WO2016191941A1 - 对移动终端定位时的到达时间toa获取方法及装置 - Google Patents

对移动终端定位时的到达时间toa获取方法及装置 Download PDF

Info

Publication number
WO2016191941A1
WO2016191941A1 PCT/CN2015/080285 CN2015080285W WO2016191941A1 WO 2016191941 A1 WO2016191941 A1 WO 2016191941A1 CN 2015080285 W CN2015080285 W CN 2015080285W WO 2016191941 A1 WO2016191941 A1 WO 2016191941A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold
value
delay value
snr
toa
Prior art date
Application number
PCT/CN2015/080285
Other languages
English (en)
French (fr)
Inventor
李伊婕
薛剑韬
崔杰
李安俭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15893604.7A priority Critical patent/EP3255449B1/en
Priority to BR112017020558-0A priority patent/BR112017020558B1/pt
Priority to CN201580068547.8A priority patent/CN107003383B/zh
Priority to PCT/CN2015/080285 priority patent/WO2016191941A1/zh
Publication of WO2016191941A1 publication Critical patent/WO2016191941A1/zh
Priority to US15/824,105 priority patent/US10241188B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0218Multipath in signal reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0294Trajectory determination or predictive filtering, e.g. target tracking or Kalman filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a TOA acquisition method and apparatus for locating a mobile terminal.
  • the positioning of the mobile terminal MT is to extract the feature information available for positioning by using the information exchange between the MT and the base station (English: Base Station, BS for short) to estimate the MT position.
  • angular measurement technology AOA
  • arrival time English: Time of arrival
  • TDOA time difference of arrival
  • OTDOA and UTDOA positioning technology is derived based on the principles of TDOA technology.
  • the TDOA Time Difference of Arrival
  • TOA Time of Arrival
  • TOA arrival time
  • TOA arrival time
  • the positioning method TOA estimation usually obtains the propagation delay value by detecting the first Arrival Path (English: First Arrival Path, FAP for short), that is, the lookup of the first path is the basis for acquiring the TOA.
  • the commonly used detection mechanism for the received signal is usually The receiver receives the reference signal sent by the transmitter, calculates the time domain correlation convolution value of the reference signal, obtains the power spectrum of the reference signal corresponding to the time domain and the delay value, and then searches for the corresponding time when the power is greater than or equal to the correlation spectral threshold threshold for the first time.
  • the delay value is the arrival time TOA, so that the distance between the receiver and the transmitter can be calculated according to the TOA.
  • the inventors have found through research that in the conventional TOA-based positioning method, the method of obtaining the TOA by finding the first path FAP has at least the following problem: in the conventional technology, the aforementioned correlation threshold threshold is a constant value. , that is, it will not be easily changed after setting. This method is only suitable for an environment with a good channel environment. When the channel environment is poor and the interference is strong, the possibility of misjudgment of the first path is increased due to noise interference. Therefore, in the conventional technology, the channel environment adaptability of the method of finding the TOA based on the constant threshold search FAP is poor, thereby causing the accuracy of ranging to be reduced.
  • the positioning of the mobile terminal is provided.
  • the arrival time TOA acquisition method in order to solve the problem that the channel environment adaptability of the method of finding the TOA based on the constant threshold to find the TOA based on the constant threshold is poor, and the accuracy of the ranging is low, the positioning of the mobile terminal is provided.
  • the arrival time TOA acquisition method in order to solve the problem that the channel environment adaptability of the method of finding the TOA based on the constant threshold to find the TOA based on the constant threshold is poor, and the accuracy of the ranging is low.
  • a first aspect of the present invention provides a TOA acquisition method for locating a mobile terminal, where the method includes:
  • the delay value is used as the TOA output.
  • the channel parameter includes a signal to noise ratio SNR
  • a correlation spectrum threshold threshold for decreasing the time delay value including:
  • the modified parameter value of the exponential function that is set to decrement in time according to the signal-to-noise ratio SNR includes:
  • the exponential function that is decremented according to the set modified parameter value is used to generate a deferred value
  • the correlation threshold threshold is:
  • a correlation threshold threshold ThresholdValue(t) that is deferred at any time; wherein the variable t is a delay value, t ref is a reference delay, and S 1 (SNR) is a corresponding SNR threshold interval to which the detected signal to noise ratio SNR belongs
  • S 2 (SNR) is a second modified parameter value corresponding to the SNR threshold interval to which the detected signal to noise ratio SNR belongs
  • b is an adjustment coefficient whose value is between 0 and 1
  • N 0 is
  • the noise constant, Z n is the signal strength of the received positioning reference signal, and P(Z n ⁇ aN 0 ) is the probability that the received signal strength of the positioning reference signal is greater than or equal to aN 0 when the delay value is t, ⁇
  • the channel parameter includes a signal to noise ratio SNR or a signal to interference plus noise ratio SINR;
  • the delay value to be found as the TOA includes:
  • the found delay value is cached as a historical quality delay value, and the found delay value is used as the TOA.
  • the found delay value is used as the TOA:
  • the method for positioning the mobile terminal is provided. Arrival time TOA acquisition device.
  • the second aspect of the present invention provides a TOA acquisition device for locating a mobile terminal, including:
  • a positioning reference signal receiving module configured to receive a positioning reference signal sent by the positioning transmitter
  • a time domain correlation processing signal generating module configured to perform time domain correlation processing on the positioning reference signal received by the positioning reference signal receiving module and the synchronization reference signal sequence, to obtain a correlation spectral value of the multipath signal component corresponding to the delay value ;
  • variable threshold threshold signal generating module configured to detect a channel parameter when the positioning reference signal is received, and generate a correlation spectral threshold threshold that is deferred by a delay value according to the channel parameter and a function that is deferred at any time;
  • a TOA search module configured to receive a correlation spectral value corresponding to the delay value generated by the time domain correlation processing signal generating module, and a correlation spectral threshold threshold value corresponding to the delay value generated by the variable threshold threshold signal generating module. The step of increasing the delay value traverses the delay value, and finds a delay of the first traversal and the correlation spectral value of the multipath signal component corresponding to the delay value is greater than a delay of the correlation spectral threshold threshold corresponding to the delay value. Value, the delayed value found is taken as the TOA output.
  • the channel parameter includes a signal to noise ratio SNR
  • variable threshold threshold signal generating module is further configured to set a modified parameter value of an exponential function that is deferred according to a signal-to-noise ratio (SNR) SNR, and generate an exponential value decrement according to the exponential function of the deferred value that has been set to the modified parameter value.
  • SNR signal-to-noise ratio
  • variable threshold threshold signal generating module further And acquiring an SNR threshold interval corresponding to the detected signal to noise ratio SNR; acquiring a corrected parameter value corresponding to the found SNR threshold interval, and setting the exponential function to be deferred at any time Corrected parameter values.
  • variable threshold threshold signal generating module is further configured to:
  • a correlation threshold threshold ThresholdValue(t) that is deferred at any time; wherein the variable t is a delay value, t ref is a reference delay, and S 1 (SNR) is a corresponding SNR threshold interval to which the detected signal to noise ratio SNR belongs
  • S 2 (SNR) is a second modified parameter value corresponding to the SNR threshold interval to which the detected signal to noise ratio SNR belongs
  • b is an adjustment coefficient whose value is between 0 and 1
  • N 0 is
  • the noise constant, Z n is the signal strength of the received positioning reference signal, and P(Z n ⁇ aN 0 ) is the probability that the received signal strength of the positioning reference signal is greater than or equal to aN 0 when the delay value is t, ⁇
  • the channel parameter includes a signal to noise ratio SNR or a signal to interference plus noise ratio SINR;
  • the TOA search module is configured to cache the found delay value as a historical quality delay value when the SNR or SINR is greater than or equal to a preset channel indicator threshold, and use the found delay value as the TOA. .
  • the TOA search module is configured to detect, when the SNR or the SINR is less than a preset channel indicator threshold Obtaining a weighting coefficient for the SNR or the SINR; obtaining a historical quality delay value of the buffer, and weighting the historical quality delay value and the found delay value according to the weighting coefficient to obtain a modified delay value, The corrected delay value is taken as TOA.
  • the channel environment adaptability of the method of obtaining the TOA based on the constant threshold search FAP is based on the constant threshold in the above-mentioned conventional technology, the accuracy of the ranging is low, and a measurement time TOA is also proposed. device.
  • a third aspect of the present invention provides an apparatus for measuring an arrival time TOA, the apparatus for measuring a time of arrival TOA comprising a wireless transceiver, a memory, and a processor, wherein the memory stores a set of programs, and the processor uses The program stored in the memory is called to perform the following operations:
  • the delay value is used as the TOA output.
  • the channel parameter when the reference signal is located is generated by the function of decreasing the value of the delay value, and the correlation threshold threshold value of the deferred value is generated, and the arrival time TOA output is generated by comparing the correlation spectral value of the multipath signal component with the correlation spectral threshold threshold.
  • the correlation spectral value obtained by the time domain correlation processing is larger than that of the conventional technology, and therefore, the difference between the multipath signal and the noise is large, and the correlation spectral threshold threshold is compared. The error generated is small.
  • the correlation spectrum threshold threshold of the deferred value obtained by the function of decreasing the value of the delay value is such that when the SNR is small, the correlation threshold threshold corresponding to the smaller delay value is larger, thereby filtering out the part.
  • the effect of noise Therefore, the TOA acquisition method and apparatus for positioning the mobile terminal can adapt to an environment with a small SNR, so that the accuracy of the ranging is improved.
  • 1 is a schematic diagram of searching for a TOA corresponding to a first path through a constant correlation spectral threshold threshold in the conventional art
  • FIG. 2 is a flowchart of a method for acquiring a TOA when positioning a mobile terminal according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of searching for a TOA corresponding to a first path by using a correlation spectrum threshold threshold that is deferred at any time according to an embodiment of the present invention
  • FIG. 4 is a power spectrum diagram of a positioning reference signal with an SNR of -2 in an application scenario
  • FIG. 5 is a flowchart of a process for adjusting a function parameter that is deferred according to a channel parameter according to an embodiment of the present invention
  • FIG. 6 is a power spectrum diagram when an SNR of a positioning reference signal is -6 in an application scenario of the present invention
  • FIG. 7 is a schematic diagram of a TOA acquiring apparatus for positioning a mobile terminal according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an apparatus for measuring an arrival time TOA according to an embodiment of the present invention.
  • the positioning reference signal received by the positioning receiver and the synchronization reference signal sequence on the positioning receiver are subjected to time domain correlation processing to obtain a multipath signal component power value corresponding to the delay value in a channel environment, and the signal to noise ratio is poor.
  • the SNR is low, the power value of the interference noise is also high.
  • a constant correlation spectral threshold threshold is used, it is likely that a noise component with a small delay value is used as the first path FAP, so that the arrival time TOA of the final output is small, resulting in ranging. The accuracy is lower.
  • a mobile TOA acquisition method for terminal positioning In order to solve the technical problem that the channel environment adaptability of the method for finding the TOA based on the constant threshold search FAP is not poor, and the accuracy of the ranging is reduced, in one embodiment, a mobile TOA acquisition method for terminal positioning.
  • the execution of the method may rely on signal processing circuits or signal processing chips with time domain related processing functions and function calculation functions.
  • the TOA acquiring method for positioning the mobile terminal includes:
  • Step S102 Receive a positioning reference signal sent by the positioning transmitter.
  • the method operates on a positioning receiver, and the positioning transmitter is a communication device that is a positioning receiver as a ranging target.
  • the positioning transmitter is a communication device that is a positioning receiver as a ranging target.
  • the mobile terminal MT actively measures the distance between the mobile terminal MT and a certain base station BS selected as the ranging target
  • the mobile terminal MT is a positioning receiver
  • the selected terminal is selected as a ranging target.
  • the base station BS is a positioning transmitter. If the base station BS actively measures the distance between the base station BS and a certain mobile terminal MT, the base station BS is a positioning receiver, and the mobile terminal MT selected as the ranging target is a positioning transmitter.
  • the positioning reference signal is a signal sent by the positioning transmitter in the telecommunication network for measurement or monitoring purposes.
  • the mobile terminal MT and the base station BS are kept in sync, so that the same synchronization reference signal sequence is stored.
  • the mobile terminal MT or the base station BS can transmit the synchronization reference signal sequence stored on each of them to the other party through the positioning reference signal.
  • the positioning reference signal received by the mobile terminal MT can be a cell-specific reference signal sent by the base station (English: Cell specific) Reference Signal, referred to as: CRS) signal.
  • CRS Cell specific Reference Signal
  • the positioning receiver is the base station BS
  • the positioning transmitter as the ranging target is the mobile terminal MT
  • the positioning reference signal received by the mobile terminal MT can be the sounding reference signal uploaded by the mobile terminal MT (English: Sounding Reference Signal, Abbreviation: SRS).
  • the process of performing the method by the mobile terminal MT as the positioning receiver and the base station BS as the positioning receiver is independent of the type of the positioning reference signal, in the following embodiments, only the mobile terminal MT is used as the positioning receiver.
  • Receiving a CRS issued by the base station BS as a ranging target The signal is taken as an example of a positioning reference signal.
  • the SRS signal uploaded by the mobile terminal MT as the ranging target is received as the positioning reference signal, and the details are not described herein.
  • Step S104 Perform time domain correlation processing on the positioning reference signal and the synchronization reference signal sequence to obtain a correlation spectral value of the multipath signal component corresponding to the delay value.
  • the positioning reference signal sent by the positioning transmitter may undergo reflection, diffraction, etc. during the transmission process, the positioning reference signal may arrive at the positioning receiver through multiple paths, and the positioning reference signal received by the positioning receiver may have multipath.
  • Sexual characteristics by performing time domain correlation processing on the positioning reference signal and the synchronization reference signal sequence on the positioning receiver, the correlation between the positioning reference signal and the synchronization reference signal sequence in the time domain can be determined to determine the positioning reference signal. Correlation spectral values corresponding to multipath signal components corresponding to different delay values.
