WO2016194465A1 - ガス発生器 - Google Patents

ガス発生器 Download PDF

Info

Publication number
WO2016194465A1
WO2016194465A1 PCT/JP2016/061118 JP2016061118W WO2016194465A1 WO 2016194465 A1 WO2016194465 A1 WO 2016194465A1 JP 2016061118 W JP2016061118 W JP 2016061118W WO 2016194465 A1 WO2016194465 A1 WO 2016194465A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
cylindrical housing
gas generator
stopper means
partition wall
Prior art date
Application number
PCT/JP2016/061118
Other languages
English (en)
French (fr)
Inventor
浮田信一朗
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to KR1020177031835A priority Critical patent/KR20180013868A/ko
Priority to DE112016002426.6T priority patent/DE112016002426T5/de
Priority to US15/568,047 priority patent/US20180118154A1/en
Priority to CN201680024475.1A priority patent/CN107531210A/zh
Publication of WO2016194465A1 publication Critical patent/WO2016194465A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/268Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous release of stored pressurised gas
    • B60R21/272Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous release of stored pressurised gas with means for increasing the pressure of the gas just before or during liberation, e.g. hybrid inflators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/261Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow with means other than bag structure to diffuse or guide inflation fluid
    • B60R21/262Elongated tubular diffusers, e.g. curtain-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/263Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using a variable source, e.g. plural stage or controlled output
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/264Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic
    • B60R21/2644Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R2021/26029Ignitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/263Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using a variable source, e.g. plural stage or controlled output
    • B60R2021/2633Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using a variable source, e.g. plural stage or controlled output with a plurality of inflation levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/264Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic
    • B60R21/2644Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder
    • B60R2021/2648Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder comprising a plurality of combustion chambers or sub-chambers

Definitions

  • the present invention relates to a gas generator that can be used in an airbag device mounted on an automobile or the like.
  • a hybrid type using a gas generating agent in combination with a pressurized gas filled with argon, helium or the like at a high pressure is used as a gas generating source.
  • an igniter is arranged on the first end side of the cylindrical housing, and a diffuser having a gas discharge port is arranged on the second end side opposite to the axial direction.
  • gas generating agent storage space in which the gas generating agent is stored on the igniter side
  • pressurized gas filling space in which the pressurized gas is filled on the diffuser side
  • the space is partitioned by a partition wall and the space between the pressurized gas filling space and the diffuser is closed by a rupturable plate.
  • US-A No. 1 and 2 of 5,301,979 show a hybrid type inflator having a space for accommodating the gas generating agent 24 on the igniter 26 side and a pressurized gas filling space 14 on the diffuser 36 side.
  • the space for accommodating the gas generating agent 24 and the pressurized gas filling space 14 are partitioned by a piston 18 attached via a piston ring 19.
  • FIGS. 1 and 2 of 5,732,972 show a hybrid type inflator having a gas generating agent 30 accommodation space on the igniter 32 side and a pressurized gas filling space 16 on the diffuser 48 side.
  • the space for accommodating the gas generating agent 30 and the pressurized gas filling space 16 are partitioned by a porous filter piston 24.
  • a damper 44 is disposed via an end cap 46 to mitigate the impact on the weld 50 when the perforated filter piston 24 moves axially and collides with the diffuser 48.
  • a diffuser portion in which an ignition means is disposed on a first end portion side of a cylindrical housing, and a diffuser portion having a gas discharge port on a second end portion side opposite to the first end portion in the axial direction.
  • a gas generator welded to a cylindrical housing,
  • the first end side has a combustion chamber containing a gas generating agent
  • the second end side has a pressurized gas chamber filled with gas
  • the combustion chamber and the pressurized gas chamber are partitioned by a partition wall having a through hole in the thickness direction, and the space between the pressurized gas chamber and the diffuser portion is closed by a rupture disk, Furthermore, it has stopper means formed on the inner wall surface of the cylindrical housing, During the operation, the stopper means receives the pressure of the combustion gas generated by the combustion of the gas generating agent in the combustion chamber and comes into contact with the partition wall that moves in the axial direction, before colliding with the diffuser portion.
  • a gas generator is provided for stopping the movement of the partition wall or reducing the moving speed of the partition wall.
  • FIG. 1 is a longitudinal sectional view of a gas generator to which the present invention can be applied.
  • FIG. 2 is a view showing an embodiment of the present invention, and is a partial cross-sectional view showing a state after operation of the gas generator shown in FIG.
  • FIG. 3 is a view showing another embodiment of the present invention, and is a partial cross-sectional view showing a state after operation of the gas generator of FIG. 1 with another partition stopper means added thereto.
  • FIG. 4 is a view showing still another embodiment of the present invention, and is a partial cross-sectional view showing a state after operation of the gas generator shown in FIG.
  • FIG. 5 is a view showing still another embodiment of the present invention, and is a partial cross-sectional view showing a state after operation of the gas generator shown in FIG.
  • FIG. 6 is a view showing still another embodiment of the present invention, and is a partial cross-sectional view showing a state before operation of the gas generator shown in FIG.
  • FIG. 7 is a view showing still another embodiment of the present invention, and is a partial cross-sectional view showing a state before operation of the gas generator shown in FIG.
  • An object of the present invention is to provide a gas generator in which a gas generating agent and a pressurized gas are used in combination as a gas source with further improved reliability during operation.
  • the first end portion has a combustion chamber containing a gas generating agent, and the second end portion is filled with gas.
  • a gas chamber is provided, and the two chambers are separated by a partition wall. If the partition wall is fixed to the cylindrical housing by welding, the partition wall will not move during operation. However, it is difficult to weld the partition wall after filling the cylindrical housing with the gas generating agent from the viewpoint of work safety, so it is necessary to weld it before filling the gas generating agent, and the assembly procedure is limited. It is difficult to position the partition when the filling amount of the gas generating agent is different, and it is difficult to check the welding accuracy when there is a partition in the middle position of the cylindrical housing in the long axis direction. For these reasons, it is difficult to weld and fix the partition wall to the cylindrical housing. For this reason, a method is adopted in which the partition wall is press-fitted into the cylindrical housing.
  • the partition wall separating the combustion chamber and the pressurized gas chamber When the partition wall separating the combustion chamber and the pressurized gas chamber is press-fitted in this way, the partition wall may move in the axial direction during operation and collide with the welded portion between the cylindrical housing and the diffuser portion. Conceivable. When the partition wall collides with the diffuser part, if the impact causes damage such as a crack in the welded part, the gas generator may not operate normally until the end.
  • the stopper means formed on the inner wall surface of the cylindrical housing is brought into contact with the partition wall that moves in the axial direction, thereby stopping the movement of the partition wall before colliding with the diffuser part, or This is to reduce the moving speed of the partition wall. If the partition stops before colliding with the diffuser, the weld will not be damaged. Even when the partition wall collides with the diffuser portion, if the impact at the time of collision is reduced by reducing the moving speed of the partition wall, the welded portion will not be damaged in the same manner.
  • the stopper means may be any means that can be stopped or decelerated by contact with the partition wall that moves in the axial direction.
  • the partition wall only needs to have a disk shape that matches the internal shape of the cylindrical housing, but for ease of assembly of the gas generator, the annular portion is extended in one direction from the outer periphery of the disk portion and the disk portion. What has a wall part and has a several through-hole in the said disc part is preferable.
  • the partition wall having such a disk portion and an annular wall portion is disposed in a state where the outer peripheral surface of the annular wall portion is in contact with the inner wall surface of the cylindrical housing before operation. The outer peripheral surface of the annular wall portion slides with respect to the inner wall surface of the cylindrical housing.
  • the partition before an action should just be fixed to such an extent that it has the function to hold
  • the stopper means may be a reduced diameter portion in which the inner diameter of the cylindrical housing is reduced.
  • the reduced diameter portion is a portion where the inner diameter (or inner diameter and outer diameter) of the cylindrical housing facing the pressurized gas chamber is reduced.
  • the pressurized gas chamber is from the partition wall to the diffuser part (rupture disk).
  • the inner diameter from the partition wall is L
  • the inner diameter from the partition wall is reduced
  • the 1 ⁇ 2 length position becomes the reduced diameter part.
  • An annular step surface is formed in the reduced diameter portion depending on the size of the inner diameter.
  • the annular step surface may be an annular surface perpendicular to the axial direction of the cylindrical housing, or an annular surface inclined with respect to the axial direction of the cylindrical housing.
  • the stopper means may be a convex portion protruding from the inner wall surface of the cylindrical housing.
  • the convex portion a plurality of independent convex portions formed at regular intervals in the circumferential direction, a convex portion that is continuous in the circumferential direction, or the like can be used.
  • the partition that moves in the direction of the diffuser part is stopped before colliding with the diffuser part by colliding with the convex part.
  • the stopper means is an annular member disposed on the inner wall surface of the cylindrical housing.
  • the annular member is preferably made of a metal made of the same material as the cylindrical housing. Although an annular plate may be sufficient as an annular member, what has the annular wall part extended in one direction from the outer peripheral part of the annular main-body part and the annular main-body part from the ease of handling is preferable.
  • the annular member is preferably welded and fixed at a position close to the second end portion of the cylindrical housing and not in contact with the diffuser portion. If it is the said welding position, the confirmation of a welding operation and a welding location is easy from the opening part by the side of a diffuser part, and even when it is a case where it welds after filling a gas generating agent, it has a bad influence with respect to a gas generating agent. There is nothing. During operation, the partition that moves in the direction of the diffuser portion is stopped before colliding with the diffuser portion by colliding with the annular member.
  • the stopper means comprises a combination of a convex portion protruding from the inner wall surface of the cylindrical housing and an annular member press-fitted into the inner wall surface of the cylindrical housing.
  • the annular member may be in contact with the convex portion and disposed closer to the combustion chamber than the convex portion.
  • the convex portion a plurality of independent convex portions formed at regular intervals in the circumferential direction, a convex portion that is continuous in the circumferential direction, or the like can be used.
  • an annular flat plate may be sufficient as an annular member, what has the annular wall part extended in one direction from the outer peripheral part of the annular main-body part and the annular main-body part from handling easiness is preferable.
  • the annular member can be disposed by being press-fitted to the combustion chamber side with respect to the convex portion. For this reason, the position of the annular member can be selected in the range from the partition wall to the diffuser portion. During operation, the partition that moves in the direction of the diffuser portion is stopped before colliding with the diffuser portion by colliding with the annular member.
  • the stopper means may be a rough surface zone formed on the inner wall surface of the cylindrical housing.
  • the rough surface zone is a zone in which the inner wall surface of the cylindrical housing facing the pressurized gas chamber is roughened.
  • the rough surface is a surface in which minute irregularities are formed on the inner wall surface of the cylindrical housing, for example, a surface that is rough when touched with a finger, and increases the frictional force when contacting the partition wall. It is a surface that you can When the rough zone is formed on the inner peripheral surface of the housing, a known method such as a method of etching the surface with an acid or sandblasting can be employed.
  • the partition wall moving in the direction of the diffuser part is decelerated by passing through the rough surface zone, the movement is stopped before colliding with the diffuser part, or even when colliding with the diffuser part, Since the impact at the time of collision is reduced, the welded portion is not damaged.
  • the stopper means is a cylindrical cushioning material disposed in the cylindrical housing.
  • Cylindrical cushioning members are elastic bodies that can absorb impact by contracting themselves, such as cylindrical rubber, and those that can absorb impact by being crushed, such as a cylindrical net. Can be used.
  • the partition wall moving in the direction of the diffuser part is stopped before colliding with the diffuser part by colliding with the buffer member.
  • the gas generator according to the present invention can prevent collision with the diffuser section when the partition disposed between the combustion chamber and the pressurized gas chamber moves in the axial direction, or can collide with the diffuser section.
  • the shock can be alleviated even when it is done. For this reason, the operation reliability is further improved without damaging the welded portion between the cylindrical housing and the diffuser portion during operation.
  • the gas generator of the present invention can be used as a gas generator for an airbag device mounted on a vehicle.
  • Embodiments of the Present Invention (1) Gas Generator in FIGS. 1 and 2
  • the gas generator 1 shown in FIG. 1 is the one before forming the stopper means (reduced diameter portion) shown in FIG.
  • a gas generator 1A according to the present invention is formed by forming the stopper means shown in FIG. 2 in the gas generator shown in FIG.
  • An igniter 15 is fixed on the first end 11 side of the cylindrical housing 10 as ignition means.
  • the cylindrical housing 10 is made of stainless steel or iron. In FIG. 1, only the igniter 15 is used as the ignition means, but a combination of the igniter 15 and a known transfer agent such as boron nitrate can be used as the ignition means.
  • a diffuser portion 20 is attached to the first end portion 11 of the cylindrical housing 10 on the second end portion 12 side opposite to the axis X direction.
  • the diffuser unit 20 is made of stainless steel or iron.
  • the diffuser portion 20 includes a cup portion 21 and a flange portion 22, and has a plurality of gas discharge ports 23 on the peripheral surface of the cup portion 21.
  • the flange portion 22 further has an annular portion extended in the axis X direction, and is fixed by welding at a contact portion 24 between the annular portion of the flange portion and the second end portion 12 of the cylindrical housing 10. (Welded portion 24).
  • the gas generating agent 31 is a known one.
  • the pressurized gas chamber 35 is filled with gas on the second end 12 side.
  • the pressurized gas chamber 35 is filled with argon, helium, nitrogen gas, or the like at a high pressure.
  • the combustion chamber 30 and the pressurized gas chamber 35 are partitioned by a partition wall 40.
  • the partition wall 40 includes a disc portion 41 and an annular wall portion 42 that extends in one direction from the outer peripheral portion of the disc portion 41.
  • the disc part 41 has a plurality of through holes 43 penetrating in the thickness direction. Since the gas in the pressurized gas chamber 35 enters the combustion chamber 30 through the through-hole 43, the pressure in the combustion chamber 30 is also increased.
  • the partition wall 40 is press-fitted so that the outer peripheral surface of the annular wall portion 42 is in contact with the inner wall surface 10 a of the cylindrical housing 10 so that the annular wall portion 42 is on the igniter 15 side.
  • a space between the pressurized gas chamber 35 and the diffuser portion 20 is closed with a rupturable plate 38.
  • the rupturable plate 38 is made of stainless steel or iron, and is welded and fixed to the flange portion 22 of the diffuser portion 20 at the peripheral edge portion.
  • the gas generator 1A (FIG. 2) of the present invention has the stopper means (reduced diameter portion) 50 shown in FIG. 2 in the gas generator 1 shown in FIG.
  • the reduced diameter portion 50 only needs to be formed in the pressurized gas chamber 35 so as to be spaced from the diffuser portion 20 in the axis X direction (in the igniter 15 direction).
  • the gas is filled from the gap of the seal pin inserted into the gas filling hole, and the seal pin is welded and fixed to the cylindrical housing after the filling is completed.
  • the reduced diameter portion 50 is positioned closer to the igniter 15 than the seal pin.
  • the reduced diameter portion 50 is formed on the inner side when the inner diameter (d1 in FIG. 2) of the cylindrical housing 10 facing the pressurized gas chamber 35 before operation decreases toward the diffuser portion 20 side.
  • An annular inclined surface 51 is provided. From the portion where the partition 40 before operation is located to the annular slope 51, the cylindrical housing 10 has a constant inner diameter d1.
  • the inner diameter d2 of the cylindrical housing 10 from the annular inclined surface 51 to the diffuser portion 20 is a uniform diameter, and satisfies the relationship d1> d2.
  • the inclination of the annular inclined surface 51 can be adjusted by the difference between d1 and d2 and the length of the inclined surface.
  • the operation of the gas generator 1A in which the stopper means (reduced diameter portion) 50 shown in FIG. 2 is introduced into the gas generator 1 shown in FIG. 1 will be described.
  • the igniter 15 When the igniter 15 is operated, the gas generating agent 31 in the combustion chamber 30 is ignited and burned to generate combustion gas.
  • the pressure in the combustion chamber 30 increases due to the generation of the combustion gas, the combustion gas flows into the pressurized gas chamber 35 from the through hole 43 of the partition wall 40.
  • the partition wall 40 is press-fitted into the cylindrical housing 10, and the outer peripheral surface of the annular wall 42 slides against the inner wall surface 10 a of the cylindrical housing 10 due to an impact during combustion and an initial pressure of combustion gas. It moves in the axis X direction (diffuser section 20 direction).
  • the partition 40 collides with the flange portion 22 of the diffuser portion 20 and stops, but in the gas generator 1A of FIG. 2, the partition 40 has a reduced diameter which is a stopper means. Since it collides with the part 50 and stops, it does not collide with the diffuser part 20.
  • the rupturable plate 38 When the pressure in the pressurized gas chamber 35 rises due to the inflow of combustion gas, the rupturable plate 38 is cleaved and opened, so that both the combustion gas and the pressurized gas flow into the diffuser part 20 and then from the gas discharge port 23. Discharged.
  • the gas generator 1 shown in FIG. 1 is the one before the stopper means (convex portion) shown in FIG. 3 is formed, and the gas generator shown in FIG. What formed the stopper means shown in 3 becomes the gas generator 1B of the present invention.
  • the gas generator 1B of FIG. 3 differs from the gas generator 1A of FIG.
  • the gas generator 1B of FIG. 3 has a convex portion 60 protruding from the inner wall surface 10a of the cylindrical housing 10 as a stopper means.
  • the convex part 60 is a plurality of independent convex parts. In FIG. 3, two convex portions 60 are shown. However, in order to obtain a stopper effect, about two to six convex portions 60 may be formed at equal intervals in the circumferential direction.
  • the partition 40 collides with the flange portion 22 of the diffuser portion 20 and stops.
  • the partition 40 is a convex portion that is a stopper means. Since it collides with 60 and stops, it does not collide with the diffuser part 20.
  • the gas generator 1 shown in FIG. 1 is the one before the stopper means (annular member) shown in FIG. 4 is formed, and the gas generator shown in FIG. What formed the stopper means shown in 4 is the gas generator 1C of the present invention. Since the gas generator 1C in FIG. 4 is different from the gas generator 1A in FIG. 2 only in the stopper means, only the parts different from those in FIG. 2 will be described below.
  • the gas generator 1C of FIG. 4 has an annular member 70 fixed to the inner wall surface 10a of the cylindrical housing 10 as stopper means.
  • the annular member 70 is made of stainless steel or iron.
  • the annular member 70 includes an annular main body 71 and an annular wall 72 extending in one direction from the outer peripheral portion of the annular main body 71, and the annular member 72 is disposed so as to be on the diffuser part 20 side. ing.
  • the annular wall portion 72 is welded and fixed to the cylindrical housing 10 at a position close to the diffuser portion 20 and not in contact with the diffuser portion 20.
  • the partition 40 collides with the flange portion 22 of the diffuser portion 20 and stops.
  • the partition 40 is an annular member that is a stopper means. Since it collides with 70 and stops, it does not collide with the diffuser part 20.
  • the gas generator 1 shown in FIG. 1 is the one before forming the stopper means (combination of convex portions and annular members) shown in FIG.
  • the gas generator formed with the stopper means shown in FIG. 5 is the gas generator 1D of the present invention.
  • the gas generator 1D shown in FIG. 5 differs from the gas generator 1A shown in FIG.
  • the gas generator 1D of FIG. 5 has a combination of a convex portion 60 protruding from the inner wall surface 10a of the cylindrical housing 10 and an annular member 70 as stopper means.
  • the convex part 60 can use the same thing as the convex part 60 shown in FIG.
  • the annular member 70 the same member as the annular member 70 shown in FIG. 4 can be used.
  • the annular member 70 is press-fitted so that the annular wall portion 72 is in contact with the convex portion 60, and is disposed closer to the combustion chamber 30 (the igniter 15 side) than the convex portion 60.
  • the partition 40 collides with the flange portion 22 of the diffuser portion 20 and stops.
  • the partition 40 is a stopper means. Since it collides with the annular wall part 70 supported by the part 60 and stops, it does not collide with the diffuser part 20.
  • Gas generator of FIGS. 1 and 6 The gas generator 1 shown in FIG. 1 is the one before forming the stopper means (rough surface zone) shown in FIG. What formed the stopper means shown in FIG. 6 becomes the gas generator 1E of this invention. Since the gas generator 1E of FIG. 6 is different from the gas generator 1A of FIG. 2 only in the stopper means, only the parts different from those in FIG. 2 will be described below.
  • the gas generator 1E of FIG. 6 has a rough surface zone 80 formed on the inner wall surface 10a of the cylindrical housing 10 as stopper means.
  • the rough surface zone 80 is a range in which the inner wall surface 10a of the cylindrical housing 10 is roughened.
  • the rough surface zone 80 is rough when touched with a finger.
  • a sandblast method or the like can be applied, and a method of rubbing with a file, a method of irradiating a laser, or the like can be applied.
  • the range of the rough surface zone 80 is not particularly limited, but may be formed on the entire inner wall surface 10a in the length range of the diffuser portion 20 from the partition wall 40 before operation, A length range of about 50% may be used.
  • the rough surface zone 80 is preferably formed in a range close to the second end portion 12 of the cylindrical housing 10 in order to facilitate the roughening operation.
  • the outer surface of the annular wall portion 42 of the partition wall 40 can also be roughened.
  • the frictional force when moving the rough surface zone 80 is further increased.
  • the partition 40 collides with the flange portion 22 of the diffuser portion 20 and stops, but in the gas generator 1 ⁇ / b> E of FIG. 6, the partition 40 is a rough surface that is a stopper means. Since it moves while sliding through the zone 80, it is remarkably decelerated in the process of passing through the rough surface zone 80, and even if it stops before colliding with the diffuser part 20 or collides with the diffuser part 20, the impact is alleviated. Therefore, the weld 24 is not damaged.
  • FIGS. 1 and 7 Gas Generator in FIGS. 1 and 7
  • the gas generator 1 shown in FIG. 1 is the one before the stopper means (cylindrical cushioning material) shown in FIG. 7 is formed, and the gas generator shown in FIG. 7 having the stopper means shown in FIG. 7 is the gas generator 1F of the present invention. Since the gas generator 1F in FIG. 7 is different from the gas generator 1A in FIG. 2 only in the stopper means, only the parts different from those in FIG. 2 will be described below.
  • the gas generator 1F of FIG. 7 has a cylindrical cushioning member 90 disposed in the cylindrical housing 10 as stopper means.
  • the cylindrical cushioning member 90 is disposed such that the outer peripheral surface is in contact with the inner wall surface 10 a of the cylindrical housing 10 and the one end surface is in contact with the diffuser portion 20.
  • the cylindrical cushioning member 90 is crushed by itself such as an elastic body that can absorb an impact by contracting itself, such as a cylindrical rubber, or a cylindrical net (metal or synthetic resin net). Therefore, it is possible to use a material that can absorb impact (plastically deform).
  • the partition 40 collides with the flange portion 22 of the diffuser portion 20 and stops, but in the gas generator 1F of FIG. 7, the partition 40 is a cylindrical shape that is a stopper means. Since it stops by colliding with the buffer material 90, it does not collide with the diffuser unit 20.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Bags (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

