WO2016194667A1 - 液晶表示装置、及び、配向膜 - Google Patents

液晶表示装置、及び、配向膜 Download PDF

Info

Publication number
WO2016194667A1
WO2016194667A1 PCT/JP2016/065114 JP2016065114W WO2016194667A1 WO 2016194667 A1 WO2016194667 A1 WO 2016194667A1 JP 2016065114 W JP2016065114 W JP 2016065114W WO 2016194667 A1 WO2016194667 A1 WO 2016194667A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
chemical formula
diyl
alignment film
Prior art date
Application number
PCT/JP2016/065114
Other languages
English (en)
French (fr)
Inventor
真伸 水▲崎▼
博司 土屋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201680029230.8A priority Critical patent/CN107615144B/zh
Priority to US15/576,993 priority patent/US10545382B2/en
Publication of WO2016194667A1 publication Critical patent/WO2016194667A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133719Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films with coupling agent molecules, e.g. silane
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/023Organic silicon compound, e.g. organosilicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/027Polyimide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment

Definitions

  • the present invention relates to a liquid crystal display device and an alignment film. More specifically, the present invention relates to a liquid crystal display device including an alignment film and an alignment film that controls the alignment of liquid crystal molecules.
  • the liquid crystal display device Since the liquid crystal display device has features such as thinness, light weight, and low power consumption, it is used not only for television applications but also for smartphones, tablet PCs, car navigation systems, and the like. In these applications, various performances are required, and for example, high performance is also required for alignment films that are constituent members of liquid crystal display devices. Accordingly, a liquid crystal display device in which a light stabilizer is added to the alignment film has been proposed (see, for example, Patent Document 1).
  • the case where the liquid crystal molecules in the liquid crystal layer have a negative dielectric anisotropy has a positive dielectric anisotropy (hereinafter referred to as a positive type liquid crystal). It is also easier to take in moisture than. That is, copper ions are more easily taken into negative liquid crystals than positive liquid crystals. This is because the polarity of the negative liquid crystal is higher than that of the positive liquid crystal.
  • the negative type liquid crystal contains more polar oxygen (—O—), fluorine (—F), and chlorine (—Cl) in the liquid crystal molecule than the positive type liquid crystal, and in the same liquid crystal molecule. Since it contains an oxygen-containing alkoxyl group and fluorine, the polarity is high.
  • p is an integer of 1 or more.
  • Patent Document 1 discloses a liquid crystal display device in which a light stabilizer is added to an alignment film.
  • a light stabilizer is used for light absorption (ultraviolet absorption), and does not suppress generation of radicals due to the redox reaction as described above.
  • a light stabilizer having a low molecular weight average molecular weight of 250 to 3000
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a liquid crystal display device and an alignment film that can maintain a good voltage holding ratio for a long period of time and prevent a decrease in reliability. It is what.
  • the present inventors have conducted various studies on a liquid crystal display device that can maintain a good voltage holding ratio for a long period of time and prevent a decrease in reliability.
  • the above-described copper ions (aluminum ions) and an alignment film are obtained. It paid attention to suppressing the redox reaction with the carboxylic acid in the polymer to contain. If a chemical structure containing a benzotriazole group is introduced into the side chain of the polymer contained in the alignment film, a complex is formed between the copper ion (aluminum ion) and the benzotriazole group, thereby suppressing the redox reaction. Found that you can.
  • at least one of the pair of substrates includes an electrode and / or wiring containing copper or aluminum
  • the alignment film includes a benzotriazole group represented by the following chemical formula (1) It may be a liquid crystal display device containing a polymer having a chemical structure in the side chain.
  • Another embodiment of the present invention may be an alignment film containing a polymer having a chemical structure containing a benzotriazole group represented by the following chemical formula (1) in the side chain.
  • the liquid crystal display device which can maintain a favorable voltage holding ratio for a long period of time, and can prevent the fall of reliability can be provided.
  • FIG. 1 is a schematic cross-sectional view illustrating a liquid crystal display device according to an embodiment.
  • a liquid crystal display device 1 includes a lower substrate 2, an upper substrate 3 facing the lower substrate 2, a liquid crystal layer 5 disposed between both substrates, an alignment film 4a, and an alignment film. 4b and a sealing material 6 are provided.
  • the alignment film 4 a is disposed between the lower substrate 2 and the liquid crystal layer 5.
  • the alignment film 4 b is disposed between the upper substrate 3 and the liquid crystal layer 5.
  • the sealing material 6 is disposed so as to surround the liquid crystal layer 5.
  • the liquid crystal display device 1 may further include a backlight, and may include a pair of polarizing plates on the opposite side of the lower substrate 2 and the upper substrate 3 from the liquid crystal layer 5.
  • At least one of the lower substrate 2 and the upper substrate 3 has electrodes and / or wirings containing copper or aluminum.
  • the substrate having such electrodes and wiring include a thin film transistor array substrate.
  • the structure of the thin film transistor array substrate will be illustrated with reference to FIGS.
  • a case where the lower substrate 2 is a thin film transistor array substrate will be described.
  • FIG. 2 is a schematic cross-sectional view showing an example of the structure of the thin film transistor array substrate.
  • the thin film transistor array substrate includes a transparent substrate 7, a thin film transistor element 8, a gate insulating film 13, an interlayer insulating film 14 a, and a pixel electrode 15.
  • the thin film transistor element 8 includes a gate electrode 9, a source electrode 10, a drain electrode 11, and a semiconductor layer 12 that is electrically connected to the source electrode 10 and the drain electrode 11.
  • the gate electrode 9 is disposed on the transparent substrate 7.
  • the gate insulating film 13 covers the gate electrode 9.
  • the source electrode 10, the drain electrode 11, and the semiconductor layer 12 are disposed on the gate insulating film 13.
  • the interlayer insulating film 14a covers the source electrode 10, the drain electrode 11, and the semiconductor layer 12, and a contact hole 16 is provided in a part thereof.
  • the pixel electrode 15 is disposed on the interlayer insulating film 14 a and is electrically connected to the drain electrode 11 through the contact hole 16.
  • the thin film transistor array substrate further includes wiring such as a gate bus line electrically connected to the gate electrode 9 and a source bus line electrically connected to the source electrode 10.
  • FIG. 3 is a schematic cross-sectional view showing an example of the structure of the thin film transistor array substrate, and shows a structure different from FIG. Since the thin film transistor array substrate shown in FIG. 3 is the same as the thin film transistor array substrate shown in FIG. 2 except that it has a two-layer electrode structure, the description of overlapping points is omitted as appropriate.
  • the lower layer electrode 17 is disposed on the interlayer insulating film 14a.
  • the interlayer insulating film 14b covers the lower layer electrode 17, and a contact hole 16 is provided in a part thereof.
  • the upper layer electrode 18 is disposed on the interlayer insulating film 14 a and the interlayer insulating film 14 b and is electrically connected to the drain electrode 11 through the contact hole 16.
  • Examples of the transparent substrate 7 include a glass substrate and a plastic substrate.
  • At least one of the gate electrode 9, the source electrode 10, the drain electrode 11, and the wiring contains copper or aluminum. Since copper and aluminum have sufficiently high electrical conductivity, the capacity load in the liquid crystal display device can be reduced. Therefore, it can be suitably used as a material for electrodes and / or wirings of liquid crystal display devices such as high definition (for example, full high vision or more) and large size (for example, 10 inches or more).
  • the source electrode 10 is in direct contact with the interlayer insulating film 14a.
  • the drain electrode 11 is in direct contact with both the interlayer insulating film 14a and the alignment film 4a.
  • Examples of the semiconductor layer 12 include those containing amorphous silicon, low-temperature polysilicon, an oxide semiconductor, and the like, and those containing an oxide semiconductor are preferable.
  • Examples of the oxide semiconductor include a compound composed of indium, gallium, zinc, and oxygen, a compound composed of indium, tin, zinc, and oxygen, and composed of indium, aluminum, zinc, and oxygen. And a compound composed of indium, zinc, and oxygen.
  • the oxide semiconductor When a compound composed of indium, gallium, zinc, and oxygen is used as the oxide semiconductor, the off-leakage current is small. Therefore, when a voltage is applied, the voltage application state is maintained until the next data is written. Is possible. Therefore, from the viewpoint of low power consumption, it is preferable to use a compound including indium, gallium, zinc, and oxygen as the oxide semiconductor.
  • the interlayer insulating film 14a may be an organic film or an inorganic film.
  • the interlayer insulating film 14b may be an organic film or an inorganic film.
  • Examples of the material of the pixel electrode 15, the lower layer electrode 17, and the upper layer electrode 18 include transparent materials such as indium tin oxide (ITO: Indium Tin Oxide) and indium zinc oxide (IZO: Indium Zinc Oxide). .
  • transparent materials such as indium tin oxide (ITO: Indium Tin Oxide) and indium zinc oxide (IZO: Indium Zinc Oxide).
  • the lower substrate 2 is a thin film transistor array substrate and has electrodes and / or wirings containing copper or aluminum
  • the upper substrate 3 in this case for example, on a transparent substrate It may be a color filter substrate on which a color filter layer or the like is disposed.
  • the combination of colors of the color filter layer is not particularly limited, and examples thereof include a combination of red, green, and blue, a combination of red, green, blue, and yellow.
  • the color filter substrate may be provided with a common wiring, a common electrode electrically connected to the common wiring, and the like according to the display mode of the liquid crystal display device 1, and further, a structure such as a rib is provided. It may be arranged.
  • the material for the common electrode include transparent materials such as ITO and IZO. Note that the color filter layer may be disposed only on the thin film transistor array substrate.
  • the lower substrate 2 and the upper substrate 3 may be other than the combination described above as long as at least one has an electrode and / or wiring containing copper or aluminum.
  • the alignment film 4 a and the alignment film 4 b are for controlling the alignment of the liquid crystal molecules in the liquid crystal layer 5.
  • the applied voltage to the liquid crystal layer 5 is less than the threshold voltage (including when no voltage is applied)
  • the alignment of the liquid crystal molecules in the liquid crystal layer 5 is controlled mainly by the action of the alignment film 4a and the alignment film 4b. Is done.
  • the angle formed by the major axis of the liquid crystal molecules with respect to the surfaces of the alignment film 4a and the alignment film 4b is called a pretilt angle.
  • the pretilt angle indicates an angle at which the major axis of the liquid crystal molecules is tilted from a direction completely parallel to the surface of the alignment film.
  • size of the pretilt angle of the liquid crystal molecule provided by alignment film 4a and alignment film 4b is not specifically limited.
  • the alignment film 4a and the alignment film 4b contain a polymer having a chemical structure including a benzotriazole group represented by the following chemical formula (1) in the side chain.
  • a complex is formed between the copper ion (aluminum ion) and the benzotriazole group.
  • the redox reaction between copper ion (aluminum ion) and carboxylic acid can be suppressed.
  • generation of radicals in the alignment film is suppressed, generation of ions derived from radicals is suppressed in the liquid crystal layer, and a decrease in voltage holding ratio can be prevented.
  • the benzotriazole group is introduced into the side chain of the polymer contained in the alignment film by a chemical bond.
  • the benzotriazole group also has a function of absorbing ultraviolet rays
  • the polymer contained in the alignment film in particular, the side closer to the transparent substrate 7 in the case of an alignment film having a two-layer structure
  • the light resistance can be improved by introducing a benzotriazole group into the layer.
  • the chemical structure including a benzotriazole group preferably includes a structure represented by the following chemical formula (2).
  • A is 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, naphthalene-1,4-diyl group, naphthalene-1,5-diyl group, naphthalene.
  • Sp1, Sp2 and Z are the same or different and each represents an —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO— group, —O—COO.
  • N in the chemical formula (2) is preferably an integer of 1 or more and 5 or less.
  • n is an integer of 1 or more, the benzotriazole group is located sufficiently away from the main chain of the polymer, so that its mobility is sufficiently enhanced and effectively forms a complex with copper ions (aluminum ions). be able to.
  • n is an integer of 5 or less, it is possible to sufficiently suppress a change in tilt angle ( ⁇ tilt) of liquid crystal molecules due to energization (voltage application).
  • the polymer contained in the alignment film 4a (alignment film 4b) preferably contains a photoreactive functional group.
  • the alignment film 4a (alignment film 4b) functions as a photo-alignment film.
  • the photoreactive functional group is a functional group capable of regulating the alignment direction of liquid crystal molecules by light irradiation, that is, capable of expressing an alignment regulating force.
  • the photoreactive functional group preferably includes at least one functional group selected from the group consisting of a cinnamate group, a chalcone group, a coumarin group, an azobenzene group, and a tolan group.
  • the alignment film 4a aligns the liquid crystal molecules in the liquid crystal layer 5 in a direction parallel to the surface of the alignment film 4a (alignment film 4b) (hereinafter also referred to as a horizontal alignment film). May be.
  • the alignment film 4a (alignment film 4b) can have both the function of suppressing the redox reaction as described above and the function of the horizontal alignment film.
  • the horizontal alignment film only needs to align at least liquid crystal molecules adjacent to each other in a direction parallel to the surface of the horizontal alignment film.
  • the direction parallel to the surface of the alignment film indicates that the pretilt angle of the liquid crystal molecules is 0 ° or more and 5 ° or less.
  • the horizontal alignment film may be a film containing a polymer containing a photoreactive functional group as described above (hereinafter also referred to as a horizontal photo alignment film).
  • the alignment film 4a aligns the liquid crystal molecules in the liquid crystal layer 5 in a direction perpendicular to the surface of the alignment film 4a (alignment film 4b) (hereinafter also referred to as a vertical alignment film). May be.
  • the alignment film 4a (alignment film 4b) can have both the function of suppressing the redox reaction as described above and the function of the vertical alignment film.
  • the vertical alignment film only needs to align at least liquid crystal molecules adjacent to each other in a direction perpendicular to the surface of the vertical alignment film.
  • the direction perpendicular to the surface of the alignment film indicates that the pretilt angle of the liquid crystal molecules is 82 ° or more and 90 ° or less.
  • the vertical alignment film may be a film containing a polymer containing a photoreactive functional group as described above (hereinafter also referred to as a vertical photo alignment film).
  • the polymer contained in the alignment film 4a preferably includes at least one selected from the group consisting of polyamic acid, polyimide, polysiloxane, polyvinyl, polyacryl, and polymethacryl.
  • the polyamic acid include a compound represented by the following chemical formula (3).
  • X is represented by any of the following chemical formulas (4-1) to (4-16).
  • the alignment film 4a (alignment film 4b) includes a horizontal alignment film, a vertical alignment film, It functions as a horizontal light alignment film or a vertical light alignment film.
  • the alignment film 4a (alignment film 4b) is a horizontal light alignment film or a vertical light alignment film. Functions as a photo-alignment film.
  • Y is represented by any of the following chemical formulas (5-1) to (5-24).
  • the alignment film 4a (alignment film 4b) includes a horizontal alignment film, a vertical alignment film, It functions as a horizontal light alignment film or a vertical light alignment film.
  • R 1 represents a horizontal alignment functional group, a vertical alignment functional group, a photoreactive functional group, or a copolymer thereof.
  • the horizontal alignment functional group examples include the following chemical formulas (C-1) to (C-8).
  • the alignment film 4a (alignment film 4b) functions as a horizontal alignment film by having such a horizontal alignment functional group.
  • the vertical alignment functional group examples include the following chemical formulas (D-1) to (D-7).
  • the alignment film 4a (alignment film 4b) functions as a vertical alignment film by having such a vertical alignment functional group.
  • the photoreactive functional group examples include the following chemical formulas (E-1) to (E-25).
  • the alignment film 4a (alignment film 4b) functions as a photo-alignment film by having such a photoreactive functional group.
  • the alignment film 4a (alignment film 4b) functions as a horizontal light alignment film.
  • the alignment film 4a (alignment film 4b) functions as a vertical photo-alignment film.
  • R 2 represents a chemical structure (functional group) having a benzotriazole group at the terminal.
  • R 2 is preferably a structure represented by the chemical formula (2).
  • m is greater than 0 and less than 1.
  • m is preferably 0.001 or more and 0.5 or less, and more preferably 0.01 or more and 0.2 or less.
  • m is 0.001 or more, a complex is effectively formed between the benzotriazole group and the copper ion (aluminum ion), and the effect of suppressing the redox reaction is sufficiently obtained.
  • m is 0.5 or less, alignment control of liquid crystal molecules becomes easy.
  • the value of m can be appropriately selected according to the alignment state of the liquid crystal molecules.
  • p represents the degree of polymerization and is an integer of 1 or more.
  • X is represented by the chemical formula (4-1)
  • Y is represented by the chemical formula (5-1) or (5-2)
  • R 2 is represented by the chemical formula (2).
  • X is represented by the chemical formula (4-1)
  • Y is represented by the chemical formula (5-1) or (5-2)
  • R 2 is represented by the chemical formula (2).
  • the polymer contained in the alignment film 4a includes polyimide
  • examples of the polyimide include a compound represented by the following chemical formula (F).
  • Y, R 1 , R 2, m, and p are each, X of the above formula (3) in, Y, R 1, R 2 , m, and, similarly to the p It is.
  • the polyimide represented by the chemical formula (F) By heating the polyamic acid represented by the chemical formula (3), the polyimide represented by the chemical formula (F) is formed.
  • the polymer contained in the obtained alignment film 4a (alignment film 4b) is represented by the polyamic acid represented by the chemical formula (3) and the chemical formula (F) according to the imidization ratio. Mixed with polyimide. Therefore, when the polymer contained in the alignment film 4a (alignment film 4b) includes the polyimide represented by the chemical formula (F), the polymer is formed from the polyamic acid represented by the chemical formula (3). It can be said that.
  • the polysiloxane include a compound represented by the following chemical formula (6).
  • X ′ represents —H, —OH, a methoxy group, or an ethoxy group.
  • R 3 represents a functional group having a carboxyl group at the terminal.
  • R 3 is preferably a structure represented by the following chemical formula (G).
  • m ′ and r are greater than 0 and less than 1, and satisfy m ′ + r ⁇ 1.
  • m ′ is preferably 0.001 or more and 0.5 or less, and more preferably 0.01 or more and 0.2 or less.
  • the benzotriazole group can effectively form a complex with a copper ion (aluminum ion), and the effect of suppressing the redox reaction can be sufficiently obtained.
  • m 'is 0.5 or less alignment control of liquid crystal molecules becomes easy.
  • the polymer contained in the alignment film 4a includes polyvinyl
  • examples of the polyvinyl include compounds represented by the following chemical formula (H).
  • Y ′ represents —H, —CH 3 , —C 2 H 5 .
  • alignment film 4a when the polymer contained in the alignment film 4a (alignment film 4b) includes polyacryl, examples of the polyacryl include compounds in which Y ′ in the chemical formula (H) is —H.
  • examples of the polymethacryl include compounds in which Y ′ in the chemical formula (H) is —CH 3 .
  • the polymer contained in the alignment film 4a may include a carboxyl group. According to the alignment film 4a (alignment film 4b), even when the polymer contains a carboxyl group, that is, when the polymer contains a carboxylic acid, the redox reaction with the copper ion (aluminum ion) is performed. Can be suppressed.
  • the alignment film 4a (alignment film 4b) may be a single layer or a stack of a plurality of layers.
  • the alignment film 4a (alignment film 4b) has a two-layer structure of a photo-alignment layer (the liquid crystal layer 5 side) and an underlayer (the side opposite to the liquid crystal layer 5), a chemical containing a benzotriazole group
  • the side chain having a structure may be introduced into any of the polymer contained in the photo-alignment layer and the polymer contained in the underlayer.
  • the liquid crystal molecules in the liquid crystal layer 5 may have negative dielectric anisotropy (negative liquid crystal) or may have positive dielectric anisotropy (positive liquid crystal). .
  • negative liquid crystal negative liquid crystal
  • positive liquid crystal positive liquid crystal
  • moisture and copper ions are more easily taken into the negative type liquid crystal than the positive type liquid crystal, but according to the alignment film 4a (alignment film 4b), it is the case of the negative type liquid crystal. Even so, the redox reaction can be suppressed.
  • the display mode of the liquid crystal display device 1 is not particularly limited, and examples thereof include an IPS mode, an FFS mode, a horizontal alignment mode such as a TN (TN: Twisted Nematic) mode, a vertical alignment mode such as an MVA mode, and a UV2A mode.
  • a IPS mode TN mode, MVA mode, and UV2A mode
  • a thin film transistor array substrate having the structure shown in FIG. 2 described above is used.
  • a thin film transistor array substrate having the structure shown in FIG. 3 described above is used.
  • Example 1 A liquid crystal display device was produced by the following method.
  • ethyl 4-hydroxybenzoate (molecular weight: 165) contains 0.42 g (about 2.5 mmol) and triethylamine (molecular weight: 100) contains 0.5 g (5 mmol).
  • 5 ml of a benzene solution containing 0.46 g (about 2.5 mmol) of benzotriazole-5-carboxylic acid chloride represented by the following chemical formula (3) was added dropwise at 20 ° C. in a nitrogen atmosphere. . Then, it was made to react for 2 hours in a 20 degreeC environment.
  • n is an integer of 0 or more, and can be appropriately set according to the number of repetitions of Step 1 and Step 2.
  • the obtained liquid was dissolved in 20 ml of chloroform and purified by alumina column chromatography.
  • the obtained distillate was concentrated, a toluene / n-heptane mixed solution (weight ratio 6: 4) was added to the concentrate, and the components subjected to heat extraction at 70 ° C. were separated.
  • the upper layer component was decanted and cooled to obtain 2,4-dinitrophenylethanol represented by the following chemical formula (J-8).
  • the obtained 2,4-dinitrophenylethanol was 1.2 g, and the yield was 42.7%.
  • Step 6 In the ⁇ -butyrolactone solution containing the diamine monomer represented by the following chemical formula (J-12) obtained in the above step 5 and the diamine containing a photoreactive functional group as represented by the following chemical formula (L), A polyamic acid as shown in the following chemical formula (3) was obtained by adding an acid anhydride as shown in the chemical formula (K) and reacting in an environment at 60 ° C. for 12 hours.
  • the structure combining Y and R 1 was represented by the following chemical formula (M).
  • the structure represented by the following chemical formula (M) corresponds to a structure in which the above chemical formula (5-2) and the above chemical formula (E-1) are combined.
  • m in the chemical formula (3) was set to 0.05.
  • the blending amount of each material in the above step 6 was as follows. Diamine monomer as shown in the chemical formula (J-12): 0.005 mol Diamine containing a photoreactive functional group as shown in the chemical formula (L): 0.095 mol Acid anhydride as shown in the above chemical formula (K): 0.10 mol
  • an alignment agent containing polyamic acid as a solid content was produced.
  • the solid concentration was 6% by weight, and a mixed solvent of N-methylpyrrolidone (NMP), butyl cellosolve, and ⁇ -butyrolactone was used as a solvent.
  • the surfaces of both substrates were irradiated with linearly polarized ultraviolet light having a dominant wavelength of 330 nm at an intensity of 5 J / cm 2 to perform photo-alignment treatment.
  • the horizontal light alignment films (alignment film 4 a and alignment film 4 b) were formed on the lower substrate 2 and the upper substrate 3.
  • the thickness of the horizontal photo-alignment film (after the main firing) was 100 nm.
  • the polyamic acid could be imidized by another method. Specifically, the reaction was carried out in an environment of 150 ° C. for 3 hours in a state where 0.5 mol of pyridine and 0.3 mol of acetic anhydride were added to a ⁇ -butyrolactone solution of polyamic acid.
  • the formed polyimide had a weight average molecular weight of 30,000 and a molecular weight distribution of 2.5.
  • the imidation rate was 80% or more.
  • a realignment process was performed to heat the liquid crystal layer 5 to an isotropic phase by heating in an environment of 130 ° C. for 40 minutes. Then, it cooled to 20 degreeC and the liquid crystal display device of the IPS mode which has a horizontal light alignment film was produced by arrange
  • Example 2 A liquid crystal display device was produced in the same manner as in Example 1 except that m in the chemical formula (3) was changed.
  • M in the above chemical formula (3) was set to 0.10.
  • the blending amount of each material in the above step 6 was as follows. Diamine monomer as shown in the above chemical formula (J-12): 0.010 mol Diamine containing a photoreactive functional group as shown in the chemical formula (L): 0.090 mol Acid anhydride as shown in the above chemical formula (K): 0.10 mol
  • Example 3 A liquid crystal display device was produced in the same manner as in Example 1 except that m in the chemical formula (3) was changed.
  • M in the above chemical formula (3) was set to 0.15.
  • the blending amount of each material in the above step 6 was as follows. Diamine monomer as shown in the above chemical formula (J-12): 0.015 mol Diamine containing a photoreactive functional group as shown in the chemical formula (L): 0.085 mol Acid anhydride as shown in the above chemical formula (K): 0.10 mol
  • Example 4 A liquid crystal display device was produced in the same manner as in Example 1 except that m in the chemical formula (3) was changed.
  • M in the above chemical formula (3) was set to 0.20.
  • the blending amount of each material in the above step 6 was as follows. Diamine monomer as shown in the above chemical formula (J-12): 0.020 mol Diamine containing a photoreactive functional group as shown in the chemical formula (L): 0.080 mol Acid anhydride as shown in the above chemical formula (K): 0.10 mol
  • M in the above chemical formula (3) was set to 0.
  • the blending amount of each material in the above step 6 was as follows. Diamine monomer as shown in the above chemical formula (J-12): 0 mol (no addition) Diamine containing a photoreactive functional group as shown in the chemical formula (L): 0.10 mol Acid anhydride as shown in the above chemical formula (K): 0.10 mol That is, in the liquid crystal display device of Comparative Example 1, the polymer contained in the alignment film did not contain a benzotriazole group.
  • Comparative Example 2 A liquid crystal display device was produced in the same manner as in Comparative Example 1 except that the light stabilizer described in Patent Document 1 was added to the aligning agent.
  • a light stabilizer As a light stabilizer, 5% by weight of TINUVIN234 manufactured by Ciba Specialty Chemicals described in Example 21 of Patent Document 1 was added to the solid content of the aligning agent (polyamic acid).
  • Comparative Example 1 the voltage holding ratio and the contrast greatly decreased after being left. This is because the polymer contained in the alignment film does not contain a benzotriazole group, and a radical is formed by a redox reaction between the copper ion and the carboxylic acid (carboxyl group) in the polyamic acid, and as a result, in the liquid crystal layer This is thought to be due to the generation of radical-derived ions.
  • Comparative Example 2 the voltage holding ratio and the degree of decrease in contrast before and after being left were smaller than in Comparative Example 1. However, in Comparative Example 2, the contrast before leaving was lower than those in the other examples, and the voltage holding ratio and contrast were lowered after being left.
  • Example 5 A liquid crystal display device was produced in the same manner as in Example 1 except that the display mode of the liquid crystal display device, m in the chemical formula (3), and n in the chemical formula (N) were changed.
  • a thin film transistor array substrate having a structure as shown in FIG.
  • the gate electrode 9, the source electrode 10, and the drain electrode 11, an electrode containing copper was used.
  • the lower layer electrode 17 and the upper layer electrode 18, ITO electrodes were used.
  • a substrate having no electrode was prepared as the upper substrate 3.
  • M in the above chemical formula (3) was set to 0.10.
  • the blending amount of each material in the above step 6 was as follows. Diamine monomer as shown in the above chemical formula (J-12): 0.010 mol Diamine containing a photoreactive functional group as shown in the chemical formula (L): 0.090 mol Acid anhydride as shown in the above chemical formula (K): 0.10 mol
  • Example 6 A liquid crystal display device was produced in the same manner as in Example 5 except that n in the chemical formula (N) was changed.
  • Example 7 A liquid crystal display device was produced in the same manner as in Example 5 except that n in the chemical formula (N) was changed.
  • Example 8 A liquid crystal display device was produced in the same manner as in Example 5 except that n in the chemical formula (N) was changed.
  • Example 9 A liquid crystal display device was produced in the same manner as in Example 5 except that n in the chemical formula (N) was changed.
  • Example 10 A liquid crystal display device was produced in the same manner as in Example 5 except that n in the chemical formula (N) was changed.
  • M in the above chemical formula (3) was set to 0.
  • the blending amount of each material in the above step 6 was as follows. Diamine monomer as shown in the above chemical formula (J-12): 0 mol (no addition) Diamine containing a photoreactive functional group as shown in the chemical formula (L): 0.10 mol Acid anhydride as shown in the above chemical formula (K): 0.10 mol That is, in the liquid crystal display device of Comparative Example 3, the polymer contained in the alignment film did not contain a benzotriazole group.
  • Comparative Example 3 the voltage holding ratio and the contrast greatly decreased after being left. This is because the polymer contained in the alignment film does not contain a benzotriazole group, and a radical is formed by a redox reaction between the copper ion and the carboxylic acid (carboxyl group) in the polyamic acid, and as a result, in the liquid crystal layer This is thought to be due to the generation of radical-derived ions.
  • Example 11 A liquid crystal display device was produced by the following method.
  • Step 6 In the ⁇ -butyrolactone solution containing the diamine monomer represented by the following chemical formula (J-12) obtained in the above step 5 and the diamine containing a vertical alignment functional group as represented by the following chemical formula (Q), A polyamic acid as shown in the following chemical formula (3) was obtained by adding an acid anhydride as shown in the chemical formula (K) and reacting in an environment at 60 ° C. for 12 hours.
  • the structure combining Y and R 1 was represented by the following chemical formula (R).
  • a structure represented by the following chemical formula (R) corresponds to a structure in which the chemical formula (5-1) and the chemical formula (D-1) are combined.
  • m in the chemical formula (3) was set to 0.10.
  • the blending amount of each material in the above step 6 was as follows. Diamine monomer as shown in the above chemical formula (J-12): 0.010 mol Diamine containing a vertical alignment functional group as shown in the chemical formula (Q): 0.090 mol Acid anhydride as shown in the above chemical formula (K): 0.10 mol
  • an alignment agent containing polyamic acid as a solid content was produced.
  • the solid content concentration was 6% by weight, and a mixed solvent of NMP, butyl cellosolve and ⁇ -butyrolactone was used as the solvent.
  • (C) Formation of Alignment Film The alignment agent obtained in (b) above was applied onto the lower substrate 2 and the upper substrate 3. And both the board
  • the polyamic acid could be imidized by another method. Specifically, the reaction was carried out in an environment of 150 ° C. for 3 hours in a state where 0.5 mol of pyridine and 0.3 mol of acetic anhydride were added to a ⁇ -butyrolactone solution of polyamic acid.
  • the formed polyimide had a weight average molecular weight of 30,000 and a molecular weight distribution of 2.5.
  • the imidation rate was 80% or more.
  • Example 12 A liquid crystal display device was produced in the same manner as in Example 11 except that n in the chemical formula (N) was changed.
  • Example 13 A liquid crystal display device was produced in the same manner as in Example 11 except that n in the chemical formula (N) was changed.
  • Example 14 A liquid crystal display device was produced in the same manner as in Example 11 except that n in the chemical formula (N) was changed.
  • Example 15 A liquid crystal display device was produced in the same manner as in Example 11 except that n in the chemical formula (N) was changed.
  • Example 16 A liquid crystal display device was produced in the same manner as in Example 11 except that n in the chemical formula (N) was changed.
  • M in the above chemical formula (3) was set to 0.
  • the blending amount of each material in the above step 6 was as follows. Diamine monomer as shown in the above chemical formula (J-12): 0 mol (no addition) Diamine containing a vertical alignment functional group as shown in the chemical formula (Q): 0.10 mol Acid anhydride as shown in the above chemical formula (K): 0.10 mol That is, in the liquid crystal display device of Comparative Example 4, the polymer contained in the alignment film did not contain a benzotriazole group.
  • Examples 11 to 16 maintained a good voltage holding ratio for a long time.
  • Examples 14 to 16 were more excellent in that the voltage holding ratio decreased little before and after being left, and further, no contrast was lowered after being left.
  • the voltage holding ratio and contrast did not decrease after standing, and were particularly excellent.
  • the voltage holding ratio and contrast before and after being left are lower when the horizontal (light) alignment film (Examples 5 to 7) is used. It turned out to be smaller. From this result, it is considered that a complex is more easily formed between the benzotriazole group and the copper ion when the horizontal alignment film is used than the vertical alignment film.
  • Comparative Example 4 the voltage holding ratio and the contrast greatly decreased after being left. This is because the polymer contained in the alignment film does not contain a benzotriazole group, and a radical is formed by a redox reaction between the copper ion and the carboxylic acid (carboxyl group) in the polyamic acid, and as a result, in the liquid crystal layer This is thought to be due to the generation of radical-derived ions.
  • Example 17 A liquid crystal display device was produced by the following method.
  • (B) Preparation of alignment agent An alignment agent containing polysiloxane as a solid content as shown in the following chemical formula (6) was prepared.
  • the polysiloxane was produced by synthesizing the base polymer by ring-opening polymerization and then introducing each side chain by chemical bonding.
  • the solid content concentration was 6% by weight, and a mixed solvent of NMP, butyl cellosolve and ⁇ -butyrolactone was used as the solvent.
  • X ′ was a methoxy group.
  • R 1 s are the same or different and are represented by the following chemical formula (E-24) or (E-25).
  • R 2 was represented by the following chemical formula (S).
  • R 3 was represented by the following chemical formula (G).
  • m ′ in the chemical formula (6) was set to 0.10, and r was set to 0.20.
  • a side chain was introduced into the base polymer of polysiloxane, and the amount of the side chain was as follows with respect to one repeating unit (monomer unit) in the chemical formula (6).
  • Molar concentration of the component corresponding to m ′ 10 mol%
  • Molar concentration of the component corresponding to r 20 mol%
  • n in the chemical formula (S) was set to 0.
  • a benzotriazole-5-carboxylic acid represented by the above chemical formula (J-2) was introduced as a side chain into the polysiloxane base polymer.
  • a realignment process was performed to heat the liquid crystal layer 5 to an isotropic phase by heating in an environment of 130 ° C. for 40 minutes. Then, it cooled to 20 degreeC and arrange
  • Example 18 A liquid crystal display device was produced in the same manner as in Example 17 except that n in the chemical formula (S) was changed.
  • N in the chemical formula (S) was set to 1.
  • the carboxylic acid compound represented by the above chemical formula (J-6) in the case of n 1, obtained in Step 3 by performing Step 1 and Step 2 of Example 1 only once, respectively. And introduced as a side chain into the base polymer of polysiloxane.
  • Example 19 A liquid crystal display device was produced in the same manner as in Example 17 except that n in the chemical formula (S) was changed.
  • N in the chemical formula (S) was set to 2.
  • Such a carboxylic acid compound was introduced into the base polymer of polysiloxane as a side chain.
  • Example 20 A liquid crystal display device was produced in the same manner as in Example 17 except that n in the chemical formula (S) was changed.
  • N in the chemical formula (S) was set to 3.
  • the chemical formula (J-6) obtained in Step 3 by repeating Step 1 and Step 2 of Example 1 three times (performed three times alternately) is shown in the above chemical formula (J-6).
  • Such a carboxylic acid compound was introduced into the base polymer of polysiloxane as a side chain.
  • Example 21 A liquid crystal display device was produced in the same manner as in Example 17 except that n in the chemical formula (S) was changed.
  • Example 22 A liquid crystal display device was produced in the same manner as in Example 17 except that n in the chemical formula (S) was changed.
  • N in the chemical formula (S) was set to 5.
  • Such a carboxylic acid compound was introduced into the base polymer of polysiloxane as a side chain.
  • M ′ in the chemical formula (6) was set to 0. Specifically, a side chain was introduced into the base polymer of polysiloxane, and the amount of the side chain was as follows with respect to one repeating unit (monomer unit) in the chemical formula (6). Molar concentration of the component corresponding to m ′: 0 mol% (no introduction) Molar concentration of the component corresponding to r: 20 mol% The molar concentration of the component corresponding to other (1-m′-r): 80 mol% That is, in the liquid crystal display device of Comparative Example 5, the polymer contained in the alignment film did not contain a benzotriazole group.
  • Examples 21 and 22 were particularly excellent in that the degree of decrease in the voltage holding ratio before and after being left was small and there was no decrease in contrast after being left. Further, it was found that as the value of n increases, the degree of decrease in the voltage holding ratio before and after being left decreases, and the degree of decrease in contrast also decreases. This is because, as the value of n increases, the benzotriazole group is located further away from the main chain of the polymer and the mobility is increased, so that the benzotriazole group and the copper ion are more effective. This is probably because a complex was formed and the redox reaction was sufficiently suppressed.
  • the voltage holding ratio and contrast before and after being left are less reduced when the horizontal photo alignment film (Examples 5 to 7) is used than the vertical photo alignment film (Examples 17 to 19).
  • Comparative Example 5 the voltage holding ratio and the contrast greatly decreased after being left. This is because the polymer contained in the alignment film does not contain a benzotriazole group, and a radical is formed by a redox reaction between the copper ion and the carboxylic acid (carboxyl group) in the polyamic acid, and as a result, in the liquid crystal layer This is thought to be due to the generation of radical-derived ions.
  • Example 23 A liquid crystal display device was produced in the same manner as in Example 1 except that aluminum-containing electrodes were used as the gate electrode, the source electrode, and the drain electrode.
  • Example 24 A liquid crystal display device was produced in the same manner as in Example 2, except that an electrode containing aluminum was used as the gate electrode, the source electrode, and the drain electrode.
  • Example 25 A liquid crystal display device was produced in the same manner as in Example 3 except that an electrode containing aluminum was used as the gate electrode, the source electrode, and the drain electrode.
  • Example 26 A liquid crystal display device was produced in the same manner as in Example 4 except that aluminum-containing electrodes were used as the gate electrode, the source electrode, and the drain electrode.
  • Comparative Example 6 A liquid crystal display device was produced in the same manner as in Comparative Example 1 except that aluminum-containing electrodes were used as the gate electrode, the source electrode, and the drain electrode.
  • Comparative Example 6 the voltage holding ratio and the contrast greatly decreased after being left. This is because the polymer contained in the alignment film does not contain a benzotriazole group, and a radical is formed by a redox reaction between the aluminum ion and the carboxylic acid (carboxyl group) in the polyamic acid, and as a result, in the liquid crystal layer This is thought to be due to the generation of radical-derived ions.
  • the chemical structure may include a structure represented by the following chemical formula (2). Thereby, the said chemical structure can be utilized effectively.
  • A is 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, naphthalene-1,4-diyl group, naphthalene-1,5-diyl group, naphthalene.
  • Sp1, Sp2 and Z are the same or different and each represents an —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO— group, —O—COO.
  • N in the chemical formula (2) may be an integer of 1 or more and 5 or less.
  • the polymer may include at least one selected from the group consisting of polyamic acid, polyimide, polysiloxane, polyvinyl, polyacryl, and polymethacryl. Thereby, the alignment film can be used effectively.
  • the polymer may contain a carboxyl group. Thereby, even if the said polymer contains a carboxyl group, ie, it is a case where carboxylic acid is contained in the said polymer, this invention can be utilized suitably.
  • the polymer may contain a photoreactive functional group.
  • the alignment film can function as a photo-alignment film.
  • the photoreactive functional group may include at least one functional group selected from the group consisting of a cinnamate group, a chalcone group, a coumarin group, an azobenzene group, and a tolan group. Thereby, the said photoreactive functional group can be utilized effectively.
  • the alignment film may align the liquid crystal molecules in the liquid crystal layer in a direction parallel to the surface of the alignment film. Thereby, the alignment film can have both the function of suppressing the redox reaction and the function of the horizontal alignment film.
  • the alignment film may align the liquid crystal molecules in the liquid crystal layer in a direction perpendicular to the surface of the alignment film. Thereby, the alignment film can have both the function of suppressing the redox reaction and the function of the vertical alignment film.
  • the polymer may contain a polyamic acid represented by the following chemical formula (3). Thereby, a polyamic acid can be effectively utilized as the polymer.
  • Y is represented by the following chemical formula (5-1) or (5-2).
  • R 1 represents a horizontal alignment functional group, a vertical alignment functional group, a photoreactive functional group, or a copolymer thereof.
  • R 2 is represented by the following chemical formula (2).
  • A is 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, naphthalene-1,4-diyl group, naphthalene-1,5-diyl group, naphthalene.
  • Sp1, Sp2 and Z are the same or different and each represents an —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO— group, —O—COO.
  • m is greater than 0 and less than 1.
  • p is an integer of 1 or more.
  • the polymer may contain a polysiloxane represented by the following chemical formula (6). Thereby, polysiloxane can be effectively used as the polymer.
  • X ′ represents —H, —OH, a methoxy group, or an ethoxy group.
  • R 1 represents a horizontal alignment functional group, a vertical alignment functional group, a photoreactive functional group, or a copolymer thereof.
  • R 2 is represented by the following chemical formula (2).
  • A is 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, naphthalene-1,4-diyl group, naphthalene-1,5-diyl group, naphthalene.
  • Sp1, Sp2 and Z are the same or different and each represents an —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO— group, —O—COO.
  • R 3 represents a functional group having a carboxyl group at the terminal.
  • m ′ and r are greater than 0 and less than 1, and satisfy m ′ + r ⁇ 1.
  • p is an integer of 1 or more.
  • the electrode and / or wiring containing copper or aluminum may be in direct contact with the alignment film. Thereby, even if it is a case where the electrode and / or wiring containing the said copper or aluminum contact
  • the electrode containing copper or aluminum may include at least one selected from the group consisting of a gate electrode, a source electrode, and a drain electrode of a thin film transistor element. Thereby, even when at least one of the gate electrode, the source electrode, and the drain electrode is an electrode containing the copper or aluminum, the present invention can be suitably used.
  • the liquid crystal molecules in the liquid crystal layer may have negative dielectric anisotropy. This makes it easier for moisture and copper ions (aluminum ions) to be taken into the liquid crystal layer than in the case where the liquid crystal molecules in the liquid crystal layer have a positive dielectric anisotropy.
  • the present invention can be preferably used.
  • the display mode of the liquid crystal display device may be IPS mode, FFS mode, TN mode, MVA mode, or UV2A mode. Thereby, even if the display mode of the said liquid crystal display device is IPS mode, FFS mode, TN mode, MVA mode, or UV2A mode, this invention can be utilized suitably.
  • Liquid crystal display device 2 Lower substrate 3: Upper substrate 4a, 4b: Alignment film 5: Liquid crystal layer 6: Sealing material 7: Transparent substrate 8: Thin film transistor element 9: Gate electrode (gate bus line) 10: Source electrode (source bus line) 11: Drain electrode 12: Semiconductor layer 13: Gate insulating films 14a, 14b: Interlayer insulating film 15: Pixel electrode 16: Contact hole 17: Lower layer electrode 18: Upper layer electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、良好な電圧保持率を長期間維持し、信頼性の低下を防止することができる液晶表示装置を提供する。本発明の液晶表示装置は、対向して配置される一対の基板と、上記一対の基板間に配置される液晶層と、上記一対の基板の少なくとも一方と上記液晶層との間に配置される配向膜とを備え、上記一対の基板の少なくとも一方は、銅又はアルミニウムを含有する電極及び/又は配線を有し、上記配向膜は、所定の化学式で表されるベンゾトリアゾール基を含む化学構造を側鎖に有する重合体を含有するものである。

Description

液晶表示装置、及び、配向膜
本発明は、液晶表示装置、及び、配向膜に関する。より詳しくは、配向膜を備える液晶表示装置、及び、液晶分子の配向を制御する配向膜に関するものである。
液晶表示装置は、薄型、軽量、及び、低消費電力等の特徴を有することから、テレビ用途のみならず、スマートフォン、タブレットPC、カーナビゲーション等の用途で利用されている。これらの用途においては、種々の性能が要求され、例えば、液晶表示装置の構成部材である配向膜についても高い性能が要求されている。そこで、配向膜中に光安定化剤が添加された液晶表示装置が提案されている(例えば、特許文献1参照)。
特開2004-53914号公報
しかしながら、従来の液晶表示装置では、銅又はアルミニウムを含有する電極及び/又は配線を配置する場合、長期間使用することで焼き付きが発生し、信頼性が低下することがあった。本発明者らは、この原因について種々検討したところ、上述した焼き付きは以下の2つの経路で発生することが分かった。なお、以下では、電極及び/又は配線が銅を含有する場合について説明するが、電極及び/又は配線がアルミニウムを含有する場合についても同様である。
[経路1]
(1-1)水分の浸入
液晶表示装置に設けられるシール材、及び、シール材と配向膜との界面を通して、水分が液晶表示装置の外部から内部に浸入する。
(1-2)銅イオンの発生
電極及び/又は配線は、一般的に、配向膜(有機膜)と接しているため、液晶表示装置内に浸入した水分は、配向膜を通して電極及び/又は配線と接触する。また、電極及び/又は配線は、層間絶縁膜(有機膜)と接することがあるため、水分は、層間絶縁膜を通して電極及び/又は配線と接触する場合もある。その結果、水分は、電極及び/又は配線が含有する銅をイオン化し、銅イオン(Cu2+及びCu3+)とともに、最終的に液晶層に浸入する。この際、液晶層中の液晶分子が負の誘電率異方性を有する場合(以下、ネガ型液晶とも言う。)の方が、正の誘電率異方性を有する場合(以下、ポジ型液晶とも言う。)よりも水分を取り込みやすい。すなわち、銅イオンは、ポジ型液晶よりもネガ型液晶の方に取り込まれやすい。これは、ネガ型液晶の極性がポジ型液晶の極性よりも高いためである。ネガ型液晶は、液晶分子中に、極性の高い酸素(-O-)、フッ素(-F)、及び、塩素(-Cl)をポジ型液晶よりも多く含み、かつ、同一の液晶分子中に、酸素を有するアルコキシル基とフッ素とを含むため、極性が高い。
(1-3)ラジカルの発生
下記式(A-1)及び(A-2)に示すように、銅イオンと、配向膜が含有する重合体(例えば、ポリアミック酸)中のカルボン酸(カルボキシル基)との間で、熱、光等によるレドックス反応が発生し、配向膜中にラジカルが発生する。
Figure JPOXMLDOC01-appb-C000010
(1-4)焼き付きの発生
配向膜中で発生したラジカルは、液晶層に移動し、更に、その電子移動によってイオン化する。その結果、液晶層中のイオン密度が増加し、電圧保持率(VHR:Voltage Holding Ratio)が低下することによって、焼き付きが発生する。
[経路2]
(2-1)水分の浸入
液晶表示装置に設けられるシール材、及び、シール材と配向膜との界面を通して、水分が液晶表示装置の外部から内部に浸入する。
(2-2)銅イオンの発生
液晶表示装置内に浸入した水分は、配向膜を通して電極及び/又は配線と接触する。また、水分は、層間絶縁膜を通して電極及び/又は配線と接触する場合もある。その結果、水分は、電極及び/又は配線が含有する銅をイオン化し、銅イオン(Cu2+及びCu3+)とともに、最終的に液晶層に浸入する。
(2-3)カルボン酸の形成
配向膜が含有する重合体(例えば、ポリアミック酸)の主鎖と側鎖とをつなぐ官能基(エステル基)が、水分の影響で加水分解し、その結果、カルボン酸が形成される。この反応の一例を下記式(B)に示す。
Figure JPOXMLDOC01-appb-C000011
上記式(B)中、pは、1以上の整数である。
(2-4)ラジカルの発生
上記式(A-1)及び(A-2)に示すように、銅イオンと、配向膜が含有する重合体中のカルボン酸(カルボキシル基)との間で、熱、光等によるレドックス反応が発生し、配向膜中にラジカルが発生する。
(2-5)焼き付きの発生
配向膜中で発生したラジカルは、液晶層に移動し、更に、その電子移動によってイオン化する。その結果、液晶層中のイオン密度が増加し、電圧保持率が低下することによって、焼き付きが発生する。
上記特許文献1は、配向膜中に光安定化剤が添加された液晶表示装置を開示している。しかしながら、上記特許文献1に記載の発明では、光安定化剤が光吸収(紫外線吸収)のために用いられており、上述したようなレドックス反応によるラジカルの発生を抑制するものではなかった。また、低分子量(平均分子量が250~3000)の光安定化剤を用いているため、液晶層に溶出しやすく、それ自体が電圧保持率の低下を引き起こす原因であった。
本発明は、上記現状に鑑みてなされたものであり、良好な電圧保持率を長期間維持し、信頼性の低下を防止することができる液晶表示装置、及び、配向膜を提供することを目的とするものである。
本発明者らは、良好な電圧保持率を長期間維持し、信頼性の低下を防止することができる液晶表示装置について種々検討したところ、上述したような銅イオン(アルミニウムイオン)と配向膜が含有する重合体中のカルボン酸とのレドックス反応を抑制することに着目した。そして、配向膜が含有する重合体の側鎖にベンゾトリアゾール基を含む化学構造を導入すれば、銅イオン(アルミニウムイオン)とベンゾトリアゾール基との間で錯体が形成されるため、レドックス反応を抑制することができることを見出した。その結果、配向膜中でのラジカルの発生が抑制されるため、液晶層中において、ラジカル由来のイオンの発生が抑制され、電圧保持率の低下を防止することができることを見出した。以上により、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明の一態様は、対向して配置される一対の基板と、上記一対の基板間に配置される液晶層と、上記一対の基板の少なくとも一方と上記液晶層との間に配置される配向膜とを備え、上記一対の基板の少なくとも一方は、銅又はアルミニウムを含有する電極及び/又は配線を有し、上記配向膜は、下記化学式(1)で表されるベンゾトリアゾール基を含む化学構造を側鎖に有する重合体を含有する液晶表示装置であってもよい。
Figure JPOXMLDOC01-appb-C000012
本発明の別の一態様は、下記化学式(1)で表されるベンゾトリアゾール基を含む化学構造を側鎖に有する重合体を含有する配向膜であってもよい。
Figure JPOXMLDOC01-appb-C000013
本発明によれば、良好な電圧保持率を長期間維持し、信頼性の低下を防止することができる液晶表示装置、及び、配向膜を提供することができる。
実施形態の液晶表示装置を示す断面模式図である。 薄膜トランジスタアレイ基板の構造の一例を示す断面模式図である。 薄膜トランジスタアレイ基板の構造の一例を示す断面模式図であり、図2とは異なる構造を示す。
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこの実施形態のみに限定されるものではない。また、実施形態の構成は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよいし、変更されてもよい。
[実施形態]
図1は、実施形態の液晶表示装置を示す断面模式図である。図1に示すように、液晶表示装置1は、下側基板2と、下側基板2に対向する上側基板3と、両基板間に配置される液晶層5と、配向膜4aと、配向膜4bと、シール材6とを備えている。配向膜4aは、下側基板2と液晶層5との間に配置されている。配向膜4bは、上側基板3と液晶層5との間に配置されている。シール材6は、液晶層5を囲むように配置されている。液晶表示装置1は、更に、バックライトを備えていてもよく、下側基板2、及び、上側基板3の液晶層5とは反対側に、一対の偏光板を備えていてもよい。
下側基板2、及び、上側基板3の少なくとも一方は、銅又はアルミニウムを含有する電極及び/又は配線を有する。このような電極及び配線を有する基板としては、例えば、薄膜トランジスタアレイ基板が挙げられる。以下、図2及び図3を参照して、薄膜トランジスタアレイ基板の構造を例示する。なお、以下では、下側基板2が薄膜トランジスタアレイ基板である場合について説明する。
図2は、薄膜トランジスタアレイ基板の構造の一例を示す断面模式図である。図2に示すように、薄膜トランジスタアレイ基板は、透明基板7、薄膜トランジスタ素子8、ゲート絶縁膜13、層間絶縁膜14a、及び、画素電極15を有している。薄膜トランジスタ素子8は、ゲート電極9、ソース電極10、ドレイン電極11、並びに、ソース電極10及びドレイン電極11と電気的に接続される半導体層12を有している。ゲート電極9は、透明基板7上に配置されている。ゲート絶縁膜13は、ゲート電極9を覆っている。ソース電極10、ドレイン電極11、及び、半導体層12は、ゲート絶縁膜13上に配置されている。層間絶縁膜14aは、ソース電極10、ドレイン電極11、及び、半導体層12を覆っており、その一部にコンタクトホール16が設けられている。画素電極15は、層間絶縁膜14a上に配置され、コンタクトホール16を介してドレイン電極11と電気的に接続されている。薄膜トランジスタアレイ基板は、更に、ゲート電極9と電気的に接続されるゲートバスライン、ソース電極10と電気的に接続されるソースバスライン等の配線を有している。
図3は、薄膜トランジスタアレイ基板の構造の一例を示す断面模式図であり、図2とは異なる構造を示す。図3に示す薄膜トランジスタアレイ基板は、2層電極構造であること以外、図2に示す薄膜トランジスタアレイ基板と同様であるため、重複する点については説明を適宜省略する。図3に示すように、下層電極17は、層間絶縁膜14a上に配置されている。層間絶縁膜14bは、下層電極17を覆っており、その一部にコンタクトホール16が設けられている。上層電極18は、層間絶縁膜14a、及び、層間絶縁膜14b上に配置され、コンタクトホール16を介してドレイン電極11と電気的に接続されている。
透明基板7としては、例えば、ガラス基板、プラスチック基板等が挙げられる。
ゲート電極9、ソース電極10、ドレイン電極11、及び、配線(ゲートバスライン、ソースバスライン等)の少なくとも1つは、銅又はアルミニウムを含有する。銅及びアルミニウムは導電率が充分に高いため、液晶表示装置における容量の負荷を小さくすることができる。そのため、高精細(例えば、フルハイビジョン以上)、大型(例えば、10インチ以上)等の液晶表示装置の電極及び/又は配線の材料として、好適に利用することができる。ソース電極10は、層間絶縁膜14aと直に接する。ドレイン電極11は、層間絶縁膜14a、及び、配向膜4aの両方と直に接する。
半導体層12としては、例えば、アモルファスシリコン、低温ポリシリコン、酸化物半導体等を含むものが挙げられ、酸化物半導体を含むものが好ましい。酸化物半導体としては、例えば、インジウム、ガリウム、亜鉛、及び、酸素から構成される化合物、インジウム、スズ、亜鉛、及び、酸素から構成される化合物、インジウム、アルミニウム、亜鉛、及び、酸素から構成される化合物、インジウム、亜鉛、及び、酸素から構成される化合物等が挙げられる。酸化物半導体として、インジウム、ガリウム、亜鉛、及び、酸素から構成される化合物を用いた場合は、オフリーク電流が少ないため、電圧を印加すると、次のデータを書き込むまで電圧印加状態を保持する休止駆動が可能となる。よって、低消費電力の観点からは、酸化物半導体として、インジウム、ガリウム、亜鉛、及び、酸素から構成される化合物を用いることが好ましい。
層間絶縁膜14aは、有機膜であってもよく、無機膜であってもよい。層間絶縁膜14bは、有機膜であってもよく、無機膜であってもよい。
画素電極15、下層電極17、及び、上層電極18の材料としては、例えば、インジウムスズ酸化物(ITO:Indium Tin Oxide)、インジウム亜鉛酸化物(IZO:Indium Zinc Oxide)等の透明材料が挙げられる。
本実施形態では、下側基板2が薄膜トランジスタアレイ基板であり、銅又はアルミニウムを含有する電極及び/又は配線を有する場合について説明したが、この場合の上側基板3としては、例えば、透明基板上にカラーフィルタ層等が配置されるカラーフィルタ基板であってもよい。カラーフィルタ層の色の組み合わせは特に限定されず、例えば、赤色、緑色、及び、青色の組み合わせ、赤色、緑色、青色、及び、黄色の組み合わせ等が挙げられる。また、カラーフィルタ基板には、液晶表示装置1の表示モードに応じて、共通配線、共通配線と電気的に接続される共通電極等が配置されていてもよく、更に、リブ等の構造物が配置されていてもよい。共通電極の材料としては、例えば、ITO、IZO等の透明材料が挙げられる。なお、カラーフィルタ層は、薄膜トランジスタアレイ基板のみに配置されていてもよい。
下側基板2、及び、上側基板3としては、少なくとも一方が銅又はアルミニウムを含有する電極及び/又は配線を有するものであれば、上述した組み合わせ以外であってもよい。
配向膜4a、及び、配向膜4bは、液晶層5中の液晶分子の配向を制御するものである。液晶層5への印加電圧が閾値電圧未満(電圧無印加時を含む)である場合は、主に配向膜4a、及び、配向膜4bの作用によって、液晶層5中の液晶分子の配向が制御される。この状態において、配向膜4a、及び、配向膜4bの表面に対して液晶分子の長軸が成す角度は、プレチルト角と呼ばれる。本明細書中、プレチルト角は、配向膜の表面に対して完全に平行な方向から液晶分子の長軸が傾く角度を示す。配向膜4a、及び、配向膜4bによって付与される液晶分子のプレチルト角の大きさは特に限定されない。
配向膜4a、及び、配向膜4bは、下記化学式(1)で表されるベンゾトリアゾール基を含む化学構造を側鎖に有する重合体を含有する。
Figure JPOXMLDOC01-appb-C000014
配向膜4a(配向膜4b)が含有する重合体の側鎖にベンゾトリアゾール基を含む化学構造を導入することで、銅イオン(アルミニウムイオン)とベンゾトリアゾール基との間で錯体が形成されるため、銅イオン(アルミニウムイオン)とカルボン酸との間のレドックス反応を抑制することができる。その結果、配向膜中でのラジカルの発生が抑制されるため、液晶層中において、ラジカル由来のイオンの発生が抑制され、電圧保持率の低下を防止することができる。ベンゾトリアゾール基は、配向膜が含有する重合体の側鎖に、化学結合によって導入されている。また、ベンゾトリアゾール基は、紫外線を吸収する機能も有しているため、配向膜が含有する重合体中(特に、2層系の構造を有する配向膜である場合は、透明基板7に近い側の層)にベンゾトリアゾール基を導入することによって、耐光性を向上することもできる。
ベンゾトリアゾール基を含む化学構造は、下記化学式(2)で表される構造を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000015
上記化学式(2)中、Aは、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、ナフタレン-2,6-ジイル基、1,4-シクロヘキシレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2,2,2]オクチレン基、ピペリジン-1,4-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、インダン-1,3-ジイル基、インダン-1,5-ジイル基、インダン-2,5-ジイル基、フェナントレン-1,6-ジイル基、フェナントレン-1,8-ジイル基、フェナントレン-2,7-ジイル基、又は、フェナントレン-3,6-ジイル基を表す。Sp1、Sp2、及び、Zは、各々、同一又は異なって、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。nは、0以上の整数である。
上記化学式(2)中のnは、1以上、5以下の整数であることが好ましい。nが1以上の整数である場合、ベンゾトリアゾール基が重合体の主鎖から充分に離れて位置するため、その運動性が充分に高まり、銅イオン(アルミニウムイオン)と効果的に錯体を形成することができる。nが5以下の整数である場合、通電(電圧印加)による液晶分子のチルト角の変化(Δチルト)が大きくなるのを充分に抑制することができる。
配向膜4a(配向膜4b)が含有する重合体は、光反応性官能基を含むことが好ましい。この場合、配向膜4a(配向膜4b)は、光配向膜として機能する。光反応性官能基は、光照射によって、液晶分子の配向方向を規制することができる、すなわち、配向規制力を発現することができる官能基を示す。
光反応性官能基は、シンナメート基、カルコン基、クマリン基、アゾベンゼン基、及び、トラン基からなる群より選択される少なくとも1つの官能基を含むことが好ましい。
配向膜4a(配向膜4b)は、液晶層5中の液晶分子を配向膜4a(配向膜4b)の表面に対して平行な方向に配向させるもの(以下、水平配向膜とも言う。)であってもよい。この場合、配向膜4a(配向膜4b)は、上述したようなレドックス反応を抑制する機能と、水平配向膜の機能とを併せ持つことができる。水平配向膜は、少なくとも近接する液晶分子を、水平配向膜の表面に対して平行な方向に配向させるものであればよい。本明細書中、配向膜の表面に対して平行な方向は、液晶分子のプレチルト角が0°以上、5°以下であることを示す。液晶表示装置1の表示モードがIPS(IPS:In-Plane Switching)モード、FFS(FFS:Fringe Field Switching)モード等の水平配向モードである場合は、水平配向膜を採用することが好ましい。また、水平配向膜は、上述したような光反応性官能基を含む重合体を含有するもの(以下、水平光配向膜とも言う。)であってもよい。
配向膜4a(配向膜4b)は、液晶層5中の液晶分子を配向膜4a(配向膜4b)の表面に対して垂直な方向に配向させるもの(以下、垂直配向膜とも言う。)であってもよい。この場合、配向膜4a(配向膜4b)は、上述したようなレドックス反応を抑制する機能と、垂直配向膜の機能とを併せ持つことができる。垂直配向膜は、少なくとも近接する液晶分子を、垂直配向膜の表面に対して垂直な方向に配向させるものであればよい。本明細書中、配向膜の表面に対して垂直な方向は、液晶分子のプレチルト角が82°以上、90°以下であることを示す。液晶表示装置1の表示モードがMVA(MVA:Multi-domain Vertical Alignment)モード、UV2A(Ultra-violet induced Multi-domain Vertical Alignment)モード等の垂直配向モードである場合は、垂直配向膜を採用することが好ましい。また、垂直配向膜は、上述したような光反応性官能基を含む重合体を含有するもの(以下、垂直光配向膜とも言う。)であってもよい。
配向膜4a(配向膜4b)が含有する重合体は、ポリアミック酸、ポリイミド、ポリシロキサン、ポリビニル、ポリアクリル、及び、ポリメタクリルからなる群より選択される少なくとも1つを含むことが好ましい。
配向膜4a(配向膜4b)が含有する重合体がポリアミック酸を含む場合、ポリアミック酸としては、例えば、下記化学式(3)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000016
上記化学式(3)中、Xは、下記化学式(4-1)~(4-16)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000017
上記化学式(3)中のXが、上記化学式(4-1)~(4-12)のいずれかで表される場合、配向膜4a(配向膜4b)は、水平配向膜、垂直配向膜、水平光配向膜、又は、垂直光配向膜として機能する。上記化学式(3)中のXが、上記化学式(4-13)~(4-16)のいずれかで表される場合、配向膜4a(配向膜4b)は、水平光配向膜、又は、垂直光配向膜として機能する。
上記化学式(3)中、Yは、下記化学式(5-1)~(5-24)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000018
上記化学式(3)中のYが、上記化学式(5-1)~(5-24)のいずれかで表される場合、配向膜4a(配向膜4b)は、水平配向膜、垂直配向膜、水平光配向膜、又は、垂直光配向膜として機能する。
上記化学式(3)中、Rは、水平配向性官能基、垂直配向性官能基、光反応性官能基、又は、これらの共重合体を表す。
水平配向性官能基としては、例えば、下記化学式(C-1)~(C-8)等が挙げられる。配向膜4a(配向膜4b)は、このような水平配向性官能基を有することで、水平配向膜として機能する。
Figure JPOXMLDOC01-appb-C000019
垂直配向性官能基としては、例えば、下記化学式(D-1)~(D-7)等が挙げられる。配向膜4a(配向膜4b)は、このような垂直配向性官能基を有することで、垂直配向膜として機能する。
Figure JPOXMLDOC01-appb-C000020
光反応性官能基としては、例えば、下記化学式(E-1)~(E-25)等が挙げられる。配向膜4a(配向膜4b)は、このような光反応性官能基を有することで、光配向膜として機能する。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
上記化学式(3)中のRが、上記化学式(E-1)又は(E-2)で表される場合、配向膜4a(配向膜4b)は、水平光配向膜として機能する。上記化学式(3)中のRが、上記化学式(E-3)~(E-25)のいずれかで表される場合、配向膜4a(配向膜4b)は、垂直光配向膜として機能する。
上記化学式(3)中、Rは、末端にベンゾトリアゾール基を有する化学構造(官能基)を表す。Rは、上記化学式(2)で表される構造であることが好ましい。
上記化学式(3)中、mは、0よりも大きく、1未満である。mは、0.001以上、0.5以下であることが好ましく、0.01以上、0.2以下であることがより好ましい。mが0.001以上である場合、ベンゾトリアゾール基と銅イオン(アルミニウムイオン)との間で効果的に錯体が形成され、レドックス反応の抑制効果が充分に得られる。mが0.5以下である場合、液晶分子の配向制御が容易になる。mの値は、液晶分子の配向状態に応じて適宜選択することができる。pは重合度を示し、1以上の整数である。
上記化学式(3)で表されるポリアミック酸としては、Xが上記化学式(4-1)、Yが上記化学式(5-1)又は(5-2)、Rが上記化学式(2)で表されるものが好ましい。
配向膜4a(配向膜4b)が含有する重合体がポリイミドを含む場合、ポリイミドとしては、例えば、下記化学式(F)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000025
上記化学式(F)中のX、Y、R、R、m、及び、pは、各々、上記化学式(3)中のX、Y、R、R、m、及び、pと同様である。
上記化学式(3)で表されるポリアミック酸を加熱することで、上記化学式(F)で表されるポリイミドが形成される。この場合、得られる配向膜4a(配向膜4b)が含有する重合体には、イミド化率に応じて、上記化学式(3)で表されるポリアミック酸と、上記化学式(F)で表されるポリイミドとが混在する。そのため、配向膜4a(配向膜4b)が含有する重合体が、上記化学式(F)で表されるポリイミドを含む場合、その重合体は、上記化学式(3)で表されるポリアミック酸から形成されるものであると言える。
配向膜4a(配向膜4b)が含有する重合体がポリシロキサンを含む場合、ポリシロキサンとしては、例えば、下記化学式(6)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000026
上記化学式(6)中、X’は、-H、-OH、メトキシ基、又は、エトキシ基を表す。
上記化学式(6)中、Rは、末端にカルボキシル基を有する官能基を表す。Rは、下記化学式(G)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000027
上記化学式(6)中、m’及びrは、0よりも大きく、1未満であり、m’+r<1を満たす。m’は、0.001以上、0.5以下であることが好ましく、0.01以上、0.2以下であることがより好ましい。m’が0.001以上である場合、ベンゾトリアゾール基が銅イオン(アルミニウムイオン)と効果的に錯体を形成することができ、レドックス反応の抑制効果が充分に得られる。m’が0.5以下である場合、液晶分子の配向制御が容易になる。
上記化学式(6)中のR、R、及び、pは、各々、上記化学式(3)中のR、R、及び、pと同様である。
上記化学式(6)で表されるポリシロキサンとしては、Rが上記化学式(2)で表されるものが好ましい。
配向膜4a(配向膜4b)が含有する重合体がポリビニルを含む場合、ポリビニルとしては、例えば、下記化学式(H)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000028
上記化学式(H)中、Y’は、-H、-CH、-Cを表す。
上記化学式(H)中のR、R、R、m’、r、及び、pは、各々、上記化学式(6)中のR、R、R、m’、r、及び、pと同様である。
配向膜4a(配向膜4b)が含有する重合体がポリアクリルを含む場合、ポリアクリルとしては、例えば、上記化学式(H)中のY’が-Hである化合物が挙げられる。
配向膜4a(配向膜4b)が含有する重合体がポリメタクリルを含む場合、ポリメタクリルとしては、例えば、上記化学式(H)中のY’が-CHである化合物が挙げられる。
配向膜4a(配向膜4b)が含有する重合体は、カルボキシル基を含むものであってもよい。配向膜4a(配向膜4b)によれば、重合体がカルボキシル基を含む、すなわち、重合体中にカルボン酸が含まれる場合であっても、銅イオン(アルミニウムイオン)との間のレドックス反応を抑制することができる。
配向膜4a(配向膜4b)は、単層であってもよいし、複数の層が積層されるものであってもよい。例えば、配向膜4a(配向膜4b)が、光配向層(液晶層5側)と下地層(液晶層5とは反対側)との2層系の構造を有する場合、ベンゾトリアゾール基を含む化学構造を有する側鎖は、光配向層が含有する重合体、及び、下地層が含有する重合体のいずれに導入されてもよい。
液晶層5中の液晶分子は、負の誘電率異方性を有するもの(ネガ型液晶)であってもよく、正の誘電率異方性を有するもの(ポジ型液晶)であってもよい。上述したように、水分及び銅イオン(アルミニウムイオン)は、ポジ型液晶よりもネガ型液晶の方に取り込まれやすいが、配向膜4a(配向膜4b)によれば、ネガ型液晶の場合であっても、レドックス反応を抑制することができる。
液晶表示装置1の表示モードは特に限定されず、例えば、IPSモード、FFSモード、TN(TN:Twisted Nematic)モード等の水平配向モード、MVAモード、UV2Aモード等の垂直配向モード、等が挙げられる。例えば、IPSモード、TNモード、MVAモード、及び、UV2Aモードにおいては、上述した図2に示すような構造を有する薄膜トランジスタアレイ基板が用いられる。例えば、FFSモードにおいては、上述した図3に示すような構造を有する薄膜トランジスタアレイ基板が用いられる。
以下に、実施例及び比較例を挙げて本発明をより詳細に説明するが、本発明はこれらの例によって限定されるものではない。
(実施例1)
液晶表示装置を、以下の方法によって作製した。
(a)基板の準備
下側基板2として、図2に示すような構造を有する薄膜トランジスタアレイ基板を準備した。ゲート電極9、ソース電極10、及び、ドレイン電極11としては、銅を含有する電極を用いた。画素電極15としては、ITO電極を用いた。上側基板3として、電極を有さない基板を準備した。
(b)配向剤の作製
以下の工程によって、ポリアミック酸を固形分として含む配向剤を作製した。
(工程1)
まず、下記化学式(J-2)に示すようなベンゾトリアゾール-5-カルボン酸(分子量:163)が0.82g(約5mmol)含まれるベンゼン溶液20ml中に、塩化チオニル(SOCl)を5ml滴下し、下記化学式(J-3)に示すようなベンゾトリアゾール-5-カルボン酸クロリド(分子量:181.5)を合成した。得られたベンゾトリアゾール-5-カルボン酸クロリドは、4.65mmolであり、その収率は93%であった。次に、下記化学式(J-1)に示すような4-ヒドロキシ安息香酸エチル(分子量:165)が0.42g(約2.5mmol)、トリエチルアミン(分子量:100)が0.5g(5mmol)含まれるベンゼン溶液20ml中に、下記化学式(3)に示すようなベンゾトリアゾール-5-カルボン酸クロリドが0.46g(約2.5mmol)含まれるベンゼン溶液5mlを、20℃、窒素雰囲気下で滴下した。その後、20℃の環境下で2時間反応させた。反応終了後、不純物を水で抽出し、カラムクロマトグラフィーによって精製することで、下記化学式(J-4)に示すような化合物(分子量:311)を0.7g(約2.3mmol)得た。得られた化合物の収率は90%であった。カラムクロマトグラフィーを行う際、溶媒としては、トルエン/酢酸エチル混合溶媒(重量比4:1)を用いた。
Figure JPOXMLDOC01-appb-C000029
(工程2)
上記工程1で得られた下記化学式(J-4)に示すような化合物が0.62g(約2mmol)含まれるテトラヒドロフラン(THF)/メタノール混合溶液20ml中に、水酸化ナトリウム水溶液2ml、及び、塩酸2mlを順に滴下した。その後、1時間撹拌することによって、下記化学式(J-5)に示すようなカルボン酸化合物(分子量:283)を0.537g(約1.9mmol)合成した。
Figure JPOXMLDOC01-appb-C000030
(工程3)
上記工程1及び工程2を繰り返すことによって、下記化学式(J-6)に示すようなカルボン酸化合物を合成した。下記化学式(J-6)中、nは、0以上の整数であり、上記工程1及び工程2の繰り返し回数に応じて、適宜設定することができる。
Figure JPOXMLDOC01-appb-C000031
(工程4)
下記化学式(J-7)に示すようなジニトロフェニル酢酸3gをTHF20mlに溶解させたものに、硫化ジメチルボラン(BHS(CH)-トルエン溶液(硫化ジメチルボランの濃度:1.9M)7mlを滴下した。そして、20℃の環境下で10時間放置した後、50%メタノール水溶液10mlを滴下して、反応を停止させた。その後、得られた反応物をクロロホルム10mlで抽出し、5%重曹水、及び、水で洗浄し、有機層への抽出が無くなるまで濃縮した。次に、得られた液体をクロロホルム20mlに溶解させ、アルミナカラムクロマトグラフィーによって精製した。得られた留出液を濃縮し、その濃縮物にトルエン/n-ヘプタン混合溶液(重量比6:4)を加え、70℃で熱抽出した成分を分離した。そして、その上層成分をデカンテーションし、冷却することによって、下記化学式(J-8)に示すような2,4-ジニトロフェニルエタノールを得た。得られた2,4-ジニトロフェニルエタノールは、1.2gであり、その収率は42.7%であった。
次に、下記化学式(J-8)に示すような2,4-ジニトロフェニルエタノール0.4gを、日本アルコール販売社の混合溶媒(製品名:ソルミックス(登録商標)AP-1)8mlに溶解させた後、ラネーニッケル0.06gを加え、オートクレーブ中に仕込んだ。そして、オートクレーブ内を水素置換し、20℃、0.4MPaの環境下で10時間放置した。その後、反応が停止したことを、高速液体クロマトグラフィー(HPLC:High Performance Liquid Chromatography)によって確認し、得られた反応物(液体)を、イメリスミネラルズ社製のセライト(登録商標)によってろ過した。得られたろ液を留出が無くなるまで濃縮した。そして、得られた粗液体を減圧蒸留することによって、下記化学式(J-9)に示すような2,4-ジアミノフェニルエタノールを得た。得られた2,4-ジアミノフェニルエタノールは、0.69gであり、その収率は80%であった。
次に、下記化学式(J-9)に示すような2,4-ジアミノフェニルエタノールをアセトン5mlに溶解させたものに、t-ブトキシカルボニル無水物((t-BuOCO)O)1.8gをTHF5mlに溶解させたものを滴下した。その後、リフラックス温度(80℃)まで昇温させて10時間放置した。反応終了後、得られた反応物(液体)を濃縮し、乾燥させることによって、下記化学式(J-10)に示すようなBoc体(分子量:352)を得た。得られたBoc体は、0.13gであり、その収率は94%であった。
Figure JPOXMLDOC01-appb-C000032
(工程5)
上記工程3で得られた下記化学式(J-6)に示すようなカルボン酸化合物(n=3の場合)0.15gと、上記工程4で得られた下記化学式(J-10)に示すようなBoc体0.10gとを、上記工程1と同様な方法で反応させることによって、下記化学式(J-11)に示すような化合物(n=3の場合)を0.22g合成した。次に、下記化学式(J-11)に示すような化合物(n=3の場合)0.20gを塩化メチレン(CHCl)10mlに溶解させたものに、0℃の環境下にて、トリフルオロメタンスルホン酸スズ(II)(Sn(OTf))0.125gを分割投入した。そして、20℃の環境下で反応させた後、5%炭酸水素ナトリウム水溶液10mlを加えて中和した。その後、得られた反応物を、中性になるまで水で洗浄し、有機層を無水硫酸マグネシウムで乾燥させ、イメリスミネラルズ社製のセライトによってろ過した。得られたろ液を濃縮することによって、下記化学式(J-12)に示すようなジアミンモノマーを得た。得られたジアミンモノマー(n=3の場合)は、0.135gであり、その収率は88%であった。
Figure JPOXMLDOC01-appb-C000033
(工程6)
上記工程5で得られた下記化学式(J-12)に示すようなジアミンモノマーと、下記化学式(L)に示すような光反応性官能基を含むジアミンとが含まれるγ-ブチロラクトン溶液に、下記化学式(K)に示すような酸無水物を加えて、60℃の環境下で12時間反応させることによって、下記化学式(3)に示すようなポリアミック酸を得た。
Figure JPOXMLDOC01-appb-C000034
上記化学式(3)中、Xは、下記化学式(4-1)で表されるものであった。
Figure JPOXMLDOC01-appb-C000035
上記化学式(3)中、YとRとを組み合わせた構造は、下記化学式(M)で表されるものであった。下記化学式(M)に示すような構造は、上記化学式(5-2)と上記化学式(E-1)とを組み合わせた構造に相当する。
Figure JPOXMLDOC01-appb-C000036
上記化学式(3)中、YとRとを組み合わせた構造は、下記化学式(N)で表されるものであった。
Figure JPOXMLDOC01-appb-C000037
本実施例では、上記化学式(N)中のnを3に設定した。具体的には、上記工程1及び工程2を3回繰り返す(各々交互に3回行う)ことによって、上記工程3において、n=3の場合の上記化学式(J-6)に示すようなカルボン酸化合物を得た後、上記工程4、工程5、及び、工程6を順に行った。
本実施例では、上記化学式(3)中のmを0.05に設定した。具体的には、上記工程6における各材料の配合量を以下のようにした。
上記化学式(J-12)に示すようなジアミンモノマー:0.005mol
上記化学式(L)に示すような光反応性官能基を含むジアミン:0.095mol
上記化学式(K)に示すような酸無水物:0.10mol
以上により、ポリアミック酸を固形分として含む配向剤を作製した。固形分濃度は6重量%であり、溶媒としてN-メチルピロリドン(NMP)、ブチルセロソルブ、γ-ブチロラクトンの混合溶媒を用いた。
(c)配向膜の形成
上記(b)で得られた配向剤を、下側基板2、及び、上側基板3上に塗布した。そして、配向剤が塗布された両基板を、90℃の環境下で5分間加熱し、配向剤中の溶媒を蒸発させる仮焼成を行った。続いて、仮焼成後の両基板を、230℃の環境下で40分間加熱し、本焼成を行った。本焼成を行うことによって、ポリアミック酸においてイミド化が生じ、ポリイミドが形成された。形成されたポリイミドの重量平均分子量は30000であり、分子量分布は2.5であった。イミド化率は、50%以上であった。その後、両基板の表面に対して、主波長が330nmの直線偏光紫外線を5J/cmの強度で照射し、光配向処理を行った。以上により、下側基板2、及び、上側基板3上に水平光配向膜(配向膜4a、及び、配向膜4b)を形成した。水平光配向膜の厚み(本焼成後)は、100nmであった。
ここで、本実施例とは異なるが、別の方法によってもポリアミック酸をイミド化することができた。具体的には、ポリアミック酸のγ-ブチロラクトン溶液に、ピリジン0.5mol、及び、無水酢酸0.3molを加えた状態で、150℃の環境下で3時間反応させた。形成されたポリイミドの重量平均分子量は30000であり、分子量分布は2.5であった。イミド化率は80%以上であった。
(d)液晶表示装置の完成
下側基板2上の所定の位置に、液晶層5の材料として、ネガ型液晶(誘電率異方性Δε:-3.0)を滴下した。上側基板3上に、シール材6として、積水化学工業社製の紫外線硬化型シール材(製品名:フォトレックS-WB)を、ディスペンサを用いて描画した。そして、照射された直線偏光紫外線の偏光方向が互いに平行になるように、両基板を真空下にて貼り合わせた。この際、表示領域を遮光した状態で紫外線を照射することによって、シール材6を硬化させた。続いて、130℃の環境下で40分間加熱することによって、液晶層5を等方相にする再配向処理を行った。その後、20℃まで冷却し、下側基板2の液晶層5とは反対側にバックライトを配置することによって、水平光配向膜を有するIPSモードの液晶表示装置を作製した。
(実施例2)
上記化学式(3)中のmを変更したこと以外、実施例1と同様にして、液晶表示装置を作製した。
上記化学式(3)中のmを0.10に設定した。具体的には、上記工程6における各材料の配合量を以下のようにした。
上記化学式(J-12)に示すようなジアミンモノマー:0.010mol
上記化学式(L)に示すような光反応性官能基を含むジアミン:0.090mol
上記化学式(K)に示すような酸無水物:0.10mol
(実施例3)
上記化学式(3)中のmを変更したこと以外、実施例1と同様にして、液晶表示装置を作製した。
上記化学式(3)中のmを0.15に設定した。具体的には、上記工程6における各材料の配合量を以下のようにした。
上記化学式(J-12)に示すようなジアミンモノマー:0.015mol
上記化学式(L)に示すような光反応性官能基を含むジアミン:0.085mol
上記化学式(K)に示すような酸無水物:0.10mol
(実施例4)
上記化学式(3)中のmを変更したこと以外、実施例1と同様にして、液晶表示装置を作製した。
上記化学式(3)中のmを0.20に設定した。具体的には、上記工程6における各材料の配合量を以下のようにした。
上記化学式(J-12)に示すようなジアミンモノマー:0.020mol
上記化学式(L)に示すような光反応性官能基を含むジアミン:0.080mol
上記化学式(K)に示すような酸無水物:0.10mol
(比較例1)
上記化学式(3)中のmを変更したこと以外、実施例1と同様にして、液晶表示装置を作製した。
上記化学式(3)中のmを0に設定した。具体的には、上記工程6における各材料の配合量を以下のようにした。
上記化学式(J-12)に示すようなジアミンモノマー:0mol(添加無し)
上記化学式(L)に示すような光反応性官能基を含むジアミン:0.10mol
上記化学式(K)に示すような酸無水物:0.10mol
すなわち、比較例1の液晶表示装置において、配向膜が含有する重合体はベンゾトリアゾール基を含まないものであった。
(比較例2)
上記特許文献1に記載の光安定化剤を配向剤に添加したこと以外、比較例1と同様にして、液晶表示装置を作製した。
光安定化剤として、上記特許文献1の実施例21に記載のチバ・スペシャルティ・ケミカルズ社製のTINUVIN234を、配向剤の固形分(ポリアミック酸)に対して5重量%添加した。
[評価試験1]
実施例1~4、及び、比較例1、2の液晶表示装置を、バックライト(輝度:5000cd/m)を点灯させて75℃にした状態で、5000時間放置した。各例の液晶表示装置について、放置前後の電圧保持率及びコントラストを測定した。測定結果を表1に示す。電圧保持率は、東陽テクニカ社製の液晶物性評価システム(製品名:6254型)を用いて測定し、印加電圧を1V、測定温度を70℃とした。コントラストは、トプコン社製の分光放射計(製品名:SR-UL1)を用いて測定し、測定温度を25℃とした。
Figure JPOXMLDOC01-appb-T000038
表1に示すように、実施例1~4はいずれも、良好な電圧保持率を長期間維持していた。中でも、実施例3、4は、放置後で電圧保持率の低下がなく、特に優れていた。また、mの値が大きくなるにつれて、放置前後での電圧保持率の低下具合が小さくなり、コントラストの低下具合も小さくなることが分かった。これは、mの値が大きくなるにつれて、ベンゾトリアゾール基の含有率が高まり、その結果、ベンゾトリアゾール基と銅イオンとの間でより効果的に錯体が形成され、レドックス反応が充分に抑制されたためと考えられる。
一方、比較例1においては、電圧保持率及びコントラストが放置後で大きく低下した。これは、配向膜が含有する重合体にベンゾトリアゾール基が含まれず、銅イオンとポリアミック酸中のカルボン酸(カルボキシル基)との間でのレドックス反応によってラジカルが形成され、その結果、液晶層中でラジカル由来のイオンが発生したためであると考えられる。
比較例2においては、放置前後での電圧保持率及びコントラストの低下具合が比較例1よりも小さかった。しかしながら、比較例2においては、放置前におけるコントラストが他の各例よりも低く、更に、電圧保持率及びコントラストが放置後で低下した。
比較例2において、放置前におけるコントラストが低い原因としては、以下のことが考えられる。
(i)低分子量の光安定化剤を用いたため、光安定化剤が配向膜内で均一に分散せずに凝集し、その結果、配向膜が液晶分子の配向を制御する機能が低下した。これに対して、各実施例においては、ベンゾトリアゾール基が、配向膜が含有する重合体の側鎖に導入されているため、配向膜内で均一に分布しやすく、その状態は長期間経過しても変化しない。
(ii)低分子量の光安定化剤を用いたため、光安定化剤が配向膜の表面に均一に分布せず、その結果、配向膜が液晶分子の配向を制御する機能が低下した。これに対して、各実施例においては、ベンゾトリアゾール基が、配向膜が含有する重合体の側鎖に導入されているため、配向膜の表面に分布しやすく、その状態は長期間経過しても変化しない。
比較例2において、電圧保持率及びコントラストが放置後で低下した原因としては、上記(i)及び(ii)に加えて、以下のことが考えられる。
(iii)低分子量の光安定化剤を用いたため、光安定化剤が配向膜内で凝集し、その結果、電荷移動が起こりやすくなり、配向膜の抵抗が低下した。配向膜の低抵抗化は、電圧保持率の低下、残留DC電圧の増加の要因となる。
(iv)低分子量の光安定化剤を用いたため、光安定化剤が液晶層に溶出し、不純物イオンとなった。これに対して、各実施例においては、ベンゾトリアゾール基が、配向膜が含有する重合体の側鎖に導入されているため、液晶層に溶出せず、それ自体が信頼性を低下させることはない。
(実施例5)
液晶表示装置の表示モード、上記化学式(3)中のm、及び、上記化学式(N)中のnを変更したこと以外、実施例1と同様にして、液晶表示装置を作製した。
下側基板2として、図3に示すような構造を有する薄膜トランジスタアレイ基板を準備した。ゲート電極9、ソース電極10、及び、ドレイン電極11としては、銅を含有する電極を用いた。下層電極17、及び、上層電極18としては、ITO電極を用いた。上側基板3として、電極を有さない基板を準備した。
上記化学式(3)中のmを0.10に設定した。具体的には、上記工程6における各材料の配合量を以下のようにした。
上記化学式(J-12)に示すようなジアミンモノマー:0.010mol
上記化学式(L)に示すような光反応性官能基を含むジアミン:0.090mol
上記化学式(K)に示すような酸無水物:0.10mol
上記化学式(N)中のnを0に設定した。具体的には、上記化学式(J-6)に示すようなカルボン酸化合物として、n=0、すなわち、上記化学式(J-2)に示すようなベンゾトリアゾール-5-カルボン酸を用いて、上記工程4、工程5、及び、工程6を順に行った。
以上により、水平光配向膜を有するFFSモードの液晶表示装置を作製した。
(実施例6)
上記化学式(N)中のnを変更したこと以外、実施例5と同様にして、液晶表示装置を作製した。
上記化学式(N)中のnを1に設定した。具体的には、上記工程1及び工程2を各々1回のみ行うことによって、上記工程3において、n=1の場合の上記化学式(J-6)に示すようなカルボン酸化合物を得た後、上記工程4、工程5、及び、工程6を順に行った。
(実施例7)
上記化学式(N)中のnを変更したこと以外、実施例5と同様にして、液晶表示装置を作製した。
上記化学式(N)中のnを2に設定した。具体的には、上記工程1及び工程2を2回繰り返す(各々交互に2回行う)ことによって、上記工程3において、n=2の場合の上記化学式(J-6)に示すようなカルボン酸化合物を得た後、上記工程4、工程5、及び、工程6を順に行った。
(実施例8)
上記化学式(N)中のnを変更したこと以外、実施例5と同様にして、液晶表示装置を作製した。
上記化学式(N)中のnを3に設定した。具体的には、上記工程1及び工程2を3回繰り返す(各々交互に3回行う)ことによって、上記工程3において、n=3の場合の上記化学式(J-6)に示すようなカルボン酸化合物を得た後、上記工程4、工程5、及び、工程6を順に行った。
(実施例9)
上記化学式(N)中のnを変更したこと以外、実施例5と同様にして、液晶表示装置を作製した。
上記化学式(N)中のnを4に設定した。具体的には、上記工程1及び工程2を4回繰り返す(各々交互に4回行う)ことによって、上記工程3において、n=4の場合の上記化学式(J-6)に示すようなカルボン酸化合物を得た後、上記工程4、工程5、及び、工程6を順に行った。
(実施例10)
上記化学式(N)中のnを変更したこと以外、実施例5と同様にして、液晶表示装置を作製した。
上記化学式(N)中のnを5に設定した。具体的には、上記工程1及び工程2を5回繰り返す(各々交互に5回行う)ことによって、上記工程3において、n=5の場合の上記化学式(J-6)に示すようなカルボン酸化合物を得た後、上記工程4、工程5、及び、工程6を順に行った。
(比較例3)
上記化学式(3)中のmを変更したこと以外、実施例5と同様にして、液晶表示装置を作製した。
上記化学式(3)中のmを0に設定した。具体的には、上記工程6における各材料の配合量を以下のようにした。
上記化学式(J-12)に示すようなジアミンモノマー:0mol(添加無し)
上記化学式(L)に示すような光反応性官能基を含むジアミン:0.10mol
上記化学式(K)に示すような酸無水物:0.10mol
すなわち、比較例3の液晶表示装置において、配向膜が含有する重合体はベンゾトリアゾール基を含まないものであった。
[評価試験2]
実施例5~10、及び、比較例3の液晶表示装置を、上述した評価試験1と同様にして、バックライトを点灯させて75℃にした状態で5000時間放置し、放置前後の電圧保持率及びコントラストを測定した。測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000039
表2に示すように、実施例5~10はいずれも、良好な電圧保持率を長期間維持していた。中でも、実施例7~10は、放置後で電圧保持率及びコントラストの低下がなく、特に優れていた。また、nの値が大きくなるにつれて、放置前後での電圧保持率の低下具合が小さくなり、コントラストの低下具合も小さくなることが分かった。これは、nの値が大きくなるにつれて、ベンゾトリアゾール基が重合体の主鎖からより離れて位置して運動性がより高まり、その結果、ベンゾトリアゾール基と銅イオンとの間でより効果的に錯体が形成され、レドックス反応が充分に抑制されたためと考えられる。
一方、比較例3においては、電圧保持率及びコントラストが放置後で大きく低下した。これは、配向膜が含有する重合体にベンゾトリアゾール基が含まれず、銅イオンとポリアミック酸中のカルボン酸(カルボキシル基)との間でのレドックス反応によってラジカルが形成され、その結果、液晶層中でラジカル由来のイオンが発生したためであると考えられる。
(実施例11)
液晶表示装置を、以下の方法によって作製した。
(a)基板の準備
下側基板2として、図2に示すような構造を有する薄膜トランジスタアレイ基板を準備した。ゲート電極9、ソース電極10、及び、ドレイン電極11としては、銅を含有する電極を用いた。画素電極15としては、ITO電極を用いた。上側基板3として、共通電極及びリブを有する基板を準備した。共通電極としては、ITO電極を用いた。
(b)配向剤の作製
以下の工程によって、ポリアミック酸を固形分として含む配向剤を作製した。
(工程1~5)
実施例1の工程1~5と同様にして、上記化学式(J-12)に示すようなジアミンモノマーを得た。
(工程6)
上記工程5で得られた下記化学式(J-12)に示すようなジアミンモノマーと、下記化学式(Q)に示すような垂直配向性官能基を含むジアミンとが含まれるγ-ブチロラクトン溶液に、下記化学式(K)に示すような酸無水物を加えて、60℃の環境下で12時間反応させることによって、下記化学式(3)に示すようなポリアミック酸を得た。
Figure JPOXMLDOC01-appb-C000040
上記化学式(3)中、Xは、下記化学式(4-1)で表されるものであった。
Figure JPOXMLDOC01-appb-C000041
上記化学式(3)中、YとRとを組み合わせた構造は、下記化学式(R)で表されるものであった。下記化学式(R)に示すような構造は、上記化学式(5-1)と上記化学式(D-1)とを組み合わせた構造に相当する。
Figure JPOXMLDOC01-appb-C000042
上記化学式(3)中、YとRとを組み合わせた構造は、下記化学式(N)で表されるものであった。
Figure JPOXMLDOC01-appb-C000043
本実施例では、上記化学式(N)中のnを0に設定した。具体的には、上記化学式(J-6)に示すようなカルボン酸化合物として、n=0、すなわち、上記化学式(J-2)に示すようなベンゾトリアゾール-5-カルボン酸を用いて、上記工程4、工程5、及び、工程6を順に行った。
本実施例では、上記化学式(3)中のmを0.10に設定した。具体的には、上記工程6における各材料の配合量を以下のようにした。
上記化学式(J-12)に示すようなジアミンモノマー:0.010mol
上記化学式(Q)に示すような垂直配向性官能基を含むジアミン:0.090mol
上記化学式(K)に示すような酸無水物:0.10mol
以上により、ポリアミック酸を固形分として含む配向剤を作製した。固形分濃度は6重量%であり、溶媒としてNMP、ブチルセロソルブ、γ-ブチロラクトンの混合溶媒を用いた。
(c)配向膜の形成
上記(b)で得られた配向剤を、下側基板2、及び、上側基板3上に塗布した。そして、配向剤が塗布された両基板を、90℃の環境下で5分間加熱し、配向剤中の溶媒を蒸発させる仮焼成を行った。続いて、仮焼成後の両基板を、200℃の環境下で40分間加熱し、本焼成を行った。本焼成を行うことによって、ポリアミック酸においてイミド化が生じ、ポリイミドが形成された。形成されたポリイミドの重量平均分子量は30000であり、分子量分布は2.5であった。イミド化率は、50%以上であった。以上により、下側基板2、及び、上側基板3上に垂直配向膜(配向膜4a、及び、配向膜4b)を形成した。垂直配向膜の厚み(本焼成後)は、100nmであった。
ここで、本実施例とは異なるが、別の方法によってもポリアミック酸をイミド化することができた。具体的には、ポリアミック酸のγ-ブチロラクトン溶液に、ピリジン0.5mol、及び、無水酢酸0.3molを加えた状態で、150℃の環境下で3時間反応させた。形成されたポリイミドの重量平均分子量は30000であり、分子量分布は2.5であった。イミド化率は80%以上であった。
(d)液晶表示装置の完成
下側基板2上の所定の位置に、液晶層5の材料として、ネガ型液晶(誘電率異方性Δε:-3.0)を滴下した。上側基板3上に、シール材6として、積水化学工業社製の紫外線硬化型シール材(製品名:フォトレックS-WB)を、ディスペンサを用いて描画した。そして、両基板を真空下にて貼り合わせた。この際、表示領域を遮光した状態で紫外線を照射することによって、シール材6を硬化させた。続いて、130℃の環境下で40分間加熱することによって、液晶層5を等方相にする再配向処理を行った。その後、20℃まで冷却し、下側基板2の液晶層5とは反対側にバックライトを配置することによって、垂直配向膜を有するMVAモードの液晶表示装置を作製した。
(実施例12)
上記化学式(N)中のnを変更したこと以外、実施例11と同様にして、液晶表示装置を作製した。
上記化学式(N)中のnを1に設定した。具体的には、上記工程1及び工程2を各々1回のみ行うことによって、上記工程3において、n=1の場合の上記化学式(J-6)に示すようなカルボン酸化合物を得た後、上記工程4、工程5、及び、工程6を順に行った。
(実施例13)
上記化学式(N)中のnを変更したこと以外、実施例11と同様にして、液晶表示装置を作製した。
上記化学式(N)中のnを2に設定した。具体的には、上記工程1及び工程2を2回繰り返す(各々交互に2回行う)ことによって、上記工程3において、n=2の場合の上記化学式(J-6)に示すようなカルボン酸化合物を得た後、上記工程4、工程5、及び、工程6を順に行った。
(実施例14)
上記化学式(N)中のnを変更したこと以外、実施例11と同様にして、液晶表示装置を作製した。
上記化学式(N)中のnを3に設定した。具体的には、上記工程1及び工程2を3回繰り返す(各々交互に3回行う)ことによって、上記工程3において、n=3の場合の上記化学式(J-6)に示すようなカルボン酸化合物を得た後、上記工程4、工程5、及び、工程6を順に行った。
(実施例15)
上記化学式(N)中のnを変更したこと以外、実施例11と同様にして、液晶表示装置を作製した。
上記化学式(N)中のnを4に設定した。具体的には、上記工程1及び工程2を4回繰り返す(各々交互に4回行う)ことによって、上記工程3において、n=4の場合の上記化学式(J-6)に示すようなカルボン酸化合物を得た後、上記工程4、工程5、及び、工程6を順に行った。
(実施例16)
上記化学式(N)中のnを変更したこと以外、実施例11と同様にして、液晶表示装置を作製した。
上記化学式(N)中のnを5に設定した。具体的には、上記工程1及び工程2を5回繰り返す(各々交互に5回行う)ことによって、上記工程3において、n=5の場合の上記化学式(J-6)に示すようなカルボン酸化合物を得た後、上記工程4、工程5、及び、工程6を順に行った。
(比較例4)
上記化学式(3)中のmを変更したこと以外、実施例11と同様にして、液晶表示装置を作製した。
上記化学式(3)中のmを0に設定した。具体的には、上記工程6における各材料の配合量を以下のようにした。
上記化学式(J-12)に示すようなジアミンモノマー:0mol(添加無し)
上記化学式(Q)に示すような垂直配向性官能基を含むジアミン:0.10mol
上記化学式(K)に示すような酸無水物:0.10mol
すなわち、比較例4の液晶表示装置において、配向膜が含有する重合体はベンゾトリアゾール基を含まないものであった。
[評価試験3]
実施例11~16、及び、比較例4の液晶表示装置を、上述した評価試験1と同様にして、バックライトを点灯させて75℃にした状態で5000時間放置し、放置前後の電圧保持率及びコントラストを測定した。測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000044
表3に示すように、実施例11~16はいずれも、良好な電圧保持率を長期間維持していた。中でも、実施例14~16は、放置前後での電圧保持率の低下具合が小さく、更に、放置後でコントラストの低下がなく、より優れていた。実施例15、16は、放置後で電圧保持率及びコントラストの低下がなく、特に優れていた。また、nの値が大きくなるにつれて、放置前後での電圧保持率の低下具合が小さくなり、コントラストの低下具合も小さくなることが分かった。これは、nの値が大きくなるにつれて、ベンゾトリアゾール基が重合体の主鎖からより離れて位置して運動性がより高まり、その結果、ベンゾトリアゾール基と銅イオンとの間でより効果的に錯体が形成され、レドックス反応が充分に抑制されたためと考えられる。
更に、nの値が互いに同じである、実施例11及び実施例5(n=0)、実施例12及び実施例6(n=1)、並びに、実施例13及び実施例7(n=2)を各々比較すると、垂直配向膜(実施例11~13)よりも水平(光)配向膜(実施例5~7)を用いた方が、放置前後での電圧保持率及びコントラストの低下具合が小さくなることが分かった。この結果から、垂直配向膜よりも水平配向膜を用いた方が、ベンゾトリアゾール基と銅イオンとの間で錯体が形成されやすいと考えられる。
一方、比較例4においては、電圧保持率及びコントラストが放置後で大きく低下した。これは、配向膜が含有する重合体にベンゾトリアゾール基が含まれず、銅イオンとポリアミック酸中のカルボン酸(カルボキシル基)との間でのレドックス反応によってラジカルが形成され、その結果、液晶層中でラジカル由来のイオンが発生したためであると考えられる。
(実施例17)
液晶表示装置を、以下の方法によって作製した。
(a)基板の準備
下側基板2として、図2に示すような構造を有する薄膜トランジスタアレイ基板を準備した。ゲート電極9、ソース電極10、及び、ドレイン電極11としては、銅を含有する電極を用いた。画素電極15としては、ITO電極を用いた。上側基板3として、共通電極を有する基板を準備した。共通電極としては、ITO電極を用いた。
(b)配向剤の作製
下記化学式(6)に示すようなポリシロキサンを固形分として含む配向剤を作製した。ポリシロキサンは、ベースポリマーを開環重合によって合成した後、各側鎖を化学結合によって導入する方法で作製した。固形分濃度は6重量%であり、溶媒としてNMP、ブチルセロソルブ、γ-ブチロラクトンの混合溶媒を用いた。
Figure JPOXMLDOC01-appb-C000045
上記化学式(6)中、X’は、メトキシ基であった。
上記化学式(6)中、Rは、同一又は異なって、下記化学式(E-24)又は(E-25)で表されるものであった。
Figure JPOXMLDOC01-appb-C000046
上記化学式(6)中、Rは、下記化学式(S)で表されるものであった。
Figure JPOXMLDOC01-appb-C000047
上記化学式(6)中、Rは、下記化学式(G)で表されるものであった。
Figure JPOXMLDOC01-appb-C000048
本実施例では、上記化学式(6)中のm’を0.10、rを0.20に設定した。具体的には、ポリシロキサンのベースポリマーに側鎖を導入し、その側鎖の量を、上記化学式(6)中の1つの繰り返し単位(モノマーユニット)に対して、以下のようにした。
m’に対応する成分のモル濃度:10mol%
rに対応する成分のモル濃度:20mol%
それ以外(1-m’-r)に対応する成分のモル濃度:70mol%
本実施例では、上記化学式(S)中のnを0に設定した。具体的には、上記化学式(J-2)に示すようなベンゾトリアゾール-5-カルボン酸を、側鎖としてポリシロキサンのベースポリマーに導入した。
(c)配向膜の形成
上記(b)で得られた配向剤を、下側基板2、及び、上側基板3上に塗布した。そして、配向剤が塗布された両基板を、90℃の環境下で5分間加熱し、配向剤中の溶媒を蒸発させる仮焼成を行った。続いて、仮焼成後の両基板を、230℃の環境下で40分間加熱し、本焼成を行った。その後、両基板の表面に対して、主波長が330nmの直線偏光紫外線を50mJ/cmの強度で照射し、プレチルト角が88.6°程度となるように、4分割の光配向処理を行った。以上により、下側基板2、及び、上側基板3上に垂直光配向膜(配向膜4a、及び、配向膜4b)を形成した。垂直光配向膜の厚み(本焼成後)は、100nmであった。
(d)液晶表示装置の完成
下側基板2上の所定の位置に、液晶層5の材料として、ネガ型液晶(誘電率異方性Δε:-3.0)を滴下した。上側基板3上に、シール材6として、積水化学工業社製の紫外線硬化型シール材(製品名:フォトレックS-WB)を、ディスペンサを用いて描画した。そして、照射された直線偏光紫外線の偏光方向が互いに平行になるように、両基板を真空下にて貼り合わせた。この際、表示領域を遮光した状態で紫外線を照射することによって、シール材6を硬化させた。続いて、130℃の環境下で40分間加熱することによって、液晶層5を等方相にする再配向処理を行った。その後、20℃まで冷却し、下側基板2の液晶層5とは反対側にバックライトを配置することによって、垂直光配向膜を有するUV2Aモードの液晶表示装置を作製した。
(実施例18)
上記化学式(S)中のnを変更したこと以外、実施例17と同様にして、液晶表示装置を作製した。
上記化学式(S)中のnを1に設定した。具体的には、実施例1の工程1及び工程2を各々1回のみ行うことによって工程3で得られた、n=1の場合の上記化学式(J-6)に示すようなカルボン酸化合物を、側鎖としてポリシロキサンのベースポリマーに導入した。
(実施例19)
上記化学式(S)中のnを変更したこと以外、実施例17と同様にして、液晶表示装置を作製した。
上記化学式(S)中のnを2に設定した。具体的には、実施例1の工程1及び工程2を2回繰り返す(各々交互に2回行う)ことによって工程3で得られた、n=2の場合の上記化学式(J-6)に示すようなカルボン酸化合物を、側鎖としてポリシロキサンのベースポリマーに導入した。
(実施例20)
上記化学式(S)中のnを変更したこと以外、実施例17と同様にして、液晶表示装置を作製した。
上記化学式(S)中のnを3に設定した。具体的には、実施例1の工程1及び工程2を3回繰り返す(各々交互に3回行う)ことによって工程3で得られた、n=3の場合の上記化学式(J-6)に示すようなカルボン酸化合物を、側鎖としてポリシロキサンのベースポリマーに導入した。
(実施例21)
上記化学式(S)中のnを変更したこと以外、実施例17と同様にして、液晶表示装置を作製した。
上記化学式(S)中のnを4に設定した。具体的には、実施例1の工程1及び工程2を4回繰り返す(各々交互に4回行う)ことによって工程3で得られた、n=4の場合の上記化学式(J-6)に示すようなカルボン酸化合物を、側鎖としてポリシロキサンのベースポリマーに導入した。
(実施例22)
上記化学式(S)中のnを変更したこと以外、実施例17と同様にして、液晶表示装置を作製した。
上記化学式(S)中のnを5に設定した。具体的には、実施例1の工程1及び工程2を5回繰り返す(各々交互に5回行う)ことによって工程3で得られた、n=5の場合の上記化学式(J-6)に示すようなカルボン酸化合物を、側鎖としてポリシロキサンのベースポリマーに導入した。
(比較例5)
上記化学式(6)中のm’を変更したこと以外、実施例17と同様にして、液晶表示装置を作製した。
上記化学式(6)中のm’を0に設定した。具体的には、ポリシロキサンのベースポリマーに側鎖を導入し、その側鎖の量を、上記化学式(6)中の1つの繰り返し単位(モノマーユニット)に対して、以下のようにした。
m’に対応する成分のモル濃度:0mol%(導入無し)
rに対応する成分のモル濃度:20mol%
それ以外(1-m’-r)に対応する成分のモル濃度:80mol%
すなわち、比較例5の液晶表示装置において、配向膜が含有する重合体はベンゾトリアゾール基を含まないものであった。
[評価試験4]
実施例17~22、及び、比較例5の液晶表示装置を、上述した評価試験1と同様にして、バックライトを点灯させて75℃にした状態で5000時間放置し、放置前後の電圧保持率及びコントラストを測定した。測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000049
表4に示すように、実施例17~22はいずれも、良好な電圧保持率を長期間維持していた。中でも、実施例21、22は、放置前後での電圧保持率の低下具合が小さく、更に、放置後でコントラストの低下がなく、特に優れていた。また、nの値が大きくなるにつれて、放置前後での電圧保持率の低下具合が小さくなり、コントラストの低下具合も小さくなることが分かった。これは、nの値が大きくなるにつれて、ベンゾトリアゾール基が重合体の主鎖からより離れて位置して運動性がより高まり、その結果、ベンゾトリアゾール基と銅イオンとの間でより効果的に錯体が形成され、レドックス反応が充分に抑制されたためと考えられる。
更に、nの値が互いに同じである、実施例17及び実施例5(n=0)、実施例18及び実施例6(n=1)、並びに、実施例19及び実施例7(n=2)を各々比較すると、垂直光配向膜(実施例17~19)よりも水平光配向膜(実施例5~7)を用いた方が、放置前後での電圧保持率及びコントラストの低下具合が小さくなることが分かった。この結果から、垂直光配向膜よりも水平光配向膜を用いた方が、ベンゾトリアゾール基と銅イオンとの間で錯体が形成されやすいと考えられる。
一方、比較例5においては、電圧保持率及びコントラストが放置後で大きく低下した。これは、配向膜が含有する重合体にベンゾトリアゾール基が含まれず、銅イオンとポリアミック酸中のカルボン酸(カルボキシル基)との間でのレドックス反応によってラジカルが形成され、その結果、液晶層中でラジカル由来のイオンが発生したためであると考えられる。
(実施例23)
ゲート電極、ソース電極、及び、ドレイン電極としてアルミニウムを含有する電極を用いたこと以外、実施例1と同様にして、液晶表示装置を作製した。
(実施例24)
ゲート電極、ソース電極、及び、ドレイン電極としてアルミニウムを含有する電極を用いたこと以外、実施例2と同様にして、液晶表示装置を作製した。
(実施例25)
ゲート電極、ソース電極、及び、ドレイン電極としてアルミニウムを含有する電極を用いたこと以外、実施例3と同様にして、液晶表示装置を作製した。
(実施例26)
ゲート電極、ソース電極、及び、ドレイン電極としてアルミニウムを含有する電極を用いたこと以外、実施例4と同様にして、液晶表示装置を作製した。
(比較例6)
ゲート電極、ソース電極、及び、ドレイン電極としてアルミニウムを含有する電極を用いたこと以外、比較例1と同様にして、液晶表示装置を作製した。
[評価試験5]
実施例23~26、及び、比較例6の液晶表示装置を、上述した評価試験1と同様にして、バックライトを点灯させて75℃にした状態で5000時間放置し、放置前後の電圧保持率及びコントラストを測定した。測定結果を表5に示す。
Figure JPOXMLDOC01-appb-T000050
表5に示すように、実施例23~26はいずれも、良好な電圧保持率を長期間維持していた。中でも、実施例25、26は、放置後で電圧保持率及びコントラストの低下がなく、特に優れていた。また、mの値が大きくなるにつれて、放置前後での電圧保持率の低下具合が小さくなり、コントラストの低下具合も小さくなることが分かった。これは、mの値が大きくなるにつれて、ベンゾトリアゾール基の含有率が高まり、その結果、ベンゾトリアゾール基とアルミニウムイオンとの間でより効果的に錯体が形成され、レドックス反応が充分に抑制されたためと考えられる。
一方、比較例6においては、電圧保持率及びコントラストが放置後で大きく低下した。これは、配向膜が含有する重合体にベンゾトリアゾール基が含まれず、アルミニウムイオンとポリアミック酸中のカルボン酸(カルボキシル基)との間でのレドックス反応によってラジカルが形成され、その結果、液晶層中でラジカル由来のイオンが発生したためであると考えられる。
以上の結果より、ゲート電極、ソース電極、及び、ドレイン電極としてアルミニウムを含有する電極を用いた場合であっても、銅を含有する電極を用いた場合と同様に、本発明の効果が得られた。
[付記]
以下に、本発明の液晶表示装置の好ましい態様の例を挙げる。各例は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
上記化学構造は、下記化学式(2)で表される構造を含むものであってもよい。これにより、上記化学構造を効果的に利用することができる。
Figure JPOXMLDOC01-appb-C000051
上記化学式(2)中、Aは、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、ナフタレン-2,6-ジイル基、1,4-シクロヘキシレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2,2,2]オクチレン基、ピペリジン-1,4-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、インダン-1,3-ジイル基、インダン-1,5-ジイル基、インダン-2,5-ジイル基、フェナントレン-1,6-ジイル基、フェナントレン-1,8-ジイル基、フェナントレン-2,7-ジイル基、又は、フェナントレン-3,6-ジイル基を表す。Sp1、Sp2、及び、Zは、各々、同一又は異なって、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。nは、0以上の整数である。
上記化学式(2)中のnは、1以上、5以下の整数であってもよい。これにより、上記ベンゾトリアゾール基が上記重合体の主鎖から充分に離れて位置するため、その運動性が充分に高まり、銅イオン(アルミニウムイオン)と効果的に錯体を形成することができる。また、通電(電圧印加)による液晶分子のチルト角の変化(Δチルト)が大きくなるのを充分に抑制することができる。
上記重合体は、ポリアミック酸、ポリイミド、ポリシロキサン、ポリビニル、ポリアクリル、及び、ポリメタクリルからなる群より選択される少なくとも1つを含むものであってもよい。これにより、上記配向膜を効果的に利用することができる。
上記重合体は、カルボキシル基を含むものであってもよい。これにより、上記重合体がカルボキシル基を含む、すなわち、上記重合体中にカルボン酸が含まれる場合であっても、本発明を好適に利用することができる。
上記重合体は、光反応性官能基を含むものであってもよい。これにより、上記配向膜が光配向膜として機能することができる。
上記光反応性官能基は、シンナメート基、カルコン基、クマリン基、アゾベンゼン基、及び、トラン基からなる群より選択される少なくとも1つの官能基を含むものであってもよい。これにより、上記光反応性官能基を効果的に利用することができる。
上記配向膜は、上記液晶層中の液晶分子を上記配向膜の表面に対して平行な方向に配向させるものであってもよい。これにより、上記配向膜は、レドックス反応を抑制する機能と、水平配向膜の機能とを併せ持つことができる。
上記配向膜は、上記液晶層中の液晶分子を上記配向膜の表面に対して垂直な方向に配向させるものであってもよい。これにより、上記配向膜は、レドックス反応を抑制する機能と、垂直配向膜の機能とを併せ持つことができる。
上記重合体は、下記化学式(3)で表されるポリアミック酸を含むものであってもよい。これにより、上記重合体としてポリアミック酸を効果的に利用することができる。
Figure JPOXMLDOC01-appb-C000052
上記化学式(3)中、Xは、下記化学式(4-1)で表される。
Figure JPOXMLDOC01-appb-C000053
上記化学式(3)中、Yは、下記化学式(5-1)又は(5-2)で表される。
Figure JPOXMLDOC01-appb-C000054
上記化学式(3)中、Rは、水平配向性官能基、垂直配向性官能基、光反応性官能基、又は、これらの共重合体を表す。
上記化学式(3)中、Rは、下記化学式(2)で表される。
Figure JPOXMLDOC01-appb-C000055
上記化学式(2)中、Aは、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、ナフタレン-2,6-ジイル基、1,4-シクロヘキシレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2,2,2]オクチレン基、ピペリジン-1,4-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、インダン-1,3-ジイル基、インダン-1,5-ジイル基、インダン-2,5-ジイル基、フェナントレン-1,6-ジイル基、フェナントレン-1,8-ジイル基、フェナントレン-2,7-ジイル基、又は、フェナントレン-3,6-ジイル基を表す。Sp1、Sp2、及び、Zは、各々、同一又は異なって、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。nは、0以上の整数である。
上記化学式(3)中、mは、0よりも大きく、1未満である。pは、1以上の整数である。
上記重合体は、下記化学式(6)で表されるポリシロキサンを含むものであってもよい。これにより、上記重合体としてポリシロキサンを効果的に利用することができる。
Figure JPOXMLDOC01-appb-C000056
上記化学式(6)中、X’は、-H、-OH、メトキシ基、又は、エトキシ基を表す。
上記化学式(6)中、Rは、水平配向性官能基、垂直配向性官能基、光反応性官能基、又は、これらの共重合体を表す。
上記化学式(6)中、Rは、下記化学式(2)で表される。
Figure JPOXMLDOC01-appb-C000057
上記化学式(2)中、Aは、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、ナフタレン-2,6-ジイル基、1,4-シクロヘキシレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2,2,2]オクチレン基、ピペリジン-1,4-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、インダン-1,3-ジイル基、インダン-1,5-ジイル基、インダン-2,5-ジイル基、フェナントレン-1,6-ジイル基、フェナントレン-1,8-ジイル基、フェナントレン-2,7-ジイル基、又は、フェナントレン-3,6-ジイル基を表す。Sp1、Sp2、及び、Zは、各々、同一又は異なって、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。nは、0以上の整数である。
上記化学式(6)中、Rは、末端にカルボキシル基を有する官能基を表す。
上記化学式(6)中、m’及びrは、0よりも大きく、1未満であり、m’+r<1を満たす。pは、1以上の整数である。
上記銅又はアルミニウムを含有する電極及び/又は配線は、上記配向膜と直に接するものであってもよい。これにより、上記銅又はアルミニウムを含有する電極及び/又は配線が上記配向膜と直に接する場合であっても、本発明を好適に利用することができる。
上記銅又はアルミニウムを含有する電極は、薄膜トランジスタ素子のゲート電極、ソース電極、及び、ドレイン電極からなる群より選択される少なくとも1つを含むものであってもよい。これにより、上記ゲート電極、上記ソース電極、及び、上記ドレイン電極の少なくとも1つが上記銅又はアルミニウムを含有する電極である場合であっても、本発明を好適に利用することができる。
上記液晶層中の液晶分子は、負の誘電率異方性を有するものであってもよい。これにより、上記液晶層中の液晶分子が正の誘電率異方性を有する場合と比較して、水分及び銅イオン(アルミニウムイオン)が上記液晶層に取り込まれやすくなるが、この場合であっても、本発明を好適に利用することができる。
上記液晶表示装置の表示モードは、IPSモード、FFSモード、TNモード、MVAモード、又は、UV2Aモードであってもよい。これにより、上記液晶表示装置の表示モードがIPSモード、FFSモード、TNモード、MVAモード、又は、UV2Aモードであっても、本発明を好適に利用することができる。
以上に、本発明の液晶表示装置の好ましい態様の例を挙げたが、それらの例の中で配向膜の特徴に関係するものは、本発明の配向膜の好ましい態様の例でもある。
1:液晶表示装置
2:下側基板
3:上側基板
4a、4b:配向膜
5:液晶層
6:シール材
7:透明基板
8:薄膜トランジスタ素子
9:ゲート電極(ゲートバスライン)
10:ソース電極(ソースバスライン)
11:ドレイン電極
12:半導体層
13:ゲート絶縁膜
14a、14b:層間絶縁膜
15:画素電極
16:コンタクトホール
17:下層電極
18:上層電極

Claims (16)

  1. 対向して配置される一対の基板と、
    前記一対の基板間に配置される液晶層と、
    前記一対の基板の少なくとも一方と前記液晶層との間に配置される配向膜とを備え、
    前記一対の基板の少なくとも一方は、銅又はアルミニウムを含有する電極及び/又は配線を有し、
    前記配向膜は、下記化学式(1)で表されるベンゾトリアゾール基を含む化学構造を側鎖に有する重合体を含有することを特徴とする液晶表示装置。
    Figure JPOXMLDOC01-appb-C000001
  2. 前記化学構造は、下記化学式(2)で表される構造を含むことを特徴とする請求項1に記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000002
    (前記化学式(2)中、Aは、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、ナフタレン-2,6-ジイル基、1,4-シクロヘキシレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2,2,2]オクチレン基、ピペリジン-1,4-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、インダン-1,3-ジイル基、インダン-1,5-ジイル基、インダン-2,5-ジイル基、フェナントレン-1,6-ジイル基、フェナントレン-1,8-ジイル基、フェナントレン-2,7-ジイル基、又は、フェナントレン-3,6-ジイル基を表す。Sp1、Sp2、及び、Zは、各々、同一又は異なって、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。nは、0以上の整数である。)
  3. 前記化学式(2)中のnは、1以上、5以下の整数であることを特徴とする請求項2に記載の液晶表示装置。
  4. 前記重合体は、ポリアミック酸、ポリイミド、ポリシロキサン、ポリビニル、ポリアクリル、及び、ポリメタクリルからなる群より選択される少なくとも1つを含むことを特徴とする請求項1~3のいずれかに記載の液晶表示装置。
  5. 前記重合体は、カルボキシル基を含むことを特徴とする請求項1~4のいずれかに記載の液晶表示装置。
  6. 前記重合体は、光反応性官能基を含むことを特徴とする請求項1~5のいずれかに記載の液晶表示装置。
  7. 前記光反応性官能基は、シンナメート基、カルコン基、クマリン基、アゾベンゼン基、及び、トラン基からなる群より選択される少なくとも1つの官能基を含むことを特徴とする請求項6に記載の液晶表示装置。
  8. 前記配向膜は、前記液晶層中の液晶分子を前記配向膜の表面に対して平行な方向に配向させるものであることを特徴とする請求項1~7のいずれかに記載の液晶表示装置。
  9. 前記配向膜は、前記液晶層中の液晶分子を前記配向膜の表面に対して垂直な方向に配向させるものであることを特徴とする請求項1~7のいずれかに記載の液晶表示装置。
  10. 前記重合体は、下記化学式(3)で表されるポリアミック酸を含むことを特徴とする請求項1~9のいずれかに記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000003
    (前記化学式(3)中、Xは、下記化学式(4-1)で表される。
    Figure JPOXMLDOC01-appb-C000004
    Yは、下記化学式(5-1)又は(5-2)で表される。
    Figure JPOXMLDOC01-appb-C000005
    は、水平配向性官能基、垂直配向性官能基、光反応性官能基、又は、これらの共重合体を表す。Rは、下記化学式(2)で表される。
    Figure JPOXMLDOC01-appb-C000006
    (前記化学式(2)中、Aは、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、ナフタレン-2,6-ジイル基、1,4-シクロヘキシレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2,2,2]オクチレン基、ピペリジン-1,4-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、インダン-1,3-ジイル基、インダン-1,5-ジイル基、インダン-2,5-ジイル基、フェナントレン-1,6-ジイル基、フェナントレン-1,8-ジイル基、フェナントレン-2,7-ジイル基、又は、フェナントレン-3,6-ジイル基を表す。Sp1、Sp2、及び、Zは、各々、同一又は異なって、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。nは、0以上の整数である。)mは、0よりも大きく、1未満である。pは、1以上の整数である。)
  11. 前記重合体は、下記化学式(6)で表されるポリシロキサンを含むことを特徴とする請求項1~9のいずれかに記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000007
    (前記化学式(6)中、X’は、-H、-OH、メトキシ基、又は、エトキシ基を表す。Rは、水平配向性官能基、垂直配向性官能基、光反応性官能基、又は、これらの共重合体を表す。Rは、下記化学式(2)で表される。
    Figure JPOXMLDOC01-appb-C000008
    (前記化学式(2)中、Aは、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、ナフタレン-2,6-ジイル基、1,4-シクロヘキシレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2,2,2]オクチレン基、ピペリジン-1,4-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、インダン-1,3-ジイル基、インダン-1,5-ジイル基、インダン-2,5-ジイル基、フェナントレン-1,6-ジイル基、フェナントレン-1,8-ジイル基、フェナントレン-2,7-ジイル基、又は、フェナントレン-3,6-ジイル基を表す。Sp1、Sp2、及び、Zは、各々、同一又は異なって、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。nは、0以上の整数である。)Rは、末端にカルボキシル基を有する官能基を表す。m’及びrは、0よりも大きく、1未満であり、m’+r<1を満たす。pは、1以上の整数である。)
  12. 前記銅又はアルミニウムを含有する電極及び/又は配線は、前記配向膜と直に接することを特徴とする請求項1~11のいずれかに記載の液晶表示装置。
  13. 前記銅又はアルミニウムを含有する電極は、薄膜トランジスタ素子のゲート電極、ソース電極、及び、ドレイン電極からなる群より選択される少なくとも1つを含むことを特徴とする請求項1~12のいずれかに記載の液晶表示装置。
  14. 前記液晶層中の液晶分子は、負の誘電率異方性を有することを特徴とする請求項1~13のいずれかに記載の液晶表示装置。
  15. 前記液晶表示装置の表示モードは、IPSモード、FFSモード、TNモード、MVAモード、又は、UV2Aモードであることを特徴とする請求項1~14のいずれかに記載の液晶表示装置。
  16. 下記化学式(1)で表されるベンゾトリアゾール基を含む化学構造を側鎖に有する重合体を含有することを特徴とする配向膜。
    Figure JPOXMLDOC01-appb-C000009
PCT/JP2016/065114 2015-05-29 2016-05-23 液晶表示装置、及び、配向膜 WO2016194667A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680029230.8A CN107615144B (zh) 2015-05-29 2016-05-23 液晶显示装置以及取向膜
US15/576,993 US10545382B2 (en) 2015-05-29 2016-05-23 Liquid crystal display device and alignment film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015110248 2015-05-29
JP2015-110248 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016194667A1 true WO2016194667A1 (ja) 2016-12-08

Family

ID=57441362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065114 WO2016194667A1 (ja) 2015-05-29 2016-05-23 液晶表示装置、及び、配向膜

Country Status (3)

Country Link
US (1) US10545382B2 (ja)
CN (1) CN107615144B (ja)
WO (1) WO2016194667A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068084A1 (ja) * 2021-10-18 2023-04-27 日産化学株式会社 液晶配向剤、液晶配向膜、液晶表示素子、化合物、及び重合体
WO2023157876A1 (ja) * 2022-02-17 2023-08-24 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11048125B2 (en) 2018-03-29 2021-06-29 Sharp Kabushiki Kaisha Liquid crystal cell and liquid crystal display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234178A (ja) * 2011-05-02 2012-11-29 Samsung Electronics Co Ltd 液晶表示装置及び、配向膜、並びにこれらの製造方法
WO2014196482A1 (ja) * 2013-06-07 2014-12-11 富士フイルム株式会社 ゲート絶縁膜形成用組成物、有機薄膜トランジスタ、電子ペーパー、ディスプレイデバイス

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3948362B2 (ja) 2002-07-19 2007-07-25 セイコーエプソン株式会社 液晶パネルおよび液晶表示装置
JP4529072B2 (ja) * 2003-09-02 2010-08-25 東洋紡績株式会社 成型用ポリエステルフィルム及びそれを成型してなる成形部材
JP4945892B2 (ja) * 2004-11-11 2012-06-06 コニカミノルタオプト株式会社 有機無機ハイブリッド材料の製造方法
JP2007071928A (ja) * 2005-09-05 2007-03-22 Hitachi Ltd 液晶表示装置
CN102147545B (zh) * 2007-03-26 2014-04-23 夏普株式会社 液晶显示装置和取向膜材料用聚合物
KR20100099048A (ko) * 2009-03-02 2010-09-10 주식회사 동진쎄미켐 감광성 수지 조성물
CN101493610A (zh) * 2009-03-12 2009-07-29 友达光电股份有限公司 配向材料组合物及配向层
CN105754098B (zh) * 2010-10-06 2018-05-18 株式会社日本显示器 取向膜形成用组合物
WO2013094618A1 (ja) * 2011-12-21 2013-06-27 日産化学工業株式会社 液晶配向処理剤、液晶配向膜及びそれを用いた液晶表示素子並びに化合物
JP6558245B2 (ja) * 2013-10-01 2019-08-14 日産化学株式会社 横電界駆動方式用の液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
US10437107B2 (en) * 2013-10-30 2019-10-08 Dic Corporation Liquid-crystal display element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234178A (ja) * 2011-05-02 2012-11-29 Samsung Electronics Co Ltd 液晶表示装置及び、配向膜、並びにこれらの製造方法
WO2014196482A1 (ja) * 2013-06-07 2014-12-11 富士フイルム株式会社 ゲート絶縁膜形成用組成物、有機薄膜トランジスタ、電子ペーパー、ディスプレイデバイス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068084A1 (ja) * 2021-10-18 2023-04-27 日産化学株式会社 液晶配向剤、液晶配向膜、液晶表示素子、化合物、及び重合体
WO2023157876A1 (ja) * 2022-02-17 2023-08-24 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子

Also Published As

Publication number Publication date
CN107615144A (zh) 2018-01-19
US20180149927A1 (en) 2018-05-31
US10545382B2 (en) 2020-01-28
CN107615144B (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
US10073302B2 (en) Liquid crystal display device and method of manufacturing the same
WO2011001579A1 (ja) 液晶表示装置、及びその製造方法
US20170090251A1 (en) Liquid crystal display device and method for producing liquid crystal display device
WO2018016398A1 (ja) 液晶パネル、及び走査アンテナ
US10831066B2 (en) Liquid crystal display device and alignment film
WO2016194667A1 (ja) 液晶表示装置、及び、配向膜
WO2016017483A1 (ja) 液晶表示装置
JP6691213B2 (ja) 走査アンテナおよび走査アンテナの製造方法
US9260663B2 (en) Liquid crystal composition, liquid crystal display, and method for producing liquid crystal display
WO2016194668A1 (ja) 液晶表示装置
US10564480B2 (en) Liquid crystal display and manufacturing method thereof
JP2019128411A (ja) 配向膜付き基板、及び、液晶表示装置
US10901267B2 (en) Alignment film and liquid crystal display device
TWI773854B (zh) 液晶顯示元件
US20160103367A1 (en) Liquid crystal display panel
US10989964B2 (en) Liquid crystal display device
WO2017135280A1 (ja) 配向膜、重合体、及び、液晶表示装置
US11009749B2 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
EP3070517B1 (en) Liquid crystal display device having polymer alignment layers with side chains including ion-attracting groups
US9885914B2 (en) Liquid crystal display having different upper and lower alignment layers
US11016345B2 (en) Liquid crystal cell and liquid crystal display device
WO2016059896A1 (ja) 液晶表示装置及び液晶組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803102

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15576993

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP