WO2013162217A1 - 엔드이펙터용 구동력 전달장치 - Google Patents

엔드이펙터용 구동력 전달장치 Download PDF

Info

Publication number
WO2013162217A1
WO2013162217A1 PCT/KR2013/003350 KR2013003350W WO2013162217A1 WO 2013162217 A1 WO2013162217 A1 WO 2013162217A1 KR 2013003350 W KR2013003350 W KR 2013003350W WO 2013162217 A1 WO2013162217 A1 WO 2013162217A1
Authority
WO
WIPO (PCT)
Prior art keywords
end effector
driving force
shaft
power transmission
driving
Prior art date
Application number
PCT/KR2013/003350
Other languages
English (en)
French (fr)
Inventor
윤현수
이병주
Original Assignee
주식회사 고영테크놀러지
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 고영테크놀러지, 한양대학교 에리카산학협력단 filed Critical 주식회사 고영테크놀러지
Priority to US14/349,576 priority Critical patent/US9631713B2/en
Publication of WO2013162217A1 publication Critical patent/WO2013162217A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/18Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes the members having helical, herringbone, or like teeth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/065Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with a plurality of driving or driven shafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19023Plural power paths to and/or from gearing
    • Y10T74/19051Single driven plural drives

Definitions

  • the present invention relates to a driving force transmission device for an end effector, and more particularly to a driving force transmission device for transmitting a driving force of the drive means to the end effector.
  • the end effector of the laparoscopic surgical robot is a drive force transmission device for connecting the drive means and the end effector in order to receive the drive force of the drive means.
  • the driving force transmission device as described above typically has a power transmission means such as a gear or a pulley installed on the shaft to receive the power from the driving means so that the shaft rotates to drive the end effector.
  • a power transmission means such as a gear or a pulley installed on the shaft to receive the power from the driving means so that the shaft rotates to drive the end effector.
  • Conventional driving force transmission devices in the related art are formed in a structure having one rotational freedom in one shaft, so that the number of shafts corresponding to the degree of freedom of the end effector must be installed, thereby increasing the size of the driving force transmission device and increasing the overall size of the end effector. There was a problem.
  • the driving force transmission device for an end effector receives each driving force generated from the first and second driving means individually by the first and second power transmission means and transmits the driving force to the end effector so that the end effector is provided. And at least one dual shaft member for allowing two degrees of freedom of rotation.
  • the dual shaft member is formed in a hollow shape and is connected to the end effector, and receives a driving force generated from the first driving means by the first power transmission means, and the outside of the first rotation shaft.
  • a second rotation shaft rotatably inserted into the first rotation shaft to protrude one end of the furnace and connected to the end effector and receiving a driving force generated from the second driving means by the second power transmission means.
  • the first rotational shaft is connected to the end effector and the first end effector connecting portion is rotatably inserted into the second rotational shaft therein, the first end effector connection is connected to the second rotational shaft is rotatable therein And a first shaft portion inserted and fastened to receive a driving force generated from the first driving means by the first power transmitting means.
  • the second rotating shaft is connected to the end effector and is connected to the second end effector connecting portion and the second end effector connecting portion rotatably inserted into the first rotating shaft, and one end portion protrudes out of the first rotating shaft.
  • a second shaft part rotatably inserted into the first rotation shaft so that one end portion protruding out of the first rotation shaft receives a driving force generated from the second driving means by a second power transmission means.
  • the first and second power transmission means may be a gear.
  • the first and second power transmission means may be a helical gear.
  • first and second power transmission means may be pulleys respectively connected to the first and second rotational shafts and the first and second driving means and connected by the power transmission member.
  • the power transmission member may be a wire.
  • the driving force transmission device for the end effector can transfer the driving force generated from the first and second driving means to the end effector individually using one double shaft member, and thus use of one double shaft member.
  • This allows the end effector to have two rotation degrees of freedom. Therefore, even when the degree of freedom increases in the design of the multiple degree of freedom end effector, the overall size of the driving force transmission device can be reduced to less than half as compared to the conventional driving force transmission device, so that the overall size of the end effector can be made compact. Significantly reduced manufacturing costs and maintenance and repair costs can be significantly reduced, as well as the assembly labor.
  • FIG. 1 is a view for explaining a driving force transmission device for the end effector according to a first embodiment of the present invention
  • FIG. 2 is a bottom view of FIG. 1
  • FIG. 3 is a perspective view of a double shaft member according to a first embodiment of the present invention.
  • FIG. 4 is a perspective view of a double shaft member according to a second embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a view for explaining a driving force transmission device for an end effector according to a first embodiment of the present invention
  • Figure 2 is a bottom view of FIG.
  • the driving force transmission apparatus includes a housing 100, at least one dual shaft member 110, and first and second power transmission means 120 and 130.
  • At least one pair of first and second driving means 120 and 130 is installed at one side of the housing 100.
  • the rotation shafts 141 and 151 of the first and second driving means 140 and 150 pass through one side of the housing 100 and are inserted into the housing 100.
  • ends of the rotation shafts 141 and 151 of the first and second driving means 140 and 150 inserted into the housing 100 through one side of the housing 100 are inserted into the housing 100. It is rotatably supported by the support member 101 installed on the other side of the).
  • the first and second driving means 140, 150 is a pair is connected to the double shaft member 110.
  • the at least one dual shaft member 110 is rotatably installed on the lower surface of the housing 100.
  • at least one hole 102 is formed through the lower surface of the housing 100, and a shaft support member (not shown) is installed in the at least one hole to provide the shaft support member with the shaft support member.
  • the dual shaft member 110 may be rotatably installed. Therefore, the lower end of the dual shaft member 110 is exposed to the outside of the housing 100 is connected to the end effector (not shown).
  • the first and second power transmission means 120 and 130 respectively transmit the driving force generated from the first and second driving means 140 and 150 to the dual shaft member 110.
  • the dual shaft member 110 receives the driving force generated from the first and second driving means 140 and 150 through the first and second power transmission means 120 and 130.
  • the driving force generated from the means 120 and the driving force generated from the second driving means 130 are separately transmitted to the end effector, so that the end effector is rotated by using the single dual shaft member 110. Allow to have freedom.
  • FIG 3 is a perspective view of a dual shaft member according to a first embodiment of the present invention.
  • the dual shaft member 110 includes a first rotating shaft 111 and a second rotating shaft 112.
  • the first rotating shaft 111 is formed in a hollow shape and is connected to the end effector (not shown).
  • the first rotation shaft 111 is connected to the first driving means 140 by the first power transmission means 120.
  • the first rotation shaft 111 receives the driving force generated from the first driving means 140 through the first power transmission means 120, that is, the rotational force, and transmits the driving force to the end effector.
  • the first power transmission unit 120 may be a gear.
  • the first power transmission unit 120 may be a helical gear. That is, a first helical part 121 is formed on the rotation shaft 141 of the first driving means 140, and a second helical part geared to the first helical part 121 is connected to the first rotation shaft 111.
  • the shaft 122 is installed so that the rotational force of the first driving means 140 is transmitted to the first rotation shaft 111 through the first and second helical parts 121 and 122 so that the first rotation shaft 111 is By rotating, the end effector connected to the first rotating shaft 111 rotates to have one rotation degree of freedom.
  • the second rotation shaft 112 is rotatably inserted into the first rotation shaft 111 so as to protrude one end portion out of the first rotation shaft 111, and is connected to the end effector and connected to the second power transmission means ( 130 receives the driving force generated from the second driving means 150, that is, rotational force, and transmits the driving force to the end effector.
  • the second power transmission means 150 may be a gear.
  • the second power transmission means 150 may be a helical gear. That is, a first helical portion 131 is formed on the rotation shaft 151 of the second driving means 150, and a first end portion of the second rotation shaft 112 protruding outside the first rotation shaft 111 is formed on the rotation shaft 151 of the second driving means 150.
  • the second helical portion 132 is arranged so that the rotational force of the second driving means 150 is transmitted to the second rotation shaft 112 through the first and second helical portions 131 and 132 to provide the second rotation shaft ( 112 is rotated separately from the first rotary shaft 111 so that the end effector connected to the second rotary shaft 112 is rotated to have another degree of freedom.
  • the dual shaft member 110 allows the end effector to have two rotational degrees of freedom even when only one is used, so that the overall size of the driving force transmission device is increased even when the degree of freedom is increased in the design of the multiple degree of freedom end effector. There is an advantage that can be reduced to less than half.
  • the first rotation shaft 111 includes a first end effector connecting portion 111a and a first shaft portion 111b.
  • the first end effector connecting portion 111a is connected to an end effector (not shown), and the second rotation shaft 112 is rotatably inserted into the inside.
  • the first end effector connecting portion 111a is rotatably installed in the bearing member (not shown) installed in the hole 102 formed in the housing 100 and connected to the end effector. Inside the second rotation shaft 112 is rotatably inserted.
  • the first shaft portion 111b is connected to the first end effector connecting portion 111a and the second rotation shaft 112 is rotatably inserted into the first shaft effect portion 111a.
  • the first shaft part 111b receives the driving force generated from the first driving means 140 by the first power transmitting means 120. That is, the first shaft portion 111b is connected to the first helical portion 121 geared to the first driving means 140 to be geared to the rotational force of the first driving means 140 to the first helical portion (
  • the second helical part 122 received through 121 is constructed to receive the driving force, that is, the rotational force, generated from the first driving means 140.
  • the second rotating shaft 112 includes a second end effector connecting portion 112a and a second shaft portion 112b.
  • the second end effector connection part 112a is connected to the end effector and is rotatably inserted into the first rotation shaft 111.
  • the second end effector connecting portion 112a is rotatably inserted into the first end effector connecting portion 111a to be connected to the end effector.
  • the second shaft portion 112b is rotatably inserted into the first rotation shaft 111 so as to be connected to the second end effector portion 112a. At this time, the second shaft portion 112b is rotatably inserted into the first shaft 111b such that one end thereof protrudes out of the first shaft portion 111b.
  • one end of the second shaft portion 112b protruding out of the first shaft portion 111b is a driving force generated from the second driving means 150 through the second power transmission means 130, In other words, the torque is transmitted. That is, one side end portion of the second shaft portion 112b protruding to the outside of the first shaft portion 111b is in gear connection with the first helical portion 131 built in the second driving means 150.
  • the second helical portion 132 receiving the rotational force of the second driving means 150 through the first helical portion 131 is built up to transmit the driving force generated from the second driving means 150, that is, the rotational force. Receive.
  • FIG. 4 is a perspective view of a double shaft member according to a second embodiment of the present invention.
  • the driving force transmission device for an end effector includes first and second power transmission means 120 and 130 for transmitting the driving force of the first and second driving means 140 and 150 to the dual shaft member 110. Except), since it is substantially the same as the driving force transmission device for the end effector according to the first embodiment, the driving force transmission device for the end effector except for the first, second power transmission means (120, 130) Detailed description of the other components will be omitted, and the same reference numerals are given to the same components as those of the first embodiment.
  • the first power transmission means 120 of the driving force transmission device for an end effector is built on the first rotation shaft 111 and the first driving means 140 (see FIG. 1). And a pulley 123 that is connected by a power transmission member (not shown) to transmit the driving force of the first driving means 140 to the first rotation shaft 111 through the power transmission member.
  • the first power transmission means 120 may include a first driven pulley 123 arranged on the first rotation shaft 111 and a first driven pulley built on the first driving means 140. And a first power transmission member connecting the first driven pulley 123 and the first driving pulley to each other to transmit the rotational force of the first driving means 140 to the first rotation shaft 111 ( Not shown).
  • the second power transmission means 130 is installed on the second rotation shaft 112 and the second driving means 150 (see FIG. 1) and is connected by a power transmission member (not shown), thereby providing the second driving means. It may be a pulley 133 for transmitting the driving force of the 150 to the second rotating shaft 112 through the power transmission member.
  • the second power transmission means 130 may include a second driven pulley 133 installed on the second rotation shaft 112 and a second driven pulley installed on the second driving means 150. And a second power transmission member (not shown) for connecting the second driven pulley and the second driven pulley to transmit the rotational force of the second driving means 150 to the second rotation shaft 112.
  • the second driven pulley 133 is arranged at one end of the second rotation shaft 112 protruding out of the first rotation shaft 111.
  • the driving force transmission device for the end effector individually transmits the driving force generated from the first and second driving means 140 and 150 to the end effector by using one dual shaft member 110. It allows the end effector to have two rotation degrees of freedom with the use of one dual shaft member 110.
  • the size of the driving force transmission device can be reduced to less than half as compared to the conventional driving force transmission device, so that the overall size of the end effector can be made compact, and the use parts are greatly reduced. It can reduce the manufacturing cost and maintenance / repair cost significantly, and also has the advantage of reducing the assembly labor.

Abstract

부비동 내부의 다양한 각도에 대응하여 굴곡되도록 하여 상기 부비동 내부의 다양한 각도에 위치하는 병변 조직을 용이하게 제거할 수 있으며, 굴곡된 상태에서도 쉐이버에 안정적으로 회전력을 전달할 수 있는 굴곡형 미세분쇄장치가 개시된다. 상기 굴곡형 미세분쇄장치는 구동부에 설치되는 고정부와, 상기 고정부의 끝단에 연결되며 사용자가 원하는 방향과 각도로 굴곡시킬 수 있는 굴곡부와, 상기 굴곡부의 끝단부에 설치되는 쉐이버 및, 상기 구동부의 회전력을 상기 쉐이버에 전달할 수 있도록 상기 구동부와 쉐이버에 연결되며 상기 굴곡부의 굴곡 방향 및 각도로 플렉서블하게 굴곡될 수 있는 동력 전달수단을 포함한다.

Description

엔드이펙터용 구동력 전달장치
본 발명은 엔드이펙터용 구동력 전달장치에 관한 것으로, 보다 상세하게는 구동수단의 구동력을 엔드이펙터에 전달하는 구동력 전달장치에 관한 것이다.
일반적으로 복강경 수술로봇의 엔드이펙터는 구동수단의 구동력을 전달받기 위하여 상기 구동수단과 엔드이펙터를 연결하는 구동력 전달장치가 사용된다.
상기와 같은 구동력 전달장치는 통상적으로 샤프트에 기어나 풀리 등과 같은 동력 전달수단을 축설하여 상기 구동수단으로부터 동력을 전달받아 상기 샤프트가 회전을 하게 됨으로써 상기 엔드이펙터를 구동시키게 된다.
종래의 일반적인 구동력 전달장치는 한 개의 샤프트에 한 개의 회전 자유도를 갖는 구조로 형성됨으로써 엔드이펙터의 자유도에 상응하는 개수의 샤프트를 설치해야 함으로써 구동력 전달장치의 사이즈가 커져 엔드이펙터의 전체 사이즈가 증가된다는 문제점이 있었다.
이에 더하여, 부품의 증가로 인한 제작비용의 상승과 더불어 조립공수와 유지/보수비용이 증가된다는 문제점이 있었다.
따라서, 본 발명의 목적은 하나의 축부재만을 사용하여 엔드이펙터가 2개의 회전자유도를 가질 수 있도록 하는 엔드이펙터용 구동력 전달장치를 제공하는 것이다.
본 발명의 일실시예에 의한 엔드이펙터용 구동력 전달장치는 제1, 2 구동수단으로부터 발생되는 각각의 구동력을 개별적으로 제1, 2 동력 전달수단에 의해 전달받아 엔드이펙터에 전달하여 상기 엔드이펙터가 2개의 회전자유도를 질 수 있도록 하는 적어도 하나의 이중 축부재를 포함한다.
일예를 들면, 상기 이중 축부재는 중공 형태로 형성되어 상기 엔드이펙터와 연결되며 상기 제1 동력 전달수단에 의해 상기 제1 구동수단으로부터 발생되는 구동력을 전달받는 제1 회전축 및, 상기 제1 회전축 외부로 일측 끝단부가 돌출되도록 상기 제1 회전축 내부에 회전 가능하게 삽입 체결되며 상기 엔드이펙터와 연결되고 상기 제2 동력 전달수단에 의해 상기 제2 구동수단으로부터 발생되는 구동력을 전달받는 제2 회전축을 포함한다.
여기서, 상기 제1 회전축은 상기 엔드이펙터와 연결되며 상기 제2 회전축이 내부에 회전 가능하게 삽입 체결되는 제1 엔드이펙터 연결부 및, 상기 제1 엔드이펙터 연결부 연결되어 상기 제2 회전축이 내부에 회전 가능하게 삽입 체결되며 상기 제1 동력 전달수단에 의해 상기 제1 구동수단으로부터 발생되는 구동력을 전달받는 제1 샤프트부를 포함한다.
또한, 상기 제2 회전축은 상기 엔드 이펙터와 연결되며 상기 제1 회전축 내부에 회전 가능하게 삽입 체결되는 제2 엔드이펙터 연결부 및 상기 제2 엔드이펙터 연결부와 연결되며 일측 끝단부가 상기 제1 회전축 외부로 돌출되도록 상기 제1 회전축 내부에 회전 가능하게 삽입 체결되어 상기 제1 회전축 외부로 돌출된 일측 끝단부가 제2 동력 전달수단에 의해 상기 제2 구동수단으로부터 발생되는 구동력을 전달받는 제2 샤프트부를 포함한다.
여기서, 상기 제1, 2 동력 전달수단은 기어일 수 있다.
더욱 바람직하게는, 상기 제 1, 2 동력 전달수단은 헬리컬 기어일 수 있다.
이와는 다르게, 상기 제1, 2 동력 전달수단은 각각 상기 제1, 2 회전축과 상기 제1, 2 구동수단에 축설되어 동력 전달부재에 의해 연결되는 풀리일 수 있다.
여기서, 상기 동력 전달부재는 와이어일 수 있다.
이와 같이 본 발명에 따른 엔드이펙터용 구동력 전달장치는 제1, 2 구동수단으로부터 발생되는 각각의 구동력을 하나의 이중 축부재를 사용하여 개별적으로 엔드이펙터에 전달할 수 있도록 하여 하나의 이중 축부재의 사용으로 상기 엔드이펙터가 2개의 회전자유도를 가질 수 있도록 한다. 따라서, 다자유도 엔드이펙터 설계 시 자유도가 증가하여도 구동력 전달장치의 전체 사이즈를 종래의 구동력 전달장치에 비하여 절반이하로 축소시킬 수 있어 엔드이펙터의 전체 사이즈를 컴팩트하게 제작할 수 있으며, 사용 부품이 대폭 줄어 제작비용과 유지/보수비용을 대폭 절감할 수 있을 뿐만 아니라 조립공수 또한 절감할 수 있는 효과가 있다.
도 1은 본 발명의 제1 실시예에 의한 엔드 이펙터용 구동력 전달장치를 설명하기 위한 도면
도 2는 도 1의 저면도
도 3은 본 발명의 제1 실시예에 의한 이중 축부재의 사시도
도 4는 본 발명의 제2 실시예에 의한 이중 축부재의 사시도
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하 도면을 참조하여, 본 발명의 바람직한 실시예들을 보다 상세하게 설명한다.
<실시예 1>
도 1은 본 발명의 제1 실시예에 의한 엔드 이펙터용 구동력 전달장치를 설명하기 위한 도면이며, 도 2는 도 1의 저면도이다.
도 1 및 도 2를 참조하면, 본 실시예에 의한 구동력 전달장치는 하우징(100), 적어도 하나의 이중 축부재(110), 제1, 2 동력 전달수단(120)(130)을 포함한다.
상기 하우징(100)의 일측면에는 적어도 한 쌍의 제1, 2 구동수단(120)(130)이 설치된다. 여기서, 상기 제1, 2 구동수단(140)(150)의 회전축(141)(151)은 상기 하우징(100)의 일측면을 관통하여 상기 하우징(100)의 내부로 삽입된다. 그리고, 상기 하우징(100)의 일측면을 관통하여 상기 하우징(100) 내부로 삽입된 상기 제1, 2 구동수단(140)(150)의 회전축(141)(151)의 끝단부는 상기 하우징(100)의 타측에 설치된 지지부재(101)에 의해 회전 가능하게 지지된다. 여기서, 상기 제1, 2 구동수단(140)(150)은 한 쌍이 한 조가 되어 상기 이중 축부재(110)와 연결된다.
상기 적어도 하나의 이중 축부재(110)는 상기 하우징(100)의 하부면에 회전 가능하게 설치된다. 보다 상세하게 설명하면, 상기 하우징(100)의 하부면에는 적어도 하나의 홀(102)이 관통 형성되며, 상기 적어도 하나의 홀에는 축 받침부재(도시되지 않음)가 설치되어 상기 축 받침부재에 상기 이중 축부재(110)가 회전 가능하게 설치될 수 있다. 그러므로, 상기 이중 축부재(110)의 하단부는 상기 하우징(100)의 외부로 노출되어 엔드이펙터(도시되지 않음)와 연결된다.
상기 제1, 2 동력전달수단(120)(130)은 각각 상기 제1, 2 구동수단(140)(150)으로부터 발생되는 각각의 구동력을 상기 이중 축부재(110)에 전달한다. 그리고, 상기 제1, 2 동력전달수단(120)(130)을 통해 상기 제1, 2 구동수단(140)(150)으로부터 발생되는 구동력을 전달받은 상기 이중 축부재(110)는 상기 제1 구동수단(120)으로부터 발생되는 구동력과 상기 제2 구동수단(130)으로부터 발생되는 구동력을 각각 개별적으로 상기 엔드이펙터로 전달하여 상기 엔드이펙터가 상기 하나의 이중 축부재(110)를 사용하여 2개의 회전자유도를 가질 수 있도록 한다.
도 3은 본 발명의 제1 실시예에 의한 이중 축부재의 사시도이다.
도 1 내지 도 3을 참조하면, 상기 이중 축부재(110)는 제1 회전축(111)과 제2 회전축(112)을 포함한다.
상기 제1 회전축(111)은 중공 형태로 형성되어 상기 엔드이펙터(도시되지 않음)와 연결된다. 또한 상기 제1 회전축(111)은 상기 제1 동력 전달수단(120)에 의해 상기 제1 구동수단(140)과 연결된다. 따라서, 상기 제1 회전축(111)은 상기 제1 동력 전달수단(120)을 통해 상기 제1 구동수단(140)으로부터 발생되는 구동력, 즉 회전력을 전달받아 상기 엔드이펙터로 전달하게 된다. 여기서, 상기 제1 동력 전달수단(120)은 기어일 수 있다. 예를 들면, 상기 제1 동력 전달수단(120)은 헬리컬 기어일 수 있다. 즉, 상기 제1 구동수단(140)의 회전축(141)에는 제1 헬리컬부(121)가 축설되며 상기 제1 회전축(111)에는 상기 제1 헬리컬부(121)와 기어 연결되는 제2 헬리컬부(122)가 축설되어 상기 제1 구동수단(140)의 회전력이 상기 제1, 2 헬리컬부(121)(122)를 통해 상기 제1 회전축(111)에 전달되어 상기 제1 회전축(111)이 회전을 하게 됨으로써 상기 제1 회전축(111)에 연결된 엔드이펙터가 회전을 하게 되어 1개의 회전자유도를 가질 수 있도록 한다.
상기 제2 회전축(112)은 상기 제1 회전축(111) 외부로 일측 끝단부가 돌출되도록 상기 제1 회전축(111) 내부에 회전 가능하게 삽입 체결되며 상기 엔드 이펙터와 연결되고 상기 제2 동력 전달수단(130)에 의해 상기 제2 구동수단(150)으로부터 발생되는 구동력, 즉 회전력을 전달받아 상기 엔드이펙터로 전달하게 된다. 여기서, 상기 제2 동력 전달수단(150)은 기어일 수 있다. 예를 들면, 상기 제2 동력 전달수단(150)은 헬리컬 기어일 수 있다. 즉, 상기 제2 구동수단(150)의 회전축(151)에는 제1 헬리컬부(131)가 축설되며 상기 제1 회전축(111) 외부로 돌출된 상기 제2 회전축(112)의 일측 끝단부에는 제2 헬리컬부(132)가 축설되어 상기 제2 구동수단(150)의 회전력이 상기 제1, 2 헬리컬부(131)(132)를 통해 상기 제2 회전축(112)에 전달되어 상기 제2 회전축(112)이 상기 제1 회전축(111)과는 별개로 회전을 하게 됨으로써 상기 제2 회전축(112)에 연결된 상기 엔드이펙터가 회전을 하게 되어 또 하나의 회전자유도를 가질 수 있도록 한다.
따라서, 상기 이중 축부재(110)는 하나만 사용하여도 엔드이펙터가 2개의 회전자유도를 가질 수 있도록 함으로써 다자유도 엔드이펙터 설계 시 자유도가 증가하여도 구동력 전달장치의 전체 사이즈를 종래의 구동력 전달장치에 비하여 절반이하로 축소시킬 수 있는 장점이 있다.
다시, 도 1 내지 도 3을 참조하여 상기 제1 회전축과 제2 회전축의 구성에 대하여 보다 상세하게 설명하면 다음과 같다.
도 1 내지 도 3을 참조하면, 상기 제1 회전축(111)은 제1 엔드이펙터 연결부(111a)와 제1 샤프트부(111b)를 포함한다.
상기 제1 엔드이펙터 연결부(111a)는 엔드이펙터(도시되지 않음)와 연결되며 상기 제2 회전축(112)이 내부에 회전 가능하게 삽입 체결된다. 보다 상세하게 설명하면, 상기 제1 엔드이펙터 연결부(111a)는 상기 하우징(100)에 형성된 홀(102)에 설치된 축 받침부재(도시되지 않음)에 회전 가능하게 설치되어 상기 엔드이펙터와 연결되며 그 내부에는 상기 제2 회전축(112)이 회전 가능하게 삽입 체결된다.
상기 제1 샤프트부(111b)는 상기 제1 엔드이펙터 연결부(111a)에 연결되어 상기 제2 회전축(112)이 내부에 회전 가능하게 삽입 체결된다. 또한, 상기 제1 샤프트부(111b)는 상기 제1 동력 전달수단(120)에 의해 상기 제1 구동수단(140)으로부터 발생되는 구동력을 전달 받는다. 즉, 상기 제1 샤프트부(111b)에는 상기 제1 구동수단(140)에 축설된 제1 헬리컬부(121)와 기어 연결되어 상기 제1 구동수단(140)의 회전력을 상기 제1 헬리컬부(121)를 통해 전달받는 제2 헬리컬부(122)가 축설됨으로써 상기 제1 구동수단(140)으로부터 발생되는 구동력, 즉 회전력을 전달 받는다.
상기 제2 회전축(112)은 제2 엔드이펙터 연결부(112a)와, 제2 샤프트부(112b)를 포함한다.
상기 제2 엔드이펙터 연결부(112a)는 상기 엔드 이펙터와 연결되며 상기 제1 회전축(111) 내부에 회전 가능하게 삽입 체결된다. 보다 상세하게 설명하면, 상기 제2 엔드이펙터 연결부(112a)는 상기 제1 엔드이펙터 연결부(111a) 내부에 회전 가능하게 삽입 체결되어 상기 엔드 이펙터와 연결된다.
상기 제2 샤프트부(112b)는 상기 제2 엔드이펙터부(112a)와 연결되도록 상기 제1 회전축(111) 내부에 회전 가능하게 삽입 체결된다. 이때, 상기 제2 샤프트부(112b)는 일측 끝단부가 상기 제1 샤프트부(111b) 외부로 돌출되도록 상기 제1 샤프트(111b) 내부에 회전 가능하게 삽입 체결된다. 한편, 상기 제1 샤프트부(111b) 외부로 돌출된 상기 제2 샤프트부(112b)의 일측 끝단부는 상기 제2 동력 전달수단(130)을 통해 상기 제2 구동수단(150)으로부터 발생되는 구동력, 즉 회전력을 전달받는다. 즉, 상기 제1 샤프트부(111b)의 외부로 돌출된 상기 제2 샤프트부(112b)의 일측 끝단부에는 상기 제2 구동수단(150)에 축설된 제1 헬리컬부(131)와 기어 연결되어 상기 제2 구동수단(150)의 회전력을 상기 제1 헬리컬부(131)를 통해 전달받는 제2 헬리컬부(132)가 축설됨으로써 상기 제2 구동수단(150)으로부터 발생되는 구동력, 즉 회전력을 전달 받는다.
<실시예 2>
도 4는 본 발명의 제2 실시예에 의한 이중 축부재의 사시도이다.
본 실시예에 의한 엔드이펙터용 구동력 전달장치는 상기 제1, 2 구동수단(140)(150)의 구동력을 상기 이중 축부재(110)에 전달하는 제1, 2 동력 전달수단(120)(130)을 제외하면, 제1 실시예에 의한 엔드이펙터용 구동력 전달장치와 실질적으로 동일하므로, 상기 엔드이펙터용 구동력 전달장치는 상기 제1, 2 동력 전달수단(120)(130)에 대한 내용을 제외한 다른 구성요소에 대한 자세한 설명은 생략하기로 하고, 상기 제1 실시예와 동일한 구성요소에 대해서는 동일한 도면부호를 부여하였다.
도 4를 참조하면, 본 실시예에 의한 엔드이펙터용 구동력 전달장치의 상기 제1 동력 전달수단(120)은 상기 제1 회전축(111)과 상기 제1 구동수단(140 : 도 1 참조)에 축설되어 동력 전달부재(도시되지 않음)에 의해 연결됨으로서 상기 제1 구동수단(140)의 구동력을 상기 동력 전달부재를 통해 상기 제1 회전축(111)에 전달하는 풀리(123)일 수 있다. 예를 들면, 상기 제1 동력 전달수단(120)은 상기 제1 회전축(111)에 축설되는 제1 종동풀리(123)와, 상기 제1 구동수단(140)에 축설되는 제1 원동풀리(도시되지 않음)와, 상기 제1 종동풀리(123)와 상기 제1 원동풀리를 서로 연결하여 상기 제1 구동수단(140)의 회전력을 상기 제1 회전축(111)에 전달하는 제1 동력 전달부재(도시되지 않음)를 포함한다.
상기 제2 동력 전달수단(130)은 상기 제2 회전축(112)과 상기 제2 구동수단(150 : 도 1 참조)에 축설되어 동력 전달부재(도시되지 않음)에 의해 연결됨으로서 상기 제2 구동수단(150)의 구동력을 상기 동력 전달부재를 통해 상기 제2 회전축(112)에 전달하는 풀리(133)일 수 있다. 예를 들면, 상기 제2 동력 전달수단(130)은 상기 제2 회전축(112)에 축설되는 제2 종동풀리(133)와, 상기 제2 구동수단(150)에 축설되는 제2 원동풀리(도시되지 않음)와, 상기 제2 종동풀리와 상기 제2 원동풀리를 서로 연결하여 상기 제2 구동수단(150)의 회전력을 상기 제2 회전축(112)에 전달하는 제2 동력 전달부재(도시되지 않음)를 포함한다. 여기서, 상기 제2 종동풀리(133)는 상기 제1 회전축(111) 외부로 돌출된 상기 제2 회전축(112)의 일측 끝단부에 축설된다.
상술한 바와 같이 본 발명에 따른 엔드이펙터용 구동력 전달장치는 제1, 2 구동수단(140)(150)으로부터 발생되는 각각의 구동력을 하나의 이중 축부재(110)를 사용하여 개별적으로 엔드이펙터에 전달할 수 있도록 하여 하나의 이중 축부재(110)의 사용으로 상기 엔드이펙터가 2개의 회전자유도를 가질 수 있도록 한다.
따라서, 다자유도 엔드이펙터 설계 시 자유도가 증가하여도 구동력 전달장치의 크기를 종래의 구동력 전달장치에 비하여 절반이하로 축소시킬 수 있어 엔드이펙터의 전체 사이즈를 컴팩트하게 제작할 수 있으며, 사용 부품이 대폭 줄어 제작비용과 유지/보수비용을 대폭 절감할 수 있을 뿐만 아니라 조립공수 또한 절감할 수 있는 장점이 있다.
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (8)

  1. 제1, 2 구동수단으로부터 발생되는 각각의 구동력을 개별적으로 제1, 2 동력 전달수단에 의해 전달받아 엔드이펙터에 전달하여 상기 엔드이펙터가 2개의 회전자유도를 질 수 있도록 하는 적어도 하나의 이중 축부재를 포함하는 엔드이펙터용 구동력 전달장치.
  2. 제 1 항에 있어서,
    상기 이중 축부재는,
    중공 형태로 형성되어 상기 엔드이펙터와 연결되며 상기 제1 동력 전달수단에 의해 상기 제1 구동수단으로부터 발생되는 구동력을 전달받는 제1 회전축; 및
    상기 제1 회전축 외부로 일측 끝단부가 돌출되도록 상기 제1 회전축 내부에 회전 가능하게 삽입 체결되며 상기 엔드이펙터와 연결되고 상기 제2 동력 전달수단에 의해 상기 제2 구동수단으로부터 발생되는 구동력을 전달받는 제2 회전축을 포함하는 엔드이펙터용 구동력 전달장치.
  3. 제 2 항에 있어서,
    상기 제1 회전축은,
    상기 엔드이펙터와 연결되며 상기 제2 회전축이 내부에 회전 가능하게 삽입 체결되는 제1 엔드이펙터 연결부; 및
    상기 제1 엔드이펙터 연결부 연결되어 상기 제2 회전축이 내부에 회전 가능하게 삽입 체결되며 상기 제1 동력 전달수단에 의해 상기 제1 구동수단으로부터 발생되는 구동력을 전달받는 제1 샤프트부를 포함하는 엔드이펙터용 구동력 전달장치.
  4. 제 2 항에 있어서,
    상기 제2 회전축은,
    상기 엔드 이펙터와 연결되며 상기 제1 회전축 내부에 회전 가능하게 삽입 체결되는 제2 엔드이펙터 연결부; 및
    상기 제2 엔드이펙터 연결부와 연결되며 일측 끝단부가 상기 제1 회전축 외부로 돌출되도록 상기 제1 회전축 내부에 회전 가능하게 삽입 체결되어 상기 제1 회전축 외부로 돌출된 일측 끝단부가 제2 동력 전달수단에 의해 상기 제2 구동수단으로부터 발생되는 구동력을 전달받는 제2 샤프트부를 포함하는 엔드이펙터용 구동력 전달장치.
  5. 제 2 항에 있어서,
    상기 제1, 2 동력 전달수단은 기어인 것을 특징으로 하는 엔드이펙터용 구동력 전달장치.
  6. 제 5 항에 있어서,
    상기 제 1, 2 동력 전달수단은 헬리컬 기어인 것을 특징으로 하는 엔드이펙터용 구동력 전달장치.
  7. 제 2 항에 있어서,
    상기 제1, 2 동력 전달수단은 각각 상기 제1, 2 회전축과 상기 제1, 2 구동수단에 축설되어 동력 전달부재에 의해 연결되는 풀리인 것을 특징으로 하는 엔드이펙터용 구동력 전달장치.
  8. 제 7 항에 있어서,
    상기 동력 전달부재는 와이어인 것을 특징으로 하는 엔드이펙터용 구동력 전달장치.
PCT/KR2013/003350 2012-04-26 2013-04-19 엔드이펙터용 구동력 전달장치 WO2013162217A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/349,576 US9631713B2 (en) 2012-04-26 2013-04-19 Driving force transfer device for end-effector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120044126A KR101327267B1 (ko) 2012-04-26 2012-04-26 엔드이펙터용 구동력 전달장치
KR10-2012-0044126 2012-04-26

Publications (1)

Publication Number Publication Date
WO2013162217A1 true WO2013162217A1 (ko) 2013-10-31

Family

ID=49483450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003350 WO2013162217A1 (ko) 2012-04-26 2013-04-19 엔드이펙터용 구동력 전달장치

Country Status (3)

Country Link
US (1) US9631713B2 (ko)
KR (1) KR101327267B1 (ko)
WO (1) WO2013162217A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106163445A (zh) * 2014-03-31 2016-11-23 直观外科手术操作公司 带有可切换传动装置的外科手术器械

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102115447B1 (ko) * 2013-03-27 2020-05-27 한양대학교 에리카산학협력단 내시경 장치
CN108324368B (zh) * 2018-02-08 2020-07-10 南京医科大学 一种手术辅助机器人
CN115475009B (zh) * 2022-09-20 2023-07-18 山东大学 一种用于对软组织进行微创医疗干预的机器人

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238996A (ja) * 1994-02-24 1995-09-12 Asahi Optical Co Ltd 歯車装置
KR200445028Y1 (ko) * 2008-12-01 2009-06-23 이주연 멀티웜 감속기
KR100946175B1 (ko) * 2008-04-14 2010-03-08 주식회사 로보멕 팬틸트 장치
KR101234399B1 (ko) * 2010-05-25 2013-02-18 김정수 백래시 제거 기능을 갖는 구동장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69415517T3 (de) * 1993-04-16 2005-03-17 Brooks Automation, Inc., Lowell Handhabungseinrichtung mit gelenkarm
US6017358A (en) * 1997-05-01 2000-01-25 Inbae Yoon Surgical instrument with multiple rotatably mounted offset end effectors
JP4000505B2 (ja) 1999-12-01 2007-10-31 第一三共株式会社 緑内障を治療するための併用剤
US7476237B2 (en) * 2003-02-27 2009-01-13 Olympus Corporation Surgical instrument
US9117859B2 (en) * 2006-08-31 2015-08-25 Brooks Automation, Inc. Compact processing apparatus
US8377044B2 (en) * 2007-03-30 2013-02-19 Ethicon Endo-Surgery, Inc. Detachable end effectors
EP2498710B1 (en) * 2009-11-13 2018-05-16 Intuitive Surgical Operations, Inc. Motor interface for parallel drive shafts within an independently rotating member
US9775609B2 (en) * 2013-08-23 2017-10-03 Ethicon Llc Tamper proof circuit for surgical instrument battery pack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238996A (ja) * 1994-02-24 1995-09-12 Asahi Optical Co Ltd 歯車装置
KR100946175B1 (ko) * 2008-04-14 2010-03-08 주식회사 로보멕 팬틸트 장치
KR200445028Y1 (ko) * 2008-12-01 2009-06-23 이주연 멀티웜 감속기
KR101234399B1 (ko) * 2010-05-25 2013-02-18 김정수 백래시 제거 기능을 갖는 구동장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106163445A (zh) * 2014-03-31 2016-11-23 直观外科手术操作公司 带有可切换传动装置的外科手术器械
US10610313B2 (en) 2014-03-31 2020-04-07 Intuitive Surgical Operations, Inc. Surgical instrument with shiftable transmission
US11219493B2 (en) 2014-03-31 2022-01-11 Intuitive Surgical Operations, Inc. Surgical instrument with shiftable transmission

Also Published As

Publication number Publication date
KR20130120896A (ko) 2013-11-05
US9631713B2 (en) 2017-04-25
KR101327267B1 (ko) 2013-11-11
US20150128763A1 (en) 2015-05-14

Similar Documents

Publication Publication Date Title
WO2013162217A1 (ko) 엔드이펙터용 구동력 전달장치
WO2013162206A1 (ko) 볼 조인트를 이용한 수술도구용 관절
WO2010090360A1 (ko) 모듈형 로봇 구동부의 구조
WO2014025204A1 (en) Surgical robot hand with decoupled wrist structure
WO2015023080A1 (ko) 감속기
WO2019074296A1 (ko) 로봇 핸드
US20140083233A1 (en) Multijoint robot
WO2019059457A1 (ko) 농기계 작업기의 연결장치
WO2021015431A1 (ko) 로봇의 관절 구동제어모듈
WO2016064037A1 (ko) 인렛 가이드 베인
WO2012169680A1 (ko) 복수의 2단 평기어를 이용한 감속기 구조체 및 그를 포함하는 액츄에이터 모듈
US10110824B2 (en) Insertion device
WO2010024569A2 (ko) 반전회전구동기구
US6412623B2 (en) Roller conveyor
WO2016159467A1 (ko) 볼 타입 크로스 그루브 조인트
WO2009116802A2 (ko) 역입력 간섭방지 기능을 갖는 모터용 변속기
WO2017007113A1 (ko) 액추에이터 모듈의 아이들러 혼 착탈 장치
WO2014104738A1 (ko) 와이어유도장치
WO2013095017A1 (ko) 풍력발전기
WO2016171355A1 (ko) 연동형 도어 이송장치
US11691298B2 (en) Reduction unit, arm joint provided with two or three reduction units respectively, and a robot arm
WO2016024733A1 (ko) 스프링을 이용한 동력전달 클러치
WO2018131741A1 (ko) 클러치 유닛
WO2011099786A2 (ko) 감속기어 및 이를 이용한 디지털 도어록
WO2017122927A1 (ko) 지퍼 체인

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14349576

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13780999

Country of ref document: EP

Kind code of ref document: A1