本発明は、 筒状ハウジングの第1端部側に点火手段が配置され、第1端部と軸方向に反対側の第2端部側にガス排出口を有するディフューザ部が前記筒状ハウジングに対して溶接固定されているガス発生器であって、 前記第1端部側にガス発生剤が収容された燃焼室を有し、前記第2端部側にガスが充填された加圧ガス室を有しており、 前記燃焼室と前記加圧ガス室の間が厚さ方向に貫通孔を有する隔壁で仕切られ、前記加圧ガス室と前記ディフューザ部の間が破裂板で閉塞されており、 さらに前記筒状ハウジングの内壁面に形成されたストッパ手段を有しているものであり、 前記ストッパ手段が、作動時において、前記燃焼室内の前記ガス発生剤の燃焼により発生した燃焼ガスの圧力を受けて軸方向に移動する前記隔壁と接触することで、前記ディフューザ部に衝突する前に前記隔壁の移動を停止させるか、または隔壁の移動速度を減速させるためのものである、ガス発生器を提供する。

Description

ガス発生器
 本発明は、自動車などに搭載されるエアバッグ装置に使用できるガス発生器に関する。
背景技術
 ガス発生器の中には、ガス発生源としてアルゴン、ヘリウムなどが高圧充填された加圧ガスとガス発生剤を併用したハイブリッドタイプのものが使用されている。
 これらのハイブリッドタイプのガス発生器としては、筒状ハウジングの第1端部側に点火器が配置され、軸方向に反対側の第2端部側にガス排出口を有するディフューザが配置されており、さらに点火器側にガス発生剤が収容されたガス発生剤収容空間があり、ディフューザ側に加圧ガスが充填された加圧ガス充填空間があり、ガス発生剤収容空間と加圧ガス充填空間の間が仕切壁で仕切られ、加圧ガス充填空間とディフューザの間が破裂板で閉塞されているものが知られている。
 US-A No.5,301,979の図1、図2には、点火器26側のガス発生剤24の収容空間と、ディフューザ36側の加圧ガス充填空間14を有するハイブリッドタイプのインフレータが示されている。
 ガス発生剤24の収容空間と加圧ガス充填空間14の間は、ピストンリング19を介して取り付けられたピストン18で仕切られている。
 US-A No.5,732,972の図1、図2には、点火器32側のガス発生剤30の収容空間と、ディフューザ48側の加圧ガス充填空間16を有するハイブリッドタイプのインフレータが示されている。
 ガス発生剤30の収容空間と加圧ガス充填空間16の間は、多孔フィルターピストン24で仕切られている。
 作動時において、多孔フィルターピストン24が軸方向に移動してディフューザ48に衝突したときの溶接部50への衝撃を緩和するため、エンドキャップ46を介してダンパ44が配置されている。
本発明の開示
 本発明は、筒状ハウジングの第1端部側に点火手段が配置され、第1端部と軸方向に反対側の第2端部側にガス排出口を有するディフューザ部が前記筒状ハウジングに対して溶接固定されているガス発生器であって、
 前記第1端部側にガス発生剤が収容された燃焼室を有し、前記第2端部側にガスが充填された加圧ガス室を有しており、
 前記燃焼室と前記加圧ガス室の間が厚さ方向に貫通孔を有する隔壁で仕切られ、前記加圧ガス室と前記ディフューザ部の間が破裂板で閉塞されており、
 さらに前記筒状ハウジングの内壁面に形成されたストッパ手段を有しているものであり、
 前記ストッパ手段が、作動時において、前記燃焼室内の前記ガス発生剤の燃焼により発生した燃焼ガスの圧力を受けて軸方向に移動する前記隔壁と接触することで、前記ディフューザ部に衝突する前に前記隔壁の移動を停止させるか、または隔壁の移動速度を減速させるためのものである、ガス発生器を提供する。
 本発明は、以下の詳細な説明と添付された図面により、さらに完全に理解されるものであるが、これらはただ説明のため付されるものであり、本発明を制限するものではない。
図1は、本発明を適用できるガス発生器の長軸方向断面図である。 図2は、本発明の一実施形態を示す図であり、図1のガス発生器に隔壁のストッパ手段を加えたものの作動後の状態を示す部分断面図である。 図3は、本発明の別実施形態を示す図であり、図1のガス発生器に別の隔壁のストッパ手段を加えたものの作動後の状態を示す部分断面図である。 図4は、本発明のさらに別実施形態を示す図であり、図1のガス発生器に別の隔壁のストッパ手段を加えたものの作動後の状態を示す部分断面図である。 図5は、本発明のさらに別実施形態を示す図であり、図1のガス発生器に別の隔壁のストッパ手段を加えたものの作動後の状態を示す部分断面図である。 図6は、本発明のさらに別実施形態を示す図であり、図1のガス発生器に別の隔壁のストッパ手段を加えたものの作動前の状態を示す部分断面図である。 図7は、本発明のさらに別実施形態を示す図であり、図1のガス発生器に別の隔壁のストッパ手段を加えたものの作動前の状態を示す部分断面図である。
本発明の詳細な説明
 US-A No.5,301,979では、作動時には、ピストン18が軸方向に移動して、ディフューザ36に衝突することになるが、そのときの衝撃により溶接部38が破損することも考えられる。
 US-A No.5,732,972のインフレータは、US-A No.5,301,979のインフレータの問題点を解決するための発明とも考えられるが、エンドキャップ46とダンパ44の2つの部品が必要となり、それらの取り付け工程も必要となる。
 本発明は、作動時の信頼性がより高められた、ガス源としてガス発生剤と加圧ガスを併用するガス発生器を提供することを課題とする。
 筒状ハウジングを使用するハイブリッドタイプのガス発生器では、上記のとおり、第1端部側にガス発生剤が収容された燃焼室を有し、第2端部側にガスが充填された加圧ガス室を有することになり、それらの二室の間は隔壁で仕切られている。
 前記隔壁が筒状ハウジングに対して溶接固定されていれば、作動時に隔壁が移動することもなくなる。
 しかし、筒状ハウジング内にガス発生剤を充填した後に隔壁を溶接することは、作業安全性の観点から難しいため、ガス発生剤を充填する前の段階で溶接する必要があり、組み立て手順が制限されること、ガス発生剤の充填量が異なった場合には隔壁の位置決めが難しいこと、筒状ハウジングの長軸方向の中間位置に隔壁がある場合には、溶接精度の確認が困難であることなどの理由から、筒状ハウジングに隔壁を溶接固定することは困難である。このため、隔壁は筒状ハウジング内に圧入する方法が採用されている。
 このように燃焼室と加圧ガス室の間を仕切る隔壁が圧入されている場合には、作動時に隔壁が軸方向に移動して、筒状ハウジングとディフューザ部との溶接部に衝突することが考えられる。
 隔壁がディフューザ部に衝突したとき、その衝撃で溶接部にクラックが入るなどの損傷が生じた場合、ガス発生器が最後まで正常に動作できなくなるおそれもある。
 本発明のガス発生器は、筒状ハウジングの内壁面に形成されたストッパ手段を軸方向に移動する前記隔壁と接触させることで、ディフューザ部に衝突する前に隔壁の移動を停止させるか、または隔壁の移動速度を減速させるためのものである。
 隔壁がディフューザ部に衝突する前に停止すれば、溶接部が損傷することはなくなる。また、隔壁がディフューザ部に衝突した場合でも、隔壁の移動速度が減速されることで衝突時の衝撃が緩和されれば、同様に溶接部が損傷することはなくなる。
 ストッパ手段は、軸方向に移動する隔壁と接触することで停止させたり、減速させたりできるものあればよい。
 隔壁は、筒状ハウジングの内部形状と一致した円板状のものであればよいが、ガス発生器の組み立て易さから、円板部と円板部の外周部分から一方向に伸ばされた環状壁部を有しており、前記円板部に複数の貫通孔を有しているものが好ましい。
 このような円板部と環状壁部を有する隔壁は、作動前には、環状壁部の外周面が筒状ハウジングの内壁面に当接された状態で配置されることになり、作動時には、環状壁部の外周面は筒状ハウジングの内壁面に対して摺動することになる。なお、作動前の隔壁は、外部からの振動などに対して、ガス発生剤を保持する機能を有する程度に固定されていればよい。
 本発明のガス発生器は、好ましくは、前記ストッパ手段が、前記筒状ハウジングの内径が小さくされた縮径部であるものにすることができる。
 前記縮径部は、加圧ガス室に面した筒状ハウジングの内径(または内径および外径)が小さくなった部分である。
 例えば、作動前の状態では、隔壁からディフューザ部(破裂板)までが加圧ガス室となるが、加圧ガス室の長さをLとしたとき、隔壁から1/2Lの長さまでの内径よりも1/2L長さ位置からディフューザ部までの内径を小さくすると、1/2長さ位置が縮径部となる。
 縮径部には、内径の大小による環状段差面が形成されている。
 前記環状段差面は、筒状ハウジングの軸方向に対して垂直な環状面でもよいし、筒状ハウジングの軸方向に対して傾斜した環状面でもよい。
 作動時、ディフューザ部方向に移動する隔壁は、前記縮径部(環状段差面)に衝突することによりディフューザ部に衝突する前に移動が停止される。
 本発明のガス発生器は、好ましくは、前記ストッパ手段が、前記筒状ハウジングの内壁面から突き出された凸部であるものにすることができる。
 前記凸部は、複数の独立した凸部が周方向に均等間隔で形成されているもの、周方向に連続した環状突起であるものなどを使用することができる。
 作動時、ディフューザ部方向に移動する隔壁は、前記凸部に衝突することによりディフューザ部に衝突する前に移動が停止される。
 本発明のガス発生器は、好ましくは、前記ストッパ手段が、前記筒状ハウジングの内壁面に配置された環状部材であるものにすることができる。
 環状部材は、筒状ハウジングと同じ材質からなる金属製のものが好ましい。
 環状部材は、環状板でもよいが、取り扱い易さから、環状本体部と、環状本体部の外周部分から一方向に伸ばされた環状壁部を有しているものが好ましい。
 環状部材は、筒状ハウジングの第2端部に近い位置で、ディフューザ部に接触しない位置に溶接固定されているものが好ましい。
 前記溶接位置であれば、溶接作業および溶接箇所の確認がディフューザ部側の開口部から容易であり、ガス発生剤を充填した後に溶接した場合であっても、ガス発生剤に対して悪影響を及ぼすこともない。
 作動時、ディフューザ部方向に移動する隔壁は、前記環状部材に衝突することによりディフューザ部に衝突する前に移動が停止される。
 本発明のガス発生器は、好ましくは、前記ストッパ手段が、前記筒状ハウジングの内壁面から突き出された凸部と、前記筒状ハウジングの内壁面に圧入された環状部材の組み合わせからなるものであり、
 前記環状部材が、前記凸部と当接され、かつ前記凸部よりも前記燃焼室側に配置されているものにすることができる。
 前記凸部は、複数の独立した凸部が周方向に均等間隔で形成されているもの、周方向に連続した環状突起であるものなどを使用することができる。
 環状部材は、環状平板でもよいが、取り扱い易さから、環状本体部と、環状本体部の外周部分から一方向に伸ばされた環状壁部を有しているものが好ましい。
 環状部材は、前記凸部よりも燃焼室側に圧入して配置することができる。このため、環状部材の位置は隔壁からディフューザ部の範囲で選択することができる。
 作動時、ディフューザ部方向に移動する隔壁は、前記環状部材に衝突することによりディフューザ部に衝突する前に移動が停止される。
 本発明のガス発生器は、好ましくは、前記ストッパ手段が、前記筒状ハウジングの内壁面に形成された粗面ゾーンであるものにすることができる。
 前記粗面ゾーンは、加圧ガス室に面した筒状ハウジングの内、前記内壁面が粗面化されたゾーンである。
 粗面は、筒状ハウジングの内壁面に微細な凹凸が形成された面であり、例えば、指で触ったときにざらざら感のあるような面であり、隔壁と接触したときの摩擦力を大きくできるような面である。ハウジングの内周面に粗面ゾーンを形成するときは、表面を酸によってエッチングする方法、サンドブラスティングなどの公知の方法を採用できる。
 作動時、ディフューザ部方向に移動する隔壁は、前記粗面ゾーンを通過することで移動速度が減速され、ディフューザ部に衝突する前に移動が停止されるか、またはディフューザ部に衝突した場合でも、衝突時の衝撃が緩和されるため、溶接部に損傷を与えることがない。
 本発明のガス発生器は、好ましくは、前記ストッパ手段が、前記筒状ハウジング内に配置された筒状緩衝材であるものにすることができる。
 筒状緩衝部材は、筒状ゴムのようにそれ自体が収縮することで衝撃を吸収できるような弾性体、筒状の網のようにそれ自体が押し潰されることで衝撃を吸収できるものなどを使用することができる。
 作動時、ディフューザ部方向に移動する隔壁は、前記緩衝部材に衝突することによりディフューザ部に衝突する前に移動が停止される。
 本発明のガス発生器は、作動時において、燃焼室と加圧ガス室の間に配置された隔壁が軸方向に移動した場合、ディフューザ部に衝突することが防止できるか、またはディフューザ部に衝突したときでも衝撃を緩和できるようになっている。
 このため、作動時において筒状ハウジングとディフューザ部との溶接部に損傷を与えることがなく、作動信頼性がより高められる。
 本発明のガス発生器は、車両に搭載するエアバッグ装置のガス発生器として使用することができる。
本発明の実施の形態
 (1)図1、図2のガス発生器
 図1に示すガス発生器1は、図2に示すストッパ手段(縮径部)を形成する前のものであり、図1に示すガス発生器に図2に示すストッパ手段を形成したものが本発明のガス発生器1Aとなる。
 筒状ハウジング10の第1端部11側には、点火手段として点火器15が固定されている。
 筒状ハウジング10は、ステンレスや鉄などからなるものである。
 図1では、点火手段として点火器15のみを使用しているが、点火器15とボロン硝石など公知の伝火薬との組み合わせを点火手段とすることもできる。
 筒状ハウジング10の第1端部11と軸X方向に反対側の第2端部12側には、ディフューザ部20が取り付けられている。
 ディフューザ部20は、ステンレスや鉄などからなるものである。
 ディフューザ部20は、カップ部21とフランジ部22からなるものであり、カップ部21の周面には複数のガス排出口23を有している。
 図1では、フランジ部22はさらに軸X方向に伸ばされた環状部を有しており、前記フランジ部の環状部と筒状ハウジング10の第2端部12との接触部24において溶接固定されている(溶接部24)。
 筒状ハウジング10の第1端部11側には、所要量のガス発生剤31が収容された燃焼室30がある。ガス発生剤31は公知のものである。
 筒状ハウジング10内には、第2端部12側にガスが充填された加圧ガス室35がある。
 加圧ガス室35内には、アルゴン、ヘリウム、窒素ガスなどが高圧で充填されている。
 燃焼室30と加圧ガス室35の間は、隔壁40で仕切られている。
 隔壁40は、円板部41と、円板部41の外周部から一方向に伸ばされた環状壁部42を有している。
 円板部41は、厚さ方向に貫通した複数の貫通孔43を有している。貫通孔43を通って加圧ガス室35内のガスが燃焼室30にも入っているため、燃焼室30内も昇圧した状態になっている。
 隔壁40は、環状壁部42が点火器15側になるようにして、環状壁部42の外周面が筒状ハウジング10の内壁面10aに当接された状態で圧入されている。
 加圧ガス室35とディフューザ部20の間は、破裂板38で閉塞されている。
 破裂板38は、ステンレスや鉄などからなるものであり、周縁部においてディフューザ部20のフランジ部22に溶接固定されている。
 本発明のガス発生器1A(図2)は、図1に示すガス発生器1において図2に示すストッパ手段(縮径部)50を有しているものである。
 縮径部50は、加圧ガス室35内において、ディフューザ部20との間に軸X方向(点火器15方向)に間隔をおいて形成されていればよい。
 なお、筒状ハウジング10内にガスを充填する場合、ガス充填孔に差し込んだシールピンの隙間からガスを充填し、充填終了後にシールピンを筒状ハウジングに溶接固定するが、筒状ハウジングの周壁部に形成された充填孔にシールピンが差し込まれているようなガス発生器の場合には、シールピンよりも点火器15側に縮径部50が位置するようにする。
 また、ガス充填孔がディフューザ部に形成されているようなガス発生器の場合には、縮径部50の形成位置はシールピンの位置を考慮する必要はない。
 図2に示すように縮径部50は、作動前における加圧ガス室35に面した筒状ハウジング10の内径(図2のd1)がディフューザ部20側に向かって小さくなることで内側に形成された環状傾斜面51を有している。作動前の隔壁40が位置する部分から環状形斜面51まで、筒状ハウジング10は一定の内径d1を有している。
 環状傾斜面51からディフューザ部20までの筒状ハウジング10の内径d2は均一径であり、d1>d2の関係を満たしている。
 環状傾斜面51の傾斜度は、d1-d2の差と傾斜面の長さにより調整することができる。
 次に、図1に示すガス発生器1に図2に示すストッパ手段(縮径部)50を導入したガス発生器1Aの動作を説明する。
 点火器15が作動すると燃焼室30内のガス発生剤31が着火燃焼され、燃焼ガスが発生する。
 燃焼ガスの発生により燃焼室30内の圧力が上昇すると、燃焼ガスは隔壁40の貫通孔43から加圧ガス室35内に流入する。
 隔壁40は筒状ハウジング10内に圧入されており、燃焼時の衝撃や燃焼ガスの初期圧力によって、環状壁部42の外周面が筒状ハウジング10の内壁面10aに対して摺動しながら、軸X方向(ディフューザ部20方向)に移動する。
 図1のガス発生器1であると、隔壁40はディフューザ部20のフランジ部22に衝突して停止することになるが、図2のガス発生器1Aでは、隔壁40はストッパ手段である縮径部50に衝突して停止することから、ディフューザ部20に衝突することはない。
 燃焼ガスの流入により加圧ガス室35の圧力が上昇すると、破裂板38が開裂して開口されるため、燃焼ガスと加圧ガスの両方がディフューザ部20に流入した後、ガス排出口23から排出される。
 (2)図1、図3のガス発生器
 図1に示すガス発生器1は、図3に示すストッパ手段(凸部)を形成する前のものであり、図1に示すガス発生器に図3に示すストッパ手段を形成したものが本発明のガス発生器1Bとなる。
 図3のガス発生器1Bは、図2のガス発生器1Aとはストッパ手段が異なるのみであるから、以下においては図2と異なる部分について説明する。
 図3のガス発生器1Bは、ストッパ手段として、筒状ハウジング10の内壁面10aから突き出された凸部60を有している。
 凸部60は、独立した複数の凸部である。
 図3では、2個の凸部60が示されているが、ストッパ効果を得るためには、2~6個程度の凸部60が周方向に均等間隔で形成されていればよい。
 図1のガス発生器1であると、隔壁40はディフューザ部20のフランジ部22に衝突して停止することになるが、図3のガス発生器1Bでは、隔壁40はストッパ手段である凸部60に衝突して停止することから、ディフューザ部20に衝突することはない。
 (3)図1、図4のガス発生器
 図1に示すガス発生器1は、図4に示すストッパ手段(環状部材)を形成する前のものであり、図1に示すガス発生器に図4に示すストッパ手段を形成したものが本発明のガス発生器1Cとなる。
 図4のガス発生器1Cは、図2のガス発生器1Aとはストッパ手段が異なるのみであるから、以下においては図2と異なる部分について説明する。
 図4のガス発生器1Cは、ストッパ手段として、筒状ハウジング10の内壁面10aに固定された環状部材70を有している。
 環状部材70は、ステンレスや鉄などからなるものである。
 環状部材70は、環状本体部71と、環状本体部71の外周部分から一方向に伸ばされた環状壁部72を有しており、環状壁部72がディフューザ部20側になるように配置されている。
 環状部材70は、ディフューザ部20に近い位置で、かつディフューザ部20に接触しない位置において、環状壁部72が筒状ハウジング10に溶接固定されている。
 図1のガス発生器1であると、隔壁40はディフューザ部20のフランジ部22に衝突して停止することになるが、図4のガス発生器1Cでは、隔壁40はストッパ手段である環状部材70に衝突して停止することから、ディフューザ部20に衝突することはない。
 (4)図1、図5のガス発生器
 図1に示すガス発生器1は、図5に示すストッパ手段(凸部と環状部材の組み合わせ)を形成する前のものであり、図1に示すガス発生器に図5に示すストッパ手段を形成したものが本発明のガス発生器1Dとなる。
 図5のガス発生器1Dは、図2のガス発生器1Aとはストッパ手段が異なるのみであるから、以下においては図2と異なる部分について説明する。
 図5のガス発生器1Dは、ストッパ手段として、筒状ハウジング10の内壁面10aから突き出された凸部60と環状部材70の組み合わせを有している。
 凸部60は、図3に示す凸部60と同じものを使用することができる。
 環状部材70は、図4に示す環状部材70と同じものを使用することができる。
 環状部材70は、環状壁部72が凸部60に当接するように圧入されており、凸部60よりも燃焼室30側(点火器15側)に配置されている。
 図1のガス発生器1であると、隔壁40はディフューザ部20のフランジ部22に衝突して停止することになるが、図5のガス発生器1Dでは、隔壁40はストッパ手段である、凸部60で支持されている環状壁部70に衝突して停止することから、ディフューザ部20に衝突することはない。
 (5)図1、図6のガス発生器
 図1に示すガス発生器1は、図6に示すストッパ手段(粗面ゾーン)を形成する前のものであり、図1に示すガス発生器に図6に示すストッパ手段を形成したものが本発明のガス発生器1Eとなる。
 図6のガス発生器1Eは、図2のガス発生器1Aとはストッパ手段が異なるのみであるから、以下においては図2と異なる部分について説明する。
 図6のガス発生器1Eは、ストッパ手段として、筒状ハウジング10の内壁面10aに形成された粗面ゾーン80を有している。
 粗面ゾーン80は、筒状ハウジング10の内壁面10aが粗面にされた範囲であり、例えば、指で触ったときにざらざらしているような面である。
 内壁面10aを粗面にする方法としては、サンドブラスト法などを適用できるほか、やすりで擦る方法、レーザーを照射する方法などを適用することができる。
 粗面ゾーン80の範囲は特に制限されるものではないが、作動前の隔壁40からディフューザ部20の長さ範囲の内壁面10aの全体に形成することもできるが、前記長さ範囲の25~50%の長さ範囲程度でもよい。
 また粗面ゾーン80は、粗面化作業を容易にするため、筒状ハウジング10の第2端部12に近い範囲に形成されていることが好ましい。
 また本実施形態では、隔壁40の環状壁部42の外表面も粗面にすることができる。このように環状壁部42の外表面も粗面にすることで、粗面ゾーン80を移動するときの摩擦力がより高められる。
 図1のガス発生器1であると、隔壁40はディフューザ部20のフランジ部22に衝突して停止することになるが、図6のガス発生器1Eでは、隔壁40はストッパ手段である粗面ゾーン80を摺動しながら移動するため、粗面ゾーン80を通過する過程で著しく減速され、ディフューザ部20に衝突する前に停止するか、ディフューザ部20に衝突した場合でも、衝撃が緩和されるため、溶接部24が損傷されることはない。
 (6)図1、図7のガス発生器
 図1に示すガス発生器1は、図7に示すストッパ手段(筒状緩衝材)を形成する前のものであり、図1に示すガス発生器に図7に示すストッパ手段を形成したものが本発明のガス発生器1Fとなる。
 図7のガス発生器1Fは、図2のガス発生器1Aとはストッパ手段が異なるのみであるから、以下においては図2と異なる部分について説明する。
 図7のガス発生器1Fは、ストッパ手段として、筒状ハウジング10内に配置された筒状緩衝部材90を有している。
 筒状緩衝部材90は、外周面が筒状ハウジング10の内壁面10aに当接され、一端面がディフューザ部20に当接されて配置されている。
 筒状緩衝部材90は、筒状ゴムのようにそれ自体が収縮することで衝撃を吸収できるような弾性体、筒状の網(金属や合成樹脂の網)のようにそれ自体が押し潰されることで衝撃を吸収できる(塑性変形をする)ものなどを使用することができる。
 図1のガス発生器1であると、隔壁40はディフューザ部20のフランジ部22に衝突して停止することになるが、図7のガス発生器1Fでは、隔壁40はストッパ手段である筒状緩衝材90に衝突して停止することから、ディフューザ部20に衝突することはない。
本発明を以上のように記載した。当然、本発明は様々な形の変形をその範囲に含み、これら変形は本発明の範囲からの逸脱ではない。また当該技術分野における通常の知識を有する者が明らかに本発明の変形とみなすであろうすべては、以下に記載する請求項の範囲にある。

Claims (7)

  1.  筒状ハウジングの第1端部側に点火手段が配置され、第1端部と軸方向に反対側の第2端部側にガス排出口を有するディフューザ部が前記筒状ハウジングに対して溶接固定されているガス発生器であって、
     前記第1端部側にガス発生剤が収容された燃焼室を有し、前記第2端部側にガスが充填された加圧ガス室を有しており、
     前記燃焼室と前記加圧ガス室の間が厚さ方向に貫通孔を有する隔壁で仕切られ、前記加圧ガス室と前記ディフューザ部の間が破裂板で閉塞されており、
     さらに前記筒状ハウジングの内壁面に形成されたストッパ手段を有しているものであり、
     前記ストッパ手段が、作動時において、前記燃焼室内の前記ガス発生剤の燃焼により発生した燃焼ガスの圧力を受けて軸方向に移動する前記隔壁と接触することで、前記ディフューザ部に衝突する前に前記隔壁の移動を停止させるか、または隔壁の移動速度を減速させるためのものである、ガス発生器。
  2.  前記ストッパ手段が、前記筒状ハウジングの内径が小さくされた縮径部である、請求項1記載のガス発生器。
  3.  前記ストッパ手段が、前記筒状ハウジングの内壁面から突き出された凸部である、請求項1記載のガス発生器。
  4.  前記ストッパ手段が、前記筒状ハウジングの内壁面に配置された環状部材である、請求項1記載のガス発生器。
  5.  前記ストッパ手段が、前記筒状ハウジングの内壁面から突き出された凸部と、前記筒状ハウジングの内壁面に圧入された環状部材の組み合わせからなるものであり、
     前記環状部材が、前記凸部と当接され、かつ前記凸部よりも前記燃焼室側に配置されているものである、請求項1記載のガス発生器。
  6.  前記ストッパ手段が、前記筒状ハウジングの内壁面に形成された粗面ゾーンである、請求項1記載のガス発生器。
  7.  前記ストッパ手段が、前記筒状ハウジング内に配置された筒状緩衝材である、請求項1記載のガス発生器。
PCT/JP2016/061118 2015-05-29 2016-04-05 ガス発生器 WO2016194465A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177031835A KR20180013868A (ko) 2015-05-29 2016-04-05 가스 발생기
DE112016002426.6T DE112016002426T5 (de) 2015-05-29 2016-04-05 Gasgenerator
US15/568,047 US20180118154A1 (en) 2015-05-29 2016-04-05 Gas generator
CN201680024475.1A CN107531210A (zh) 2015-05-29 2016-04-05 气体发生器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015110597A JP2016222117A (ja) 2015-05-29 2015-05-29 ガス発生器
JP2015-110597 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016194465A1 true WO2016194465A1 (ja) 2016-12-08

Family

ID=57440850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061118 WO2016194465A1 (ja) 2015-05-29 2016-04-05 ガス発生器

Country Status (6)

Country Link
US (1) US20180118154A1 (ja)
JP (1) JP2016222117A (ja)
KR (1) KR20180013868A (ja)
CN (1) CN107531210A (ja)
DE (1) DE112016002426T5 (ja)
WO (1) WO2016194465A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035285A1 (ja) * 2017-08-14 2019-02-21 株式会社ダイセル ガス発生器
CN110636957A (zh) * 2017-05-16 2019-12-31 株式会社大赛璐 气体发生器和安全气囊模块

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6876539B2 (ja) * 2017-06-20 2021-05-26 株式会社ダイセル 耐圧容器
CN108146383B (zh) 2017-12-21 2020-02-07 湖北航天化学技术研究所 一种药片、气体发生器及气体发生设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270898A (ja) * 1990-11-28 1992-09-28 Dynamit Nobel Ag 点火装置
US5290060A (en) * 1992-12-14 1994-03-01 Morton International, Inc. Hybrid gas generator for air bag inflatable restraint systems
JPH0885410A (ja) * 1994-09-12 1996-04-02 Trw Inc 小型膨張器アッセンブリ
US6155600A (en) * 1996-01-25 2000-12-05 Reynolds; George L. Safety air bag inflation device
JP2006297988A (ja) * 2005-04-15 2006-11-02 Daicel Chem Ind Ltd エアバッグ用ガス発生器
JP2012076608A (ja) * 2010-10-01 2012-04-19 Daicel Corp ガス発生器
JP2014094614A (ja) * 2012-11-08 2014-05-22 Daicel Corp ガス発生器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3806153A (en) * 1972-02-07 1974-04-23 Olin Corp Safety bag inflation for vehicles
US3773353A (en) * 1972-09-05 1973-11-20 Olin Corp Inflating device for use with vehicle safety systems
US5611567A (en) * 1995-12-18 1997-03-18 Cartridge Actuated Devices, Inc. Non-explosive linear release device
FR2876968B1 (fr) * 2004-10-26 2007-01-12 Livbag Soc Par Actions Simplif Generateur de gaz equipe de moyens de regulation de pression et dispositif de securite qui en est pourvu.
FR2929903A1 (fr) * 2008-04-10 2009-10-16 Livbag Soc Par Actions Simplif Generateur de gaz pour un dispositif de securite pour vehicule automobile
US8535327B2 (en) * 2009-03-17 2013-09-17 Benvenue Medical, Inc. Delivery apparatus for use with implantable medical devices
JP6154147B2 (ja) * 2013-01-30 2017-06-28 株式会社ダイセル ガス発生器
JP6219136B2 (ja) * 2013-11-13 2017-10-25 株式会社ダイセル ガス発生器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270898A (ja) * 1990-11-28 1992-09-28 Dynamit Nobel Ag 点火装置
US5290060A (en) * 1992-12-14 1994-03-01 Morton International, Inc. Hybrid gas generator for air bag inflatable restraint systems
JPH0885410A (ja) * 1994-09-12 1996-04-02 Trw Inc 小型膨張器アッセンブリ
US6155600A (en) * 1996-01-25 2000-12-05 Reynolds; George L. Safety air bag inflation device
JP2006297988A (ja) * 2005-04-15 2006-11-02 Daicel Chem Ind Ltd エアバッグ用ガス発生器
JP2012076608A (ja) * 2010-10-01 2012-04-19 Daicel Corp ガス発生器
JP2014094614A (ja) * 2012-11-08 2014-05-22 Daicel Corp ガス発生器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110636957A (zh) * 2017-05-16 2019-12-31 株式会社大赛璐 气体发生器和安全气囊模块
CN110636957B (zh) * 2017-05-16 2022-03-22 株式会社大赛璐 气体发生器和安全气囊模块
US11407377B2 (en) * 2017-05-16 2022-08-09 Daicel Corporation Gas generator and airbag module
WO2019035285A1 (ja) * 2017-08-14 2019-02-21 株式会社ダイセル ガス発生器
JP2019034629A (ja) * 2017-08-14 2019-03-07 株式会社ダイセル ガス発生器

Also Published As

Publication number Publication date
KR20180013868A (ko) 2018-02-07
JP2016222117A (ja) 2016-12-28
US20180118154A1 (en) 2018-05-03
CN107531210A (zh) 2018-01-02
DE112016002426T5 (de) 2018-02-22

Similar Documents

Publication Publication Date Title
WO2016194465A1 (ja) ガス発生器
EP2952394B1 (en) Gas generator
US20170043743A1 (en) Gas generator
JP5985960B2 (ja) ガス発生器
JP5215189B2 (ja) 安全システムのためのガス生成装置
WO2015053077A1 (ja) ガス発生器
JP5656027B2 (ja) 異なるセクションの燃焼チャンバ及び拡散チャンバを有する火工式ガス発生器
JP2007314102A (ja) ガス発生器
EP1927519A2 (en) Inflator
US20170008482A1 (en) Gas generator
JP6804374B2 (ja) ガス発生器
US9481339B2 (en) Gas generator
JP6050188B2 (ja) ガス発生器
WO2018147020A1 (ja) ガス発生器
WO2016051997A1 (ja) ガス発生器
JP2006297988A (ja) エアバッグ用ガス発生器
JP5952786B2 (ja) エアバッグ用インフレータ
JP5784917B2 (ja) エアバッグ用インフレータ
JP2010158988A (ja) エアバッグ装置用ガス発生器、ガス発生器の組み立て用治具及び、ガス発生器の組み立て方法
US10336287B2 (en) Gas generator
JP5231346B2 (ja) エアバッグ装置用ガス発生器及びその製造方法
JP2007196977A (ja) エアバッグ装置用ガス発生器
JP2000135963A (ja) ガス発生器およびその使用方法
JP2007112152A (ja) 人員拘束装置用ガス発生器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802902

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15568047

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177031835

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016002426

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16802902

Country of ref document: EP

Kind code of ref document: A1