WO2016192009A1 - 一种组合移相器及多频天线网络系统 - Google Patents

一种组合移相器及多频天线网络系统 Download PDF

Info

Publication number
WO2016192009A1
WO2016192009A1 PCT/CN2015/080493 CN2015080493W WO2016192009A1 WO 2016192009 A1 WO2016192009 A1 WO 2016192009A1 CN 2015080493 W CN2015080493 W CN 2015080493W WO 2016192009 A1 WO2016192009 A1 WO 2016192009A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shifter
signal
output
combined
substrate
Prior art date
Application number
PCT/CN2015/080493
Other languages
English (en)
French (fr)
Inventor
肖伟宏
刘新明
徐春亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to MX2017015406A priority Critical patent/MX2017015406A/es
Priority to EP24164777.5A priority patent/EP4411984A2/en
Priority to ES15893669T priority patent/ES2779530T3/es
Priority to EP19219779.6A priority patent/EP3703181B1/en
Priority to EP15893669.0A priority patent/EP3291362B1/en
Priority to PCT/CN2015/080493 priority patent/WO2016192009A1/zh
Priority to CN201911397385.9A priority patent/CN111029776B/zh
Priority to CN201580072395.9A priority patent/CN107710498B/zh
Publication of WO2016192009A1 publication Critical patent/WO2016192009A1/zh
Priority to US15/820,921 priority patent/US10498028B2/en
Priority to US16/418,900 priority patent/US10573964B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • H01Q1/1257Means for positioning using the received signal strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • the invention relates to the technical field of communication, in particular to a combined phase shifter and a multi-frequency antenna network system.
  • the phase shifter is the core component of the base station antenna.
  • the phase shifter currently developed can not only adjust the phase, but also adjust the amplitude, so that the direction of the base station antenna in the spatial transmission direction is adjusted to meet the flexible adjustment coverage of different users. Regional needs.
  • the excellent performance of the phase shifter not only affects the gain, pattern, isolation and other indicators of the antenna, but also affects the size and cost.
  • a cavity phase shifter including a housing 1 in which a cavity is disposed, a substrate 3 located in the cavity, a conductor 4 disposed on the substrate, and activities disposed on both sides of the substrate 3.
  • the conductor 4 shown may be a movable medium as a substrate or air as a substrate; the movable movable medium 2 shown includes upper and lower portions, and the conductor 4 is fixed in the movable medium 2.
  • the movable medium 2 is free to slide in the wiring direction of the conductor 4, changing the position and coverage area of the covered conductor 4, thus affecting the change in the dielectric constant of the propagated signal. That is, the phase of the output signal changes to achieve phase shifting.
  • FIG 2 shows the network connection diagram of the current traditional multi-frequency antenna (Note: CMB represents the combiner), the phase shifter and the combiner are designed separately, the cables are more, the wiring is complicated, and the single-sided base station antenna is integrated. More and more frequency bands, this kind of network connection is already difficult to meet the demand
  • the invention provides a combined phase shifter multi-frequency antenna network system for reducing the cable of the multi-frequency antenna network system and facilitating the setting of the multi-frequency antenna network system.
  • a combined phase shifter comprising at least two stacked phase shifters, and each phase shifter has a different frequency band, wherein each phase shifter comprises a signal layer and Phase a component that slides the signal layer and is used to change a phase of an output end of the signal layer, wherein an output end of the signal layer is provided with a filter circuit;
  • the output ends of the filter circuits corresponding to the at least two phase shifters are connected by conductors and output through a common output terminal.
  • the signal line layer includes an input end, a power splitter connected to the input end, and a first output end connected to the power splitter and Two signal transmission lines, wherein each signal transmission line is connected with at least one branch transmission line, and each branch transmission line is connected with a filter circuit, and the filter circuit is connected with the output end.
  • the common output end has a U-shaped snap ring structure or a through hole structure
  • the conductor card is mounted on the U-shaped snap ring structure or through-hole structure and signal connection.
  • the two signal transmission lines are symmetrically distributed on both sides of the power splitter.
  • phase shifter is a physical phase shifter
  • the component is a swing arm
  • a signal layer of the phase shifter is attached to the substrate.
  • the number of the phase shifters is two, and the signal layers of the two phase shifters are respectively attached On opposite sides of the substrate.
  • the first possible implementation manner of the first aspect, the second possible implementation manner of the first aspect, and the third possible implementation manner of the first aspect, in a sixth possible implementation manner There is further included a housing in which a chamber corresponding to each phase shifter is disposed, and each chamber is provided with a substrate for carrying a signal layer of a phase shifter in the chamber.
  • the substrate is a substrate made of plastic or ceramic material.
  • a partition is disposed between adjacent cavities, and the partition is provided with a pass for the conductor through hole.
  • a card slot for chucking the phase shifter is disposed in each cavity.
  • a multi-frequency antenna network system comprising the combined phase shifter of any of the above.
  • a combined phase shifter in a first aspect, is provided, and in a second aspect, a multi-frequency antenna network system is provided, which integrates outputs of two phase shifters of different frequencies by using a conductor, and at the same time,
  • the combined phase shifter provided by the embodiment does not need to use an additional combiner, which reduces the used device compared with the prior art, and also reduces the use of cables in the multi-frequency antenna network system, thereby facilitating layout. It facilitates the setting of the multi-frequency antenna network system, and in addition, facilitates the layout of the whole machine, reduces the weight of the whole machine, and saves costs.
  • the combined phase shifter provided by the embodiment of the invention can also improve the antenna gain and optimize the direction parameter.
  • Figure 1 is a cross-sectional view of a prior art combined phase shifter
  • FIG. 2 is a system diagram of a multi-frequency antenna network system in the prior art
  • FIG. 3 is an exploded perspective view of a combined phase shifter according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a combined phase shifter according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a signal line layer of a combined phase shifter according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another signal line layer according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another combined phase shifter according to an embodiment of the present invention.
  • FIG. 8 is a side view of another combined phase shifter according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another combined phase shifter according to an embodiment of the present invention.
  • FIG. 10 is a system diagram of a multi-frequency antenna network system according to an embodiment of the present invention.
  • Embodiments of the present invention provide a combined phase shifter including at least two stacked phase shifters, and each of the phase shifters has different frequency bands, wherein each phase shifter includes a signal layer and a member sliding relative to the signal layer and for changing a phase of an output end of the signal layer, wherein an output end of the signal layer is provided with a filter circuit;
  • An output end of the filter circuit corresponding to the at least two phase shifters is connected through a conductor and passes through a A common output output.
  • the output ends of the phase shifters of two different frequencies are integrated and output by using a conductor, and the combined phase shifter provided by the embodiment does not need to use an additional combiner, and the prior art
  • the use of the cable in the multi-frequency antenna network system is reduced, and the layout is facilitated, thereby facilitating the setting of the multi-frequency antenna network system, and in addition, facilitating the layout of the whole machine and reducing the weight of the whole machine. ,save costs.
  • the combined phase shifter provided by the embodiment of the invention can also improve the antenna gain and optimize the direction parameter.
  • the combined phase shifter further includes a housing in which a chamber corresponding to each phase shifter is disposed.
  • a substrate is provided within the chamber for carrying a signal layer of a phase shifter within the chamber.
  • the housing has two layers of cavities, one phase shifter is disposed in each cavity, and the two phase shifters are different phase shifters for different frequencies.
  • FIG. 3 shows an exploded view of the combined phase shifter provided in this embodiment
  • FIG. 4 shows the combined phase shifter provided in this embodiment. Sectional view.
  • a partition is disposed between adjacent cavities in the casing 10, and the partition is provided with a through hole for the conductor to be bored. That is, the cavity in the housing 10 is divided into the first cavity 11 and the second cavity 12 by the spacer, and the first cavity 11 and the second cavity 12 are respectively provided with the first phase shifter and the second cavity Phase shifter.
  • the first phase shifter and the second phase shifter each include: a signal line layer disposed on the substrate; a dielectric layer symmetrically disposed on both sides of the signal line layer and slidable relative to the signal line layer (ie, in the embodiment) A component for changing the output of the signal layer).
  • the substrate and the signal line layer can be formed by using a printed circuit, that is, the signal line is printed on the substrate to form a printed circuit board, or a substrate made of a plastic or ceramic material can also be used.
  • a signal line layer is formed on the substrate by other means of fabricating the circuit.
  • the first phase shifter includes a first substrate 30 and is disposed on the first substrate 30.
  • the first signal line layer 20 is symmetrically disposed on the first dielectric layer 40 on both sides of the first signal line layer 20.
  • the second phase shifter includes a second substrate 31 and a second signal line layer 21 disposed on the second substrate 31, and is symmetrically disposed on the two sides of the second signal line layer 21
  • the first signal line layer 20 and the second signal line layer 21 have corresponding output ends, and the corresponding output ends are connected by conductors, so that the signals of the phase shifters of two different frequencies are integrated and sent out.
  • a card slot for the card phase shifter is disposed in each cavity. That is, the side walls of the first cavity 11 and the second cavity 12 are respectively provided with card slots, and the two card slots are respectively used for fixing the first substrate 30 of the first phase shifter and the second phase of the second phase shifter.
  • the substrate 31 is such that the first phase shifter and the second phase shifter can be stably disposed in the first cavity 11 and the second cavity 12.
  • the signal line layer comprises an input end, a power splitter connected to the input end, a first output end connected to the power splitter and two signal transmission lines, wherein each signal transmission line is connected with at least one branch transmission line, each The branch transmission line is connected to a filter circuit, and the filter circuit is connected to the output end. That is, the output end of the signal line layer is connected to the power splitter through the filter circuit and the connection line, and in actual setting, the number of output ends can be set as needed, that is, by setting different branch transmission lines and correspondingly set filters, it can be set. Different outputs.
  • the output terminal of the filter circuit of one of the plurality of phase shifters is connected to the common output terminal.
  • FIG. 5 shows the structure of the signal line layer when two layers of signal lines are used.
  • the phase shifting principle of the phase shifter of the present invention is the same as that of the prior art phase shifter:
  • the signal is divided into three by the power splitter 20a2: one way is transmitted to the signal transmission line 20a3, and one signal is transmitted to the signal.
  • the transmission line 20a5 is transmitted to the output of the first output terminal 62, and the signal is output through the first output terminal 62.
  • the signal is transmitted along the signal transmission line 20a3 to the branch signal transmission line 20a4, and then transmitted to the filter.
  • the wave circuit 20b1 wherein the circuit of the filter circuit 20b1 has a filtering function, is transmitted to the conductor post 51 disposed at the output end, and is output through the common output terminal 61; the signal propagates along the signal transmission line 20a5 to the signal transmission line 20a6, and is transmitted to the signal transmission line 20a6 to The filter circuit 20b2, similarly, the filter circuit 20b2 also has a filtering function, which is transmitted to the conductor post 50 disposed in the output end via the filter circuit 20b2, and the conductor post 50 propagates the signal to the common output terminal 60, and the signal is output through the common output terminal 60. .
  • another signal of different frequency bands is input from 21a1, and one of the power splitters 21a2 is three, one is transmitted to the signal transmission line 21a3, one is transmitted to the signal transmission line 21a5, and one is transmitted to the first output terminal 63, and the signal is first.
  • the output terminal 63 is connected to the cable output; the signal is transmitted along the signal transmission line 21a3 to the signal transmission line 21a4, and the signal is transmitted along the signal transmission line 21a4 to the filter circuit 21b1 having the filtering function, after being filtered by the filter circuit 21b1, and then transmitted to the common output terminal 61;
  • the 21a5 is transmitted to the signal transmission line 21a6, transmitted to the filter circuit 21b2 having the filtering function via the signal transmission line 21a6, and finally outputted through the common output terminal 60.
  • Each of the above output terminals (60, 61, 62, 63) is connected to the antenna radiating unit.
  • the conductors 50, 51 have the function of connecting the output ends of the phase shifters of different frequency bands, and can turn on the signals: the filter circuit 20b1, the filter circuit 21b1 and the conductor 51 form a combiner; the filter circuit 20b2, the filter circuit 21b2 and the conductor 50 form a combiner .
  • both sides of each signal transmission line correspond to a pair of dielectric layers sliding relative to the signal line layer.
  • the first dielectric layer 40 is distributed on both sides of the signal line 20 and is slidable along the signal lines 20a3, 20a5, thereby changing the phase of the signals on the 20a3, 20a5.
  • the second dielectric layer 41 is distributed on both sides of the signal line 21 and is slidable along the signal lines 21a3, 21a5, thereby changing the phase of the signals on 21a3, 21a5.
  • one signal transmission line corresponds to one branch signal transmission line
  • the formed output ports are the first output terminals 62, 63, and the common output terminals 60, 61.
  • FIG. 6 shows the structure of another signal line layer.
  • Fig. 6 is a view showing the structure of a two-branch signal transmission line.
  • each of the signal line layers shown in FIG. 6 corresponds to two branch signal output lines.
  • the signal transmission line 21a5 corresponds to two branch signal transmission lines 21a6 and 21a7, each branch signal transmission line corresponds to one filter circuit, and each filter circuit corresponds to one output terminal; the signal transmission line 21a3 corresponds to two branch signal transmission lines 21a4.
  • each branch signal transmission line corresponds to a filter circuit, and each filter circuit has an output end.
  • the output ends of the branch signal transmission lines 20a6 and 21a6 are connected by the conductor 50 and outputted at the common output terminal 60, and the corresponding output ends of the branch signal transmission lines 20a7 and 21a7 are connected by the conductor 52 and passed through the common output terminal.
  • the output terminals corresponding to the branch signal lines 20a4 and 21a4 are connected by the conductor 51, and are output through the common output terminal 61.
  • the output terminal 65 connected to the branch signal transmission line 20a8 and the output terminal 64 connected to the branch signal transmission line 21a8 are not connected by conductors (may also be connected by conductors, and outputted by the common output terminal) . Therefore, the combined phase shifter formed by the signal line layer shown in Figure 6 has six output ports (60, 61, 62, 63, 64, 65, 66).
  • FIG. 5 and FIG. 6 only show two specific structures of the signal line layer provided by this embodiment.
  • the signal line layer provided in this embodiment is not limited to the specific ones shown in FIG. 5 and FIG. 6 above. Structures, other variations are also applicable in this embodiment.
  • the common output end When the conductor is connected to the signal line layer, specifically, the common output end has a U-shaped snap ring structure or a through hole structure, and the conductor is carded in the U-shaped snap ring structure or the through hole structure and connected in signal.
  • the conductor When the conductor is specifically mounted, the conductor is directly attached to the above-mentioned U-shaped snap ring structure or through hole structure. With the above structure, the connection of the conductor to the two signal line layers is facilitated.
  • the two signal transmission lines are symmetrically distributed on both sides of the power splitter. That is, the signal transmission line is set by using a symmetrical structure.
  • the setting of the branch signal line is also set in a symmetrical manner, thereby facilitating the setting of the signal transmission line and the branch signal transmission line, avoiding interaction between the lines, and improving the signal line. The overall beauty of the layer.
  • the combined phase shifter provided by the embodiment of the present invention is not limited to the structure of the two-layer phase shifter listed in the above specific embodiment, and a phase shifter of three layers, four layers and the like may be disposed in the cavity of the housing 10, The principle is similar to the structure of the combined phase shifter listed in the above specific embodiment, and will not be further described herein.
  • phase shifter provided in this embodiment is not limited to the specific phase shifting of the medium described above, and may be a phase shifter of other principles, such as: the phase shifter is a physical phase shifter, and the component is a swing arm, and The signal layer of the phase shifter is attached to the substrate.
  • FIG. 7, FIG. 8 and FIG. 9. The specific structure is shown in FIG. 7, FIG. 8 and FIG. 9.
  • two phase shifters are taken as an example.
  • the number of phase shifters is two, and the signals of the two phase shifters are The layers are respectively attached to opposite sides of the substrate.
  • FIG. 7, FIG. 8, and FIG. 9 are physical displacement devices of the prior art: signal lines 82 and 83 are attached to both sides of the substrate 80 (82, 83 is a signal line of two phase shifters on both sides of the substrate), and a metal ground (also referred to as a reference surface) 81 is formed in the middle of the substrate 80 to form a microstrip line: the working principle is described below.
  • the signal is input through the input terminal 70 and transmitted to the power splitter 70_b1: one is divided into two, one is transmitted through the transmission line 70_b2, and output through the output terminal 70_a5; the other is transmitted through the transmission line 70_b3, coupled to the swing arm 73: two along the swing arm 73
  • the signal is transmitted to the coupling rectangular piece 70_b6 via the transmission line 70_b4, and the signal is coupled to the curved line 74 by 70_b6: the signal is transmitted in two directions 70_b7, 70_b8 along the curved line 74: respectively through the output terminals 70_a1, 70_a2 Output.
  • the swing arm (the member for changing the phase of the output end of the signal layer in the present embodiment) can be swung in the arc transmission direction with the rotating shaft 75 as the axis: thus the coupling rectangular piece 70_b6 is on the curved line 74.
  • the ends 70_a2, 70_a4 also change the phase of the output by swinging the swing arm.
  • the above is the working principle of the phase shifter of the scheme.
  • phase shifter signal line 83 on the other side of the substrate 80 is the same as the above: that is, the signal is input from the input terminal 71, and is output through 71_a1, 71_a2, 71_a3, 71_a4, and 71_a5, and the phase of the output end is changed by swinging the swing arm 72 to realize shifting. Phase function, detailed process is no longer described.
  • the combined phase shifter signal lines 82, 83 are attached to the substrate 80.
  • the substrate and the signal line layer can be fabricated by using a printed circuit, that is, the signal line is printed on the substrate to form a printing.
  • the circuit substrate, or a substrate made of a plastic or ceramic material may also be used.
  • the signal layer is formed on the substrate by other means of fabricating the circuit; or the signal line is realized by sheet metal, and the substrate is not required.
  • the branch nodes 91, 92, 93, 94 ie, filter circuits having the filtering function integrated at the output end are connected through the conductors (such as 90) to form a combined circuit, and the output terminals are outputted to form a kind.
  • Combine phase shifters The frequency of the input signals of the upper and lower layers of the substrate is different.
  • phase shifting principle of the phase shifter provided in this embodiment may be the phase shifting of the cavity structure in the embodiment, or may be a phase shifter of other implementation forms, such as implementation.
  • the physical phase shifter can be implemented as long as the phase of the output port can be changed.
  • an embodiment of the present invention further provides a multi-frequency antenna network system, where the multi-frequency antenna network system includes the combined phase shifter of any of the above.
  • the output ends of the phase shifters of two different frequencies are integrated and output by using a conductor, and the combined phase shifter provided by the embodiment does not need to use an additional combiner, and the prior art
  • the use of the cable in the multi-frequency antenna network system is reduced, and the layout is facilitated, thereby facilitating the setting of the multi-frequency antenna network system, and in addition, facilitating the layout of the whole machine and reducing the weight of the whole machine. ,save costs.
  • the combined phase shifter provided by the embodiment of the invention can also improve the antenna gain and optimize the direction parameter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明涉及到通讯的技术领域,公开了一种组合移相器及多频天线网络系统。该组合移相器包括至少两个层叠的移相器,且每个移相器的频段不同,其中,每个移相器包括信号层以及可相对所述信号层滑动并用于改变所述信号层的输出端的相位的部件,其中,所述信号层的输出端设置有滤波电路;至少两个移相器对应的滤波电路的输出端通过导体连通,并通过一个公共输出端输出。在本发明的技术方案中,通过采用导体将两个不同频率的移相器的输出端整合到一起输出,与现有技术相比,减少了多频天线网络系统中的线缆的使用,便于布局,从而方便了多频天线网络系统的设置,此外,便于整机布局,减轻整机重量,节约成本。此外,本发明实施例提供的组合移相器还可以提高天线增益,优化方向图参数。

Description

一种组合移相器及多频天线网络系统 技术领域
本发明涉及到通讯的技术领域,尤其涉及到一种组合移相器及多频天线网络系统。
背景技术
移相器是基站天线的核心组成部分,目前开发的移相器不仅能够调节相位,可还要调节幅度,这样对基站天线在空间发射的方向图指向起调节作用,以满足灵活调节覆盖不同用户区域的需求。移相器性能的优异不仅影响到天线的增益、方向图、隔离等指标,还影响到尺寸、成本。
现有技术方案:高频腔体移相器
图1所示是一种腔体移相器,其包括壳体1,壳体1内设置有腔体,位于腔体内的基板3设置在基板上的导体4,设置在基板3两侧的活动介质2。
所示导体4可以是以活动介质为基板,也可以以空气为基板;所示活动活动介质2包括上下两部分,将导体4固定在活动介质2中。活动介质2沿导体4布线方向自由滑动,改变其覆盖导体4的位置及覆盖面积,这样就影响传播信号的介电常数发生变化。即输出信号的相位发生改变,实现移相的目的。
图2所示为目前传统多频天线的网络连接图(注:CMB表示合路器),移相器与合路器分开设计,线缆较多,布线复杂,随着单面基站天线集成的频段越来越多,这种网络连接已经很难再满足需求
发明内容
本发明提供了一种组合移相器多频天线网络系统,用以减少多频天线网络系统的线缆,方便多频天线网络系统的设置。
第一方面,提供了一种组合移相器,该组合移相器包括至少两个层叠的移相器,且每个移相器的频段不同,其中,每个移相器包括信号层以及可相 对所述信号层滑动并用于改变所述信号层的输出端的相位的部件,其中,所述信号层的输出端设置有滤波电路;
所述至少两个移相器对应的滤波电路的输出端通过导体连通,并通过一个公共输出端输出。
结合上述第一方面,在第一种可能的实现方式中,所述信号线层包括一个输入端,与所述输入端连接的功分器,与所述功分器连接的第一输出端以及两个信号传输线,其中,每个信号传输线连接有至少一个分支传输线,每个分支传输线连接有一个滤波电路,所述滤波电路连接有所述输出端。
结合上述第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述公共输出端具有一个U形的卡环结构或者通孔结构,所述导体卡装在所述U形的卡环结构或者通孔结构内并信号连接。
结合上述第一方面的第一种可能的实现方式,在第三种可能的实现方式中,所述两个信号传输线对称分布在所述功分器的两侧。
结合上述第一方面、第一方面的第一种可能的实现方式、第一方面的第二种可能的实现方式、第一方面的第三种可能的实现方式,在第四种可能的实现方式中,所述移相器为物理移相器,所述部件为摆臂,且所述移相器的信号层贴附在基板。
结合上述第一方面的第四种可能的实现方式,在第五种可能的实现方式中,所述移相器的个数为两个,且所述两个移相器的信号层分别贴附在所述基板相对的两面。
结合上述第一方面、第一方面的第一种可能的实现方式、第一方面的第二种可能的实现方式、第一方面的第三种可能的实现方式,在第六种可能的实现方式中,还包括壳体,所述壳体内设置有与每个移相器对应的腔室,每个腔室内设置有用于承载该腔体内的移相器的信号层的基板。
结合上述第一方面的第六种可能的实现方式,在第七种可能的实现方式中,所述基板为塑料或陶瓷材料制作的基板。
结合上述第一方面的第六种可能的实现方式,在第八种可能的实现方式 中,所述至少两个移相器中的一个移相器的滤波电路的输出端连接有所述公共输出端。
结合上述第一方面的第八种可能的实现方式,在第九种可能的实现方式中相邻的腔体之间设置有隔板,且所述隔板设置有用于所述导体穿设的通孔。
结合上述第一方面的第九种可能的实现方式,在第十种可能的实现方式中每个腔体内设置有用于卡装所述移相器的卡槽。
第二方面,提供了一种多频天线网络系统,该多频天线网络系统包括上述任一项所述的组合移相器。
在第一方面提供了一种组合移相器,第二方面提供了一种多频天线网络系统中,通过采用导体将两个不同频率的移相器的输出端整合到一起输出,同时,本实施例提供的组合移相器不需使用额外的合路器,与现有技术相比,减少了使用的器件,还减少了多频天线网络系统中的线缆的使用,,便于布局,从而方便了多频天线网络系统的设置,此外,便于整机布局,减轻整机重量,节约成本。此外,本发明实施例提供的组合移相器还可以提高天线增益,优化方向图参数。
附图说明
图1为现有技术中的组合移相器的剖视图;
图2为现有技术中的多频天线网络系统的系统图;
图3为本发明实施例提供的组合移相器的分解示意图;
图4为本发明实施例提供的组合移相器的截面图;
图5为本发明实施例提供的组合移相器的信号线层的结构示意图;
图6为本发明实施例提供的另一信号线层的结构示意图;
图7为本发明实施例提供的另一组合移相器的结构示意图;
图8为本发明实施例提供的另一组合移相器的侧视图;
图9为本发明实施例提供的另一组合移相器的结构示意图;
图10为本发明实施例提供的多频天线网络系统的系统图。
附图标记:
1-壳体 2-活动介质 3-基板
4-导体 10-壳体 11-第一腔体
12-第二腔体 20-第一信号线层 20a1-输入端
20a2-功分器 20a3、20a5-信号传输线 20a4、20a6、20a7、20a8-分支信号传输线
20b1、20b2-滤波电路
21-第二信号线层 21a2-功分器 21a3、21a5-信号传输线
21a4、21a6、21a7、21a8-分支信号传输线 21b1、21b2-滤波电路
30-第一基板 31-第二基板 40-第一介质层
41-第二介质层 50、51-导体 60、61、66-公共输出端
62、63-第一输出端 64、65-输出端
70-输入端 70_b1-功分器 70_b2、70_b3、70_b4-传输线
70_b6-耦合矩形片 70_a1、70_a2、70_a3、70_a4、70_a5-输出端
71-输入端 71_a1、71_a2、71_a3、71_a4、71_a5-输出端
72、73-摆臂、74-弧形线 75-转轴
80-基板 81-金属地 90-导体
91、92,93、94-具有滤波功能的枝节
具体实施方式
以下结合附图对本发明的具体实施例进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明实施例提供了一种组合移相器,该组合移相器包括至少两个层叠的移相器,且每个移相器的频段不同,其中,每个移相器包括信号层以及可相对所述信号层滑动并用于改变所述信号层的输出端的相位的部件,其中,所述信号层的输出端设置有滤波电路;
所述至少两个移相器对应的滤波电路的输出端通过导体连通,并通过一 个公共输出端输出。
在上述实施例中,通过采用导体将两个不同频率的移相器的输出端整合到一起输出,同时,本实施例提供的组合移相器不需使用额外的合路器,与现有技术相比,减少了使用的器件,还减少了多频天线网络系统中的线缆的使用,,便于布局,从而方便了多频天线网络系统的设置,此外,便于整机布局,减轻整机重量,节约成本。此外,本发明实施例提供的组合移相器还可以提高天线增益,优化方向图参数。
为了方便理解本实施例提供的组合移相器的结构,以下结合附图详细说明本实施例提供给的组合移相器的结构。
为了方便对本实施例提供的组合移相器的说明,下面以具体的实施例进行说明,其中,组合移相器还包括壳体,壳体内设置有与每个移相器对应的腔室,每个腔室内设置有用于承载该腔体内的移相器的信号层的基板。
下面以壳体具有两层腔体,每个腔体内设置一个移相器,且两个移相器为频率不同的移相器为例进行说明。
一并参考图3及图4,如图3及图4所示,图3示出了本实施例提供的组合移相器的分解示意图;图4示出了本实施例提供的组合移相器的截面图。
在本实施例中,壳体10内相邻的腔体之间设置有隔板,且隔板设置有用于导体穿设的通孔。即通过隔板讲壳体10内的腔体分割成第一腔体11及第二腔体12,且第一腔体11及第二腔体12内分别设置有第一移相器及第二移相器。
其中,第一移相器及第二移相器均包括:设置在基板上的信号线层;对称设置在信号线层两侧并可相对信号线层滑动的介质层(即本实施例中的用于改变信号层的输出端的部件)。在具体设置时,基板及信号线层可以通过采用印刷电路的方式制作,即信号线印刷在基板上形成印刷电路基板,或者还可以采用基板为塑料或陶瓷材料制作的基板。通过其他的制作电路的方式在基板上形成信号线层。
如图4所示,上述第一移相器包括第一基板30及设置在第一基板30上 的第一信号线层20,对称设置在第一信号线层20两侧的第一介质层40,在第一信号线层20设置在第一基板30时,第一介质层40对称设置在第一基板30的两侧;同理,第二移相器包括第二基板31及设置在第二基板31上的第二信号线层21,对称设置在第二信号线层21两侧的第二介质层41,在第二信号线层21设置在第二基板31时,第二介质层41对称设置在第二基板31的两侧。并且第一信号线层20及第二信号线层21具有相对应设置的输出端,且对应设置的输出端之间通过导体连接,以将两个不同频率的移相器的信号整合后发送出去。
在具体设置时,每个腔体内设置有用于卡装移相器的卡槽。即上述第一腔体11及第二腔体12的侧壁上分别设置有卡槽,两个卡槽分别用于固定第一移相器的第一基板30及第二移相器的第二基板31,从而使得第一移相器及第二移相器可以稳定的设置在第一腔体11及第二腔体12内。
其中,信号线层包括一个输入端,与输入端连接的功分器,与功分器连接的第一输出端以及两个信号传输线,其中,每个信号传输线连接有至少一个分支传输线,每个分支传输线连接有一个滤波电路,滤波电路连接有输出端。即信号线层的输出端通过滤波电路及连接线与功分器连接,并且在实际设置时,输出端的个数可以根据需要设定,即通过设置不同的分支传输线及对应设置的滤波器可以设置不同的输出端。其中,在上述结构中,多个移相器中的一个移相器的滤波电路的输出端连接有所述公共输出端。
为了方便对本实施例提供的信号线层的理解,下面结合附图5及附图6对本实施例提供的信号线层进行说明。
如图5所示,图5示出了采用两层信号线层时,信号线层的结构,在具体使用时,本发明移相器移相原理与现有技术中移相器原理一样:如图5所示,针对第一移相器的第一信号线层20,信号从输入端20a1输入后,经过功分器20a2将信号一份为三:一路传输至信号传输线20a3,一路传输至信号传输线20a5,一路传输至第一输出端62的输出,信号经第一输出端62连接线缆输出;信号沿信号传输线20a3传输至分支信号传输线20a4,又传输至滤 波电路20b1,其中滤波电路20b1这段电路具有滤波功能,再传输至设置在输出端的导体柱51,经公共输出端61输出;信号沿信号传输线20a5传播至信号传输线20a6,经过信号传输线20a6传输到滤波电路20b2,同样,滤波电路20b2亦具备滤波功能,在经滤波电路20b2传输至设置在输出端内的导体柱50,导体柱50将信号传播至公共输出端60,信号经过公共输出端60输出。同样的,另一路不同频段的信号从21a1输入,经过功分器21a2一份为三,一路传输至信号传输线21a3,一路传输至信号传输线21a5,一路传输至第一输出端63,信号经第一输出端63连接线缆输出;信号沿信号传输线21a3传输至信号传输线21a4,信号沿信号传输线21a4传输至具有滤波功能的滤波电路21b1,经过滤波电路21b1后传输至公共输出端61;一路沿信号传输线21a5传输至信号传输线21a6,经信号传输线21a6传输至具有滤波功能的滤波电路21b2,最后经公共输出端60输出。上述各输出端(60、61、62、63)与天线辐射单元连接。
导体50、51具有连接不同频段移相器输出端的作用,其可以导通信号:滤波电路20b1、滤波电路21b1与导体51形成合路器;滤波电路20b2、滤波电路21b2与导体50形成合路器。
其中,介质层在设置时,每个信号传输线的两侧对应一对相对信号线层滑动的介质层。具体的,第一介质层40分布在信号线20两侧,可沿信号线20a3,20a5滑动,从而改变20a3,20a5上信号的相位。同样的,第二介质层41分布在信号线21两侧,可沿信号线21a3,21a5滑动,从而改变21a3,21a5上信号的相位。
在本实施例中,一个信号传输线对应一个分支信号传输线,形成的的输出端口为第一输出端62、63,及公共输出端60、61。
如图6所示,图6示出了另外的一种信号线层的结构。图6示出了采用两个分支信号传输线的结构示意图。
图6示出的信号线层中每个信号传输线对应两个分支信号输出线。在第一信号线层20中,信号传输线20a5对应两个分支信号传输线20a6及20a7, 每个分支信号传输线对应一个滤波电路,每个滤波电路对应一个输出端;信号传输线20a3对应两个分支信号传输线20a4及20a8,每个分支信号传输线对应一个滤波电路,每个滤波电路对饮一个输出端。在第二信号线层21,信号传输线21a5对应两个分支信号传输线21a6及21a7,每个分支信号传输线对应一个滤波电路,每个滤波电路对应一个输出端;信号传输线21a3对应两个分支信号传输线21a4及21a8,每个分支信号传输线对应一个滤波电路,每个滤波电路对饮一个输出端。具体的,在连接时,分支信号传输线20a6及21a6对应的输出端通过导体50连接,并在公共输出端60输出,分支信号传输线20a7及21a7对应的输出端通过导体52连接,并通过公共输出端66输出,分支信号线20a4及21a4对应的输出端通过导体51连接,并通过公共输出端61输出。此外,针对分支信号传输线20a8及21a8,分支信号传输线20a8上连接的输出端65及分支信号传输线21a8上连接的输出端64之间没有通过导体连接,(也可以通过导体连接,共输出端输出)。因此,图6示出的信号线层形成的组合移相器具有六个输出端口(60、61、62、63、64、65、66).
应当理解的是,上述图5及图6仅仅示出了本实施例提供的信号线层的两种具体的结构,本实施例提供的信号线层不仅限于上述图5及图6示出的具体结构,其他的变形形式也可应用在本实施例中。
在导体与信号线层连接时,具体的,公共输出端具有一个U形的卡环结构或者通孔结构,导体卡装在所述U形的卡环结构或者通孔结构内并信号连接。在导体具体安装时,直接将导体卡装在上述的U形的卡环结构或通孔结构中。采用上述结构,方便导体与两个信号线层的连接。
此外,针对信号线层的分布,两个信号传输线对称分布在功分器的两侧。即采用对称的结构设置信号传输线,较佳的,分支信号线的设置放上也采用对称的方式设置,从而方便信号传输线及分支信号传输线的设置,避免各个线条之间的交互,且提高信号线层整体的美观。
本发明实施例提供的组合移相器不仅限于上述具体实施例列举的两层移相器的结构,在壳体10的腔体内还可以设置三层、四层等不同层的移相器, 其原理与上述具体实施例列举的组合移相器的结构相近似,在此不再一一赘述。
此外,本实施例提供的移相器不仅限于上述具体的介质移相,还可以是其他原理的移相器,如:所述移相器为物理移相器,所述部件为摆臂,且所述移相器的信号层贴附在基板。
具体结构如图7、图8及图9所示,在本实施例中,以两个移相器为例,此时,移相器的个数为两个,且两个移相器的信号层分别贴附在所述基板相对的两面。
具体的,如图7、图8和图9所示,图图7、图8、9是目前现有技术的一种物理移相器:信号线82、83附着在基板80两侧(82、83是基板两侧的两个移相器的信号线),基板80中间有金属地(也可以叫参考面)81,形成微带线:下面叙述其工作原理。
信号通过输入端70输入,传输至功分器70_b1:一分为二,一路经传输线70_b2传输,经输出端70_a5输出;一路经传输线70_b3,经耦合传输至摆臂73:沿摆臂73两个方向70_b4、70_b5传输:信号经传输线70_b4传输至耦合矩形片70_b6,信号再由70_b6耦合传输至弧形线74:信号沿弧形线74两个方向70_b7、70_b8传输:分别经输出端70_a1、70_a2输出。另外,摆臂(本实施所述的用于改变信号层的输出端的相位的部件)可以以转轴75为轴,沿弧线传74输方向摆动:这样耦合矩形片70_b6在弧形线74上的位置就发生改变:信号到输出端70_a1、70_a3的传输距离发生改变,进而改变相位,实现移相功能;同理,沿摆臂70_b5传输的信号,传输至弧形线76,经76传输至输出端70_a2、70_a4,同样也是通过摆动摆臂改变输出端的相位。上述即为该方案移相器的工作原理。基板80另一面移相器信号线83的工作原理与上述同:即信号从输入端71输入,经过71_a1、71_a2、71_a3、71_a4、71_a5输出,通过摆臂72摆动来改变输出端相位,实现移相功能,详细过程不再累述。该组合移相器信号线82、83附着在基板上80在具体设置时,基板及信号线层可以通过采用印刷电路的方式制作,即信号线印刷在基板上形成印刷 电路基板,或者还可以采用基板为塑料或陶瓷材料制作的基板。通过其他的制作电路的方式在基板上形成信号层;或者信号线采用钣金来实现,不需要基板。
同样,如图9所示,在输出端集成具有滤波功能的枝节91、92,93、94(即滤波电路)通过导体(如90)上下联通,形成合路,共输出端输出,形成一种组合移相器。基板上下两层输入信号的频率频率不同。
由上述描述可以看出,本实施例提供的组合移相器中的相器移相原理可以是实施例中的腔体结构的介质移相,也可以是其他实现形式的移相器,比如实施例中物理移相器,即只要可以改变输出端口相位的实现形式均可以。
如图10所示,本发明实施例还提供了一种多频天线网络系统,该多频天线网络系统包括上述任一项的组合移相器。
在上述实施例中,通过采用导体将两个不同频率的移相器的输出端整合到一起输出,同时,本实施例提供的组合移相器不需使用额外的合路器,与现有技术相比,减少了使用的器件,还减少了多频天线网络系统中的线缆的使用,,便于布局,从而方便了多频天线网络系统的设置,此外,便于整机布局,减轻整机重量,节约成本。此外,本发明实施例提供的组合移相器还可以提高天线增益,优化方向图参数。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (12)

  1. 一种组合移相器,其特征在于,包括至少两个层叠的移相器,且每个移相器的频段不同,其中,每个移相器包括信号层以及可相对所述信号层滑动并用于改变所述信号层的输出端的相位的部件,其中,所述信号层的输出端设置有滤波电路;
    所述至少两个移相器对应的滤波电路的输出端通过导体连通,并通过一个公共输出端输出。
  2. 如权利要求1所述的组合移相器,其特征在于,所述信号线层包括一个输入端,与所述输入端连接的功分器,与所述功分器连接的第一输出端以及两个信号传输线,其中,每个信号传输线连接有至少一个分支传输线,每个分支传输线连接有所述滤波电路。
  3. 如权利要求2所述的组合移相器,其特征在于,所述公共输出端具有一个U形的卡环结构或者通孔结构,所述导体卡装在所述U形的卡环结构或者通孔结构内并信号连接。
  4. 如权利要求2所述的组合移相器,其特征在于,所述两个信号传输线对称分布在所述功分器的两侧。
  5. 如权利要求1~4任一项所述的组合移相器,其特征在于,所述移相器为物理移相器,所述部件为摆臂,且所述移相器的信号层贴附在基板。
  6. 如权利要求5所述的组合移相器,其特征在于,所述移相器的个数为两个,且所述两个移相器的信号层分别贴附在所述基板相对的两面。
  7. 如权利要求1~4任一项所述的组合移相器,其特征在于,还包括壳体,所述壳体内设置有与每个移相器对应的腔室,每个腔室内设置有用于承载该腔体内的移相器的信号层的基板。
  8. 如权利要求7所述的组合移相器,其特征在于,所述基板为塑料或陶瓷材料制作的基板。
  9. 如权利要求7所述的组合移相器,其特征在于,所述至少两个移相器 中的一个移相器的滤波电路的输出端连接有所述公共输出端。
  10. 如权利要求9所述的组合移相器,其特征在于,相邻的腔体之间设置有隔板,且所述隔板设置有用于所述导体穿设的通孔。
  11. 如权利要求10所述的组合移相器,其特征在于,每个腔体内设置有用于卡装所述移相器的卡槽。
  12. 一种多频天线网络系统,其特征在于,包括如权利要求1~11任一项所述的组合移相器。
PCT/CN2015/080493 2015-06-01 2015-06-01 一种组合移相器及多频天线网络系统 WO2016192009A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
MX2017015406A MX2017015406A (es) 2015-06-01 2015-06-01 Desfasador combinado y sistema de red de antena multi-banda.
EP24164777.5A EP4411984A2 (en) 2015-06-01 2015-06-01 Combined phase shifter and multi-band antenna network system
ES15893669T ES2779530T3 (es) 2015-06-01 2015-06-01 Desfasador combinado y sistema de red de antena multifrecuencia
EP19219779.6A EP3703181B1 (en) 2015-06-01 2015-06-01 Combined phase shifter and multi-band antenna network system
EP15893669.0A EP3291362B1 (en) 2015-06-01 2015-06-01 Combined phase shifter and multi-frequency antenna network system
PCT/CN2015/080493 WO2016192009A1 (zh) 2015-06-01 2015-06-01 一种组合移相器及多频天线网络系统
CN201911397385.9A CN111029776B (zh) 2015-06-01 2015-06-01 一种天线
CN201580072395.9A CN107710498B (zh) 2015-06-01 2015-06-01 一种组合移相器及多频天线网络系统
US15/820,921 US10498028B2 (en) 2015-06-01 2017-11-22 Combined phase shifter and multi-band antenna network system
US16/418,900 US10573964B2 (en) 2015-06-01 2019-05-21 Combined phase shifter and multi-band antenna network system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/080493 WO2016192009A1 (zh) 2015-06-01 2015-06-01 一种组合移相器及多频天线网络系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/820,921 Continuation US10498028B2 (en) 2015-06-01 2017-11-22 Combined phase shifter and multi-band antenna network system

Publications (1)

Publication Number Publication Date
WO2016192009A1 true WO2016192009A1 (zh) 2016-12-08

Family

ID=57441695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080493 WO2016192009A1 (zh) 2015-06-01 2015-06-01 一种组合移相器及多频天线网络系统

Country Status (6)

Country Link
US (2) US10498028B2 (zh)
EP (3) EP3703181B1 (zh)
CN (2) CN111029776B (zh)
ES (1) ES2779530T3 (zh)
MX (1) MX2017015406A (zh)
WO (1) WO2016192009A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108270076A (zh) * 2017-01-03 2018-07-10 和硕联合科技股份有限公司 平面天线模块及电子装置
CN109904597A (zh) * 2017-12-11 2019-06-18 华为技术有限公司 一种馈电设备、天线及电子设备
WO2022067609A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 多频段相控阵和电子设备

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802234B (zh) * 2019-01-30 2023-09-29 京信通信技术(广州)有限公司 基站天线及移相馈电装置
CN110661102B (zh) * 2019-09-29 2021-05-07 华南理工大学 移相装置及基站天线
CN112864548A (zh) * 2019-11-12 2021-05-28 康普技术有限责任公司 腔体移相器以及基站天线
CN111106417B (zh) * 2019-12-18 2024-08-16 摩比科技(深圳)有限公司 一种移相器及基站天线
CN111063970A (zh) * 2019-12-27 2020-04-24 华南理工大学 微波器件及天线
CN111342174B (zh) * 2020-03-12 2021-03-30 华南理工大学 滤波移相器及天线
CN114447542A (zh) * 2020-10-30 2022-05-06 康普技术有限责任公司 滑动件、移相器和基站天线
EP4250488A4 (en) * 2020-12-21 2024-01-10 Huawei Technologies Co., Ltd. ANTENNA AND COMMUNICATION DEVICE
CN113540794B (zh) * 2021-07-01 2022-08-19 华南理工大学 移相装置、天线及基站
CN116031651A (zh) * 2021-10-27 2023-04-28 康普技术有限责任公司 移相器组件和基站天线
CN116207500A (zh) * 2021-11-30 2023-06-02 康普技术有限责任公司 多频带移相器组件、多频带天线系统和基站天线
CN114497930B (zh) * 2022-01-06 2023-06-23 京信通信技术(广州)有限公司 合路移相装置与天线
CN114883764B (zh) * 2022-05-23 2024-02-02 中国人民解放军63660部队 一种宽频带高功率微波移相器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196804A (ja) * 2000-01-14 2001-07-19 Sumitomo Electric Ind Ltd 可変移相器及びフェーズドアレイアンテナ
CN2838051Y (zh) * 2005-11-07 2006-11-15 杨斌 连续可调同轴移相器
CN101694897A (zh) * 2009-10-30 2010-04-14 网拓(上海)通信技术有限公司 移相器
CN103474724A (zh) * 2013-09-24 2013-12-25 上海无线电设备研究所 高性能可调双频移相器及其双频通带调整方法
WO2015013063A1 (en) * 2013-07-26 2015-01-29 Radio Frequency Systems Inc. Devices for providing phase adjustments in multi-element antenna arrays and related methods

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2432026A (en) * 1943-09-20 1947-12-02 Hazeltine Research Inc Position-indicating arrangement
US4599585A (en) * 1982-03-01 1986-07-08 Raytheon Company N-bit digitally controlled phase shifter
US7663502B2 (en) * 1992-05-05 2010-02-16 Intelligent Technologies International, Inc. Asset system control arrangement and method
GB2235590B (en) 1989-08-21 1994-05-25 Radial Antenna Lab Ltd Planar antenna
US5278574A (en) 1991-04-29 1994-01-11 Electromagnetic Sciences, Inc. Mounting structure for multi-element phased array antenna
RU2053549C1 (ru) * 1992-01-24 1996-01-27 Северо-Западный Заочный Политехнический Институт Устройство для моделирования системы радиолокационного зондирования тонких немагнитных слоев
US6449469B1 (en) * 1999-03-01 2002-09-10 Visteon Global Technologies, Inc. Switched directional antenna for automotive radio receivers
KR100399605B1 (ko) * 2001-08-22 2003-09-29 학교법인 포항공과대학교 공기-유전체 샌드위치 구조 및 이를 이용한 유전체공진기, 대역 통과 및 소거 필터, 동조 변위기 그리고위상 배열 안테나
US7301422B2 (en) * 2005-06-02 2007-11-27 Andrew Corporation Variable differential phase shifter having a divider wiper arm
US7701115B2 (en) * 2007-05-01 2010-04-20 Panasonic Corporation Drive unit
JP4320348B2 (ja) * 2007-05-30 2009-08-26 電気興業株式会社 結合回路
CN201181729Y (zh) * 2007-12-12 2009-01-14 西安海天天线科技股份有限公司 用于电调天线的移相器
US7907096B2 (en) 2008-01-25 2011-03-15 Andrew Llc Phase shifter and antenna including phase shifter
JP4650561B2 (ja) * 2008-12-02 2011-03-16 住友電気工業株式会社 移相器
CN101567667B (zh) * 2009-04-24 2011-10-19 福建三元达通讯股份有限公司 增强型模拟预失真线性化功率放大器
CN101645524B (zh) * 2009-07-13 2013-02-13 电子科技大学 一种基于螺旋慢波线的小型化电调智能天线移相器
CN102082326B (zh) * 2009-11-26 2014-03-19 中国移动通信集团公司 一种支持异系统独立电调的智能天线设备及方法
US20110183624A1 (en) * 2010-01-28 2011-07-28 Thiagarajar College Of Engineering Devices and Methods for Phase Shifting a Radio Frequency (RF) Signal for a Base Station Antenna
WO2012030658A2 (en) * 2010-08-30 2012-03-08 Physical Devices Llc Tunable filter devices and methods
CN102055049B (zh) * 2010-10-19 2013-07-17 电子科技大学 一种集总元件360度射频模拟电调移相器
CN202121034U (zh) * 2011-03-28 2012-01-18 京信通信系统(中国)有限公司 同轴介质移相系统、移相器及移相驱动装置
CN102176524B (zh) * 2011-03-28 2014-03-26 京信通信系统(中国)有限公司 同轴介质移相系统、移相器及移相驱动装置
KR101230507B1 (ko) * 2011-05-23 2013-02-06 주식회사 굿텔 마주보는 접지면을 구비한 위상가변기
FR2977381B1 (fr) * 2011-06-30 2014-06-06 Alcatel Lucent Dephaseur et repartiteur de puissance
CN102544733B (zh) * 2012-01-31 2014-04-02 广东博纬通信科技有限公司 一种基站电调天线相位连续线性可变的移相器
CN202523820U (zh) * 2012-04-23 2012-11-07 华为技术有限公司 移相器以及天线
JP5619069B2 (ja) * 2012-05-11 2014-11-05 株式会社東芝 アクティブフェーズドアレイアンテナ装置
CN102738553B (zh) * 2012-06-29 2014-08-27 武汉虹信通信技术有限责任公司 一种高性能的排气管电调天线的机械结构
CN202712432U (zh) * 2012-07-13 2013-01-30 良特电子科技(东莞)有限公司 一种天线移相器
CN202839907U (zh) * 2012-10-22 2013-03-27 华为技术有限公司 移相器和具有移相器的天线
RU125775U1 (ru) * 2012-10-25 2013-03-10 Федеральное Государственное Унитарное Предприятие "Научно-Производственное Предприятие "Пульсар" Активный фазовращатель (варианты)
CN203180015U (zh) * 2012-12-18 2013-09-04 张家港保税区国信通信有限公司 超宽带一体化空气带线移相器
CN103107387B (zh) * 2013-02-08 2015-03-25 华为技术有限公司 具有滤波元件的移相器以及滤波元件和天线
CN103779635B (zh) * 2013-12-31 2016-04-27 北京长峰广播通讯设备有限责任公司 一种大功率传输线移相器
US9444151B2 (en) * 2014-01-10 2016-09-13 Commscope Technologies Llc Enhanced phase shifter circuit to reduce RF cables
CN203910971U (zh) * 2014-02-27 2014-10-29 京信通信技术(广州)有限公司 移相系统
KR101415540B1 (ko) * 2014-04-04 2014-07-04 주식회사 선우커뮤니케이션 대역별 가변틸트 안테나 장치
CN203813002U (zh) * 2014-04-11 2014-09-03 深圳国人通信股份有限公司 一种电调天线的移相器
CN103928762B (zh) * 2014-04-15 2016-01-27 华为技术有限公司 天线设备
CN203826558U (zh) * 2014-04-30 2014-09-10 广东晖速通信技术有限公司 一种4g天线的一体化馈电网络
CN104051821B (zh) * 2014-05-23 2019-03-01 京信通信技术(广州)有限公司 介质移相器
CN104181521B (zh) * 2014-06-24 2016-09-14 合肥工业大学 一种发射多频载波的高距离分辨率雷达
CN104090268B (zh) * 2014-06-26 2016-08-24 中国电子科技集团公司第二十研究所 一种基于真时延技术的折返型微波组件
CN104362438B (zh) * 2014-10-30 2017-04-26 西安欣创电子技术有限公司 一种整体式大扫描角波束合成移相器
CN204144434U (zh) * 2014-11-10 2015-02-04 广东盛华德通讯科技股份有限公司 独立电调智能天线
CN204348871U (zh) * 2014-12-30 2015-05-20 电联工程技术股份有限公司 一种小型微带移相器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196804A (ja) * 2000-01-14 2001-07-19 Sumitomo Electric Ind Ltd 可変移相器及びフェーズドアレイアンテナ
CN2838051Y (zh) * 2005-11-07 2006-11-15 杨斌 连续可调同轴移相器
CN101694897A (zh) * 2009-10-30 2010-04-14 网拓(上海)通信技术有限公司 移相器
WO2015013063A1 (en) * 2013-07-26 2015-01-29 Radio Frequency Systems Inc. Devices for providing phase adjustments in multi-element antenna arrays and related methods
CN103474724A (zh) * 2013-09-24 2013-12-25 上海无线电设备研究所 高性能可调双频移相器及其双频通带调整方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108270076A (zh) * 2017-01-03 2018-07-10 和硕联合科技股份有限公司 平面天线模块及电子装置
CN109904597A (zh) * 2017-12-11 2019-06-18 华为技术有限公司 一种馈电设备、天线及电子设备
US11196183B2 (en) 2017-12-11 2021-12-07 Huawei Technologies Co., Ltd. Feeding device, antenna, and electronic device
EP4254811A3 (en) * 2017-12-11 2023-11-29 Huawei Technologies Co., Ltd. Power feeding device, antenna and electronic device
WO2022067609A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 多频段相控阵和电子设备

Also Published As

Publication number Publication date
EP3703181A1 (en) 2020-09-02
US10498028B2 (en) 2019-12-03
CN111029776B (zh) 2021-04-09
EP3703181B1 (en) 2024-04-10
US20190273317A1 (en) 2019-09-05
CN107710498B (zh) 2020-01-10
MX2017015406A (es) 2018-03-01
CN107710498A (zh) 2018-02-16
EP3291362A1 (en) 2018-03-07
EP3291362B1 (en) 2020-01-15
ES2779530T3 (es) 2020-08-18
US20180108990A1 (en) 2018-04-19
EP4411984A2 (en) 2024-08-07
US10573964B2 (en) 2020-02-25
EP3703181C0 (en) 2024-04-10
CN111029776A (zh) 2020-04-17
EP3291362A4 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
WO2016192009A1 (zh) 一种组合移相器及多频天线网络系统
Rosenberg et al. A novel frequency-selective power combiner/divider in single-layer substrate integrated waveguide technology
Chu et al. Dual-mode substrate integrated waveguide filter with flexible response
JP5153866B2 (ja) 電力分配器
JP2012513731A5 (zh)
CN104037475A (zh) 腔体式微波器件
KR20120017452A (ko) 합성 우/좌향 위상-선도/지연 라인들을 이용한 다이플렉서 합성
WO2018094994A1 (zh) 电调天线馈电装置及方法
Yang et al. Analytical design method and implementation of broadband 4× 4 Nolen matrix
Feng et al. Compact single-/dual-band planar crossovers based on strong coupled lines
Lin et al. A new concept and approach for integration of three-state cavity diplexer based on triple-mode resonators
US6900706B2 (en) Compact balun with rejection filter for 802.11a and 802.11b simultaneous operation
JP2013085075A (ja) アンテナ給電回路
WO2015052838A1 (ja) 減結合回路
JP4842245B2 (ja) トリプレクサ回路
CN115966875A (zh) 基于多层电路板的微波定向耦合器
US20230147406A1 (en) AU and RU having CWG Filters, and BS having the AU or RU
JPH0878916A (ja) 方向性結合器
US6791431B2 (en) Compact balun with rejection filter for 802.11a and 802.11b simultaneous operation
JP5084678B2 (ja) パワーデバイダ回路とその素子並びにその回路を備えた回路基板及び回路モジュール
JP2017520164A (ja) マルチプレクサ、およびマルチプレクサを備えるモバイル用通信機器
TWI757979B (zh) 電路板
JP7075079B2 (ja) バトラーマトリクス回路
JP3589446B2 (ja) 電力増幅器
CN109428143B (zh) 基于180°理想反相器的三频平衡式耦合器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893669

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/015406

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE