WO2016192559A1 - 黄嘌呤衍生物 - Google Patents

黄嘌呤衍生物 Download PDF

Info

Publication number
WO2016192559A1
WO2016192559A1 PCT/CN2016/083406 CN2016083406W WO2016192559A1 WO 2016192559 A1 WO2016192559 A1 WO 2016192559A1 CN 2016083406 W CN2016083406 W CN 2016083406W WO 2016192559 A1 WO2016192559 A1 WO 2016192559A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
pharmaceutically acceptable
solvate
group
xanthine derivative
Prior art date
Application number
PCT/CN2016/083406
Other languages
English (en)
French (fr)
Inventor
高愚哲
王国成
Original Assignee
江苏天士力帝益药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2016270100A priority Critical patent/AU2016270100B2/en
Priority to MYPI2017704554A priority patent/MY186396A/en
Priority to US15/577,946 priority patent/US10358449B2/en
Priority to SG11201709782SA priority patent/SG11201709782SA/en
Priority to EP16802482.6A priority patent/EP3305787B1/en
Priority to ES16802482T priority patent/ES2908658T3/es
Priority to CN201680031442.XA priority patent/CN107709324B/zh
Priority to CA2987697A priority patent/CA2987697A1/en
Application filed by 江苏天士力帝益药业有限公司 filed Critical 江苏天士力帝益药业有限公司
Priority to KR1020177037626A priority patent/KR20180011270A/ko
Priority to JP2017561869A priority patent/JP6742345B2/ja
Priority to RU2017145919A priority patent/RU2709348C2/ru
Publication of WO2016192559A1 publication Critical patent/WO2016192559A1/zh
Priority to IL255829A priority patent/IL255829B/en
Priority to HK18105484.2A priority patent/HK1245796A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/02Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
    • C07D473/04Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • A61K31/522Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/02Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
    • C07D473/04Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms
    • C07D473/06Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms with radicals containing only hydrogen and carbon atoms, attached in position 1 or 3

Definitions

  • the invention belongs to the field of medicinal chemistry, and particularly relates to a class of xanthine derivatives and a preparation method thereof, and the use of the compounds as dipeptidyl peptidase IV (DPP-IV) inhibitors.
  • DPP-IV dipeptidyl peptidase IV
  • Diabetes is a multi-pathogenic metabolic disease characterized by chronic hyperglycemia accompanied by disorders of sugar, fat and protein metabolism caused by defects in insulin secretion and/or function. Diabetes is also a very old disease. It is caused by the relative or absolute lack of insulin in the human body. The blood glucose level is increased, resulting in a large amount of sugar excreted from the urine, accompanied by polydipsia, polyuria, polyphagia, weight loss, dizziness. , fatigue and other symptoms.
  • DPP-IV Dipeptidyl peptidase IV
  • T-cell activation a serine protease that cleaves N-terminal dipeptidase in a peptide chain containing a proline residue at the terminus, despite the physiological effects of DPP-IV on mammals.
  • the role has not been fully confirmed, but it plays a very important role in neuroenzyme metabolism, T-cell activation, cancer cell metastasis into the endothelium, and HIV virus entry into lymphoid cells (WO 98/19998).
  • DPP-IV can block the secretion of glucagon-like peptide (GLP)-1, cleavage (GLP)-1 in the N-terminal group-propadipeptide from the active form (GLP)- 1 degradation (Endocrinology, 1999, 140: 5356-5363). Under physiological conditions, the half-life of intact (GLP)-1 in circulating blood is very short, while DPP-IV inhibitors can completely protect endogenous or even exogenous (GLP)-1 from being inactivated by DPP-IV.
  • GLP glucagon-like peptide
  • GLP cleavage
  • GLP active form
  • linagliptin is smaller in terms of liver and kidney function damage.
  • the structure of linagliptin is as follows:
  • the present invention is based on linagliptin and structurally reformed it in order to obtain a safer, more active, and more bioavailable compound.
  • the present invention provides a class of compounds having a therapeutic or palliative drug that inhibits DPP-IV activity and is useful in DPP-IV related diseases.
  • Linagliptin is the most active drug with minimal liver and kidney toxicity among the listed DPP-IV inhibitors.
  • the compound obtained by the method of the present invention has similar activity to linagliptin, especially the activity of compound I-3. Gliptin is better and will better treat DPP-IV related diseases (such as diabetes, hyperglycemia, obesity, or insulin resistance) in the future.
  • the present invention provides a xanthine derivative of the formula I and a solvate thereof, or a pharmaceutically acceptable salt thereof,
  • R is selected from:
  • R 1 is selected from cyano or methoxycarbonyl
  • R 2 is selected from hydrogen, a halogen atom, a straight or branched C 1-6 alkyl group substituted or unsubstituted by 1 to 5 halogen atoms, or a straight or branched chain substituted by 1 to 5 halogen atoms or Unsubstituted C 1-6 alkoxy;
  • X, Y are independently selected from C or N;
  • n 0, 1, 2, 3 or 4.
  • R 2 is selected from the group consisting of hydrogen, fluorine atom, chlorine atom, bromine atom, methyl, ethyl, isopropyl, methoxy, ethoxy, trifluoromethyl or trifluoromethoxy;
  • n 0, 1, or 2.
  • R 2 is selected from the group consisting of hydrogen, a chlorine atom, a fluorine atom, a methyl group or a methoxy group.
  • R 2 is selected from hydrogen or a fluorine atom
  • the xanthine derivative is selected from:
  • the xanthine derivative and solvate thereof, or a pharmaceutically acceptable salt thereof wherein the pharmaceutically acceptable salt is a xanthine derivative, or a solvate thereof, and selected from the group consisting of Salt formed by acid: hydrochloric acid, p-toluenesulfonic acid, tartaric acid, maleic acid, lactic acid, methanesulfonic acid, sulfuric acid, phosphoric acid, citric acid, acetic acid or trifluoroacetic acid.
  • the acid is p-toluenesulfonic acid, hydrochloric acid, tartaric acid or trifluoroacetic acid.
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising the xanthine derivative and a solvate thereof, or a pharmaceutically acceptable salt thereof.
  • the xanthine derivative of the present invention and a solvate thereof, or a pharmaceutically acceptable salt thereof can be used as a main active ingredient of a pharmaceutical composition, and the weight thereof is from 0.1 to 99.9% by weight based on the pharmaceutical composition.
  • the pharmaceutical composition of the present invention is preferably in the form of a unit dosage of a pharmaceutical preparation which can be formulated into any pharmaceutically acceptable dosage form, which is selected from the group consisting of: tablets, sugar-coated tablets, film-coated tablets, Enteric coated tablets, capsules, Hard capsule, soft capsule, oral liquid, buccal, granule, suspension, solution, injection, suppository, ointment, plaster, cream, spray, patch.
  • any pharmaceutically acceptable dosage form which is selected from the group consisting of: tablets, sugar-coated tablets, film-coated tablets, Enteric coated tablets, capsules, Hard capsule, soft capsule, oral liquid, buccal, granule, suspension, solution, injection, suppository, ointment, plaster, cream, spray, patch.
  • Preferred are oral formulations, and tablets and capsules are most preferred.
  • composition of the present invention further comprises a pharmaceutically acceptable carrier.
  • the pharmaceutical preparation can be prepared by a conventional technique of formulation, such as mixing the xanthine derivative of the present invention and a solvate thereof, or a pharmaceutically acceptable salt thereof, with a pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carrier includes, but is not limited to, mannitol, sorbitol, sorbic acid or potassium salt, sodium metabisulfite, sodium hydrogen sulfite, sodium thiosulfate, cysteine hydrochloride, thioglycolic acid, methionine, Vitamin A, vitamin C, vitamin E, vitamin D, azone, EDTA disodium, EDTA calcium sodium, monovalent alkali metal carbonate, acetate, phosphate or its aqueous solution, hydrochloric acid, acetic acid, sulfuric acid, phosphoric acid, Amino acid, sodium chloride, potassium chloride, sodium lactate, xylitol, maltose, glucose, fructose, dextran, glycine, starch
  • the unit dose of the medicament may contain the pharmaceutically active substance of the present invention when the medicament is formulated. -1000 mg, the balance being a pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carrier may be from 0.1 to 99.9% by weight based on the total weight of the formulation.
  • the pharmaceutical composition of the present invention determines the usage amount according to the condition of the patient at the time of use.
  • the present invention also encompasses the use of the xanthine derivative and a solvate thereof, or a pharmaceutically acceptable salt thereof, for the preparation of a medicament for treating a disease associated with dipeptidyl peptidase IV.
  • the diseases associated with dipeptidyl peptidase IV include, but are not limited to, type II diabetes, impaired glucose tolerance, hyperglycemia, obesity, or insulin resistance.
  • the TSL-0319 compound is mixed with calcium phosphate, corn starch, polyvinylpyrrolidone, hydroxypropylmethylcellulose, and a specified amount of magnesium stearate.
  • a 13 mm diameter piece was made in a tablet machine and then rubbed through a screen having a mesh size of 1.5 mm using a suitable machine and mixed with the remaining magnesium stearate.
  • the granules are compressed in a tablet machine to form tablets of the desired shape.
  • the tablet core thus prepared was coated with a film consisting essentially of hydroxypropylmethylcellulose.
  • the final film coating was polished with beeswax.
  • the obtained pharmaceutical composition was uniformly mixed in a usual manner, and then filled into ordinary gelatin capsules to obtain 1000 capsules. In this way, a capsule containing 5 mg of the compound TSL-0319 was obtained.
  • Dipeptidyl peptidase IV hydrolyzes Gly-Pro-Aminoluciferin at room temperature to form Aminoluciferin, which is detected by DPPIV-Glo(TM) protease
  • a "glow-type" luminescent signal can be generated, and the intensity of the luminescent signal is directly proportional to the activity of the DPP-IV enzyme.
  • DPP-IV dipeptidyl peptidase IV
  • DPP-IV Human recombinant dipeptidyl peptidase IV
  • Trizma base Sigma product, article number T6066-1KG: formulated as 10 mM Tris-HCl, pH 8.0.
  • OptiPlate PerkinElmer product, article number 6007299.
  • Dipeptidyl peptidase IV (Sigma) was diluted to 0.2 ng/ml with 10 mM Tris-HCl (pH 8.0) and added to the sample to be tested, 25 ⁇ l per well. At the same time, a blank control (containing substrate, no enzyme and sample) and a positive control (containing substrate, enzyme-containing, and no sample) were set up.
  • the compound I-3 of the present invention has a better activity than linagliptin, and the other compounds I-1, I-2, and I-4 have similar activities to linagliptin.
  • TSL-0319 The inhibitory effect of the compound I-3 of the present invention (hereinafter referred to as TSL-0319) on the activity of the dipeptidyl peptidase enzyme was observed, and the selectivity of the drug of the same type was compared.
  • DPP-IV Human recombinant dipeptidyl peptidase IV
  • DPP8 and DPP9 enzymes other experimental materials are the same as test case (1).
  • the compound of the present invention TSL-0319 showed only an inhibitory effect on DPP4, and had no inhibitory effect on DPP8 and DPP9, and the selectivity of the compound TSL-0319 was significantly superior to that of all the similar drugs on the market.
  • mice Normal mice, obese mice, and diabetic mice were used to study glucose tolerance test.
  • OGTT oral glucose tolerance test
  • the glucose tolerance test of normal mice is shown in Table 3.
  • Figure 1-2 the compound I-3 (TSL-0319) of the present invention has a good hypoglycemic effect, especially the hypoglycemic effect is superior to linagliptin.
  • the glucose tolerance test of obese mice is shown in Table 4, Figure 3-4.
  • the compound I-3 (TSL-0319) of the present invention has a good hypoglycemic effect, especially the hypoglycemic effect is superior to linagliptin.
  • the glucose tolerance test of diabetic rats is shown in Table 5, and Figures 5-6, the compound I-3 (TSL-0319) of the present invention has a good hypoglycemic effect, especially the hypoglycemic effect is superior to linagliptin.
  • mice normal mice, obese mice, and diabetic mice were used for research.
  • the compound I-3 (TSL-0319) of the present invention has hypoglycemic effect on all three mice and the hypoglycemic effect is superior to the benefit. Glettin.
  • Test Method manual patch clamp method hERG test compound effects on sodium currents in CHO cell lines stably transfected with hERG sodium channel, then calculate the value of Compound 50 of hERG IC.
  • hERG Ether-a-go-go Related Gene
  • IKr delayed rectifier potassium current
  • hERG can be inhibited by structurally diverse compounds.
  • the effect of test compounds on hERG potassium channels is a key step in preclinical evaluation of cardiac safety of compounds, and it is also an essential data for new drug approvals required by the FDA.
  • TSL-0319 has a Cmax of 200-500 nM in mice at a dose of 5 mg/kg, and an IC 50 of hERG should be greater than 20 ⁇ M. Therefore, TSL-0319 is safe in terms of hERG toxicity. Significantly better than linagliptin.
  • Test method The human liver microsome was used to test the inhibitory activity of the compound against CYP enzyme.
  • TSL-0319 concentration ⁇ M 0 0.05 0.15 0.5 1.5 5 15 50 Inhibition rate of CYP1A2 (%) 0 0 0 2.2 4.2 6.6 20.8 41.8 Inhibition rate of CYP2C9 (%) 0 0 0 3.2 5.7 10.5 12.1 13.9 Inhibition rate of CYP2C19 (%) 0 0 3.3 8.2 14 2.9 Inhibition rate of CYP2D6 (%) 0 0 0 0 0 0 3 14.6 Inhibition rate of CYP3A4 (%) 0 0 0 4 4.4 8.7 17.9 44.6
  • TSL-0319 has IC50 of more than 50 ⁇ M for CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4. Therefore, the use of TSL-0319 will not affect the metabolism of other drugs, and can be combined with other drugs.
  • Test Example 5 Compound TSL-0319 mouse pharmacokinetic experiment
  • Intravenous blood collection point (h) Blood concentration (ng/ml) Gastric bleeding point (h) Blood concentration (ng/ml) 0.00833 759 ⁇ 133 0.250 529 ⁇ 93.4 0.250 48.0 ⁇ 27.9 0.500 344 ⁇ 32.7 0.500 123 ⁇ 30.2 1.00 161 ⁇ 21.2 1.00 183 ⁇ 19.1 2.00 47.5 ⁇ 13.6 2.00 211 ⁇ 83.0 4.00 11.9 ⁇ 2.24 4.00 145 ⁇ 40.9 8.00 BQL 8.00 8.03 ⁇ 3.71 12.00 BQL 12.00 BQL 24.00 BQL 24.00 BQL 24.00 BQL
  • Mean pharmacokinetic parameters Mean pharmacokinetic parameters T 1/2 (h) 1.09 ⁇ 0.623 Cmax(ng/ml) 223 ⁇ 68.1 Vd ss (L/kg) 3.41 ⁇ 0.745 Tmax(h) 1.33 ⁇ 0.577 CL (ml/min/kg) 59.1 ⁇ 5.63 T 1/2 (h) 1.37 ⁇ 0.317 AUC 0-last (ng.h/ml) 555 ⁇ 54.7 AUC 0-last (ng.h/ml) 844 ⁇ 181 AUC 0-inf (ng.h/ml) 567 ⁇ 56.1 AUC 0-inf (ng.h/ml) 858 ⁇ 185 MRT 0-last (h) 0.836 ⁇ 0.0919 MRT 0-last (h) 2.87 ⁇ 0.0589 MRT 0-inf (h) 0.953 ⁇ 0.123 MRT 0-inf (h) 3.00 ⁇ 0.111 Bioavailability (%) 60.5
  • TSL-0319 used CD-1 mice as a pharmacokinetic experiment. Due to the blood withdrawal point and LLOQ setting, the T 1/2 was significantly different from the published data of linagliptin, but 60.5% bioavailability. It is much higher than the bioavailability of linagliptin under the same conditions (linagliptin uses CD-1 mice as a pharmacokinetic experiment, 5 mg/kg, orally, and bioavailability is 18.4%).
  • the structures of the compounds I-1 to I-2 and 1-4 of the present invention are similar to those of I-3, and therefore, the compounds I-1 to I-2 and 1-4 all have the same pharmacological action as the compound 1-3.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Diabetes (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及一种如式I所示的黄嘌呤衍生物,其中,R选自:R1选自氰基或甲氧羰基; R2选自氢、卤素原子,直链或支链的被1~5个卤素原子取代或未被取代的C1-6烷基、直链或支链的被1~5个卤素原子取代或未被取代的C1-6烷氧基; X、Y分别独立的选自C或N; n为0、1、2、3或4。

Description

黄嘌呤衍生物 技术领域
本发明属于药物化学领域,具体涉及一类黄嘌呤衍生物及其制备方法,以及该类化合物作为二肽基肽酶IV(DPP-IV)抑制剂的用途。
背景技术
糖尿病是一种多病因的代谢疾病,其特点是慢性高血糖,伴随因胰岛素分泌及/或作用缺陷引起的糖、脂肪和蛋白质代谢紊乱。糖尿病也是一种非常古老的疾病,是由于人体内胰岛素相对或绝对缺乏而引起的血中葡萄糖浓度升高,导致糖大量从尿中排出,并伴随多饮、多尿、多食、消瘦、头晕、乏力等症状。
在糖尿病治疗中,运动疗法和饮食疗法是两种必不可少的糖尿病治疗方法。当这两种疗法不足以控制病情时,可以使用胰岛素或者口服降糖药。但由于这些降糖药物存在很多副作用,开发出一种新型的、低副作用且能够有效治疗糖尿病的药物尤为重要。二肽基肽酶IV(DPP-IV)是一种丝氨酸蛋白酶,它可以在次末端含有一个脯氨酸残基的肽链里裂解N-末端二肽酶,尽管DPP-Ⅳ对哺乳动物的生理作用还没有得到完全的证实,但其在神经酶代谢,T-细胞激活,癌细胞转移入内皮以及HIV病毒进入淋巴样细胞过程中都起到非常重要的作用(WO98/19998)。
有研究表明DPP-IV可以阻止胰升糖素样肽(GLP)-1的分泌,裂解(GLP)-1中N-末端的组-丙二肽酶,使其从活性形式的(GLP)-1降解(Endocrinology,1999,140:5356-5363)。在生理情况下,循环血中完整(GLP)-1的半衰期很短,而DPP-Ⅳ抑制剂能完全保护内源性甚至外源性的(GLP)-1不被DPP-Ⅳ灭活,极大的提高(GLP)-1的生理活性(5-10倍),由于(GLP)-1对胰腺胰岛素的分泌是一个重要的刺激器并能直接影响葡萄糖的分配,因此DPP-Ⅳ抑制剂对非胰岛素依赖型糖尿病例的治疗起到很好的作用(US6110949)。
目前已上市的DPP-IV抑制剂有西格列汀、维格列汀、沙格列汀、阿格列汀以及利格列汀等。其中,利格列汀在肝肾功能损害方面更小。利格列汀结构式如下:
Figure PCTCN2016083406-appb-000001
据在利格列汀给FDA的报道中公开利格列汀在鼠以及人体内的生物利用度不高(CD-1mouse,5mg/kg,F=18.4%;man,5mg/subject,F=30%),因此,提供一种替代利格列汀的 化合物是急需解决的问题。
发明内容
为了解决上述问题,本发明是在利格列汀的基础上,对其进行结构改造,以期获得安全、活性更高的、生物利用度更好的化合物。
本发明提供了一类具有抑制DPP-IV活性并且可用于DPP-IV相关疾病的治疗或缓解性药物的化合物。
利格列汀是已上市的DPP-IV抑制剂中活性最高、肝肾毒性最小的药品,由本发明方法得到的化合物具有和利格列汀相近的活性,尤其是化合物I-3的活性比利格列汀更好,将来可以更好的治疗DPP-IV相关的疾病(如糖尿病、高糖血症、肥胖症、或胰岛素抵抗)。
具体来说,本发明提供一种如式I所示的黄嘌呤衍生物及其溶剂合物,或它们药学上可接受的盐,
Figure PCTCN2016083406-appb-000002
其中,
R选自:
Figure PCTCN2016083406-appb-000003
R1选自氰基或甲氧羰基;
R2选自氢、卤素原子,直链或支链的被1~5个卤素原子取代或未被取代的C1-6烷基、直链或支链的被1~5个卤素原子取代或未被取代的C1-6烷氧基;
X、Y分别独立的选自C或N;
n为0、1、2、3或4。
优选的,
R2选自氢、氟原子、氯原子、溴原子、甲基、乙基、异丙基、甲氧基、乙氧基、三氟甲基或三氟甲氧基;
n为0、1或2。
优选的,
R2选自氢、氯原子、氟原子、甲基或甲氧基。
更优选的,
R2选自氢或氟原子
最优选的,
所述黄嘌呤衍生物选自:
Figure PCTCN2016083406-appb-000004
其中,本发明所述的黄嘌呤衍生物及其溶剂合物,或它们药学上可接受的盐,其中所述药学上可接受的盐为黄嘌呤衍生物、或其溶剂合物与选自下列的酸形成的盐:盐酸、对甲苯磺酸、酒石酸、马来酸、乳酸、甲磺酸、硫酸、磷酸、柠檬酸、乙酸或三氟乙酸。优选的,所述的酸为对甲苯磺酸、盐酸、酒石酸或三氟乙酸。
本发明还提供一种含有所述黄嘌呤衍生物及其溶剂合物,或它们药学上可接受的盐的药物组合物。
本发明的黄嘌呤衍生物及其溶剂合物,或它们药学上可接受的盐,可以作为药物组合物的主要活性成分,其重量占药物组合物的0.1-99.9%。
本发明的药物组合物,优选的是单位剂量的药物制剂形式,在制成药物制剂时可以制成任何可药用的剂型,这些剂型选自:片剂、糖衣片剂、薄膜衣片剂、肠溶衣片剂、胶囊剂、 硬胶囊剂、软胶囊剂、口服液、口含剂、颗粒剂、混悬剂、溶液剂、注射剂、栓剂、软膏剂、硬膏剂、霜剂、喷雾剂、贴剂。优选的是口服制剂形式,最佳优选的是片剂,胶囊剂。
进一步的,本发明所述药物组合物还含有药学上可接受的载体。
可以采用制剂学常规技术制备该药物制剂,如将本发明的黄嘌呤衍生物及其溶剂合物,或它们药学上可接受的盐,与药学上可接受的载体混合。所述药学上可接受的的载体包括但不限于:甘露醇、山梨醇、山梨酸或钾盐、焦亚硫酸钠、亚硫酸氢钠、硫代硫酸钠、盐酸半胱氨酸、巯基乙酸、蛋氨酸、维生素A、维生素C、维生素E、维生素D、氮酮、EDTA二钠、EDTA钙钠,一价碱金属的碳酸盐、醋酸盐、磷酸盐或其水溶液、盐酸、醋酸、硫酸、磷酸、氨基酸、氯化钠、氯化钾、乳酸钠、木糖醇、麦芽糖、葡萄糖、果糖、右旋糖苷、甘氨酸、淀粉、蔗糖、乳糖、甘露糖醇、硅衍生物、纤维素及其衍生物、藻酸盐、明胶、聚乙烯吡咯烷酮、甘油、丙二醇、乙醇、土温60-80、司班-80、蜂蜡、羊毛脂、液体石蜡、十六醇、没食子酸酯类、琼脂、三乙醇胺、碱性氨基酸、尿素、尿囊素、碳酸钙、碳酸氢钙、表面活性剂、聚乙二醇、环糊精、β-环糊精、磷脂类材料、高岭土、滑石粉、硬脂酸钙、硬脂酸镁等。
本发明的黄嘌呤衍生物及其溶剂合物,或它们药学上可接受的盐,作为药物组合物的有效活性成分,在制成药剂时,单位剂量的药剂可含有本发明的药物活性物质0.1-1000mg,其余为药学上可接受的载体。药学上可接受的载体以重量计可以是制剂总重量的0.1-99.9%。
本发明的药物组合物在使用时根据病人的情况确定用法用量。
本发明还包括所述黄嘌呤衍生物及其溶剂合物,或它们药学上可接受的盐在制备治疗与二肽基肽酶IV相关的疾病的药物中的用途。
所述与二肽基肽酶IV相关的疾病包括但不限于II型糖尿病、葡萄糖耐量异常、高糖血症、肥胖症或胰岛素抵抗等。
附图说明
图1正常鼠的糖耐量实验结果
图2正常鼠的糖耐量实验结果
图3肥胖鼠糖耐量实验结果
图4肥胖鼠糖耐量实验结果
图5糖尿病鼠糖耐量实验结果
图6糖尿病鼠糖耐量实验结果
具体实施方式
实施例1
1-[(6-氟-苯甲腈-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-氨基-哌啶-1-基]-黄嘌呤的制备
Figure PCTCN2016083406-appb-000005
(1)3-甲基-7-(2-丁炔-1-基)-8-溴黄嘌呤的制备
Figure PCTCN2016083406-appb-000006
室温条件下,将8-溴-3-甲基黄嘌呤(2.5g,10.2mmol)混悬于15mL N,N-二甲基甲酰胺(缩写为:DMF)中,加入二异丙基乙胺(1.326g,10.2mmol)、1-溴-2-丁炔(1.357g,10.2mmol),滴加完毕后,室温搅拌12小时。反应完毕,将反应液倒入冰水中,搅拌析出固体,抽滤,真空干燥得淡黄色固体2.57g,产率85%。ES-API(m/z):[M+H]+297.0,299.0。
(2)1-[(6-氟-苯甲腈-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-溴黄嘌呤的制备
Figure PCTCN2016083406-appb-000007
将3-甲基-7-(2-丁炔-1-基)-8-溴黄嘌呤(2.9g,9.8mmol)、碳酸钾(2.2g,16mmol)和2-溴甲基-6-氟苯甲腈(2.3g,10.7mmol)加入至100mL的圆底烧瓶中,加入25mLN,N-二甲基甲酰胺,升温至80℃搅拌5小时;反应完毕,将反应液倒入冰水中析出固体,抽滤,固体水洗,干燥得浅黄色固体3.5g,产率84%,ES-API(m/z):[M+H]+430.0。
(3)1-[(6-氟-苯甲腈-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-叔丁氧羰基氨基-哌啶-1-基]-黄嘌呤的制备
Figure PCTCN2016083406-appb-000008
将1-[(6-氟-苯甲腈-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-溴黄嘌呤(3.5g,7.4mmol)、碳酸 钾(1.9g,14mmol)和3-(R)-叔丁氧羰基-氨基哌啶(1.6g,8mmol)加入到50mL的圆底烧瓶中,加入25mLN,N-二甲基甲酰胺,升温至80℃搅拌5小时;反应完毕,冷却至室温,将反应液倒入冰水中析出固体,抽滤、真空干燥,得浅黄色固体2.9g,产率72%。ES-API(m/z):[M+H]+550.3。
(4)1-[(6-氟-苯甲腈-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-氨基-哌啶-1-基]-黄嘌呤的制备
Figure PCTCN2016083406-appb-000009
将化合物1-[(6-氟-苯甲腈-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-叔丁氧羰基氨基-哌啶-1-基]-黄嘌呤(0.4g,0.7mmol)溶于二氯甲烷(8ml)中,室温下滴入三氟醋酸(2ml),室温反应1小时。加入二氯甲烷(10ml)将反应溶液稀释后,用pH=10的碳酸钾水溶液洗涤,二氯甲烷萃取,有机相用无水硫酸镁干燥,过滤,浓缩。残留物用薄层色谱(二氯甲烷:甲醇=20:1)分离纯化,得到化合物1-[(6-氟-苯甲腈-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-氨基-哌啶-1-基]-黄嘌呤(0.25g,浅黄色固体),收率:77%。ES-API(m/z):[M+H]+450.2。
1H NMR(400MHz,DMSO)δ7.68(m,1H),7.42(m,1H),7.13(m,1H),5.20(s,2H),4.90(s,2H),3.63(m,2H),3.38(s,3H),3.00(m,1H),2.90–2.71(m,2H),1.92–1.72(m,5H),1.62(m,1H),1.34-1.25(m,1H).
实施例2
1-[(4,5-二氟-苯甲腈-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-氨基-哌啶-1-基]-黄嘌呤的制备
Figure PCTCN2016083406-appb-000010
(1)1-[(4,5-二氟-苯甲腈-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-溴黄嘌呤的制备
Figure PCTCN2016083406-appb-000011
将3-甲基-7-(2-丁炔-1-基)-8-溴黄嘌呤(2.3g,7.9mmol)、碳酸钾(1.7g,12.6mmol)和2-溴甲基-4,5-二氟苯甲腈(2.0g,8.7mmol)加入至100mL的圆底烧瓶中,加入25mLN,N-二甲基甲酰胺,升温至80℃搅拌5小时;反应完毕,将反应液倒入冰水中析出固体,抽滤,固体水洗,干燥得浅黄色固体3.0g,产率86%,ES-API(m/z):[M+H]+448.0。
(2)1-[(4,5-二氟-苯甲腈-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-叔丁氧羰基氨基-哌啶-1-基]-黄嘌呤的制备
Figure PCTCN2016083406-appb-000012
将1-[(4,5-二氟-苯甲腈-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-溴黄嘌呤(2.3g,5.1mmol)、碳酸钾(1.4g,10.4mmol)和3-(R)-叔丁氧羰基-氨基哌啶((1.1g,5.5mmol)加入到50mL的圆底烧瓶中,加入25mLN,N-二甲基甲酰胺,升温至80℃搅拌5小时;反应完毕,冷却至室温,将反应液倒入冰水中析出固体,抽滤、真空干燥,得浅黄色固体2.2g,产率76%。
ES-API(m/z):[M+H]+568.2。
(3)1-[(4,5-二氟-苯甲腈-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-氨基-哌啶-1-基]-黄嘌呤的制备
Figure PCTCN2016083406-appb-000013
将化合物1-[(4,5-二氟-苯甲腈-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-叔丁氧羰基氨基-哌啶-1-基]-黄嘌呤(0.4g,0.7mmol)溶于二氯甲烷(8ml)中,室温下滴入三氟醋酸(2ml),室温反应1小时。加入二氯甲烷(10ml)将反应溶液稀释后,用pH=10的碳酸钾水溶液洗涤,二氯甲烷萃取,有机相用无水硫酸镁干燥,过滤,浓缩。残留物用薄层色谱(二氯甲烷:甲醇=20:1)分离纯化,得到化合物1-[(4,5-二氟-苯甲腈-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-氨基-哌啶-1-基]-黄嘌呤(0.26g,黄色固体),收率:79%。ES-API(m/z):[M+H]+468.2。
1H NMR(400MHz,DMSO)δ8.18(m,1H),7.42(m,1H),5.16(s,2H),4.89(s,2H),3.62(m,2H),3.38(s,3H),2.99(m,1H),2.90–2.73(m,2H),1.93–1.71(m,5H),1.70–1.53(m,1H),1.35–1.24(m,1H).
实施例3
1-[(3-氰基-吡嗪-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-氨基-哌啶-1-基]-黄嘌呤
Figure PCTCN2016083406-appb-000014
(1)1-[(3-氰基-吡嗪-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-溴黄嘌呤的制备
Figure PCTCN2016083406-appb-000015
将3-甲基-7-(2-丁炔-1-基)-8-溴黄嘌呤(0.71g,2.4mmol)、碳酸钾(0.53g,3.8mmol)和2-溴甲基-3-氰基-吡嗪(0.52g,2.6mmol)加入至50mL的圆底烧瓶中,加入5mL N,N-二甲基甲酰胺,升温至80℃搅拌5小时;反应完毕,将反应液倒入冰水中析出固体,抽滤,固体水洗,干燥得浅黄色固体0.88g,产率89%,ES-API(m/z):[M+H]+414.0。
(2)1-[(3-氰基-吡嗪-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-叔丁氧羰基氨基-哌啶-1-基]-黄嘌呤的制备
Figure PCTCN2016083406-appb-000016
将1-[(3-氰基-吡嗪-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-溴黄嘌呤(0.23g,0.78mmol)、碳酸钾(0.22g,1.6mmol)和3-(R)-叔丁氧羰基-氨基哌啶(0.17g,0.85mmol)加入到10mL的圆底烧瓶中,加入5mLN,N-二甲基甲酰胺,升温至80℃搅拌5小时;反应完毕,冷却至室温,将反应液倒入冰水中析出固体,抽滤、真空干燥,得浅黄色固体0.35g,产率85%。ES-API(m/z):[M+H]+534.3。
(3)1-[(3-氰基-吡嗪-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-氨基-哌啶-1-基]-黄嘌呤的制备
Figure PCTCN2016083406-appb-000017
将化合物1-[(3-氰基-吡嗪-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-叔丁氧羰基氨基-哌啶-1-基]-黄嘌呤(0.31g,0.6mmol)溶于二氯甲烷(8ml)中,室温下滴入三氟醋酸(2ml),室温反应1小时。加入二氯甲烷(10ml)将反应溶液稀释后,用pH=10的碳酸钾水溶液洗涤,二氯甲烷萃取,有机相用无水硫酸镁干燥,过滤,浓缩。残留物用薄层色谱(二氯甲烷:甲醇=20:1)分离纯化,得到化合物1-[(3-氰基-吡嗪-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-氨基-哌啶-1-基]-黄嘌呤(0.19g,黄色固体),收率:74%。ES-API(m/z):[M+H]+434.2。
1H NMR(400 MHz,DMSO)δ8.84(m,1H),8.75(m,1H),5.38(s,2H),4.89(s,2H),3.71–3.53(m,2H),3.37(s,3H),3.07–2.97(m,1H),2.90(m,1H),2.81(m,1H),1.93–1.73(m,5H),1.70–1.56(m,1H),1.32–1.22(m,1H).
实施例4
1-[(3-甲酸甲酯-吡啶-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-氨基-哌啶-1-基]-黄嘌呤
Figure PCTCN2016083406-appb-000018
(1)1-[(3-甲酸甲酯-吡啶-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-溴黄嘌呤的制备
Figure PCTCN2016083406-appb-000019
将3-甲基-7-(2-丁炔-1-基)-8-溴黄嘌呤(2.0g,6.7mmol)、碳酸钾(1.5g,12.6mmol)和2-溴甲基-3-甲酸甲酯-吡啶(1.7g,7.4mmol)加入至100mL的圆底烧瓶中,加入20mLN,N-二甲基甲酰胺,升温至80℃搅拌5小时;反应完毕,将反应液倒入冰水中析出固体,抽滤,固体水洗,干燥得浅黄色固体2.5g,产率83%,ES-API(m/z):[M+H]+446.0。
(2)1-[(3-甲酸甲酯-吡啶-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-叔丁氧羰基氨基-哌啶-1-基]-黄嘌呤的制备
Figure PCTCN2016083406-appb-000020
将1-[(3-甲酸甲酯-吡啶-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-溴黄嘌呤(1.2g,2.7mmol)、碳酸钾(0.74g,5.4mmol)和3-(R)-叔丁氧羰基-氨基哌啶(0.61g,3.1mmol)加入到50mL的圆底烧瓶中,加入10mLN,N-二甲基甲酰胺,升温至80℃搅拌5小时;反应完毕,冷却至室温,将反应液倒入冰水中析出固体,抽滤、真空干燥,得浅黄色固体1.2g,产率80%。ES-API(m/z):[M+H]+566.3。
(3)1-[(3-甲酸甲酯-吡啶-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-氨基-哌啶-1-基]-黄嘌呤的制备
Figure PCTCN2016083406-appb-000021
将化合物1-[(3-甲酸甲酯-吡啶-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-叔丁氧羰基氨基-哌啶-1-基]-黄嘌呤(0.4g,0.7mmol)溶于二氯甲烷(8ml)中,室温下滴入三氟醋酸(2ml),室温反应1小时。加入二氯甲烷(10ml)将反应溶液稀释后,用pH=10的碳酸钾水溶液洗涤,二氯甲烷萃取,有机相用无水硫酸镁干燥,过滤,浓缩。残留物用薄层色谱(二氯甲烷:甲醇=20:1)分离纯化,得到化合物1-[(3-甲酸甲酯-吡啶-2-基)甲基]-3-甲基-7-(2-丁炔-1-基)-8-[(R)-3-氨基-哌啶-1-基]-黄嘌呤(0.25g,浅黄色固体),收率:77%。ES-API(m/z):[M+H]+466.2。
1H NMR(400MHz,DMSO)δ8.59(m,1H),8.30(m,1H),7.44(m,1H),5.48(s,2H),4.89(s,2H),3.94(s,3H),3.61(m,2H),3.38(s,3H),3.00(m,2H),2.87–2.77(m,1H),1.94–1.72(m,5H),1.71–1.57(m,1H),1.36–1.25(m,1H).
实施例5含有5mg TSL-0319化合物的包衣片剂
1个片剂核芯含
Figure PCTCN2016083406-appb-000022
制备:
将TSL-0319化合物与磷酸钙、玉米淀粉、聚乙烯基吡咯烷酮、羟丙甲基纤维素及指定量一半的硬脂酸镁混合。在制片机中制造13毫米直径的片,然后使用适当机器,使其摩擦经过具有筛孔尺寸1.5毫米的筛网,并与其余硬脂酸镁混合。于制片机中压制此颗粒,以形成所要形状的片剂。
核芯重量:166.5mg冲头:9毫米,凸型
将如此制成的片剂核芯使用基本上由羟丙甲基纤维素构成的薄膜包衣。将最后完成的薄膜包衣以蜂蜡抛光。
包衣片剂的重量:175mg
实施例6含有5mg TSL-0319化合物的胶囊
化合物TSL-0319    5g
淀粉              400g
微晶纤维素        200g
按常规方法,将所得的药物组合物混合均匀后,装入普通明胶胶囊,得到1000颗胶囊。按此类方法,得到含有5mg化合物TSL-0319的胶囊。
试验例一、体外活性实验
(一)体外DPP-IV活性抑制试验
二肽基肽酶IV(DPP-IV)在室温下可水解Gly-Pro-氨基荧光素(Gly-Pro-Aminoluciferin),生成氨基荧光素(Aminoluciferin),该物质在DPPIV-Glo(TM)蛋白酶检测试剂盒提供的荧光素酶反应系统中,可产生“辉光型”发光信号,该发光信号的强弱与DPP-IV酶的活力成正比。
1、实验目的:
观察本发明化合物I-1~I-4对二肽基肽酶IV(DPP-IV)酶的活性抑制,以评价其抑制效果。
2、实验材料:
2.1 人源重组二肽基肽酶IV(DPP-IV):SIGMA产品,货号D3446-10UG。
2.2 DPPIV-Glo(TM)蛋白酶检测试剂盒:Promega产品,货号G8351。
2.3 Trizma base:Sigma产品,货号T6066-1KG:配制成10mM Tris-HCl,pH 8.0。
2.4 384孔板(OptiPlate):PerkinElmer产品,货号6007299。
2.5 液体处理仪器:Bravo(Agilent公司);Echo(Labcyte公司)。
2.6 检测仪器:Envision(PerkinElmer公司)。
3、实验方法:
3.1 用Bravo将待测样品用DMSO梯度稀释10个浓度,然后用Echo转移250nl样品到384孔板中。
3.2 用10mM Tris-HCl(pH 8.0)将二肽基肽酶IV(Sigma)稀释成0.2ng/ml溶液,加入待测样品中,每孔25μl。同时设立空白对照(含底物,不含酶和样品)和阳性对照(含底物,含酶,不含样品)。
3.3 每孔加入25μl的DPPIV-GloTMReagent(按DPPIV-Glo(TM)蛋白酶检测试剂盒说明书配制,含20μM DPP-IV底物Gly-Pro-氨基荧光素和荧光素酶反应体系)。
3.4 室温反应60min,用Envision测定发光强度。
3.5 根据发光强度计算DPP-IV酶活力,酶活力=(样品发光强度值-空白对照发光强度值/(阳性对照发光强度值-空白对照发光强度值)×100。
3.6 根据酶活力,应用GraphPad Prism5.0软件计算样品的IC50
4、实验结果
表1 本发明化合物I-1~I-4与利格列汀的IC50
Figure PCTCN2016083406-appb-000023
由以上结果可知,本发明化合物I-3具有比利格列汀更好的活性,其他化合物I-1、I-2、I-4也具有与利格列汀相似的活性。
(二)体外药物选择性实验
1、实验目的:
观察本发明化合物I-3(以下简称TSL-0319)对二肽基肽酶酶的活性抑制作用,与已上市同类药物的选择性比较
2、实验材料:
2.1 人源重组二肽基肽酶IV(DPP-IV)、DPP8和DPP9酶,其它实验材料与试验例(一)相同。
3、实验方法:与试验例(一)相同
4、实验结果
表2 本发明化合物I-3与已上市药物的IC50值表
Figure PCTCN2016083406-appb-000024
由以上结果可知,本发明化合物TSL-0319只表现出对DPP4有抑制作用,对DPP8、DPP9无抑制作用,同时化合物TSL-0319的选择性要明显优越于所有已上市同类药物的选择性。
试验例二、体内实验
1、实验药物:化合物I-3(简称TSL-0319)、利格列汀
2、实验方法:使用了正常鼠、肥胖鼠、糖尿病小鼠进行研究糖耐量实验
OGTT(口服糖耐量实验)实验过程:试验开始前禁食6小时,给药后60min灌胃给予葡萄糖(药物浓度0.6mg/ml,给药体积5ml/kg)(糖尿病鼠给糖2g/kg;肥胖鼠给糖2g/kg;正常鼠给糖5g/kg),分别测定给予葡萄糖后0min、15min、30min、45min、60min、120min的血糖值。
3、实验结果:
正常鼠的糖耐量实验见表3,附图1-2,本发明化合物I-3(简称TSL-0319)具有很好的降糖效果,尤其是降糖效果优于利格列汀。
肥胖鼠糖耐量实验见表4,附图3-4,本发明化合物I-3(简称TSL-0319)具有很好的降糖效果,尤其是降糖效果优于利格列汀。
糖尿病鼠糖耐量实验见表5,附图5-6,本发明化合物I-3(简称TSL-0319)具有很好的降糖效果,尤其是降糖效果优于利格列汀。
表3 正常鼠口服糖耐量实验(鼠种:C57BL/6J)(-60min给药,0min给葡萄糖):
Figure PCTCN2016083406-appb-000025
*:P<0.05vs空白组;**:P<0.01vs空白组;***:P<0.001vs空白组
表4 肥胖鼠糖耐量实验(鼠种:B6.Cg-Lepob/JNju)(-60min给药,0min给葡萄糖):
Figure PCTCN2016083406-appb-000026
*:P<0.05vs模型组;**:P<0.01vs模型组
表5 糖尿病鼠糖耐量实验(鼠种:B6.BKS(D)-Leprdb/JNju)(-60min给药,0min给葡萄糖):
Figure PCTCN2016083406-appb-000027
*:P<0.05vs模型组;**:P<0.01vs模型组;***:P<0.001vs模型组
4、结论:
在体内糖代谢试验中,使用了正常鼠、肥胖鼠、糖尿病小鼠进行研究,本发明化合物I-3(简称TSL-0319)对三种小鼠都具有降糖作用且降糖效果优于利格列汀。
试验例三、hERG毒性研究
1、测试方法:应用手动膜片钳的方法在转染hERG钠通道的稳定细胞株CHO上测试化合物对hERG钠电流的作用,进而计算化合物对hERG的IC50值。
膜片钳技术(Conventional Patch-Clamp)是已公开技术,是研究离子通道最重要的技术手段,被公认为是离子通道研究的“黄金标准”,是最精确的测量离子通道的实验方法,适用于研究化合物与离子通道作用的作用机制,亦可用于新药申报过程中候选药物的毒性评价和先导化合物的结构优化。
在心肌细胞中,human Ether-a-go-go Related Gene(hERG)编码的钾通道介导一种延迟整流钾电流(IKr),IKr抑制是药物导致QT间期延长最重要的机制。hERG因其特殊的分子结构,使其可被结构多样化的化合物抑制。目前,检测化合物对hERG钾通道的作用已是临床前评价化合物心脏安全性的关键步骤,也是FDA要求的新药报批必备资料。
使用稳定转染hERG钾通道的CHO细胞系,通过膜片钳技术,可以测试化合物对hERG的影响并测定相应的IC50
2、实验结果:进行的hERG实验中,TSL-0319对hERG的IC50=79.80μM。(利格列汀没有报道对hERG的IC50,只提及:在1μM浓度下,对hERG的抑制率为3%;TSL-0319在1μM浓度下,对hERG的抑制率为0%。)
按照大于Cmax 20倍的要求计算,TSL-0319在5mg/kg剂量下,小鼠体内Cmax为200-500nM,对hERG的IC50应大于20μM,因此TSL-0319在hERG毒性方面是安全的,要明显优于利格列汀。
试验例四、药-药相互作用研究(DDI)
1、测试方法:使用人肝微粒体进行化合物对CYP酶的抑制活性测试。
利用体外人肝微粒体孵育体系,通过cocktail探针药物法(已公开技术),同时测定人肝微粒体CYP1A2、CYP2C9、CYP2C19、CYP2D6、CYP3A4底物非那西丁、双氯芬酸、S-美芬妥英、美沙芬、咪达唑仑的含量变化,评价不同浓度下TSL-0319对人肝微粒体CYP1A2、CYP2C9、CYP2C19、CYP2D6、CYP3A4亚型活性的影响并测定相应的IC50
2、实验结果:
表6 TSL-0319不同浓度对CYP酶抑制率
TSL-0319浓度μM 0 0.05 0.15 0.5 1.5 5 15 50
对CYP1A2抑制率(%) 0 0 0 2.2 4.2 6.6 20.8 41.8
对CYP2C9抑制率(%) 0 0 0 3.2 5.7 10.5 12.1 13.9
对CYP2C19抑制率(%) 0 0     3.3 8.2 14 2.9
对CYP2D6抑制率(%) 0 0 0 0 0 0 3 14.6
对CYP3A4抑制率(%) 0 0 0 4 4.4 8.7 17.9 44.6
3、结论:TSL-0319对CYP1A2、CYP2C9、CYP2C19、CYP2D6、CYP3A4五种代谢酶的IC50都大于50μM,因此TSL-0319的使用不会影响其他药物的代谢,可与其他药物联用。
试验例五、化合物TSL-0319小鼠药代动力学实验
1、给药方案:
7-10周健康CD-1鼠6只,随机分为两组。分别静脉注射以及灌胃给予2mg/kg、5mg/kg的TSL-0319(静脉注射,2mg/ml,以DMSO/PEG400/H2O=20/60/20的溶液制成透明溶液;灌胃,5mg/ml;以PEG400/Tween80/H2O=40/10/50的溶液制成透明溶液);给药前禁食12小时,自由饮水;于给药前和给药后按时间点在大隐静脉或颌下静脉取血(静脉注射取血时间点:0h、0.0833h、0.250h、0.500h、1.00h、2.00h、4.00h、8.00h、12.00h、24.00h;灌胃取血时间点:0h、0.250h、0.500h、1.00h、2.00h、4.00h、8.00h、12.00h、24.00h),最低定量浓度(lower limit ofquantitation,LLOQ)设为3ng/ml。
2、实验结果:见表7
表7 TSL-0319药代动力学实验数据
静脉注射取血点(h) 血药浓度(ng/ml)   灌胃取血点(h) 血药浓度(ng/ml)
0.00833 759±133      
0.250 529±93.4   0.250 48.0±27.9
0.500 344±32.7   0.500 123±30.2
1.00 161±21.2   1.00 183±19.1
2.00 47.5±13.6   2.00 211±83.0
4.00 11.9±2.24   4.00 145±40.9
8.00 BQL   8.00 8.03±3.71
12.00 BQL   12.00 BQL
24.00 BQL   24.00 BQL
静脉注射平均药动学参数     灌胃平均药动学参数  
T1/2(h) 1.09±0.623   Cmax(ng/ml) 223±68.1
Vdss(L/kg) 3.41±0.745   Tmax(h) 1.33±0.577
CL(ml/min/kg) 59.1±5.63   T1/2(h) 1.37±0.317
AUC0-last(ng.h/ml) 555±54.7   AUC0-last(ng.h/ml) 844±181
AUC0-inf(ng.h/ml) 567±56.1   AUC0-inf(ng.h/ml) 858±185
MRT0-last(h) 0.836±0.0919   MRT0-last(h) 2.87±0.0589
MRT0-inf(h) 0.953±0.123   MRT0-inf(h) 3.00±0.111
      Bioavailability(%) 60.5
3、结论:
TSL-0319使用CD-1小鼠做药代动力学实验,由于取血点以及LLOQ的设定,其T1/2与linagliptin的公开数据相比有较大差别,但是60.5%的生物利用度远高于同等条件下linagliptin的生物利用度(linagliptin使用CD-1小鼠做药代动力学实验,5mg/kg,口服,生物利用度为18.4%)。
本发明化合物I-1~I-2、1-4结构与I-3类似,因此化合物I-1~I-2、1-4都具有与化合物I-3相同的药效作用。

Claims (10)

  1. 如式I所示的黄嘌呤衍生物及其溶剂合物,或它们药学上可接受的盐,
    Figure PCTCN2016083406-appb-100001
    其中,
    R选自:
    Figure PCTCN2016083406-appb-100002
    R1选自氰基或甲氧羰基;
    R2选自氢、卤素原子,直链或支链的被1~5个卤素原子取代或未被取代的C1-6烷基、直链或支链的被1~5个卤素原子取代或未被取代的C1-6烷氧基;
    X、Y分别独立的选自C或N;
    n为0、1、2、3或4。
  2. 根据权利要求1所述的黄嘌呤衍生物及其溶剂合物,或它们药学上可接受的盐,其中,R2选自氢、卤素原子、甲基、乙基、异丙基、甲氧基、乙氧基、三氟甲基或三氟甲氧基;
    n为0、1或2。
  3. 根据权利要求2所述的黄嘌呤衍生物及其溶剂合物,或它们药学上可接受的盐,其中,R2选自氢、氯原子、氟原子、嗅原子、甲基或甲氧基。
  4. 根据权利要求3所述的黄嘌呤衍生物及其溶剂合物,或它们药学上可接受的盐,其中,R2选自氢或氟原子。
  5. 根据权利要求4所述的黄嘌呤衍生物及其溶剂合物,或它们药学上可接受的盐,其中,所述黄嘌呤衍生物选自:
    Figure PCTCN2016083406-appb-100003
    Figure PCTCN2016083406-appb-100004
  6. 根据权利要求1~5任一所述的黄嘌呤衍生物及其溶剂合物,或它们药学上可接受的盐,其中所述药学上可接受的盐为黄嘌呤衍生物或其溶剂合物与选自下列的酸形成的盐:盐酸、对甲苯磺酸、酒石酸、马来酸、乳酸、甲磺酸、硫酸、磷酸、柠檬酸、乙酸或三氟乙酸;所述药学上可接受的盐优选黄嘌呤衍生物或其溶剂合物与选自下列的酸形成的盐:甲苯磺酸、盐酸、酒石酸或三氟乙酸。
  7. 含有权利要求1~5任一项所述的黄嘌呤衍生物及其溶剂合物,或它们药学上可接受的盐为活性成分的药物组合物,其中活性成分占药物组合物的总重量的0.1-99.9%。
  8. 权利要求1~5任一项所述的黄嘌呤衍生物及其溶剂合物,或它们药学上可接受的盐与药学上可接受的载体制成的制剂,其中药学上可接受的载体以重量计是制剂总重量的0.1-99.9%。
  9. 权利要求1~5任一所述的黄嘌呤衍生物及其溶剂合物,或它们药学上可接受的盐在制备治疗与二肽基肽酶IV相关的疾病的药物中的应用。
  10. 根据权利要求9所述的应用,所述与二肽基肽酶IV相关的疾病选自:Ⅱ型糖尿病或葡萄糖耐量异常。
PCT/CN2016/083406 2015-05-29 2016-05-26 黄嘌呤衍生物 WO2016192559A1 (zh)

Priority Applications (13)

Application Number Priority Date Filing Date Title
CN201680031442.XA CN107709324B (zh) 2015-05-29 2016-05-26 黄嘌呤衍生物
US15/577,946 US10358449B2 (en) 2015-05-29 2016-05-26 Xanthine derivative
SG11201709782SA SG11201709782SA (en) 2015-05-29 2016-05-26 Xanthine derivative
EP16802482.6A EP3305787B1 (en) 2015-05-29 2016-05-26 Xanthine derivative
ES16802482T ES2908658T3 (es) 2015-05-29 2016-05-26 Derivado de xantina
AU2016270100A AU2016270100B2 (en) 2015-05-29 2016-05-26 Xanthine derivative
CA2987697A CA2987697A1 (en) 2015-05-29 2016-05-26 Xanthine derivative and use thereof as a dipeptidyl peptidase iv (dpp-iv) inhibitor
MYPI2017704554A MY186396A (en) 2015-05-29 2016-05-26 Xanthine derivative
KR1020177037626A KR20180011270A (ko) 2015-05-29 2016-05-26 잔틴 유도체
JP2017561869A JP6742345B2 (ja) 2015-05-29 2016-05-26 キサンチン誘導体
RU2017145919A RU2709348C2 (ru) 2015-05-29 2016-05-26 Производное ксантина
IL255829A IL255829B (en) 2015-05-29 2017-11-21 Xanthine derivative
HK18105484.2A HK1245796A1 (zh) 2015-05-29 2018-04-27 黃嘌呤衍生物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510290336.0 2015-05-29
CN201510290336 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016192559A1 true WO2016192559A1 (zh) 2016-12-08

Family

ID=57440191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083406 WO2016192559A1 (zh) 2015-05-29 2016-05-26 黄嘌呤衍生物

Country Status (15)

Country Link
US (1) US10358449B2 (zh)
EP (1) EP3305787B1 (zh)
JP (1) JP6742345B2 (zh)
KR (1) KR20180011270A (zh)
CN (2) CN106188058B (zh)
AU (1) AU2016270100B2 (zh)
CA (1) CA2987697A1 (zh)
ES (1) ES2908658T3 (zh)
HK (1) HK1245796A1 (zh)
IL (1) IL255829B (zh)
MY (1) MY186396A (zh)
RU (1) RU2709348C2 (zh)
SG (1) SG11201709782SA (zh)
TW (1) TWI682931B (zh)
WO (1) WO2016192559A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105983016B (zh) 2015-03-23 2023-08-11 天士力医药集团股份有限公司 一种含有水飞蓟宾的药物组合

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1980930A (zh) * 2004-02-18 2007-06-13 贝林格尔·英格海姆国际有限公司 8-[3-氨基-哌啶-1-基]-黄嘌呤,其制备及dpp-ⅳ抑制剂形式的用途
CN102186466A (zh) * 2008-10-16 2011-09-14 贝林格尔.英格海姆国际有限公司 对尽管使用口服或非口服抗糖尿病药物治疗但血糖控制仍不足的患者中的糖尿病的治疗

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW492957B (en) 1996-11-07 2002-07-01 Novartis Ag N-substituted 2-cyanopyrrolidnes
US6110949A (en) 1999-06-24 2000-08-29 Novartis Ag N-(substituted glycyl)-4-cyanothiazolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV
EP1496877B1 (en) * 2002-01-11 2008-10-01 Novo Nordisk A/S Method and composition for treatment of diabetes, hypertension, chronic heart failure and fluid retentive states
US7482337B2 (en) * 2002-11-08 2009-01-27 Boehringer Ingelheim Pharma Gmbh & Co. Kg Xanthine derivatives, the preparation thereof and their use as pharmaceutical compositions
US7501426B2 (en) * 2004-02-18 2009-03-10 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, their preparation and their use as pharmaceutical compositions
AU2005219508B2 (en) 2004-02-18 2012-02-16 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthine, the production thereof and the use in the form of a DPP inhibitor
DE102004054054A1 (de) * 2004-11-05 2006-05-11 Boehringer Ingelheim Pharma Gmbh & Co. Kg Verfahren zur Herstellung chiraler 8-(3-Amino-piperidin-1-yl)-xanthine
DE102005035891A1 (de) * 2005-07-30 2007-02-08 Boehringer Ingelheim Pharma Gmbh & Co. Kg 8-(3-Amino-piperidin-1-yl)-xanthine, deren Herstellung und deren Verwendung als Arzneimittel
PE20100156A1 (es) * 2008-06-03 2010-02-23 Boehringer Ingelheim Int Tratamiento de nafld
UY32030A (es) * 2008-08-06 2010-03-26 Boehringer Ingelheim Int "tratamiento para diabetes en pacientes inapropiados para terapia con metformina"
MX370599B (es) * 2008-08-15 2019-12-18 Boehringer Ingelheim Int Derivados de purina para su uso en el tratamiento de enfermedades relacionadas con fab.
CN103172633B (zh) * 2011-12-22 2016-08-03 成都地奥制药集团有限公司 一种化合物及其制备方法和用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1980930A (zh) * 2004-02-18 2007-06-13 贝林格尔·英格海姆国际有限公司 8-[3-氨基-哌啶-1-基]-黄嘌呤,其制备及dpp-ⅳ抑制剂形式的用途
CN102186466A (zh) * 2008-10-16 2011-09-14 贝林格尔.英格海姆国际有限公司 对尽管使用口服或非口服抗糖尿病药物治疗但血糖控制仍不足的患者中的糖尿病的治疗

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3305787A4 *

Also Published As

Publication number Publication date
SG11201709782SA (en) 2017-12-28
RU2017145919A (ru) 2019-07-02
TWI682931B (zh) 2020-01-21
US10358449B2 (en) 2019-07-23
EP3305787A4 (en) 2018-11-21
TW201643166A (zh) 2016-12-16
AU2016270100A1 (en) 2017-12-14
MY186396A (en) 2021-07-22
CN106188058B (zh) 2020-11-06
JP6742345B2 (ja) 2020-08-19
CN106188058A (zh) 2016-12-07
JP2018520120A (ja) 2018-07-26
EP3305787B1 (en) 2022-02-16
CA2987697A1 (en) 2016-12-08
RU2017145919A3 (zh) 2019-08-09
HK1245796A1 (zh) 2018-08-31
KR20180011270A (ko) 2018-01-31
IL255829A (en) 2018-01-31
CN107709324B (zh) 2021-06-08
ES2908658T3 (es) 2022-05-03
AU2016270100B2 (en) 2020-02-13
IL255829B (en) 2021-02-28
US20180162860A1 (en) 2018-06-14
RU2709348C2 (ru) 2019-12-18
EP3305787A1 (en) 2018-04-11
CN107709324A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
RU2457842C2 (ru) Способ предотвращения и лечения болезни печени с использованием антагонистов рецептора аденозина a2b
US20070032404A1 (en) Methods for treating diabetes and related disorders using pde10a inhibitors
US9045491B2 (en) Thienyl [3,2-D] pyrimidin-4-one compounds, preparation method, pharmaceutical compositions and use thereof
US8207188B2 (en) Treatment of diseases modulated by a H4 receptor agonist
US20120295933A1 (en) Treatment of copd, gastro-esophageal reflux disease (gerd), food allergies and other gastrointestinal conditions and disorders ameliorated by proper histamine management using a combination of histidine decarboxylase inhibators, lra drugs, anti-h1 and/or anti-h2 drugs
US11261189B2 (en) Substituted 2,4 diamino-quinoline as new medicament for fibrosis, autophagy and cathepsins B (CTSB), L (CTSL) and D (CTSD) related diseases
JP2017533944A (ja) Tlr阻害剤及びブルトンチロシンキナーゼ阻害剤の併用
JP2010515682A (ja) 喘息などの5−リポキシゲナーゼ活性上昇および/またはロイコトリエン活性上昇に関連する状態における使用のためのr−ジロートン
KR20010012995A (ko) 발기부전 치료제
JP2014518868A (ja) 肺高血圧症および/または心不全の治療および/または予防のためのカテプシンk阻害の使用
WO2016192559A1 (zh) 黄嘌呤衍生物
WO2010135944A1 (zh) (R)-7-[3-氨基-4-(2,4,5-三氟-苯基)-丁酰]-3-三氟甲基-5,6,7,8-四氢-咪唑并[1,5-a]吡嗪-1-羧酸甲酯的盐
RU2549441C2 (ru) Способы и фармацевтические композиции для лечения синдрома дауна
US20230218563A1 (en) Methods for treating or preventing chronic kidney disease
EP2992883B1 (en) Pharmaceutical use of hexahydro-dibenzo[a,g]quinolizine compounds
US20240009195A1 (en) Novel uses
CN114671856A (zh) 多取代的尿嘧啶衍生物及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802482

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 255829

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 11201709782S

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2017561869

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2987697

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15577946

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016270100

Country of ref document: AU

Date of ref document: 20160526

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177037626

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017145919

Country of ref document: RU