WO2016195255A1 - 전 방향 트레드밀 장치 - Google Patents

전 방향 트레드밀 장치 Download PDF

Info

Publication number
WO2016195255A1
WO2016195255A1 PCT/KR2016/004695 KR2016004695W WO2016195255A1 WO 2016195255 A1 WO2016195255 A1 WO 2016195255A1 KR 2016004695 W KR2016004695 W KR 2016004695W WO 2016195255 A1 WO2016195255 A1 WO 2016195255A1
Authority
WO
WIPO (PCT)
Prior art keywords
omni
axis
rotating
along
segment
Prior art date
Application number
PCT/KR2016/004695
Other languages
English (en)
French (fr)
Inventor
문태예
윤정원
표상훈
이호수
박상준
이소연
Original Assignee
경상대학교 산학협력단
문태예
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교 산학협력단, 문태예, 한국전자통신연구원 filed Critical 경상대학교 산학협력단
Priority to US15/578,081 priority Critical patent/US10603539B2/en
Publication of WO2016195255A1 publication Critical patent/WO2016195255A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B22/0235Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor
    • A63B22/0242Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor with speed variation
    • A63B22/025Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor with speed variation electrically, e.g. D.C. motors with variable speed control
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B22/0285Physical characteristics of the belt, e.g. material, surface, indicia
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B22/0235Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B2022/0271Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills omnidirectional
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B2022/0278Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills with reversible direction of the running surface
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/04Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs
    • A63B23/0405Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs involving a bending of the knee and hip joints simultaneously

Definitions

  • the present invention relates to a treadmill device and to a treadmill device that allows a user to walk in all directions on the device.
  • a platform that provides an omni direction walking interface can be roughly divided into a passive platform in which a user directly pushes the platform and an active platform in which a driver is attached.
  • Such a platform developed by Virtual Sphere has a structure in which a large hollow steel structure is placed on a roller having two degrees of freedom, and the structure is manually rotated when a user walks inside the steel structure of a spherical shape.
  • This passive platform enables omni-directional walking interface, but the driver is not applicable, so when the user advances at high speed, the inertia of the structure prevents immersion, and because the ground description is not flat, it makes heterogeneous walking ground sense. There is a problem to provide.
  • Another passive platform is an omni pad applied to the Immersive Group Simulator (IGS), but the user's body is constrained by simply rolling on the sliding pad to create a feeling of real walking. Can not.
  • IGS Immersive Group Simulator
  • the active platform includes an omni directional floor developed by MSE wellbull, which has been commercialized successfully.
  • Such an active platform is arranged in a circular arrangement of 16 separate triangular rollers to provide fun elements of virtual reality to enhance the fun.
  • the roller attached to each segment simply has the function of moving the user to the center of the platform by the rotation of the roller by the motor when the user moves away from the center point. It's not supported.
  • the walking interface in the Y-axis direction is performed by rotating the segment itself.
  • the X-axis direction is simpler and better than the cyberwork platform because the X-axis direction generates the rotation of the segment by the point friction difference power driving method using a number of omni wheels on the platform itself, rather than attaching a motor to each segment.
  • the genus performance was secured.
  • due to the inefficiency of the power transmission of omni wheels not only does it provide reliable power transmission even with a powerful driver, but also drives a large number of omni wheels to maintain constant friction.
  • High acceleration and deceleration interface performance in the X-axis direction has obvious performance limits (ie speeds below 1m / s2).
  • An object of the present invention for solving the above problems is to provide an omni-directional treadmill device that is made to minimize the loss of power transmitted from the drive source, excellent acceleration and deceleration performance and reliable power transmission.
  • the present invention provides a plurality of segments continuously arranged along the first axial direction, each having a belt portion; A first rotating part rotating the plurality of segments along the first axial direction; And a second rotating part for rotating the belt part of each segment in a second axial direction orthogonal to the first axis, wherein the belt part has a tooth surface engaged with the second rotating part.
  • the second rotating unit may include at least one rotating shaft disposed along the first axial direction; And a plurality of omni pulleys fixedly coupled to the rotary shaft, each of which includes a case, wherein each of the omni pulleys may include a plurality of interference rollers engaged with the tooth surface of the belt part.
  • the plurality of interference rollers are arranged at predetermined intervals along the outer circumference of the case, and may rotate about an imaginary axis orthogonal to the rotation shaft.
  • the plurality of interference rollers are grouped by at least one pair and are disposed at predetermined intervals along the outer periphery of the case, and may rotate about an imaginary axis orthogonal to the rotation shaft.
  • the omni pulley may be arranged so that the plurality of interference rollers provided are offset from each other with the plurality of interference rollers of the omni pulley adjacent to each other.
  • the segment may further include a plurality of guide rollers for guiding the belt portion to surround a portion of the second rotating portion.
  • the plurality of guide rollers may be disposed in parallel with the first axis, a part of which is disposed on one side of the second rotating part and the other may be disposed on the other side of the second rotating part.
  • the first rotating part may include at least one rail part having the plurality of segments seated thereon and having a plurality of connecting protrusions protruding toward the plurality of segments, wherein the plurality of segments are connected to the plurality of connecting protrusions.
  • Each of the connecting ribs may receive a force to be driven to rotate in the first axial direction.
  • connecting protrusion and the connecting rib may be fixed to each other through pin coupling or screw coupling.
  • the rail portion may be made of a polyurethane material.
  • the belt portion having the toothed surface is applied to the segment, and the power is transmitted by the omni pulley formed to be tooth-coupled with the surface of the belt portion, thereby minimizing the loss of power, and thus It has acceleration and deceleration performance and reliable power transmission.
  • FIG. 1 is a perspective view showing the omni-directional treadmill device according to an embodiment of the present invention.
  • FIG. 2 is a partial perspective view illustrating a portion where the segment and the first rotating part shown in FIG. 1 meet.
  • FIG. 3 is a partial perspective view illustrating a portion where a segment and a second rotating part illustrated in FIG. 1 meet.
  • FIG. 4 is an exploded perspective view illustrating the omni pulley of the second rotating part illustrated in FIG. 1.
  • FIG. 5 is a partial perspective view showing a modified embodiment of the segment shown in FIG.
  • the omnidirectional treadmill device 1 (hereinafter referred to as a “treadmill device”) according to an embodiment of the present invention may include a base 10, a first rotating part 100, and a second rotating part 200. And a plurality of segments 300.
  • the base 10 is provided with a plurality of first rotating parts 100 and a plurality of second rotating parts 200, and a longitudinal axis of the treadmill device 1 (hereinafter referred to as a first axis X) and a width thereof.
  • a plurality of support members 11 and 11a are disposed along the direction axis (hereinafter referred to as second axis Y) and the height direction axis (hereinafter referred to as third axis Z).
  • the first rotating part 100 provides a walking interface in the direction of the first axis X, and includes a first driving source 101, a first power transmission part 102, and a rail part 110.
  • the first driving source 101 provides power for driving the first rotating part 100, and may include a servo motor capable of forward rotation and reverse rotation.
  • the first power transmission unit 102 is connected to the first driving source 101, and transmits the power generated by the first driving source 101 to the rail unit 110.
  • the first power transmission unit 102 may be formed of a timing belt connecting the rotary shaft of the first drive source 101 and the rail unit 110.
  • the rail unit 110 is installed on the base 10 in parallel with the direction of the first axis X of the treadmill device 1, and a plurality of rails are formed on one surface on which the connection protrusion 113 is formed. Segment 300 is installed.
  • the rail unit 110 includes a rotary wheel 111, the seating belt 112 and the connecting protrusion 113.
  • the rotary wheels 111 are respectively disposed at the front end and the rear end of the treadmill device 1 and guide the seat belt 112 so that the seat belt 112 can be rotationally driven along the first axis X direction.
  • the rotation wheel 111 is connected to the first power transmission unit 102 forms an auxiliary wheel 111a formed on one side to receive power from the first power transmission unit 102.
  • the seating belt 112 is supported by the rotary wheels 111 respectively disposed at the front and rear ends of the treadmill device 1 and the supporting member 11a of the base 10 disposed between the rotary wheels 111. And rotationally driven along the first axis (X) direction. A plurality of segments 300 are seated and fixed to the seat belt 112.
  • the seating belt 112 may be made of a polyurethane material, and thus, the present invention may reduce noise when driving the first shaft X, and reduce the weight of the overall treadmill device 1.
  • connection protrusion 113 has a plurality of protrusions formed on an outer surface on which the segment 300 of the seating belt 112 is seated, and includes a first connector 113a for connection with the plurality of segments 300.
  • the first connector 113a is coupled to the segment 300 through pins or screws 114, and thus the driving force of the seat belt 112 is directly transmitted to the segment 300.
  • three rail units 110 are arranged in parallel with the first axis X.
  • the present invention is not limited thereto, and only two of the two ends may be provided, and only one of them may be provided.
  • four or more may be provided, in this case, it may be preferable to arrange the left and right symmetrically.
  • the first drive source 101 it may be disposed on each rail unit 110, but in order to reduce the manufacturing cost, after installing the first drive source 101 only on one rail unit 110, the rest The rail unit 110 may also be driven by rotating the wheels 111 connected to one shaft 115.
  • the second rotating part 200 drives the belt part 310 of the segment 300 along the second axis Y, and the second driving source 201 and the second power transmission.
  • the second driving source 201 provides power for driving the second rotating part 200 and may be formed of a servo motor capable of forward rotation and reverse rotation.
  • the second power transmission unit 202 is connected to the second drive source 201, and transmits the power generated by the second drive source 201 to the rotary shaft 203.
  • the second power transmission unit 202 may be formed of a timing belt connecting the rotation shaft of the second drive source 201 and the rotation shaft 203.
  • the rotary shaft 203 is arranged parallel to the first axis X. In addition, when a plurality of rails 110 is provided, it is preferable to be disposed between the plurality of rails 110.
  • the rotary shaft 203 is rotated by receiving power from the second drive source 201.
  • the plurality of omni pulleys 210 are continuously fixed to the rotating shaft 203 along the first axis X direction, and the second shaft is rotated according to the rotation of the rotating shaft 203. Rotate in the direction of (Y).
  • the omni pulley 210 includes a case 211 and a plurality of interference rollers 212.
  • the case 211 forms an appearance of the omni pulley 210 and has a coupling hole 211a coupled to the rotation shaft 203.
  • the coupling sphere 211a preferably has the same shape as the cross section of the rotating shaft 203.
  • the cross section of the rotation shaft 203 preferably has a polygonal shape.
  • the case 211 is coupled to the interference roller 212 therein and then fixed so that the interference roller 212 does not leave the case using pins or screws.
  • the plurality of interference rollers 212 are provided to protrude from the outer circumferential surface of the case 211 on the outer circumferential surface of the case 211. Accordingly, the plurality of interference rollers 212 is tooth-coupled with the surface of the belt portion 310 of the segment 300 to be described later.
  • the plurality of interference rollers 212 are provided to be rotatable about an imaginary axis perpendicular to the first axis (X). Specifically, in the present embodiment, four interference rollers 212 are provided, and the interference rollers 212 are rotatably coupled to the mounting groove 213 of the case 211. Accordingly, the plurality of interference rollers 212 rotates on the surface of the belt part 310 and interferes with the driving of the belt part 310 when the segment 300 is driven to rotate along the first axis X direction. I never do that.
  • the plurality of interference rollers 212 may be arranged in pairs as a plurality of interference rollers 212. Although not illustrated, the plurality of interference rollers 212 may be arranged spaced apart one by one. However, in order to reduce the portion of the belt portion 310 that slips upon tooth coupling, it is desirable to minimize the distance between the plurality of interference rollers 212.
  • the interference rollers 212 may have a predetermined curvature such that a portion protruding to the outer circumferential surface of the case 211 is the same as the outer circumferential surface of the case 211. It is preferable. That is, the pair of interference rollers 212 is preferably provided so that the radius is smaller toward the interference rollers 212 disposed on both sides from the interference roller 212 located in the center. Accordingly, the belt part 310 may be naturally engaged at the boundary of the pair of interference rollers 212 and the case 211, and thus, power loss may be minimized.
  • the outer leading end has a shape with a predetermined curvature such as the outer circumferential surface of the case 211
  • the plurality of interference rollers 212 are disposed to be offset from each other by the interference rollers 212 of the adjacent omni pulleys 210.
  • the adjacent omni pulley 210 can prevent slippage with the belt part 310, which may be caused by a surface on which the interference roller 212 is not provided on the outer circumference of the case 211.
  • the plurality of segments 300 are seated on the first rotating part 100 and the second rotating part 200, and provide a ground on which the user can walk.
  • the segment 300 includes a frame 301, a rotation guide 302, a connecting rib 303, and a belt part 310.
  • the frame 301 has a rectangular pillar shape extending along the second axis Y, and has rotation guides 302 at both ends thereof. Accordingly, the belt portion 310 that wraps around the outer surface may be naturally driven to rotate along the second axis Y direction.
  • the connecting rib 303 protrudes toward the rail unit 110 at a portion where the segment 300 meets the rail unit 110. Therefore, since the rail unit 110 is provided with three in this embodiment, it is preferable that three connection ribs 303 are also provided. In addition, the connecting rib 303 preferably secures the section 303a through which the belt part 310 passes for the rotational driving of the belt part 310.
  • the connecting rib 303 is connected to the connecting protrusion 113 of the rail unit 110 receives the power from the first rotating unit 100.
  • the second connector 303b of the connecting rib 303 is arranged on the same axis as the first connector 113a of the connecting protrusion 113, and the pin or screw 114 is formed of the first connector 113a and the first connector 113a. 2 Connect through the connector 303b.
  • the belt part 310 is disposed on the outer surface of the frame 301 to be rotatable in the second axis Y direction along the outer surface of the frame 301.
  • the belt portion 310 is made of a timing belt, thereby tooth coupling with the omni pulley 210 of the second rotating part 200. At this time, approximately 5 to 6 omni pulleys 210 are tooth-coupled to one segment 300.
  • the segment 300 Due to the tooth coupling of the belt part 310 and the omni pulley 210, the segment 300 is not subjected to the interference of the second rotating part 200 when the segment 300 is driven to rotate along the first axis X direction, and the second When rotation is driven along the axis Y direction, power may be transmitted by the second rotation part 200.
  • the segment 300 of the treadmill device 1 may include a belt part (not shown) so as to increase the area where the belt part 310 contacts the omni pulley 210 and teeth are engaged. It may further include a guide roller 321 for guiding the 310.
  • the guide roller 321 is disposed in parallel with the first axis (X), one by one on both sides of the omni pulley (210).
  • the guide roller 321 disposed as described above presses the belt portion 310 downward so that the belt portion 310 surrounds the omni pulley 210. That is, since the belt 310 is tooth-coupled with the omni pulley 210 in a larger area, the belt 310 may further reduce the loss that may occur during power transmission.
  • an auxiliary guide roller 322 may be further provided.
  • the auxiliary guide roller 322 is disposed closer to the segment 300 than the guide roller 321 to press the belt 310 toward the segment 300, the opposite side to the surface in which the guide roller 321 abuts It comes in contact with the face.
  • the guide roller 321 and the auxiliary guide roller 322 is preferably provided so that the central axis is fixed to the bracket 323 attached to the frame 301 of the segment 300 is rotatable. Accordingly, the belt 310 passes through the auxiliary guide roller 322, the guide roller 321, and the omni pulley 210 in order and is driven to rotate along the second axis Y direction.
  • the user wants to move forward and backward along the first axis X direction on the treadmill device 1, only the first rotating part 100 is operated to move the segment 300 along the first axis X direction only. Rotate to drive. Accordingly, the user can move only along the direction of the first axis (X).
  • the interference roller 212 of the omni pulley 210 rotates along the surface of the belt part 310 of the segment 300. It does not affect the driving to the axis X direction at all.
  • both the first rotating part 100 and the second rotating part 200 are operated to move the segment 300 along the first axis X direction.
  • the belt part 310 of the segment 300 is driven to rotate along the second axis Y direction.
  • the driving speed of the first rotating part 100 and the second rotating part 200 is properly controlled to move the segment 300 and the belt part 310 in the directions of the first axis X and the second axis Y.
  • the interference roller 212 of the omni pulley 210 rotates when the segment 300 is driven in the first axis (X) direction, and rotates when the segment 300 is driven in the second axis (Y) direction. Since the power is transmitted, the driving in the directions of the first axis X and the second axis Y does not influence each other. In addition, this structure enables walking interfaces in all directions.
  • the treadmill device 1 of the present invention can drive the plurality of segments 300 without slip in the second axis Y direction, and affect the rotation drive in the first axis X direction.
  • the walking interface is enabled in all directions so as not to extend.
  • the treadmill device 1 of the present invention can be driven even if only one driving source for driving in the direction of the first axis (X) and the second axis (Y) is provided, thereby reducing manufacturing costs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Tools (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

전 방향 트레드밀 장치가 개시된다. 개시된 전 방향 트레드밀 장치는 제1 축 방향을 따라 연속적으로 배열되고, 각각 벨트부를 가지는 다수의 세그먼트; 상기 제1 축 방향을 따라 상기 다수의 세그먼트를 회전시키는 제1 회전부; 및 상기 각 세그먼트의 벨트부를 상기 제1 축에 직교하는 제2 축 방향으로 회전시키는 제2 회전부;를 포함하며, 상기 벨트부는 상기 제2 회전부에 치합되는 치형표면을 가진다.

Description

전 방향 트레드밀 장치
본 발명은 트레드밀(treadmill) 장치에 관한 것으로, 사용자가 장치상에서 전 방향으로 보행 가능한 트레드밀 장치에 관한 것이다.
일반적으로 전방향(omni direction) 보행 인터페이스를 제공하는 플랫폼은 사용자가 플랫폼을 직접적으로 미는 수동식 플랫폼과 구동기를 부착한 형태의 능동식 플랫폼으로 크게 나눌 수 있다.
먼저, 수동식 플랫폼으로는 Virtual Sphere社에서 개발한 플랫폼이 있다. 이러한 Virtual Sphere社에서 개발한 플랫폼은 2 자유도를 가지는 롤러 위에 속이 비어있는 큰 구 형상의 철제 구조물을 얹어 놓은 구조를 가지며 사용자가 구 형상의 철제 구조물 내부에서 보행 동작을 하면 수동적으로 구조물이 회전한다. 이러한 수동식 플랫폼은 전 방향 보행 인터페이스를 가능하게 하지만 구동기의 적용이 불가능함으로 사용자가 고속으로 약진할 때, 구조물의 관성에 의해 몰입감을 방해하는 것은 물론, 지면 묘사가 평지가 아니므로 이질적인 보행 지면 감각을 제공하는 문제가 있다.
다른 수동식 플랫폼으로는 IGS(Immersive Group Simulator)에 적용된 옴니 패드(omni pad)가 있지만, 사용자의 신체가 구속된 상태에서 미끄럼 패드 위에서 단순하게 발 구르기를 하는 동작을 함으로써 실제 보행과 같은 역감을 부여할 수 없다.
한편, 능동식 플랫폼으로는 상업화에 성공한 MSE weilbull社에서 개발한 옴니 디렉셔널 플로어(Omni directional floor)가 있다. 이와 같은 능동식 플랫폼은 16개의 분리된 삼각형 형태의 롤러를 원형으로 배치한 구성으로 가상현실의 오락적인 요소들을 제공하여 재미를 증대시킬 수 있다. 그러나, 각 세그먼트에 부착된 롤러는 단순히 사용자가 중심점에서 벗어날 때, 모터에 의한 롤러의 회전으로 사용자를 플랫폼의 중심으로 이동시키는 기능만 가지고 있으며 횡 방향이나 약진 동작은 지원이 불가능하므로 전 방향 보행 인터페이스 지원이라고 볼 수 없다.
실질적으로 전 방향 보행 인터페이스를 지원 가능한 능동형 플랫폼은 유럽 컨소시엄이 개발한 사이버워크(Cyberwalk)와 미 육군 연구소의 ODT(Omni Directional Treadmill)이다.
상기 사이버워크의 경우, 세그먼트의 회전으로 X축의 이동 인터페이스를 위해 모든 각각의 세그먼트에 모터를 부착함으로써 Y축 회전을 담당하는 모터의 동력이 매우 커져야 하는 문제가 있다. 또한, X축을 구동하는 세그먼트 자체의 무게, 복잡성 그리고 작은 동력 모터를 장착할 수밖에 없는 한계로 인하여 2축 모두 반응성이 낮아지는 단점이 있다.
상기 ODT의 경우는 세그먼트 자체 회전을 통해 Y축 방향의 보행 인터페이스를 수행한다. 이 경우 X축 방향은 각 세그먼트에 모터를 부착하는 방법이 아닌 플랫폼 자체에 다수의 옴니 휠(Omni wheel)을 이용한 점 마찰차 동력 구동 방식으로 세그먼트의 회전을 발생시키므로 사이버워크 플랫폼보다 간단하면서도 우수한 가감속 성능을 확보하였다. 하지만 옴니 휠(Omni wheel)이 가지는 동력 전달의 비효율성으로 인하여 강력한 구동기를 장착하여도 신뢰성 있는 동력 전달이 이루어지지 않을 뿐만 아니라, 지속적인 마찰 유지를 위하여 매우 많은 개수의 옴니 휠(omni wheel)을 구동해야하기 때문에 X축 방향에 대한 고가감속 인터페이스 성능에는 명확한 성능 한계(즉, 1m/s²이하의 속도)를 가진다.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 구동원으로부터 전달되는 동력의 손실을 최소화하여 우수한 가감속 성능 및 신뢰성 있는 동력 전달이 이루어지는 전 방향 트레드밀 장치를 제공하는 것이다.
상기 목적을 달성하기 위해, 본 발명은 제1 축 방향을 따라 연속적으로 배열되고, 각각 벨트부를 가지는 다수의 세그먼트; 상기 제1 축 방향을 따라 상기 다수의 세그먼트를 회전시키는 제1 회전부; 및 상기 각 세그먼트의 벨트부를 상기 제1 축에 직교하는 제2 축 방향으로 회전시키는 제2 회전부;를 포함하며, 상기 벨트부는 상기 제2 회전부에 치합되는 치형표면을 가지는 것을 특징으로 하는 전 방향 트레드밀 장치를 제공한다.
여기서, 상기 제2 회전부는, 상기 제1 축 방향을 따라 배치되는 적어도 하나의 회전 샤프트; 및 상기 회전 샤프트에 고정 결합되며 케이스를 각각 구비하는 다수의 옴니풀리를 포함하며, 상기 각 옴니풀리는 상기 벨트부의 치형표면에 치합되는 다수의 간섭롤러를 포함할 수 있다.
더욱이, 상기 다수의 간섭롤러는 상기 케이스의 외주를 따라 소정 간격을 두고 배치되며, 상기 회전 샤프트에 직교하는 가상의 축을 중심으로 회전할 수 있다.
또한, 상기 다수의 간섭롤러는 적어도 한 쌍씩 그룹을 이루어 상기 케이스의 외주를 따라 소정 간격을 두고 배치되며, 상기 회전 샤프트에 직교하는 가상의 축을 중심으로 회전할 수 있다.
아울러, 상기 옴니풀리는 구비된 다수의 간섭롤러가 서로 인접한 옴니풀리의 다수의 간섭롤러와 서로 어긋나도록 배치될 수 있다.
또한, 상기 세그먼트는 상기 벨트부가 상기 제2 회전부의 일부를 감싸도록 가이드하는 다수의 가이드롤러를 더 포함할 수 있다.
여기서, 상기 다수의 가이드롤러는 상기 제1 축과 평행하게 배치되며, 일부는 상기 제2 회전부의 일측에 배치되고 나머지는 상기 제2 회전부의 타측에 배치될 수 있다.
또한, 상기 제1 회전부는 상기 다수의 세그먼트가 안착되며, 상기 다수의 세그먼트를 향해 돌출 형성된 다수의 연결돌기를 구비하는 적어도 하나의 레일부를 포함하며, 상기 다수의 세그먼트는 상기 다수의 연결돌기와 연결되어 상기 제1 축 방향을 따라 회전 구동할 수 있도록 힘을 전달받는 연결리브를 각각 포함할 수 있다.
여기서, 상기 연결돌기와 상기 연결리브는 핀 결합 또는 나사결합을 통해 상호 고정될 수 있다.
또한, 상기 레일부는 폴리우레탄 재질로 이루어질 수 있다.
상기한 바와 같이 본 발명에 있어서는 세그먼트에 치형표면을 갖는 벨트부를 적용하고, 이러한 벨트부의ㅏ 표면과 치형결합이 가능하도록 형성된 옴니풀리에 의해 동력을 전달하므로, 동력의 손실이 최소화되고, 이에 따라 우수한 가감속 성능을 가지며 신뢰성 있는 동력 전달을 할 수 있다.
도 1은 본 발명의 일 실시예에 따른 전 방향 트레드밀 장치를 나타내는 사시도이다.
도 2는 도 1에 도시된 제1 회전부와 세그먼트가 만나는 부분을 나타내는 부분사시도이다.
도 3은 도 1에 도시된 제2 회전부와 세그먼트가 만나는 부분을 나타내는 부분사시도이다.
도 4는 도 1에 도시된 제2 회전부의 옴니풀리를 나타내는 분리사시도이다.
도 5는 도 1에 도시된 세그먼트의 변형 실시예를 나타내는 부분사시도이다.
이하, 첨부된 도면을 참조하여 본 발명에 의한 전 방향 트레드밀 장치(1)의 실시예에 대하여 설명한다. 다만, 이하에서 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성요소에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명 및 구체적인 도시를 생략한다. 또한, 발명의 이해를 돕기 위해서, 첨부된 도면은 실제 축척대로 도시된 것이 아니라 일부 구성요소의 치수가 과장되게 도시될 수 있다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 전 방향 트레드밀 장치(1)(이하 "트레드밀 장치"라고 한다.)는 베이스(10), 제1 회전부(100), 제2 회전부(200) 및 다수의 세그먼트(300)를 포함한다.
베이스(10)는 복수의 제1 회전부(100) 및 복수의 제2 회전부(200)가 설치되며, 트레드밀 장치(1)의 길이방향 축(이하, 제1 축(X)이라 한다.), 너비방향 축(이하, 제2 축(Y)이라 한다.) 및 높이방향 축(이하, 제3 축(Z)이라 한다.)을 따라 배치되는 다수의 지지부재(11, 11a)를 포함한다.
제1 회전부(100)는 제1 축(X) 방향으로 보행 인터페이스를 제공하며, 제1 구동원(101), 제1 동력전달부(102) 및 레일부(110)를 포함한다.
제1 구동원(101)은 제1 회전부(100)를 구동시키기 위한 동력을 제공하며, 정회전 및 역회전 가능한 서보모터로 이루어질 수 있다.
제1 동력전달부(102)는 제1 구동원(101)과 연결되며, 제1 구동원(101)에서 발생한 동력을 레일부(110)로 전달한다. 이러한 제1 동력전달부(102)는 제1 구동원(101)의 회전축과 레일부(110)를 연결하는 타이밍벨트로 이루어질 수 있다.
도 1 및 도 2를 참조하면, 레일부(110)는 트레드밀 장치(1)의 제1 축(X) 방향과 평행하게 베이스(10)에 설치되며, 연결돌기(113)가 형성된 일면에 다수의 세그먼트(300)가 설치된다. 이러한 레일부(110)는 회전바퀴(111), 안착벨트(112) 및 연결돌기(113)를 포함한다.
회전바퀴(111)는 트레드밀 장치(1)의 전단부 및 후단부에 각각 배치되며, 안착벨트(112)가 제1 축(X) 방향을 따라 회전 구동될 수 있도록 안착벨트(112)를 가이드한다. 또한, 회전바퀴(111)는 제1 동력전달부(102)와 연결되어 제1 동력전달부(102)로부터 동력을 전달받기 위해 일측에 형성된 보조바퀴(111a)를 형성한다.
안착벨트(112)는 트레드밀 장치(1)의 전단부 및 후단부에 각각 배치된 회전바퀴(111) 및 이러한 회전바퀴(111) 사이에 배치되는 베이스(10)의 지지부재(11a)에 의해 지지되며, 제1 축(X) 방향을 따라 회전 구동된다. 이러한 안착벨트(112)에는 다수의 세그먼트(300)가 안착 및 고정된다. 또한, 안착벨트(112)는 폴리우레탄 재질로 이루어질 수 있으며, 이로 인해, 본원발명은 제1 축(X) 구동 시 소음이 감소되며, 전체적인 트레드밀 장치(1)의 무게가 감소될 수 있다.
연결돌기(113)는 안착벨트(112)의 세그먼트(300)가 안착되는 외면에 다수가 돌출 형성되며, 다수의 세그먼트(300)와의 연결을 위한 제1 연결구(113a)를 포함한다. 이러한 제1 연결구(113a)는 세그먼트(300)와 핀 또는 나사(114)를 통해 결합되며, 따라서, 안착벨트(112)의 구동력은 세그먼트(300)로 직접 전달된다.
본 실시예에서 이러한 레일부(110)는 제1 축(X)과 평행하게 3 개가 배치되는 것으로 도시하고 있다. 다만, 이에 제한되지 않고, 양단부에 2 개만이 구비되는 것도 가능하며, 가운데 하나만이 구비되는 것도 가능하다. 또한, 4개 이상 구비되는 것도 가능하나, 이 경우에는 좌우가 대칭되도록 배치하는 것이 바람직할 것이다. 아울러, 제1 구동원(101)의 경우, 각각의 레일부(110)에 배치할 수도 있으나, 제조단가를 감소시키기 위해 하나의 레일부(110)에만 제1 구동원(101)을 설치한 후, 나머지 레일부(110)는 그 회전바퀴(111)들을 하나의 샤프트(115)로 연결하여 회전 구동시키는 것도 가능하다.
도 1 및 도 3을 참조하면, 제2 회전부(200)는 세그먼트(300)의 벨트부(310)를 제2 축(Y)을 따라 회전구동시키며, 제2 구동원(201), 제2 동력전달부(202), 회전 샤프트(203) 및 다수의 옴니풀리(210)를 포함한다.
제2 구동원(201)은 제2 회전부(200)를 구동시키기 위한 동력을 제공하며, 정회전 및 역회전 가능한 서보모터로 이루어질 수 있다.
제2 동력전달부(202)는 제2 구동원(201)과 연결되며, 제2 구동원(201)에서 발생한 동력을 회전 샤프트(203)로 전달한다. 이러한 제2 동력전달부(202)는 제2 구동원(201)의 회전축과 회전 샤프트(203)를 연결하는 타이밍벨트로 이루어질 수 있다.
회전 샤프트(203)는 제1 축(X)과 평행하게 배치된다. 더욱이, 다수의 레일부(110)가 구비되는 경우에는 다수의 레일부(110) 사이에 배치되는 것이 바람직하다. 이러한 회전 샤프트(203)는 제2 구동원(201)으로부터 동력을 전달받아 회전한다.
도 3 및 도 4를 참조하면, 다수의 옴니풀리(210)는 회전 샤프트(203)에 제1 축(X) 방향을 따라 연속적으로 고정 결합되어, 회전 샤프트(203)의 회전에 따라 제2 축(Y) 방향을 따라 회전한다. 이러한 옴니풀리(210)는 케이스(211) 및 다수의 간섭롤러(212)를 포함한다.
케이스(211)는 옴니풀리(210)의 외관을 형성하며, 회전 샤프트(203)와 결합되는 결합구(211a)를 구비한다. 이러한 결합구(211a)는 회전 샤프트(203)의 단면과 동일한 형상을 가지는 것이 바람직하다. 아울러, 옴니풀리(210)가 회전 샤프트(203)에 대해 회전할 수 없도록 하기 위해, 회전 샤프트(203)의 단면은 다각형상을 가지는 것이 바람직하다. 이러한 케이스(211)는 내부에 간섭롤러(212)를 결합한 후 핀 또는 나사를 이용해 간섭롤러(212)가 케이스를 벗어나지 않도록 고정한다.
다수의 간섭롤러(212)는 케이스(211)의 외주면에 케이스(211)의 외주면보다 돌출되도록 구비된다. 이에 따라, 다수의 간섭롤러(212)는 후술할 세그먼트(300)의 벨트부(310)의 표면과 치형결합을 하게 된다.
아울러, 다수의 간섭롤러(212)는 제1 축(X)에 대해 수직한 가상의 축을 중심으로 회전 가능하게 구비된다. 구체적으로 본 실시예에서는 4 개의 간섭롤러(212)가 구비되며, 이러한 간섭롤러(212)는 케이스(211)의 장착홈(213)에 회전 가능하게 결합된다. 이에 따라, 다수의 간섭롤러(212)는 세그먼트(300)가 제1 축(X) 방향을 따라 회전 구동하는 경우에는 벨트부(310)의 표면 상을 회전하며 벨트부(310)의 구동을 간섭하지 않는다.
이러한 다수의 간섭롤러(212)는 도시한 바와 같이 다수의 간섭롤러(212)가 한 쌍씩 그룹을 이루어 배치될 수도 있으며, 도시하지는 않았으나 하나씩 이격되어 배치되는 것도 가능하다. 다만, 벨트부(310)의 표면과 치형결합 시 슬립(slip)되는 부분을 감소시키기 위해, 다수의 간섭롤러(212) 사이의 간격은 최소화하는 것이 바람직하다.
또한, 다수의 간섭롤러(212)가 한 쌍씩 그룹을 이루어 배치되는 경우, 간섭롤러(212)는 케이스(211)의 외주면으로 돌출된 부분이 케이스(211)의 외주면과 같이 소정 곡률을 가지도록 하는 것이 바람직하다. 즉, 한 쌍의 간섭롤러(212)는 중앙에 위치한 간섭롤러(212)로부터 양측으로 배치된 간섭롤러(212)로 갈수록 반경이 작아지도록 구비하는 것이 바람직하다. 이에 따라, 벨트부(310)는 한 쌍의 간섭롤러(212) 및 케이스(211)의 경계부분에서 자연스럽게 치합될 수 있고, 따라서, 동력손실을 최소화할 수 있다.
외측 선단이 케이스(211)의 외주면과 같이 소정 곡률을 가진 형상이 되도록
아울러, 다수의 옴니풀리(210)를 회전 샤프트(203)에 연속적으로 결합하는 경우에는 다수의 간섭롤러(212)가 인접하는 옴니풀리(210)의 간섭롤러(212)와 서로 어긋나도록 배치하는 것이 바람직하다. 이에 따라, 케이스(211)의 외주에 간섭롤러(212)가 구비되지 않은 면에 의해 발생할 수 있는 벨트부(310)와의 슬립을 인접한 옴니풀리(210)가 방지할 수 있게 된다.
도 1 및 도 2를 참조하면, 다수의 세그먼트(300)는 제1 회전부(100) 및 제2 회전부(200)에 안착되며, 사용자가 보행할 수 있는 지면을 제공한다. 이러한 세그먼트(300)는 프레임(301), 회전가이드(302), 연결리브(303) 및 벨트부(310)를 포함한다.
프레임(301)은 제2 축(Y)을 따라 연장 형성된 직사각기둥 형상을 가지며, 양단부에 회전가이드(302)를 구비한다. 이에 따라, 외면을 감싸며 결합되는 벨트부(310)는 제2 축(Y) 방향을 따라 자연스럽게 회전 구동될 수 있게 된다.
연결리브(303)는 세그먼트(300)가 레일부(110)와 만나는 부분에서 레일부(110)를 향해 돌출 형성된다. 따라서, 본 실시예에서는 레일부(110)가 3개 구비되므로, 연결리브(303)도 3개 구비되는 것이 바람직하다. 또한, 연결리브(303)는 벨트부(310)의 회전 구동을 위해 벨트부(310)가 통과하는 구간(303a)은 확보하는 것이 바람직하다.
이러한 연결리브(303)는 레일부(110)의 연결돌기(113)와 연결되어 제1 회전부(100)로부터 동력을 전달받는다. 구체적으로 연결리브(303)의 제2 연결구(303b)는 연결돌기(113)의 제1 연결구(113a)와 동일한 축 상에 배열되고, 핀 또는 나사(114)가 제1 연결구(113a) 및 제2 연결구(303b)를 관통하여 연결한다.
벨트부(310)는 프레임(301)의 외면을 따라 제2 축(Y) 방향을 따라 회전 구동 가능하도록 프레임(301)의 외면에 배치된다. 이러한 벨트부(310)는 타이밍벨트로 이루어지며, 이에 따라 제2 회전부(200)의 옴니풀리(210)와 치형결합을 한다. 이때, 하나의 세그먼트(300)에는 대략 5 ~ 6 개의 옴니풀리(210)가 치형결합된다.
이러한 벨트부(310)와 옴니풀리(210)의 치형결합으로 인해, 세그먼트(300)는 제1 축(X) 방향을 따라 회전 구동하는 때에는 제2 회전부(200)의 간섭을 받지 않고, 제2 축(Y) 방향을 따라 회전 구동하는 때에는 제2 회전부(200)에 의해 동력을 전달받을 수 있다.
도 5를 참조하면, 본 발명의 일 실시예에 따른 트레드밀 장치(1)의 세그먼트(300)는 벨트부(310)가 옴니풀리(210)와 접촉하여 치형결합하는 면적을 증가시키도록 벨트부(310)를 가이드하는 가이드롤러(321)를 더 포함할 수 있다.
이러한 가이드롤러(321)는 제1 축(X)과 평행하게 배치되며, 옴니풀리(210)의 양측에 하나씩 배치된다. 이렇게 배치된 가이드롤러(321)는 벨트부(310)가 옴니풀리(210)를 감싸도록 벨트부(310)를 아래로 가압한다. 즉, 벨트부(310)는 옴니풀리(210)와 보다 넓은 면적에서 치형결합하게 되므로, 동력 전달 시 발생할 수 있는 손실을 더욱 감소시킬 수 있다.
또한, 가이드롤러(321)에 의해 벨트부(310)의 전체가 들려지는 것을 방지하기 위해, 보조 가이드롤러(322)를 추가로 구비할 수도 있다. 이러한 보조 가이드롤러(322)는 가이드롤러(321)에 비해 세그먼트(300)에 더 근접하게 배치되어 벨트부(310)를 세그먼트(300)를 향해 가압하며, 가이드롤러(321)가 접하는 면과 반대면과 접하게 된다.
아울러, 이러한 가이드롤러(321) 및 보조 가이드롤러(322)는 세그먼트(300)의 프레임(301)에 부착된 브라켓(323)에 그 중심축이 고정되어 회전 가능하도록 구비되는 것이 바람직하다. 이에 따라, 벨트부(310)는 보조 가이드롤러(322), 가이드롤러(321) 및 옴니풀리(210)를 순서대로 통과하며 제2 축(Y) 방향을 따라 회전 구동된다.
이하, 상기와 같이 구성된 본 발명의 일 실시예에 따른 트레드밀 장치(1)의 작용에 대해 설명한다.
우선 사용자가 트레드밀 장치(1) 상에서 제1 축(X) 방향을 따라 전방 및 후방으로 이동하고 싶다면, 제1 회전부(100)만을 작동시켜 세그먼트(300)를 제1 축(X) 방향을 따라서만 회전구동시킨다. 이에 따라 사용자는 제1 축(X) 방향을 따라서만 이동할 수 있게 된다. 이때, 세그먼트(300)가 제1 축(X) 방향을 따라 회전구동됨에 따라 옴니풀리(210)의 간섭롤러(212)가 세그먼트(300)의 벨트부(310) 표면을 따라 회전하므로, 제1 축(X) 방향으로의 구동에는 전혀 영향을 주지 않는다.
다음, 사용자가 트레드밀 장치(1) 상에서 제2 축(Y) 방향을 따라 좌측 및 우측으로 이동하고 싶다면, 제2 회전부(200)만을 작동시켜 세그먼트(300)의 벨트부(310)를 제2 축(Y) 방향을 따라서만 회전구동시킨다. 이에 따라 사용자는 제2 축(Y) 방향을 따라서만 이동할 수 있게 된다.
이어서, 사용자가 트레드밀 장치(1) 상에서 전 방향을 따라 이동하고 싶다면, 제1 회전부(100) 및 제2 회전부(200)를 모두 작동시켜, 세그먼트(300)를 제1 축(X) 방향을 따라 회전 구동시킴과 동시에 세그먼트(300)의 벨트부(310)를 제2 축(Y) 방향을 따라 회전 구동시킨다. 이때, 제1 회전부(100) 및 제2 회전부(200)의 구동속도를 적절히 제어하여 제1 축(X) 및 제2 축(Y) 방향으로의 세그먼트(300) 및 벨트부(310)의 움직임의 조합에 의해 사용자는 전 방향으로 이동할 수 있게 된다.
또한, 옴니풀리(210)의 간섭롤러(212)는 세그먼트(300)가 제1 축(X) 방향으로 구동될 때에는 회전하고, 제2 축(Y) 방향으로 구동될 때에는 벨트부(310)에 동력을 전달하므로, 제1 축(X) 및 제2 축(Y) 방향으로의 구동은 상호 영향을 주지 않는다. 아울러, 이러한 구조에 따라 모든 방향으로의 보행 인터페이스가 가능해진다.
이와 같이 본 발명의 트레드밀 장치(1)는 다수의 세그먼트(300)를 제2 축(Y) 방향으로 슬립 없이 회전 구동시킬 수 있으며, 아울러, 제1 축(X) 방향으로의 회전 구동에 영향을 미치지 않도록 하여, 모든 방향으로 보행 인터페이스가 가능해진다. 아울러, 본 발명의 트레드밀 장치(1)는 제1 축(X) 및 제2 축(Y) 방향으로의 구동을 위한 구동원이 각각 하나씩만 구비되어도 구동이 가능하므로, 제조단가를 절감할 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나 이 실시예에 의해 한정되지 않으며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형 가능함은 물론이다.

Claims (10)

  1. 제1 축 방향을 따라 연속적으로 배열되고, 각각 벨트부를 가지는 다수의 세그먼트;
    상기 제1 축 방향을 따라 상기 다수의 세그먼트를 회전시키는 제1 회전부; 및
    상기 각 세그먼트의 벨트부를 상기 제1 축에 직교하는 제2 축 방향으로 회전시키는 제2 회전부;를 포함하며,
    상기 벨트부는 상기 제2 회전부에 치합되는 치형표면을 가지는 것을 특징으로 하는 전 방향 트레드밀 장치.
  2. 제1항에 있어서,
    상기 제2 회전부는,
    상기 제1 축 방향을 따라 배치되는 적어도 하나의 회전 샤프트; 및
    상기 회전 샤프트에 고정 결합되며 케이스를 각각 구비하는 다수의 옴니풀리를 포함하며,
    상기 각 옴니풀리는 상기 벨트부의 치형표면에 치합되는 다수의 간섭롤러를 포함하는 것을 특징으로 하는 전 방향 트레드밀 장치.
  3. 제2항에 있어서,
    상기 다수의 간섭롤러는 상기 케이스의 외주를 따라 소정 간격을 두고 배치되며, 상기 회전 샤프트에 직교하는 가상의 축을 중심으로 회전하는 것을 특징으로 하는 전 방향 트레드밀 장치.
  4. 제2항에 있어서,
    상기 다수의 간섭롤러는 적어도 한 쌍씩 그룹을 이루어 상기 케이스의 외주를 따라 소정 간격을 두고 배치되며, 상기 회전 샤프트에 직교하는 가상의 축을 중심으로 회전하는 것을 특징으로 하는 전 방향 트레드밀 장치.
  5. 제2항에 있어서,
    상기 옴니풀리는 구비된 다수의 간섭롤러가 서로 인접한 옴니풀리의 다수의 간섭롤러와 서로 어긋나도록 배치되는 것을 특징으로 하는 전 방향 트레드밀 장치.
  6. 제1항에 있어서,
    상기 세그먼트는 상기 벨트부가 상기 제2 회전부의 일부를 감싸도록 가이드하는 다수의 가이드롤러를 더 포함하는 것을 특징으로 하는 전 방향 트레드밀 장치.
  7. 제6항에 있어서,
    상기 다수의 가이드롤러는 상기 제1 축과 평행하게 배치되며, 일부는 상기 제2 회전부의 일측에 배치되고 나머지는 상기 제2 회전부의 타측에 배치되는 것을 특징으로 하는 전 방향 트레드밀 장치.
  8. 제1항에 있어서,
    상기 제1 회전부는 상기 다수의 세그먼트가 안착되며, 상기 다수의 세그먼트를 향해 돌출 형성된 다수의 연결돌기를 구비하는 적어도 하나의 레일부를 포함하며,
    상기 다수의 세그먼트는 상기 다수의 연결돌기와 연결되어 상기 제1 축 방향을 따라 회전 구동할 수 있도록 힘을 전달받는 연결리브를 각각 포함하는 것을 특징으로 하는 전 방향 트레드밀 장치.
  9. 제8항에 있어서,
    상기 연결돌기와 상기 연결리브는 핀 결합 또는 나사결합을 통해 상호 고정되는 것을 특징으로 하는 전 방향 트레드밀 장치.
  10. 제8항에 있어서,
    상기 레일부는 폴리우레탄 재질로 이루어진 것을 특징으로 하는 전 방향 트레드밀 장치.
PCT/KR2016/004695 2015-05-29 2016-05-04 전 방향 트레드밀 장치 WO2016195255A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/578,081 US10603539B2 (en) 2015-05-29 2016-05-04 Omnidirectional treadmill apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150076318A KR101670718B1 (ko) 2015-05-29 2015-05-29 전 방향 트레드밀 장치
KR10-2015-0076318 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016195255A1 true WO2016195255A1 (ko) 2016-12-08

Family

ID=57440656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004695 WO2016195255A1 (ko) 2015-05-29 2016-05-04 전 방향 트레드밀 장치

Country Status (3)

Country Link
US (1) US10603539B2 (ko)
KR (1) KR101670718B1 (ko)
WO (1) WO2016195255A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101778588B1 (ko) 2015-11-30 2017-09-15 한국기계연구원 전방향 옴니 드라이브 볼 조립체를 이용한 전방향 모션 생성 장치
KR102542293B1 (ko) * 2016-12-27 2023-06-12 엘마 루델스토퍼 전방향성 트레드밀
US10444827B2 (en) * 2017-09-18 2019-10-15 Fujitsu Limited Platform for virtual reality movement
KR101883827B1 (ko) * 2018-01-26 2018-08-01 주식회사 위저드 전방향 트레드밀
CN109248415B (zh) * 2018-08-14 2020-09-11 东南大学 一种滚轴式人体全向运动平台及其速度合成方法
US20210397334A1 (en) * 2018-10-01 2021-12-23 Virtuix Holdings Inc. Data management and performance tracking system for walkable or interactive virtual reality
KR102180047B1 (ko) * 2019-03-15 2020-11-17 한국기계연구원 전 방향 모션 생성 장치
WO2021143251A1 (zh) * 2020-01-16 2021-07-22 林晓甄 万向移动平台
KR102525750B1 (ko) 2021-08-12 2023-04-27 광주과학기술원 전 방향 트레드밀 장치
US20230331494A1 (en) * 2022-04-18 2023-10-19 Dematic Corp. Omni-direction split roller for a conveyor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293425A (ja) * 1998-12-24 2002-10-09 Techno Wave:Kk コンベア装置
US20070270285A1 (en) * 2006-05-22 2007-11-22 Reel Efx, Inc. Omni-directional treadmill
KR100867171B1 (ko) * 2007-07-11 2008-11-06 정상수 무빙머신
US7780573B1 (en) * 2006-01-31 2010-08-24 Carmein David E E Omni-directional treadmill with applications
US20120302408A1 (en) * 2010-07-29 2012-11-29 George Burger Single belt omni directional treadmill

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562572A (en) * 1995-03-10 1996-10-08 Carmein; David E. E. Omni-directional treadmill
WO1997034663A1 (en) * 1996-03-20 1997-09-25 Andrew John Mitchell Motion apparatus
US6152854A (en) * 1996-08-27 2000-11-28 Carmein; David E. E. Omni-directional treadmill
US6743154B2 (en) * 2001-06-01 2004-06-01 Neil B. Epstein Omnidirectional moving surface
US7399258B1 (en) * 2001-11-20 2008-07-15 Sugar Thomas G Omni-directional treadmill
US20050148432A1 (en) * 2003-11-03 2005-07-07 Carmein David E.E. Combined omni-directional treadmill and electronic perception technology
US7101318B2 (en) * 2004-05-10 2006-09-05 Kendall Holmes Omni-directional treadmill
DE102006040485A1 (de) * 2006-08-30 2008-03-20 Technische Universität München Vorrichtung mit einer in zwei Raumrichtungen bewegbaren Oberfläche
US8675018B2 (en) * 2007-09-05 2014-03-18 Microsoft Corporation Electromechanical surface of rotational elements for motion compensation of a moving object
US7878284B1 (en) * 2007-11-29 2011-02-01 Shultz Jonathan D Omni-directional tread and contiguous moving surface
EP2522403B1 (en) * 2011-05-10 2018-03-14 MSE Omnifinity AB A device for allowing a user to walk or run on the spot in an arbitrary direction and control method therefor
US20160199695A1 (en) * 2015-01-08 2016-07-14 Gerald G. Armstrong Multi-Directional Exercise Platform

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293425A (ja) * 1998-12-24 2002-10-09 Techno Wave:Kk コンベア装置
US7780573B1 (en) * 2006-01-31 2010-08-24 Carmein David E E Omni-directional treadmill with applications
US20070270285A1 (en) * 2006-05-22 2007-11-22 Reel Efx, Inc. Omni-directional treadmill
KR100867171B1 (ko) * 2007-07-11 2008-11-06 정상수 무빙머신
US20120302408A1 (en) * 2010-07-29 2012-11-29 George Burger Single belt omni directional treadmill

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, HO SU ET AL.: "Design of a Fast Omni Directional Treadmill based on an Omni-pulley", THE 10TH KOREA ROBOTICS SOCIETY ANNUAL CONFERENCE, 7 May 2015 (2015-05-07), pages 1 - 3 *

Also Published As

Publication number Publication date
US20180147442A1 (en) 2018-05-31
US10603539B2 (en) 2020-03-31
KR101670718B1 (ko) 2016-10-31

Similar Documents

Publication Publication Date Title
WO2016195255A1 (ko) 전 방향 트레드밀 장치
WO2020122587A1 (ko) 변형 바퀴 및 이를 구비한 로봇
WO2011126226A2 (ko) 로봇 손가락 기구
WO2020166982A1 (ko) 애완동물용 트레드밀
WO2014193005A1 (ko) 의료 검사 및 치료를 위한 회전 의자
US11173364B2 (en) Roller-type omnidirectional physical exercise platform and speed synthesis method for same
KR20170062259A (ko) 2 자유도 회전의 모션 시뮬레이터
WO2019074296A1 (ko) 로봇 핸드
WO2022244986A1 (ko) 이동식 플랫폼
WO2020032390A1 (ko) 다관절 로봇의 케이블 가이드 장치
WO2011090304A2 (ko) 경기용 이동식 농구대
WO2019059457A1 (ko) 농기계 작업기의 연결장치
WO2022071662A1 (ko) 변형 바퀴 모듈
WO2018030802A1 (ko) 그네형 회전 체험 시스템
WO2013035905A1 (ko) 운동기구
WO2016204319A1 (ko) 마우스형 재활 훈련 장치
WO2013162217A1 (ko) 엔드이펙터용 구동력 전달장치
WO2016021952A1 (ko) 지압기능을 갖는 손 지압기 및 이를 이용한 자동차 핸들
WO2022114531A1 (ko) 바퀴 장치 및 이를 포함하는 이동 로봇 장치
WO2018117649A1 (ko) 로봇의 핸드 모듈
WO2022034960A1 (ko) 바퀴 세척장치
WO2023182536A1 (ko) 다자유도 모션 시뮬레이션 시스템
WO2018131741A1 (ko) 클러치 유닛
WO2015190683A1 (ko) 크랭크로 직접 구동되는 변속허브 및 이를 구비한 자전거
WO2019235838A1 (ko) 2 자유도 회전이 이루어지는 모션 시뮬레이터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803610

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15578081

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.04.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16803610

Country of ref document: EP

Kind code of ref document: A1