  • the mobile terminal MT may perform time domain correlation processing on the received CRS signal and the CRS sequence as the synchronization reference signal sequence on the mobile terminal MT.
  • the distribution of the correlation spectral values of the multipath signal components with varying delays can be obtained.
  • a schematic image of the distribution of correlation spectral values of the multipath signal component can be seen in FIG. In FIG. 3, if the correlation spectral value of the multipath signal component corresponding to a certain delay value is large, it indicates that a certain multipath signal component arrives at the positioning receiver after passing the delay value, that is, the positioning of the positioning transmitter.
  • a certain path is selected and propagated to the positioning receiver.
  • the length of the path causes the positioning reference signal propagating the path to propagate to the positioning receiver, which is generated in the power spectrum image of FIG.
  • the corresponding delay value may be a time domain convolution of the positioning reference signal and the synchronization reference signal sequence, or a time domain calculation manner by other methods to obtain a multipath signal corresponding to the delay value. Component power value.
  • Step S106 Detect a channel parameter when receiving the positioning reference signal, and generate a correlation spectrum threshold threshold that is deferred by the delay value according to the channel parameter and the function of decreasing the time delay value.
  • the correlation spectral threshold threshold is a value of a change in the delay value, rather than a constant change in the value of the delay.
  • the noise interference is large, and in the correlation spectrum value of the multipath signal component corresponding to the delay value obtained in step S104, when the delay value is low, the phase still exists.
  • the channel parameters may include a signal to noise ratio SNR, a signal to interference plus noise ratio SINR, a channel environment parameter, and the like.
  • the channel environment parameters may include additive white Gaussian noise (AWGN), ETU, EPA, and the like.
  • AWGN additive white Gaussian noise
  • the function that delays and decrements at any time may select an exponential function that is deferred by a delay value with a delay value as an independent variable, and generates a correlation spectral threshold threshold that is deferred according to a channel parameter and a function that is deferred at any time. It can include:
  • the correction parameter value of the exponential function that is deferred at any time is set, and the correlation threshold threshold value of the deferred value is decremented according to the exponential function with the deferred value of the modified parameter value.
  • ThresholdValue(t) is the correlation spectral threshold threshold
  • t ref , k, b, and c are the parameter values of the exponential function, which can be set according to the actual situation. Due to the gradual slowdown of the exponential deceleration rate, a higher correlation spectral threshold threshold can be set for the strong noise with a lower delay value, and the decreasing rate of the correlation spectral threshold threshold is gradually slowed down as the delay value increases. Therefore, the generated correlation threshold threshold can be sharply dropped when the delay value is low, and gradually slowed down when the delay value is low, which can filter out the noise interference at the low delay value and avoid the shortest distance. The problem of the component of the positioning reference signal arriving (i.e., arriving via the first path FAP) is ignored due to the associated spectral threshold threshold being too high.
  • the exponential function of decreasing the value of the delay value may be modified according to the SNR of the signal to noise ratio SNR.
  • the modified parameter value of the exponential function that is decremented according to the signal to noise ratio SNR may include :
  • Step S202 Acquire a preset SNR threshold interval.
  • Step S204 Find the SNR threshold interval to which the detected signal to noise ratio SNR belongs.
  • Step S206 Acquire a corrected parameter value corresponding to the found SNR threshold interval, and set the corrected parameter value of the exponential function that is deferred at any time.
  • the signal-to-noise ratio SNR reflects the degree of noise interference of the current channel when the positioning reference signal is received.
  • the correlation threshold threshold value when the delay value is low can be reduced by setting the parameter of the exponential function that is deferred at any time, thereby avoiding the positioning reference signal arriving at the positioning receiver through the first path FAP.
  • the signal component is ignored because the correlation spectral threshold is too high; and when the signal-to-noise ratio SNR is low, the correlation threshold threshold when the delay value is low can be increased by setting the parameter of the exponential function that is deferred at any time.
  • the noise is erroneously judged as the signal component of the positioning reference signal arriving at the positioning receiver through the first path FAP, thereby further improving the accuracy of acquiring the TOA.
  • the correlation spectrum threshold threshold for decrementing the time delay value may be generated according to the exponential function of the deferred value of the modified parameter value.
  • a correlation threshold threshold ThresholdValue(t) that is deferred at any time; wherein the variable t is a delay value, t ref is a reference delay, and S 1 (SNR) is a corresponding SNR threshold interval to which the detected signal to noise ratio SNR belongs
  • S 2 (SNR) is a second modified parameter value corresponding to the SNR threshold interval to which the detected signal to noise ratio SNR belongs
  • b is an adjustment coefficient whose value is between 0 and 1
  • N 0 is
  • Z n is the signal strength of the received positioning reference signal
  • P(Z n ⁇ aN 0 ) is the probability that the received signal strength of the positioning reference signal is greater than or equal to aN 0 when the delay value is t, ⁇
  • the optional adjustment coefficient b may be a preset parameter value corresponding to the channel environment parameter.
  • the channel environment parameters may include AWGN, ETU, EPA, etc.
  • the corresponding adjustment coefficient b may be set according to the channel environment parameter, so that the calculated correlation spectral threshold threshold can be adapted to multiple channel environments, thereby improving the measurement. The accuracy of the distance.
  • Step S108 traversing the delay value in an increasing order of the delay value, and searching for a correlation spectrum value of the multipath signal component corresponding to the first traversal and the delay value is greater than the correlation spectrum corresponding to the delay value.
  • the delay value of the threshold threshold is used as the arrival time TOA output.
  • the traversal may be traversed as the delay value increases.
  • Correlation spectral threshold threshold corresponding to the correlation spectral value of the corresponding multipath signal component and the traversed delay value The values are compared, that is, the time delay is compared to the correlation spectral value of the multipath signal component at any time and the magnitude of the correlation spectral threshold threshold.
  • the delay value corresponding to the time is the delay value of the positioning reference signal arriving at the positioning receiver through the first path FAP,
  • the straight line between the two points is the shortest. Therefore, the signal component of the positioning reference signal that arrives at the positioning receiver through the first path FAP is the signal component that is propagated to the positioning receiver by the positioning transmitter through a straight line, and the delay value is the positioning.
  • the TOA of the reference signal is the signal component that is propagated to the positioning receiver by the positioning transmitter through a straight line.
  • steps S104 and S106 need to be performed simultaneously, that is, the time-domain correlation processing is used to obtain the correlation value of the multipath signal component, and the correlation spectral value of the multipath signal component is gradually obtained.
  • the magnitude of the correlation spectral threshold threshold at this time can be found by inputting the two into the comparison circuit to find the first traversed and the correlation spectral value of the multipath signal component corresponding to the delay value is greater than the correlation spectrum corresponding to the delay value.
  • the delay value of the threshold threshold is the delay value of the threshold threshold.
  • the first path signal of the correlation spectral value of the multi-path signal component of the increasing variation may be obtained by the chip or the processor including the time domain correlation processing function, and may be obtained by the function calculation function including the function calculation function.
  • the chip or processor (which may be the same processor as the chip or processor including the time domain related processing function) performs step S106 to obtain a second path signal of the associated spectral threshold threshold of increasing variation over time.
  • the first signal and the second signal can be sampled and detected, and the time point of sampling is the traversal delay value.
  • the delay value of the time point of the sampling is the first traversal of the found and the correlation spectrum value of the multipath signal component corresponding to the delay value is greater than the delay value of the correlation spectral threshold threshold corresponding to the delay value.
  • the parameter b can be adjusted according to the ETU type setting.
  • the preset SNR threshold interval includes three intervals, the order is: (- ⁇ , -4], (-4, 4), [4, ⁇ ), and the first correction parameter value corresponding to each SNR threshold interval and the first
  • the second modified parameter values are: 3 and 4 (corresponding to SNR threshold interval (- ⁇ , -4)), 2 and 2 (corresponding to SNR threshold interval (-4, 4)), 2 and 0 (corresponding to SNR threshold interval [4] , ⁇ )), then the above function to generate the relevant spectral threshold threshold can be:
  • t ref can be set to 1Ts
  • b can be set to 0.001
  • the resulting correlation threshold threshold for deferred time delay is:
  • the channel delay parameter of the current channel may be used to determine that the found delay value is suitable as the TOA output.
  • the SNR or the SINR may be determined to be greater than or equal to The preset channel indicator threshold, if it is, means that the channel environment is good, and the found delay value is suitable as the TOA output.
  • the delay value as the TOA output can be buffered as the historical quality delay value. If the SNR or SINR is less than the preset channel indicator threshold, it indicates that the delay value of the search is obtained when the channel environment is bad, and a reasonable correlation threshold threshold is selected according to the foregoing manner, but there is still a misjudgment.
  • the mobile terminal MT starts to receive the CRS signal sent by the base station BS as the ranging target as the positioning receiver, and if the above steps S102 to S108 are performed for the first time,
  • the found delay value is t 1 , and if the detected SNR is greater than the channel index threshold c in the process of finding t 1 , it means that the time ranging is less affected by noise, and t 1 can be output as TOA.
  • the mobile terminal MT receives the CRS signal sent by the base station BS as the ranging target as the positioning receiver, and obtains the obtained delay value obtained by performing the above steps S102 to S108.
  • t 2 a strong interference occurs in the area where the mobile terminal MT is located, so that the detected SNR falls below the channel index threshold c, and t 2 is not output as the TOA, but the weight coefficient ⁇ is first generated according to the detected SNR. Then, it is necessary to take t 1 as the historical quality delay value into the reference, multiply t 1 by the weight coefficient ⁇ , multiply t 2 by the weight coefficient 1- ⁇ , and then add, and use the delay value obtained after the addition calculation as the TOA. Output.
  • the TOA outputted in this way refers to the TOA output when the previous SNR is high, which can reduce the error of the delay value found in the environment with low SNR, thereby improving the accuracy of ranging.
  • the mobile terminal MT may repeatedly perform the above steps S102 to S108 multiple times (for example, 100 times), and set each SNR according to the SNR detected each time.
  • the weight coefficient of the obtained delay value is searched for, and then the weighted average is obtained according to the delay value obtained by each search and the corresponding weight coefficient, and the average value is output as TOA.
  • the TOA generated in this way is obtained by repeatedly measuring, and by calculating the average value, the error in each measurement can be reduced, thereby improving the accuracy of the ranging.
  • the corresponding first correction parameter value is 2, and the second correction parameter value is 0.
  • the function for generating the correlation spectral threshold threshold value in the SNR environment is:
  • t ref can be set to 1Ts.
  • the signal index threshold c is -4, since the SNR ⁇ c, it is necessary to generate the weight coefficient ⁇ from the SNR.
  • the weight coefficient ⁇ can be set according to the following formula:
  • ⁇ (-6) is calculated to be 9/13, and since the previous measurement, the SNR is -2, which is greater than the signal index threshold c, the delay value 44Ts as the TOA output is the historical quality delay value.
  • the TOA output from this measurement is 43Ts.
  • a mobile TOA acquisition device for terminal positioning includes: a positioning reference signal receiving module 102, a time domain correlation processing signal generating module 104, a variable threshold threshold signal generating module 106, and a TOA searching module 108, wherein:
  • the positioning reference signal receiving module 102 is configured to receive a positioning reference signal sent by the positioning transmitter.
  • the TOA acquisition device for positioning the mobile terminal is based on a positioning receiver, and the positioning transmitter is a positioning receiver as a communication device of the ranging target.
  • the positioning transmitter is a positioning receiver as a communication device of the ranging target.
  • the mobile terminal MT actively measures the distance between the mobile terminal MT and a certain base station BS selected as the ranging target
  • the mobile terminal MT is a positioning receiver
  • the selected terminal is selected as a ranging target.
  • the base station BS is a positioning transmitter. If the base station BS actively measures the distance between the base station BS and a certain mobile terminal MT, the base station BS is a positioning receiver, and the mobile terminal MT selected as the ranging target is a positioning transmitter.
  • the positioning reference signal is a signal sent by the positioning transmitter in the telecommunication network for measurement or monitoring purposes.
  • the mobile terminal MT and the base station BS are kept in sync, so that the same synchronization reference signal sequence is stored.
  • the mobile terminal MT or the base station BS can transmit the synchronization reference signal sequence stored on each of them to the other party through the positioning reference signal.
  • the positioning reference signal received by the mobile terminal MT can be a cell-specific reference signal sent by the base station (English: Cell specific) Reference Signal, referred to as: CRS) signal.
  • CRS Cell specific Reference Signal
  • the positioning receiver is the base station BS
  • the positioning transmitter as the ranging target is the mobile terminal MT
  • the positioning reference signal received by the mobile terminal MT can be the sounding reference signal uploaded by the mobile terminal MT (English: Sounding Reference Signal, Abbreviation: SRS).
  • the process of acquiring the TOA by the mobile terminal MT as the positioning receiver and the base station BS as the positioning receiver is independent of the type of the positioning reference signal, in the following embodiments, only the mobile terminal MT is used as the positioning receiver.
  • the CRS signal sent by the base station BS as the ranging target is received as a positioning reference signal as an example for description.
  • the SRS signal uploaded by the mobile terminal MT as the ranging target is received as the positioning reference signal, and the details are not described herein.
  • the time domain correlation processing signal generating module 104 is configured to perform time domain correlation processing on the positioning reference signal received by the positioning reference signal receiving module 102 and the synchronization reference signal sequence to obtain a correlation spectral value of the multipath signal component corresponding to the delay value. .
  • the positioning reference signal sent by the positioning transmitter may undergo reflection, diffraction, etc. during the transmission process, the positioning reference signal may arrive at the positioning receiver through multiple paths, and the positioning reference signal received by the positioning receiver may have multipath.
  • Sexual characteristics by performing time domain correlation processing on the positioning reference signal and the synchronization reference signal sequence on the positioning receiver, the correlation between the positioning reference signal and the synchronization reference signal sequence in the time domain can be determined to determine the positioning reference signal. Correlation spectral values corresponding to multipath signal components corresponding to different delay values.
  • the mobile terminal MT may perform time domain correlation processing on the received CRS signal and the CRS sequence as the synchronization reference signal sequence on the mobile terminal MT.
  • the distribution of the correlation spectral values of the multipath signal components with varying delays can be obtained.
  • a schematic image of the distribution of correlation spectral values of the multipath signal component can be seen in FIG. In FIG. 3, if the correlation spectral value of the multipath signal component corresponding to a certain delay value is large, it indicates that a certain multipath signal component arrives at the positioning receiver after passing the delay value, that is, the positioning of the positioning transmitter.
  • a certain path is selected and propagated to the positioning receiver. The length of the path causes the positioning reference signal propagating the path to propagate to the positioning receiver, which is generated in the power spectrum image of FIG. The corresponding delay value.
  • the threshold threshold signal generating module 106 is configured to detect a channel parameter when the positioning reference signal is received, and generate a correlation spectrum threshold threshold that is deferred according to the channel parameter and a function of decreasing the time delay value.
  • the correlation spectral threshold threshold is a value of a change in the delay value, rather than a constant change in the value of the delay.
  • the correlation spectral threshold threshold can be generated using a function that is deferred at any time, and the noise vector of the delay value is filtered by adjusting the parameters in the function of the deferred value by the channel parameter detected in real time. To eliminate noise interference.
  • the channel parameters may include a signal to noise ratio SNR, a signal to interference plus noise ratio SINR, a channel environment parameter, and the like.
  • the channel environment parameters may include additive white Gaussian noise (AWGN), ETU, EPA, and the like.
  • AWGN additive white Gaussian noise
  • the function that is deferred at any time may select an exponential function that is deferred by the time delay value as the independent variable, and the variable threshold signal generating module 106 may be configured to decrement the time delay according to the SNR setting.
  • the modified parameter value of the exponential function generates an associated spectral threshold threshold that is deferred at any time according to an exponential function that has a deferred value of the modified parameter value.
  • ThresholdValue(t) is the correlation spectral threshold threshold
  • t ref , k, b, and c are the parameter values of the exponential function, which can be set according to the actual situation. Due to the gradual slowdown of the exponential deceleration rate, a higher correlation spectral threshold threshold can be set for the strong noise with a lower delay value, and the decreasing rate of the correlation spectral threshold threshold is gradually slowed down as the delay value increases. Therefore, the generated correlation threshold threshold can be sharply dropped when the delay value is low, and gradually slowed down when the delay value is low, which can filter out the noise interference at the low delay value and avoid the shortest distance. The problem of the component of the positioning reference signal arriving (i.e., arriving via the first path FAP) is ignored due to the associated spectral threshold threshold being too high.
  • the exponential function of the deferred value may be modified according to the SNR of the SNR.
  • the threshold threshold signal generating module 106 is further configured to obtain a preset SNR threshold interval; The SNR threshold interval to which the detected signal-to-noise ratio SNR belongs; obtaining the corrected parameter value corresponding to the found SNR threshold interval, and setting the corrected parameter value as an exponential function that is deferred at any time.
  • the signal-to-noise ratio SNR reflects the degree of noise interference of the current channel when the positioning reference signal is received.
  • the correlation threshold threshold value when the delay value is low can be reduced by setting the parameter of the exponential function that is deferred at any time, thereby avoiding the positioning reference signal arriving at the positioning receiver through the first path FAP.
  • the signal component is ignored because the correlation spectral threshold is too high; and when the signal-to-noise ratio SNR is low, the correlation threshold threshold when the delay value is low can be increased by setting the parameter of the exponential function that is deferred at any time.
  • the noise is erroneously judged as the signal component of the positioning reference signal arriving at the positioning receiver through the first path FAP, thereby further improving the accuracy of acquiring the TOA.
  • variable threshold threshold signal generating module 106 can also be used according to the formula:
  • a correlation threshold threshold ThresholdValue(t) that is deferred at any time; wherein the variable t is a delay value, t ref is a reference delay, and S 1 (SNR) is a corresponding SNR threshold interval to which the detected signal to noise ratio SNR belongs
  • S 2 (SNR) is a second modified parameter value corresponding to the SNR threshold interval to which the detected signal to noise ratio SNR belongs
  • b is an adjustment coefficient whose value is between 0 and 1
  • N 0 is
  • Z n is the signal strength of the received positioning reference signal
  • P(Z n ⁇ aN 0 ) is the probability that the received signal strength of the positioning reference signal is greater than or equal to aN 0 when the delay value is t, ⁇
  • the optional adjustment coefficient b may be a preset parameter value corresponding to the channel environment parameter.
  • the channel environment parameters may include AWGN, ETU, EPA, etc.
  • the corresponding adjustment coefficient b may be set according to the channel environment parameter, so that the calculated correlation spectral threshold threshold can be adapted to multiple channel environments, thereby improving the measurement. The accuracy of the distance.
  • the TOA search module 108 is configured to receive a correlation spectral value corresponding to the delay value generated by the time domain correlation processing signal generating module and a correlation spectral threshold threshold value corresponding to the delay value generated by the variable threshold threshold signal generating module, to The increasing sequence of the delay value traverses the delay value, and searches for the first traversed time and the correlation spectral value of the multipath signal component corresponding to the delay value is greater than the correlation spectral threshold threshold corresponding to the delay value.
  • the value of the delay is used as the TOA output.
  • the traversal may be traversed as the delay value increases.
  • Correlation spectral threshold threshold corresponding to the correlation spectral value of the corresponding multipath signal component and the traversed delay value The value is compared. If the correlation spectrum value of the multipath signal component is determined to be greater than the correlation spectral threshold threshold for the first time at a certain time, the delay value corresponding to the time is the time when the positioning reference signal arrives at the positioning receiver through the first path FAP.
  • the delay value because the straight line between the two points is the shortest, the signal component of the positioning reference signal arriving at the positioning receiver through the first path FAP is the signal component propagated to the positioning receiver by the positioning transmitter through the straight line, the delay The value is the TOA of the positioning reference signal.
  • time domain correlation processing signal generating module 104 and the variable threshold threshold signal generating module 106 need to perform synchronously, that is, the time domain correlation processing is used to obtain the correlation value of the multipath signal component.
  • the magnitude of the correlation spectral threshold threshold at that time is also calculated by the function of deferred value at any time. By inputting the two into the comparison circuit, the correlation of the first traversed multipath signal component corresponding to the delay value can be found.
  • the spectral value is greater than the delay value of the correlation spectral threshold threshold corresponding to the delay value.
  • the time domain correlation processing signal generating module 104 may obtain, according to a chip or a processor including a time domain related processing function, a first path signal of a correlation spectrum value of the multipath signal component that increases the variation over time, and at the same time, a threshold
  • the threshold signal generation module 106 may be based on a chip or processor that includes a function calculation function (which may be the same processor as the chip or processor including the time domain related processing function), and obtain a correlation threshold threshold value that increases the variation of the time delay value.
  • the TOA search module 108 can sample and detect the first path signal and the second path signal, and the time point of sampling is the traversal delay value. If the sampled first path signal is greater than or equal to a certain sampling time point.
  • the second path signal, the delay value of the time point of the sampling is the first traversal found, and the correlation spectral value of the multipath signal component corresponding to the delay value is greater than the correlation spectral threshold corresponding to the delay value.
  • the delay value of the threshold is the first traversal found, and the correlation spectral value of the multipath signal component corresponding to the delay value is greater than the correlation spectral threshold corresponding to the delay value.
  • the parameter b can be adjusted according to the ETU type setting.
  • the preset SNR threshold interval includes three intervals, the order is: (- ⁇ , -4], (-4, 4), [4, ⁇ ), and the first correction parameter value corresponding to each SNR threshold interval and the first
  • the second modified parameter values are: 3 and 4 (corresponding to SNR threshold interval (- ⁇ , -4)), 2 and 2 (corresponding to SNR threshold interval (-4, 4)), 2 and 0 (corresponding to SNR threshold interval [4] , ⁇ )), then the above function to generate the relevant spectral threshold threshold can be:
  • t ref can be set to 1Ts
  • b can be set to 0.001
  • the resulting correlation threshold threshold for deferred time delay is:
  • the searched delay value may be determined as the TOA output according to the channel parameter of the current channel.
  • the TOA search module 108 may also be used to determine The SNR or SINR is greater than or equal to the preset channel indicator threshold. If it is, it means that the channel environment is good, and the found delay value is suitable as the TOA output. At this time, the delay value as the TOA output can be buffered as the historical quality delay value. If the SNR or SINR is less than the preset channel indicator threshold, it indicates that the delay value of the search is obtained when the channel environment is bad, and a reasonable correlation threshold threshold is selected according to the foregoing manner, but there is still a misjudgment.
  • the TOA lookup module 108 can be configured to generate a weight coefficient according to the detected SNR or SINR; obtain a cached historical quality delay value, and compare the historical quality delay value according to the weight coefficient The found delay value is weighted averaged to obtain a modified delay value, and the modified delay value is used as the TOA.
  • the mobile terminal MT starts to receive the CRS signal sent by the base station BS as the ranging target as the positioning receiver, and if the above steps S102 to S108 are performed for the first time,
  • the found delay value is t 1 , and if the detected SNR is greater than the channel index threshold c in the process of finding t 1 , it means that the time ranging is less affected by noise, and t 1 can be output as TOA.
  • the mobile terminal MT receives the CRS signal sent by the base station BS as the ranging target as the positioning receiver, and obtains the obtained delay value obtained by performing the above steps S102 to S108.
  • t 2 a strong interference occurs in the area where the mobile terminal MT is located, so that the detected SNR falls below the channel index threshold c, and t 2 is not output as the TOA, but the weight coefficient ⁇ is first generated according to the detected SNR. Then, it is necessary to take t 1 as the historical quality delay value into the reference, multiply t 1 by the weight coefficient ⁇ , multiply t 2 by the weight coefficient 1- ⁇ , and then add, and use the delay value obtained after the addition calculation as the TOA. Output.
  • the TOA outputted in this way refers to the TOA output when the previous SNR is high, which can reduce the error of the delay value found in the environment with low SNR, thereby improving the accuracy of ranging.
  • the mobile terminal MT may repeatedly perform the above steps S102 to S108 multiple times (for example, 100 times), and set each SNR according to the SNR detected each time.
  • the weight coefficient of the obtained delay value is searched for, and then the weighted average is obtained according to the delay value obtained by each search and the corresponding weight coefficient, and the average value is output as TOA.
  • the TOA generated in this way is obtained by repeatedly measuring, and by calculating the average value, the error in each measurement can be reduced, thereby improving the accuracy of the ranging.
  • the corresponding first correction parameter value is 2, and the second correction parameter value is 0.
  • the function for generating the correlation spectral threshold threshold value in the SNR environment is:
  • t ref can be set to 1Ts.
  • the signal index threshold c is -4, since the SNR ⁇ c, it is necessary to generate the weight coefficient ⁇ from the SNR.
  • the weight coefficient ⁇ can be set according to the following formula:
  • the delay value 44Ts of the TOA output is the historical quality delay value.
  • the TOA output from this measurement is 43Ts.
  • FIG. 8 depicts a structure of an apparatus for measuring time of arrival TOA according to another embodiment of the present invention, including at least one processor 1402 (eg, a CPU), at least one wireless transceiver (eg, an antenna, etc.) 1405 or other communication interface, memory 1406. And at least one communication bus 1403 for implementing connection communication between the devices.
  • the processor 1402 is configured to execute executable modules, such as computer programs, stored in the memory 1406.
  • the memory 1406 may include a high speed random access memory (RAM: Random Access Memory), and may also include a non-volatile memory such as at least one disk memory. Passed through at least one wireless transceiver 1405.
  • RAM Random Access Memory
  • the memory 1406 stores a program 14061 that can be executed by the processor 1402.
  • the program includes:
  • Detecting a channel parameter when the positioning reference signal is received and generating a correlation spectrum threshold threshold that is deferred by a delay value according to the channel parameter and a function of decreasing the time delay value.
  • the delay value is used as the TOA output.
  • the channel parameter when the reference signal is located is generated by the function of decreasing the value of the delay value, and the correlation threshold threshold value of the deferred value is generated, and the arrival time TOA output is generated by comparing the correlation spectral value of the multipath signal component with the correlation spectral threshold threshold.
  • the correlation spectral value obtained is larger than that of the conventional technique in that the energy spectral value is used.
  • the difference between the multipath signal and the noise is large, and the error generated when the correlation spectral threshold threshold is compared is small.
  • the correlation spectrum threshold threshold of the deferred value obtained by the function of decreasing the value of the delay value is such that when the SNR is small, the correlation threshold threshold corresponding to the smaller delay value is larger, thereby filtering out the part. The effect of noise. Therefore, the TOA acquisition method and apparatus for positioning the mobile terminal can adapt to an environment with a small SNR, so that the accuracy of the ranging is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种对移动终端定位时的到达时间TOA获取方法,包括:接收定位发射机发送的定位参考信号;将所述定位参考信号与同步参考信号序列进行时域相关处理,得到与时延值对应的多径信号分量的相关谱值;检测接收所述定位参考信号时的信道参数,根据所述信道参数以及随时延值递减的函数生成随时延值递减的相关谱门限阈值;以所述时延值的递增的顺序遍历所述时延值,查找首个遍历到的且该时延值对应的多径信号分量的相关谱值大于该时延值对应的相关谱门限阈值的时延值,将查找到的时延值作为TOA输出。

Description

对移动终端定位时的到达时间TOA获取方法及装置 技术领域
本发明涉及通信技术领域,特别是涉及一种对移动终端定位时的到达时间TOA获取方法及装置。
背景技术
随着移动通信技术的不断发展,使得面向移动通信服务的需求和服务种类不断增多,对移动终端(英文:Mobile Terminal,简称:MT)的定位服务就是其中一种。对移动终端MT的定位就是通过MT与基站(英文:Base Station,简称:BS)间的信息交互,提取可用于定位的特征信息来实现对MT位置的估计。
目前流行的定位技术种类比较多,单从无线蜂窝定位技术角度来看,就有演进的全球导航卫星系统(英文:Advanced Global Navigation Satellite System,简称:A-GNSS)定位技术、观测到达时间差(英文:Observed Time Difference of Arrival,简称:OTDOA)定位技术、增强式小区识别(英文:Enhanced Cell Identification,简称:E-CID)定位方法、上行到达时间差(英文:Uplink Time Difference of Arrival,简称:UTDOA)定位技术和射频模式匹配(英文:Radio Frequency Pattern Matching,简称:RFPM)定位技术等等。其中,根据定位参数的不同,又可以分为角测量技术(AOA)、到达时间(英文:Time of arrival,简称:TOA)定位技术、到达时间差(英文:Time Difference of Arrival,简称:TDOA)定位技术等,例如OTDOA和UTDOA定位技术就是以TDOA技术原理为基础派生出来的。而TDOA(到达时间差)又是以TOA(到达时间)作为基准量来进行计算得到的。因此,在无线蜂窝定位技术中,TOA(到达时间)作为一个基本量,它的测量与获取对定位技术的开展与应用十分重要。
定位方法TOA估计通常是以检测首达路径(英文:First Arrival Path,简称:FAP)来获得传播时延值,即首达路径的查找是获取TOA的基础。在发送机和接收机时钟同步的大前提下,一般常用的对接收信号的检测机制通常为 接收机接收发射机发出的参考信号,计算参考信号的时域相关卷积值得到参考信号在时域与时延值对应的功率谱,然后查找功率首次大于或等于相关谱门限阈值时对应的时延值,该时延值即为到达时间TOA,从而可根据TOA计算得到接收机和发射机之间的距离。
然而,发明人经研究发现,传统技术中,基于TOA的定位方法中,通过查找首达路径FAP来获取TOA的方法至少存在如下问题:在传统技术中,前述的相关谱门限阈值为恒定的数值,即设置后便不再轻易改动。此种方式仅适合信道环境较好的环境,而在信道环境较差干扰较强时,则由于噪声的干扰,使得首达路径误判的可能性增高。因此,传统技术中基于恒定门限查找首达路径FAP获取TOA的方式的信道环境适应能力较差,从而导致测距的准确性降低。
发明内容
基于此,为了上述传统技术中基于恒定门限查找首达路径FAP获取TOA的方式的信道环境适应能力较差,从而导致测距的准确性较低的技术问题,提供了一种对移动终端定位时的到达时间TOA获取方法。
本发明第一方面提供了一种对移动终端定位时的到达时间TOA获取方法,所述方法包括:
接收定位发射机发送的定位参考信号;
将所述定位参考信号与同步参考信号序列进行时域相关处理,得到与时延值对应的多径信号分量的相关谱值;
检测接收所述定位参考信号时的信道参数,根据所述信道参数以及随时延值递减的函数生成随时延值递减的相关谱门限阈值;
以所述时延值的递增的顺序遍历所述时延值,查找首个遍历到的且该时延值对应的多径信号分量的相关谱值大于该时延值对应的相关谱门限阈值的时延值,将查找到的时延值作为TOA输出。
在第一方面的第一种可能的实现方式中,所述信道参数包括信噪比SNR;
所述根据所述信道参数以及随时延值递减的函数生成随时延值递减的相关谱门限阈值包括:
根据信噪比SNR设置随时延值递减的指数函数的修正参数值,根据所述已设置修正参数值的随时延值递减的指数函数生成随时延值递减的相关谱门限阈值。
在第一方面的第二种可能的实现方式中,所述根据信噪比SNR设置随时延值递减的指数函数的修正参数值包括:
获取预设的SNR阈值区间;
查找所述检测到的信噪比SNR所属的SNR阈值区间;
获取所述查找到的SNR阈值区间对应的修正参数值,设置为随时延值递减的指数函数的修正参数值。
结合第一方面以及第一方面的第二种可能实现的方式,在第三种可能实现方式中,所述根据所述已设置修正参数值的随时延值递减的指数函数生成随时延值递减的相关谱门限阈值为:
根据公式:
Figure PCTCN2015080285-appb-000001
P(Zn≥aN0)=δ
生成随时延值递减的相关谱门限阈值ThresholdValue(t);其中,变量t为时延值,tref为参考时延,S1(SNR)为检测到的信噪比SNR所属的SNR阈值区间对应的第一修正参数值,S2(SNR)为检测到的信噪比SNR所属的SNR阈值区间对应的第二修正参数值,b为取值在0至1之间的调整系数,N0为噪声常量,Zn为接收到的定位参考信号的信号强度,P(Zn≥aN0)为接收到的定位参考信号的信号强度在时延值为t时大于或等于aN0的概率,δ为概率阈值,a为P(Zn≥aN0)=δ的解。
结合第一方面以及第一方面的第一至第三中任一种可能实现的方式,在第四种可能实现方式中,所述信道参数包括信噪比SNR或信号与干扰加噪声比SINR;
所述将查找到的时延值作为TOA包括:
在所述SNR或SINR大于或等于预设的信道指标阈值时,将所述查找到的时延值缓存作为历史优质时延值,将查找到的时延值作为TOA。
结合第一方面以及第一方面的第四种可能实现的方式,在第五种可能实现 方式中,所述将查找到的时延值作为TOA包括:
在所述SNR或SINR小于预设的信道指标阈值时,根据检测到的SNR或SINR生成权重系数;
获取缓存的历史优质时延值,根据所述权重系数对所述历史优质时延值和所述查找到的时延值进行加权平均得到修正时延值,将所述修正时延值作为TOA。
此外,为了上述传统技术中基于恒定门限查找首达路径FAP获取TOA的方式的信道环境适应能力较差,从而导致测距的准确性较低的技术问题,提供了一种对移动终端定位时的到达时间TOA获取装置。
本发明第二方面提供了一种对移动终端定位时的到达时间TOA获取装置,包括:
定位参考信号接收模块,用于接收定位发射机发送的定位参考信号;
时域相关处理信号生成模块,用于将所述定位参考信号接收模块接收到的定位参考信号与同步参考信号序列进行时域相关处理,得到与时延值对应的多径信号分量的相关谱值;
变门限阈值信号生成模块,用于检测接收所述定位参考信号时的信道参数,根据所述信道参数以及随时延值递减的函数生成随时延值递减的相关谱门限阈值;
TOA查找模块,用于接收所述时域相关处理信号生成模块生成的与时延值对应的相关谱值和所属变门限阈值信号生成模块生成的与时延值对应的相关谱门限阈值,以所述时延值的递增的顺序遍历所述时延值,查找首个遍历到的且该时延值对应的多径信号分量的相关谱值大于该时延值对应的相关谱门限阈值的时延值,将查找到的时延值作为TOA输出。
在第二方面的第一种可能的实现方式中,所述信道参数包括信噪比SNR;
所述变门限阈值信号生成模块还用于根据信噪比SNR设置随时延值递减的指数函数的修正参数值,根据所述已设置修正参数值的随时延值递减的指数函数生成随时延值递减的相关谱门限阈值。
在第二方面的第二种可能的实现方式中,所述变门限阈值信号生成模块还 用于获取预设的SNR阈值区间;查找所述检测到的信噪比SNR所属的SNR阈值区间;获取所述查找到的SNR阈值区间对应的修正参数值,设置为随时延值递减的指数函数的修正参数值。
结合第二方面以及第一方面的第二种可能实现的方式,在第三种可能实现方式中,所述变门限阈值信号生成模块还用于根据公式:
Figure PCTCN2015080285-appb-000002
P(Zn≥aN0)=δ
生成随时延值递减的相关谱门限阈值ThresholdValue(t);其中,变量t为时延值,tref为参考时延,S1(SNR)为检测到的信噪比SNR所属的SNR阈值区间对应的第一修正参数值,S2(SNR)为检测到的信噪比SNR所属的SNR阈值区间对应的第二修正参数值,b为取值在0至1之间的调整系数,N0为噪声常量,Zn为接收到的定位参考信号的信号强度,P(Zn≥aN0)为接收到的定位参考信号的信号强度在时延值为t时大于或等于aN0的概率,δ为概率阈值,a为P(Zn≥aN0)=δ的解。
结合第二方面以及第一方面的第一至第三中任一种可能实现的方式,在第四种可能实现方式中,所述信道参数包括信噪比SNR或信号与干扰加噪声比SINR;
所述TOA查找模块用于在所述SNR或SINR大于或等于预设的信道指标阈值时,将所述查找到的时延值缓存作为历史优质时延值,将查找到的时延值作为TOA。
结合第二方面以及第一方面的第四种可能实现的方式,在第五种可能实现方式中,所述TOA查找模块用于在所述SNR或SINR小于预设的信道指标阈值时,根据检测到的SNR或SINR生成权重系数;获取缓存的历史优质时延值,根据所述权重系数对所述历史优质时延值和所述查找到的时延值进行加权平均得到修正时延值,将所述修正时延值作为TOA。
此外,为了上述传统技术中基于恒定门限查找首达路径FAP获取TOA的方式的信道环境适应能力较差,从而导致测距的准确性较低的技术问题,还提出了一种测量到达时间TOA的设备。
本发明第三方面提供了一种测量到达时间TOA的设备,所述测量到达时间TOA的设备包括无线收发装置、存储器以及处理器,其中,所述存储器中存储一组程序,且所述处理器用于调用所述存储器中存储的程序,用于执行以下操作:
接收定位发射机发送的定位参考信号;
将所述定位参考信号与同步参考信号序列进行时域相关处理,得到与时延值对应的多径信号分量的相关谱值;
检测接收所述定位参考信号时的信道参数,根据所述信道参数以及随时延值递减的函数生成随时延值递减的相关谱门限阈值;
以所述时延值的递增的顺序遍历所述时延值,查找首个遍历到的且该时延值对应的多径信号分量的相关谱值大于该时延值对应的相关谱门限阈值的时延值,将查找到的时延值作为TOA输出。
实施本发明实施例,将具有如下有益效果:
上述对移动终端定位时的TOA获取方法及装置,对定位参考信号与同步参考信号序列进行时域相关处理得到了与时延值对应的多个多径信号分量的相关谱值,然后根据接收所述定位参考信号时的信道参数通过随时延值递减的函数生成了随时延值递减的相关谱门限阈值,并通过比较多径信号分量的相关谱值与相关谱门限阈值生成到达时间TOA输出。其中,通过时域相关处理得到的的相关谱值和传统技术中使用能量谱的方式相比,增益更大,因此,多径信号与噪声之间的差异较大,在于相关谱门限阈值进行比较时产生的误差较小。而且,根据信道参数通过随时延值递减的函数生成的随时延值递减的相关谱门限阈值使得在SNR较小时,与时延值较小处对应的相关谱门限阈值较大,从而过滤掉了部分噪声产生的影响。因此,上述对移动终端定位时的TOA获取方法及装置能够适应SNR较小的环境,使得测距的准确度提高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1为传统技术中通过恒定的相关谱门限阈值查找首达路径对应的TOA的示意图;
图2为本发明一个实施例中一种对移动终端定位时的TOA获取方法的流程图;
图3为本发明一个实施例中通过随时延递减的相关谱门限阈值查找首达路径对应的TOA的示意图;
图4为本发明一个应用场景中定位参考信号的SNR为-2时的功率谱图;
图5为本发明一个实施例中根据信道参数调整随时延递减的函数参数的过程流程图;
图6为本发明一个应用场景中定位参考信号的SNR为-6时的功率谱图;
图7为本发明一个实施例中对移动终端定位时的TOA获取装置的示意图;
图8为本发明一个实施例中测量到达时间TOA的设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在传统技术中,定位接收机接收到的定位参考信号与定位接收机上的同步参考信号序列进行时域相关处理后得到与时延值对应的多径信号分量功率值在信道环境恶劣,信噪比SNR较低时,干扰噪声的功率值也较高。如图1所示,若采用恒定不变的相关谱门限阈值,则很可能将时延值较小的噪声分量作为首达路径FAP,从而使得最终输出的到达时间TOA较小,从而导致测距的准确度较低。
为解决上述传统技术中基于恒定门限查找首达路径FAP获取TOA的方式的信道环境适应能力较差,从而导致测距的准确性降低技术问题,在一个实施例中,特提出了一种对移动终端定位时的TOA获取方法。该方法的执行可依赖于带有时域相关处理功能以及函数计算功能的信号处理电路或者信号处理芯片。
具体的,如图1所示,该对移动终端定位时的TOA获取方法包括:
步骤S102:接收定位发射机发送的定位参考信号。
在本实施例中,该方法运行定位接收机上,定位发射机为定位接收机作为测距标的通信装置。例如,若移动终端MT主动对该移动终端MT与某个被选为测距标的的基站BS之间的距离进行测量,则该移动终端MT即为定位接收机,而该被选为测距标的的基站BS则为定位发射机。若基站BS主动对该基站BS与某个移动终端MT的距离进行测量,则该基站BS为定位接收机,而该被选为测距标的的移动终端MT即为定位发射机。
定位参考信号即为在电信网中定位发射机发出的以测量或监控的目的而发送的信号。移动终端MT和基站BS为保持同步,因此存储有相同的同步参考信号序列。移动终端MT或基站BS均可通过定位参考信号将各自上存储的同步参考信号序列发送给对方。
例如,若定位接收机为移动终端MT,作为测距标的的定位发射机为基站BS,则移动终端MT接收到的定位参考信号即可为该基站下发的小区特定参考信号(英文:Cell specific Reference Signal,简称:CRS)信号。若定位接收机为基站BS,作为测距标的的定位发射机为移动终端MT,则移动终端MT接收到的定位参考信号即可为该移动终端MT上传的探测参考信号(英文:Sounding Reference Signal,简称:SRS)。
需要说明的是,由于移动终端MT作为定位接收机和基站BS作为定位接收机执行本方法的过程与定位参考信号的类型无关,因此在后续的实施例中,仅以移动终端MT作为定位接收机,接收作为测距标的的基站BS下发的CRS 信号作为定位参考信号为例进行说明。而对于以基站BS作为定位接收机,接收作为测距标的的移动终端MT上传的SRS信号作为定位参考信号的情况不再赘述。
步骤S104:将定位参考信号与同步参考信号序列进行时域相关处理,得到与时延值对应的多径信号分量的相关谱值。
由于定位接收机与定位发射机之间存在距离差,因此定位参考信号传输至定位接收机时存在时延效果。并且由于定位发射机发出的定位参考信号在传输过程中可能经过反射、衍射等效果,因此,定位参考信号可能通过多条路径抵达定位接收机,定位接收机接收到的定位参考信号则存在多径性的特点,通过将定位参考信号与定位接收机上的同步参考信号序列进行时域相关处理,即可通过计算定位参考信号与同步参考信号序列在时域上的相关性来确定定位参考信号中的与不同的时延值对应的多径信号分量对应的相关谱值。
例如,移动终端MT在接收到作为测距标的的基站BS下发的CRS信号后,可将接收到的CRS信号与该移动终端MT上的作为同步参考信号序列的CRS序列进行时域相关处理,即可得到随时延值变化的多径信号分量的相关谱值的分布。该多径信号分量的相关谱值的分布示意图像可参考图3所示。在图3中,若某一时延值对应的多径信号分量的相关谱值较大,则表示某个多径信号分量在经过该时延值后抵达定位接收机,即定位发射机发射的定位参考信号在传播过程中,选择了某一条路径传播至定位接收机,该路径的距离的长短导致了该条路径传播的定位参考信号传播至定位接收机时产生了在图3的功率谱图像中所对应的时延值。应理解,本发明所述时域相关处理可以是将所述定位参考信号与同步参考信号序列进行时域卷积,或由其它方式进行的时域计算方式以获取时延值对应的多径信号分量功率值。
步骤S106:检测接收定位参考信号时的信道参数,根据信道参数以及随时延值递减的函数生成随时延值递减的相关谱门限阈值。
在本实施例中,相关谱门限阈值为时延值变化的值,而不是随时延值的变化恒定的值。由于在信道环境恶劣时,噪声干扰较多,则由步骤S104得到的与时延值对应的多径信号分量的相关谱值的中,在时延值较低时,仍存在的相 关谱值较大的多径信号分量。因此,可使用随时延值递减的函数生成相关谱门限阈值,并通过实时检测到的信道参数对随时延值递减的函数中的参数进行调整来将在时延值较低时的噪声向量过滤掉,从而排除噪声的干扰。
在本实施例中,信道参数可包括信噪比SNR、信号与干扰加噪声比SINR、信道环境参数等。信道环境参数则可包括加性高斯白噪声(英文:Additive White Gaussian Noise,简称:AWGN)、ETU、EPA等类型。可选的,随时延值递减的函数则可选择以时延值为自变量的随时延值递减的指数函数,而根据信道参数以及随时延值递减的函数生成随时延值递减的相关谱门限阈值则可包括:
根据信噪比SNR设置随时延值递减的指数函数的修正参数值,根据已设置修正参数值的随时延值递减的指数函数生成随时延值递减的相关谱门限阈值。
如图4所示,使用随时延值递减的指数函数生成相关谱门限阈值,可参考以e为底的指数函数的表达式:
Figure PCTCN2015080285-appb-000003
其中,ThresholdValue(t)为相关谱门限阈值,tref、k、b和c为均为指数函数的参数值,可根据实际情况进行设置。由于指数函数递减速率逐步放缓的特性,可为时延值较低时的强噪声设置较高的相关谱门限阈值,并随着时延值的递增逐步放缓相关谱门限阈值的递减速度,从而可使得生成的相关谱门限阈值在时延值较低时急剧下落,而在时延值较低时逐步放缓,既可过滤掉低时延值时的噪声干扰,也可避免通过最短距离抵达的(即通过首达路径FAP抵达的)定位参考信号的分量由于相关谱门限阈值过高而被忽略的问题。
可选的,还可根据信噪比SNR对随时延值递减的指数函数进行修正,具体的,如图5所示,根据信噪比SNR设置随时延值递减的指数函数的修正参数值可包括:
步骤S202:获取预设的SNR阈值区间。
步骤S204:查找检测到的信噪比SNR所属的SNR阈值区间。
步骤S206:获取查找到的SNR阈值区间对应的修正参数值,设置为随时延值递减的指数函数的修正参数值。
信噪比SNR反映了接收到定位参考信号时当前信道的噪声干扰程度。在信噪比SNR较高时,可通过设定随时延值递减的指数函数的参数降低时延值较低时的相关谱门限阈值,从而避免通过首达路径FAP抵达定位接收机的定位参考信号的信号分量由于相关谱门限阈值过高而被忽略;而在信噪比SNR较低时,可通过设定随时延值递减的指数函数的参数提高时延值较低时的相关谱门限阈值,从而避免将噪声误判为通过首达路径FAP抵达定位接收机的定位参考信号的信号分量,从而进一步提高获取TOA的准确度。
具体的,在本实施例中,根据已设置修正参数值的随时延值递减的指数函数生成随时延值递减的相关谱门限阈值可具体为:
根据公式:
Figure PCTCN2015080285-appb-000004
P(Zn≥aN0)=δ
生成随时延值递减的相关谱门限阈值ThresholdValue(t);其中,变量t为时延值,tref为参考时延,S1(SNR)为检测到的信噪比SNR所属的SNR阈值区间对应的第一修正参数值,S2(SNR)为检测到的信噪比SNR所属的SNR阈值区间对应的第二修正参数值,b为取值在0至1之间的调整系数,N0为噪声常量,Zn为接收到的定位参考信号的信号强度,P(Zn≥aN0)为接收到的定位参考信号的信号强度在时延值为t时大于或等于aN0的概率,δ为概率阈值(可优选为1×10-9),a为P(Zn≥aN0)=δ的解。
可选的调整系数b可以是预设的与信道环境参数对应的参数值。如前所述,信道环境参数可包括AWGN、ETU、EPA等类型,可根据信道环境参数设置相应的调整系数b,从而可使得计算得到的相关谱门限阈值可适应多种信道环境,从而提高测距的准确度。
步骤S108:以所述时延值的递增的顺序遍历所述时延值,查找首个遍历到的且该时延值对应的多径信号分量的相关谱值大于该时延值对应的相关谱门限阈值的时延值,将查找到的时延值作为到达时间TOA输出。
如图4所示,得到随时延值分布的多径信号分量的相关谱值以及随时延值递减的相关谱门限阈值之后,可随着时延值的递增进行遍历,将遍历到的时延值对应的多径信号分量的相关谱值与该遍历到的时延值对应的相关谱门限阈 值进行比较,即随着时间的推延比对任意时刻多径信号分量的相关谱值和相关谱门限阈值的大小。若在某一时刻首次判断得到多径信号分量的相关谱值大于相关谱门限阈值,则该时刻对应的时延值即为定位参考信号通过首达路径FAP抵达定位接收机的时延值,由于两点之间直线最短,因此,该通过首达路径FAP抵达定位接收机的定位参考信号的信号分量即为通过直线由定位发射机传播至定位接收机的信号分量,该时延值即为定位参考信号的TOA。
需要说明的是,上述步骤S104和步骤S106需要同时执行,即通过时域相关处理得到随时延值的增加逐步得到多径信号分量的相关谱值的同时也通过随时延值递减的函数计算得到了在该时刻的相关谱门限阈值的大小,通过将二者输入比较电路即可查找首个遍历到的且该时延值对应的多径信号分量的相关谱值大于该时延值对应的相关谱门限阈值的时延值。
例如,可通过包含时域相关处理功能的芯片或处理器执行上述步骤S104得到随时延值的增加变化的多径信号分量的相关谱值的第一路信号,同时,可通过包含函数计算功能的芯片或处理器(可以与包含时域相关处理功能的芯片或处理器为同一处理器)执行步骤S106得到随时延值的增加变化的相关谱门限阈值的第二路信号。可抽样检测第一路信号和第二路信号,抽样的时间点即为遍历到的时延值,若在某个抽样的时间点,检测到的第一路信号大于或等于第二路信号,则该抽样的时间点的时延值即为查找到的首个遍历到的且该时延值对应的多径信号分量的相关谱值大于该时延值对应的相关谱门限阈值的时延值。
以一个实际应用场景为例,若在该应用场景中,若检测到的信道环境参数为ETU类型,则可根据ETU类型设置调整参数b。若预设的SNR阈值区间包括3个区间依次为:(-∞,-4]、(-4,4)、[4,∞),且每个SNR阈值区间对应的第一修正参数值和第二修正参数值依次为:3和4(对应SNR阈值区间(-∞,-4])、2和2(对应SNR阈值区间(-4,4])、2和0(对应SNR阈值区间[4,∞)),则上述生成相关谱门限阈值的函数即可为:
Figure PCTCN2015080285-appb-000005
若在某时刻检测到的信噪比SNR为-2,则,SNR=-2对应的SNR阈值区间为(-4,4),其对应的第一修正参数值为2,第二修正参数值为2,最终,在该信噪比环境下生成相关谱门限阈值的函数即为:
Figure PCTCN2015080285-appb-000006
其中,tref可设置为1Ts,b可设置为0.001,则最终得到的随时延值递减的相关谱门限阈值即为:
Figure PCTCN2015080285-appb-000007
如图6所示的该应用场景中的多径信号分量的相关谱值分布示意图所示,通过首达路径FAP抵达的定位参考信号的信号分量对应的时延t=44Ts,则可将44Ts作为TOA输出。
可选的,在将查找到的时延值作为TOA输出时,还可根据当前信道的信道参数判断该查找到的时延值的适合作为TOA输出,具体的,可判断SNR或SINR大于或等于预设的信道指标阈值,若是,则意味着信道环境良好,查找到的时延值适合作为TOA输出。此时,可将该作为TOA输出的时延值作为历史优质时延值进行缓存。若SNR或SINR小于预设的信道指标阈值,则表示该次查找的时延值是在信道环境较恶劣时获取的,即时按照前述方式选择了较合理的相关谱门限阈值,但仍然存在误判的可能,在这种情况下,根据检测到的SNR或SINR生成权重系数;获取缓存的历史优质时延值,根据所述权重系数对所述历史优质时延值和所述查找到的时延值进行加权平均得到修正时延值,将所述修正时延值作为TOA。
通过公式反映出即为:
Figure PCTCN2015080285-appb-000008
例如,若使用移动终端MT的用户输入了开始测距的指令,移动终端MT开始作为定位接收机接收作为测距标的的基站BS下发的CRS信号,若首次执行上述步骤S102至步骤S108得到的查找到的时延值为t1,且在查找得到t1的过程中检测到SNR大于信道指标阈值c,则表示该次测距受噪声干扰较小,可将t1作为TOA输出。若该用户再次输入了开始测距的指令,移动终端MT作为定位接收机接收作为测距标的的基站BS下发的CRS信号并通过执行上述 步骤S102至步骤S108得到的查找到的时延值为t2,移动终端MT所在的区域出现了强干扰从而导致检测到的SNR下降至信道指标阈值c以下,则并不将t2作为TOA输出,而是先根据检测到的SNR生成权重系数α,然后需要将作为历史优质时延值的t1纳入参考,将t1乘以权重系数α,将t2乘以权重系数1-α后再相加,将加法计算后得到的时延值作为TOA输出。
采用此种方式输出的TOA参考了前次SNR较高时输出的TOA,可减小在SNR较低的环境中查找得到的时延值的误差,从而提高测距的准确度。
更进一步的,用户在移动终端MT输入开始测距的指令之后,移动终端MT可反复执行上述步骤S102至步骤S108多次(例如,100次),并根据每次执行时检测到的SNR设置每次查找得到的时延值的权重系数,然后根据每次查找得到的时延值及其对应的权重系数进行加权平均,将平均值作为TOA输出。以此种方式生成的TOA通过反复多次测量得到,通过计算平均值可减少每次测量中产生误差,从而提高了测距的准确度。
例如,再次以前一个应用场景为例,若在该应用场景中,在某时刻检测到的信噪比SNR为-6,则,SNR=-6对应的SNR阈值区间为(-∞,-4),其对应的第一修正参数值为2,第二修正参数值为0,最终,在该信噪比环境下生成相关谱门限阈值的函数即为:
Figure PCTCN2015080285-appb-000009
其中,tref可设置为1Ts。如图6所示的该应用场景中的多径信号分量的相关谱值分布示意图所示,通过首达路径FAP抵达的定位参考信号的信号分量对应的时延t=41Ts。
若信号指标阈值c为-4,则由于SNR<c,则需要根据SNR生成权重系数α。
在该应用场景中,权重系数α可根据如下公式设置:
Figure PCTCN2015080285-appb-000010
则计算得到α(-6)即为9/13,而由于前次测量时,SNR为-2,大于信号指标阈值c,则其作为TOA输出的时延值44Ts即为历史优质时延值。
根据公式:
Figure PCTCN2015080285-appb-000011
即可得到该次测量所输出的TOA为43Ts。
为解决上述传统技术中基于恒定门限查找首达路径FAP获取TOA的方式的信道环境适应能力较差,从而导致测距的准确性降低技术问题,在一个实施例中,特提出了一种对移动终端定位时的TOA获取装置。如图7所示,该装置包括:定位参考信号接收模块102、时域相关处理信号生成模块104、变门限阈值信号生成模块106、TOA查找模块108,其中:
定位参考信号接收模块102,用于接收定位发射机发送的定位参考信号。
在本实施例中,该对移动终端定位时的TOA获取装置基于定位接收机,定位发射机为定位接收机作为测距标的通信装置。例如,若移动终端MT主动对该移动终端MT与某个被选为测距标的的基站BS之间的距离进行测量,则该移动终端MT即为定位接收机,而该被选为测距标的的基站BS则为定位发射机。若基站BS主动对该基站BS与某个移动终端MT的距离进行测量,则该基站BS为定位接收机,而该被选为测距标的的移动终端MT即为定位发射机。
定位参考信号即为在电信网中定位发射机发出的以测量或监控的目的而发送的信号。移动终端MT和基站BS为保持同步,因此存储有相同的同步参考信号序列。移动终端MT或基站BS均可通过定位参考信号将各自上存储的同步参考信号序列发送给对方。
例如,若定位接收机为移动终端MT,作为测距标的的定位发射机为基站BS,则移动终端MT接收到的定位参考信号即可为该基站下发的小区特定参考信号(英文:Cell specific Reference Signal,简称:CRS)信号。若定位接收机为基站BS,作为测距标的的定位发射机为移动终端MT,则移动终端MT接收到的定位参考信号即可为该移动终端MT上传的探测参考信号(英文:Sounding Reference Signal,简称:SRS)。
需要说明的是,由于移动终端MT作为定位接收机和基站BS作为定位接收机获取TOA的过程与定位参考信号的类型无关,因此在后续的实施例中,仅以移动终端MT作为定位接收机,接收作为测距标的的基站BS下发的CRS信号作为定位参考信号为例进行说明。而对于以基站BS作为定位接收机,接收作为测距标的的移动终端MT上传的SRS信号作为定位参考信号的情况不再赘述。
时域相关处理信号生成模块104,用于将定位参考信号接收模块102接收到的定位参考信号与同步参考信号序列进行时域相关处理,得到与时延值对应的多径信号分量的相关谱值。
由于定位接收机与定位发射机之间存在距离差,因此定位参考信号传输至定位接收机时存在时延效果。并且由于定位发射机发出的定位参考信号在传输过程中可能经过反射、衍射等效果,因此,定位参考信号可能通过多条路径抵达定位接收机,定位接收机接收到的定位参考信号则存在多径性的特点,通过将定位参考信号与定位接收机上的同步参考信号序列进行时域相关处理,即可通过计算定位参考信号与同步参考信号序列在时域上的相关性来确定定位参考信号中的与不同的时延值对应的多径信号分量对应的相关谱值。
例如,移动终端MT在接收到作为测距标的的基站BS下发的CRS信号后,可将接收到的CRS信号与该移动终端MT上的作为同步参考信号序列的CRS序列进行时域相关处理,即可得到随时延值变化的多径信号分量的相关谱值的分布。该多径信号分量的相关谱值的分布示意图像可参考图3所示。在图3中,若某一时延值对应的多径信号分量的相关谱值较大,则表示某个多径信号分量在经过该时延值后抵达定位接收机,即定位发射机发射的定位参考信号在传播过程中,选择了某一条路径传播至定位接收机,该路径的距离的长短导致了该条路径传播的定位参考信号传播至定位接收机时产生了在图3的功率谱图像中所对应的时延值。
变门限阈值信号生成模块106:用于检测接收所述定位参考信号时的信道参数,根据所述信道参数以及随时延值递减的函数生成随时延值递减的相关谱门限阈值。
在本实施例中,相关谱门限阈值为时延值变化的值,而不是随时延值的变化恒定的值。由于在信道环境恶劣时,噪声干扰较多,则由时域相关处理信号生成模块104得到的与时延值对应的多径信号分量的相关谱值的中,在时延值较低时,仍存在的相关谱值较大的多径信号分量。因此,可使用随时延值递减的函数生成相关谱门限阈值,并通过实时检测到的信道参数对随时延值递减的函数中的参数进行调整来将在时延值较低时的噪声向量过滤掉,从而排除噪声的干扰。
在本实施例中,信道参数可包括信噪比SNR、信号与干扰加噪声比SINR、信道环境参数等。信道环境参数则可包括加性高斯白噪声(英文:Additive White Gaussian Noise,简称:AWGN)、ETU、EPA等类型。可选的,随时延值递减的函数则可选择以时延值为自变量的随时延值递减的指数函数,而变门限阈值信号生成模块106则可用于根据信噪比SNR设置随时延值递减的指数函数的修正参数值,根据已设置修正参数值的随时延值递减的指数函数生成随时延值递减的相关谱门限阈值。
如图4所示,使用随时延值递减的指数函数生成相关谱门限阈值,可参考以e为底的指数函数的表达式:
Figure PCTCN2015080285-appb-000012
其中,ThresholdValue(t)为相关谱门限阈值,tref、k、b和c为均为指数函数的参数值,可根据实际情况进行设置。由于指数函数递减速率逐步放缓的特性,可为时延值较低时的强噪声设置较高的相关谱门限阈值,并随着时延值的递增逐步放缓相关谱门限阈值的递减速度,从而可使得生成的相关谱门限阈值在时延值较低时急剧下落,而在时延值较低时逐步放缓,既可过滤掉低时延值时的噪声干扰,也可避免通过最短距离抵达的(即通过首达路径FAP抵达的)定位参考信号的分量由于相关谱门限阈值过高而被忽略的问题。
可选的,还可根据信噪比SNR对随时延值递减的指数函数进行修正,具体的,如图5所示,变门限阈值信号生成模块106还用于获取预设的SNR阈值区间;查找所述检测到的信噪比SNR所属的SNR阈值区间;获取所述查找到的SNR阈值区间对应的修正参数值,设置为随时延值递减的指数函数的修正参数值。
信噪比SNR反映了接收到定位参考信号时当前信道的噪声干扰程度。在信噪比SNR较高时,可通过设定随时延值递减的指数函数的参数降低时延值较低时的相关谱门限阈值,从而避免通过首达路径FAP抵达定位接收机的定位参考信号的信号分量由于相关谱门限阈值过高而被忽略;而在信噪比SNR较低时,可通过设定随时延值递减的指数函数的参数提高时延值较低时的相关谱门限阈值,从而避免将噪声误判为通过首达路径FAP抵达定位接收机的定位参考信号的信号分量,从而进一步提高获取TOA的准确度。
具体的,在本实施例中,变门限阈值信号生成模块106还可用于根据公式:
Figure PCTCN2015080285-appb-000013
P(Zn≥aN0)=δ
生成随时延值递减的相关谱门限阈值ThresholdValue(t);其中,变量t为时延值,tref为参考时延,S1(SNR)为检测到的信噪比SNR所属的SNR阈值区间对应的第一修正参数值,S2(SNR)为检测到的信噪比SNR所属的SNR阈值区间对应的第二修正参数值,b为取值在0至1之间的调整系数,N0为噪声常量,Zn为接收到的定位参考信号的信号强度,P(Zn≥aN0)为接收到的定位参考信号的信号强度在时延值为t时大于或等于aN0的概率,δ为概率阈值(可优选为1×10-9),a为P(Zn≥aN0)=δ的解。
可选的调整系数b可以是预设的与信道环境参数对应的参数值。如前所述,信道环境参数可包括AWGN、ETU、EPA等类型,可根据信道环境参数设置相应的调整系数b,从而可使得计算得到的相关谱门限阈值可适应多种信道环境,从而提高测距的准确度。
TOA查找模块108,用于接收所述时域相关处理信号生成模块生成的与时延值对应的相关谱值和所属变门限阈值信号生成模块生成的与时延值对应的相关谱门限阈值,以所述时延值的递增的顺序遍历所述时延值,查找首个遍历到的且该时延值对应的多径信号分量的相关谱值大于该时延值对应的相关谱门限阈值的时延值,将查找到的时延值作为TOA输出。
如图4所示,得到随时延值分布的多径信号分量的相关谱值以及随时延值递减的相关谱门限阈值之后,可随着时延值的递增进行遍历,将遍历到的时延值对应的多径信号分量的相关谱值与该遍历到的时延值对应的相关谱门限阈 值进行比较,若在某一时刻首次判断得到多径信号分量的相关谱值大于相关谱门限阈值,则该时刻对应的时延值即为定位参考信号通过首达路径FAP抵达定位接收机的时延值,由于两点之间直线最短,因此,该通过首达路径FAP抵达定位接收机的定位参考信号的信号分量即为通过直线由定位发射机传播至定位接收机的信号分量,该时延值即为定位参考信号的TOA。
需要说明的是,上述时域相关处理信号生成模块104和变门限阈值信号生成模块106需要同步执行,即通过时域相关处理得到随时延值的增加逐步得到多径信号分量的相关谱值的同时也通过随时延值递减的函数计算得到了在该时刻的相关谱门限阈值的大小,通过将二者输入比较电路即可查找首个遍历到的且该时延值对应的多径信号分量的相关谱值大于该时延值对应的相关谱门限阈值的时延值。
例如,时域相关处理信号生成模块104可基于包含时域相关处理功能的芯片或处理器,得到随时延值的增加变化的多径信号分量的相关谱值的第一路信号,同时,变门限阈值信号生成模块106可基于包含函数计算功能的芯片或处理器(可以与包含时域相关处理功能的芯片或处理器为同一处理器),得到随时延值的增加变化的相关谱门限阈值的第二路信号。TOA查找模块108则可抽样检测第一路信号和第二路信号,抽样的时间点即为遍历到的时延值,若在某个抽样的时间点,检测到的第一路信号大于或等于第二路信号,则该抽样的时间点的时延值即为查找到的首个遍历到的且该时延值对应的多径信号分量的相关谱值大于该时延值对应的相关谱门限阈值的时延值。
以一个实际应用场景为例,若在该应用场景中,若检测到的信道环境参数为ETU类型,则可根据ETU类型设置调整参数b。若预设的SNR阈值区间包括3个区间依次为:(-∞,-4]、(-4,4)、[4,∞),且每个SNR阈值区间对应的第一修正参数值和第二修正参数值依次为:3和4(对应SNR阈值区间(-∞,-4])、2和2(对应SNR阈值区间(-4,4])、2和0(对应SNR阈值区间[4,∞)),则上述生成相关谱门限阈值的函数即可为:
Figure PCTCN2015080285-appb-000014
若在某时刻检测到的信噪比SNR为-2,则,SNR=-2对应的SNR阈值区间为(-4,4),其对应的第一修正参数值为2,第二修正参数值为2,最终,在该信噪比环境下生成相关谱门限阈值的函数即为:
Figure PCTCN2015080285-appb-000015
其中,tref可设置为1Ts,b可设置为0.001,则最终得到的随时延值递减的相关谱门限阈值即为:
Figure PCTCN2015080285-appb-000016
如图6所示的该应用场景中的多径信号分量的相关谱值分布示意图所示,通过首达路径FAP抵达的定位参考信号的信号分量对应的时延t=44Ts,则可将44Ts作为TOA输出。
可选的,在将查找到的时延值作为TOA输出时,还可根据当前信道的信道参数判断该查找到的时延值的适合作为TOA输出,具体的,TOA查找模块108还可用于判断SNR或SINR大于或等于预设的信道指标阈值,若是,则意味着信道环境良好,查找到的时延值适合作为TOA输出。此时,可将该作为TOA输出的时延值作为历史优质时延值进行缓存。若SNR或SINR小于预设的信道指标阈值,则表示该次查找的时延值是在信道环境较恶劣时获取的,即时按照前述方式选择了较合理的相关谱门限阈值,但仍然存在误判的可能,在这种情况下,TOA查找模块108则可用于根据检测到的SNR或SINR生成权重系数;获取缓存的历史优质时延值,根据所述权重系数对所述历史优质时延值和所述查找到的时延值进行加权平均得到修正时延值,将所述修正时延值作为TOA。
通过公式反映出即为:
Figure PCTCN2015080285-appb-000017
例如,若使用移动终端MT的用户输入了开始测距的指令,移动终端MT开始作为定位接收机接收作为测距标的的基站BS下发的CRS信号,若首次执行上述步骤S102至步骤S108得到的查找到的时延值为t1,且在查找得到t1的过程中检测到SNR大于信道指标阈值c,则表示该次测距受噪声干扰较小,可将t1作为TOA输出。若该用户再次输入了开始测距的指令,移动终端MT 作为定位接收机接收作为测距标的的基站BS下发的CRS信号并通过执行上述步骤S102至步骤S108得到的查找到的时延值为t2,移动终端MT所在的区域出现了强干扰从而导致检测到的SNR下降至信道指标阈值c以下,则并不将t2作为TOA输出,而是先根据检测到的SNR生成权重系数α,然后需要将作为历史优质时延值的t1纳入参考,将t1乘以权重系数α,将t2乘以权重系数1-α后再相加,将加法计算后得到的时延值作为TOA输出。
采用此种方式输出的TOA参考了前次SNR较高时输出的TOA,可减小在SNR较低的环境中查找得到的时延值的误差,从而提高测距的准确度。
更进一步的,用户在移动终端MT输入开始测距的指令之后,移动终端MT可反复执行上述步骤S102至步骤S108多次(例如,100次),并根据每次执行时检测到的SNR设置每次查找得到的时延值的权重系数,然后根据每次查找得到的时延值及其对应的权重系数进行加权平均,将平均值作为TOA输出。以此种方式生成的TOA通过反复多次测量得到,通过计算平均值可减少每次测量中产生误差,从而提高了测距的准确度。
例如,再次以前一个应用场景为例,若在该应用场景中,在某时刻检测到的信噪比SNR为-6,则,SNR=-6对应的SNR阈值区间为(-∞,-4),其对应的第一修正参数值为2,第二修正参数值为0,最终,在该信噪比环境下生成相关谱门限阈值的函数即为:
Figure PCTCN2015080285-appb-000018
其中,tref可设置为1Ts。如图6所示的该应用场景中的多径信号分量的相关谱值分布示意图所示,通过首达路径FAP抵达的定位参考信号的信号分量对应的时延t=41Ts。
若信号指标阈值c为-4,则由于SNR<c,则需要根据SNR生成权重系数α。
在该应用场景中,权重系数α可根据如下公式设置:
Figure PCTCN2015080285-appb-000019
则计算得到α(-6)即为9/13,而由于前次测量时,SNR为-2,大于信号指 标阈值c,则其作为TOA输出的时延值44Ts即为历史优质时延值。
根据公式:
Figure PCTCN2015080285-appb-000020
即可得到该次测量所输出的TOA为43Ts。
图8描述了本发明另一个实施例提供的测量到达时间TOA的设备的结构,包括至少一个处理器1402(例如CPU),至少一个无线收发装置(例如天线等)1405或者其他通信接口,存储器1406,和至少一个通信总线1403,用于实现这些装置之间的连接通信。处理器1402用于执行存储器1406中存储的可执行模块,例如计算机程序。存储器1406可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个无线收发装置1405。
在一些实施方式中,存储器1406存储了程序14061,程序14061可以被处理器1402执行,这个程序包括:
接收定位发射机发送的定位参考信号。
将所述定位参考信号与同步参考信号序列进行时域相关处理,得到与时延值对应的多径信号分量的相关谱值。
检测接收所述定位参考信号时的信道参数,根据所述信道参数以及随时延值递减的函数生成随时延值递减的相关谱门限阈值。
以所述时延值的递增的顺序遍历所述时延值,查找首个遍历到的且该时延值对应的多径信号分量的相关谱值大于该时延值对应的相关谱门限阈值的时延值,将查找到的时延值作为TOA输出。
综上所述,实施本发明实施例,将具有如下有益效果:
上述对移动终端定位时的TOA获取方法及装置,对定位参考信号与同步参考信号序列进行时域相关处理得到了与时延值对应的多个多径信号分量的相关谱值,然后根据接收所述定位参考信号时的信道参数通过随时延值递减的函数生成了随时延值递减的相关谱门限阈值,并通过比较多径信号分量的相关谱值与相关谱门限阈值生成到达时间TOA输出。其中,通过时域相关处理得 到的相关谱值和传统技术中使用能量谱值的方式相比,增益更大,因此,多径信号与噪声之间的差异较大,在于相关谱门限阈值进行比较时产生的误差较小。而且,根据信道参数通过随时延值递减的函数生成的随时延值递减的相关谱门限阈值使得在SNR较小时,与时延值较小处对应的相关谱门限阈值较大,从而过滤掉了部分噪声产生的影响。因此,上述对移动终端定位时的TOA获取方法及装置能够适应SNR较小的环境,使得测距的准确度提高。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (13)

  1. 一种对移动终端定位时的到达时间TOA获取方法,其特征在于,所述方法包括:
    接收定位发射机发送的定位参考信号;
    将所述定位参考信号与同步参考信号序列进行时域相关处理,得到与时延值对应的多径信号分量的相关谱值;
    检测接收所述定位参考信号时的信道参数,根据所述信道参数以及随时延值递减的函数生成随时延值递减的相关谱门限阈值;
    以所述时延值的递增的顺序遍历所述时延值,查找首个遍历到的且该时延值对应的多径信号分量的相关谱值大于该时延值对应的相关谱门限阈值的时延值,将查找到的时延值作为TOA输出。
  2. 根据权利要求1所述的对移动终端定位时的TOA获取方法,其特征在于,所述信道参数包括信噪比SNR;
    所述根据所述信道参数以及随时延值递减的函数生成随时延值递减的相关谱门限阈值包括:
    根据信噪比SNR设置随时延值递减的指数函数的修正参数值,根据所述已设置修正参数值的随时延值递减的指数函数生成随时延值递减的相关谱门限阈值。
  3. 根据权利要求1所述的对移动终端定位时的TOA获取方法,其特征在于,所述根据信噪比SNR设置随时延值递减的指数函数的修正参数值包括:
    获取预设的SNR阈值区间;
    查找所述检测到的信噪比SNR所属的SNR阈值区间;
    获取所述查找到的SNR阈值区间对应的修正参数值,设置为随时延值递减的指数函数的修正参数值。
  4. 根据权利要求3所述的对移动终端定位时的TOA获取方法,其特征在于,所述根据所述已设置修正参数值的随时延值递减的指数函数生成随时延值 递减的相关谱门限阈值为:
    根据公式:
    Figure PCTCN2015080285-appb-100001
    P(Zn≥aN0)=δ
    生成随时延值递减的相关谱门限阈值ThresholdValue(t);其中,变量t为时延值,tref为参考时延,S1(SNR)为检测到的信噪比SNR所属的SNR阈值区间对应的第一修正参数值,S2(SNR)为检测到的信噪比SNR所属的SNR阈值区间对应的第二修正参数值,b为取值在0至1之间的调整系数,N0为噪声常量,Zn为接收到的定位参考信号的信号强度,P(Zn≥aN0)为接收到的定位参考信号的信号强度在时延值为t时大于或等于aN0的概率,δ为概率阈值,a为P(Zn≥aN0)=δ的解。
  5. 根据权利要求1至4任一项所述的对移动终端定位时的TOA获取方法,其特征在于,所述信道参数包括信噪比SNR或信号与干扰加噪声比SINR;
    所述将查找到的时延值作为TOA包括:
    在所述SNR或SINR大于或等于预设的信道指标阈值时,将所述查找到的时延值缓存作为历史优质时延值,将查找到的时延值作为TOA。
  6. 根据权利要求5所述的对移动终端定位时的TOA获取方法,其特征在于,所述将查找到的时延值作为TOA包括:
    在所述SNR或SINR小于预设的信道指标阈值时,根据检测到的SNR或SINR生成权重系数;
    获取缓存的历史优质时延值,根据所述权重系数对所述历史优质时延值和所述查找到的时延值进行加权平均得到修正时延值,将所述修正时延值作为TOA。
  7. 一种对移动终端定位时的到达时间TOA获取装置,其特征在于,包括:
    定位参考信号接收模块,用于接收定位发射机发送的定位参考信号;
    时域相关处理信号生成模块,用于将所述定位参考信号接收模块接收到的 定位参考信号与同步参考信号序列进行时域相关处理,得到与时延值对应的多径信号分量的相关谱值;
    变门限阈值信号生成模块,用于检测接收所述定位参考信号时的信道参数,根据所述信道参数以及随时延值递减的函数生成随时延值递减的相关谱门限阈值;
    TOA查找模块,用于接收所述时域相关处理信号生成模块生成的与时延值对应的相关谱值和所属变门限阈值信号生成模块生成的与时延值对应的相关谱门限阈值,以所述时延值的递增的顺序遍历所述时延值,查找首个遍历到的且该时延值对应的多径信号分量的相关谱值大于该时延值对应的相关谱门限阈值的时延值,将查找到的时延值作为TOA输出。
  8. 根据权利要求1所述的对移动终端定位时的TOA获取装置,其特征在于,所述信道参数包括信噪比SNR;
    所述变门限阈值信号生成模块还用于根据信噪比SNR设置随时延值递减的指数函数的修正参数值,根据所述已设置修正参数值的随时延值递减的指数函数生成随时延值递减的相关谱门限阈值。
  9. 根据权利要求1所述的对移动终端定位时的TOA获取装置,其特征在于,所述变门限阈值信号生成模块还用于获取预设的SNR阈值区间;查找所述检测到的信噪比SNR所属的SNR阈值区间;获取所述查找到的SNR阈值区间对应的修正参数值,设置为随时延值递减的指数函数的修正参数值。
  10. 根据权利要求9所述的对移动终端定位时的TOA获取装置,其特征在于,所述变门限阈值信号生成模块还用于根据公式:
    Figure PCTCN2015080285-appb-100002
    P(Zn≥aN0)=δ
    生成随时延值递减的相关谱门限阈值ThresholdValue(t);其中,变量t为时延值,tref为参考时延,S1(SNR)为检测到的信噪比SNR所属的SNR阈值区间对应的第一修正参数值,S2(SNR)为检测到的信噪比SNR所属的SNR阈值区间对应的第二修正参数值,b为取值在0至1之间的调整系数,N0为噪声常量,Zn 为接收到的定位参考信号的信号强度,P(Zn≥aN0)为接收到的定位参考信号的信号强度在时延值为t时大于或等于aN0的概率,δ为概率阈值,a为P(Zn≥aN0)=δ的解。
  11. 根据权利要求7至10任一项所述的对移动终端定位时的TOA获取装置,其特征在于,所述信道参数包括信噪比SNR或信号与干扰加噪声比SINR;
    所述TOA查找模块用于在所述SNR或SINR大于或等于预设的信道指标阈值时,将所述查找到的时延值缓存作为历史优质时延值,将查找到的时延值作为TOA。
  12. 根据权利要求11所述的对移动终端定位时的TOA获取方法,其特征在于,所述TOA查找模块用于在所述SNR或SINR小于预设的信道指标阈值时,根据检测到的SNR或SINR生成权重系数;获取缓存的历史优质时延值,根据所述权重系数对所述历史优质时延值和所述查找到的时延值进行加权平均得到修正时延值,将所述修正时延值作为TOA。
  13. 一种测量到达时间TOA的设备,其特征在于,所述测量到达时间TOA的设备包括无线收发装置、存储器以及处理器,其中,所述存储器中存储一组程序,且所述处理器用于调用所述存储器中存储的程序,用于执行以下操作:
    接收定位发射机发送的定位参考信号;
    将所述定位参考信号与同步参考信号序列进行时域相关处理,得到与时延值对应的多径信号分量的相关谱值;
    检测接收所述定位参考信号时的信道参数,根据所述信道参数以及随时延值递减的函数生成随时延值递减的相关谱门限阈值;
    以所述时延值的递增的顺序遍历所述时延值,查找首个遍历到的且该时延值对应的多径信号分量的相关谱值大于该时延值对应的相关谱门限阈值的时延值,将查找到的时延值作为TOA输出。
PCT/CN2015/080285 2015-05-29 2015-05-29 对移动终端定位时的到达时间toa获取方法及装置 WO2016191941A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15893604.7A EP3255449B1 (en) 2015-05-29 2015-05-29 Acquisition method and device of time of arrival for positioning mobile terminal
BR112017020558-0A BR112017020558B1 (pt) 2015-05-29 2015-05-29 Método, aparelho e dispositivo para obter tempo de chegada quando um terminal móvel é localizado
CN201580068547.8A CN107003383B (zh) 2015-05-29 2015-05-29 对移动终端定位时的到达时间toa获取方法及装置
PCT/CN2015/080285 WO2016191941A1 (zh) 2015-05-29 2015-05-29 对移动终端定位时的到达时间toa获取方法及装置
US15/824,105 US10241188B2 (en) 2015-05-29 2017-11-28 Method and apparatus for obtaining time of arrival TOA when mobile terminal is located

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/080285 WO2016191941A1 (zh) 2015-05-29 2015-05-29 对移动终端定位时的到达时间toa获取方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/824,105 Continuation US10241188B2 (en) 2015-05-29 2017-11-28 Method and apparatus for obtaining time of arrival TOA when mobile terminal is located

Publications (1)

Publication Number Publication Date
WO2016191941A1 true WO2016191941A1 (zh) 2016-12-08

Family

ID=57439923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080285 WO2016191941A1 (zh) 2015-05-29 2015-05-29 对移动终端定位时的到达时间toa获取方法及装置

Country Status (5)

Country Link
US (1) US10241188B2 (zh)
EP (1) EP3255449B1 (zh)
CN (1) CN107003383B (zh)
BR (1) BR112017020558B1 (zh)
WO (1) WO2016191941A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018205169A1 (en) * 2017-05-10 2018-11-15 Huawei Technologies Co., Ltd. Method and device for estimating a time of arrival of a radio signal
CN115696572A (zh) * 2022-12-30 2023-02-03 北京数原数字化城市研究中心 一种定位数据的生成方法、装置及相关设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110971326B (zh) * 2018-09-28 2021-07-16 华为技术有限公司 一种时间同步的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110221635A1 (en) * 2010-03-09 2011-09-15 Xianbin Wang System, method and apparatus for integrated local area locationing, tracking and communications
CN102265570A (zh) * 2008-12-24 2011-11-30 高通股份有限公司 对信道衰落稳健的时序获取方法及系统
CN102273081A (zh) * 2008-12-30 2011-12-07 真实定位公司 使用广义误差分布来进行位置估计的方法
CN103238041A (zh) * 2010-11-12 2013-08-07 内克斯特纳夫有限公司 广域定位系统
CN103297087A (zh) * 2013-05-13 2013-09-11 北京航空航天大学 一种超宽带定位系统的到达时间估计方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236365B1 (en) * 1996-09-09 2001-05-22 Tracbeam, Llc Location of a mobile station using a plurality of commercial wireless infrastructures
CA2265875C (en) * 1996-09-09 2007-01-16 Dennis Jay Dupray Location of a mobile station
US6493380B1 (en) * 1999-05-28 2002-12-10 Nortel Networks Limited System and method for estimating signal time of arrival
US6453168B1 (en) * 1999-08-02 2002-09-17 Itt Manufacturing Enterprises, Inc Method and apparatus for determining the position of a mobile communication device using low accuracy clocks
JP3943305B2 (ja) * 2000-01-19 2007-07-11 三菱電機株式会社 スペクトル拡散受信装置、およびスペクトル拡散受信方法
US7969311B2 (en) * 2005-12-15 2011-06-28 Invisitrack, Inc. Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
US9288623B2 (en) * 2005-12-15 2016-03-15 Invisitrack, Inc. Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
EP2070200B1 (en) * 2006-09-20 2012-10-31 Fundacio Privada Centre Tecnologic de Telecomunicacions de Catalunya Method for estimating the time of arrival in ultra wideband systems
EP2338313B1 (en) 2008-09-10 2018-12-12 NextNav, LLC Wide area positioning system
US8134990B2 (en) 2009-12-14 2012-03-13 Telefonaktiebolaget Lm Ericsson (Publ) Defining adaptive detection thresholds
CN103209475B (zh) 2012-01-16 2016-05-25 华为技术有限公司 定位方法、定位服务器、终端和基站
US8989772B2 (en) * 2012-11-30 2015-03-24 Google Technology Holdings LLC Methods and apparatus for estimating time of arrival information associated with a wireless signal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102265570A (zh) * 2008-12-24 2011-11-30 高通股份有限公司 对信道衰落稳健的时序获取方法及系统
CN102273081A (zh) * 2008-12-30 2011-12-07 真实定位公司 使用广义误差分布来进行位置估计的方法
US20110221635A1 (en) * 2010-03-09 2011-09-15 Xianbin Wang System, method and apparatus for integrated local area locationing, tracking and communications
CN103238041A (zh) * 2010-11-12 2013-08-07 内克斯特纳夫有限公司 广域定位系统
CN103297087A (zh) * 2013-05-13 2013-09-11 北京航空航天大学 一种超宽带定位系统的到达时间估计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3255449A4 *
WU, SHAOHUA ET AL.: "TOA Estimation Based on Match-Filtering Detection for UWB Wireless Sensor Network", JOURNAL OF SOFTWARE, vol. 20, no. 11, 30 November 2009 (2009-11-30), XP009500743, ISSN: 1000-9825 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018205169A1 (en) * 2017-05-10 2018-11-15 Huawei Technologies Co., Ltd. Method and device for estimating a time of arrival of a radio signal
US11428774B2 (en) 2017-05-10 2022-08-30 Huawei Technologies Co., Ltd. Method and device for estimating a time of arrival of a radio signal
CN115696572A (zh) * 2022-12-30 2023-02-03 北京数原数字化城市研究中心 一种定位数据的生成方法、装置及相关设备

Also Published As

Publication number Publication date
EP3255449A4 (en) 2018-03-21
CN107003383A (zh) 2017-08-01
EP3255449B1 (en) 2019-08-07
CN107003383B (zh) 2020-04-21
US10241188B2 (en) 2019-03-26
BR112017020558B1 (pt) 2022-08-09
BR112017020558A2 (zh) 2018-07-17
US20180081024A1 (en) 2018-03-22
EP3255449A1 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP3461167B2 (ja) 位置計算方法及び位置算出装置
US9817112B2 (en) Pairwise measurements for improved position determination
CN109155984B (zh) 确定通道时延的方法、定位方法和相关设备
US9681267B2 (en) Positioning techniques for narrowband wireless signals under dense multipath conditions
US7574221B2 (en) Method for estimating jointly time-of-arrival of signals and terminal location
JP3740953B2 (ja) 無線位置測定端末および無線位置測定システム
US9860866B2 (en) Systems and methods providing transmit diversity to combat multipath effects in position estimation
EP1478202A1 (en) A method of locating and measuring a mobile station
JP2004242122A (ja) 無線信号の伝搬時間差に基づく端末位置の測位方法及び測位システム
US20160249316A1 (en) Non-line-of-sight (nlos) and line-of-sight (los) classification techniques for indoor ranging
JP2005526257A (ja) 無線信号の到着時刻誤差の検出及び補償のためのシステム及び方法
US10241188B2 (en) Method and apparatus for obtaining time of arrival TOA when mobile terminal is located
TW201835599A (zh) 測量方法和裝置、處理器製造方法及積體電路建構方法
CN108337197B (zh) 一种直射径提取方法及装置
KR20040031020A (ko) 무선 시스템 및 무선 스테이션
KR102416604B1 (ko) 무선통신 시스템의 정밀 측위 방법 및 장치
CN112929820A (zh) 一种定位方位检测方法、定位终端及计算机可读存储介质
CN114442034A (zh) 基于双曲线tdoa的定位方法、装置及计算机可读存储介质
US20030198258A1 (en) Method and system for determining a propagation delay, and an electronic device
JP2002236162A (ja) 位置計算方法及び位置算出装置
KR20120047694A (ko) 관측된 도착시간차를 이용한 휴대용 단말기 위치 추적 방법 및 이러한 방법을 사용하는 휴대용 단말기
JPH11308658A (ja) 移動局の位置検出方法、並びに移動局、基地局及び移動通信システム
JP2002006027A (ja) 無線網グローバルポジショニング一体化(wgp)システムの無線端末に対する往復遅延時間(rtd)パラメータを得るための方法。
KR20050085264A (ko) 펄스 피크의 위치 결정

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893604

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015893604

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017020558

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017020558

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170926