调软值。
结合第二方面,或者第二方面第一至第三种任意一种可能的实现方式,在第四种可能的实现方式中,所述第二信道译码,包括:
物理层维特比算法VA译码或者高阶译码;或者,
无线链路控制RLC层VA译码或者高阶译码;
其中,所述高阶译码包括:并行列表VA译码或者串行列表VA译码。
结合第二方面,或者第二方面第一至第四种任意一种可能的实现方式,在第五种可能的实现方式中,所述方法还包括:
若所述第二信道译码失败,在所述历史解调软值记录表中添加第二历史解调软值记录,所述第二历史解调软值记录的参考序列号为所述数据块的参考序列号,所述第二历史解调软值记录的解调软值为所述数据块的解调软值。
结合第二方面,或者第二方面第一至第五种任意一种可能的实现方式,在第六种可能的实现方式中,所述方法还包括:
若所述第二信道译码成功,在所述历史解调软值记录表中删除所述至少一个第一历史解调软值记录。
结合第二方面,或者第二方面第一至第六种任意一种可能的实现方式,在第七种可能的实现方式中,所述数据块的业务类型为信令或者R99的分组业务。
第三方面,本发明实施例提供了一种信道译码系统,所述系统包括:
解调器,用于对接收到的数据块进行解调得到所述数据块的解调软值;
第一信道译码装置,用于对所述解调器得到的所述数据块的解调软值进行译码;
以及第一方面任一可能实现方式的第二信道译码装置。
本发明实施例的方法、装置和系统,对于不支持MAC层HARQ且为RLC AM的业务,在数据块发生重传时,如果译码失败,通过对数据块一次或多于一次接收到的解调软值进行合并后增加一次译码,可以提升译码成功率,从而 减少数据块重传次数,提高业务质量。
附图说明
图1为本发明一实施例提供的信道译码的装置的结构图;
图2为本发明另一实施例提供的信道译码的装置的结构图;
图3为本发明另一实施例提供的信道译码系统的组成图;
图4为本发明另一实施例提供的信道译码的方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,可以理解的是,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例中方法、装置和系统可以通过无线接入网设备来实现,也可以通过移动终端来实现。其中,无线接入网设备包括不限于下述任一种或者多于一种共同实现,如,基站NodeB或者无线网络控制器RNC或者其他接入网设备的控制节点。
图1为本发明一实施例提供的信道译码装置的结构图,该信道译码装置可以部署在无线接入网设备,例如基站,或者,控制器等用于处理接收到的移动终端发送的上行数据,也可以部署在移动终端上用于处理接收到的无线接入网设备发送的下行数据。如图所示,该装置可以包括:译码信息获取单元101,序列号获取单元102、历史软值获取单元103,软值合并单元104以及第二信道译码单元105。
译码信息获取单元101,用于获取数据块的第一信道译码的译码信息,其中,数据块的第一信道译码的译码信息包括该数据块的第一信道译码的译 码结果以及该数据块的解调软值。这里数据块的业务类型可以是信令或者R99的分组业务,也就是不支持MAC层HARQ且使用RLC AM实体的业务。
译码信息获取单元101可以从接收端的物理层获取数据块的一次译码信息,也可以从接收端的RLC层获取数据块的二次译码信息。
在本发明的一个实施例中,接收端的物理层对数据块的一次译码可以采用传统的维特比算法(viterbi algorithm,VA)译码,也可以部署高阶译码器,如,并行列表VA(parallel list VA,PLVA)译码或者串行列表(serial list VA,SLVA),对数据块进行译码,从而,数据块的第一信道译码可以是物理层的VA译码,也可以是物理层的高阶译码器译码。
在本发明的另一个实施例中,当接收端的物理层对数据块的一次译码失败后,可以通过在RLC层部署VA,或者,高阶译码器,如PLVA或者SLVA对数据块进行二次译码。此时,译码信息获取单元101从RLC层获取数据块的译码信息,数据块的第一信道译码可以是RLC层的VA译码,也可以是RLC层的高阶译码器译码。
序列号获取单元102,用于如果译码信息获取单元101获取的该数据块第一信道译码的译码结果校验失败,根据第一信道译码的译码结果获取该数据块的参考序列号。
如果译码信息获取单元101获取的数据块的第一信道译码的译码结果CRC校验失败,可以从该译码结果中提取数据块的参考序列号。该参考序列号可以从译码结果的指定比特位置上获取,对于译码结果校验正确的情况下,译码结果的这一指定比特位置上获取到的是数据块的RLC协议数据单元(protocol data unit,PDU)序列号,而对于译码结果校验失败的情况下,从该译码结果中这一指定比特位置上获取到作为数据块的参考序列号,和该数据块的真实序列号相比有一定概率的误差。例如,在译码结果正确的情况下,获取到的该数据块的RLC PDU序列号为010010001001,而译码结果校验失败的情况下,获取到的该数据块的RLC PDU序列号为001010101001,也就 是说译码结果校验失败的情况下获取到的该数据块的参考序列号低5位比特和该数据块译码结果正确时的RLC PDU序列号低5位比特相同,但是高位有误差。需要说明的是,上述只是举例,本发明并不限于此。
历史软值获取单元103,用于根据序列号获取单元102获取的参考序列号在历史解调软值记录表中获取至少一个匹配的历史解调软值。
其中,历史解调软值记录表包括至少一个历史解调软值记录,每个历史解调软值记录包括参考序列号和该参考序列号对应的数据块的解调软值。
历史解调软值记录表中用于记录该信道译码装置在本次译码前,对接收到的数据块译码失败的解调软值及其对应的参考序列号。由于对于不支持MAC层HARQ的业务,获取到的每个数据块的解调软值并不额外携带RLC PDU序列号,因此,可以将失败的译码结果中提取的参考序列号作为译码失败的解调软值对应的参考序列号。
对于不支持MAC层HARQ并且使用RLC AM实体的业务,如果其数据块译码失败,RLC层会进行至少一次重传,直至译码成功或达到重传上限。从而在历史解调软值记录表中可能会记录该数据块多次传输时译码的解调软值及其每一次译码的参考序列号。例如,数据块经过2次重传,仍然译码失败,则历史解调软值记录表中,将记录该数据块初次传输时的解调软值及其初次传输时的译码结果中对应的参考序列号,该数据块第1次重传时的解调软值及其第一次重传时的译码结果中对应的参考序列号,该数据块第2次重传时的解调软值及其第二次重传时的译码结果中对应的参考序列号。
由于失败的译码结果中获取到的参考序列号可能不能准确地反应数据块的序列号,因此在获取匹配的历史解调软值时,可以对参考序列号的低位比特进行匹配获取。如果低位相同,可以认为是同一数据块重传后的不同译码值。
在本发明的一个实施例中,历史软值获取单元103可以根据数据块的参考序列号在历史解调软值记录确定至少一个第一历史解调软值记录,获取每 个第一历史解调软值记录的解调软值作为匹配的历史解调软值。
其中,每个第一历史解调软值记录的参考序列号的二进制的第0位至第M位与该数据块的参考序列号的二进制第0位至第M位相同,也就是说,将序列号的低M+1位比特与该数据块的参考序列号的低M+1位比特相同的历史解调软值记录确定为第一历史解调软值记录,其中,M为大于0且小于或者等于N的正整数,N为所述数据块的参考序列号的二进制长度,一般N小于或者等于12。也就是说,如果低M+1位比特相同,可以认为是同一数据块不同传输时的RLC PDU序列号的不同译码值,从而对应的解调软值可以认为是同一数据块不同传输时的解调软值。
软值合并单元104,用于将数据块的解调软值和历史软值获取单元103获取的至少一个匹配的历史解调软值进行合并得到数据块的合并解调软值。
可以通过多种方式对数据块的解调软值和至少一个匹配的历史解调软值进行合并。例如,将该数据块的解调软值和获取到的至少一个匹配的历史解调软值相加得到该数据块的合并解调软值;又例如,根据质量门限,在获取到的一个或者一个以上的匹配的历史解调软值中选择满足质量门限要求的历史解调软值和该数据块的解调软值相加得到该数据块的合并解调软值。需要说明的是,上述均只是举例,本发明并不限于此。
第二信道译码单元105,用于对软值合并单元104得到的数据块的合并解调软值进行第二信道译码。
第二信道译码可以部署在物理层采用VA译码或者高阶译码,也可以部署在RLC层采用VA译码或者高阶译码。以UMTS系统上行方向为例,第二信道译码部署在物理层采用VA或者高阶译码时,本发明实施例的信道译码装置可以部署在NodeB上,第二信道译码部署在RLC层采用VA或者高阶译码时,本发明实施例的信道译码装置可以部署在RNC上。以UMTS系统下行方向为例,本发明实施例的信道译码装置可以部署在移动终端上,第二信道译码装置可以部署在物理层采用VA或者高阶译码,也可以部署在RLC层采用VA或者高 阶译码。需要说明的是,这里只是举例,本发明实施例并不限于此。
在本发明的另一实施例中,若第二信道译码单元105译码失败,信道译码装置还可以包括软值添加单元,用于在历史解调软值记录表中添加第二历史解调软值记录,其中,第二历史解调软值记录的参考序列号为该数据块的参考序列号,第二历史解调软值记录的解调软值为该数据块的解调软值。也就是说软值添加单元可以将数据块的解调软值及参考序列号作为一条历史解调软值记录添加在历史解调软值记录表中,以用于下次数据块重传译码时进行合并译码使用。
在本发明的另一实施例中,信道译码装置还可以包括软值删除单元,若第二信道译码单元105译码成功,软值删除单元可以用于将用于合并的历史解调软值对应的第一历史解调软值记录删除。由于数据块译码成功,因此与该数据块匹配的历史解调软值记录可以删除以节省存储空间。其中,可以将所有第一历史解调软值记录删除,也可以仅将参与合并的历史解调软值对应的第一历史解调软值记录删除。本发明并不限于此。
在本发明的另一实施例中,若第三历史解调软值记录保存时间超过时间门限T,软值删除单元也可以用于删除第三历史解调软值记录以节省存储空间。
通过本发明实施例的装置,对于不支持MAC层HARQ且为RLC AM的业务,在数据块发生重传时,如果译码失败,通过对数据块一次或多于一次接收到的解调软值进行合并后增加一次译码,可以提升译码成功率,从而减少数据块重传次数,提高业务质量。
图2为本发明另一实施例提供的信道译码装置的结构图,该信道译码装置可以部署在无线接入网设备,例如基站,或者,控制器等用于处理接收到的移动终端发送的上行数据,也可以部署在移动终端上用于处理接收到的无线接入网设备发送的下行数据。如图所示,该装置可以包括:总线201,与 总线201相连的处理器202,与总线201相连的存储器203。其中,处理器202通过总线201,调用存储器203中存储的程序,以用于获取数据块的第一信道译码的译码信息,其中,数据块的第一信道译码的译码信息包括该数据块的第一信道译码的译码结果以及该数据块的解调软值;如果数据块的第一信道译码的译码结果校验失败,处理器202根据该数据块的第一信道译码的译码结果获取该数据块的参考序列号,并且根据该数据块的参考序列号在历史解调软值记录表中获取至少一个匹配的历史解调软值,其中,历史解调软值记录表包括至少一个历史解调软值记录,每个历史解调软值记录包括历史解调软值及与该历史解调软值对应的参考序列号,处理器202将该数据块的解调软值和这至少一个匹配的历史解调软值进行合并得到数据块的合并解调软值,对所述数据块的合并解调软值进行第二信道译码。
其中,数据块的业务类型可以是信令或者R99的分组业务,也就是不支持MAC层HARQ且使用RLC AM实体的业务。处理器202可以从接收端的物理层获取数据块的一次译码信息,也可以从接收端的RLC层获取数据块的二次译码信息。在本发明的一个实施例中,接收端的物理层对数据块的一次译码可以采用传统的VA译码,也可以部署高阶译码器,如,PLVA或者SLVA对数据块进行译码,从而,数据块的第一信道译码可以是物理层的VA译码,也可以是物理层的高阶译码器译码。在本发明的另一个实施例中,当接收端的物理层对数据块的一次译码失败后,可以通过在RLC层部署VA,或者,高阶译码器,如PLVA或者SLVA对数据块进行二次译码。此时,处理器202从RLC层获取数据块的译码信息,数据块的第一信道译码可以是RLC层的VA译码,也可以是RLC层的高阶译码器译码。
其中,数据块的参考序列号可以从译码结果的指定比特位置上获取,对于译码结果校验正确的情况下,译码结果的这一指定比特位置上获取到的是数据块的RLC PDU序列号,而对于译码结果校验失败的情况下,从该译码结果中这一指定比特位置上获取到作为数据块的参考序列号,和该数据块的真 实序列号相比有一定概率的误差。
在本发明的一个实施例中,处理器202可以根据数据块的参考序列号在历史解调软值记录确定至少一个第一历史解调软值记录,获取每个第一历史解调软值记录的解调软值作为匹配的历史解调软值。其中,每个第一历史解调软值记录的参考序列号的二进制的第0位至第M位与该数据块的参考序列号的二进制第0位至第M位相同,也就是说,将序列号的低M+1位比特与该数据块的参考序列号的低M+1位比特相同的历史解调软值记录确定为第一历史解调软值记录,其中,M为大于0且小于或者等于N的正整数,N为所述数据块的参考序列号的二进制长度,一般N小于或者等于12。也就是说,如果低M+1位比特相同,可以认为是同一数据块不同传输时的RLC PDU序列号的不同译码值,从而对应的解调软值可以认为是同一数据块不同传输时的解调软值。
处理器202也可以采用多种方式对数据块的解调软值和至少一个匹配的历史解调软值进行合并。例如,将该数据块的解调软值和获取到的至少一个匹配的历史解调软值相加得到该数据块的合并解调软值;又例如,根据质量门限,在获取到的一个或者一个以上的匹配的历史解调软值中选择满足质量门限要求的历史解调软值和该数据块的解调软值相加得到该数据块的合并解调软值。需要说明的是,上述均只是举例,本发明并不限于此。
需要说明的是,处理器202可以在物理层采用VA译码或者高阶译码进行第二信道译码,也可以在RLC层采用VA译码或者高阶译码。以UMTS系统上行方向为例,处理器202在物理层采用VA译码或者高阶译码进行第二信道译码时,本发明实施例的信道译码装置可以部署在NodeB上,处理器202在RLC层采用VA译码或者高阶译码进行第二信道译码时,本发明实施例的信道译码装置可以部署在RNC上。以UMTS系统下行方向为例,本发明实施例的信道译码装置可以部署在移动终端上,第二信道译码可以在物理层采用VA或者高阶译码,也可以在RLC层采用VA或者高阶译码。需要说明的是,这里只是举例, 本发明实施例并不限于此。
可选地,若第二信道译码失败,处理器202还可以在历史解调软值记录表中添加第二历史解调软值记录,其中,第二历史解调软值记录的参考序列号为该数据块的参考序列号,第二历史解调软值记录的解调软值为该数据块的解调软值。也就是说处理器202可以将数据块的解调软值及参考序列号作为一条历史解调软值记录添加在历史解调软值记录表中,以用于下次数据块重传译码时进行合并译码使用。
可选地,若第二信道译码成功,处理器202还可以将用于合并的历史解调软值对应的第一历史解调软值记录删除。由于数据块译码成功,因此处理器202可以将与该数据块匹配的历史解调软值对应的历史解调软值记录删除以节省存储空间。
可选地,若第三历史解调软值记录保存时间超过时间门限T,处理器202也可以用于删除第三历史解调软值记录以节省存储空间
通过本发明实施例的装置,对于不支持MAC层HARQ且为RLC AM的业务,在数据块发生重传时,如果译码失败,通过对数据块一次或多于一次接收到的解调软值进行合并后增加一次译码,可以提升译码成功率,从而减少数据块重传次数,提高业务质量。
图3为本发明一实施例提供的信道译码系统的组成图,如图所示,该信道译码系统用于对接收端接收的数据块进行处理,可以包括:解调器301,第一信道译码装置302,第二信道译码装置303。其中,
解调器301,用于对接收到的数据块进行解调得到解调软值。
第一信道译码装置302,用于对解调器301得到的数据块的解调软值进行译码。其中,第一信道译码装置302可以采用VA或者高阶译码,如PLVA译码或者SLVA译码。在本发明的一个实施例中,第一信道译码装置302可以在物理层采用VA或者高阶译码对解调器301得到的数据块的解调软值进行译 码,如果物理层译码成功,则译码结果经MAC层上报至RLC层,由RLC层递交至上层协议实体处理。或者,如果物理层译码失败,第一信道译码装置302将数据块的译码结果及解调软值交由第二信道译码装置303处理。
在本发明的另一实施例中,在前述物理层译码的基础上,如果物理层译码失败,第一信道译码装置302还可以进一步在RLC层部署VA或者高阶译码,对数据块的物理层译码结果及解调软值进行二次译码。如果RLC层二次译码失败,第一信道译码装置302将数据块的译码结果及解调软值交由第二信道译码装置303处理。
第二信道译码装置303,用于对第一信道译码装置302译码失败时进行解调软值合并译码,第二信道译码装置303可以为图1或者图2所示的信道译码装置,由于在前述实施例中,已经进行了说明,在此不再赘述。
其中,数据块的业务类型可以是信令或者R99的分组业务,也就是不支持MAC层HARQ且使用RLC AM实体的业务。
通过本发明实施例的系统,对于不支持MAC层HARQ且为RLC AM的业务,在数据块发生重传时,如果译码失败,通过对数据块一次或多于一次接收到的解调软值进行合并后增加一次译码,可以提升译码成功率,从而减少数据块重传次数,提高业务质量。
图4为本发明另一实施例提供的信道译码的方法的流程图,该方法可以用于无线接入网设备,例如基站,或者,控制器等处理接收到的移动终端发送的上行数据,也可以在移动终端上用于处理接收到的无线接入网设备发送的下行数据,如图所示,该方法包括:
步骤401:获取数据块的第一信道译码的译码信息,其中,数据块的第一信道译码的译码信息包括该数据块的第一信道译码的译码结果以及该数据块的解调软值。这里数据块的业务类型可以是信令或者R99的分组业务,也就是不支持MAC层HARQ且使用RLC AM实体的业务。
数据块的第一信道译码的译码信息可以是从接收端的物理层获取数据块的一次译码信息,也可以是从接收端的RLC层获取数据块的二次译码信息。相应地,在物理层或者RLC层可以采用传统的VA译码,也可以采用高阶译码器,如,PLVA或者SLVA对数据块进行译码。从而,数据块的第一信道译码可以是物理层的VA译码或者高阶译码器译码,也可以是RLC层的VA或者高阶译码器译码。
步骤402:如果步骤401获取的该数据块的第一信道译码的译码结果校验失败,根据第一信道译码的译码结果获取该数据块的参考序列号。
如果步骤401获取的数据块的第一信道译码的译码结果CRC校验失败,可以从该译码结果中提取数据块的参考序列号。该参考序列号可以从译码结果的指定比特位置上获取,对于译码结果校验正确的情况下,译码结果的这一指定比特位置上获取到的是数据块的RLC PDU序列号,而对于译码结果校验失败的情况下,从该译码结果中这一指定比特位置上获取到作为数据块的参考序列号,和该数据块的真实序列号相比有一定概率的误差。例如,在译码结果正确的情况下,获取到的该数据块的RLC PDU序列号为010010001001,而译码结果校验失败的情况下,获取到的该数据块的RLC PDU序列号为001010101001,也就是说译码结果校验失败的情况下获取到的该数据块的参考序列号低5位比特和该数据块译码结果正确时的RLC PDU序列号低5位比特相同,但是高位有误差。需要说明的是,上述只是举例,本发明并不限于此。
步骤403:根据步骤402获取的参考序列号在历史解调软值记录表中获取至少一个匹配的历史解调软值。
其中,历史解调软值记录表包括至少一个历史解调软值记录,每个历史解调软值记录包括参考序列号和该参考序列号对应的数据块的解调软值。
历史解调软值记录表中用于记录该信道译码装置在本次译码前,对接收到的数据块译码失败的解调软值及其对应的参考序列号。由于对于不支持 MAC层HARQ的业务,获取到的每个数据块的解调软值并不额外携带RLC PDU序列号,因此,可以将失败的译码结果中提取的参考序列号作为译码失败的解调软值对应的参考序列号。
对于不支持MAC层HARQ并且使用RLC AM实体的业务,如果其数据块译码失败,RLC层会进行至少一次重传,直至译码成功或达到重传上限。从而在历史解调软值记录表中可能会记录该数据块多次传输时译码的解调软值及其每一次译码的参考序列号。
由于失败的译码结果中获取到的参考序列号可能不能准确地反应数据块的序列号,因此在获取匹配的历史解调软值时,可以对参考序列号的低位比特进行匹配获取。如果低位相同,可以认为是同一数据块重传后的不同译码值。
具体地,可以根据数据块的参考序列号在历史解调软值记录确定至少一个第一历史解调软值记录,获取每个第一历史解调软值记录的解调软值作为匹配的历史解调软值。
其中,每个第一历史解调软值记录的参考序列号的二进制的第0位至第M位与该数据块的参考序列号的二进制第0位至第M位相同,也就是说,将序列号的低M+1位比特与该数据块的参考序列号的低M+1位比特相同的历史解调软值记录确定为第一历史解调软值记录,其中,M为大于0且小于或者等于N的正整数,N为所述数据块的参考序列号的二进制长度,一般N小于或者等于12。也就是说,如果低M+1位比特相同,可以认为是同一数据块不同传输时的RLC PDU序列号的不同译码值,从而对应的解调软值可以认为是同一数据块不同传输时的解调软值。
步骤404:将数据块的解调软值和步骤403获取的至少一个匹配的历史解调软值进行合并得到数据块的合并解调软值。
可以通过多种方式对数据块的解调软值和至少一个匹配的历史解调软值进行合并。例如,将该数据块的解调软值和获取到的至少一个匹配的历史解 调软值相加得到该数据块的合并解调软值;又例如,根据质量门限,在获取到的一个或者一个以上的匹配的历史解调软值中选择满足质量门限要求的历史解调软值和该数据块的解调软值相加得到该数据块的合并解调软值。需要说明的是,上述均只是举例,本发明并不限于此。
步骤405:对步骤404得到的数据块的合并解调软值进行第二信道译码。
第二信道译码可以部署在物理层采用VA译码或者高阶译码,也可以部署在RLC层采用VA译码或者高阶译码。以UMTS系统上行方向为例,第二信道译码部署在物理层采用VA或者高阶译码时,本发明实施例的信道译码装置可以部署在NodeB上,第二信道译码部署在RLC层采用VA或者高阶译码时,本发明实施例的信道译码装置可以部署在RNC上。以UMTS系统下行方向为例,本发明实施例的信道译码装置可以部署在移动终端上,第二信道译码装置可以部署在物理层采用VA或者高阶译码,也可以部署在RLC层采用VA或者高阶译码。需要说明的是,这里只是举例,本发明实施例并不限于此。
在本发明的另一实施例中,若步骤405译码失败,还可以包括步骤406。
步骤406:在历史解调软值记录表中添加第二历史解调软值记录,其中,第二历史解调软值记录的参考序列号为该数据块的参考序列号,第二历史解调软值记录的解调软值为该数据块的解调软值。也就是说软值添加单元可以将数据块的解调软值及参考序列号作为一条历史解调软值记录添加在历史解调软值记录表中,以用于下次数据块重传译码时进行合并译码使用。
在本发明的另一实施例中,若步骤405译码成功,还可以包括步骤407。
步骤407:将步骤403确定的用于合并的历史解调软值对应的第一历史解调软值记录删除。由于数据块译码成功,因此与该数据块匹配的历史解调软值记录可以删除以节省存储空间。
在本发明的另一实施例中,在步骤401至405的基础上,还可以包括可选步骤408。
步骤408:若第三历史解调软值记录保存时间超过时间门限T,软值删除 单元也可以用于删除第三历史解调软值记录以节省存储空间。
本发明实施例的方法各步骤的功能均可以由前述装置实施例各组成部分对应实现,在前述装置实施例中已经进行描述,在此不再赘述。
通过本发明实施例的方法,对于不支持MAC层HARQ且为RLC AM的业务,在数据块发生重传时,如果译码失败,通过对数据块一次或多于一次接收到的解调软值进行合并后增加一次译码,可以提升译码成功率,从而减少数据块重传次数,提高业务质量。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和 通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种信道译码的装置,其特征在于,所述装置包括:
    译码信息获取单元,用于获取数据块的第一信道译码的译码信息,其中,所述第一信道译码的译码信息包括所述数据块的第一信道译码的译码结果以及所述数据块的解调软值;
    序列号获取单元,用于如果所述译码结果获取单元获取的所述数据块的第一信道译码的译码结果校验失败,根据所述数据块的第一信道译码的译码结果获取所述数据块的参考序列号;
    历史软值获取单元,用于根据所述序列号获取单元获取的所述数据块的参考序列号在历史解调软值记录表中获取至少一个匹配的历史解调软值,其中,所述历史解调软值记录表包括至少一个历史解调软值记录,每个所述历史解调软值记录包括历史解调软值和与该历史解调软值对应的数据块的参考序列号;
    软值合并单元,用于将所述数据块的解调软值和所述历史软值获取单元获取的至少一个匹配的历史解调软值进行合并得到所述数据块的合并解调软值;
    第二信道译码单元,用于对所述软值合并单元得到的所述数据块的合并解调软值进行第二信道译码。
  2. 根据权利要求1所述的装置,其特征在于,所述第一信道译码,包括:
    物理层维特比算法VA译码或者高阶译码;或者,
    无线链路控制RLC层VA译码或者高阶译码;
    其中,所述高阶译码包括:并行列表VA译码或者串行列表VA译码。
  3. 根据权利要求1或者2所述的信道译码装置,其特征在于,所述历史软值获取单元具体用于:
    根据所述数据块的参考序列号在所述历史解调软值记录表中确定至少 一个第一历史解调软值记录,所述至少一个第一历史解调软值记录的参考序列号的二进制的第0位至第M位与所述数据块的参考序列号的二进制第0位至第M位相同,其中M为大于0且小于或者等于N的正整数,N为所述数据块的参考序列号的二进制长度;
    从所述至少一个第一历史解调软值记录中获取该记录的解调软值作为所述至少一个匹配的历史解调软值。
  4. 根据权利要求1至3任一项所述的信道译码装置,其特征在于,所述软值合并单元,具体用于:
    将所述数据块的解调软值和所述至少一个匹配的历史解调软值相加后得到所述数据块合并后的解调软值;或者,
    将所述数据块的解调软值和所述至少一个匹配的历史解调软值根据质量门限合并得到所述数据块合并后的解调软值。
  5. 根据权利要求1至4任一项所述的信道译码装置,其特征在于,所述所述第二信道译码,包括:
    物理层维特比算法VA译码或者高阶译码;或者,
    无线链路控制RLC层VA译码或者高阶译码;
    其中,所述高阶译码包括:并行列表VA译码或者串行列表VA译码。
  6. 根据权利要求1至4任一项所述的信道译码装置,其特征在于,所述装置还包括:
    软值添加单元,用于若所述第二信道译码单元译码失败,在所述历史解调软值记录表中添加第二历史解调软值记录,所述第二历史解调软值记录的参考序列号为所述数据块的参考序列号,所述第二历史解调软值记录的解调软值为所述数据块的解调软值。
  7. 根据权利要求1至6任一项所述的信道译码装置,其特征在于,所述装置还包括:
    软值删除单元,用于若所述第二信道译码单元译码成功,在所述历史解 调软值记录表中删除所述至少一个第一历史解调软值记录。
  8. 根据权利要求1至7任一项所述的信道译码装置,其特征在于,所述数据块的业务类型为信令或者R99的分组业务。
  9. 根据权利要求1至8任一项所述的信道译码装置,其特征在于,所述信道译码装置部署于基站,或者,控制器,或者,移动终端。
  10. 一种信道译码的方法,其特征在于,所述方法包括:
    获取数据块的第一信道译码的译码信息,其中,所述第一信道译码的译码信息包括所述数据块的第一信道译码的译码结果以及所述数据块的解调软值;
    如果所述数据块的第一信道译码的译码结果校验失败,根据所述数据块的第一信道译码的译码结果获取所述数据块的参考序列号;
    根据所述数据块的参考序列号在历史解调软值记录表中获取至少一个匹配的历史解调软值,其中,所述历史解调软值记录表包括至少一个历史解调软值记录,每个所述历史解调软值记录包括历史解调软值及与该历史解调软值对应的数据块的参考序列号;
    将所述数据块的解调软值和所述至少一个匹配的历史解调软值进行合并得到所述数据块的合并解调软值;
    对所述数据块的合并解调软值进行第二信道译码。
  11. 根据权利要求10所述的方法,其特征在于,所述第一信道译码,包括:
    物理层维特比算法VA译码或者高阶译码;或者,
    无线链路控制RLC层VA译码或者高阶译码;
    其中,所述高阶译码包括:并行列表VA译码或者串行列表VA译码。
  12. 根据权利要求10或11所述的方法,其特征在于,所述根据所述数据块的参考序列号在历史解调软值记录表中获取至少一个匹配的历史解调软值,包括:
    根据所述数据块的参考序列号在所述历史解调软值记录表中确定至少一个第一历史解调软值记录,所述至少一个第一历史解调软值记录的参考序列号的二进制的第0位至第M位与所述数据块的参考序列号的二进制第0位至第M位相同,其中M为大于0且小于或者等于N的正整数,N为所述数据块的参考序列号的二进制长度;
    从所述至少一个第一历史解调软值记录中获取该记录的解调软值作为所述至少一个匹配的历史解调软值。
  13. 根据权利要求10至12任一项所述的方法,其特征在于,所述将所述数据块的解调软值和所述至少一个匹配的历史解调软值进行合并得到所述数据块合并后的解调软值,包括:
    将所述数据块的解调软值和所述至少一个匹配的历史解调软值相加后得到所述数据块的合并解调软值;或者,
    将所述数据块的解调软值和所述至少一个匹配的历史解调软值根据质量门限合并得到所述数据块的合并解调软值。
  14. 根据权利要求10至13任一项所述的方法,其特征在于,所述第二信道译码,包括:
    物理层维特比算法VA译码或者高阶译码;或者,
    无线链路控制RLC层VA译码或者高阶译码;
    其中,所述高阶译码包括:并行列表VA译码或者串行列表VA译码。
  15. 根据权利要求10至14任一项所述的方法,其特征在于,所述方法还包括:
    若所述第二信道译码失败,在所述历史解调软值记录表中添加第二历史解调软值记录,所述第二历史解调软值记录的参考序列号为所述数据块的参考序列号,所述第二历史解调软值记录的解调软值为所述数据块的解调软值。
  16. 根据权利要求10至15任一项所述的方法,其特征在于,所述方法 还包括:
    若所述第二信道译码成功,在所述历史解调软值记录表中删除所述至少一个第一历史解调软值记录。
  17. 根据权利要求10至16任一项所述的方法,其特征在于,所述数据块的业务类型为信令或者R99的分组业务。
  18. 一种信道译码系统,其特征在于,所述系统包括:
    解调器,用于对接收到的数据块进行解调得到所述数据块的解调软值;
    第一信道译码装置,用于对所述解调器得到的所述数据块的解调软值进行译码;
    以及如权利要求1至9任一项所述的第二信道译码装置。
PCT/CN2015/081352 2015-06-12 2015-06-12 信道译码的方法、装置和系统 WO2016197390A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580001236.XA CN107005254B (zh) 2015-06-12 2015-06-12 信道译码的方法、装置和系统
PCT/CN2015/081352 WO2016197390A1 (zh) 2015-06-12 2015-06-12 信道译码的方法、装置和系统
US15/833,560 US10284331B2 (en) 2015-06-12 2017-12-06 Channel decoding method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/081352 WO2016197390A1 (zh) 2015-06-12 2015-06-12 信道译码的方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/833,560 Continuation US10284331B2 (en) 2015-06-12 2017-12-06 Channel decoding method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2016197390A1 true WO2016197390A1 (zh) 2016-12-15

Family

ID=57502742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081352 WO2016197390A1 (zh) 2015-06-12 2015-06-12 信道译码的方法、装置和系统

Country Status (3)

Country Link
US (1) US10284331B2 (zh)
CN (1) CN107005254B (zh)
WO (1) WO2016197390A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040013105A1 (en) * 1999-04-13 2004-01-22 Kalle Ahmavaara Retransmission method with soft combining in a telecommunications system
CN1490972A (zh) * 2003-01-27 2004-04-21 西南交通大学 基于均匀与非均匀调制星座图映射的不等保护混合自动重传请求方法
CN101795184A (zh) * 2010-01-27 2010-08-04 华为终端有限公司 内存管理方法和装置
CN101894075A (zh) * 2010-06-29 2010-11-24 华为终端有限公司 Harq内存处理方法及设备
CN102223216A (zh) * 2010-04-13 2011-10-19 上海无线通信研究中心 组播传输中网络编码混合自动请求重传方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6105158A (en) * 1998-04-03 2000-08-15 Lucent Technologies, Inc. Screening for undetected errors in data transmission systems
US6608828B1 (en) 1999-09-15 2003-08-19 Ericsson Inc. Methods and systems for decoding headers that are repeatedly transmitted and received along with data on a radio channel
EP1402673B1 (en) * 2001-06-21 2008-01-16 Koninklijke Philips Electronics N.V. Transmission method and apparatus in a radio communications network
US7013116B2 (en) * 2002-06-26 2006-03-14 Lucent Technologies Inc. MIMO systems having a channel decoder matched to a MIMO detector
CN100361500C (zh) * 2004-12-15 2008-01-09 西安电子科技大学 空间维独立的干涉多光谱图像无损及近无损编码方法
JP4806673B2 (ja) * 2007-12-27 2011-11-02 ルネサスエレクトロニクス株式会社 復号装置及び復号方法
US9166746B2 (en) * 2009-03-24 2015-10-20 Samsung Electronics Co., Ltd. Operating method and apparatus according to data duplicate retransmission in mobile communication system
CN101667840B (zh) * 2009-09-08 2012-12-12 华为技术有限公司 一种咬尾译码方法及装置
CN102907030A (zh) * 2011-05-27 2013-01-30 华为技术有限公司 语音信号处理方法、装置和接入网系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040013105A1 (en) * 1999-04-13 2004-01-22 Kalle Ahmavaara Retransmission method with soft combining in a telecommunications system
CN1490972A (zh) * 2003-01-27 2004-04-21 西南交通大学 基于均匀与非均匀调制星座图映射的不等保护混合自动重传请求方法
CN101795184A (zh) * 2010-01-27 2010-08-04 华为终端有限公司 内存管理方法和装置
CN102223216A (zh) * 2010-04-13 2011-10-19 上海无线通信研究中心 组播传输中网络编码混合自动请求重传方法
CN101894075A (zh) * 2010-06-29 2010-11-24 华为终端有限公司 Harq内存处理方法及设备

Also Published As

Publication number Publication date
US10284331B2 (en) 2019-05-07
CN107005254B (zh) 2020-03-20
CN107005254A (zh) 2017-08-01
US20180123730A1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
KR100989529B1 (ko) 무선 통신 시스템에서 향상된 업링크로 오버헤드 감소를 위한 방법 및 장치
JP5450599B2 (ja) 通信システムにおけるデータ伝送のためのプリエンプティブ・アクノレッジメント
US9172504B2 (en) Method, apparatus and system for downlink channel transmission
CN1223134C (zh) 对无线信道上的信头解码的方法和系统
TWI501579B (zh) 使用透過單播系統接收之增量冗餘以在廣播系統中接收資料的接收器與接收方法
ES2276815T3 (es) Arq hibrido para la transmision de paquetes de datos.
JP6979050B2 (ja) 予測的確認応答フィードバックメカニズム
JP7166513B2 (ja) 組織的極符号化を使用してデータを再送信するための方法およびシステム
TWI510014B (zh) 對於編碼資料區塊進行解碼
US20030023915A1 (en) Forward error correction system and method for packet based communication systems
TWI353746B (en) Wireless terminal baseband processor high speed tu
JP2010098741A (ja) 送信データ生成装置及び受信機
TW200931861A (en) Decoding scheme using multiple hypotheses about transmitted messages
CN108370293B (zh) 中继方法、中继器、目的地设备及其通信系统
WO2022142814A1 (zh) 基于混合自动重传请求的码块处理的方法和装置
US9847853B1 (en) Method and apparatus for reduced HARQ buffer storage
JP5236735B2 (ja) 送信機及び受信機間の改良されたデータ構造境界同期
CN104144044B (zh) 一种多设备透明harq的处理方法
WO2010096949A1 (zh) 在利用网络编码重传的系统中的解码方法和接收设备
WO2016197390A1 (zh) 信道译码的方法、装置和系统
CN108259121A (zh) 一种用于信道编码的ue、基站中的方法和设备
JP7036118B2 (ja) 再送制御方法、無線端末、無線基地局
CN111585696B (zh) 基于异或运算的双向传输网络下行吞吐量增强方法及系统
WO2022050019A1 (ja) 情報処理装置および復号化方法
US20230327801A1 (en) Information processing device and information processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894659

Country of ref document: EP

Kind code of ref document: A1