WO2016194454A1 - 細胞処理方法、レーザ加工機、細胞培養容器 - Google Patents

細胞処理方法、レーザ加工機、細胞培養容器 Download PDF

Info

Publication number
WO2016194454A1
WO2016194454A1 PCT/JP2016/059769 JP2016059769W WO2016194454A1 WO 2016194454 A1 WO2016194454 A1 WO 2016194454A1 JP 2016059769 W JP2016059769 W JP 2016059769W WO 2016194454 A1 WO2016194454 A1 WO 2016194454A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
laser
cells
irradiated
laser beam
Prior art date
Application number
PCT/JP2016/059769
Other languages
English (en)
French (fr)
Inventor
鈴木 正美
則男 西
松本 潤一
公雄 須丸
敏幸 金森
Original Assignee
株式会社片岡製作所
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社片岡製作所, 国立研究開発法人産業技術総合研究所 filed Critical 株式会社片岡製作所
Priority to JP2016522839A priority Critical patent/JP6090891B1/ja
Priority to US15/576,228 priority patent/US10876086B2/en
Priority to EP16802892.6A priority patent/EP3305888B1/en
Publication of WO2016194454A1 publication Critical patent/WO2016194454A1/ja
Priority to US17/103,539 priority patent/US20210079324A1/en
Priority to US17/103,597 priority patent/US20210071121A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/42Apparatus for the treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/005Incubators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • C12M1/3446Photometry, spectroscopy, laser technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/06Plates; Walls; Drawers; Multilayer plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/02Means for providing, directing, scattering or concentrating light located outside the reactor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/04Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by injection or suction, e.g. using pipettes, syringes, needles
    • C12M33/06Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by injection or suction, e.g. using pipettes, syringes, needles for multiple inoculation or multiple collection of samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/10Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by centrifugation ; Cyclones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/02Separating microorganisms from their culture media
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0081Purging biological preparations of unwanted cells

Definitions

  • the present invention relates to a method of killing specific cells among cells cultured on a cell culture vessel, and a laser processing machine and a cell culture vessel used for carrying out the method.
  • Patent Document 1 discloses a method for selectively killing unnecessary cells in a culture vessel. That is, a photoacid generator that generates an acidic substance upon irradiation with active energy rays such as visible light, ultraviolet light, infrared light, or radiation is applied in advance to the surface of the culture vessel, and the cells cultured on the culture vessel are killed. By irradiating the active energy rays for about 10 seconds to 10 minutes to the location where the cells to be present are present, an acidic substance is generated to cause the target cells to die.
  • a DMD digital micromirror device
  • a liquid crystal shutter array a liquid crystal shutter array
  • a light spatial modulation element a photomask, or the like
  • Patent Document 1 has a long time for irradiating active energy rays in order to kill the target cells, and there is still room for improvement toward the realization of mass production of the upcoming regenerative medical cells. It can be said.
  • most of the energy supplied from the active energy source (light source) is discarded unnecessarily.
  • An object of the present invention is to kill specific cells among cells cultured on a culture vessel through high-speed and short-time laser irradiation treatment.
  • the cell treatment method according to the present invention was cultured on the surface of an irradiated layer of a cell culture container provided with an irradiated layer that is a layer containing a material that absorbs and absorbs laser light on the container body.
  • an irradiated layer that is a layer containing a material that absorbs and absorbs laser light on the container body.
  • specific cells of the cells are killed, and a laser beam is irradiated on a portion of the irradiated layer immediately below the cells to be killed.
  • the cells are killed after a certain amount of time has passed without being killed immediately in the irradiated layer immediately below the cells to be killed. It is preferable to irradiate laser light having such an output or energy amount.
  • a laser having an output or an energy amount so that the cells do not immediately die at a location immediately below the cells to be killed in the irradiated layer it is also preferable to irradiate light several times. Then, the time required from the irradiation of the laser light to the death of the target cell can be shortened.
  • the cell treatment method according to the present invention can be used for the purpose of dividing a cell group (consisting of a plurality of cells) cultured in the cell culture vessel into a plurality of parts.
  • a laser beam is irradiated on the irradiated layer at a position immediately below a boundary line where the cultured cells are cut into a part and another part.
  • the laser processing machine was cultured on the surface of an irradiated layer of a cell culture container provided with an irradiated layer that is a layer containing a material that receives and absorbs laser light on the container body. A specific cell of the cells is killed, and a laser beam is irradiated on a portion of the irradiated layer immediately below the cells to be killed.
  • a laser processing machine configured to irradiate a laser beam having an output or an energy amount at a position immediately below a cell to be killed in the irradiated layer so that the cell does not die immediately but kills after a certain amount of time has passed. It is preferable to do.
  • the laser beam machine according to the present invention can be used for the purpose of dividing a cell group cultured in the cell culture vessel into a plurality of parts.
  • a laser beam shall be irradiated to a position immediately below a boundary line for dividing the cultured cells into a certain part and another part in the irradiated layer.
  • an irradiation layer that is a layer containing a material that absorbs and absorbs laser light is provided on the container body, and cells are formed on the surface of the irradiation layer. Is cultured.
  • the present invention it is possible to kill a specific cell among cells cultured on a culture vessel through high-speed and short-time laser irradiation treatment.
  • the perspective view which shows the outline
  • the figure which shows the hardware resource structure of the laser processing machine.
  • the graph which shows each light transmittance and light absorptivity of the container main body and irradiated part of a cell culture container.
  • the photographic image which shows the difference in the death / survival result of the cell by the presence or absence of an irradiated part.
  • a photographic image showing that cells do not die immediately upon laser irradiation but die after a certain amount of time has passed.
  • the photographic image which shows the relationship between the output of a laser and the energy amount per unit area, and the result of cell death / survival.
  • the graph which shows notionally the suitable value of the scanning speed of a laser, and a laser output.
  • the photographic image which shows the result of having divided
  • the photographic image which shows the result of having divided
  • the photographic image which shows the result of the death / survival of the cell when a laser beam is irradiated once.
  • the laser beam machine executes a laser irradiation process that kills specific cells among the cells cultured on the cell culture vessel 1.
  • the present laser processing machine includes a support 2 that supports one or a plurality of cell culture containers 1 and a laser irradiation device that irradiates a cell culture container 1 supported by the support 2 with a laser beam L. 3, a displacement mechanism 4 for operating the irradiation position of the laser beam L to the cell culture vessel 1, and a control unit 5 for controlling the laser irradiation device 3 and the displacement mechanism 4 are main components.
  • the cell culture vessel 1 and the support 2 are preferably arranged in a CO 2 incubator (not shown).
  • the CO 2 incubator is a well-known one that can adjust the CO 2 concentration and temperature of the atmosphere inside the CO 2 incubator.
  • the culture environment of cells during the laser irradiation treatment for example, the pH of the medium filled in the cell culture vessel 1 And so on in a suitable state.
  • the laser irradiation device 3 is interposed between the laser light source 31, the processing nozzle 33 that emits the laser light L supplied from the laser light source 31 toward the cell culture container 1, and the laser light source 31 and the processing nozzle 33.
  • An optical system 32 that guides the laser light L output from the light source 31 to the processing nozzle 33 is provided.
  • the laser light source 31 is a device that oscillates a continuous wave laser or a pulse laser (which may be a high frequency laser having a long pulse width close to a continuous wave) L.
  • the wavelength of the laser L to be used is not limited uniquely, and for example, a visible light laser or an infrared laser of 405 nm, 450 nm, 520 nm, 532 nm, 808 nm or the like can be employed. However, it is necessary to select a wavelength such that the irradiated layer 12 of the cell culture vessel 1 described later can absorb the energy of the laser L.
  • an ultraviolet laser having a wavelength of 380 nm or less may be absorbed by DNA or protein, and there is a concern about the influence on cells. Therefore, the wavelength of the laser L is preferably longer than 380 nm.
  • a continuous wave diode laser with a maximum output of 5 W having a wavelength in the vicinity of 405 nm is assumed as the laser light source 31.
  • the processing nozzle 33 incorporates a lens for condensing the laser light L to be irradiated on the irradiated layer 12 of the cell culture container 1, a shutter or a mirror for switching ON / OFF of emission of the laser light L, and the like. .
  • the processing nozzle 33 is located below the cell culture container 1 supported by the support 2 and emits a laser L upward.
  • the optical axis of the laser beam L emitted from the processing nozzle 33 is substantially orthogonal to the irradiated layer 12 of the cell culture container 1.
  • the optical system 32 for propagating the laser L from the laser light source 31 toward the processing nozzle 33 can be configured using any optical element such as an optical fiber, a mirror, or a lens.
  • the displacement mechanism 4 mainly includes an XY stage that relatively displaces the processing nozzle 33 of the laser irradiation device 3 with respect to the cell culture vessel 1 supported by the support 2.
  • the XY stage 4 is a known one that can move an object at high speed and precisely along the X-axis direction (left-right direction) and the Y-axis direction (front-rear direction) via a linear motor carriage or the like.
  • the processing nozzle 33 is supported by the XY stage 4 and the processing nozzle 33 is moved relative to the support 2 and the cell culture container 1.
  • the support 2 may be supported by the XY stage 4 and the support 2 and the cell culture container 1 may be moved with respect to the processing nozzle 33.
  • the displacement mechanism 4 irradiates the irradiated layer 12 of the cell culture vessel 1 with the laser L while keeping the angle at which the irradiated layer 12 of the cell culture vessel 1 intersects the optical axis of the laser beam L substantially constant.
  • the position can be displaced.
  • the control unit 5 includes a processor 5a, a main memory 5b, an auxiliary storage device 5c, an operation input device 5d, an I / O interface 5e, and the like, which are controllers (system controller and I / O controller). Etc.) to operate in a coordinated manner.
  • the auxiliary storage device 5c is a flash memory, a hard disk drive, or the like.
  • the operation input device 5d is a touch panel that can be operated with fingers, a pointing device such as a track pad or a mouse, a keyboard, a push button, or the like.
  • the I / O interface 5e may include a servo driver (servo controller).
  • the control unit 5 may be constituted by a general-purpose personal computer, server computer, workstation, or the like.
  • the program to be executed by the control unit 5 is stored in the auxiliary storage device 5c, and is read into the main memory 5b and decoded by the processor 5a when the program is executed. And the control part 5 exhibits the function as the irradiation position coordinate acquisition part 51 shown in FIG. 3, the output control part 52, and the mechanism operation part 53 according to a program.
  • the irradiation position coordinate acquisition unit 51 acquires one or a plurality of XY coordinates indicating the irradiation position of the laser light L with respect to the cell culture container 1.
  • the XY coordinates referred to here are coordinates indicating the position of the cell to be killed among the cultured cells existing in the cell culture vessel 1.
  • the cells to be killed are, for example, unnecessary cells mixed in cells or tissues to be cultured, or boundaries between a plurality of clamps when dividing a cell colony in the cell culture vessel 1 into a plurality of cell clamps for the purpose of subculture. A cell on the line.
  • the coordinates of the irradiation position of the laser light L may be stored in the main memory 5b or the auxiliary storage device 5c in advance, or may be designated by the user's hand.
  • the irradiation position coordinate acquisition unit 51 reads the coordinates of the irradiation position stored in the main memory 5b or the auxiliary storage device 5c, or accepts designation of the coordinates of the irradiation position by the user via the operation input device 5d.
  • the laser beam L is obtained in such a manner that a cell colony in the cell culture vessel 1 is photographed using a camera sensor such as a CCD or CMOS, and the obtained image is analyzed to identify the position of unnecessary cells or other cells to be killed.
  • the coordinates of the irradiation position can also be obtained.
  • the detection of the position of the cell to be killed through image analysis, that is, the determination of the coordinates of the irradiation position of the laser beam L may be executed by the control unit 5 itself. You may perform by an apparatus or a computer (not shown).
  • the irradiation position coordinate acquisition unit 51 acquires an image captured by the camera sensor via the I / O interface 5e, analyzes the image, and acquires the coordinates of the irradiation position. In the latter case, the irradiation position coordinate acquisition unit 51 acquires the irradiation position coordinates by receiving the irradiation position coordinates provided from an external device or a computer via the I / O interface 5e.
  • the output control unit 52 turns ON / OFF the emission of the laser L from the processing nozzle 33 toward the irradiated layer 12 of the cell culture container 1 and the output intensity of the laser L irradiated to the irradiated layer 12, that is, the laser L has. Control the amount of energy. Specifically, a signal for instructing ON / OFF of emission of the laser L from the processing nozzle 33 is given to the processing nozzle 33 via the I / O interface 5e, and a signal for controlling the output of the laser L is supplied to the I / O. This is applied to the processing nozzle 33 or the laser light source 31 via the interface 5e.
  • the mechanism operation unit 53 operates the XY stage 4 supporting the processing nozzle 33 to move the processing nozzle 33 toward the irradiation position coordinates acquired by the irradiation position coordinate acquisition unit 51, and from the processing nozzle 33.
  • the optical axis of the emitted laser beam L is positioned at the coordinates of the irradiation position. Specifically, a command signal corresponding to the coordinates of the irradiation position acquired by the irradiation position coordinate acquisition unit 51 is given to the XY stage 4 via the I / O interface 5e.
  • the processing nozzle 33 and then the laser beam L are moved according to the time series of the coordinates of the irradiation position while emitting the continuous wave laser L or a high frequency pulse laser L close to continuous wave from the processing nozzle 33, the laser L is moved into the cell culture container. While irradiating one irradiation layer 12, the irradiation position can be continuously moved.
  • the processing nozzle 33 is moved relative to the cell culture container 1 so as to raster scan a certain region in the cell culture container 1 (irradiated layer 12 thereof) by the optical axis of the processing nozzle 33.
  • the laser L may be emitted from the processing nozzle 33 at the timing when the optical axis of the nozzle 33 reaches just below the cell to be killed.
  • the cell culture container 1 of the present embodiment generates heat and / or acid upon irradiation of the laser light L to the container body 11 that can transmit the laser light L emitted from the processing nozzle 33.
  • the irradiated layer 12 which is a layer containing the photoresponsive material to be provided is provided.
  • the container body 11 is made of a material such as plastic or glass having transparency or translucency that transmits light in a wavelength band to which the laser L emitted from the processing nozzle 33 belongs.
  • plastics include polystyrene polymers, acrylic polymers (polymethyl methacrylate (PMMA), etc.), polyvinylpyridine polymers (poly (4-vinylpyridine), 4-vinylpyridine-styrene copolymers, etc.), silicone Polymers (polydimethylsiloxane, etc.), polyolefin polymers (polyethylene, polypropylene, polymethylpentene, etc.), polyester polymers (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.), polycarbonate polymers, epoxy polymers, etc.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polycarbonate polymers epoxy polymers, etc.
  • a ready-made culture vessel may be used as the vessel body 11 as it is.
  • the shape of the container body 11 can be a dish shape, a multi-dish shape, a flask shape, or the like, similar to a ready-made culture vessel.
  • FIG. 5 shows the light transmittance of a container body 11 having a certain size and shape, which is produced using a polystyrene resin, as a solid line.
  • the light transmittance of the container body 11 is as high as 85% or more at a light wavelength of about 380 nm or more.
  • the light transmittance decreases as the light wavelength becomes shorter, that is, the absorption of light by the container body 11 increases. This is probably due to impurities contained in the polystyrene material.
  • the irradiated layer 12 is preferably composed of a polymer (polymer) containing a dye structure (chromophore) that absorbs light in the wavelength band to which the laser L emitted from the processing nozzle 33 belongs.
  • a dye structure chromophore
  • the dye structure that absorbs the laser beam L include organic compounds such as azobenzene, diarylethene, spiropyran, spirooxazine, fulgide, leuco dye, indigo, carotenoid (such as carotene), flavonoid (such as anthocyanin), and quinoid (such as anthraquinone).
  • Examples of the skeleton constituting the polymer include acrylic polymers, polystyrene polymers, polyolefin polymers, polyvinyl acetate and polyvinyl chloride, polyolefin polymers, polycarbonate polymers, and epoxy polymers.
  • a raw material solution containing the above-described dye structure-containing polymer or a raw material solution in which the dye structure-containing polymer is dissolved in a solvent (1,2-dichloroethane, methanol, etc.) is applied to the container body 11 by spin coating or casting. If it is applied to the opposite surface, that is, the bottom of the well 10 and cured, the irradiated layer 12 that generates heat upon receiving the laser beam L can be formed.
  • dye which absorbs the laser beam L in the constituent material of the container main body 11, or producing the container main body 11 by using the pigment structure-containing polymer as a material the irradiation with the laser beam L generates heat.
  • the irradiated layer 12 to be irradiated may be formed.
  • FIG. 5 shows the light transmittance and light absorption rate of the irradiated layer 12 having a predetermined thickness, which is formed by coating the container body 11 with a polymer having azobenzene as the dye structure.
  • the light absorption rate of the irradiated layer 12 peaks when the light wavelength is about 360 nm, and decreases as the light wavelength increases from about 360 nm.
  • the light absorption rate of the irradiated layer 12 is less than 20% in the region where the light wavelength is about 425 nm or more.
  • the irradiated layer 12 can sufficiently absorb the laser light L having a wavelength of 405 nm, 450 nm, 520 nm, or 532 nm. .
  • a photoacid generator that generates an acidic substance upon irradiation with the laser light L may be used together with or in place of the above-described dye structure-containing polymer.
  • the photoacid generator is composed of a dye structure (chromophore) that absorbs light in the wavelength band to which the laser L emitted from the processing nozzle 33 belongs, and an acidic substance after decomposition. It is preferable to have a structure with an acid precursor.
  • a sulfonic acid derivative, a carboxylic acid ester, an onium salt, a photoacid generating group having a nitrobenzaldehyde structure, and the like correspond to such a photoacid generator.
  • a thioxanthone-based sulfonic acid derivative (sulfonic acid 1,3,6-trioxo-3,6-dihydro-1H-11-thia-azacyclopenta [a] anthracene -2-yl ester) and naphthaleneimide-based sulfonic acid derivatives (sulfonic acid 1,8-naphthalimide, etc.).
  • sulfonic acid derivatives such as disulfones, disulfonyldiazomethanes, disulfonylmethanes, sulfonylbenzoylmethanes, imide sulfonates, and benzoin sulfonates can also be employed.
  • carboxylic acid esters there may be mentioned 1,8-naphthalenedicarboxylic acid imide methylsulfonate or 1,8-naphthalenedicarboxylic acid imide tosyl sulfonates, examples of the onium salts, tetrafluoroborate (BF 4 - ), A sulfonium salt or an iodonium salt having an anion such as hexafluorophosphate (PF 6 ⁇ ), hexafluoroantimonate (SbF 6 ⁇ ), and the like.
  • PF 6 ⁇ hexafluorophosphate
  • SBF 6 ⁇ hexafluoroantimonate
  • a raw material liquid containing the above-mentioned photoacid generator in a plastic especially acrylic polymer or polystyrene polymer such as PMMA), or the photoacid generator in a solvent (1,2-dichloroethane, methanol, etc.
  • the dissolved raw material liquid is applied to the upper surface of the container body 11, that is, the bottom of the well 10 by a spin coating method, a casting method, or the like, and cured, it is irradiated with laser light L to generate an acid with heat.
  • the irradiated layer 12 can be formed.
  • FIG. 5 shows an irradiated layer 12 having a predetermined thickness, which is formed by coating a container body 11 with a polymer containing a thioxanthone-based sulfonic acid derivative having a thioxanthone skeleton as a dye structure and having a sulfonic acid as an acid precursor.
  • the light transmittance and the light absorptance of are represented by chain lines.
  • the light absorption rate of the irradiated layer 12 is distributed over a light wavelength range of about 375 nm to about 460 nm.
  • the irradiated layer 12 cannot absorb light having a wavelength outside this range.
  • the laser beam L has a wavelength of 405 nm or 450 nm, it can be absorbed by the irradiated layer 12.
  • the light absorption rate of the irradiated layer 12 is smaller than the light absorption rate (broken line) of the irradiated layer 12 configured using a polymer having azobenzene as a dye structure. That is, the light absorption rate of the irradiated layer 12 is less than 20% (more specifically, 10%) in the visible light region where the light wavelength is about 400 nm to about 700 nm.
  • the irradiated layer 12 is preferably formed using a material that does not emit fluorescence when irradiated with the laser beam L.
  • the thickness of the irradiated layer 12 is preferably 10 ⁇ m or less.
  • the surface of the irradiated layer 12 of the cell culture container 1 may be coated with a material for enhancing cell adhesion, for example, ECM (extracellular matrix) such as laminin or matrigel.
  • ECM extracellular matrix
  • a medium (particularly a liquid medium) 13 is filled in the well 10 formed in the container body 11 of the cell culture container 1.
  • the medium 13 is located immediately above the irradiated layer 12 laid on the bottom of the well 10. The cultured cells grow while adhering to the surface of the irradiated layer 12 to form cell colonies.
  • the laser light L emitted from the processing nozzle 33 of the laser irradiation apparatus 3 is used. Then, irradiation is performed on a portion immediately below the cells to be killed in the irradiated layer 12 of the cell culture vessel 1 supported by the support 2.
  • the processing nozzle 33 is disposed below the cell culture container 1, and the laser beam L launched from the processing nozzle 33 is transmitted through the container body 11, and the irradiated layer 12 is irradiated from the back side. .
  • the lens built in the processing nozzle 33 focuses the laser beam L emitted from the processing nozzle 33 on the irradiated layer 12 of the cell culture container 1.
  • the portion of the irradiated layer 12 that has been irradiated with the laser beam L absorbs the energy of the laser beam L to generate heat and / or acid, and the heat causes the unnecessary cells present immediately above the portion to die.
  • FIG. 6 shows a region R1 in which the irradiated layer 12 is laid and a region R2 in which the irradiated layer 12 is not laid on the upper surface of the container body 11, that is, the bottom of the well 10, and MDCK cells (Madin ⁇ Darby canine kidney cell) is irradiated to the bottom of the well 10 by irradiation with a continuous wave laser L from the processing nozzle 33 of the laser irradiation device 3, and after that (after several hours have passed), dead cells with trypan blue solution It is the result of dyeing.
  • MDCK cells Mesdin ⁇ Darby canine kidney cell
  • the wavelength of the laser L used is 405 nm
  • the laser L output is 5.08 W
  • the laser beam L diameter is 50 ⁇ m
  • the processing nozzle 33 that emits the continuous wave laser L, that is, the laser beam L is applied to the cell culture vessel 1 at 500 mm / A scan that moves linearly at a speed of seconds is executed once.
  • the amount of energy (energy density) per unit area given by the laser beam L at the irradiation site of the laser beam L is about 25.9 J / cm 2 .
  • the constituent material of the irradiated layer 12 is a polymer having azobenzene as a dye structure.
  • a photoacid generator is used as the constituent material of the irradiated layer 12, an acidic substance is generated at the location of the irradiated layer 12 that has been irradiated with the laser light L, and the acidic substance is directly above the location. The death of unnecessary cells existing in the substrate or the separation from the irradiated layer 12 is promoted.
  • the photoacid generator is a sulfonic acid derivative
  • the generated acidic substance is a sulfonic acid.
  • the wavelength, output, and energy amount of the laser beam L are set to such a size that the cells do not die even when directly irradiated to the cells, unnecessary cells are removed by the action of the irradiated layer 12. It can lead to death accurately.
  • the wavelength, output, and energy amount of the laser light L applied to the irradiated layer 12 of the cell culture vessel 1 are not required. It is preferable to adjust the size so that cells do not die immediately but die after a certain amount of time has passed since the irradiation with the laser beam L (for example, several tens of minutes, one hour to several hours later).
  • MDCK cells are cultured in the well 10 of the cell culture container 1 in which the irradiated layer 12 is laid, and the continuous wave laser L is irradiated from the processing nozzle 33 toward the irradiated layer 12 at the bottom of the well 10. Then, after lapse of a predetermined time, dead cells were stained with trypan blue solution.
  • the used laser L has a wavelength of 405 nm, a laser L output of 5 W, and a laser beam L diameter of 50 ⁇ m.
  • the amount of energy per unit area given by the laser beam L at the location irradiated with the laser beam L is about 8.7 J / cm 2 .
  • the constituent material of the irradiated layer 12 is a polymer having azobenzene as a dye structure.
  • FIG. 7A shows trypan blue staining after 3 minutes from laser L irradiation
  • FIG. 7B shows trypan blue staining after 56 minutes from laser L irradiation
  • FIG. The sample was stained with trypan blue after 122 minutes.
  • the cells existing immediately above the irradiation spot of the laser beam L are alive at the point 3 minutes after the irradiation, but are present immediately above the irradiation spot of the laser beam L after 56 minutes.
  • MDCK cells are cultured in the well 10 of the cell culture container 1 in which the irradiated layer 12 is laid, and the continuous wave laser L is irradiated from the processing nozzle 33 toward the irradiated layer 12 at the bottom of the well 10. Then, after a predetermined time has elapsed, dead cells are stained with a trypan blue solution.
  • the wavelength of the laser L used is 405 nm and the diameter of the laser beam L is 50 ⁇ m.
  • the conditions of the scanning speed for moving the laser L output and the laser beam L relative to the cell culture vessel 1 are as follows.
  • the amount of energy per unit area given by the laser beam L at the irradiation position of the laser beam L increases as the laser L output increases, and increases as the scanning speed decreases. Even if the laser L output is small, if the scanning speed is slow, that is, if the time for irradiating the laser light L at the irradiation position of the laser light L is long, the amount of energy absorbed by the irradiated layer 12 at the irradiation position increases. .
  • (VII) and (VIII) of FIG. 8 when the laser L output is small, even if the amount of energy given to the irradiation site is more than a certain level, the cells located at the irradiation site are almost all.
  • the size of the width or range of cells to be killed through adjustment of the output of the laser L or the amount of energy per unit area. It is also possible to enlarge / reduce. That is, as the output of the laser L and / or the amount of energy per unit area increases, the width or range of cell death increases.
  • FIG. 9 conceptually shows the relationship between the scanning speed of the laser beam L and the output of the laser L so that the width or range in which the cells die becomes a certain size.
  • the scanning speed of the laser L is increased or the output of the laser L is weaker than the line shown in FIG. 9, the width or range in which the cells die is narrowed. If the scanning speed of the laser L is extremely fast or the output of the laser L is extremely small, the cells will not die. On the contrary, when the scanning speed of the laser L is delayed or the output of the laser L is increased as compared with the line shown in FIG. 9, the width or range of cell death increases. That is, the thermal effect on the target cell or tissue adjacent to the unwanted cell increases.
  • the time required from the irradiation of the laser L to the death of unnecessary cells is shorter as the output of the laser L and / or the energy amount per unit area is larger.
  • the suitable conditions of the output of the laser L and / or the energy amount per unit area used for the laser irradiation treatment are affected by the constituent material and thickness of the irradiated layer 12 provided in the cell culture vessel 1.
  • the amount of heat per unit area generated by the irradiated layer 12 that has been irradiated with the laser light L by absorbing the energy of the laser light L is equal to the amount of energy per unit area of the laser light L irradiated to the irradiated layer 12.
  • the irradiation layer 12 having a unit area is multiplied by a light utilization rate which is a ratio that can be used by absorbing the energy of the laser light L.
  • This light utilization rate depends on the property of the constituent material of the irradiated layer 12, that is, the light absorptance, as well as the material contributing to the photothermal reaction that absorbs the laser light L and generates heat. It varies depending on how much is present per unit area. If the coating thickness of the constituent material applied to form the irradiated layer 12 on the container body 11 is increased, the amount of the material contributing to the photothermal reaction increases, and the light utilization rate of the irradiated layer 12 in the unit area also increases. To do. Accordingly, the amount of heat per unit area generated in the irradiated layer 12 increases, and the cells are more likely to die. Therefore, it is necessary to experimentally obtain the output of the laser L and / or the energy amount per unit area suitable for the unnecessary cell killing process according to the light utilization rate of the irradiated layer 12 provided in the cell culture vessel 1.
  • the laser beam machine and the cell culture vessel 1 of the present embodiment can be suitably used for an operation of dividing a cultured cell colony into a plurality of parts.
  • 10 and 11 human iPS cells cultured in a feederless manner on the cell culture vessel 1 in which the irradiated layer 12 is coated with Matrigel, which is a kind of ECM, are divided into a large number of cell clamps by laser irradiation treatment.
  • cultivates again is shown.
  • the wavelength of the laser L used is 405 nm (the measured spectrum distribution is from 399 nm to 403 nm), the laser L output is 5 W, and the laser beam L diameter is 50 ⁇ m.
  • scanning is performed to move the laser beam L so as to draw a lattice with respect to the cell culture vessel 1, and unnecessary cells existing immediately above the portion of the irradiated layer 12 irradiated with the laser L are killed.
  • a mass of cells other than unnecessary cells present in the lattice portion is being taken out as a clamp. That is, the cell colony cultured on the cell culture vessel 1 is cut along the lattice.
  • the portion of the grating that is irradiated with the laser L corresponds to a boundary line that separates one clamp from another clamp.
  • the laser beam L is applied to the cell culture container 1 at a speed of 1000 mm / second so as to draw a large number of parallel streaks that are elements of the lattice at intervals of 0.4 mm.
  • the scanning for linear movement is performed once for each muscle.
  • the constituent material of the irradiated layer 12 is a polymer having azobenzene as a dye structure. Then, this polymer is applied to the upper surface of the container body 11 at a density of 7 ⁇ g / cm 2 , that is, the bottom of the well 10, so that the irradiated layer 12 having an average thickness of 70 nm is laid on the bottom of the well 10. .
  • FIG. 10 (A) shows an enzyme for detaching cells adhering to the surface of the irradiated layer 12 of the cell culture container 1 after the time required for killing unnecessary cells has elapsed since the irradiation of the laser L. 10 was injected.
  • FIG. 10B is an enlargement of FIG. The cell clamp, which is a living cell, is peeled off from the cell culture container 1 and rounded.
  • FIG. 10C shows a cell clamp obtained through a laser irradiation process.
  • FIG. 10D shows a state after one day has passed since the cell clamp was transferred to a new medium. From FIG. 10D, it can be seen that the cell clamp cut out from the original cell culture vessel 1 has started to grow smoothly.
  • the cell group having a lattice shape is a cell killed by the laser irradiation treatment.
  • the output of the laser L and / or the energy amount per unit area may be larger than the optimum value, and the output of the laser L and / or the energy amount per unit area is further reduced.
  • the cell clamp can be appropriately excised.
  • the laser beam L is applied to the cell culture container 1 at a speed of 500 mm / second so as to draw a large number of parallel streaks that are elements of the lattice at intervals of 0.4 mm.
  • the scanning for linear movement is performed once for each muscle.
  • the constituent material of the irradiated layer 12 is a polymer containing a thioxanthone-based sulfonic acid derivative having a thioxanthone skeleton as a dye structure and sulfonic acids as an acid precursor.
  • FIG. 11 (A) shows an enzyme for separating cells adhering to the surface of the irradiated layer 12 of the cell culture container 1 from the surface after the time required for killing unnecessary cells has elapsed since the laser L irradiation. 10 was injected.
  • FIG. 11B is an enlargement of FIG. The cell clamp, which is a living cell, is detached from the cell culture container 1 and rounded.
  • FIG. 11C shows a cell clamp obtained through a laser irradiation process.
  • FIG. 11D shows a state after the cell clamp is transferred to a new medium and one day has passed. From FIG. 11 (D), it can be seen that the cell clamp cut out from the original cell culture vessel 1 has started to grow smoothly.
  • FIG. 11A and FIG. 11B the cells killed by the laser irradiation process cannot be clearly seen. Moreover, it seems that some cell clamps are connected without being completely cut. In the example shown in FIG. 11, there is a possibility that the output of the laser L and / or the energy amount per unit area may be smaller than the optimum value, and the output of the laser L and / or the energy amount per unit area is further increased. There seems to be room for better results.
  • the surface of the irradiated layer 12 of the cell culture container 1 provided with the irradiated layer 12 which is a layer containing a material that receives the laser beam L and absorbs it on the container body 11.
  • the laser light L is irradiated to a portion of the irradiated layer 12 immediately below the cells to be killed.
  • the cultured cells are divided into a certain part and another part. Can be divided. This is effective for easily extracting cell clamps of uniform size for subculture.
  • laser L irradiation can be performed on a large number of cell processing containers within a fixed time, and high-speed processing that kills unnecessary cells existing in the processing containers can be realized. This greatly contributes to the realization of mass production of commercial cells.
  • the diameter of the laser beam L applied to the cell culture vessel 1 can be reduced to 50 ⁇ m or less, and even small cells such as human iPS cells whose size of one cell is 20 ⁇ m or less can be processed accurately. Can be applied.
  • a laser beam L having an output or an energy amount that irradiates the cell culture vessel 1 immediately below a cell to be killed in the irradiated layer 12 without killing the cell immediately after a certain amount of time has passed.
  • the thermal effect on cells other than the cells to be killed can be suppressed to a minimum, and the yield of the target cell or tissue can be further improved.
  • the present invention is not limited to the embodiment described in detail above.
  • the cell does not die immediately in the irradiated layer 12 of the cell culture container 1 immediately below the cell to be killed (does not die within a few minutes after irradiation with the laser light L) for a certain period of time.
  • the target cell was killed by irradiating once with the laser beam L having an output or energy amount that would be lethal after elapse of time.
  • the same laser beam machine and cell as in the above embodiment are used.
  • the used laser L has a wavelength of 405 nm, a laser L output of 1 W, and a laser beam L diameter of 50 ⁇ m.
  • the constituent material of the irradiated layer 12 is a polymer having azobenzene as a dye structure.
  • each line is scanned by moving the laser beam L linearly at a speed of 100 mm / second with respect to the cell culture container 1 so as to draw a plurality of lines parallel to each other at intervals of 0.2 mm. It is executed once or several times. With respect to the number of scans with the laser beam L, that is, the number of times of irradiation with the laser beam L, FIG.
  • FIG. 14 shows the results of trypan blue staining immediately after irradiation four times at a location immediately below the subject cell
  • FIG. 15 shows trypan blue staining immediately after irradiation six times at the location immediately below the subject cell. The results are shown.
  • the cells are hardly stained. This indicates that the cells present immediately above the irradiated portion are alive at a time point several minutes to ten and several minutes after the laser beam L is irradiated once.
  • the cells are stained. That is, by increasing the number of times of irradiation with the laser light L to two or more, it can be seen that even if only a short time has passed since the irradiation, the cells existing immediately above the irradiated portion will die. Further, by increasing the number of times of irradiation with the laser light L from two times to four times, the intensity of trypan blue staining at the time immediately after the irradiation of the laser L is increased.
  • the cells die in a shorter time as the number of times of irradiation with the laser light L is increased.
  • the laser light L is irradiated four times, the cells existing immediately above the irradiated portion almost immediately die.
  • the width of the stained cells is suppressed to about 50 ⁇ m, which is the diameter of the laser beam L. In this way, by irradiating a laser beam with an output or energy amount that does not cause the cell to die immediately, the time required for the cell to die is shortened, and the cells around the cell to be killed are exposed. Thermal effects can be minimized.
  • the wavelength of the laser L used for the laser irradiation treatment for letting the unnecessary cells to die is not limited to 405 nm.
  • the irradiated layer 12 of the cell culture vessel 1 is configured using a material (particularly a polymer) containing a dye structure that can absorb light of that wavelength. Is required.
  • a near-infrared laser L having a wavelength of 808 nm or 1064 nm it is one idea to use phthalocyanines (phthalocyanine derivatives, phthalocyanine-based near-infrared absorbing dyes) as materials.
  • the diameter of the laser beam L may be further reduced to be smaller than 50 ⁇ m.
  • an optical fiber having a small core diameter is connected to the processing nozzle 33 and the laser light L supplied from the laser light source 31 is input to the processing nozzle 33 through this optical fiber, the laser beam emitted from the processing nozzle 33
  • the diameter of L can be reduced to 25 ⁇ m or less, and the amount of energy (energy density) of the laser L per unit area increases accordingly. Thereby, even if the maximum output of the laser light source 31 is not large, it becomes possible to give a large amount of energy to a point where the laser L is irradiated, that is, a place where unnecessary cells exist.
  • FIG. 16 shows that iPS cells are cultured in the well 10 of the cell culture vessel 1 in which the irradiated layer 12 that generates heat upon receiving the laser beam L is laid, and the irradiated layer 12 at the bottom of the well 10 is applied to the irradiated layer 12.
  • the used laser L has a wavelength of 405 nm, a laser L output of 0.18 W, and a laser beam L diameter of 20 ⁇ m.
  • the constituent material of the irradiated layer 12 is a polymer having azobenzene as a dye structure.
  • each line is scanned by moving the laser beam L linearly at a speed of 300 mm / second with respect to the cell culture container 1 so as to draw a plurality of lines parallel to each other at intervals of 0.2 mm. It is executed once every time.
  • the width of the stained cells is suppressed to about 20 ⁇ m to 25 ⁇ m which is the diameter of the laser beam L. This indicates that the thermal effect on the cells around the cells to be killed can be minimized. Incidentally, this width corresponds to about two iPS cells.
  • the beam diameter of the laser light L By narrowing the beam diameter of the laser light L, the lethality range of cells is narrowed, and an improvement in yield can be expected.
  • the cells are killed after one and a half hours by irradiating the laser beam L only once. However, even with the laser beam L having a beam diameter reduced to 25 ⁇ m to 20 ⁇ m or less. If the same part is irradiated several times, it is naturally considered that the time required until the target cell is killed can be further shortened.
  • the projected shape when the irradiated layer 12 is irradiated with the laser beam L is not limited to a dot shape or a circular shape.
  • the projected shape of the laser beam L may be formed into a rod-shaped line beam that is extended in a predetermined direction. If the line beam is used, the time required for raster scanning a certain region in the cell culture container 1 (irradiated layer 12 thereof) can be further shortened.
  • the laser beam L is scanned so as to draw a lattice with respect to the cell culture vessel 1.
  • the laser beam L is applied to the cell culture vessel 1 so as to draw a hexagonal mesh (or honeycomb structure) in which a plurality of regular hexagons are arranged in the irradiated layer 12 without gaps, that is, to kill the cells in a hexagonal mesh. It is conceivable to perform a scan that moves relative to the image. In that case, the living cells remaining in the hexagon form a cell clamp.
  • the processing nozzle 33 that irradiates the laser L toward the cell culture vessel 1 supported by the support 2 is mounted on the XY stage 4 so that the processing nozzle 33 is moved in the X-axis direction and the Y-axis direction.
  • the support body 2 that supports the cell culture container 1 may be mounted on a displacement mechanism 4 such as an XY stage, and the cell culture container 1 may be moved in the X-axis direction and the Y-axis direction.
  • one of the processing nozzle 33 and the support 2 is mounted on a linear motor carriage that can travel in the X-axis direction, and the other is mounted on a linear motor carriage that can travel in the Y-axis direction.
  • the laser beam L emitted from 33 can be displaced relative to the irradiated layer 12 of the cell culture vessel 1 in both the X-axis direction and the Y-axis direction.
  • a galvano scanner may be employed as the displacement mechanism 4 for displacing the irradiation position of the laser L with respect to the irradiated layer 12 of the cell culture vessel 1.
  • the galvano scanner rotates a mirror that reflects the laser light L supplied from the laser light source 31 by a servo motor or a stepping motor, and changes the optical axis of the laser L at high speed via the mirror. It is possible.
  • the angle at which the optical axis of the laser light L intersects the irradiated layer 12 of the cell culture container 1 cannot be kept strictly constant.
  • the laser light source is a semiconductor laser or the like and the laser oscillated by the laser light source is transmitted to the galvano scanner using an optical fiber or the like, the diameter of the laser beam L irradiated on the irradiated layer 12 or the dimension of the projected shape. It is not easy to focus on the minimum.
  • the optical axis of the laser beam L is irradiated layer 12 of the cell culture vessel 1 as in the XY stage 4 or the linear motor carriage. It is preferable to use a mechanism that can be moved relatively in parallel.
  • the diameter of the laser beam L irradiated to the irradiated layer 12 or the dimension of the projected shape can be minimized.
  • the laser light L emitted from the processing nozzle 33 as an illumination light source when photographing the cells in the cell culture vessel 1.
  • the output of the laser L applied to the cell culture container 1 from the processing nozzle 33 needs to be sufficiently weaker than the output of the laser L applied to the cell culture container 1 in order to kill unnecessary cells.
  • the irradiated layer 12 is configured by applying a polymer as a material of the irradiated layer 12 to the bottom of the well 10 formed in the container body 11 of the cell culture container 1.
  • a polymer as a material of the irradiated layer 12
  • it is difficult to form an irradiated layer by applying a polymer to a multi-dish container body having a plurality of wells by spin coating or the like. Accordingly, a plate-like body containing a material that generates heat upon irradiation with the laser beam L is produced, and this plate-like body is placed or adhered to the bottom of each well of the container body, thereby covering the cell culture container. It is conceivable to form an irradiation layer.
  • the plate-like body may be obtained by applying a pigment that absorbs the laser beam L to a thin plate made of a transparent or translucent plastic or glass material that transmits the laser beam L.
  • the constituent material of the thin plate may contain a dye that absorbs the laser beam L. It is naturally possible to use the dye structure-containing polymer or the photoacid generator described in the above embodiment as a dye that absorbs the laser light L.
  • the laser beam L is irradiated to the irradiated layer 12 after passing through the container body 11 from below the cell culture vessel 1.
  • the laser beam L is irradiated from above, that is, from the surface side of the irradiated layer 12. It is also conceivable to irradiate the irradiated layer 12 directly (without passing through the container body 11). In this case, the container main body 11 does not need to have transparency or translucency for transmitting the laser light L.
  • the focal point of the laser beam L to be irradiated is preferably adjusted not to the cells on the irradiated layer 12 but to the irradiated layer 12.
  • feeder cells When culturing iPS cells and other cells using the cell culture vessel 1, feeder cells may be used in combination.
  • the laser beam machine according to the present invention can also be used for killing feeder cells that are no longer needed in the cell culture vessel 1.
  • the present invention can be used for a process of killing a specific cell among cells cultured on a cell culture vessel.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 高速かつ短時間のレーザ照射処理を通じて、培養容器上で培養された細胞のうちの特定の細胞を致死させるべく、容器本体にレーザ光の照射を受けてこれを吸収する材料を含む層である被照射層が設けられた培養容器の被照射層の表面上で細胞を培養するとともに、当該被照射層における、致死させるべき特定の細胞の直下の箇所にレーザ光を照射するようにした。

Description

細胞処理方法、レーザ加工機、細胞培養容器
 本発明は、細胞培養容器上で培養された細胞のうちの特定の細胞を致死させる方法、並びにその方法の実施に使用されるレーザ加工機及び細胞培養容器に関する。
 近時、体性幹細胞や胚性幹細胞、人工多様性幹細胞人工多能性幹細胞(induced pluripotent stem cells)を用いた再生医療技術及び創薬の研究開発が勃興している。この種の研究開発においては、必要となる目的細胞や組織を効率よく量産できることが極めて重要となる。
 細胞培養の過程では、培地で増殖した細胞集合体(コロニー)の一部をクランプとして切り出し、そのクランプを新しい培地に移して再び培養する継代培養を行うことが通例である。現状、増殖した細胞を複数のクランプに分割する作業は専ら人の手によってなされているが、これには手間を要する上、クランプの大きさが不揃いとなって継代後の細胞の生育状態にばらつきを生ずる原因ともなる。
 また、患者の傷ついた組織や臓器を補う再生医療の目的で患者に移植する細胞または組織中に、分化に失敗した不要細胞が残存していると、腫瘍化その他の患者の健康に悪影響を及ぼすリスクを招く。不要細胞が混入している培養容器を丸ごと廃棄することは、目的細胞または組織の収率(歩留まり)の低下につながり、再生医療のコストを高騰させる。目的細胞または組織の収率を改善するためには、培養容器内に存在する不要細胞を死滅させまたは除去して、残りの細胞を無駄にせず利用することが望ましい。
 下記特許文献1には、培養容器内の不要細胞を選択的に死滅させる方法が開示されている。即ち、可視光や紫外線、赤外線、放射線といった活性エネルギ線の照射を受けて酸性物質を生じる光酸発生剤を予め培養容器の表面に塗布しておき、この培養容器上で培養した細胞のうち死滅させるべき細胞の存在する箇所に活性エネルギ線を10秒ないし10分間程度照射することにより、酸性物質を発生させて対象の細胞を死に至らしめる。活性エネルギ線を照射する領域の制御には、DMD(digital micromirror device)、液晶シャッタアレイ、光空間変調素子、フォトマスク等を使用する。
 下記特許文献1に開示された方法は、対象の細胞を死滅させるために活性エネルギ線を照射する時間が長く、来たるべき再生医療用細胞の大量生産の実現に向けてなお改善の余地があるといえる。加えて、DMD等を使用するマイクロプロジェクションシステムでは、活性エネルギ源(光源)から供給されるエネルギの大部分を無為に捨ててしまう。しかも、光酸発生剤に照射する活性エネルギ線の強度分布を均一に保つことも難しい。
 不要細胞の死滅処理の高速化を企図して、高エネルギのパルスレーザのような活性エネルギ線を直接不要細胞に照射することも考えられる。しかしながら、照射する活性エネルギ線を細胞核に命中させなくてはならず、対象の細胞に対して複数回の照射を実行しないと当該細胞の確実な死滅が見込めない。さらには、活性エネルギ線の直射を受ける不要細胞の周辺にある目的細胞への熱影響が避けがたいという本質的な問題がある。
国際公開第2011/125615号
 本発明は、高速かつ短時間のレーザ照射処理を通じて、培養容器上で培養された細胞のうちの特定の細胞を致死させることを所期の目的とする。
 本発明に係る細胞処理方法は、容器本体にレーザ光の照射を受けてこれを吸収する材料を含む層である被照射層が設けられた細胞培養容器の被照射層の表面上で培養された細胞のうちの特定の細胞を致死させる方法であって、前記被照射層における致死させるべき細胞の直下の箇所にレーザ光を照射するものである。
 致死させる細胞以外の細胞への熱影響を最小限に抑制するためには、前記被照射層における致死させるべき細胞の直下の箇所に、当該細胞が即死せずある程度の時間が経過した後に致死するような出力またはエネルギ量を持つレーザ光を照射することが好ましい。
 または、致死させる細胞以外の細胞への熱影響を最小限に抑制するために、前記被照射層における致死させるべき細胞の直下の箇所に、当該細胞が即死しないような出力またはエネルギ量を持つレーザ光を複数回照射することも好ましい。さすれば、レーザ光の照射から対象の細胞の死滅までに要する時間を短縮することができる。
 本発明に係る細胞処理方法は、前記細胞培養容器で培養した細胞群(複数個の細胞からなる)を複数の部分に分割する目的で用いることができる。その場合、前記被照射層における、培養した細胞をある部分と他の部分とに切り分ける境界線の直下の箇所にレーザ光を照射する。
 本発明に係るレーザ加工機は、容器本体にレーザ光の照射を受けてこれを吸収する材料を含む層である被照射層が設けられた細胞培養容器の被照射層の表面上で培養された細胞のうちの特定の細胞を致死させるものであり、前記被照射層における致死させるべき細胞の直下の箇所にレーザ光を照射する。
 特に、前記被照射層における致死させるべき細胞の直下の箇所に、当該細胞が即死せずある程度の時間が経過した後に致死するような出力またはエネルギ量を持つレーザ光を照射するレーザ加工機を構成することが好ましい。
 前記被照射層における致死させるべき細胞の直下の箇所に、当該細胞が即死しないような出力またはエネルギ量を持つレーザ光を複数回照射するレーザ加工機を構成することも好ましい。
 本発明に係るレーザ加工機は、前記細胞培養容器で培養した細胞群を複数の部分に分割する目的で用いることができる。その場合、前記被照射層における、培養した細胞をある部分と他の部分とに切り分ける境界線の直下の箇所にレーザ光を照射するものとする。
 本発明に係る細胞培養容器は、容器本体にレーザ光の照射を受けてこれを吸収する材料を含む層である被照射層が設けられているものであり、その被照射層の表面上で細胞が培養される。
 本発明によれば、高速かつ短時間のレーザ照射処理を通じて、培養容器上で培養された細胞のうちの特定の細胞を致死させることが可能となる。
本発明の一実施形態におけるレーザ加工機の概要を示す斜視図。 同レーザ加工機のハードウェア資源構成を示す図。 同レーザ加工機の機能ブロック構成図。 同実施形態の細胞処理方法を説明する側断面図。 細胞培養容器の容器本体及び被照射部のそれぞれの光透過率及び光吸収率を示すグラフ。 被照射部の有無による細胞の死滅/生存の結果の違いを示す写真画像。 細胞がレーザ照射時に即死せずある程度の時間が経過した後に死に至ることを示す写真画像。 レーザの出力及び単位面積あたりのエネルギ量と細胞の死滅/生存の結果との関係を示す写真画像。 レーザの走査速度及びレーザ出力の好適値を概念的に示すグラフ。 同実施形態の細胞処理方法により細胞コロニーを複数の部分に分割した結果を示す写真画像。 同実施形態の細胞処理方法により細胞コロニーを複数の部分に分割した結果を示す写真画像。 レーザ光を一回照射した場合の細胞の死滅/生存の結果を示す写真画像。 レーザ光を二回照射した場合の細胞の死滅/生存の結果を示す写真画像。 レーザ光を四回照射した場合の細胞の死滅/生存の結果を示す写真画像。 レーザ光を六回照射した場合の細胞の死滅/生存の結果を示す写真画像。 ビーム径を20μmに絞ったレーザの照射によっても細胞が死に至ることを示す写真画像。
 本発明の一実施形態を、図面を参照して説明する。本実施形態のレーザ加工機は、細胞培養容器1上で培養された細胞のうちの特定の細胞を致死させるレーザ照射処理を実行するものである。図1に示すように、本レーザ加工機は、一または複数の細胞培養容器1を支持する支持体2と、支持体2に支持させた細胞培養容器1にレーザビームLを照射するレーザ照射装置3と、細胞培養容器1に対するレーザビームLの照射位置を操作する変位機構4と、レーザ照射装置3及び変位機構4を制御する制御部5とを主要な構成要素とする。
 細胞培養容器1及び支持体2は、COインキュベータ(図示せず)内に配置されることが好ましい。COインキュベータは、その内部の雰囲気のCO濃度及び温度を調節することのできる周知のものであり、レーザ照射処理中における細胞の培養環境、例えば細胞培養容器1に充填されている培地のpH等を好適な状態に維持する役割を担う。
 レーザ照射装置3は、レーザ光源31と、レーザ光源31から供給されたレーザ光Lを細胞培養容器1に向けて出射させる加工ノズル33と、レーザ光源31と加工ノズル33との間に介在しレーザ光源31が出力するレーザ光Lを加工ノズル33へと導く光学系32とを備える。
 レーザ光源31は、連続波レーザまたはパルスレーザ(連続波に近い、パルス幅の長い高周波レーザでもよい)Lを発振する装置である。使用するレーザLの波長は一意に限定されず、例えば405nm、450nm、520nm、532nm、808nm等の可視光レーザや赤外線レーザを採用することができる。尤も、後述する細胞培養容器1の被照射層12がそのレーザLのエネルギを吸収できるような波長を選択する必要がある。また、波長が380nm以下の紫外線レーザは、DNAやタンパク質に吸収される可能性があり細胞への影響が懸念される。故に、レーザLの波長は380nmよりも長いことが好ましい。本実施形態では、レーザ光源31として、波長が405nm近傍にある最大出力5Wの連続波ダイオードレーザを想定している。
 加工ノズル33は、細胞培養容器1の被照射層12に照射するべきレーザ光Lを集光するためのレンズや、レーザ光Lの出射のON/OFFを切り替えるためのシャッタまたはミラー等を内蔵する。加工ノズル33は、支持体2に支持される細胞培養容器1の下方に位置し、上方に向かってレーザLを出射させる。加工ノズル33から出射するレーザビームLの光軸は、細胞培養容器1の被照射層12に対して略直交する。
 レーザ光源31から加工ノズル33に向けてレーザLを伝搬させる光学系32は、光ファイバ、ミラー、レンズ等の任意の光学要素を用いて構成できる。
 変位機構4は、支持体2に支持させた細胞培養容器1に対してレーザ照射装置3の加工ノズル33を相対的に変位させるXYステージを主体とする。XYステージ4は、リニアモータ台車等を介して対象物をX軸方向(左右方向)及びY軸方向(前後方向)に沿って高速かつ精密に移動させ得る既知のものである。本実施形態では、加工ノズル33をXYステージ4に支持させ、加工ノズル33を支持体2及び細胞培養容器1に対して移動させることとしている。だが、支持体2をXYステージ4に支持させ、支持体2及び細胞培養容器1を加工ノズル33に対して移動させるようにしても構わない。何れにせよ、変位機構4により、細胞培養容器1の被照射層12とレーザビームLの光軸とが交わる角度を略一定に保ちながら、細胞培養容器1の被照射層12に対するレーザLの照射位置を変位させることができる。
 図2に示すように、制御部5は、プロセッサ5a、メインメモリ5b、補助記憶デバイス5c、操作入力デバイス5d、I/Oインタフェース5e等を有し、これらがコントローラ(システムコントローラやI/Oコントローラ等)によって制御されて連携動作するものである。補助記憶デバイス5cは、フラッシュメモリ、ハードディスクドライブ、その他である。操作入力デバイス5dは、手指で操作可能なタッチパネル、トラックパッド、マウス等のポインティングデバイスや、キーボード、押下ボタン等である。I/Oインタフェース5eは、サーボドライバ(サーボコントローラ)を含むことがある。また、制御部5は、汎用的なパーソナルコンピュータ、サーバコンピュータ、ワークステーション等により構成されることがある。
 制御部5が実行するべきプログラムは、補助記憶デバイス5cに記憶されており、プログラム実行の際に、メインメモリ5bに読み込まれ、プロセッサ5aによって解読される。そして、制御部5は、プログラムに従い、図3に示す照射位置座標取得部51、出力制御部52及び機構操作部53としての機能を発揮する。
 照射位置座標取得部51は、細胞培養容器1に対するレーザ光Lの照射位置を指し示す一または複数のXY座標を取得する。ここに言うXY座標とは即ち、細胞培養容器1内に存在している培養細胞のうちの致死させるべき細胞の位置を指し示す座標である。致死させるべき細胞とは、例えば、培養したい細胞または組織に混入した不要細胞や、継代培養の目的で細胞培養容器1内の細胞コロニーを複数の細胞クランプに分割する際の複数のクランプの境界線上にある細胞等である。レーザ光Lの照射位置の座標は、予めメインメモリ5bまたは補助記憶デバイス5cに格納されていることもあれば、ユーザの手によって指定されることもある。照射位置座標取得部51は、メインメモリ5bまたは補助記憶デバイス5cに格納されている照射位置の座標を読み出すか、ユーザによる照射位置の座標の指定を操作入力デバイス5dを介して受け付ける。
 細胞培養容器1内の細胞コロニーをCCDやCMOS等のカメラセンサを用いて撮影し、得られた画像を解析して不要細胞その他の致死させるべき細胞の位置を特定するという形で、レーザ光Lの照射位置の座標を得ることもできる。画像解析を通じた致死させるべき細胞の位置の検出、即ちレーザ光Lの照射位置の座標の決定は、制御部5自身が実行してもよく、制御部5と通信可能に接続している外部の装置またはコンピュータ(図示せず)により実行してもよい。前者の場合、照射位置座標取得部51は、カメラセンサが撮影した画像をI/Oインタフェース5eを介して取得し、その画像を解析して照射位置の座標を取得する。後者の場合、照射位置座標取得部51は、外部の装置またはコンピュータからもたらされる照射位置の座標をI/Oインタフェース5eを介して受信することにより、照射位置の座標を取得する。
 出力制御部52は、加工ノズル33から細胞培養容器1の被照射層12に向けたレーザLの出射のON/OFF、及び被照射層12に照射するレーザLの出力強度つまりはレーザLの持つエネルギ量を制御する。具体的には、加工ノズル33からのレーザLの出射のON/OFFを指令する信号をI/Oインタフェース5eを介して加工ノズル33に与えるとともに、レーザLの出力を制御する信号をI/Oインタフェース5eを介して加工ノズル33またはレーザ光源31に与える。
 機構操作部53は、加工ノズル33を支持しているXYステージ4を操作することで、加工ノズル33を照射位置座標取得部51において取得した照射位置の座標に向けて移動させ、加工ノズル33から出射するレーザビームLの光軸を当該照射位置の座標に位置づける。具体的には、照射位置座標取得部51において取得した照射位置の座標に対応する指令の信号を、I/Oインタフェース5eを介してXYステージ4に与える。加工ノズル33から連続波レーザLまたは連続波に近い高周波数パルスレーザLを出射させつつ、照射位置の座標の時系列に従って加工ノズル33ひいてはレーザビームLを移動させれば、レーザLを細胞培養容器1の被照射層12に照射しながらその照射位置を連続的に移動させる走査を実行することができる。
 なお、細胞培養容器1(の被照射層12)における一定の領域を加工ノズル33の光軸によってラスタスキャンするように、加工ノズル33を細胞培養容器1に対して相対的に移動させながら、加工ノズル33の光軸が死滅させるべき細胞の直下に到達するタイミングで、加工ノズル33からレーザLを出射させるようにしてもよい。
 図4に示すように、本実施形態の細胞培養容器1は、加工ノズル33から出射するレーザ光Lを透過させ得る容器本体11に、レーザ光Lの照射を受けて熱及び/または酸を発生させる光応答性材料を含む層である被照射層12を設けたものである。
 容器本体11は、加工ノズル33から出射するレーザLが属する波長帯の光を透過させる透明性または透光性を有する、プラスチックやガラス等の材料により構成する。プラスチックの例としては、ポリスチレン系ポリマー、アクリル系ポリマー(ポリメタクリル酸メチル(PMMA)等)、ポリビニルピリジン系ポリマー(ポリ(4-ビニルピリジン)、4-ビニルピリジン-スチレン共重合体等)、シリコーン系ポリマー(ポリジメチルシロキサン等)、ポリオレフィン系ポリマー(ポリエチレン、ポリプロピレン、ポリメチルペンテン等)、ポリエステルポリマー(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等)、ポリカーボネート系ポリマー、エポキシ系ポリマー等を挙げることができる。既製の培養容器を、そのまま容器本体11として用いてもよい。容器本体11の形状は、既製の培養容器と同様、ディッシュ(シャーレ)形、マルチディッシュ形、フラスコ形等とすることができる。
 図5に、ポリスチレン系樹脂を用いて作製した、ある大きさ及び形状の容器本体11の光透過率を実線で表している。当該容器本体11の光透過率は、光波長約380nm以上では85%以上と非常に高い。一方で、光波長約380nm以下では、光波長が短くなるほど光透過率が低下、即ち容器本体11による光の吸収が増大してゆく。これは、ポリスチレン材料に含まれる不純物に起因するものと思われる。
 被照射層12は、加工ノズル33から出射するレーザLが属する波長帯の光を吸収する色素構造(発色団)を含んだポリマー(高分子)により構成することが好ましい。このような材料は、容器本体11へのコーティングが容易であり、必要な細胞の接着性を確保でき、かつ細胞への移行も起こりにくいものとなるからである。レーザ光Lを吸収する色素構造の例としては、アゾベンゼン、ジアリールエテン、スピロピラン、スピロオキサジン、フルギド、ロイコ色素、インジゴ、カロチノイド(カロテン等)、フラボノイド(アントシアニン等)、キノイド(アントラキノン等)等といった有機化合物の誘導体を挙げることができる。並びに、ポリマーを構成する骨格の例としては、アクリル系ポリマー、ポリスチレン系ポリマー、ポリオレフィン系ポリマー、ポリ酢酸ビニルやポリ塩化ビニル、ポリオレフィン系ポリマー、ポリカーボネート系ポリマー、エポキシ系ポリマー等を挙げることができる。
 被照射層12の材料となる色素構造含有ポリマーの一具体例として、ポリ[メチルメタクリラート-co-(ジスパースイエロー 7 メタクリラート)](化1、(C(C2320)を示す。但し、このアゾポリマーにおけるアゾベンゼンの構造については、無置換のアゾベンゼンの他、ニトロ基やアミノ基、メチル基等で修飾した様々なバリエーションが考えられる。
Figure JPOXMLDOC01-appb-C000001
 上述の色素構造含有ポリマーを含む原料液、または当該色素構造含有ポリマーを溶剤(1,2-ジクロロエタン、メタノール等)に溶解させた原料液を、スピンコート法やキャスト法等により容器本体11の上向面即ちウェル10の底に塗布して硬化させれば、レーザ光Lの照射を受けて熱を生じさせる被照射層12を形成することができる。なお、レーザ光Lを吸収する色素を容器本体11の構成材料に含有させることで、または色素構造含有ポリマーを材料として容器本体11を作製することにより、レーザ光Lの照射を受けて熱を生じさせる被照射層12を形成しても構わない。
 図5に、色素構造としてアゾベンゼンを有するポリマーを容器本体11にコーティングして構成した、所定の厚みを有する被照射層12の光透過率及び光吸収率を破線で表している。当該被照射層12の光吸収率は、光波長が約360nmのときにピークとなり、光波長が約360nmから長くなるほど低下してゆく。この被照射層12の光吸収率は、光波長が約425nm以上の領域で20%を切る。だが、光波長が長くなってもある程度以上の光吸収性が存在しており、405nm、450nm、520nmまたは532nmの波長のレーザ光Lを当該被照射層12に十分に吸収させることが可能である。
 被照射層12の材料として、上述の色素構造含有ポリマーとともに、またはこれに代えて、レーザ光Lの照射を受けて酸性物質を発生させる光酸発生剤を用いることも考えられる。上掲の特許文献1にも開示されている通り、光酸発生剤は、加工ノズル33から出射するレーザLが属する波長帯の光を吸収する色素構造(発色団)と、分解後に酸性物質となる酸前駆体とを備えた構造を有するものとすることが好ましい。スルホン酸誘導体、カルボン酸エステル類、オニウム塩類、ニトロベンズアルデヒド構造を有する光酸発生基等は、このような光酸発生剤に該当する。
 特に、光酸発生剤となるスルホン酸誘導体の例として、チオキサントン系スルホン酸誘導体(スルホン酸1,3,6-トリオキソ-3,6-ジヒドロ-1H-11-チア-アザシクロペンタ[a]アントラセン-2-イルエステル等)及びナフタレンイミド系スルホン酸誘導体(スルホン酸1,8-ナフタルイミド等)を挙げることができる。これら以外に、ジスルホン類、ジスルホニルジアゾメタン類、ジスルホニルメタン類、スルホニルベンゾイルメタン類、イミドスルホネート類、ベンゾインスルホネート類等のスルホン酸誘導体も採用することが可能である。
 また、カルボン酸エステルの例として、1,8-ナフタレンジカルボン酸イミドメチルスルホネートや1,8-ナフタレンジカルボン酸イミドトシルスルホネート等を挙げることができ、オニウム塩の例として、テトラフルオロボレート(BF )、ヘキサフルオロホスフェート(PF )、ヘキサフルオロアンチモネート(SbF )等のアニオンを有するスルホニウム塩またはヨードニウム塩を挙げることができる。
 上述の光酸発生剤をプラスチック(特に、PMMAのようなアクリル系ポリマーやポリスチレン系ポリマー等)に含ませた原料液、または当該光酸発生剤を溶剤(1,2-ジクロロエタン、メタノール等)に溶解させた原料液を、スピンコート法やキャスト法等により容器本体11の上向面即ちウェル10の底に塗布して硬化させれば、レーザ光Lの照射を受けて熱とともに酸を生じさせる被照射層12を形成することができる。なお、光酸発生剤を容器本体11の構成材料に含有させることにより、レーザ光Lの照射を受けて熱及び酸を生じさせる被照射層12を形成しても構わない。
 図5に、色素構造としてチオキサントン骨格を有し、酸前駆体としてスルホン酸類を有するチオキサントン系スルホン酸誘導体を含んだポリマーを容器本体11にコーティングして構成した、所定の厚みを有する被照射層12の光透過率及び光吸収率を鎖線で表している。当該被照射層12の光吸収率は、光波長が約375nmから約460nmの範囲に亘って分布する。この範囲外の波長の光を当該被照射層12が吸収することはできない。従って、405nmまたは450nmの波長のレーザ光Lであれば、当該被照射層12に吸収させることが可能である。尤も、当該被照射層12の光吸収率は、色素構造としてアゾベンゼンを有するポリマーを用いて構成した被照射層12の光吸収率(破線)よりは小さくなる。即ち、この被照射層12の光吸収率は、光波長が約400nmから約700nmの可視光領域で20%(さらに言えば、10%)を切る。
 被照射層12は、レーザ光Lの照射を受けて蛍光を発しない材料を用いて構成することが好ましい。また、被照射層12の厚みは、10μm以下とすることが好ましい。
 なお、細胞培養容器1の被照射層12の表面に、細胞の接着性を高めるための材料、例えばラミニンやマトリゲル等のECM(extracellular matrix)をコーティングしてもよい。
 細胞を培養する際には、細胞培養容器1の容器本体11に成形されているウェル10内に培地(特に、液体培地)13を充填する。その培地13は、ウェル10の底に敷設されている被照射層12の直上に所在することとなる。そして、培養される細胞は、当該被照射層12の表面に接着しつつ増殖して細胞コロニーを形成する。
 図4に示すように、細胞培養容器1のウェル10内に存在している細胞のうちの不要細胞のみを致死させるレーザ照射処理では、レーザ照射装置3の加工ノズル33から出射するレーザ光Lを、支持体2に支持させた細胞培養容器1の被照射層12における、致死させるべき細胞の直下の箇所に照射する。本実施形態では、加工ノズル33を細胞培養容器1の下方に配置しており、加工ノズル33から打ち上げたレーザ光Lを容器本体11を透過させた上、被照射層12に裏面側から照射する。加工ノズル33に内蔵されているレンズは、加工ノズル33から出射するレーザ光Lの焦点を細胞培養容器1の被照射層12に合わせる。被照射層12におけるレーザ光Lの照射を受けた箇所は、レーザ光Lのエネルギを吸収して熱及び/または酸を生じ、その熱によって当該箇所の直上に存在する不要細胞を死に至らしめる。
 図6は、細胞培養容器1の容器本体11の上向面即ちウェル10の底に被照射層12を敷設する領域R1と敷設しない領域R2とを設け、そのウェル10内でMDCK細胞(Madin-Darby canine kidney cell)を培養し、そのウェル10の底に向けてレーザ照射装置3の加工ノズル33から連続波レーザLを照射して、しかる後(数時間経過後)トリパンブルー溶液による死細胞の染色を行った結果である。使用したレーザLの波長は405nm、レーザL出力は5.08W、レーザビームL径は50μmであり、連続波レーザLを出射する加工ノズル33即ちレーザビームLを細胞培養容器1に対して500mm/秒の速さで直線的に移動させる走査を一回実行している。レーザ光Lの照射箇所においてレーザ光Lが与える単位面積あたりのエネルギ量(エネルギ密度)は、約25.9J/cmとなる。被照射層12の構成材料は、色素構造としてアゾベンゼンを有しているポリマーである。
 図6から明らかな通り、被照射層12を敷設した領域R1内では、レーザ光Lの照射箇所の直上に存在していた細胞が死滅している。これに対し、被照射層12を敷設していない領域R2内では、容器本体11を透過したレーザ光Lの直射を受けたにもかかわらず細胞が生存している。
 さらに、被照射層12の構成材料に光酸発生剤を用いているならば、被照射層12におけるレーザ光Lの照射を受けた箇所で酸性物質が発生し、その酸性物質が当該箇所の直上に存在する不要細胞の死または被照射層12からの剥離を促す。光酸発生剤がスルホン酸誘導体である場合、発生する酸性物質はスルホン酸類である。
 上記のように、レーザ光Lの波長、出力及びエネルギ量を、細胞に直射しても細胞が死に至らないような大きさに設定したとしても、被照射層12の働きにより、不要な細胞を的確に死に至らしめることができる。
 その上で、致死させるべき不要細胞以外の細胞への熱影響を最小限に抑えるためには、細胞培養容器1の被照射層12に照射するレーザ光Lの波長、出力及びエネルギ量を、不要細胞が即死せずレーザ光Lの照射からある程度の時間が経過した後(例えば、数十分後、一時間後ないし数時間後)に致死するような大きさに調整することが好ましい。
 図7は、被照射層12を敷設した細胞培養容器1のウェル10内でMDCK細胞を培養し、そのウェル10の底にある被照射層12に向けて加工ノズル33から連続波レーザLを照射した後、所定の時間の経過を待ってトリパンブルー溶液による死細胞の染色を行った結果である。使用したレーザLの波長は405nm、レーザL出力は5W、レーザビームL径は50μmである。この図示例では、0.5mm間隔で互いに平行な四本の筋を描画するように、レーザビームLを細胞培養容器1に対して1500mm/秒の速さで直線的に移動させる走査を、各筋毎に一回実行している。レーザ光Lの照射箇所においてレーザ光Lが与える単位面積あたりのエネルギ量は、約8.7J/cmとなる。被照射層12の構成材料は、色素構造としてアゾベンゼンを有しているポリマーである。図7(A)はレーザLの照射から3分経過後にトリパンブルー染色したもの、図7(B)はレーザLの照射から56分経過後にトリパンブルー染色したもの、図7(C)はレーザLの照射から122分経過後にトリパンブルー染色したものである。これらの図から明らかな通り、照射から3分後の時点ではレーザ光Lの照射箇所の直上に存在する細胞が生存しているが、56分経過後にはレーザ光Lの照射箇所の直上に存在する細胞の少なくとも一部が死滅し、122分経過後にはレーザ光Lの照射箇所の直上に存在する細胞の殆どまたは全てが死滅していることが分かる。このように、レーザ光Lの照射直後は不要細胞が生存しており、その照射からある程度の時間が経過した後に不要細胞が死滅するという状況を作り出すことは可能である。そして、これにより、致死させるべき不要細胞以外の細胞、換言すれば不要細胞の周辺にある目的細胞または組織への熱影響を最小限に抑制することができるのである。
 図8は、被照射層12を敷設した細胞培養容器1のウェル10内でMDCK細胞を培養し、そのウェル10の底にある被照射層12に向けて加工ノズル33から連続波レーザLを照射して、所定時間が経過した後トリパンブルー溶液による死細胞の染色を行った結果である。使用したレーザLの波長は405nm、レーザビームL径は50μmで統一しているが、レーザL出力及びレーザビームLを細胞培養容器1に対して移動させる走査の速度の条件は、以下のように様々に変化させている:
(I)出力5W、走査速度2000mm/秒、エネルギ密度約6.5J/cm
(II)出力3.86W、走査速度1600mm/秒、エネルギ密度約6.1J/cm
(III)出力2.44W、走査速度1000mm/秒、エネルギ密度約6.2J/cm
(IV)出力1.89W、走査速度800mm/秒、エネルギ密度約6.0J/cm
(V)出力1.6W、走査速度640mm/秒、エネルギ密度約6.4J/cm
(VI)出力1.11W、走査速度400mm/秒、エネルギ密度約7.1J/cm
(VII)出力0.86W、走査速度320mm/秒、エネルギ密度約6.8J/cm
(VIII)出力0.4W、走査速度200mm/秒、エネルギ密度約5.1J/cm
(IX)出力0.6W、走査速度50mm/秒、エネルギ密度約30.6J/cm
(X)出力0.4W、走査速度50mm/秒、エネルギ密度約20.4J/cm
(XI)出力0.4W、走査速度50mm/秒、エネルギ密度約20.4J/cm
(XII)出力0.4W、走査速度50mm/秒、エネルギ密度約20.4J/cm
レーザビームLによる走査は、それぞれ一回ずつ実行している。被照射層12の構成材料は、色素構造としてアゾベンゼンを有しているポリマーである。
 レーザ光Lの照射箇所においてレーザ光Lが与える単位面積あたりのエネルギ量は、レーザL出力が大きいほど大きくなり、また走査速度が遅いほど大きくなる。レーザL出力が小さくとも、走査速度が遅ければ、つまりはレーザ光Lの照射箇所においてレーザ光Lを照射する時間が長ければ、当該照射箇所における被照射層12が吸収するエネルギの量は大きくなる。だが、図8の(VII)及び(VIII)から明らかな通り、レーザL出力が小さいと、たとえ照射箇所に与えられるエネルギの量が一定以上あったとしても、当該照射箇所に所在する細胞は殆どまたは全く死滅しない。出力の小さいレーザLを用いて不要細胞を確実に死滅させるためには、図8の(IX)ないし(XII)に示されるように、レーザビームLによる走査の速度を十分に遅くして、照射箇所に与えられるエネルギの量をより大きくしなければならない。逆に、レーザL出力が大きければ、走査速度を高速化しても、照射箇所に所在する細胞を死滅させることができる。
 加えて、図8の(IX)と(X)ないし(XII)との比較から明らかな通り、レーザLの出力または単位面積あたりのエネルギ量の調整を通じて、致死させる細胞の幅または範囲の大きさを拡縮させることも可能である。即ち、レーザLの出力及び/または単位面積あたりのエネルギ量が大きいほど、細胞が死滅する幅または範囲が拡大する。
 図9に、細胞が死滅する幅または範囲がある一定の大きさとなるような、レーザビームLの走査速度とレーザLの出力との関係を概念的に示している。図9に示している線よりもレーザLの走査速度を速め、またはレーザLの出力を弱めると、細胞が死滅する幅または範囲が狭まる。レーザLの走査速度が極端に速いか、レーザLの出力が極端に小さくなれば、細胞は死ななくなる。逆に、図9に示している線よりもレーザLの走査速度を遅め、またはレーザLの出力を強めると、細胞が死滅する幅または範囲が拡がる。即ち、不要細胞に隣接する目的細胞または組織が受ける熱影響が大きくなる。
 また、レーザLの照射から不要細胞が死に至るまでの所要時間も、レーザLの出力及び/または単位面積あたりのエネルギ量が大きいほど短くなると考えられる。
 レーザ照射処理に用いるレーザLの出力及び/または単位面積あたりのエネルギ量の好適な条件は、細胞培養容器1に設ける被照射層12の構成材料や厚み等の影響を受ける。レーザ光Lの照射を受けた被照射層12がレーザ光Lのエネルギを吸収して発生させる単位面積あたりの熱量は、被照射層12に照射されるレーザ光Lの持つ単位面積あたりエネルギ量に、単位面積の被照射層12が当該レーザ光Lのエネルギを吸収して利用できる割合である光利用率を乗じたものとなる。この光利用率は、被照射層12の構成材料の性質即ち光吸収率に依存するのは勿論のこと、レーザ光Lを吸収して熱を発する光熱反応に寄与する材料が被照射層12の単位面積あたりどれくらいの量存在しているかによっても変化する。容器本体11に被照射層12を形成するために塗布する構成材料の塗布厚みを増せば、光熱反応に寄与する材料の量が増加して、単位面積の被照射層12の光利用率も増大する。従って、被照射層12において発生する単位面積あたりの熱量が増し、その分細胞が死に至りやすくなる。よって、細胞培養容器1に設ける被照射層12の光利用率に応じて、不要細胞の死滅処理に適したレーザLの出力及び/または単位面積あたりのエネルギ量を実験的に求める必要がある。
 本実施形態のレーザ加工機及び細胞培養容器1は、培養した細胞コロニーを複数の部分に分割する作業に好適に利用できる。図10及び図11に、ECMの一種であるマトリゲルを被照射層12にコートした細胞培養容器1上でフィーダーレス培養したヒトiPS細胞をレーザ照射処理により多数の細胞クランプに分割し、得られた細胞クランプを新しい培地に移して再び培養する継代培養実験の結果を示す。使用したレーザLの波長は405nm(実測されたスペクトル分布は399nmから403nm)、レーザL出力は5W、レーザビームL径は50μmである。図示例では、レーザビームLを細胞培養容器1に対して格子を描くように移動させる走査を行い、被照射層12における、レーザLの照射を受ける格子の部分の直上に存在する不要細胞を死滅させることにより、格子目の部分に存在する不要細胞以外の細胞の塊をクランプとして取り出そうとしている。つまり、細胞培養容器1上で培養した細胞コロニーを、格子に沿って切断している。レーザLの照射を受ける格子の部分は、あるクランプと他のクランプとを隔てる境界線に相当する。
 図10に示している例では、0.4mm間隔で上記の格子の要素となる互いに平行な多数の筋を描画するように、レーザビームLを細胞培養容器1に対して1000mm/秒の速さで直線的に移動させる走査を、各筋毎に一回実行している。被照射層12の構成材料は、色素構造としてアゾベンゼンを有しているポリマーである。そして、このポリマーを7μg/cmの密度で容器本体11の上向面即ちウェル10の底に塗布することで、平均の厚みが70nmの被照射層12をウェル10の底に敷設している。図10(A)は、レーザLの照射から不要細胞の死滅に要する時間が経過した後、細胞培養容器1の被照射層12の表面に接着する細胞をその表面から剥離させるための酵素をウェル10内に注入したものである。図10(B)は、図10(A)の拡大である。生細胞である細胞クランプは、細胞培養容器1から剥離して丸まっている。図10(C)は、レーザ照射処理を通じて得られた細胞クランプである。並びに、図10(D)は、その細胞クランプを新しい培地に移して一日が経過した後の状態である。図10(D)からは、元の細胞培養容器1から切り出した細胞クランプが順調に成長を始めていることが見て取れる。
 図10(A)及び(B)において格子状をなしている細胞群は、レーザ照射処理により死滅した細胞である。図10に示した例では、レーザLの出力及び/または単位面積あたりのエネルギ量が最適値よりも大きかった可能性があり、レーザLの出力及び/または単位面積あたりのエネルギ量をさらに低減させても適切に細胞クランプの切り出しを遂行できるものと思われる。
 図11に示している例では、0.4mm間隔で上記の格子の要素となる互いに平行な多数の筋を描画するように、レーザビームLを細胞培養容器1に対して500mm/秒の速さで直線的に移動させる走査を、各筋毎に一回実行している。被照射層12の構成材料は、色素構造としてチオキサントン骨格を有し、酸前駆体としてスルホン酸類を有するチオキサントン系スルホン酸誘導体を含んだポリマーである。そして、このポリマーを200μg/cmの密度で容器本体11のウェル10の底に塗布することで、平均の厚みが2μmの被照射層12をウェル10の底に敷設している。図11(A)は、レーザLの照射から不要細胞の死滅に要する時間が経過した後、細胞培養容器1の被照射層12の表面に接着する細胞をその表面から剥離させるための酵素をウェル10内に注入したものである。図11(B)は、図11(A)の拡大である。生細胞である細胞クランプは、細胞培養容器1から剥離して丸まる。図11(C)は、レーザ照射処理を通じて得られた細胞クランプである。並びに、図11(D)は、その細胞クランプを新しい培地に移して一日が経過した後の状態である。図11(D)からは、元の細胞培養容器1から切り出した細胞クランプが順調に成長を始めていることが見て取れる。
 図10(A)及び(B)と比べて、図11(A)及び(B)では、レーザ照射処理により死滅した細胞を明確に視認できない。また、一部の細胞クランプ同士が完全に切断されずに繋がっているようにも見受けられる。図11に示した例では、レーザLの出力及び/または単位面積あたりのエネルギ量が最適値よりも小さかった可能性があり、レーザLの出力及び/または単位面積あたりのエネルギ量をより増大させることでさらによい結果を得られる余地があるように思われる。
 本実施形態の細胞処理方法は、容器本体11にレーザ光Lの照射を受けてこれを吸収する材料を含む層である被照射層12が設けられた細胞培養容器1の被照射層12の表面上で培養された細胞のうちの特定の細胞を致死させる方法であって、前記被照射層12における致死させるべき細胞の直下の箇所にレーザ光Lを照射するものである。
 本細胞処理方法、並びに本実施形態のレーザ加工機及び細胞培養容器1によれば、高速かつ短時間のレーザ照射処理を通じて、細胞培養容器1上で培養された細胞のうちの特定の細胞を致死させることが可能である。細胞培養容器1上の細胞コロニーのうち、所望の細胞に分化しなかった不要細胞のみをピンポイントで死滅させることができるだけでなく、細胞培養容器1(の被照射層12)における一定の領域をレーザビームLによりラスタスキャンすることで、当該領域に所在する細胞をおしなべて死滅させることもできる。
 また、細胞培養容器1で培養した細胞群をある部分と他の部分とに切り分ける境界線の直下にあたる被照射層12にレーザLを照射すれば、培養した細胞をある部分と他の部分とに分割することができる。これは、継代培養のために均一な大きさの細胞クランプを簡便に抽出するために有効である。
 上掲の特許文献1に開示されている方法では、対象の細胞を死滅させるために活性エネルギ線を照射する時間が長い。例えば、直径35mmの培養容器たるディッシュの全域を処理しようとすれば、約8時間かかる計算となる。これに対し、本実施形態の細胞処理方法では、レーザビームLを細胞培養容器1に対して500mm/秒以上の速度で走査しても不要細胞を的確に死滅させることができるため、レーザビームL径が50μmであれば直径35mmのディッシュ形の細胞培養容器1の全域を処理するのに約2.7分しかかからない。レーザビームLの走査速度を1500mm/秒とすれば、所要時間は1分を切る。本実施形態によれば、一定時間内に多数個の細胞処理容器に対してレーザL照射を実行し、当該処理容器内に存在する不要細胞を致死させる高速処理を実現でき、来たるべき再生医療用細胞の大量生産の実現に大きく寄与する。
 細胞培養容器1に照射するレーザビームLの径は50μm以下に絞ることが可能であり、一個の細胞の寸法が20μm以下であるヒトiPS細胞のような小形の細胞に対しても的確に処理を施すことができる。
 さらに、細胞培養容器1の被照射層12における致死させるべき細胞の直下の箇所に、当該細胞が即死せずある程度の時間が経過した後に致死するような出力またはエネルギ量を持つレーザ光Lを照射するようにすれば、致死させるべき細胞以外の細胞への熱影響を最小限に抑制でき、目的細胞または組織の収率をより一層向上させることができる。
 なお、本発明は以上に詳述した実施形態に限られるものではない。上記実施形態では、細胞培養容器1の被照射層12における致死させるべき細胞の直下の箇所に、当該細胞が即死せず(レーザ光Lの照射から数分程度では死に至らず)ある程度以上の時間が経過した後に致死するような出力またはエネルギ量を持つレーザ光Lを一回照射することで、対象の細胞を死滅させていた。これに対し、致死させる細胞以外の細胞への熱影響を最小限に抑制しながら、対象の細胞が死に至るまでの所要時間を短縮したいのであれば、上記実施形態と同様のレーザ加工機及び細胞培養容器1を用いて、細胞培養容器1の被照射層12における致死させるべき細胞の直下の箇所に、一回照射しただけでは当該細胞が即死しないような出力またはエネルギ量を持つレーザ光Lを複数回照射すればよい。
 図12ないし図15は、レーザ光Lの照射を受けて熱を生じさせる被照射層12を敷設した細胞培養容器1のウェル10内でiPS細胞を培養し、そのウェル10の底にある被照射層12に向けて加工ノズル33から連続波レーザLを照射した後、できるだけ間を置かずに(実際には、染色作業のために数分ないし十数分程度を要する)トリパンブルー溶液による死細胞の染色を行った結果である。なお、トリパンブルー染色前の洗浄及びトリパンブルー染色時に、一部細胞がウェル10から剥がれ落ちている。使用したレーザLの波長は405nm、レーザL出力は1W、レーザビームL径は50μmである。被照射層12の構成材料は、色素構造としてアゾベンゼンを有しているポリマーである。図示例では、0.2mm間隔で互いに平行な複数本の筋を描画するように、レーザビームLを細胞培養容器1に対して100mm/秒の速さで直線的に移動させる走査を、各筋毎に一回ないし複数回実行している。レーザビームLによる走査回数、即ちレーザ光Lの照射回数に関して、図12は対象の細胞の直下の箇所に一回照射後すぐにトリパンブルー染色を実施した結果を示し、図13は対象の細胞の直下の箇所に二回照射後すぐにトリパンブルー染色を実施した結果を示している。並びに、図14は対象の細胞の直下の箇所に四回照射後すぐにトリパンブルー染色を実施した結果を示し、図15は対象の細胞の直下の箇所に六回照射後すぐにトリパンブルー染色を実施した結果を示している。
 図12では、細胞が殆ど染色されていない。これは、レーザ光Lを一回照射してから数分ないし十数分後の時点では、照射箇所の直上に存在する細胞が生存していることを示している。これに対し、図13ないし図15では、細胞が染色されている。即ち、レーザ光Lの照射回数を二回以上に増やすことで、その照射から短い時間しか経過していなくとも、照射箇所の直上に存在する細胞が死に至るということが分かる。また、レーザ光Lの照射回数を二回から四回に増やすことで、レーザLの照射直後の時期におけるトリパンブルー染色の強度が増している。つまり、レーザ光Lの照射回数を増やすほど細胞が短時間で死滅する、特にレーザ光Lを四回照射することで照射箇所の直上に存在する細胞がほぼ即死状態となることが明らかとなる。その一方で、図13ないし図15において、染色された細胞の幅はレーザビームLの径である50μm程度に抑えられている。このように、細胞が即死しないような出力またはエネルギ量を持つレーザ光を複数回照射する手法により、細胞が死に至るまでの所要時間を短縮しながら、致死させるべき細胞の周辺にある細胞への熱影響を最小限に抑制することが可能である。
 しかして、図14と図15とを比較すると、レーザ光Lの照射回数を五回以上に増やしても、対象の細胞を短時間で死滅させる効果に違いは生じないことが分かる。
 不要細胞を致死させるためのレーザ照射処理に使用するレーザLの波長は、405nmに限定されないことは言うまでもない。他の波長のレーザLを採用する場合には、その波長の光を吸収することができる色素構造を含んだ材料(特に、ポリマー)を用いて細胞培養容器1の被照射層12を構成することが求められる。例えば、波長が808nmや1064nm等の近赤外線レーザLを使用するのであれば、フタロシアニン類(フタロシアニン誘導体、フタロシアニン系近赤外線吸収色素)を材料として用いることが一案である。但し、その場合には、細胞に移行しないよう、ポリマーの側鎖に化学結合により固定されることが望ましい。また、配位錯体は、金属イオンが遊離することから、ポリマー化するものでも避けた方がよいと思われる。
 レーザビームLの径を、50μmよりもさらに小さく絞ってもよい。例えば、コア径の小さい光ファイバを加工ノズル33に接続し、レーザ光源31から供給されるレーザ光Lをこの光ファイバを通じて加工ノズル33に入力するようにすれば、加工ノズル33から出射するレーザビームLの径を25μm以下に絞ることができ、その分単位面積あたりのレーザLのエネルギ量(エネルギ密度)が増す。これにより、レーザ光源31の最大出力が大きくなくとも、レーザLの照射箇所即ち不要細胞の存在する箇所に多量のエネルギをピンポイントに与えることが可能となる。
 図16は、レーザ光Lの照射を受けて熱を生じさせる被照射層12を敷設した細胞培養容器1のウェル10内でiPS細胞を培養し、そのウェル10の底にある被照射層12に向けて加工ノズル33から連続波レーザLを一回照射した後、一時間半経過後にトリパンブルー溶液による死細胞の染色を行った結果である。使用したレーザLの波長は405nm、レーザL出力は0.18W、レーザビームL径は20μmである。被照射層12の構成材料は、色素構造としてアゾベンゼンを有しているポリマーである。図示例では、0.2mm間隔で互いに平行な複数本の筋を描画するように、レーザビームLを細胞培養容器1に対して300mm/秒の速さで直線的に移動させる走査を、各筋毎に一回実行している。
 図16において、染色された細胞の幅はレーザビームLの径である20μmないし25μm程度に抑えられている。これは、致死させるべき細胞の周辺にある細胞への熱影響を最小限に抑制できていることを示している。因みに、この幅は、iPS細胞約二個分に相当する。レーザ光Lのビーム径を絞ることで、細胞の致死範囲が狭まり、収率の向上を期待できる。図16に示す例では、レーザ光Lを一回だけ照射して一時間半経過後の細胞の死滅を確認しているが、ビーム径を25μmないし20μm以下に絞ったレーザ光Lであっても同一箇所に複数回照射すれば、当然、対象の細胞が死滅するまでの所要時間をより短縮できると考えられる。
 レーザビームLを被照射層12に照射したときの投影形状は、点状または円形状には限られない。レーザビームLの投影形状を、所定方向に引き延ばした棒状のラインビームに成形しても構わない。ラインビームを用いれば、細胞培養容器1(の被照射層12)における一定の領域をラスタスキャンするのに要する時間をより短縮できる。
 上記実施形態では、継代培養のための細胞クランプを切り出す目的で、レーザビームLを細胞培養容器1に対して格子を描くように移動させる走査を行っていたが、レーザビームLによる走査の軌跡は格子状には限定されない。例えば、被照射層12に複数の正六角形が隙間なく配列された六角網状(または、ハニカム構造)を描くように、即ち六角網状に細胞を死滅させるように、レーザビームLを細胞培養容器1に対して移動させる走査を実行することが考えられる。その場合、六角形の内に残る生細胞が細胞クランプとなる。
 上記実施形態では、支持体2に支持させた細胞培養容器1に向けてレーザLを照射する加工ノズル33をXYステージ4に搭載し、加工ノズル33をX軸方向及びY軸方向に移動させるようにしていたが、細胞培養容器1を支持する支持体2をXYステージ等の変位機構4に搭載して、細胞培養容器1をX軸方向及びY軸方向に移動させるようにしても構わない。あるいは、加工ノズル33と支持体2とのうち一方をX軸方向に走行可能なリニアモータ台車等に搭載し、他方をY軸方向に走行可能なリニアモータ台車等に搭載することにより、加工ノズル33から出射するレーザビームLを細胞培養容器1の被照射層12に対して相対的にX軸方向及びY軸方向の両方向に変位させ得るようにすることも考えられる。
 細胞培養容器1の被照射層12に対するレーザLの照射位置を変位させるための変位機構4として、ガルバノスキャナを採用してもよい。周知の通り、ガルバノスキャナは、レーザ光源31から供給されるレーザ光Lを反射するミラーをサーボモータやステッピングモータ等によって回動させるもので、ミラーを介してレーザLの光軸を高速に変化させることが可能である。尤も、ガルバノスキャナを採用する場合、細胞培養容器1の被照射層12に対してレーザ光Lの光軸が交わる角度を厳密には一定に保つことができない。また、レーザ光源が半導体レーザ等であり、当該レーザ光源が発振するレーザを光ファイバ等を用いてガルバノスキャナまで伝送する場合、被照射層12に照射されるレーザビームLの径若しくは投影形状の寸法を極小に絞ることも容易でない。レーザビームLの径若しくは投影形状の寸法を極小に絞ってエネルギ密度を高めるためには、XYステージ4やリニアモータ台車のような、レーザビームLの光軸を細胞培養容器1の被照射層12に対して相対的に平行移動させ得る機構を用いることが好ましい。但し、ファイバーレーザをレーザ光源として採用することにより、被照射層12に照射されるレーザビームLの径若しくは投影形状の寸法を極小に絞ることができるようになる。
 細胞培養容器1内の細胞を撮影するカメラセンサを、加工ノズル33に付設することも考えられる。
 細胞培養容器1内の細胞を撮影する際の照明光源として、加工ノズル33から出射するレーザ光Lを利用することも考えられる。無論、その場合に加工ノズル33から細胞培養容器1に照射するレーザLの出力は、不要細胞を死滅させるために細胞培養容器1に照射するレーザLの出力よりも十分に弱める必要がある。
 上記実施形態では、細胞培養容器1の容器本体11に成形されているウェル10の底に被照射層12の材料となるポリマーを塗布して被照射層12を構成していた。だが、複数のウェルを包有するマルチディッシュ形の容器本体に、スピンコート等によりポリマーを塗布して被照射層を形成することは困難を伴う。そこで、レーザ光Lの照射を受けて熱を生じさせる材料を含有する板状体を作製し、この板状体を容器本体の各ウェルの底に設置または接着することにより、細胞培養容器の被照射層を構成するようにすることが考えられる。板状体は、レーザ光Lを透過させる透明性または透光性を有するプラスチックやガラス等の材料により構成した薄板にレーザ光Lを吸収する色素を塗布したものであってもよく、そのような薄板の構成材料にレーザ光Lを吸収する色素を含有させたものであってもよい。上記実施形態において述べた色素構造含有ポリマーや光酸発生剤を、レーザ光Lを吸収する色素として用いることも当然に可能である。
 上記実施形態では、レーザ光Lを細胞培養容器1の下方から容器本体11を透過させた上で被照射層12に照射していたが、レーザ光Lを上方即ち被照射層12の表面側から(容器本体11を透過させずに)被照射層12に直接照射することも考えられる。この場合、容器本体11がレーザ光Lを透過させる透明性または透光性を有している必要はない。照射するレーザ光Lの焦点は、被照射層12の上にある細胞に合わせるのではなく、被照射層12に合わせることが好ましい。
 細胞培養容器1を用いてiPS細胞その他の細胞を培養する場合に、フィーダー細胞を併用してもよい。本発明に係るレーザ加工機は、細胞培養容器1内の不要となったフィーダー細胞を死滅処理するためにも利用できる。
 その他、各部の具体的構成は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
 本発明は、細胞培養容器上で培養された細胞のうちの特定の細胞を致死させる処理に用いることができる。
 1…培養容器
 11…容器本体
 12…被照射層
 3…レーザ照射装置
 33…加工ノズル
 4…変位機構(XYステージ)
 5…制御部
 L…レーザ光

Claims (9)

  1. 容器本体にレーザ光の照射を受けてこれを吸収する材料を含む層である被照射層が設けられた細胞培養容器の被照射層の表面上で培養された細胞のうちの特定の細胞を致死させる方法であって、
    前記被照射層における致死させるべき細胞の直下の箇所にレーザ光を照射する細胞処理方法。
  2. 前記被照射層における致死させるべき細胞の直下の箇所に、当該細胞が即死せずある程度の時間が経過した後に致死するような出力またはエネルギ量を持つレーザ光を照射する請求項1記載の細胞処理方法。
  3. 前記被照射層における致死させるべき細胞の直下の箇所に、当該細胞が即死しないような出力またはエネルギ量を持つレーザ光を複数回照射する請求項1記載の細胞処理方法。
  4. 前記細胞培養容器で培養した細胞群を複数の部分に分割するための方法であり、
    前記被照射層における、培養した細胞をある部分と他の部分とに切り分ける境界線の直下の箇所にレーザ光を照射する請求項1、2または3記載の細胞処理方法。
  5. 容器本体にレーザ光の照射を受けてこれを吸収する材料を含む層である被照射層が設けられた細胞培養容器の被照射層の表面上で培養された細胞のうちの特定の細胞を致死させるレーザ加工機であって、
    前記被照射層における致死させるべき細胞の直下の箇所にレーザ光を照射するレーザ加工機。
  6. 前記被照射層における致死させるべき細胞の直下の箇所に、当該細胞が即死せずある程度の時間が経過した後に致死するような出力またはエネルギ量を持つレーザ光を照射する請求項5記載の細胞処理方法。
  7. 前記被照射層における致死させるべき細胞の直下の箇所に、当該細胞が即死しないような出力またはエネルギ量を持つレーザ光を複数回照射する請求項5記載の細胞処理方法。
  8. 前記細胞培養容器で培養した細胞群を複数の部分に分割するためのものであり、
    前記被照射層における、培養した細胞をある部分と他の部分とに切り分ける境界線の直下の箇所にレーザ光を照射する請求項5、6または7記載のレーザ加工機。
  9. 容器本体にレーザ光の照射を受けてこれを吸収する材料を含む層である被照射層が設けられ、その被照射層の表面上で細胞が培養される細胞培養容器。
PCT/JP2016/059769 2015-06-01 2016-03-25 細胞処理方法、レーザ加工機、細胞培養容器 WO2016194454A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016522839A JP6090891B1 (ja) 2015-06-01 2016-03-25 細胞処理方法、レーザ加工機、細胞培養容器
US15/576,228 US10876086B2 (en) 2015-06-01 2016-03-25 Cell treatment method, laser processing machine, and cell culture vessel
EP16802892.6A EP3305888B1 (en) 2015-06-01 2016-03-25 Cell treatment method, laser processing machine, and cell culture vessel
US17/103,539 US20210079324A1 (en) 2015-06-01 2020-11-24 Laser processing machine
US17/103,597 US20210071121A1 (en) 2015-06-01 2020-11-24 Cell culture vessel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-111759 2015-06-01
JP2015111759 2015-06-01

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US15/576,228 A-371-Of-International US10876086B2 (en) 2015-06-01 2016-03-25 Cell treatment method, laser processing machine, and cell culture vessel
US17/103,539 Division US20210079324A1 (en) 2015-06-01 2020-11-24 Laser processing machine
US17/103,597 Division US20210071121A1 (en) 2015-06-01 2020-11-24 Cell culture vessel

Publications (1)

Publication Number Publication Date
WO2016194454A1 true WO2016194454A1 (ja) 2016-12-08

Family

ID=57440852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059769 WO2016194454A1 (ja) 2015-06-01 2016-03-25 細胞処理方法、レーザ加工機、細胞培養容器

Country Status (4)

Country Link
US (3) US10876086B2 (ja)
EP (1) EP3305888B1 (ja)
JP (1) JP6090891B1 (ja)
WO (1) WO2016194454A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018146855A1 (ja) * 2017-02-13 2018-08-16 株式会社片岡製作所 細胞処理装置および対象物の処理方法
WO2018146854A1 (ja) * 2017-02-13 2018-08-16 株式会社片岡製作所 細胞処理装置
JP2019146586A (ja) * 2017-02-13 2019-09-05 株式会社片岡製作所 細胞処理装置
JP2019187425A (ja) * 2017-02-13 2019-10-31 株式会社片岡製作所 細胞処理装置および対象物の処理方法
WO2020071332A1 (ja) * 2018-10-01 2020-04-09 株式会社片岡製作所 細胞培養器具および細胞培養器具の製造方法
JP2020054341A (ja) * 2018-10-01 2020-04-09 株式会社片岡製作所 細胞培養器具および細胞培養器具の製造方法
WO2020122225A1 (ja) * 2018-12-13 2020-06-18 国立研究開発法人産業技術総合研究所 細胞培養器具および細胞の処理方法
JP2020178643A (ja) * 2019-04-26 2020-11-05 株式会社片岡製作所 細胞培養基材、細胞培養容器、細胞の培養方法、細胞の製造方法、細胞培養基材の製造方法、および細胞培養容器の製造方法
US11028358B2 (en) 2019-02-27 2021-06-08 Synthego Corporation Cell culture laser photoablation
JPWO2021187383A1 (ja) * 2020-03-14 2021-09-23
US11560540B2 (en) 2018-06-29 2023-01-24 Kataoka Corporation Cell treatment apparatus and method for treating cells with lasers

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6033980B1 (ja) * 2016-06-01 2016-11-30 株式会社片岡製作所 細胞処理システム
WO2019046304A1 (en) 2017-08-28 2019-03-07 Matthias Wagner MICROFLUIDIC LASER ACTIVATED INTRACELLULAR ADMINISTRATION SYSTEMS AND METHODS
CN108624497B (zh) * 2018-05-07 2021-08-24 山西医科大学 细胞密度控制仪及其方法、应用
US11708563B2 (en) 2021-03-07 2023-07-25 Cellino Biotech, Inc. Platforms and systems for automated cell culture
US11931737B2 (en) 2021-09-02 2024-03-19 Cellino Biotech, Inc. Platforms and systems for automated cell culture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339373A (ja) * 2002-05-24 2003-12-02 National Institute Of Advanced Industrial & Technology 細胞の分別法
JP2005333889A (ja) * 2004-05-27 2005-12-08 Cybox Co Ltd 細胞壊死方法及び細胞壊死装置
US20100055759A1 (en) * 2008-09-04 2010-03-04 Blau Helen M Transparent polymer membrane for laser dissection
WO2011125615A1 (ja) * 2010-04-02 2011-10-13 独立行政法人産業技術総合研究所 細胞分別方法、細胞培養基材、および細胞分別装置
JP2012023970A (ja) * 2010-07-20 2012-02-09 National Institute Of Advanced Industrial Science & Technology レーザによる培養細胞選別方法及び選別装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4629687A (en) * 1982-07-29 1986-12-16 Board Of Trustees Of Michigan State University Positive selection sorting of cells
US4624915A (en) * 1982-07-29 1986-11-25 Board Of Trustees Of Michigan State University Positive selection sorting of cells
US5618654A (en) * 1992-12-24 1997-04-08 Hitachi, Ltd. Photo-controlled spatial light modulator
WO2002019594A2 (en) * 2000-08-02 2002-03-07 Arizona Board Of Regents, Acting On Behalf Of Arizona State University Scanning fluorescence lifetime microscope: directed evolution
US20040077073A1 (en) * 2002-10-18 2004-04-22 Melvin Schindler Methods and apparatus for interactive micromanipulation of biological materials
US20050276456A1 (en) * 2004-05-27 2005-12-15 Toshiyuki Yamato Cell-operating device
CN101208426A (zh) * 2005-02-18 2008-06-25 阿不赛斯株式会社 细胞分离的方法与设备
WO2009026359A2 (en) * 2007-08-20 2009-02-26 Platypus Technologies, Llc Improved devices for cell assays
US9080140B2 (en) * 2009-12-01 2015-07-14 Empire Technology Development Llc Selective conformation of cell culturing support layer
WO2012067623A1 (en) * 2010-11-19 2012-05-24 Empire Technology Development Llc Temperature control using compound capable of photoisomerization
CN105132284B (zh) * 2011-05-13 2018-04-03 加利福尼亚大学董事会 用于选择性转染细胞的光热衬底
KR101460853B1 (ko) * 2012-04-12 2014-11-19 연세대학교 산학협력단 근적외선에 의한 세포의 선택적 탈착, 패턴 및 수확 방법
JP6606058B2 (ja) * 2013-03-15 2019-11-13 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 光熱プラットフォームを使用する生細胞への高スループットカーゴ送達
JP6680479B2 (ja) 2015-06-29 2020-04-15 株式会社片岡製作所 細胞処理方法、レーザ加工機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339373A (ja) * 2002-05-24 2003-12-02 National Institute Of Advanced Industrial & Technology 細胞の分別法
JP2005333889A (ja) * 2004-05-27 2005-12-08 Cybox Co Ltd 細胞壊死方法及び細胞壊死装置
US20100055759A1 (en) * 2008-09-04 2010-03-04 Blau Helen M Transparent polymer membrane for laser dissection
WO2011125615A1 (ja) * 2010-04-02 2011-10-13 独立行政法人産業技術総合研究所 細胞分別方法、細胞培養基材、および細胞分別装置
JP2012023970A (ja) * 2010-07-20 2012-02-09 National Institute Of Advanced Industrial Science & Technology レーザによる培養細胞選別方法及び選別装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3305888A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11499129B2 (en) 2017-02-13 2022-11-15 Kataoka Corporation Cell treatment apparatus
JP2018130039A (ja) * 2017-02-13 2018-08-23 株式会社片岡製作所 細胞処理装置および対象物の処理方法
WO2018146854A1 (ja) * 2017-02-13 2018-08-16 株式会社片岡製作所 細胞処理装置
WO2018146855A1 (ja) * 2017-02-13 2018-08-16 株式会社片岡製作所 細胞処理装置および対象物の処理方法
US11499133B2 (en) 2017-02-13 2022-11-15 Kataoka Corporation Cell treatment apparatus and method for treating object to be treated
JP2019187425A (ja) * 2017-02-13 2019-10-31 株式会社片岡製作所 細胞処理装置および対象物の処理方法
JP2018130038A (ja) * 2017-02-13 2018-08-23 株式会社片岡製作所 細胞処理装置
JP2019146586A (ja) * 2017-02-13 2019-09-05 株式会社片岡製作所 細胞処理装置
US11560540B2 (en) 2018-06-29 2023-01-24 Kataoka Corporation Cell treatment apparatus and method for treating cells with lasers
JP2020156518A (ja) * 2018-10-01 2020-10-01 株式会社片岡製作所 細胞培養器具および細胞培養器具の製造方法
JP2020054341A (ja) * 2018-10-01 2020-04-09 株式会社片岡製作所 細胞培養器具および細胞培養器具の製造方法
WO2020071332A1 (ja) * 2018-10-01 2020-04-09 株式会社片岡製作所 細胞培養器具および細胞培養器具の製造方法
WO2020122225A1 (ja) * 2018-12-13 2020-06-18 国立研究開発法人産業技術総合研究所 細胞培養器具および細胞の処理方法
CN113166313A (zh) * 2018-12-13 2021-07-23 国立研究开发法人产业技术综合研究所 细胞培养器具和细胞的处理方法
CN113166313B (zh) * 2018-12-13 2023-06-06 国立研究开发法人产业技术综合研究所 细胞培养器具和细胞的处理方法
US11028358B2 (en) 2019-02-27 2021-06-08 Synthego Corporation Cell culture laser photoablation
US11970685B2 (en) 2019-02-27 2024-04-30 Synthego Corporation Cell culture laser photoablation
JP2020178643A (ja) * 2019-04-26 2020-11-05 株式会社片岡製作所 細胞培養基材、細胞培養容器、細胞の培養方法、細胞の製造方法、細胞培養基材の製造方法、および細胞培養容器の製造方法
US11655441B2 (en) 2019-04-26 2023-05-23 Kataoka Corporation Cell culture base, cell culture vessel, method for culturing cells, method for producing cells, method for producing cell culture base, and method for producing cell culture vessel
JP7343119B2 (ja) 2019-04-26 2023-09-12 株式会社片岡製作所 細胞培養基材、細胞培養容器、細胞の培養方法、細胞の製造方法、細胞培養基材の製造方法、および細胞培養容器の製造方法
JPWO2021187383A1 (ja) * 2020-03-14 2021-09-23

Also Published As

Publication number Publication date
US20180142193A1 (en) 2018-05-24
US10876086B2 (en) 2020-12-29
JPWO2016194454A1 (ja) 2017-06-15
JP6090891B1 (ja) 2017-03-08
EP3305888A1 (en) 2018-04-11
EP3305888B1 (en) 2022-09-28
US20210079324A1 (en) 2021-03-18
US20210071121A1 (en) 2021-03-11
EP3305888A4 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6090891B1 (ja) 細胞処理方法、レーザ加工機、細胞培養容器
JP6680479B2 (ja) 細胞処理方法、レーザ加工機
JP6033980B1 (ja) 細胞処理システム
JP6473552B2 (ja) 培養容器収容装置
US9012868B2 (en) Fluorescence microscopy methods and apparatus
JP5690359B2 (ja) 撮像装置および撮像方法
JP2002515284A (ja) 光による角質層の除去
CN101208426A (zh) 细胞分离的方法与设备
CN110062599B (zh) 利用光源阵列的透射照明成像
JP2019513594A (ja) 構成層のキャリア対象への接着性を向上させるための装置及び方法
CN1678732A (zh) 细胞培养微室
EP3677945B1 (en) Phase difference observation device and cell treatment device
US20220184611A1 (en) Microfluidic system, microfluidic chip, and operating method
KR102069603B1 (ko) 국소 광 뇌손상 동물 모델을 제조하는 시스템 및 그 방법
WO2017115220A1 (en) Method for the optoinjection of exogenous material into a biological cell
JP6764469B2 (ja) 生体試料を生存状態で観察する顕微鏡および方法
CN115112621A (zh) 一种基于机器学习的近红外二区荧光宽场显微方法
JP2004113175A (ja) 細胞培養検出装置
JP2020054341A (ja) 細胞培養器具および細胞培養器具の製造方法
WO2018146855A1 (ja) 細胞処理装置および対象物の処理方法
Tsai et al. Fluorescence image excited by a scanning UV-LED light
JP2005006553A (ja) 細胞培養検出装置
JP2011110134A (ja) 光照射装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016522839

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802892

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15576228

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE