WO2016194091A1 - 光通信モジュールおよびそれを備える光通信装置 - Google Patents

光通信モジュールおよびそれを備える光通信装置 Download PDF

Info

Publication number
WO2016194091A1
WO2016194091A1 PCT/JP2015/065690 JP2015065690W WO2016194091A1 WO 2016194091 A1 WO2016194091 A1 WO 2016194091A1 JP 2015065690 W JP2015065690 W JP 2015065690W WO 2016194091 A1 WO2016194091 A1 WO 2016194091A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
output
signal
optical communication
communication module
Prior art date
Application number
PCT/JP2015/065690
Other languages
English (en)
French (fr)
Inventor
享史 竹本
寛樹 山下
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/065690 priority Critical patent/WO2016194091A1/ja
Publication of WO2016194091A1 publication Critical patent/WO2016194091A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Definitions

  • the present invention relates to an optical communication module and an optical communication apparatus including the optical communication module, and more particularly to an optical communication apparatus such as a router and a server, and an optical communication module that performs optical communication using a laser diode and a photodiode. It is related to effective technology.
  • Patent Document 1 describes a laser diode driver circuit provided with an asymmetric pre-emphasis circuit for improving the operating band of a laser diode in a high-speed optical transmission circuit.
  • a pre-emphasis circuit including a delay circuit and a duty ratio adjustment circuit is shown. As a result, it is possible to compensate for high-speed driving of the laser diode and deterioration of optical signal transmission characteristics (rising and falling asymmetry).
  • Patent Document 2 describes an optical transmission circuit that suppresses fluctuations in the extinction ratio of laser output light due to changes in laser characteristics. Specifically, a configuration example is shown in which the light output from the laser diode is detected by a photodiode, and the bias current of the laser diode is changed in accordance with the DC component of the photodiode output. This compensates for temperature fluctuations that occur in the threshold current of the laser diode.
  • an optical communication device compatible with an optical fiber cable is progressing as a router device or a server device, for example.
  • An optical communication device is usually premised on long-distance transmission such as a kilometer order between devices, and it is important to ensure high speed and reliability associated with this transmission distance.
  • optical communication devices there are many devices having a relatively large size (for example, on the order of several tens of centimeters or metric order), but communication using electrical signals is usually performed inside the devices.
  • the optical communication device converts, for example, an optical signal input from the outside into an electrical signal, performs a predetermined process while performing short-range communication (for example, metric order) inside the device using this electrical signal, and again performs electrical processing.
  • the signal is converted into an optical signal and output to the outside.
  • this short distance communication for example, communication using an electrical signal using a copper wire cable or the like is performed.
  • the transmission waveform quality of the copper wire cable significantly decreases.
  • the intersymbol interference caused by the insufficient bandwidth of the laser diode LD degrades the optical transmission waveform, making it difficult to realize a communication speed exceeding 40 Gbps, for example.
  • As a means to improve the intersymbol interference of the optical transmission waveform it is conceivable to improve the operating band of the laser diode LD. Since the failure rate is higher than that of the device and the cost is increased, the transition from telecommunications to optical communication in short-distance communication is hindered. Therefore, instead of using an LD that can operate at a higher speed, it is possible to compensate for the lack of bandwidth of the LD by using waveform equalization by an electric circuit in terms of cost reduction and high reliability of the photoelectric conversion unit. It is valid.
  • FIG. 15A is an explanatory diagram illustrating an example of temperature characteristics of the relaxation oscillation frequency in the laser diode LD.
  • the relaxation oscillation is a phenomenon in which the optical output vibrates when a pulsed current is injected into the semiconductor laser, and the frequency at that time is called the relaxation oscillation frequency.
  • the value of the relaxation oscillation frequency is determined by the device structure of the LD, and the response characteristic rapidly decreases above this frequency. Therefore, the upper limit frequency at which the LD can operate is determined based on this relaxation oscillation frequency.
  • the upper limit frequency ( ⁇ 3 dB frequency) of the laser diode LD is lower than the basic frequency of the communication speed (for example, 25 GHz in the case of 50 Gbps), and further, the frequency characteristics of the laser diode LD Since the roll-off has a steep characteristic due to the influence of the relaxation oscillation frequency, when the frequency exceeds -3 dB, the optical output power of the laser diode LD is suddenly reduced and the transmission quality is deteriorated. Furthermore, the characteristics of the laser diode LD change sensitively with respect to temperature changes, and the relaxation oscillation frequency deteriorates during high temperature operation as compared to during low temperature operation, so transmission quality deteriorates with temperature change.
  • Patent Document 1 emphasizes the rise and fall in advance (pre-emphasis), thereby reducing the shortage of the band of the laser diode LD.
  • An improved laser diode driver circuit LDD is described. Specifically, as shown in FIG. 15B, the LDD includes a delay circuit DEL, a duty adjustment circuit DUTYAdj, a prebuffer circuit PrBuf, a laser characteristic compensation circuit LDEQ including an addition / subtraction circuit ADD, and an output circuit DRV.
  • the input voltage signal of the LDD is branched into two, a pre-buffer circuit PrBufm and a delay circuit DEL, and the voltage signal branched into the delay circuit DEL is compared with the voltage signal branched into the pre-buffer circuit PrBufm. It is output with a certain delay difference.
  • the voltage signal having this delay difference is subtracted by the addition / subtraction circuit ADD from the other voltage signal having no delay difference, thereby generating a voltage signal having a large rising and falling emphasis amount.
  • the duty ratio is adjusted by the duty adjustment circuit DUTYAdj so that the period of the “H” level becomes longer, and it is possible to generate a voltage signal that has a larger amount of emphasis of the fall (asymmetric pre-emphasis) than the rise. .
  • the voltage signal emphasized at the rise and fall is converted into a current signal by the output circuit DRV, and the laser diode LD is driven by the current signal having the pre-emphasis characteristic, so that the transmission quality of the relaxation oscillation frequency is improved. Degradation and insufficient bandwidth of the laser diode LD can be improved, and an optical signal with uniform rising and falling can be output.
  • the photoelectric conversion unit is reduced in cost, size, and power consumption, and it is difficult to apply optical communication inside the device.
  • optical communication the influence of nonlinear elements in an optical communication path such as a fiber cable is added. Therefore, even if the characteristics of the laser diode are compensated for by the optical transmission circuit, the optical signal received by the optical reception circuit is not in the optical communication path. There is also a problem that transmission quality deteriorates due to the influence.
  • FIG. 15C shows an explanatory diagram using a conventional impulse response.
  • the position of the peak gain (peak frequency) generated by the relaxation oscillation frequency is lower than the fundamental frequency of the communication speed, so that ringing occurs in the optical output waveform of the laser diode LD. .
  • the phase of data transition at the time of 1-bit switching is accelerated with respect to the switching waveform after successive bits, jitter is increased by ⁇ T, and transmission quality is deteriorated. Problems also arise.
  • the present invention has been made in view of the above, and one of its purposes is to provide an optical communication module and an optical communication apparatus capable of realizing an increase in communication speed at low cost and high reliability. It is in.
  • An example of a typical optical communication module of the present invention is an optical communication module using a laser diode and a photodiode, which converts a single-phase current signal as a photodiode output into a single-phase voltage signal.
  • a preamplifier to be amplified and a laser characteristic compensation circuit that receives a voltage signal that is the output of the preamplifier are provided.
  • the laser characteristic compensation circuit reduces the non-linearity due to the frequency characteristic and relaxation oscillation frequency of the laser diode used on the transmission side on the reception side. It is characterized by compensating.
  • an eye opening degree of the laser characteristic compensation circuit output is further detected according to a change in a characteristic of an optical waveform input to the photodiode due to a temperature change of the laser diode, and the eye
  • An optical characteristic control circuit that generates an error signal between the optimum value that maximizes the aperture and the detection result and automatically adjusts the compensation amount of the laser characteristic compensation circuit so that the error signal becomes small is provided on the receiving side. It is preferable to compensate for temperature changes of the laser diode used on the transmission side.
  • the laser characteristic compensation circuit receives a voltage signal of the preamplifier output and generates a first signal delayed by a predetermined delay amount; and the first signal delay circuit; A compensation signal generation circuit that generates a second signal having a smaller amplitude and a phase advanced than the first signal, and a first signal that is an output of the main signal delay circuit, and a first signal that is an output of the compensation signal generation circuit.
  • a first adder circuit for adding two signals with their polarities reversed, and reducing a difference in data transition between the 1-bit data output of the first adder circuit output and the data switch after successive bits preferable.
  • the influence of ringing due to band degradation, temperature fluctuation, and relaxation oscillation peculiar to laser diode characteristics can be improved at the receiver, and high-speed, low-power and high-quality optical transmission can be realized. It becomes.
  • FIG. 6B is a circuit diagram showing a configuration example of an adder circuit in the optical communication module of FIG. 6A.
  • FIG. 6B is a circuit diagram illustrating a configuration example of an adder circuit in the optical communication module of FIG. 6B.
  • FIG. 6B is a circuit diagram showing a configuration example of an electric driver circuit in the optical communication module of FIG. 6A.
  • FIG. 6B is a block diagram illustrating a configuration example of a threshold generation circuit in the optical communication module of FIG. 6A.
  • FIG. 3 is a diagram illustrating a configuration example of a preamplifier in the optical communication module of FIG. 2.
  • FIG. 6 is a diagram illustrating another configuration example of the preamplifier in the optical communication module of FIG. 2.
  • It is a block diagram which shows the structural example of the optical communication module of Example 8 of this invention.
  • the optical communication module of Example 8 of this invention it is a circuit diagram which shows the structural example of the operational amplifier which comprises a threshold value generation circuit.
  • It is a block diagram which shows the structural example of the optical communication module of Example 9 of this invention.
  • the optical communication module of Example 9 of this invention it is a circuit diagram which shows the structural example of a power supply fluctuation generation circuit.
  • It is a block diagram which shows the structural example of the optical communication module of Example 10 of this invention.
  • FIG. 1B It is a block diagram which shows the structural example of the optical communication module of Example 11 of this invention.
  • the optical communication module of Example 11 of this invention it is explanatory drawing which shows the relationship between a received eye waveform and the threshold value of each latch circuit.
  • the transmission system of FIG. 1B it is explanatory drawing which shows the relationship between the fundamental frequency of communication speed, and the relaxation oscillation frequency of a laser diode.
  • FIG. 1B shows the prior art example of the laser diode driver circuit which comprises the transmission system of FIG. 1B. It is explanatory drawing which shows the subject at the time of using the structure of FIG. 15B.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • the shapes, positional relationships, etc. of the components, etc. when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
  • each functional block of the embodiment are not particularly limited, but are formed on a semiconductor substrate such as single crystal silicon by an integrated circuit technology such as a CMOS (complementary MOS transistor) or a bipolar transistor.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • MISFET Metal Insulator Semiconductor Field Effect Transistor
  • connection of the substrate potential of the transistor is not specified in the drawing, but the connection method is not particularly limited as long as the transistor can operate normally.
  • the laser diode LD directly changes the intensity of the light source to change the intensity of the modulation signal, such as VCSEL (Vertical Cavity Surface Emitting Laser) or DFB-LD (Distributed FeedBack Laser Diode).
  • the peak frequency due to the relaxation oscillation is equal to or lower than the fundamental frequency of the communication speed (for example, 25 GHz in the case of 50 Gbps), and the transmission generated by the laser diode driver circuit LDD due to the insufficient band of the laser diode LD or the influence of the relaxation oscillation frequency.
  • the laser impedance compensation circuit LDEQ is installed in the transimpedance amplifier TIA, so that the band degradation and relaxation characteristic of the laser diode LD characteristics are reduced. It has become a thing to compensate for the effect of ringing due to the vibration frequency.
  • the transimpedance amplifier TIA specifically includes a preamplifier that converts a single-phase current signal from the photodiode PD into a voltage signal, and band degradation, rise and fall characteristic of the laser diode LD characteristics from the output of the preamplifier.
  • Laser characteristic compensation circuit LDEQ that compensates for the influence of ringing due to asymmetry, relaxation oscillation frequency, etc., and the time component of the output of laser characteristic compensation circuit LDEQ and the eye opening degree of the voltage component are maximized, or the laser characteristic
  • An optical characteristic control circuit for automatically adjusting the gain and delay amount of the laser characteristic compensation circuit is provided so that the error signal between the output of the compensation circuit and the reference signal is minimized.
  • the laser characteristic compensation circuit LDEQ includes a main signal delay circuit that outputs the output signal of the preamplifier with a certain delay difference Td smaller than the reciprocal of the fundamental frequency of communication speed (bit period Ts), and the preamplifier Compensation signal generation circuit that outputs the output signal with a certain gain ( ⁇ ), and an addition circuit that adds the output signal of the main signal delay circuit and the output signal of the compensation signal circuit, and further compensates
  • Td the laser characteristic compensation circuit
  • Ts the preamplifier Compensation signal generation circuit that outputs the output signal with a certain gain ( ⁇ )
  • an addition circuit that adds the output signal of the main signal delay circuit and the output signal of the compensation signal circuit, and further compensates
  • the gain of the signal generation circuit or the delay amount of the main signal delay circuit is automatically adjusted by the optical characteristic control circuit.
  • FIG. 1A is a block diagram illustrating an example of a schematic configuration inside a router device according to the first embodiment of the present invention.
  • the router device is configured by a housing having a width and depth of several tens of centimeters and a height of 1 to 2 m, for example.
  • a large number of communication connectors are provided on the surface of the housing, and each is, for example, an Ethernet (registered trademark) cable terminal or an optical fiber cable terminal.
  • a plurality of interface cards IFC [1], IFC [2], are connected to a card connector provided in a component called a backplane BKP or the like.
  • Each card connector includes a connector for supplying power from the BKP to each card and an optical connector (optical fiber) for communicating between the cards via an optical communication line (typically, an optical fiber cable) OF.
  • Connector) CNo is included.
  • each interface card IFC is connected to the switch card SWC via the CNo and the optical communication line OF, thereby enabling communication via the SWC between the communication connectors CNo handled by each IFC.
  • a logical device LSI_LGi that performs predetermined protocol processing required in an upper layer of communication and an electrical signal that is input / output of the logical device LSI_LGi are converted into an optical signal, and optical communication is performed via an optical connector CNo.
  • An optical communication module OMDi that performs input / output with the line OF is mounted.
  • the SWC also includes a logical device LSI_LGs that performs predetermined protocol processing, and an optical communication module that converts electrical signals that are input / output of the LSI_LGs into optical signals and inputs / outputs them with the OF via the CNo. OMDs are implemented.
  • each optical communication line OF may reach several meters, for example.
  • a copper wire cable or the like is used instead of OF, there is a possibility that it may not be able to cope with, for example, communication of several tens of Gbps due to transmission loss. Therefore, it is beneficial to use the optical communication module of this embodiment.
  • FIG. 1B is a block diagram showing an example of a schematic configuration of an optical communication module OMD for performing inter-card communication inside the router device in the router device of FIG. 1A.
  • the optical communication module OMD includes an analog front end block AFE and an optical element block OBK.
  • the optical element block OBK includes a laser diode LD that outputs to the optical communication line OFtx for transmission, and a photodiode PD that converts an optical signal input from the optical communication line OFrx for reception into an electric signal (current signal).
  • the LD and the PD are configured by individual semiconductor chips, respectively, and actually exist as a semiconductor chip in which a plurality of LDs and PDs are integrated or arrayed according to the number of communication channels.
  • the analog front end block AFE includes a laser diode driver circuit LDD that drives the LD, and a transimpedance amplifier circuit TIA that amplifies the current signal from the PD and converts it into a voltage signal.
  • AFE is formed on one semiconductor chip LSI_OP, but LDD and TIA may be formed separately and formed as separate chips.
  • the optical communication module OMD is electrically connected to a logic device LSI_LG outside the OMD, and is connected between a transmission speed conversion circuit SDC called SerDes (Serializer / Deserializer) mounted in the LSI_LG and the AFE (LDD and TIA). Send and receive electrical voltage signals. For example, between the LSI_LG and the OMD in FIG.
  • the LSI_OP is configured only by the AFE, but in order to reduce the burden of electrical transmission by reducing the transmission speed around the channel between the optical communication module OMD and LSI_LG, In addition to the analog front end circuit block AFE, a transmission rate conversion circuit SDC may be mounted.
  • analog front-end circuit block AFE and the transmission rate conversion circuit SDC are mounted as separate semiconductor chips, respectively, or in order to save power by reducing electric I / O between the AFE and SDC, the AFE And SDC may be formed by the same semiconductor process such as CMOS, and integrated with the semiconductor chip LSI_OP.
  • FIG. 2 shows one configuration example of the transimpedance amplifier TIA of the present embodiment, which is one of the components constituting the reception system in FIG. 1B.
  • a laser diode LD that lacks the operating band ( ⁇ 3 dB frequency) of the laser diode LD used on the transmitting side and the band where the peak frequency due to the relaxation oscillation frequency does not reach the fundamental frequency of the communication speed is used. Assuming As a result, high-speed communication exceeding the operating band of the LD can be performed without using a state-of-the-art laser diode LD, and the cost and reliability of the optical communication module can be reduced.
  • the transimpedance amplifier TIA in this embodiment compensates for the effects of the preamplifier PRAMP that converts the single-phase current signal from the photodiode PD into a voltage signal, and the band deterioration and relaxation oscillation frequency characteristic of the laser diode characteristics from the output signal of the preamplifier PRAMP.
  • an optical characteristic control circuit OPT_COM for automatically adjusting the compensation amount of the laser characteristic compensation circuit LDEQ with respect to environmental fluctuations such as the temperature of the laser diode LD.
  • the laser characteristic compensation circuit LDEQ may be applied to a pre-emphasis circuit or an asymmetric pre-emphasis circuit that is conventionally mounted in the laser diode driver circuit LDD, in addition to the configuration in the embodiments described later.
  • parameters such as gain and delay amount that determine the compensation characteristics of the laser characteristic compensation circuit LDEQ need to be adjusted to be optimal according to environmental fluctuations such as the temperature of the laser diode LD. .
  • means for performing temperature compensation of the laser diode LD by providing a Peltier element and a monitor photodiode PD for making the temperature of the laser diode LD constant on the transmission side.
  • a Peltier element and a monitor photodiode PD for making the temperature of the laser diode LD constant on the transmission side.
  • the optical characteristic control circuit OPT_COM inside the optical receiving circuit, it is possible to compensate the temperature of the laser diode LD without providing a Peltier element or a monitor PD on the transmission side, and to reduce the cost and size of the optical device.
  • a communication module can be realized.
  • the optical special control circuit OPT_COM specifically observes the output eye waveform of the laser characteristic compensation circuit LDEQ by the eye monitor circuit EYM, and the voltage component of the eye waveform and the eye opening degree in the time axis direction become maximum.
  • the gain of the buffer circuit constituting the pre-emphasis circuit, the delay amount of the delay circuit, or the duty ratio of the duty adjustment circuit is adjusted.
  • the optical characteristic control circuit OPT_COM includes, for example, an LMS algorithm logic circuit LMS_ALG and a reference indicating an optimum voltage signal and clock phase assumed to be an output of a CDR (Clock Data Recovery) provided at the output of the transimpedance amplifier TIA.
  • the loop band of the optical characteristic control circuit OPT_COM only needs to compensate for the optical signal degradation (temperature drift) associated with the temperature change of the laser diode LD on the transmission side, so high-speed operation exceeding 40 Gbps is not required, It suffices to operate in a band of about several MHz at most.
  • the optical communication module and the router device including the transimpedance amplifier TIA As described above, by using the optical communication module and the router device including the transimpedance amplifier TIA according to the first embodiment, low temperature and high quality can be achieved without performing temperature compensation of the laser diode LD on the transmission side. An optical transmission / reception operation can be realized.
  • FIG. 3A shows one configuration example of the transimpedance amplifier TIA according to the second embodiment of the present invention, which is one of the components constituting the reception system in FIG. 1B.
  • a laser diode LD that lacks the operating band ( ⁇ 3 dB frequency) of the laser diode LD used on the transmitting side and the band where the peak frequency due to the relaxation oscillation frequency does not reach the fundamental frequency of the communication speed is used.
  • high-speed communication exceeding the operating band of the LD can be performed without using a state-of-the-art laser diode LD, and the cost and reliability of the optical communication module can be reduced.
  • FIG. 3A is a diagram showing a block configuration of a transimpedance amplifier that receives an optical input from an LD whose band is insufficient.
  • 4A is a diagram illustrating an output eye waveform of the transimpedance amplifier TIA
  • FIG. 4B is an explanatory diagram illustrating an effect of improving transmission quality according to the present embodiment.
  • the transimpedance amplifier TIA includes a preamplifier PRAMP that converts a single-phase current signal from the photodiode PD into a voltage signal, and a laser characteristic compensation circuit LDEQ.
  • the laser characteristic compensation circuit LDEQ has a main signal delay circuit DELAMP that delays one of the output signals of the two preamplifiers PRAMP by a certain delay amount Td, and the output signal of the other preamplifier PRAMP with a certain gain ⁇
  • a compensation signal generation circuit COMP that attenuates by ⁇ ( ⁇ ⁇ 1), an output signal V1 of the main signal delay circuit DELAMP, and an adder circuit ADDAMP (output signal V3) that adds the output signal V2 of the compensation signal generation circuit COMP as inputs.
  • the delay amount Td of the main signal delay circuit is a value smaller than the bit period Ts that is the reciprocal of the basic frequency of the communication speed.
  • the output waveform of the preamplifier PRAMP has intersymbol interference particularly with respect to 10 patterns having the highest frequency component.
  • an analog equalizer CTLE may be provided at the output of the preamplifier PRAMP to emphasize the vicinity of the basic frequency of the communication speed and increase the eye amplitude.
  • the characteristics have a steep roll-off due to the effect of relaxation oscillation, even if the operation band is improved by the analog equalizer CTLE, an in-band deviation occurs in the intermediate frequency band, and the jitter increases.
  • the peak frequency due to the relaxation oscillation is lower than the fundamental frequency of the communication speed, so the optical output signal of the laser diode LD is caused by ringing. An overshoot waveform is generated. For this reason, in the method using the analog equalizer CTLE, this overshoot waveform is also emphasized, and the transmission quality cannot be improved.
  • the transimpedance amplifier TIA of the present embodiment delays the output signal of the preamplifier PRAMP by the main signal delay circuit DELAMP (voltage) with respect to the output signal (voltage signal V2) of the compensation signal generation circuit COMP.
  • Signal V1 and the output signals V1 and V2 are added by the adder circuit ADDAMP (voltage signal V3), thereby improving the short-bit switching amplitude such as 10 patterns and increasing the eye amplitude.
  • a pre-emphasis signal (voltage signal V2c) is generated in the depression (voltage signal V1c) after the overshoot waveform of the laser diode LD.
  • the phase of data transition at the time of 1-bit switching advances with respect to the switching waveform after successive bits, and a jitter of ⁇ T is generated (voltage signal V3c).
  • the compensation signal attenuated by - ⁇ times in a state where the output signal (voltage signal V1) of the preamplifier PRAMP delayed by Td includes the ringing characteristic.
  • the data transition of the output signal of the preamplifier PRAMP is delayed by Td ′, and the jitter can be reduced to Td′ ⁇ T as compared with the jitter of ⁇ T of the prior art.
  • the gain ⁇ of the compensation signal generation circuit COMP that is, the voltage amplitude of the compensation signal V2 is adjusted.
  • the delay amount Td can be adjusted, and a highly accurate analog delay circuit is not required.
  • the preamplifier PRAMP is described in one stage.
  • the output of the preamplifier PRAMP is divided before the two signals are branched for signal amplification.
  • a voltage amplifier may be added.
  • the phase shift may be increased for a switching pattern after successive bits (for example, a data pattern in which 1 bit is switched to 0 after N bits are continued), but the band is insufficient.
  • the overall jitter amount (Peak-to-peak jitter) is determined by the data pattern after switching 1 or 2 bits having a high frequency component. The jitter characteristic does not deteriorate due to the increase of the deviation.
  • the optical communication module and the router device including the transimpedance amplifier according to the second embodiment As described above, by using the optical communication module and the router device including the transimpedance amplifier according to the second embodiment, the laser diode LD having a shortage of the necessary communication band is used, and the cost is low and the reliability is high. With the optical communication module, it is possible to realize a high-speed and high-quality optical transmission / reception operation.
  • FIG. 3B is a diagram illustrating a third embodiment of the present invention.
  • the delay amount Td of the main signal delay circuit DELAMP and the gain ⁇ of the compensation signal generation circuit COMP are changed according to environmental fluctuations such as temperature.
  • 2 is a configuration example including an optical characteristic control circuit OPT_COM using an LMS algorithm logic circuit LMS_ALG for automatic adjustment according to the above.
  • the optical characteristic control circuit OPT_COM observes the output signal V3 of the adder circuit ADDAMP, and the delay amount Td of the main signal delay circuit DELAMP and the gain ⁇ of the compensation signal generation circuit COMP so that the voltage error with the optimum voltage signal is minimized. Therefore, it is possible to compensate for the deterioration in the quality of the optical transmission waveform of the laser diode LD caused by the temperature change of the transmitter on the receiving side.
  • the optical characteristic control circuit OPT_COM includes a latch circuit LAT that digitizes the output signal V3 of the adder circuit ADDAMP, and a selector circuit SEL that selects the output signal V3 of the adder circuit ADDAMP and the reference signal.
  • the output of the latch circuit LAT and the output of the selector circuit SEL are compared, and the delay amount adjustment signal is output to the main signal delay circuit DELAMP and the gain adjustment signal is output to the compensation signal generation circuit COMP so that the error is minimized.
  • Control circuit ADP_CON is compared, and the delay amount adjustment signal is output to the main signal delay circuit DELAMP and the gain adjustment signal is output to the compensation signal generation circuit COMP so that the error is minimized.
  • the error voltage between the signal obtained by digitizing the output signal V3 of the adder circuit ADDAMP and either the output signal V3 of the adder circuit ADDAMP or the reference signal is monitored by the adaptive equalization control circuit ADP_CON.
  • An optimization algorithm such as Sign LMS automatically adjusts the delay amount Td of the main signal delay circuit DELAMP and / or the gain ⁇ of the compensation signal generation circuit COMP to an optimum value so that the error voltage is minimized. It is possible to compensate for signal quality deterioration due to environmental fluctuations such as temperature.
  • an error detector or eye monitor circuit EYM is provided in the optical characteristic control circuit OPT_COM, for example, a transimpedance amplifier TIA A configuration may be adopted in which the output of the CDR provided in the output of the optical signal is monitored and the delay amount Td or the gain ⁇ is adjusted by the optical characteristic control circuit OPT_COM so that the error is minimized with respect to a specific data pattern.
  • the loop band of the optical characteristic control circuit OPT_COM only needs to compensate for the optical signal degradation (temperature drift) associated with the temperature change of the laser diode LD on the transmission side, so high-speed operation exceeding 40 Gbps is not required, It suffices to operate in a band of about several MHz at most.
  • the optical communication module and the router device including the transimpedance amplifier TIA of the third embodiment high-speed and high-quality light can be obtained without performing temperature compensation of the laser diode LD on the transmission side.
  • a transmission / reception operation can be realized.
  • FIG. 5A is a diagram illustrating a fourth embodiment of the present invention.
  • the laser characteristic compensation circuit LDEQ is subjected to a phase shift with respect to a switching data pattern after N bits (N is 3 or more) continuously.
  • a feedforward equalizer circuit EQ is provided at the output of the adder circuit ADDAMP1 in order to suppress an increase in jitter.
  • this circuit can also include an optical characteristic control circuit OPT_COM.
  • OPT_COM optical characteristic control circuit
  • a delay circuit is further provided.
  • the order of the tap coefficient is second order. However, the order may be increased as necessary, and the delay amount of the delay circuit DELn is the same value in each order. There is no need, and each may be configured with an independent value.
  • FIG. 6A is a diagram illustrating the fifth embodiment of the present invention, and is another configuration example of the transimpedance amplifier TIA configuring the reception system in the optical communication module according to the second embodiment.
  • the transimpedance amplifier TIA according to the fifth embodiment includes a preamplifier PRAMP that converts a single-phase current signal from the photodiode PD into a voltage signal, and a threshold detection circuit ATC that detects the center level (threshold voltage) of the signal from the output signal of the preamplifier PRAMP.
  • a post-amplifier PSAMP that differentiates and amplifies the single-phase voltage signal of the preamplifier PRAMP, a main signal delay circuit DELAMP for delaying the output signal of the post-amplifier PSAMP, and an output signal MIN ( +), MIN ( ⁇ ), the preamplifier PRAMP and the output signal AIN (+), AIN ( ⁇ ) of the threshold generation circuit ATC, and the magnitude of the optical signal input to the photodiode PD.
  • Limit amplifier L that keeps output voltage constant regardless And AMP, the limit amplifier LMAMP output constituted by the electrical driver circuit DRVe for driving a 50 ⁇ output load between the analog front-end circuit AFE and SerDes circuit SDC.
  • FIG. 7A is a circuit diagram illustrating a detailed configuration example of the adder circuit ADDAMP in the fifth embodiment.
  • the addition circuit ADDAMP adds the output signal of the preamplifier and the output signal of the threshold generation circuit ATC from the output signal of the preamplifier PRAMP delayed by the postamplifier PSAMP and the main signal delay circuit DELAMP. Similar operations and effects, ie, an eye amplitude expansion by data pattern enhancement after 1-bit switching, and a jitter reduction effect by delaying data transition of the output signal of the preamplifier PRAMP can be obtained.
  • a differential waveform of AIN (+) is generated by a differential circuit composed of the resistive element R1 and the capacitive element C1.
  • the adjustment of the delay time can be realized by rewriting the value of the register REG that determines the setting of the addition amount by serial control or the like by changing the bias current Iba of the addition circuit ADDAMP. If a sufficient delay amount can be generated only by the delay time generated by the post-amplifier PSAMP, the main signal delay circuit DELAMP may be omitted.
  • the present embodiment can also include the optical characteristic control circuit OPT_COM, and the same operation and effect as the third embodiment of the present invention can be obtained by automatically adjusting the bias current value Iba of the adder circuit ADDAMP. .
  • FIG. 8 is a circuit diagram showing a detailed configuration example of the electric driver circuit DRVe in the present embodiment.
  • the electric driver DRVe is composed of a delay circuit DELAY and a high-speed termination circuit HTC including a main amplifier MAAMP, a negative feedback amplifier FBAMP, a low-pass filter LPF, and the like.
  • an output impedance equivalent to this output load for example, 50 ⁇
  • the load resistances Rd1 and Rd2 of the main amplifier MAAMP need to be 50 ⁇ .
  • the output is caused by the influence of the parasitic capacitance Cpo caused by the wiring capacitance or the pad. Impedance is reduced, and transmission quality deteriorates due to reflection.
  • a high-speed termination circuit HTC configured by parallel connection of the inductor elements L1 and L2 and the resistance elements Rd3 and Rd4
  • the high-frequency component of the output impedance is increased, and the output by the parasitic capacitance Cpo It is possible to suppress a decrease in impedance.
  • the main amplifier MAAMP is obtained by delaying and attenuating the input signals VIN (+) and VIN ( ⁇ ) of the electric driver circuit DRVe via the delay circuit DELAY and the negative feedback amplifier FBAMP.
  • the magnitude of the peak gain and the position (peak frequency) of the peak gain can be changed by adjusting the bias current Idrv2 of the negative feedback amplifier, the resistance element Rlpf or the capacitance element Clpf of the delay circuit DELAY, respectively. .
  • FIG. 6B signals differentiated by the post-amplifier PSAMP may be used as the inputs AIN (+) and AIN ( ⁇ ) of the adder circuit ADDAMP.
  • FIG. 7B is a circuit diagram showing a detailed configuration example of the adder circuit ADDAMP in this configuration. In this configuration, since the addition is performed using the differentiated signals, it is possible to generate an addition waveform with high accuracy without using the resistor element R1 and the capacitor element C1.
  • the optical communication module and the router device including the transimpedance amplifier TIA As described above, by using the optical communication module and the router device including the transimpedance amplifier TIA according to the fifth embodiment, high-speed and high-quality light can be obtained without performing temperature compensation of the laser diode LD on the transmission side. A transmission / reception operation can be realized.
  • FIG. 9 is a diagram illustrating a sixth embodiment of the present invention, and is one configuration example of the threshold generation circuit ATC in the transimpedance amplifier TIA according to the fourth embodiment.
  • the threshold generation circuit ATC includes a threshold detection circuit AVD that detects the center threshold value Vave from the output of the preamplifier PRAMP, a level shift circuit LVC that compensates for the offset voltage of the electric driver circuit DRVe from the post-amplifier PSAMP that is cascade-connected in the subsequent stage, A voltage follower circuit VFC that suppresses the influence of the base current of the input differential transistor pair of the amplifier PSAMP, a memory having a means for holding the level shift amount, or a register REG, and an external serial signal for writing the value of the register REG .
  • the threshold detection circuit AVD includes a low-pass filter LPF including a resistor Ratc and a capacitor Catc.
  • LPF low-pass filter
  • the band of the LPF needs to have a sufficiently low band with respect to the long-period pattern to be received.
  • Each level shift circuit LVC for data detection and edge detection includes an operational amplifier OFAMP1, two resistors Rlvc connected in series between the input and output terminals of the operational amplifier OFAMP1, and three constants each capable of setting an arbitrary current. It comprises current sources Ib1, Ib2, and Ib3.
  • the output terminal of the operational amplifier OFAMP1 forms a negative feedback path in which the output terminal of the operational amplifier OFAMP is connected to the negative input terminal of the operational amplifier OFAMP, thereby forming a voltage follower. Therefore, when the gain of the operational amplifier OFAMP1 is sufficiently high, the output voltage becomes Vave ⁇ Rlvc ⁇ ⁇ I with respect to the input voltage Vave of the operational amplifier OFAMP1 by arbitrarily setting the current value ⁇ ⁇ I of each constant current source.
  • the post-amplifier PSAMP is composed of bipolar transistors, an error of Rlvc ⁇ Ibase occurs in the level shift amount due to the influence of the base current Ibase flowing through the input differential transistor pair.
  • the voltage follower circuit VFC at the output of the level shift circuit LVC, an error in the level shift amount due to the base current Ibase can be suppressed, and the offset voltage can be compensated with high accuracy.
  • the low-pass filter LPF needs to satisfy a band of 200 kHz or less. Although it is desirable to realize this band by increasing the resistance value of the resistive element Ratc rather than the capacitive element Catc, the threshold current detection circuit AVD alone is affected by the base current Ibase flowing through the input differential transistor pair of the post-amplifier PSAMP.
  • FIG. 10A is a diagram illustrating a seventh embodiment of the present invention, and is a circuit diagram illustrating a specific configuration example of the preamplifier PRAMP of the transimpedance amplifier TIA used in the optical communication module of the present invention.
  • the preamplifier PRAMP in this embodiment includes a package substrate PKG connecting the optical element block OBK and the analog front end circuit AFE, an input stage CB_STA for reducing the influence of the input capacitance CIN such as a pad and an ESD protection element, a current voltage
  • the amplifier stage AMP_STA performs conversion and amplification operations. For example, in the case of FIG.
  • the ⁇ 3 dB frequency of the preamplifier PRAMP configured only by the conventional amplification stage AMP_STA is gm 2 ⁇ RL 2 / (Cin ⁇ Rf).
  • the operating band deteriorates due to the influence of the input capacitance Cin, and the operating band and the transimpedance gain Rf are in a trade-off relationship, making it difficult to realize high-speed and high-gain operation.
  • the wiring impedance of the package substrate PKG is limited to about 30 ⁇ even if an attempt is made to reduce the impedance due to the limitation of the wiring width. Therefore, there is a problem that signal reflection occurs due to impedance mismatch between the package substrate PKG and the preamplifier PRAMP, and signal quality is significantly deteriorated.
  • the input stage CB_STA composed of a base ground or the like is provided at the input of the amplification stage AMP_STA, and the -3 dB frequency is approximate. Gm1 / (2 ⁇ Cin).
  • Gm1 / (2 ⁇ Cin) the trade-off relationship between the operating band and the transimpedance gain can be eliminated, and further, the influence of signal reflection by the package substrate PKG can be reduced.
  • the bias current of the base ground circuit which is a main factor of the noise component, is concerned.
  • the input stage CB_STA is realized by the base ground circuit.
  • the CMOS circuit may have a circuit configuration such as a gate ground circuit or a regulated cascode.
  • G (s) [gm2 ⁇ gm4 / (gm2 + gm4) + (RL2 ⁇ CDF / gm2) ⁇ s] / [1 + s ⁇ CDF / (gm2 + gm4)]
  • the capacitive element CDF generates a zero point in the second term of the numerator, emphasizes the high frequency component of the frequency characteristics, and enables further high speed operation.
  • This configuration makes it possible to realize a high-speed reception operation exceeding 40 Gbps with high gain and high quality without depending on mounting conditions such as the input capacitance Cin and the package substrate PKG.
  • FIG. 11A is a diagram illustrating an eighth embodiment of the present invention.
  • the capacitance for reducing the deterioration in signal quality caused by the influence of the voltage variation signal PSm of the power supply VDD_PR of the preamplifier PRAMP By providing the element Cps1, a pseudo voltage fluctuation signal PSd1 having the same phase as the voltage fluctuation signal PSm is generated, and the voltage fluctuation PSm is canceled at the input terminal of the post-amplifier PSAMP.
  • the input signal of the transimpedance amplifier TIA is a minute current of about several hundred ⁇ A
  • the gain of the preamplifier PRAMP is about 300 to 500 times at most for speeding up. Therefore, the output voltage of the preamplifier PRAMP is several tens mV. It becomes. Since the preamplifier PRAMP is a circuit that receives a single-phase current signal and outputs a single-phase voltage signal, the preamplifier PRAMP is easily affected by the voltage fluctuation PSm of the power supply voltage VDD_PR.
  • the input current from the photodiode PD is a very small current of several hundreds ⁇ A in this circuit, the influence of the voltage fluctuation PSm of the power supply VDD_PR on the output signal is large. Therefore, in this preamplifier PRAMP, the high-quality current / voltage signal conversion operation is hindered by the voltage fluctuation PSm of the power supply VDD_PR.
  • the low frequency component of the voltage fluctuation PSm is transmitted to the output terminal of the threshold generation circuit ATC by connecting the power supply terminal VDD_LPF of the threshold detection circuit AVD to the power supply terminal VDD_PR of the preamplifier PRAMP.
  • the high frequency component of the voltage fluctuation PSm is transmitted by connecting the output terminal of the threshold generation circuit ATC and the power supply VDD_PR of the preamplifier PRAMP with the capacitive element Cps1.
  • the operational amplifier OFAMP1 and the operational amplifier OFAMP2 constituting the threshold generation circuit ATC are realized by NMOS transistors as shown in the circuit example of FIG. 11B, and the output level is determined based on the power supply.
  • the power supply of the operational amplifier is the same as that of the preamplifier PRAMP.
  • FIG. 12A is a diagram illustrating a ninth embodiment of the present invention.
  • a power supply for reducing deterioration in signal quality caused by the influence of the voltage variation signal PSm of the power supply VDD_PR of the preamplifier PRAMP By providing the fluctuation generation circuit PSGEN and the capacitive element Cps2, the pseudo voltage fluctuation signal PSd2 having the same phase as the voltage fluctuation signal PSm is generated, and the voltage fluctuation PSm is canceled at the input terminal of the post amplifier PSAMP.
  • the voltage fluctuation PSm of the power supply VDD_PR inhibits the high-quality current / voltage signal conversion operation. Will be.
  • the power supply terminal VDD_LPF of the threshold detection circuit AVD is connected to the power supply fluctuation generation circuit PSGEN of the preamplifier PRAMP so that the low frequency component of the voltage fluctuation PSm is applied to the output terminal of the threshold generation circuit ATC.
  • the high frequency component of the voltage fluctuation PSm is transmitted by connecting the output terminal of the threshold value generation circuit ATC and the power supply fluctuation generation circuit PSGEN by the capacitive element Cps2.
  • FIG. 12B shows a specific circuit example of the power supply fluctuation generation circuit PSGEN.
  • the power fluctuation generation circuit PSGEN may be configured by an emitter follower circuit of a differential amplifier circuit, and the output of the differential amplifier circuit may be connected by the capacitive element C2, thereby reducing the influence of the load due to the connection of the emitter follower circuit.
  • the band of the voltage fluctuation PSd2 propagating to the negative terminal of the post amplifier PSAMP can be adjusted. is there.
  • the voltage fluctuation PSd2 can be increased to 1 GHz or more. It is possible to reduce the required bandwidth of the differential amplifier circuit and the emitter follower circuit to 1 GHz, that is, by reducing the current values of the two current sources Ipsg1 and Ipsg2, thereby reducing the power consumption of the transimpedance amplifier. Operation is possible. Further, as shown in FIG. 11B, the operational amplifier OFAMP1 and the operational amplifier OFAMP2 constituting the threshold value generation circuit ATC are realized by NMOS transistors, and the output level is determined based on the power supply. Is common to the power supply VDD_PR of the preamplifier PRAMP.
  • the present embodiment it is possible to reduce the deterioration of transmission quality caused by power fluctuation of the preamplifier PRAMP, and to realize a high-speed reception operation exceeding 40 Gbps with high gain and high quality.
  • FIG. 13 is a diagram illustrating a tenth embodiment of the present invention.
  • the voltage regulator PD_REG that supplies a stable power supply voltage VDD_PD to the photodiode PD and the DC bias point of the preamplifier PRAMP are illustrated.
  • This is a configuration example provided with an average current adjustment circuit IAVE_Adj for constant control.
  • the power supply VDD_PD of the photodiode PD is generated from the voltage regulator PD_REG in the chip, thereby reducing the power supply impedance of the photodiode PD and the voltage of the power supply VDD_PD of the photodiode PD.
  • the value of the power supply voltage VDD_PD of the photodiode is substantially equal to the value of the reference voltage Vref, and can be adjusted by changing the value of the reference voltage Vref by external serial control or the like. It is. Further, in the transimpedance amplifier TIA, the average current of the photodiode PD due to variations in the line length of the optical communication path OF, variations in the coupling strength of the optical fiber connector CNo, etc., changes in the threshold current due to temperature fluctuations in the laser diode LD on the transmission side, etc.
  • the DC bias point of the preamplifier PRAMP may deviate from the design value, the desired transimpedance characteristics may not be obtained, and the signal quality may deteriorate.
  • the value of the constant current source ICB connected to the input terminal of the preamplifier PRAMP is adjusted by the control signal Icon to increase the photo
  • the DC bias point of the preamplifier PRAMP can be kept constant by pulling out the change in the average current of the diode PD with the constant current source ICB.
  • the optical communication module and the router device including the transimpedance amplifier TIA of the tenth embodiment it depends on the influence of the change in the average current flowing in the photodiode PD and the voltage fluctuation of the power supply of the photodiode PD. Therefore, it is possible to realize a high-quality reception operation.
  • FIG. 14A is a diagram illustrating Example 11 of the present invention.
  • PAM Pulse Amplitude Modulation
  • TIA Transimpedance amplifier
  • the transmission side is constituted by, for example, an encoding logic circuit for generating a PAM4 signal, a laser diode driver circuit LDD for driving the laser diode LD, and a laser diode LD, where the laser It is assumed that a laser diode LD that lacks a band in which the operating band of the diode LD ( ⁇ 3 dB frequency) and the peak frequency due to the relaxation oscillation frequency do not reach the baud rate of the communication speed is used.
  • the receiving side receives the optical PAM4 signal generated on the transmitting side and converts it into a current signal, a preamplifier PRAMP that converts a single-phase current signal from the photodiode PD into a voltage signal, and a laser diode LD specific Laser characteristic compensation circuit LDEQ that compensates for the effects of band degradation and relaxation oscillation frequency, threshold generation circuit ATC that generates a threshold voltage corresponding to the PAM4 signal, and latch circuit LAT that digitizes the analog signal of the laser characteristic compensation circuit LDEQ And a CDR / decoding logic circuit for reproducing a clock signal and a received data signal from the output signal of the transimpedance amplifier TIA and decoding the PAM4 signal, and laser characteristics according to environmental variations such as the temperature of the laser diode LD.
  • Each parameter for determining the compensation amount of the compensation circuit LDEQ, and a threshold It is configured to have an optical characteristic control circuit OPT_COM for adjusting the respective thresholds generation circuits ATC to the optimum value.
  • the threshold generation circuit ATC generates a threshold detection circuit AVD configured by a low-pass filter or the like that performs threshold detection, and three thresholds (Vthu, Vthc, Vthd) corresponding to the eye waveform of PAM4 shown in FIG. 14B.
  • the level shift circuit LVC described in the sixth embodiment.
  • the transmission quality deteriorates due to the shift of each threshold value of the PAM4 signal from the set optimum value in addition to the deterioration of the eye waveform due to the relaxation oscillation frequency according to the environmental variation such as the temperature of the laser diode LD.
  • the optical characteristic control circuit OPT_COM provided in the optical receiver circuit automatically adjusts the level shift amount of the level shift circuit LVC in addition to the same operation and effect as the first embodiment of the present invention. Without using temperature compensation means such as a monitor PD on the transmission side, it is possible to maintain an optimum threshold value in the received waveform, and PAM4 transmission with high transmission quality is possible.
  • PAM4 transmission is taken as an example, but the number of multi-values may be increased by increasing the number of level shift circuits LVC and latch circuits LAT according to the number of necessary thresholds.
  • the optical communication module and the router device including the transimpedance amplifier TIA of the eleventh embodiment high-speed and high-quality light can be obtained without performing temperature compensation of the laser diode LD on the transmission side. PAM signal transmission / reception operation can be realized.
  • the optical communication module and the optical communication device of the present invention are particularly useful when applied to an optical communication module and an optical communication device that perform communication via an optical fiber cable in the device.
  • the present invention is widely applicable to all products that perform optical communication using laser diodes such as distance communication and inter-device communication.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Semiconductor Lasers (AREA)

Abstract

通信速度の高速化を低コストかつ高信頼で実現可能な光通信モジュール及び光通信装置を提供する。 レーザダイオードおよびフォトダイオードを用いた光通信モジュールであって、フォトダイオード出力である単相電流信号を入力として単相電圧信号に変換し増幅するプリアンプと、前記プリアンプ出力である電圧信号を入力とするレーザ特性補償回路を備え、前記レーザ特性補償回路により、受信側で送信側に用いるレーザダイオードの周波数特性と緩和振動周波数による非線形性を補償することを特徴とする。

Description

光通信モジュールおよびそれを備える光通信装置
 本発明は、光通信モジュールおよびそれを備える光通信装置に関し、特に、ルータやサーバ等の光通信装置、およびその部品の一つでありレーザダイオードとフォトダイオードを用いて光通信を行う光通信モジュールに適用して有効な技術に関する。
 例えば、特許文献1には、高速光送信回路において、レーザダイオードの動作帯域を向上するための非対称プリエンファシス回路を設けたレーザダイオードドライバ回路が記載されている。具体的には、遅延回路とデューティ比調整回路から成るプリエンファシス回路が示されている。これによって、レーザダイオードの高速駆動と、光信号の伝送特性の劣化(立ち上がり立ち下がり非対称)を補償できる。
 また、特許文献2には、レーザ特性の変化によるレーザ出力光の消光比変動を抑制する光送信回路が記載されている。具体的には、レーザダイオードからの光出力をフォトダイオードで検出し、フォトダイオード出力の直流成分に応じてレーザダイオードのバイアス電流を変更する構成例が示されている。これによって、レーザダイオードの閾値電流に生じる温度変動が補償できる。
特開2012-43933号公報 特開2003-298181号公報
 近年、通信速度の高速化に伴い、その通信速度は10Gbpsから25Gbps、50Gbps等へと遷移している。このような通信速度の高速化に伴い、例えばルータ装置やサーバ装置として、光ファイバケーブルに対応した光通信装置の適用が進んでいる。光通信装置は、通常、装置間におけるキロメートルオーダーといった長距離伝送を前提としており、この伝送距離に伴う高速性、信頼性の確保が重要となっている。
 このような光通信装置の中には、比較的大型のサイズ(例えば数十センチメートルオーダーやメートルオーダー)を持つ装置も多数存在するが、その装置内部では、通常、電気信号を用いた通信が行われている。すなわち、光通信装置は、例えば、外部から入力された光信号を電気信号に変換し、この電気信号によって装置内部での短距離通信(例えばメートルオーダー)を行いながら所定の処理を行い、再び電気信号を光信号に変換して外部に出力している。この短距離通信は、例えば、銅線ケーブル等を用いた電気信号による通信が行われるが、通信速度の高速化が進むにつれて、銅線ケーブルでは伝送波形品質の著しい低下が生じてしまう。このため、このような装置内部の短距離通信にも光通信を適用することが求められつつある。この場合、ルータなどの内部信号処理はすべて電気信号で行うため、光素子で電気信号を光信号に変換する必要がある。このため、銅線ケーブルから光ファイバケーブルへ移行するにあたって、電気通信は光通信と比べて、比較的安価かつ信頼性が高い部品で構成されるため、光伝送波形の品質向上、光電変換部の低電力化、低コスト化、信頼性向上が重要となっている。
 しかしながら、通信速度の高速化に伴い、レーザダイオードLDの帯域不足によって生じる符号間干渉により、光伝送波形が劣化し、例えば40Gbpsを超えるような通信速度を実現することが困難となってきている。光伝送波形の符号間干渉を改善する手段として、レーザダイオードLDの動作帯域を改善することが考えられるが、このような最先端の光デバイスの活用は、既に流通している一世代前の光デバイスと比べて故障率が高く、また、コスト高になるため、短距離通信における電気通信から光通信への移行を阻害することとなる。このため、より高速動作が可能なLDを使用する代わりに、電気回路による波形等化を用いて、LDの帯域不足を補償することが、光電変換部の低コスト化、高信頼化の面で有効である。
 また、光伝送波形を劣化させる要因としては、レーザダイオードLDがもつ緩和振動周波数の影響により、光伝送波形にリンギングが発生し、伝送特性を劣化させることが挙げられる。図15Aは、レーザダイオードLDにおける緩和振動周波数の温度特性の一例を示す説明図である。緩和振動とは、半導体レーザにパルス状の電流を注入した時に光出力が振動する現象であり、その時の周波数が緩和振動周波数と呼ばれる。緩和振動周波数の値は、LDのデバイス構造によって定まり、この周波数以上では応答特性が急激に低下するため、LDが動作可能な上限周波数は、この緩和振動周波数に基づいて定められる。40Gbpsを超えるような通信速度においては、通信速度の基本周波数(例えば、50Gbpsの場合、25GHz)よりもレーザダイオードLDの上限周波数(-3dB周波数)が低い値となり、さらに、レーザダイオードLDの周波数特性は緩和振動周波数の影響により、ロールオフが急峻な特性となるため、-3dB周波数を超えると急激にレーザダイオードLDの光出力パワーが低減し、伝送品質が劣化する。さらに、レーザダイオードLDは温度変化に対してその特性が敏感に変化し、高温動作時では低温動作時に比べて、緩和振動周波数が劣化するため、温度変化に対して伝送品質が劣化してしまう。
 レーザダイオードLDの帯域不足によって発生する伝送品質の劣化を電気回路にて補償する手段として、特許文献1では、立ち上がりと立ち下がりをあらかじめ強調する(プリエンファシス)ことで、レーザダイオードLDの帯域不足を改善する、レーザダイオードドライバ回路LDDが記載されている。このLDDは具体的には、図15Bに示すように、遅延回路DELと、デューティ調整回路DUTYAdjと、プリバッファ回路PrBufと、加減算回路ADDから成るレーザ特性補償回路LDEQと、出力回路DRVで構成される。LDDの入力電圧信号は、それぞれ、プリバッファ回路PrBufmと、遅延回路DELの2つに分岐され、遅延回路DELに分岐された電圧信号は、プリバッファ回路PrBufmに分岐された電圧信号と比べて、ある一定の遅延差を持って出力される。この遅延差を持った電圧信号は、もう一方の遅延差を持たない電圧信号に、加減算回路ADDで減算することで、立ち上がりと立ち下がりの強調量が大きい電圧信号が生成される。また、デューティ調整回路DUTYAdjにより、“H”レベルの期間が長くなるようにデューティ比が調整され、立ち上がりに比べて、立ち下がりの強調量が大きい(非対称プリエンファシス)電圧信号の生成も可能である。この立ち上がりと立ち下がりの強調された電圧信号は、出力回路DRVで電流信号に変換され、このプリエンファシス特性をもった電流信号で、レーザダイオードLDを駆動することで、緩和振動周波数による伝送品質の劣化とレーザダイオードLDの帯域不足を改善し、立ち上がりと立ち下がりが均等な光信号を出力できる。
 しかしながら、上述したレーザダイオードドライバ回路LDDで補償する従来技術では、レーザダイオードLDの緩和振動周波数は、温度変化に対して敏感にその特性が変化してしまうため、温度変化に対してレーザダイオードLDの周波数特性に起因する帯域劣化を補償できないという問題が生じる。この問題を解決する手段として、光送信モジュールのパッケージ内に、ペルチェ素子と、ペルチェ素子を制御するためのサーミスタ等の何らかの冷却手段を設けてLDの温度を一定とするか、あるいは、特許文献2に示すように、モニタPD等でLDの温度変化を観測するための何らかの手段を設けて、その温度変化に応じて、遅延回路DELの遅延量とデューティ調整回路DUTYAdjの調整量を精度良く調整することが考えられるが、どちらの手段も部品数が増加してしまうため、光電変換部の低コスト化や小型化、更には低電力化の弊害となり、装置内部での光通信適用が困難となる。さらに、光通信においては、ファイバケーブル等の光通信経路における非線形素子の影響が加わるため、光送信回路でレーザダイオードの特性を補償しても、光受信回路で受信する光信号は光通信経路の影響で伝送品質が劣化するという問題も生じる。
 また、図15Cは、従来技術のインパルス応答を用いた説明図を示す。40Gbpsを超えるような通信速度においては、緩和振動周波数によって生じるピーク利得の位置(ピーク周波数)が、通信速度の基本周波数よりも低い値となるため、レーザダイオードLDの光出力波形にリンギングが発生する。このリンギングの影響によって、従来技術のプリエンファシスでは、連続ビット後の切り替わり波形に対して、1ビット切り替え時のデータ遷移の位相が速まってしまい、ジッタがΔT増加し、伝送品質が劣化するという問題も生じる。
 本発明は、このようなことを鑑みてなされたものであり、その目的の一つは、通信速度の高速化を低コストかつ高信頼で実現可能な光通信モジュール及び光通信装置を提供することにある。本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。
 上記課題を解決するために、本発明は、請求の範囲に記載の構成を採用する。
 本発明の代表的な光通信モジュールの一例を挙げるならば、レーザダイオードおよびフォトダイオードを用いた光通信モジュールであって、フォトダイオード出力である単相電流信号を入力として単相電圧信号に変換し増幅するプリアンプと、前記プリアンプ出力である電圧信号を入力とするレーザ特性補償回路を備え、前記レーザ特性補償回路により、受信側で送信側に用いるレーザダイオードの周波数特性と緩和振動周波数による非線形性を補償することを特徴とするものである。
 本発明の光通信モジュールにおいて、更に、前記レーザダイオードの温度変化による前記フォトダイオードに入力される光波形の特性の変化に応じて、前記レーザ特性補償回路出力のアイ開口度を検出し、前記アイ開口度を最大とする最適値と前記検出結果との誤差信号を生成し、前記誤差信号が小さくなるように前記レーザ特性補償回路の補償量を自動調整する光特性制御回路を備え、受信側で送信側に用いるレーザダイオードの温度変化を補償することが好ましい。
 また、本発明の光通信モジュールにおいて、前記レーザ特性補償回路は、前記プリアンプ出力の電圧信号を受けて一定の遅延量で遅延させた第1の信号を生成する主信号遅延回路と、前記第1の信号よりも振幅が小さく、位相が進んだ第2の信号を生成する補償信号生成回路と、前記主信号遅延回路の出力である第1の信号に、前記補償信号生成回路の出力である第2信号を極性を反転して加算する第1の加算回路を備え、前記第1の加算回路出力の1ビットデータ切り替え時と連続ビット後のデータ切り替え時とのデータ遷移の差分を小さくすることが好ましい。
 本発明によれば、光通信モジュールにおいて、レーザダイオード特性特有の帯域劣化、温度変動、緩和振動によるリンギングの影響を、受信部で改善し、高速、低電力、かつ高品質な光伝送が実現可能となる。
 さらに、動作帯域が劣る一世代前のレーザダイオードで高速動作が可能となり、光通信モジュールの信頼性向上と低コスト化を実現できる。
本発明の実施例1によるルータ装置内部の概略構成の一例を示す図である。 本発明の実施例1によるルータ装置内部の光通信モジュールの概略構成の一例を示すブロック図である。 本発明の実施例1の光通信モジュールの構成例を示すブロック図である。 本発明の実施例2の光通信モジュールの構成例を示すブロック図である。 本発明の実施例3の光通信モジュールの構成例を示すブロック図である。 トランスインピーダンスアンプの出力アイ波形の一例を示す図である。 本発明による伝送品質の改善効果を示す説明図である。 本発明の実施例4の光通信モジュールの構成例を示すブロック図である。 本発明の実施例4の光通信モジュールの変形例を示すブロック図である。 本発明の実施例5の光通信モジュールの構成例を示すブロック図である。 本発明の実施例5の光通信モジュールの変形例を示すブロック図である。 図6Aの光通信モジュールにおける加算回路の構成例を示す回路図である。 図6Bの光通信モジュールにおける加算回路の構成例を示す回路図である。 図6Aの光通信モジュールにおける電気ドライバ回路の構成例を示す回路図である。 図6Aの光通信モジュールにおける閾値生成回路の構成例を示すブロック図である。 図2の光通信モジュールにおいてプリアンプの構成例を示す図である。 図2の光通信モジュールにおいてプリアンプの他の構成例を示す図である。 本発明の実施例8の光通信モジュールの構成例を示すブロック図である。 本発明の実施例8の光通信モジュールにおいて、閾値生成回路を構成するオペアンプの構成例を示す回路図である。 本発明の実施例9の光通信モジュールの構成例を示すブロック図である。 本発明の実施例9の光通信モジュールにおいて、電源変動生成回路の構成例を示す回路図である。 本発明の実施例10の光通信モジュールの構成例を示すブロック図である。 本発明の実施例11の光通信モジュールの構成例を示すブロック図である。 本発明の実施例11の光通信モジュールにおいて、受信アイ波形と各ラッチ回路の閾値との関係を示す説明図である。 図1Bの送信系において、通信速度の基本周波数とレーザダイオードの緩和振動周波数の関係を示す説明図である。 図1Bの送信系を構成するレーザダイオードドライバ回路の従来例を示すブロック図である。 図15Bの構成を用いた場合の課題を示す説明図である。
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
 また、実施の形態の各機能ブロックを構成する回路素子は、特に制限されないが、CMOS(相補型MOSトランジスタ)やバイポーラトランジスタ等の集積回路技術によって、単結晶シリコンのような半導体基板上に形成される。なお、実施の形態では、MISFET(Metal Insulator Semiconductor Field Effect Transistor)の一例としてMOSFET(Metal Oxide Semiconductor Field Effect Transistor)(MOSトランジスタと略す)を用いるが、ゲート絶縁膜として非酸化膜を除外するものではない。図面にはトランジスタの基板電位の接続は特に明記していないが、トランジスタが正常動作可能な範囲であれば、その接続方法は特に限定しない。
 本願において開示される発明のうち、代表的な実施の形態の概要を簡単に説明すれば、次のとおりである。
 本実施形態による光送受信回路は、レーザダイオードLDは変調信号の変化をそのまま光源の強度変化にする、VCSEL(Vertical Cavity Surface Emitting Laser)やDFB-LD(Distributed FeedBack Laser Diode)等の直接変調型LDであり、その緩和振動によるピーク周波数は通信速度の基本周波数(例えば、50Gbpsの場合、25GHz)以下であり、レーザダイオードドライバ回路LDDでレーザダイオードLDの帯域不足や緩和振動周波の影響によって発生する伝送品質の劣化を補償するのではなく、トランスインピーダンスアンプTIAにレーザ特性補償回路LDEQを搭載することで、レーザダイオードLD特性特有の帯域劣化、緩和振動周波数によるリンギングの影響を補償するものとなっている。ここで、トランスインピーダンスアンプTIAは、具体的には、フォトダイオードPDからの単相電流信号を電圧信号に変換するプリアンプと、プリアンプの出力からレーザダイオードLD特性特有の帯域劣化、立ち上がりと立ち下がりの非対称性、緩和振動周波数によるリンギングの影響等を補償するレーザ特性補償回路LDEQと、レーザ特性補償回路LDEQの出力の時間成分及び、電圧成分のアイ開口度が最大となるように、あるいは、レーザ特性補償回路の出力とリファレンス信号との誤差信号が最小となるように、レーザ特性補償回路の利得や遅延量等を自動調整するための光特性制御回路を有するものとなっている。本構成によって、レーザダイオードLDの温度補償のためのペルチェ素子やモニタPD等の部品点数を増やすことなく、また、光通信経路における非線形素子の影響を受けることなく、伝送品質を改善することが可能となる。
 また、例えば、レーザ特性補償回路LDEQは、プリアンプの出力信号を通信速度の基本周波数の逆数(ビット期間Ts)よりも少ないある一定の遅延差Tdを持って出力させる主信号遅延回路と、プリアンプの出力信号をある一定の利得(-α)で出力する補償信号生成回路と、主信号遅延回路の出力信号と補償信号回路の出力信号を加算する加算回路を有する構成となっており、さらに、補償信号生成回路の利得、あるいは主信号遅延回路の遅延量は、光特性制御回路で自動調整される構成となっている。この構成によって、レーザダイオードLD特性特有の帯域劣化、緩和振動によるリンギングの影響を補償することが可能となり、通信速度に対して動作帯域が不足した一世代前のレーザダイオードLDを用いて、低コストかつ高信頼な高速通信が可能となる。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
 図1Aは、本発明の実施例1によるルータ装置内部の概略構成の一例を示すブロック図である。ルータ装置は、例えば、幅および奥行きがそれぞれ数十センチ、高さが1~2m等といった筐体で構成されている。筐体表面には、多数の通信コネクタが設けられ、それぞれは、例えばイーサネット(登録商標)ケーブル端子や、あるいは光ファイバケーブル端子等である。ルータ装置内部には、例えば、図1Aに示すように、複数のインタフェースカードIFC[1],IFC[2],…や、スイッチカードSWC等が備わっている。各カードは、バックプレーンBKP等と呼ばれる部品に備わったカードコネクタにそれぞれ接続される。各カードコネクタには、BKPから各カードに電源を供給するためのコネクタや、光通信線路(代表的には光ファイバケーブル)OFを介して各カード間で通信を行うための光コネクタ(光ファイバコネクタ)CNoが含まれている。ここでは、各インタフェースカードIFCがCNoと光通信線路OFを介してスイッチカードSWCに接続され、これによって各IFCが受け持つ通信コネクタCNo間でSWCを介した通信が可能となる。
 各IFCには、通信の上位階層で必要となる所定のプロトコル処理を行う論理デバイスLSI_LGiや、この論理デバイスLSI_LGiの入出力となる電気信号を光信号に変換し、光コネクタCNoを介して光通信線路OFとの間の入出力を行う光通信モジュールOMDiが実装されている。同様に、SWCにも、所定のプロトコル処理を行う論理デバイスLSI_LGsや、このLSI_LGsの入出力となる電気信号を光信号に変換し、CNoを介してOFとの間の入出力を行う光通信モジュールOMDsが実装されている。
 このような光通信装置において、各光通信線路OFの長さは、例えば数メートルに達する場合がある。この場合、OFの代わりに銅線ケーブル等を用いると、伝送損失により、例えば数十Gbpsレベルの通信に対応できない恐れがある。そこで、本実施例の光通信モジュールを用いることが有益となる。
 図1Bは、図1Aのルータ装置において、ルータ装置内部のカード間通信を行うための光通信モジュールOMDの概略構成の一例を示すブロック図である。光通信モジュールOMDは、アナログフロントエンドブロックAFE、光素子ブロックOBKを備えている。光素子ブロックOBKは、送信用の光通信線路OFtxに出力を行うレーザダイオードLDと、受信用の光通信線路OFrxから入力された光信号を電気信号(電流信号)に変換するフォトダイオードPDを備えている。LDおよびPDは、例えば、それぞれ個別の半導体チップで構成され、実際には、通信チャネル数に応じてLD,PD共にそれぞれ複数個あるいは、アレイ状に集積した半導体チップとして存在する。アナログフロントエンドブロックAFEは、LDを駆動するレーザダイオードドライバ回路LDDと、PDからの電流信号を増幅ならびに電圧信号に変換するトランスインピーダンスアンプ回路TIAを備えている。AFEは、ここでは、一つの半導体チップLSI_OPに形成している例を示しているが、LDDとTIAは、個別に形成し別チップとしてもよい。光通信モジュールOMDはOMD外部の論理デバイスLSI_LGと電気的に接続し、LSI_LG内に搭載されるSerDes(Serializer/Deserializer)等と呼ばれる伝送速度変換回路SDCと、AFE(LDDおよびTIA)との間で電気電圧信号を送受信する。例えば、図1AのLSI_LGとOMDの間では、25Gbps×4本(4チャネル)の電気信号が送受信され、各カード(IFC,SWC)間の光通信線路OFを介した通信も、25Gbps×4チャネルの光信号で行われる。図1Bの例では、LSI_OPはAFEだけで構成されているが、光通信モジュールOMDとLSI_LG間との、チャネル辺りの伝送速度を落とすことで電気伝送の負担低減を図るため、光通信モジュールOMD内に、アナログフロントエンド回路ブロックAFEに加えて、伝送速度変換回路SDCを搭載しても良い。ここで、アナログフロントエンド回路ブロックAFEと、伝送速度変換回路SDCは、それぞれ別の半導体チップとして実装されるか、あるいは、AFEとSDC間の電気I/O低減による省電力化を図るため、AFEとSDCを、CMOS等の同一半導体プロセスで形成し、それらを半導体チップLSI_OPに、一体集積した構成としても良い。
 図2は、図1Bにおける受信系を構成する部品の一つである本実施例のトランスインピーダンスアンプTIAの一つの構成例を示す。本実施例においては、送信側に使用するレーザダイオードLDの動作帯域(-3dB周波数)及び緩和振動周波数によるピーク周波数が通信速度の基本周波数に達していない帯域が不足したレーザダイオードLDを使用することを前提とする。これにより、最先端のレーザダイオードLDを使用することなく、LDの動作帯域を越えた高速通信が可能となり、光通信モジュールの低コスト化、信頼性向上が可能となる。
 本実施例におけるトランスインピーダンスアンプTIAは、フォトダイオードPDからの単相電流信号を電圧信号に変換するプリアンプPRAMPと、プリアンプPRAMPの出力信号からレーザダイオード特性特有の帯域劣化、緩和振動周波数による影響を補償するためのレーザ特性補償回路LDEQと、前記レーザダイオードLDの温度等の環境変動に対して前記レーザ特性補償回路LDEQの補償量を自動調整するための光特性制御回路OPT_COMで構成される。ここで、レーザ特性補償回路LDEQは、後述する実施例における構成に加えて、従来レーザダイオードドライバ回路LDDに搭載されていたプリエンファシス回路や非対称プリエンファシス回路を適用してもよい。
 伝送品質を確保するため、レーザ特性補償回路LDEQの補償特性を決定する利得や遅延量等のパラメータは、レーザダイオードLDの温度等の環境変動に応じて、最適となるように調整する必要がある。前述したように、この課題を解決する手段として、従来技術では、送信側でレーザダイオードLDの温度を一定するためのペルチェ素子やモニタフォトダイオードPDを設けてレーザダイオードLDの温度補償を実施する手段が取られていたが、部品数増大により、低コスト化や小型化の弊害となっていた。本実施例においては、光受信回路内部に光特性制御回路OPT_COMを設けることで、送信側にペルチェ素子やモニタPDを設けることなく、レーザダイオードLDの温度補償が可能となり、低コストかつ小型な光通信モジュールを実現できる。
 ここで、光特制御回路OPT_COMは、具体的には、レーザ特性補償回路LDEQの出力アイ波形をアイモニタ回路EYMで観測し、アイ波形の電圧成分と時間軸方向のアイ開口度が最大となるように、例えば、プリエンファシス回路を構成するバッファ回路の利得や、遅延回路の遅延量、あるいはデューティ調整回路のデューティ比等が調整される。また、光特性制御回路OPT_COMは、例えば、LMSアルゴリズ論理回路LMS_ALGを設けて、トランスインピーダンスアンプTIAの出力に設けるCDR(Clock Data Recovery)の出力等と想定する最適な電圧信号とクロック位相を示すリファレンス信号との誤差電圧及び誤差位相をモニタし、その誤差がSign-Sign LMS(Least Mean Square)等の最適化アルゴリズムで最小となるように、レーザ特性補償回路LDEQの各パラメータを最適化する構成を取ってもよい。ここで、光特性制御回路OPT_COMのループ帯域は、送信側のレーザダイオードLDの温度変化に伴う光信号の劣化(温度ドリフト)を補償できれば良いので、40Gbpsを超えるような高速動作は必要とせず、せいぜい数MHz程度の帯域で動作すればよい。
 以上のように、本実施例1のトランスインピーダンスアンプTIAを含む光通信モジュールおよびルータ装置を用いることで、送信側でレーザダイオードLDの温度補償を実施しなくても、低コスト、かつ高品質な光送受信動作を実現することが可能となる。
 図3Aは、図1Bにおける受信系を構成する部品の一つである本発明の実施例2のトランスインピーダンスアンプTIAの一つの構成例を示す。本実施例においては、送信側に使用するレーザダイオードLDの動作帯域(-3dB周波数)及び緩和振動周波数によるピーク周波数が通信速度の基本周波数に達していない帯域が不足したレーザダイオードLDを使用することを前提とする。これにより、最先端のレーザダイオードLDを使用することなく、LDの動作帯域を越えた高速通信が可能となり、光通信モジュールの低コスト化、信頼性向上が可能となる。
 図3Aは帯域が不足したLDからの光入力を受信するトランスインピーダンスアンプのブロック構成を示す図である。また、図4AはトランスインピーダンスアンプTIAの出力アイ波形を示す図であり、図4Bは本実施例による伝送品質の改善効果を示す説明図である。
 まず、図3Aの回路について説明する。本実施例によるトランスインピーダンスアンプTIAは、フォトダイオードPDからの単相電流信号を電圧信号に変換するプリアンプPRAMPと、レーザ特性補償回路LDEQで構成される。レーザ特性補償回路LDEQは、2つに分岐されたプリアンプPRAMPの出力信号の一方をある一定の遅延量Tdで遅延させる主信号遅延回路DELAMPと、他方のプリアンプPRAMPの出力信号をある一定の利得―α(α<1)で減衰する補償信号生成回路COMPと、主信号遅延回路DELAMPの出力信号V1と、補償信号生成回路COMPの出力信号V2を入力として加算する加算回路ADDAMP(出力信号V3)で構成される。ここで、主信号遅延回路の遅延量Tdは、通信速度の基本周波数の逆数であるビット期間Tsよりも少ない値である。
 本実施例においては、レーザダイオードLDの動作可能な帯域(-3dB周波数)は通信速度の基本周波数よりも低いため、プリアンプPRAMPの出力波形は、特に最も周波数成分が高い10パターンに関して、符号間干渉により、ジッタが増大し、アイ振幅が非常に小さいものとなり、伝送品質が劣化する。この伝送品質の劣化を改善する方法としては、プリアンプPRAMPの出力にアナログイコライザCTLEを設けて、通信速度の基本周波数周辺を強調し、アイ振幅を大きくすることが考えられるが、レーザダイオードLDの周波数特性は緩和振動の影響により、ロールオフが急峻な特性となるため、アナログイコライザCTLEで動作帯域を改善しても、中間周波数帯域において帯域内偏差が生じてしまい、ジッタが増大する。さらに、本実施例においては、図15AのレーザダイオードLDの周波数特性に示すように、緩和振動によるピーク周波数は通信速度の基本周波数より低い値にあるため、レーザダイオードLDの光出力信号にリンギングによるオーバーシュート波形が発生する。このため、アナログイコライザCTLEによる方法では、このオーバーシュート波形も強調してしまい、伝送品質を改善できない。
 そこで、本実施例のトランスインピーダンスアンプTIAは、図4Aに示すように、補償信号生成回路COMPの出力信号(電圧信号V2)に対し、プリアンプPRAMPの出力信号を主信号遅延回路DELAMPで遅延(電圧信号V1)し、出力信号V1とV2を加算回路ADDAMPで加算する(電圧信号V3)ことで、10パターンのような短ビット切り替えの振幅を改善し、アイ振幅を大きくすることが可能となる。
 次に、図15Bで示す従来の送信側でプリエンファシスを用いてレーザダイオードLDの帯域不足を補償する方式に対する、本実施例におけるジッタ低減効果について説明する。従来のプリエンファシスを用いた方式では、40Gbpsを超えるような通信速度において、図15Cに示すように、レーザダイオードLDのオーバーシュート波形後の窪み部分(電圧信号V1c)にプリエンファシス信号(電圧信号V2c)が加算されるため、連続ビット後の切り替わり波形に対して1ビット切り替え時のデータ遷移の位相が進んでしまい、ΔTのジッタが発生する(電圧信号V3c)。これに対して、本実施例のトランスインピーダンスアンプTIAでは、図4Bに示すように、Td遅延させたプリアンプPRAMPの出力信号(電圧信号V1)にリンギング特性も含んだ状態で-α倍減衰した補償信号(電圧信号V2)を加算することで、プリアンプPRAMPの出力信号のデータ遷移をTd’遅らせ、従来技術のΔTのジッタに比べてジッタをTd’-ΔTに低減できる。ここで、本実施例のジッタ低減効果を得るには、ΔT’(=Td’-ΔT)が最小となるように遅延時間Tdを調整する必要があるが、一般的に高精度な遅延量の調整が可能なアナログ主信号遅延回路DELAMPの実現は困難である。しかしながら、本実施例においては、プリアンプPRAMPで受信した電気信号を増幅してからV1とV2の信号加算を実施するため、補償信号生成回路COMPの利得α、すなわち、補償信号V2の電圧振幅を調整することで遅延量Tdの調整が可能であり、高精度なアナログ遅延回路を必要としない。また、図3Aの構成例では、プリアンプPRAMPが1段で記載されているが、十分な遅延量Tdの調整ができない場合は、信号増幅のため、2つの信号に分岐する前にプリアンプPRAMPの出力に電圧アンプを追加してもよい。本実施例においては、連続ビット後の切り替えパターン(例えば、1ビットがNビット連続した後に0に切り替わるようなデータパターン)に対しては位相ずれを拡大する可能性もあるが、帯域が不足したレーザダイオードLDを用いた光通信では、全体のジッタ量(Peak-to-peakジッタ)は周波数成分が高い1、2ビット切り替え後のデータパターンで決定されるため、連続ビット後の切り替えパターンに対する位相ずれの拡大によってジッタ特性が劣化することはない。
 以上のように、本実施例2のトランスインピーダンスアンプを含む光通信モジュールおよびルータ装置を用いることで、必要通信帯域に対して帯域が不足したレーザダイオードLDを用いて、低コストかつ信頼性が高い光通信モジュールで、高速、かつ高品質な光送受信動作を実現することが可能となる。
 図3Bは、本発明の実施例3を示す図であり、図3AのトランスインピーダンスアンプTIAにおいて、主信号遅延回路DELAMPの遅延量Tdと、補償信号生成回路COMPの利得αを温度等の環境変動に応じて自動調整するための、LMSアルゴリズム論理回路LMS_ALGを用いた光特性制御回路OPT_COMを備えた構成例である。光特性制御回路OPT_COMは、加算回路ADDAMPの出力信号V3を観測し、最適な電圧信号との電圧誤差が最小となるように主信号遅延回路DELAMPの遅延量Tdと補償信号生成回路COMPの利得αを制御する機能を有するもので、これにより、送信部の温度変化で生じるレーザダイオードLDの光伝送波形の品質劣化を受信側で補償することが可能となる。
 例えば、図3Bの構成例においては、光特性制御回路OPT_COMは、加算回路ADDAMPの出力信号V3をデジタル化するラッチ回路LATと、加算回路ADDAMPの出力信号V3とリファレンス信号かを選択するセレクタ回路SELと、ラッチ回路LATの出力とセレクタ回路SELの出力を比較し、その誤差が最小となるように主信号遅延回路DELAMPに遅延量調整信号と補償信号生成回路COMPに利得調整信号を出力する適応等化制御回路ADP_CONで構成される。
 本実施例においては、加算回路ADDAMPの出力信号V3をデジタル化した信号と、加算回路ADDAMPの出力信号V3あるいはリファレンス信号のどちらかとの誤差電圧を、適応等化制御回路ADP_CONでモニタし、さらにSign-Sign LMS等の最適化アルゴリズムにより、その誤差電圧が最小となるように、主信号遅延回路DELAMPの遅延量Tdあるいは補償信号生成回路COMPの利得αあるいはその両方が自動的に最適値に調整され、温度等の環境変動に対する信号品質の劣化が補償できる。また、装置の運用上、特定のデータパターンを用いたトレーニング期間を設けることが可能な場合は、光特性制御回路OPT_COM内にエラー検出器あるいはアイモニタ回路EYMを設けて、例えば、トランスインピーダンスアンプTIAの出力に設けるCDRの出力等をモニタし、特定のデータパターンに対してエラーが最小となるように、光特性制御回路OPT_COMで遅延量Tdあるいは利得αを調整する構成を取ってもよい。ここで、光特性制御回路OPT_COMのループ帯域は、送信側のレーザダイオードLDの温度変化に伴う光信号の劣化(温度ドリフト)を補償できれば良いので、40Gbpsを超えるような高速動作は必要とせず、せいぜい数MHz程度の帯域で動作すればよい。
 以上のように、本実施例3のトランスインピーダンスアンプTIAを含む光通信モジュールおよびルータ装置を用いることで、送信側でレーザダイオードLDの温度補償を実施しなくても、高速、かつ高品質な光送受信動作を実現することが可能となる。
 図5Aは、本発明の実施例4を示す図であり、図3AのトランスインピーダンスアンプTIAにおいて、レーザ特性補償回路LDEQに、Nビット(Nは3以上)連続後の切り替えデータパターンに対する位相ずれによるジッタ増加を抑えるために、加算回路ADDAMP1の出力にフィードフォワードイコライザ回路EQを備えた構成例である。フィードフォワードイコライザ回路EQは、遅延回路DELn(n=1、2、・・・)とタップ係数を与える利得βn(n=1、2、・・・)を持つアンプ回路AMPと、加算回路ADDAMP2で構成される。本構成によって、1、2ビット切り替え後のデータパターンに加えて、Nビット連続後の切り替えパターンに対しても、位相ずれを補償するための信号強調が可能となり、必要通信帯域に対して帯域が不足したレーザダイオードLDを用いても、高速かつ高品質な受信動作が実現できる。
 この回路でも、図5Bに示すように、光特性制御回路OPT_COMを備えることが可能であり、主信号遅延回路DELAMPの遅延量Tdと補償信号生成回路COMPの利得αに加えて、さらに、遅延回路DELnとアンプ回路AMPの利得βnを自動調整することで、本発明の実施例2や実施例3と、同じ動作と効果が得られる。また、本実施例4においては、タップ係数の次数は2次となっているが、必要に応じて高次化してもよく、遅延回路DELnの遅延量については、各次数で同一の値である必要はなく、それぞれ独立した値で構成してもよい。
 図6Aは、本発明の実施例5を示す図であり、実施例2による光通信モジュールにおいて、受信系を構成するトランスインピーダンスアンプTIAの他の構成例である。本実施例5によるトランスインピーダンスアンプTIAは、フォトダイオードPDから単相電流信号を電圧信号に変換するプリアンプPRAMPと、プリアンプPRAMPの出力信号から信号の中心レベル(閾値電圧)を検出する閾値検出回路ATCと、プリアンプPRAMPの単相電圧信号を差動化すると共に増幅するポストアンプPSAMPと、ポストアンプPSAMPの出力信号を遅延させるための主信号遅延回路DELAMPと、主信号遅延回路DELAMPの出力信号MIN(+)、MIN(-)とプリアンプPRAMP及び閾値生成回路ATCの出力信号AIN(+)、AIN(-)を減算するための加算回路ADDAMPと、フォトダイオードPDに入力される光信号の大きさに依らず出力電圧を一定化するリミットアンプLMAMPと、リミットアンプLMAMP出力にはアナログフロントエンド回路AFEとSerDes回路SDC間の50Ωの出力負荷を駆動するための電気ドライバ回路DRVeとで構成される。
 図7Aは、本実施例5における加算回路ADDAMPの詳細な構成例を示す回路図である。加算回路ADDAMPで、ポストアンプPSAMPと主信号遅延回路DELAMPによって遅延させたプリアンプPRAMPの出力信号から、プリアンプの出力信号と閾値生成回路ATCの出力信号を加算することで、本発明の実施例2と同様な動作と効果、すなわち、1ビット切り替え後のデータパターン強調によるアイ振幅拡大と、プリアンプPRAMPの出力信号のデータ遷移を遅らせることによるジッタ低減効果を得ることができる。この加算回路ADDAMPでは、データ遷移時のみ作動回路を動作させるため、抵抗素子R1と容量素子C1からなる微分回路でAIN(+)の微分波形を生成した。ここで、遅延時間の調整については、加算回路ADDAMPのバイアス電流Ibaを変更することで、シリアル制御等で加算量の設定を決めるレジスタREGの値を書き換えることで実現できる。また、ポストアンプPSAMPで生じる遅延時間だけで十分な遅延量を生成できる場合は、主信号遅延回路DELAMPは無くてもよい。さらに、本実施例においても、光特性制御回路OPT_COMを備えることが可能であり、加算回路ADDAMPのバイアス電流値Ibaを自動調整することで、本発明の実施例3と同じ動作と効果が得られる。
 図8は、本実施例における電気ドライバ回路DRVeの詳細な構成例を示す回路図である。電気ドライバDRVeは、メインアンプMAAMP、負帰還アンプFBAMP、ローパスフィルタLPF等から成る遅延回路DELAY、高速終端回路HTCで構成される。電気ドライバ回路DRVeでは、アナログフロントエンド回路AFEとSerDes回路SDC間のパッケージ基板等の出力負荷との反射を防止するため、この出力負荷と同等な、例えば50Ωの出力インピーダンスを実現することと、出力負荷で発生する伝送損失を補償することが必要となる。この50Ωの出力インピーダンスを実現するため、メインアンプMAAMPの負荷抵抗Rd1、Rd2を50Ωとする必要があるが、40Gbpsを超える通信速度では、配線容量やパッド等で生じる寄生容量Cpoの影響により、出力インピーダンスが低減してしまい、反射の影響で伝送品質が劣化する。このため、本実施例においては、インダクタ素子L1、L2と抵抗素子Rd3、Rd4の並列接続で構成される高速終端回路HTCを備えることで、出力インピーダンスの高周波成分を増加し、寄生容量Cpoによる出力インピーダンスの低下を抑えることが可能である。一方、出力負荷で生じる伝送損失については、遅延回路DELAYと負帰還アンプFBAMPを介して電気ドライバ回路DRVeの入力信号VIN(+)、VIN(-)を遅延かつ減衰させた信号を、メインアンプMAAMPから減算することで、高周波成分にピーク特性を持った周波数特性を実現し、この伝送損失を補償することが可能となる。ここで、ピーク利得の大きさとピーク利得の位置(ピーク周波数)については、それぞれ、負帰還アンプのバイアス電流Idrv2、遅延回路DELAYの抵抗素子Rlpfあるいは容量素子Clpfを調整することで、変更可能である。
 ここで、図6Bに示すように、ポストアンプPSAMPで差動化した信号を加算回路ADDAMPの入力AIN(+)とAIN(-)として用いてもよい。図7Bは、本構成における加算回路ADDAMPの詳細な構成例を示す回路図である。本構成では、差動化した信号で加算するため、抵抗素子R1と容量素子C1を用いなくても、精度よく加算波形を生成することが可能である。
 以上のように、本実施例5のトランスインピーダンスアンプTIAを含む光通信モジュールおよびルータ装置を用いることで、送信側でレーザダイオードLDの温度補償を実施しなくても、高速、かつ高品質な光送受信動作を実現することが可能となる。
 図9は、本発明の実施例6を示す図であり、実施例4におけるトランスインピーダンスアンプTIAにおいて閾値生成回路ATCの1つの構成例である。閾値生成回路ATCは、プリアンプPRAMP出力から、中心閾値Vaveを検出する閾値検出回路AVDと、後段に縦続接続されるポストアンプPSAMPから電気ドライバ回路DRVeのオフセット電圧を補償するレベルシフト回路LVCと、ポストアンプPSAMPの入力差動トランジスタ対のベース電流の影響を抑えるボルテージフォロワ回路VFCと、レベルシフト量を保持する手段を有するメモリあるいはレジスタREG、レジスタREGの値を書き込むための外部シリアル信号で構成される。閾値検出回路AVDは、抵抗器Ratc、容量Catcから成るローパスフィルタLPFで構成される。ここで、LPFの帯域は、受信する長周期パターンに対して、十分低い帯域を持つことが必要である。データ検出およびエッジ検出用の各レベルシフト回路LVCはオペアンプOFAMP1と、オペアンプOFAMP1の入出力端子間に直列接続された2個の抵抗器Rlvcと、それぞれに任意の電流が設定可能な3個の定電流源Ib1、Ib2、Ib3とで構成される。
 図9で示す構成例では、オペアンプOFAMP1の出力端子が抵抗Rlvcを介してオペアンプOFAMPの負極入力端子に接続された負帰還経路を構成しており、ボルテージフォロワを形成している。このため、オペアンプOFAMP1の利得が十分に高い場合、各定電流源の電流値±ΔIを任意設定することで、オペアンプOFAMP1の入力電圧Vaveに対し、出力電圧はVave±Rlvc×ΔIとなる。ポストアンプPSAMPをバイポーラトランジスタで構成した場合、入力差動トランジスタ対で流れるベース電流Ibaseの影響で、レベルシフト量にRlvc×Ibaseの誤差が生じる。このため、レベルシフト回路LVC出力にボルテージフォロワ回路VFCを設けることで、ベース電流Ibaseによるレベルシフト量の誤差を抑え、高精度なオフセット電圧の補償が可能となる。また、トランスインピーダンスアンプTIAで必要となる低域カットオフ周波数を実現するには、ローパスフィルタLPFは、例えば、通信速度25Gbpsの場合、200kHz以下の帯域を満たす必要があり、回路面積を考慮すると、容量素子Catcよりも抵抗素子Ratcの抵抗値を大きくすることでこの帯域を実現することが望ましいが、閾値検出回路AVDだけでは、ポストアンプPSAMPの入力差動トランジスタ対で流れるベース電流Ibaseの影響で、検出した閾値電圧にRatc×Ibaseの誤差が生じてしまい、抵抗素子Ratcの抵抗値を大きくことができない。これに対して、本実施例では、ボルテージフォロワ回路VFCでポストアンプPSAMPのベース電流Ibaseの影響を抑えているため、比較的大きな値の抵抗素子Ratcを用いて低域カットオフ周波数を実現でき、容量素子Catcのサイズを小さくすることで、トランスインピーダンスアンプTIAの小型化が可能となる。
 図10Aは、本発明の実施例7を示す図であり、本発明の光通信モジュールに用いる、トランスインピーダンスアンプTIAのプリアンプPRAMPの具体的な構成例を示す回路図である。本実施例におけるプリアンプPRAMPは、光素子ブロックOBKとアナログフロントエンド回路AFE間を接続するパッケージ基板PKG及びパッドやESD保護素子等の入力容量CINの影響を低減するための入力段CB_STAと、電流電圧変換と増幅動作を行う増幅段AMP_STAとで構成される。従来の増幅段AMP_STAだけで構成されるプリアンプPRAMPの-3dB周波数は、例えば、図10Aの場合、gm2・RL2/(Cin・Rf)となる。このため、入力容量Cinの影響で動作帯域が劣化し、また、動作帯域とトランスインピーダンスゲインRfがトレードオフの関係となり、高速・高利得動作の実現が困難となる。また、高速動作を実現するには、プリアンプPRAMPの入力インピーダンスを低くすることが必要となるが、パッケージ基板PKGの配線インピーダンスは、配線幅の制限から、低インピーダンス化を試みても、せいぜい30Ω程度にしかならないため、パッケージ基板PKGとプリアンプPRAMP間でインピーダンス不整合による信号反射が発生し、信号品質が著しく劣化するという問題が発生する。
 これらの従来のプリアンプの課題を解決するため、本実施例においては、増幅段AMP_STAの入力に、ベース接地等で構成される入力段CB_STAを備えた構成となっており、-3dB周波数は近似的にgm1/(2πCin)で表される。これにより、動作帯域とトランスインピーダンスゲインのトレードオフの関係を解消し、更に、パッケージ基板PKGによる、信号反射の影響を低減することが可能である。本実施例においては、入力段CB_STAが増えることで、入力換算雑音が増加することが懸念されるが、パッケージ基板PKGとのインピーダンス整合のため、雑音成分の主要因であるベース接地回路のバイアス電流ICBを下げる構成となるので、入力換算雑音の増加は少ない。また、図10Aの構成例ではバイポーラトランジスタを用いているため、入力段CB_STAをベース接地回路で実現しているが、CMOS回路ではゲート接地回路、あるいはレギュレーテッドカスコード等の回路構成でもよい。
 40Gbps超えるような通信速度を実現するには、増幅段AMP_STAを構成する負帰還抵抗Rf内の電圧アンプを高速・高利得化することが必要であり、図10Bでは、図10Aのエミッタ接地回路を疑似差動化することで、高速・高利得化した構成例が示されている。本実施例においては、電圧アンプの伝達関数G(s)は下記の式で表され、差動動作により、高速・高利得化が実現できる。
G(s)= [ gm2・gm4/(gm2+gm4) + (RL2・CDF/gm2)・s ] / [ 1 + s・CDF/(gm2+gm4) ]
さらに、容量素子CDFにより、分子の第2項で零点を生成し、周波数特性の高周波成分が強調され、更なる高速動作が可能である。
 本構成により、入力容量Cinやパッケージ基板PKG等の実装条件等に依存せず、40Gbpsを超えるような高速受信動作を、高利得かつ高品質で実現することが可能となる。
 図11Aは、本発明の実施例8を示す図であり、実施例5におけるトランスインピーダンスアンプTIAにおいて、プリアンプPRAMPの電源VDD_PRの電圧変動信号PSmの影響によって生じる信号品質の劣化を低減するための容量素子Cps1を備えることで、この電圧変動信号PSmと同相な疑似電圧変動信号PSd1を生成し、ポストアンプPSAMPの入力端子で電圧変動PSmを相殺する構成となっている。
 一般的にはトランスインピーダンスアンプTIAの入力信号は、数100μA程度の微小電流であり、プリアンプPRAMPのゲインも高速化のため、せいぜい300~500倍程度となるので、プリアンプPRAMPの出力電圧は数10mVとなる。プリアンプPRAMPは、単相の電流信号を入力として単相の電圧信号を出力する回路であるため、電源電圧VDD_PRの電圧変動PSmの影響を受けやすい。さらに、この回路は、前述したように、フォトダイオードPDからの入力電流も数100μAと微小電流であるため、電源VDD_PRの電圧変動PSmによる出力信号への影響の割合が大きい。したがって、このプリアンプPRAMPでは、電源VDD_PRの電圧変動PSmによって、高品質な電流・電圧信号変換動作が阻害されることになる。
 これに対して、本実施例8においては、閾値検出回路AVDの電源端子VDD_LPFをプリアンプPRAMPの電源端子VDD_PRに接続することで、電圧変動PSmの低周波成分を閾値生成回路ATCの出力端子に伝達し、さらに、閾値生成回路ATCの出力端子とプリアンプPRAMPの電源VDD_PRを容量素子Cps1で接続することで、電圧変動PSmの高周波成分を伝達する。本構成によって、電圧変動PSmと同相な疑似差動電圧信号PSd1を高周波成分までポストアンプPSAMPの負極端子に生成することが可能となり、ポストアンプPSAMPの入力端子における電源電圧変動除去比PSRRが改善される。ここで、閾値生成回路ATCを構成するオペアンプOFAMP1と、オペアンプOFAMP2については、図11Bの回路例で示すように、NMOSトランジスタ型で実現し、出力レベルが電源を基準に決定されるものとし、また、オペアンプの電源はプリアンプPRAMPの電源と共通とする。
 本構成により、プリアンプPRAMPの電圧変動で生じる伝送品質の劣化を低減し、40Gbpsを超えるような高速受信動作を、高利得かつ高品質で実現することが可能となる。
 図12Aは、本発明の実施例9を示す図であり、実施例5におけるトランスインピーダンスアンプTIAにおいて、プリアンプPRAMPの電源VDD_PRの電圧変動信号PSmの影響によって生じる信号品質の劣化を低減するための電源変動生成回路PSGENと容量素子Cps2を備えることで、この電圧変動信号PSmと同相な疑似電圧変動信号PSd2を生成し、ポストアンプPSAMPの入力端子で電圧変動PSmを相殺する構成となっている。実施例7で述べたように、プリアンプPRAMPでは、電源VDD_PRの電圧変動PSmによる出力信号への影響の割合が大きいため、電源VDD_PRの電圧変動PSmによって、高品質な電流・電圧信号変換動作が阻害されることになる。
 これに対して、本実施例においては、閾値検出回路AVDの電源端子VDD_LPFをプリアンプPRAMPの電源変動生成回路PSGENに接続することで、電圧変動PSmの低周波成分を閾値生成回路ATCの出力端子に伝達し、さらに、閾値生成回路ATCの出力端子と電源変動生成回路PSGENを容量素子Cps2で接続することで、電圧変動PSmの高周波成分を伝達する。本構成によって、電圧変動PSmと同相な疑似差動電圧信号PSd2を高周波成分までポストアンプPSAMPの負極端子に生成することが可能となり、ポストアンプPSAMPの入力端子における電源電圧変動除去比PSRRが改善される。
 図12Bに、電源変動生成回路PSGENの具体的な回路例を示す。電源変動生成回路PSGENは、差動増幅回路のエミッタフォロワ回路で構成し、容量素子C2で差動増幅回路の出力を接続することで、エミッタフォロワ回路の接続による負荷の影響を低減してもよい。ここで、差動増幅回路の電流源Ipsg1及び、エミッタフォロワ回路の電流源Ipsg2の電流値を変更することで、ポストアンプPSAMPの負極端子に伝播する電圧変動PSd2の帯域を調整することも可能である。本調整により、例えば、プリアンプPRAMPの電源VDD_PRとGND間に接続された、チップ内の電源パスコンが1GHz以上まで電源雑音の影響を抑えることができる場合は、電圧変動PSd2を1GHz以上の高周波成分まで伝達する必要がなく、差動増幅回路とエミッタフォロワ回路の必要帯域を1GHzに下げることが可能となり、すなわち、2つの電流源Ipsg1、Ipsg2の電流値を低減することで、トランスインピーダンスアンプの低電力動作が可能となる。また、閾値生成回路ATCを構成するオペアンプOFAMP1と、オペアンプOFAMP2については、図11Bに示すように、NMOSトランジスタ型で実現し、出力レベルが電源を基準に決定されるものとし、また、オペアンプの電源はプリアンプPRAMPの電源VDD_PRと共通なものとする。
 本実施例により、プリアンプPRAMPの電源変動で生じる伝送品質の劣化を低減し、40Gbpsを超えるような高速受信動作を、高利得かつ高品質で実現することが可能となる。
 図13は、本発明の実施例10を示す図であり、実施例5におけるトランスインピーダンスアンプTIAにおいて、フォトダイオードPDに安定な電源電圧VDD_PDを供給する電圧レギュレータPD_REGと、プリアンプPRAMPの直流バイアス点を一定に制御するための平均電流調整回路IAVE_Adjを備えた構成例である。
 トランスインピーダンスアンプTIAの受光感度を劣化させる原因の一つとして、フォトダイオードPDの電源VDD_PDの電圧変動やパッケージ基板PKG等のIC外部から伝わる電源雑音によってフォトダイオードPDに流れる変調電流(信号成分)が変動し、プリアンプPRAMPのSN比が劣化することが挙げられる。この課題を解決するために、本実施例においては、チップ内の電圧レギュレータPD_REGからフォトダイオードPDの電源VDD_PDを生成することで、フォトダイオードPDの電源インピーダンスを下げ、フォトダイオードPDの電源VDD_PDの電圧変動によって生じる変調電流の劣化を低減することが可能である。ここで、フォトダイオードの電源電圧VDD_PDの値は、オペアンプOPAMPのゲインが十分高い場合は、参照電圧Vrefの値とほぼ等しくなり、参照電圧Vrefの値を外部シリアル制御等で変更することで調整可能である。また、トランスインピーダンスアンプTIAにおいては、光通信経路OFの線路長ばらつき、光ファイバコネクタCNo等の結合強度ばらつき、送信側のレーザダイオードLDの温度変動による閾値電流の変化等でフォトダイオードPDの平均電流が変動することにより、プリアンプPRAMPの直流バイアス点が設計値からずれ、所望のトランスインピーダンス特性が得られず、信号品質が劣化することがある。この信号品質劣化を抑えるために、本実施例においては、フォトダイオードPDの平均電流の変化に追随してプリアンプPRAMPの直流バイアス点が一定となるように、平均電流調整回路IAVE_Adjと定電流源ICBを備える構成となっている。具体的には、本実施例の構成例においては、電源レギュレータPD_REGに流れるフォトダイオードPDの平均電流IPD(=I0-I1)を観測し、例えば、カレントミラー回路でこの平均電流IPDを平均電流調整回路IAVE_Adjにコピーすることで、例えば、フォトダイオードPDの平均電流が増加した場合は、プリアンプPRAMPの入力端子に接続された定電流源ICBの値が増加するように制御信号Iconで調整し、フォトダイオードPDの平均電流の変化分を定電流源ICBで引き抜くことでプリアンプPRAMPの直流バイアス点を一定に保つことが可能な構成となっている。
 以上のように、本実施例10のトランスインピーダンスアンプTIAを含む光通信モジュールおよびルータ装置を用いることで、フォトダイオードPDに流れる平均電流の変化やフォトダイオードPDの電源の電圧変動の影響に依存せず、高品質な受信動作を実現することが可能となる。
 図14Aは、本発明の実施例11を示す図であり、本発明の実施例1による光通信モジュールにおいて、通信方式に振幅成分を多値化したパルス振幅変調(PAM:Pulse Amplitude Modulation)を適用した場合の、受信系のトランスインピーダンスアンプTIAの一つの構成例である。本実施例においては、送信側は、例えば、PAM4信号を生成するための符号化論理回路と、レーザダイオードLDを駆動するレーザダイオードドライバ回路LDDと、レーザダイオードLDとで構成され、ここで、レーザダイオードLDの動作帯域(-3dB周波数)及び緩和振動周波数によるピーク周波数が通信速度のボーレートに達していない帯域が不足したレーザダイオードLDを使用することを前提とする。
 受信側は、送信側で生成した光PAM4信号を受信して電流信号に変換するフォトダイオードPDと、フォトダイオードPDからの単相電流信号を電圧信号に変換するプリアンプPRAMPと、レーザダイオードLD特有の帯域劣化、緩和振動周波数の影響を補償するレーザ特性補償回路LDEQと、PAM4信号に対応した閾値電圧を生成する閾値生成回路ATCと、レーザ特性補償回路LDEQ出力のアナログ信号をデジタル化するラッチ回路LATと、トランスインピーダンスアンプTIAの出力信号からクロック信号及び受信データ信号の再生とPAM4信号の復号化を実施するCDR・復号化論理回路と、レーザダイオードLDの温度等の環境変動に応じて、レーザ特性補償回路LDEQの補償量を決定する各パラメータと、閾値生成回路ATCの各閾値を最適値に調整するための光特性制御回路OPT_COMを有する構成となっている。ここで、閾値生成回路ATCは、閾値検出を行うローパスフィルタ等で構成する閾値検出回路AVDと、図14Bに示すPAM4のアイ波形に対応する三つの閾値(Vthu、Vthc、Vthd)をそれぞれ生成する、三つの実施例6で述べたレベルシフト回路LVCとで構成される。
 PAM伝送においては、レーザダイオードLDの温度等の環境変動に応じて、緩和振動周波数によるアイ波形の劣化に加えて、PAM4信号の各閾値が設定した最適値からずれることで、伝送品質が劣化することが課題となる。本実施例においては、光受信回路の内部に設けた光特性制御回路OPT_COMによって、本発明の実施例1と同じ動作と効果に加えて、レベルシフト回路LVCのレベルシフト量も自動調整することで、送信側にモニタPD等の温度補償手段を用いることなく、受信波形で最適な閾値を保つことが可能となり、高伝送品質なPAM4伝送が可能となる。また、本構成例においては、PAM4伝送を例としているが、必要な閾値の数に応じてレベルシフト回路LVCとラッチ回路LATの個数を増やすことで、より多値数を増やしてもよい。
 以上のように、本実施例11のトランスインピーダンスアンプTIAを含む光通信モジュールおよびルータ装置を用いることで、送信側でレーザダイオードLDの温度補償を実施しなくても、高速、かつ高品質な光PAM信号の送受信動作を実現することが可能となる。
 本発明の光通信モジュールおよび光通信装置は、特に、装置内で光ファイバケーブルを介した通信を行う光通信モジュールおよび光通信装置に適用して有益なものであるが、これに限らず、遠距離通信や装置間通信などのレーザダイオードを用いて光通信を行う製品全般に対して広く適用可能である。
CN コネクタ
LSI_LG 論理デバイス
OMD 光通信モジュール
OF 光通信線路
IFC インタフェースカード
SWC スイッチカード
BKP バックプレーン
SDC 伝送速度変換回路(SerDes)
LSI_OP 半導体チップ
OBK 光素子ブロック
LD レーザダイオード
PD フォトダイオード
LDD レーザダイオードドライバ回路
TIA トランスインピーダンス回路
AFE アナログフロントエンド回路
PRAMP プリアンプ
DELAMP 主信号遅延回路
LDEQ レーザ特性補償回路
OPT_COM 光特性制御回路
EYM アイモニタ回路
LMS_ALG LMSアルゴリズム論理回路
CDR クロックデータリカバリー
DELAMP 主信号遅延回路
COMP 補償信号生成回路
ADDAMP 加算回路
LAT ラッチ回路
ADP_CON 適応等化制御論理回路
SEL セレクタ回路
EQ フィードフォワードイコライザ回路
ATC 閾値生成回路
PSAMP ポストアンプ
LMAMP リミットアンプ
DRVe 電気ドライバ回路
REG レジスタ
Iba 加算回路用定電流源
AVD 閾値検出回路
LVC レベルシフト回路
OFAMP1、OFAMP2 オペアンプ
CB_STA プリアンプ入力段
AMP_STA プリアンプ増幅段
Ratc、Rlpf ローパスフィルタ用抵抗
Catc、Clpf ローパスフィルタ用容量
Cps1、Cps2 電源変動高周波成分通過用容量
Rlvc レベルシフト用抵抗
Ib1、Ib2、Ib3 レベルシフト量調整用定電流源
PKG パッケージ基板
PSGEN 電源変動生成回路
PD_REG 電源レギュレータ
IAVE_Adj 平均電流調整回路

Claims (20)

  1.  レーザダイオードおよびフォトダイオードを用いた光通信モジュールであって、
     フォトダイオード出力である単相電流信号を入力として単相電圧信号に変換し増幅するプリアンプと、
     前記プリアンプ出力である電圧信号を入力とするレーザ特性補償回路を備え、
     前記レーザ特性補償回路により、受信側で送信側に用いるレーザダイオードの周波数特性と緩和振動周波数による非線形性を補償することを特徴とする光通信モジュール。
  2.  請求項1に記載の光通信モジュールにおいて、更に、
     前記レーザダイオードの温度変化による前記フォトダイオードに入力される光波形の特性の変化に応じて、前記レーザ特性補償回路出力のアイ開口度を検出し、前記アイ開口度を最大とする最適値と前記検出結果との誤差信号を生成し、前記誤差信号が小さくなるように前記レーザ特性補償回路の補償量を自動調整する光特性制御回路を備え、
     受信側で送信側に用いるレーザダイオードの温度変化を補償することを特徴とする光通信モジュール。
  3.  請求項1に記載の光通信モジュールにおいて、
     前記レーザ特性補償回路は、
    前記プリアンプ出力の電圧信号を受けて一定の遅延量で遅延させた第1の信号を生成する主信号遅延回路と、
    前記第1の信号よりも振幅が小さく、位相が進んだ第2の信号を生成する補償信号生成回路と、
    前記主信号遅延回路の出力である第1の信号に、前記補償信号生成回路の出力である第2信号を極性を反転して加算する第1の加算回路を備え、
     前記第1の加算回路出力の1ビットデータ切り替え時と連続ビット後のデータ切り替え時とのデータ遷移の差分を小さくすることを特徴とする光通信モジュール。
  4.  請求項3に記載の光通信モジュールにおいて、
     前記レーザダイオードの動作帯域は通信速度の基本周波数よりも低域であり、
     前記主信号遅延回路の遅延量は、前記レーザダイオードの緩和振動周波数で決定されるリンギング波形のピーク値の到達時間よりも短い時間であることを特徴とする光通信モジュール。
  5.  請求項3に記載の光通信モジュールにおいて、更に、
     前記レーザダイオードの温度変化による前記フォトダイオードに入力される光波形の特性の変化に応じて、前記第1の加算回路の出力のアイ開口度を最大とする最適値と前記第1の加算回路の出力を分岐した電圧信号との誤差信号を検出し、前記誤差信号が小さくなるように前記主信号遅延回路の遅延量と前記補償信号生成回路の出力振幅を自動調整する光特性制御回路を備えることを特徴とする光通信モジュール。
  6.  請求項3に記載の光通信モジュールにおいて、
     前記レーザ特性補償回路は、
    前記第1の加算信号の出力を分岐した信号を入力として、固定遅延量を決定する1つ以上の遅延回路とタップ係数を決定する1つ以上のアンプ回路から成るフィードフォワードイコライザ回路と、
     前記第1の加算回路の出力信号と前記フィードフォワードイコライザ回路の出力信号とを加算する第2の加算回路を備えることを特徴とする光通信モジュール。
  7.  請求項6に記載の光通信モジュールにおいて、
     前記レーザダイオードの温度変化による前記フォトダイオードに入力される光波形の特性の変化に応じて、前記第2の加算回路の出力のアイ開口度を最大とする最適値と前記第2の加算回路の出力を分岐した電圧信号との誤差信号を検出し、前記誤差信号が小さくなるように前記主信号遅延回路の遅延量と前記補償信号生成回路の出力振幅と、前記1つ以上の遅延回路の遅延量と前記1つ以上のアンプ回路で決定するタップ係数を自動調整する光特性制御回路を備えることを特徴とする光通信モジュール。
  8.  請求項1に記載の光通信モジュールにおいて、
     前記レーザ特性補償回路は、
    前記プリアンプの出力電圧信号の中心電位を検出する閾値生成回路と、
    前記プリアンプの単相出力電圧信号を差動化するとともに増幅する一つまたは複数個のポストアンプと、
    前記ポストアンプの出力信号を一定の遅延量で遅延させる遅延回路と、
    前記遅延回路の差動出力信号に、前記プリアンプの出力信号と前記閾値生成回路の出力信号を一定の補償量で加算する加算増幅回路を備え、
     前記レーザ特性補償回路の出力の1ビットデータ切り替え時と連続ビット後のデータ切り替え時とのデータ遷移の差分が小さくなるように前記加算増幅回路の補償量を調整することを特徴とする光通信モジュール。
  9.  請求項8に記載の光通信モジュールにおいて、
     前記加算増幅回路は、任意の電流値に調整可能な第1ないし第2の定電流源と第1ないし第2のカレントスイッチ回路からなる電流加算手段を有し、
     前記第1のカレントスイッチ回路の入力端子には前記遅延回路の出力端子が接続され、
     前記第2のカレントスイッチ回路の一方の端子ともう一方の端子とが抵抗素子で接続され、前記第2のカレントスイッチ回路の抵抗素子で接続された一方の端子が容量素子を介して前記プリアンプの出力端子に、もう一方の端子が前記閾値生成回路の出力端子に接続され、
     前記第1および第2の定電流源の電流値を所望の値に設定することで前記加算増幅回路の補償量を調整することを特徴とする光通信モジュール。
  10.  請求項1に記載の光通信モジュールにおいて、
     前記レーザ特性補償回路は、
    前記プリアンプの出力電圧信号の中心電位を検出する閾値生成回路と、
    前記プリアンプの単相出力電圧信号を差動化するとともに増幅する一つまたは複数個のポストアンプと、
    前記ポストアンプの出力信号を一定の遅延量で遅延させる遅延回路と、
    前記遅延回路の差動出力信号に、前記ポストアンプを構成する1段目または複数段目の差動回路の差動出力信号を一定の補償量で加算する加算増幅回路を備え、
     前記加算増幅回路は、任意の電流値に調整可能な第1ないし第2の定電流源と第1ないし第2のカレントスイッチ回路からなる電流加算手段を有し、
     前記第1のカレントスイッチ回路の入力端子は前記遅延回路の出力に、また前記第2のカレントスイッチ回路の入力端子は前記ポストアンプを構成する1段目または複数段目の差動回路の出力に接続され、
     前記第1および第2の定電流源の電流値を所望の値に設定することで前記加算増幅回路の補償量を調整する調整手段を有し、
     前記加算増幅回路の出力の1ビットデータ切り替え時と連続ビット後のデータ切り替え時とのデータ遷移の差分が小さくなるように前記加算増幅回路の補償量を調整することを特徴とする光通信モジュール。
  11.  請求項8に記載の光通信モジュールにおいて、
     前記レーザダイオードの温度変化による前記フォトダイオードに入力される光波形の特性の変化に応じて、前記レーザ特性補償回路の出力のアイ開口度を最大とする最適値と前記加算増幅回路の出力を分岐した電圧信号との誤差信号を検出し、前記誤差信号が小さくなるように前記加算増幅回路の補償量を自動調整する自動調整手段を有することを特徴とする光通信モジュール。
  12.  請求項8に記載の光通信モジュールにおいて、
     前記閾値生成回路は、
    プリアンプ出力から中心閾値を検出する閾値検出回路と、
    前記閾値検出回路の出力が正極側入力に接続された第1のオペアンプ回路を有し、前記第1のオペアンプ回路の負極側入力と前記第1のオペアンプ回路の出力端子との間に任意の電位差を設定することが可能なレベルシフト回路と、
    前記第1のオペアンプ回路の出力が正極側入力に、出力が負極側入力に接続されたボルテージフォロワを構成する第2のオペアンプ回路とを備え、
     前記レベルシフト回路は、入出力端子間に直列接続された2個の抵抗手段と、前記レベルシフト回路の入力端子と出力端子と前記2つの抵抗手段の接続ノードとのそれぞれに所望の電流値が設定可能な第1、第2および第3の定電流源とを有し、
     前記第1、第2および第3の定電流源の電流値を所望に設定することにより、前記レベルシフト回路の入出力間に所望の電位差が設定可能であることを特徴とする光通信モジュール。
  13.  請求項1に記載の光通信モジュールにおいて、
     前記プリアンプは、ベース接地回路またはゲート接地回路等で構成する入力段と、前記入力段の出力端子を入力に接続した電圧アンプと、前記電圧アンプの出力と前記電圧アンプの入力とを接続する抵抗素子を備え、
     前記入力段の入力インピーダンスは、前記プリアンプに接続される入力負荷の特性インピーダンスと整合が取れるように設定されることを特徴とする光通信モジュール。
  14.  請求項13に記載の光通信モジュールにおいて、
     前記電圧アンプは、定電流源とカレントスイッチ回路から成る疑似差動増幅回路と、一定の直流電圧を生成するバイアス電圧生成回路を有し、
     前記疑似差動増幅回路の一方の入力端子は前記入力段の出力に、もう一方の入力端子は前記バイアス電圧生成回路の出力に接続され、前記疑似差動増幅回路の定電流源と並列に容量素子が接続され、
     前記容量素子で零点を生成することで前記電圧アンプを高速化することを特徴とする光通信モジュール。
  15.  請求項12に記載の光通信モジュールにおいて、
     前記閾値検出回路を構成する容量素子は前記プリアンプの電源端子に接続され、前記第1ないし前記第2のオペアンプ回路の電源端子は前記プリアンプの電源端子に接続され、前記第2のオペアンプ回路で構成するボルテージフォロワ回路の出力は容量素子を介して前記プリアンプの電源端子に接続され、
     前記プリアンプの電源端子から前記ポストアンプ入力に伝達する電源変動が所望の帯域範囲で相殺されることを特徴とする光通信モジュール。
  16.  請求項12に記載の光通信モジュールにおいて、
     前記プリアンプは、ベース接地回路またはゲート接地回路等で構成する入力段と、前記入力段の出力端子を入力に接続した電圧アンプと、前記電圧アンプの出力と前記電圧アンプの入力とを接続する抵抗素子を備え、
     前記電圧アンプは、定電流源とカレントスイッチ回路から成る疑似差動増幅回路と、一定の直流電圧を生成するバイアス電圧生成回路を有し、
     前記バイアス電圧生成回路の分岐された出力は電源変動生成回路に接続され、前記電源変動生成回路の電源は前記プリアンプの電源に接続され、前記電源変動生成回路は任意の電流値に調整可能な定電流源とカレントスイッチ回路を有して構成され、
     前記閾値検出回路を構成する容量素子は前記電源変動生成回路の出力に接続され、前記第2のオペアンプ回路で構成するボルテージフォロワ回路の出力は容量素子を介して前記電源変動生成回路の出力に接続され、
     前記定電流源の電流値を調整することで前記ボルテージフォロワ回路の出力に伝達される電源変動の帯域範囲が調整されることを特徴とする光通信モジュール。
  17.  請求項1に記載の光通信モジュールにおいて、
     一定の電圧値を出力する電圧レギュレータと、平均電流調整回路とを備え、
     前記フォトダイオードのカソード端子を前記電圧レギュレータの出力端子に接続し、
     前記出力端子に流れる前記フォトダイオードの平均電流をカレントミラー回路で前記平均電流調整回路の入力に一定の倍率でコピーし、
     前記平均電流調整回路は、コピーされた前記フォトダイオードの平均電流の電流値を前記プリアンプの入力端子に接続された定電流源の電流値に負帰還することで、前記フォトダイオードの平均電流の変化に応じて前記プリアンプの直流バイアス点が一定となるように調整することを特徴とする光通信モジュール。
  18.  請求項1に記載の光通信モジュールにおいて、
     前記レーザ特性補償回路の出力信号を一定の電圧振幅に制限するリミットアンプと、前記リミットアンプの出力信号を入力として出力負荷に伝送損失で生じる符号間干渉と出力負荷とのインピーダンス整合をとる電気ドライバ回路とを有し、
     前記電気ドライバ回路は、それぞれ任意の電流値に調整可能な定電流源とカレントスイッチ回路から成るメインアンプ回路および負帰還アンプ回路と、ローパスフィルタ等で構成される遅延調整回路と、出力インピーダンスを調整する高速終端回路を備え、
     前記リミットアンプの出力は2つに分岐され、一方は前記メインアンプ回路の入力端子に接続され、もう一方は前記遅延調整回路の入力に接続され、
     前記遅延調整回路の出力は、前記負帰還アンプ回路に入力され、
     前記メインアンプ回路の出力から前記負帰還アンプ回路の出力が減算され、
     前記メインアンプ回路の定電流源の電流値と前記遅延調整回路の第1の抵抗素子と容量素子を任意の値に調整することで、所望の高周波成分を所望の利得で強調するピーキング特性が調整され、
     前記高速終端回路は、前記メインアンプ回路の出力端子に接続される、並列接続の第2の抵抗素子とインダクタで構成されることを特徴とする光通信モジュール。
  19.  請求項1に記載の光通信モジュールにおいて、
     前記フォトダイオードはパルス振幅変調された光信号を電流信号に変換するものであり、
     前記レーザ特性補償回路の出力が接続され、閾値検出回路と、パルス振幅変調の多値数に応じた複数個のレベルシフト回路とを有する閾値生成回路と、
     前記閾値生成回路の出力が接続される、パルス振幅変調の多値数に応じた複数個のラッチ回路と、
     前記レーザダイオードの温度変化による前記フォトダイオードに入力される光波形の特性の変化に応じて、前記レーザ特性補償回路の補償量と前記レベルシフト回路のレベルシフト量を自動調整する光特性制御回路を備えることを特徴とする光通信モジュール。
  20.  請求項1~19の何れか1つに記載の光通信モジュールを備える光通信装置。
PCT/JP2015/065690 2015-05-29 2015-05-29 光通信モジュールおよびそれを備える光通信装置 WO2016194091A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065690 WO2016194091A1 (ja) 2015-05-29 2015-05-29 光通信モジュールおよびそれを備える光通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065690 WO2016194091A1 (ja) 2015-05-29 2015-05-29 光通信モジュールおよびそれを備える光通信装置

Publications (1)

Publication Number Publication Date
WO2016194091A1 true WO2016194091A1 (ja) 2016-12-08

Family

ID=57440945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065690 WO2016194091A1 (ja) 2015-05-29 2015-05-29 光通信モジュールおよびそれを備える光通信装置

Country Status (1)

Country Link
WO (1) WO2016194091A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018198261A (ja) * 2017-05-24 2018-12-13 富士通株式会社 発光素子駆動回路、光モジュールおよびアクティブオプティカルケーブル
CN109391249A (zh) * 2017-08-07 2019-02-26 三星电子株式会社 脉冲幅度调制发射器和脉冲幅度调制接收器
CN113675724A (zh) * 2021-08-23 2021-11-19 北京航空航天大学 一种延迟与扩大补偿量的激光稳光强系统温漂抑制方法
CN116054940A (zh) * 2023-04-03 2023-05-02 南昌大学 一种可见光通信装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328088A (ja) * 1986-07-22 1988-02-05 Iwatsu Electric Co Ltd 半導体レ−ザ光パルス発生器
JPH06350538A (ja) * 1993-06-07 1994-12-22 Mitsubishi Electric Corp 光ファイバ通信装置
JP2005020459A (ja) * 2003-06-26 2005-01-20 Oki Electric Ind Co Ltd 光符号分割多重伝送方法及び光符号分割多重伝送装置
JP2007329862A (ja) * 2006-06-09 2007-12-20 Sumitomo Electric Ind Ltd 光通信システム
US20080112706A1 (en) * 2006-11-10 2008-05-15 Samsung Electronics Co., Ltd. Optical receiving apparatus and optical communication system using same
JP2009153047A (ja) * 2007-12-21 2009-07-09 Sharp Corp 電流電圧変換回路、受光アンプ回路、およびパルス再生回路
JP2009260715A (ja) * 2008-04-17 2009-11-05 Nippon Telegr & Teleph Corp <Ntt> 受信光信号のクロスポイント検出回路およびそれを用いた光受信装置
JP2010097988A (ja) * 2008-10-14 2010-04-30 Sumitomo Electric Ind Ltd 光送信装置
JP2010113084A (ja) * 2008-11-05 2010-05-20 Nippon Telegr & Teleph Corp <Ntt> 光信号処理装置
JP2011160257A (ja) * 2010-02-02 2011-08-18 Hitachi Ltd 光送信回路および光通信システム
JP2013179698A (ja) * 2013-06-07 2013-09-09 Fujitsu Ltd 波形制御装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328088A (ja) * 1986-07-22 1988-02-05 Iwatsu Electric Co Ltd 半導体レ−ザ光パルス発生器
JPH06350538A (ja) * 1993-06-07 1994-12-22 Mitsubishi Electric Corp 光ファイバ通信装置
JP2005020459A (ja) * 2003-06-26 2005-01-20 Oki Electric Ind Co Ltd 光符号分割多重伝送方法及び光符号分割多重伝送装置
JP2007329862A (ja) * 2006-06-09 2007-12-20 Sumitomo Electric Ind Ltd 光通信システム
US20080112706A1 (en) * 2006-11-10 2008-05-15 Samsung Electronics Co., Ltd. Optical receiving apparatus and optical communication system using same
JP2009153047A (ja) * 2007-12-21 2009-07-09 Sharp Corp 電流電圧変換回路、受光アンプ回路、およびパルス再生回路
JP2009260715A (ja) * 2008-04-17 2009-11-05 Nippon Telegr & Teleph Corp <Ntt> 受信光信号のクロスポイント検出回路およびそれを用いた光受信装置
JP2010097988A (ja) * 2008-10-14 2010-04-30 Sumitomo Electric Ind Ltd 光送信装置
JP2010113084A (ja) * 2008-11-05 2010-05-20 Nippon Telegr & Teleph Corp <Ntt> 光信号処理装置
JP2011160257A (ja) * 2010-02-02 2011-08-18 Hitachi Ltd 光送信回路および光通信システム
JP2013179698A (ja) * 2013-06-07 2013-09-09 Fujitsu Ltd 波形制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018198261A (ja) * 2017-05-24 2018-12-13 富士通株式会社 発光素子駆動回路、光モジュールおよびアクティブオプティカルケーブル
CN109391249A (zh) * 2017-08-07 2019-02-26 三星电子株式会社 脉冲幅度调制发射器和脉冲幅度调制接收器
CN109391249B (zh) * 2017-08-07 2023-09-26 三星电子株式会社 脉冲幅度调制发射器和脉冲幅度调制接收器
CN113675724A (zh) * 2021-08-23 2021-11-19 北京航空航天大学 一种延迟与扩大补偿量的激光稳光强系统温漂抑制方法
CN116054940A (zh) * 2023-04-03 2023-05-02 南昌大学 一种可见光通信装置

Similar Documents

Publication Publication Date Title
JP6334183B2 (ja) 光伝送回路
US9172473B2 (en) Active linear amplifier inside transmitter module
US20130215954A1 (en) Analog signal current integrators with tunable peaking function
US10700786B2 (en) Optical transceiver
US10484213B2 (en) DC offset cancellation and crosspoint control circuit
US9590738B2 (en) Current voltage conversion circuit, light receiving apparatus, and light transmission system
WO2016194091A1 (ja) 光通信モジュールおよびそれを備える光通信装置
US10797658B1 (en) Low power optical link
US9590801B1 (en) Equalization scheme in trans-impedance amplifier for optical communications
US9240912B1 (en) Transceiver circuitry with summation node common mode droop reduction
JP5894869B2 (ja) トランスインピーダンスアンプ
Choi et al. A 35-Gb/s 0.65-pJ/b asymmetric push-pull inverter-based VCSEL driver with series inductive peaking in 65-nm CMOS
Ahmed et al. A 16-Gb/s-11.6-dBm OMA sensitivity 0.7-pJ/bit optical receiver in 65-nm CMOS enabled by duobinary sampling
JP2015076581A (ja) 光送信回路、光送信装置、および、光伝送システム
US9148960B2 (en) Receiver optical assemblies (ROAs) having photo-detector remotely located from transimpedance amplifier, and related components, circuits, and methods
JP5308243B2 (ja) 可変ゲイン回路
US10122472B2 (en) Apparatus and method for recovering data at an optical receiver with automatic tuning
US7346645B2 (en) Architecture for transverse-form analog finite-impulse-response filter
JP5956684B2 (ja) ドライバ回路
Moeneclaey et al. Design and experimental verification of a transimpedance amplifier for 64-Gb/s PAM-4 optical links
WO2017216841A1 (ja) 光通信モジュール
JP6367984B2 (ja) ドライバ回路
JP2015517774A (ja) デジタル光信号を受信するための回路装置及び方法
Facchin et al. A 20Gbaud/s PAM-4 65nm CMOS optical receiver using 3D solenoid based bandwidth enhancement
Hong et al. A 10-meter active optical cable utilizing POF with 4× 10-Gb/s CMOS transceiver chipsets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP