WO2016189879A1 - 三次元桟構造体 - Google Patents

三次元桟構造体 Download PDF

Info

Publication number
WO2016189879A1
WO2016189879A1 PCT/JP2016/002565 JP2016002565W WO2016189879A1 WO 2016189879 A1 WO2016189879 A1 WO 2016189879A1 JP 2016002565 W JP2016002565 W JP 2016002565W WO 2016189879 A1 WO2016189879 A1 WO 2016189879A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene
based thermoplastic
dimensional
thermoplastic elastomer
thermoplastic resin
Prior art date
Application number
PCT/JP2016/002565
Other languages
English (en)
French (fr)
Inventor
高岡 伸行
Original Assignee
株式会社シーエンジ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シーエンジ filed Critical 株式会社シーエンジ
Priority to US15/573,488 priority Critical patent/US10233073B2/en
Priority to CN201680030618.XA priority patent/CN107614238B/zh
Priority to JP2017520248A priority patent/JPWO2016189879A1/ja
Priority to EP16799590.1A priority patent/EP3305500A4/en
Publication of WO2016189879A1 publication Critical patent/WO2016189879A1/ja
Priority to PH12017502111A priority patent/PH12017502111A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C16/00Stand-alone rests or supports for feet, legs, arms, back or head
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/12Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with fibrous inlays, e.g. made of wool, of cotton
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/12Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with fibrous inlays, e.g. made of wool, of cotton
    • A47C27/121Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with fibrous inlays, e.g. made of wool, of cotton with different inlays
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G9/00Bed-covers; Counterpanes; Travelling rugs; Sleeping rugs; Sleeping bags; Pillows
    • A47G9/10Pillows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B68SADDLERY; UPHOLSTERY
    • B68GMETHODS, EQUIPMENT, OR MACHINES FOR USE IN UPHOLSTERING; UPHOLSTERY NOT OTHERWISE PROVIDED FOR
    • B68G5/00Resilient upholstery pads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/03Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • B29C2071/022Annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0092Producing upholstery articles, e.g. cushions, seats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0014Catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0085Copolymers

Definitions

  • the present invention relates to a three-dimensional beam structure having a three-dimensional beam structure used for mattresses, cushions and the like.
  • the conventional three-dimensional network structure with good air permeability has the property that loops are formed randomly and shrink when heated. For this reason, for example, when used for mattresses, if the disinfection at high temperature is repeated, the three-dimensional network structure contracts, so the cover tends to wrinkle, the user feels uncomfortable, and pressure ulcers may occur due to long-term use. It was. In particular, in the longitudinal direction with a long length, when the three-dimensional network structure contracts, the influence is large, and it is easy to wrinkle.
  • the conventional three-dimensional network structure may not be able to exhibit functions that match the characteristics of the human body.
  • the human body controls posture while sleeping, stretches the body, changes position, loosens muscles and body, and evenly balances the burden on the body, resetting the body distortion
  • the structural characteristics of the corresponding three-dimensional network structure were insufficient.
  • the demands for products that use a three-dimensional network structure are diversified, and the quality requirements for the products are high, but there is a problem that it is difficult to ensure product quality for such diverse requirements that match the characteristics of the human body.
  • the present invention realizes a structure with the property of extending in the longitudinal direction by heat, enables cleaning at high temperature, and has hysteresis loss and elastic characteristics that match the characteristics of the human body, thereby meeting various quality requirements. The issue is to ensure.
  • the present invention comprises a polyethylene-based thermoplastic resin having a longitudinal direction corresponding to the extrusion direction, a transverse direction perpendicular to the extrusion direction, and a thickness direction, by forming continuous loops by randomly welding the continuous filaments, It is a three-dimensional crosspiece structure made of a polyester-based thermoplastic elastomer or a mixture of a polyethylene-based thermoplastic resin and a polyethylene-based thermoplastic elastomer.
  • the rebound resilience of the three-dimensional crosspiece structure is 13 cm or more and the hysteresis loss is 34%. Not exceeding 13%, in the case of a polyethylene-based thermoplastic resin, at a temperature of 90 ° C.
  • Thermal elongation degree before test is a three-dimensional bar structure which is 0-8%.
  • the thermal elongation before and after the dry hot air test is preferably 0 to 8% in the transverse direction.
  • the three-dimensional crosspiece structure has anisotropic thermal elongation characteristics in which the thermal elongation rates in the longitudinal direction and the lateral direction are different.
  • the impact resilience change rate after a constant load repeated test is 25% or less, and in the case of a polyester thermoplastic elastomer, the resilience change rate after a constant load repeat test is 20% or less. Is preferred.
  • the apparent density of the three-dimensional crosspiece structure is 0.025 g / cm 3 to 0.2 g / cm 3 , the thickness is 5 mm to 500 mm in a single layer and multiple layers, and the wire diameter is 0.1 mm to 1. 5 mm is preferable.
  • the polyethylene-based thermoplastic resin is preferably polyethylene or an ethylene / ⁇ -olefin copolymer resin mainly composed of ethylene and an ⁇ -olefin having 3 or more carbon atoms.
  • the mixture of the polyethylene-based thermoplastic resin and the polyethylene-based thermoplastic elastomer is a mixture of an ethylene / ⁇ -olefin copolymer resin mainly composed of ethylene and an ⁇ -olefin having 3 or more carbon atoms and a polyethylene-based thermoplastic elastomer, and the mixture
  • the content of the polyethylene-based thermoplastic elastomer is preferably 45% or less by weight.
  • the three-dimensional cross structure is for cushions, cushion sheets, cushions, pillows, care products, bed cushions or mattresses.
  • the three-dimensional crosspiece structure is provided with a plurality of surfaces, and preferably two, three, or four surfaces are formed, and if necessary, are formed into a curved surface shape or an irregular shape.
  • the three-dimensional crosspiece structure is preferably a laminate of a three-dimensional network structure made of a polyethylene-based thermoplastic resin and a three-dimensional network structure made of a polyethylene-based thermoplastic elastomer.
  • the three-dimensional crosspiece structure according to the present invention is an excellent three-dimensional crosspiece structure that has a low hysteresis loss and a soft high resilience characteristic, and can provide elastic characteristics that match the characteristics of the human body. Because of this superior property, it can adapt to the characteristics of the human body, and can respond to diversification of demands for elastic properties of products, and sophistication of quality requirements for products, medical care products, bedding, furniture, or vehicles. It has become possible to provide a three-dimensional crosspiece structure suitable for cushion materials or skin materials used for seats and the like. For example, an application example of a mattress for medical / nursing care can realize an appropriate elastic characteristic of a three-dimensional crosspiece structure, and can respond to natural adjustment functions of the human body during sleep, etc. Easy to get up. In addition, caregivers can achieve their objectives with little force using the repulsive force of the mattress when changing the patient's position.
  • the three-dimensional crosspiece structure of the present embodiment (hereinafter simply abbreviated as a structure) will be described.
  • This three-dimensional cross structure is constituted by a plurality of filaments entangled randomly in a loop shape and heat-welded.
  • the structure is a three-dimensional network structure having a cross-shaped sparse and dense structure in which a rough portion and a dense portion alternately appear in the extrusion direction during production.
  • Structs can have various forms such as those with hard ends, those with different surface layer thicknesses on the front and back sides, those with different softness on the front and back sides, and those with holes in the inside. Also, the hardness can be changed depending on the site depending on the purpose of use.
  • the structure of the present invention preferably has a hysteresis loss of 34% or less.
  • a small hysteresis loss means that the return force after release is fast and large.
  • a hysteresis loss of 34% or less is preferable because the resilience is large and the object of the present invention is soft and highly repulsive. If it exceeds 34%, the elastic repulsion force becomes slow and weak, which is not preferable. More preferably, it is 15 to 34%, and further preferably 20 to 34%.
  • the apparent density (bulk density) of the structure of the present invention is an important factor that determines soft and high resilience, and is designed as necessary, but is preferably 0.025 g / cm 3 to 0.00. It is 2 g / cm 3 , more preferably 0.04 g / cm 3 to 0.09 g / cm 3 . If the apparent density is less than 0.025 g / cm 3 , the shape cannot be maintained, and if it exceeds 0.20 g / cm 3 , it is not suitable as a mattress.
  • the structure has a dense and dense band-shaped portion repeated in the extrusion direction, and the ratio of the number of junction points per unit weight of the dense band-shaped portion based on the sparse band-shaped portion is 0.96 to 1.33.
  • the apparent density of the dense band-shaped portion with respect to the portion has a difference of 0.005 g / cm 3 or more.
  • the number of joint points per unit weight is cut into a rectangular parallelepiped shape so that the sample is cut in a width of 2 cm in a direction orthogonal to the extrusion direction and includes two dense band portions and two sparse band portions in the extrusion direction. I made a piece. After measuring the height of the four corners of each piece, the volume (cm 3 ) was determined, and the apparent density (g / cm 3 ) was calculated by gradually decreasing the weight (g) of the sample by volume.
  • Count the number of junction points of the piece and divide this number by the volume of the piece to calculate the number of junction points per unit volume (pieces / cm 3 ), and divide the number of junction points per unit volume by the apparent density.
  • the number of junctions per unit weight (pieces / g) was calculated.
  • the joint point was a fusion part between two filaments, and the number of junction points was measured by pulling the filament and peeling the fusion part until it became one filament.
  • the structure of the present invention is a continuous linear random loop comprising a thermoplastic resin or a thermoplastic elastomer or a mixture of a thermoplastic resin and a thermoplastic elastomer having a filament diameter (diameter) of 0.3 mm to 1.5 mm.
  • the wire diameter may be irregular or hollow, but it is an important factor for obtaining a soft touch. If the wire diameter is small, the hardness required for cushioning cannot be maintained, and conversely, if the wire diameter is too large, it becomes hard. Therefore, it is necessary to set an appropriate range.
  • the loop length of the loop is preferably 5 to 50 mm, particularly 8 to 15 mm.
  • the surface loop may be laid to form a high-density surface layer, or a high-density surface layer may not be formed.
  • the thickness of the structure of the present invention is greatly related to softness and high resilience, and is preferably 5 mm to 500 mm, more preferably 10 to 150 mm, and even more preferably 30 to 110 mm. If it is less than 5 mm, the high resilience is low, which is not preferable. If it exceeds 500 mm, the resilience becomes too high, which is not preferable.
  • the vertical and horizontal dimensions of this structure are, for example, a width of 600 to 2000 mm, a length of 1300 to 2500 mm, a height of 30 to 120 mm for a mattress, a cushion, and the like, and a width of 250 to 500 mm, a length of 300 to 800 mm for a pillow.
  • a thickness of 40 to 120 mm can be exemplified. Further, it can be used as a single material, a composite material or a multilayer material for the skin material. Although the dimension illustrated the typical dimension, it is not necessarily restricted to the dimension.
  • the material of the structure is preferably a polyethylene resin, a polyester thermoplastic elastomer, or a mixture of a polyethylene resin and a polyethylene thermoplastic elastomer.
  • the thermal elongation rate in the longitudinal and lateral directions before and after the 90 ° C. dry hot air test is preferably 0% or more and 8% or less, preferably 3% or less. Further preferred. If the thermal elongation rate before and after the 90 ° C. dry hot air test exceeds 8%, it is difficult to enter the cover. If the thermal elongation rate before and after the 90 ° C. dry hot air test is less than 0%, it is not preferable because the length of the product is shortened and the cover is wrinkled when disinfected at a high temperature.
  • the longitudinal and transverse thermal elongation rates before and after the 130 ° C. dry hot air test are preferably 0% or more and 8% or less, preferably 3% or less. Further preferred. If the thermal elongation rate before and after the 130 ° C. dry hot air test exceeds 8%, it is difficult to enter the cover. If the thermal elongation rate before and after the 130 ° C. dry hot air test is less than 0%, the length of the product is shortened and the cover is wrinkled when disinfected at a high temperature, which is not preferable.
  • the thermal elongation rate in the longitudinal and lateral directions before and after the 90 ° C. dry hot air test is 0% or more and 8%. The following is preferable, and 3% or less is more preferable. If the thermal elongation rate before and after the 90 ° C. dry hot air test exceeds 8%, it is difficult to enter the cover, which is not preferable. If the thermal elongation rate before and after the 90 ° C. dry hot air test is less than 0%, it is not preferable because the length of the product is shortened and the cover is wrinkled when disinfected at a high temperature.
  • the structure of the present invention is used for a cushioning material, it is necessary to appropriately select a resin, a wire diameter, a loop diameter, a surface layer, a bulk density, and a shape to be used depending on the purpose of use and a use site.
  • the raw materials are selected in a timely manner according to the hardness preference in the country of use.
  • an appropriate bulk density is selected depending on whether it is a surface layer or an intermediate layer.
  • it can be molded into a shape suitable for the purpose of use using a molding die or the like to such an extent that the three-dimensional structure is not impaired, and can be used for a vehicle seat, an aircraft seat, a ship seat, a chair, furniture, and the like.
  • the polyethylene-based thermoplastic resin used in the structure of the present invention is preferably a low-density polyethylene resin having a bulk density of 0.94 g / cm 3 or less, particularly ethylene composed of ethylene and an ⁇ -olefin having 3 or more carbon atoms.
  • -It is preferably made of an ⁇ -olefin copolymer resin.
  • Use of a raw material exceeding 0.94 g / cm 3 is not preferable because the cushion material tends to be hard. More preferably 0.935 g / cm 3 or less, still more 0.91 g / cm 3 or less is more preferred.
  • a floor of 0.8 g / cm 3 or more in view of the strength retention is more preferably 0.85 g / cm 3 or more.
  • the ethylene / ⁇ -olefin copolymer is preferably a copolymer described in JP-A-6-293813, and is obtained by copolymerizing ethylene and an ⁇ -olefin having 3 or more carbon atoms.
  • Examples of the ⁇ -olefin having 3 or more carbon atoms include propylene, butene-1, pentene-1, hexene-1, 4-methyl-1-pentene, heptene-1, octene-1, nonene-1, and decene.
  • This copolymer can be obtained by copolymerizing ethylene and ⁇ -olefin using a catalyst system having a basic structure composed of a specific metallocene compound and an organometallic compound.
  • the polyester-based thermoplastic elastomer used in the structure of the present invention comprises a high-melting-point crystalline polymer segment (a) mainly composed of a crystalline aromatic thermoplastic polyester elastomer unit, an aliphatic polyether unit and / or
  • the thermoplastic polyester / elastomer block copolymer (A) is mainly composed of a low-melting polymer segment (b) composed of an aliphatic thermoplastic polyester / elastomer unit.
  • thermoplastic elastomers a polyester block copolymer having a crystalline aromatic polyester unit as a hard segment and an aliphatic polyether unit such as poly (alkylene oxide) glycol and / or an aliphatic polyester unit such as polylactone as a soft segment.
  • a polymer (polyester elastomer) has characteristics that are excellent in low-temperature and high-temperature characteristics, and is characterized by relatively low temperature dependency of rigidity.
  • the bulk density of the polyester thermoplastic elastomer is preferably 1.01 to 1.60 g / cm 3 , more preferably 1.05 to 1.20 g / cm 3 .
  • Polyester thermoplastic elastomers are preferably used because they can reduce temperature dependence over a wide temperature range.
  • the polyester-based thermoplastic elastomer includes a high-melting-point crystalline polymer segment (a1) composed of a crystalline aromatic polyester unit, a low-melting-point polymer segment (a2) composed of an aliphatic polyether unit and / or an aliphatic polyester unit.
  • the high-melting crystalline polymer segment (a1) is mainly composed of an aromatic dicarboxylic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof.
  • aromatic dicarboxylic acids that are polyesters include terephthalic acid, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, anthracene dicarboxylic acid, diphenyl-4,4 ′; ⁇ -dicarboxylic acid, diphenoxyeta Dicarboxylic acid, 4,4 '; - diphenyl ether dicarboxylic acid, 5-sulfoisophthalic acid, and 3-like sodium sulfoisophthalate and the like.
  • aromatic dicarboxylic acid is mainly used, if necessary, a part of the aromatic dicarboxylic acid may be converted into alicyclic dicarboxylic acid such as 1,4-cyclohexanedicarboxylic acid, cyclopentanedicarboxylic acid, 4,4 ′; -dicyclohexyldicarboxylic acid, etc. It may be substituted with an acid or an aliphatic dicarboxylic acid such as adipic acid, succinic acid, oxalic acid, sebacic acid, dodecanedioic acid, and dimer acid.
  • aliphatic dicarboxylic acid such as adipic acid, succinic acid, oxalic acid, sebacic acid, dodecanedioic acid, and dimer acid.
  • ester-forming derivatives of dicarboxylic acids such as lower alkyl esters, aryl esters, carbonates, and acid halides can be used equally.
  • the diol include diols having a molecular weight of 400 or less, for example, aliphatic diols such as 1,4-butanediol, ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, decamethylene glycol, , 1-cyclohexanedimethanol, 1,4-dicyclohexanedimethanol, tricyclodecane dimethanol and the like, and xylylene glycol, bis (p-hydroxy) diphenyl, bis (p-hydroxy) diphenylpropane, 2,2 ′; -bis [4- (2-hydroxyethoxy) phenyl] propane, bis [4- (2-hydroxyethoxy) phenyl] sulfone, 1,1
  • a preferable high-melting crystalline polymer segment (a1) is a polybutylene terephthalate unit derived from terephthalic acid and / or dimethyl terephthalate and 1,4-butanediol. Also preferred are those comprising polybutylene terephthalate units derived from terephthalic acid and / or dimethyl terephthalate and polybutylene isophthalate units derived from isophthalic acid and / or dimethyl isophthalate and 1,4-butanediol. .
  • the low-melting polymer segment (a2) of the polyester-based thermoplastic elastomer used in the present invention is an aliphatic polyether and / or an aliphatic polyester bag.
  • Aliphatic polyethers include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, copolymers of ethylene oxide and propylene oxide, poly (propylene oxide) Examples thereof include ethylene oxide addition polymers of glycol and copolymer glycols of ethylene oxide and tetrahydrofuran.
  • Examples of the aliphatic polyester cocoon include poly ( ⁇ -caprolactone), polyenanthlactone, polycaprylolactone, polybutylene adipate, and polyethylene adipate.
  • poly (tetramethylene oxide) glycol, poly (propylene oxide) glycol ethylene oxide adducts, ethylene oxide and tetrahydrofuran are preferably used such as copolymer glycol, poly ( ⁇ -caprolactone), polybutylene adipate, and polyethylene adipate, among which poly (tetramethylene oxide) glycol, poly (propylene oxide) glycol ethylene oxide adduct, and The use of a copolymer glycol of ethylene oxide and tetrahydrofuran is preferred.
  • the number average molecular weight of these low-melting polymer segments is preferably about 300 to 6000 in the copolymerized state.
  • the amount of copolymerization of the low melting point polymer segment (a2) in the polyester thermoplastic elastomer used in the present invention is not particularly limited, but is preferably about 10 to 90% by weight, more preferably about 30 to 85% by weight, About 50 to 80% by weight is particularly preferable.
  • the copolymerization amount of the low melting point polymer segment (a2) is less than 10% by weight, the flexibility and the bending fatigue property are deteriorated.
  • the copolymerization amount of the low melting point polymer segment (a2) exceeds 90% by weight, mechanical properties, high temperature characteristics, oil resistance, and chemical resistance are not sufficiently exhibited.
  • the polyester-based thermoplastic elastomer used in the present invention can be produced by a known method. Specific examples thereof include, for example, a method of transesterifying a lower alcohol diester of a dicarboxylic acid, an excessive amount of a low molecular weight glycol and a low melting point polymer segment component in the presence of a catalyst, and polycondensing the resulting reaction product, and Any method such as a method in which a dicarboxylic acid, an excess amount of glycol and a low melting point polymer segment component are esterified in the presence of a catalyst and the resulting reaction product is polycondensed may be used.
  • the above block copolymers may be used alone or in combination of two or more.
  • a blended or copolymerized non-elastomeric component can be used in the present invention.
  • a mixture of a polyethylene-based thermoplastic resin and a polyethylene-based thermoplastic elastomer used in the structure of the present invention comprises an ethylene / ⁇ -olefin copolymer resin mainly composed of ethylene and an ⁇ -olefin having 3 or more carbon atoms and a polyethylene-based thermoplastic elastomer. It is preferable that the polyethylene thermoplastic elastomer content in the mixture is 45% or less by weight. If the content of the polyethylene-based thermoplastic elastomer in the mixture exceeds 45% by weight, the hysteresis loss increases and it becomes difficult to turn over, which is not preferable.
  • the polyethylene-based thermoplastic elastomer used in the structure of the present invention includes a thermoplastic elastomer in which ethylene-propylene rubber (EPDM, EPM) is finely dispersed, and two types of polyolefin composed of two types of catalysts in one molecule. It is preferable that they are alternately formed in a block shape.
  • EPDM ethylene-propylene rubber
  • EPM ethylene-propylene rubber
  • the bulk density of the polyethylene-based thermoplastic elastomer is 0.92 ⁇ 0.85g / cm 3, more preferably 0.95 ⁇ 0.81g / cm 3. Since the end portion is damaged when the structure is washed at a high temperature, a product reinforced by increasing the bulk density of a necessary portion is preferable.
  • the melting point of polyethylene is preferably 60 ° C to 120 ° C.
  • the melting point of the thermoplastic elastomer is preferably 140 ° C. or higher because heat resistance can be maintained, and when the temperature is 160 ° C. or higher, the heat durability is improved.
  • an antioxidant, a light-resistant agent and the like can be added to improve durability. It is also effective to increase the molecular weight of the thermoplastic resin in order to improve heat resistance and sag resistance.
  • the melt flow rate (hereinafter abbreviated as MFR) of the polyethylene resin used in the structure of the present invention is 3.0 to 35 g / 10 min, and the MFR of the polyester thermoplastic elastomer is 3.0 to 45 g / 10 min.
  • the MFR of the mixture of the polyethylene resin and the polyethylene thermoplastic elastomer is 6 to 35 g / 10 min.
  • Capillograph 1D manufactured by Toyo Seiki Co., Ltd.
  • the filament of the extruded material resin was cooled with an alcohol, the diameter of the filament was cut in cross-section and D 2.
  • Wire diameter reduction rate D 2 / D 1
  • the wire diameter reduction rate was measured according to the shear rate of the raw material resin.
  • the measuring method and measuring apparatus for the wire diameter reduction rate of the polyester-based thermoplastic elastomer are the same as described above except that the temperature is 210 ° C.
  • the measuring method and measuring device of the linear reduction rate of the mixed resin of polyethylene resin and polyethylene thermoplastic elastomer are the same as above except that the temperature becomes 190 ° C.
  • the wire diameter decrease rate for shear rate 24.3Sec -1 is the 0.93 to 1.16
  • the wire diameter decrease rate for shear rate 60.8Sec -1 Is 1.00 to 1.20
  • the wire diameter reduction rate with respect to a shear rate of 121.6 sec ⁇ 1 is 1.06 to 1.23
  • the wire diameter reduction rate with respect to a shear rate of 243.2 sec ⁇ 1 is 1. 11 to 1.30
  • the wire diameter reduction rate for a shear rate of 608.0 sec ⁇ 1 is 1.15 to 1.34
  • the wire diameter reduction rate for a shear rate of 1216 sec ⁇ 1 is 1.16 to 1.38. It is preferable that
  • Wire diameter reduction rate of the polyester-based thermoplastic elastomer resin used in the present invention the wire diameter decrease rate for shear rate 60.8Sec -1 is the 1.10 to 1.38, the diameter decrease rate for shear rate 121.6Sec -1 1.12 to 1.39, the wire diameter reduction rate for the shear rate of 243.2 sec ⁇ 1 is 1.15 to 1.42, the wire diameter reduction rate for the shear rate of 608 sec ⁇ 1 is 1.17 to 1.43, and the wire diameter for the shear rate of 1216 sec ⁇ 1
  • the reduction rate is preferably 1.19 to 1.47.
  • the wire diameter reduction rate of the mixture of the polyethylene thermoplastic resin and the polyethylene thermoplastic elastomer resin used in the present invention is 1.02 to 1.25 with respect to a shear rate of 60.8 sec ⁇ 1 , and a shear rate of 121.6 sec.
  • the wire diameter reduction rate for -1 is 1.11 to 1.30
  • the wire diameter reduction rate for shear rate 243.2 sec -1 is 1.15 to 1.35
  • the wire diameter reduction rate for shear rate 608 sec -1 is 1.20 to 1.40
  • the wire diameter reduction rate with respect to a shear rate of 1216 sec ⁇ 1 is preferably 1.23 to 1.45.
  • the continuous filaments made of the thermoplastic resin forming the structure of the present invention may be combined with other thermoplastic resins as long as the object of the present invention is not impaired.
  • the filaments themselves may be combined.
  • the compound structure which arranged can be mentioned.
  • the structure of the present invention is appropriately selected from various structures such as those having different loop sizes, different wire diameters, different compositions, different densities, etc. Can be Whether the cushion is bonded or not is designed according to the application and the cover. In the case of multiple layers, if a structure made of a resin containing an elastomer component is placed on the surface layer, the heat resistance of the surface layer is increased, and heat is not easily transmitted to the structure of the inner layer. Since the heat resistance performance of the layered body as a whole increases, it is preferable. Composite and multi-layered structures can also be produced using several extruders.
  • the structure of the present invention may be multilayered and may be bonded and integrated with a wadding layer made of side fabric, cotton, urethane, or nonwoven fabric by heat or ultrasonic waves. What was integrated by bonding is used as a cushion for a seat, for example.
  • cotton and non-woven fabric are preferable since they have high durability, and the non-woven fabric is preferably one in which fibers and fibers are fused with a binder fiber or one having a straight structure with a support structure.
  • raw materials mainly composed of polyethylene, polyester-based thermoplastic elastomer, or a mixture of polyethylene resin and polyethylene-based thermoplastic elastomer are 10 ° C. to 20 ° C. from their melting points.
  • the raw material melted and melted at a high melting temperature is sent to the inside of the die, pressure is applied, and each filament discharged from the extrusion port of the lower die is made up of a plurality of arrays of extrusion holes. It becomes a line aggregate consisting of a plurality of lines and falls naturally.
  • the temperature range inside the die can be set to 100 to 400 ° C., and the extrusion amount can be set to 20 to 200 Kg / HR.
  • the pressure inside the die may be, for example, a discharge pressure of a 75 mm screw, and the pressure range is about 0.2 to 25 MPa.
  • the diameter of the die inside the die corresponds to the wire diameter of the wire having the three-dimensional cross structure, preferably 0.2 to 4.0 mm, and more preferably 0.4 to 1.8 mm.
  • the wire diameter is determined.
  • the wire diameter (diameter) is 0.1 to 1.8 mm, and the average diameter (length) of the random loop is 5 mm to 50 mm.
  • the filaments located on the longitudinal side surfaces of the outer circumference contact the inclined surfaces where the water of the pair of longitudinal shooters flows, thereby disturbing the vertical descent trajectory and adjacent to each other. While entangled with the filaments in a loop shape, it slides down the inclined surface while being washed with water supplied from the supply pipe or heated water. At this time, the filament is directly affected by gravity, and is entangled along the inclined surface to form a loop.
  • a pair of short shooters may be provided. Also, an integral shooter may be provided.
  • the water supply port is provided with a supply pipe in the longitudinal direction above each of the longitudinal shooters, and each of the inclined surfaces is heated with water or within a range of 10 to 90 ° C., preferably 40 to 60 ° C. Water is supplied.
  • the supply pipe is connected upstream to a water supply source.
  • the heated water may be supplied to the short shooter by adjusting the water flow from the supply pipe, or a similar supply pipe may be provided above the short shooter.
  • the filament that descends without contacting any of the inclined surfaces of the shooter among the filament aggregate passes through the molding opening.
  • those that pass near the lower side of the inclined surface come into contact with the filaments that slide down the inclined surface, and are entangled in a loop shape.
  • the disturbance is propagated to some extent in the adjacent central line and descends.
  • those that pass near the center of the molding opening land on the water surface, and the take-up speed by the take-up machine is slower than the descending speed of the filament assembly, so it has landed.
  • Each filament is bent and entangled in a substantially loop shape near the water surface.
  • the take-up machine speed is preferably 5 to 40 m / hour.
  • the take-up machine uses a caterpillar-structured endless belt to take up the filament aggregate.
  • the present invention is not limited to this, and a roller or the like can be used.
  • a loop may be formed.
  • the three-dimensional crosspiece structure is cooled in the water tank, and is taken down by the pair of take-up machines at a speed slower than the descent of the assembly, and is smaller than the gap in the short direction of the molding opening. It is pinched and receives an auxiliary compression action.
  • the cooling and solidification of the filament aggregate due to submergence has not been completed yet, so that a compression molding effect is obtained by clamping with a take-up machine.
  • the filament aggregate is taken out and sent out by the take-up machine, the filament aggregate in the molten state is cooled and solidified with water, finally the shape is fixed, and it is pulled out from the cooling tank by being sandwiched between rollers.
  • the water level of the aquarium be equal to or higher than the height of the lower end of the inclined surface of the shooter. Regardless of the height of the shooter, the lower end of the inclined surface is set as a reference, and it is not a problem that a part of the take-up machine is exposed on the water.
  • the water level is preferably set such that the height from the lower end of the inclined surface is 0 to 45 mm, more preferably 1 to 30 mm, and more preferably 3 to 22 mm. preferable.
  • the water level includes the same height as that of the lower end of the inclined surface, and the present invention can be implemented as long as the water level is higher than that. It is preferable to set the water level height in consideration of variations in the water level during production, machine levelness, and the like.
  • the water level is set to a height of 3 mm or more, it is possible to prevent the water level from becoming lower than the lower end of the inclined surface due to the influence of water pressure or the like.
  • the water level exceeds 30 mm from the lower end of the inclined surface, depending on the conditions, the resin starts to solidify, and the fusion between the fibers deteriorates, and the surface roughness increases, which is inappropriate.
  • the structure having the same shape as the molding opening in the cross section is drained, sent to a dry heat treatment tank by a roller, and annealed by a dry heat treatment with hot air.
  • the take-up speed of the roller near the exit of the dry heat treatment tank is set lower than the take-up speed of the roller near the entrance of the dry heat-treatment tank.
  • Annealing by this drying heat treatment is taken out from the water tank and the drained structure is performed at a drying temperature for a predetermined time.
  • the drying temperature is preferably not higher than the melting point, and preferably 10 to 70 ° C. lower than the melting point.
  • the temperature is preferably below the melting point of the polyester-based thermoplastic elastomer, and preferably 10 to 70 ° C. lower than the melting point.
  • the temperature is preferably equal to or lower than the melting point of the mixture, and is preferably 10 ° C. to 30 ° C. lower than the melting point.
  • Annealing may be performed by removing the mold after removing it from the water tank, draining the water, storing the three-dimensional bar structure in a compressed state in a frame, heat-treating it with hot air.
  • the drying temperature is preferably below the melting point, and preferably 10 to 70 ° C. lower than the melting point.
  • a thermoplastic elastomer it is preferably below the melting point of the thermoplastic elastomer, and preferably 10 to 70 ° C. lower than the melting point.
  • the temperature is preferably equal to or lower than the melting point of the mixture, and preferably 10 ° C. to 70 ° C. lower than the melting point.
  • additional annealing After forming the structure in the water tank as described above, it may be annealed in a later step (hereinafter referred to as additional annealing), or by adding warm water to the water tank, additional annealing ( Hereinafter, it may be referred to as “annealing during production”.
  • the annealing during production is preferably performed at a temperature at least 10 ° C. to 70 ° C. lower than the melting point of the polyethylene thermoplastic resin or the polyester thermoplastic elastomer. In the case of a mixture of a polyethylene resin and a polyethylene thermoplastic elastomer, it is preferably 10 to 70 ° C. lower than the melting point.
  • the warm water supplied to the shooters is in the range of 20 to 90 ° C. (preferably 20 to 80 ° C. or more, more preferably 25 to 50 ° C.).
  • annealing may be performed while forming a random loop by randomly welding the filaments.
  • warm water 25-50 ° C for low density polyethylene, 25-70 ° C for thermoplastic elastomer, 25-60 ° C for a mixture of polyethylene resin and polyethylene thermoplastic elastomer. Is preferred.
  • Examples of the warming water include (A) heating the water flowing through the shooter, (B) heating the water tank itself, and (C) increasing the internal temperature by forming the shooter like a tank. Moreover, it is good also as those composites. If the temperature of the heated water supplied to the shooter is raised too much, the resin may stick to the shooter. Therefore, the temperature is preferably an appropriate temperature, for example, 10 to 60 ° C.
  • the additional annealing is performed by lifting the three-dimensional beam structure from the water tank and then immersing it in hot water or hot air.
  • Annealing may be performed either once, such as additional annealing by dry heat treatment or production annealing using warm water such as a water tank, or may be performed after production annealing and annealing in two stages. Further, additional annealing may be performed in two stages. In this case, the second additional annealing temperature is set higher than the first additional annealing temperature.
  • the structure of the present invention realizes soft and highly repulsive characteristics and longitudinal and lateral thermal elongation characteristics by the above-described manufacturing method. Also, different thermal elongation characteristics are realized in the vertical and horizontal directions. According to the inventor's analysis, the elastic and thermal elongation characteristics, and the mechanism that leads to the anisotropic thermal elongation rate are complex and not all are clear, but the appropriate range of raw materials Wire diameter reduction rate, melt viscosity, MFR, extrusion process from hole diameter of die, wire loop formation process, wire cooling process, additional annealing by annealing and annealing during production As a result, when the wire naturally descends, entangles, and cools, basically, the tangling in the vertical and horizontal directions is caused by the characteristic fluctuation / oscillation of the thickness of the wire. We think that form is different.
  • the reason why the heat stretches in the horizontal direction and the vertical direction is because the reduction factor of the diameter of the raw material, the diameter of the die, the take-up speed of the conveyor, annealing, and the like are factors.
  • the structure of the present invention is processed from a resin production process to a molded body within a range that does not deteriorate the performance, and at any stage of commercialization, deodorant antibacterial, deodorant, antifungal, coloring, aroma, flame retardant, non-flammable, Functions such as moisture absorption and desorption can be imparted by processing such as drug addition.
  • Wire diameter (mm) The resin yarn was cut out from the central portion of the sample, and the thickness of the resin yarn was measured 5 times with a caliper. The average value of the five measurements was taken as the wire diameter. Measured against S1 and S2. The wire diameter of the elastomer sample was estimated from the polyester measurement results. The temperature with annealing was 60 ° C., and the temperature without annealing was 23 ° C.
  • sample thickness and bulk density (g / cm 3 ) The sample was cut into a size of 30 cm ⁇ 30 cm and allowed to stand for 24 hours with no load, and then the height at four locations was measured to obtain the average value as the sample thickness. The volume was determined from the sample thickness, and the value obtained by dividing the weight of the sample by the volume was taken as the bulk density of the sample.
  • Rate of change in rebound resilience after constant load test (%) A sample is cut into a size of 30 cm (longitudinal) ⁇ 30 cm (horizontal), and the impact resilience (a) before the constant gravity repeat test is measured by the method described in (5). A constant gravity repeated compression test is performed on the sample whose impact resilience was measured. The constant gravity repeated compression test is performed in accordance with the JISK6400-4 repeated compression residual strain test method A (constant load method). The repeated compression test is performed at a temperature of 23 ⁇ 2 ° C and a relative humidity of 50 ⁇ 5%.
  • Method A uses a pressure plate with a diameter of 25 cm to compress the sample 80,000,000 times repeatedly at a speed of 70 ⁇ 5 times per minute with a force of 750N ⁇ 20N.
  • the time during which the maximum force 750 ⁇ 20N is applied is 25% or less of the time required for repeated compression.
  • After the test leave the sample for 100 ⁇ 0.5 minutes without applying any force.
  • the impact resilience (b) after the constant gravity test is measured by the method described in (5).
  • Compression deflection coefficient (%) A sample was cut into a size of 30 cm (length) ⁇ 30 cm (width), and this test piece was measured by applying JIS K 6400-2: 2012 E method. The test temperature is 23 ° C. and the humidity is 50%.
  • Hysteresis loss (%) A sample was cut into a size of 30 cm (length) ⁇ 30 cm (width), and this test piece was measured by applying JIS K 6400-2: 2012 E method.
  • the thermal elongation before and after the dry hot air test was calculated by (25 ⁇ length obtained) / 25 ⁇ 100.
  • the dry hot air test temperature of the polyethylene resin was 90 ° C.
  • the dry hot air test temperature of the polyester thermoplastic elastomer was 130 ° C.
  • the dry hot air test temperature of the polyethylene resin and the polyethylene thermoplastic elastomer was 90 ° C.
  • Screw diameter of the extruder is 65mm, die temperature is 205 ° C, die width direction is 890mm, thickness direction is 75mm, hole pitch is 10mm, nozzle hole diameter is 1.6mm, air gap (distance from nozzle bottom surface to water surface) 67mm, main
  • the raw material was hexane, hexene, and ethylene polymerized by a known method using a metallocene compound as a catalyst.
  • the resulting ethylene / ⁇ -olefin copolymer had a linear diameter reduction rate of 1.05 with respect to a shear rate of 24.3 sec ⁇ 1 , a shear rate of 60
  • the wire diameter reduction rate for .8 sec ⁇ 1 is 1.12
  • the wire diameter reduction rate for shear rate 121.6 sec ⁇ 1 is 1.15
  • the wire diameter reduction rate for shear rate 243.2 sec ⁇ 1 is 1.18
  • the wire diameter for shear rate 608 sec ⁇ 1 Reduction rate is 1.23
  • wire diameter reduction rate is 1.26 with a shear rate of 1216 sec- 1
  • MFR is 12 g / 10 min
  • dense A wire having a degree of 0.90 g / cm 3 at a melting temperature of 180 ° C.
  • a pair of take-up conveyors are arranged in parallel so that the stainless steel conveyors are parallel to each other with an opening width of 71 mm on the water surface, and the molten discharge line is supplied on the shooter with 36 ° C warm water on the shooter.
  • the solidification process is performed, and the three-dimensional cross structure is formed while the contact portions are intertwined to form a loop to fuse the contact portions, and both sides of the molten structure are sandwiched by a take-up conveyor.
  • the obtained structural body is formed of strips having a quadrangular cross section and a line diameter of 0.6 to 1.1 mm, the surface is flattened, the bulk specific gravity is 53 kg / m 3 , and the thickness is 75 mm.
  • Example 2 The screw diameter of the extruder is 40 mm, the die temperature is 190 ° C., the die width direction is 500 mm, the thickness direction is 25 mm, the hole pitch is 10 mm, the nozzle hole diameter is 1.6 mm, the air gap (distance from the nozzle bottom surface to the water surface) is 38 mm, ethylene -A olefin copolymer (raw material is the same as in Example 1) polyethylene is melted at a temperature of 160 ° C, and the filament is discharged at an extrusion rate of 13 Kg / h below the nozzle. The lower end of the shooter is 36 mm below the nozzle surface.
  • the bottom end is submerged, and a stainless steel conveyor with a width of 55 cm is arranged in parallel so that a pair of take-up conveyors are partly exposed on the surface of the water at intervals of an opening width of 23 mm.
  • the solidification process is performed by supplying warm water of 36 ° C onto the shooter at the same time, and the contact portions are intertwined to form a loop to fuse the contact portion.
  • the obtained structure is formed of a wire having a square cross section and a line diameter of 0.6 to 1.1 mm, the surface is flattened, the bulk specific gravity is 70 kg / m 3 , and the thickness is 25 mm.
  • Width 500 mm, 90 ° C., 30 minutes before and after the dry hot air test the thermal elongation rate is 1.87% in the vertical direction, 1.39% in the horizontal direction, 28.6% in the hysteresis loss, 33 cm of rebound resilience, constant gravity repeated test
  • the subsequent impact resilience change rate was 6.1%.
  • the temperature was 21 ° C. and the humidity was 48%.
  • Example 3 The screw diameter of the extruder is 65 mm, the die temperature is 217 ° C., the die width direction is 900 mm, the thickness direction is 30 mm, the hole pitch is 10 mm, the nozzle hole diameter is 1 mm, the air gap (distance from the nozzle bottom surface to the water surface) is 69 mm, the main raw material thermoplastic elastomer (trademark "Hytrel”) wire diameter decrease rate for shear rate 60.8Sec -1 is 1.26, the diameter decrease rate for shear rate 121.6sec -1 1.28, for a shear rate 243.2Sec -1 as linear diameter reduction small ratio 1.30, diameter reduction rate is 1.30 for a shear rate of 608sec -1, wire diameter reduction rate is 1.33 for a shear rate of 1216 sec -1, MFR is 14 g / 10min, density 1.08 g / cm 3, a melting temperature At 195 ° C, the filaments are discharged at the bottom of the nozzle at an extrusion
  • a stainless steel conveyor with a width of 105 cm is arranged in parallel so that a pair of take-up conveyors are partly exposed on the water surface at intervals of an opening width of 70 mm.
  • the solidification process is performed by supplying hot water of 63 ° C onto the shooter, and the three-dimensional crosspiece structure is formed by melting the contact part by fusing the contact line to form a loop.
  • the both sides of the structure in a state are sandwiched by a take-up conveyor and drawn and solidified at a take-up speed of 3.9 mm / sec, flattened on both sides, annealed with hot water at 80 ° C., and then cut into a predetermined size. Annealing was carried out with a hot air at 5 ° C.
  • the resulting structure is formed of a wire having a square cross section and a line diameter of 0.5 to 1.0 mm, the surface is flattened, the bulk specific gravity is 71 kg / m3, the thickness is 30 mm, Width 900 mm, 130 ° C., 30 minutes before and after the dry hot air test, the thermal elongation rate is 0.78% in the vertical direction, 1.70% in the horizontal direction, 17.1% in hysteresis loss, the resilience is 33 cm, and after the constant repetition test The rebound resilience change rate was 0%. The temperature was 33 ° C. and the humidity was 48%.
  • Example 4 The screw diameter of the extruder is 65 mm, the die temperature is 225 ° C., the die width direction is 900 mm, the thickness direction is 73 mm, the hole pitch is 10 mm, the nozzle hole diameter is 1.6 mm, the air gap is 69 mm (distance from the nozzle bottom surface to the water surface), heat A filament is discharged from a plastic elastomer (registered trademark “Hytrel”) (same raw material as in Example 3) at a melting temperature of 202 ° C., with an extrusion rate of 40 kg / h below the nozzle, and the lower end of the shooter is 69 mm below the nozzle surface.
  • a plastic elastomer registered trademark “Hytrel”
  • the bottom end is submerged, and a 105cm wide stainless steel conveyor is placed in parallel with an opening width of 72mm so that a part of the pair of take-up conveyors comes out on the water surface.
  • Solidify by supplying 63 ° C warm water on the shooter, contact the tangled wires to form a loop and fuse the contact portion Then, the both sides of the melted structure are sandwiched by a take-up conveyor and drawn and solidified at a take-up speed of 2.7 mm / sec to flatten both sides, and then annealed with 80 ° C. hot water and cut into a predetermined size. Annealing was carried out with a hot air at 130 ° C. for 5 minutes to obtain a structure.
  • the resulting structure is formed of strips having a quadrangular cross section and a line diameter of 0.5 to 1.2 mm, the surface is flattened, the bulk specific gravity is 63 kg / m 3 , the thickness is 73 mm, and before and after the dry hot air test.
  • the thermal elongation ratio of the film was 1.22% in the vertical direction, 3.08% in the horizontal direction, 16.7% in the hysteresis loss, 34 cm in the rebound resilience, and 5.9% in the rebound resilience change rate after the constant gravity test.
  • the temperature was 30 ° C. and the humidity was 44%.
  • Example 5 The screw diameter of the extruder is 40 mm, the die temperature is 195 ° C., the die width direction is 500 mm, the thickness direction is 51 mm, the hole pitch is 10 mm, the nozzle hole diameter is 1 mm, the air gap (distance from the nozzle bottom surface to the water surface) is 38 mm, ethylene An ⁇ -olefin copolymer (same material as in Example 1) mixed with a main component and a non-combustible material was discharged at a melting temperature of 160 ° C., and a line was discharged below the nozzle at an extrusion rate of 23 kg / h.
  • the bottom of the shooter is placed 38mm below, the bottom is submerged, and a stainless steel conveyor with a width of 55cm is arranged in parallel so that a pair of take-up conveyors are partly exposed on the water surface at intervals of an opening width of 40mm.
  • the strip is solidified by supplying 36 ° C warm water onto the shooter, and at the same time, the strip is contacted and intertwined to form a loop. After forming the three-dimensional crosspiece structure while fusing the parts, the both sides of the molten structure are sandwiched by a take-up conveyor and drawn into 36 ° C.
  • the obtained structure is formed of a wire having a square cross section and a line diameter of 0.7 to 1.3 mm, the surface is flattened, the bulk specific gravity is 50 kg / m 3 , the thickness is 51 mm, and the width is 400 mm.
  • the elongation is 2.68% in the longitudinal direction, 1.28% in the transverse direction, 27.0% in hysteresis loss
  • the impact resilience is 24 cm
  • the impact resilience change after the constant gravity test The rate was 16.7%.
  • the temperature was 15 ° C. and the humidity was 52%.
  • Example 6 Extruder screw diameter 40mm, die temperature 195 ° C, die width direction 500mm, thickness direction 25mm, hole pitch 10mm, nozzle hole diameter 1mm, air gap (distance from nozzle bottom surface to water surface) 38mm, metallocene compound Hexane, hexene, and ethylene were polymerized by a known method using a catalyst as a catalyst, and the resulting ethylene / ⁇ -olefin copolymer (the same material as in Example 1) was mixed with a non-combustible material as a main component to a melting temperature of 160 ° C.
  • the line is discharged below the nozzle at an extrusion rate of 17 Kg / h, the lower end of the shooter is placed 36 mm below the nozzle surface, the lower end is submerged, and a pair of stainless steel conveyors with a width of 55 cm are parallel with an opening width of 40 mm. Arrange the take-out conveyor so that it partially comes out on the surface of the water.
  • the obtained structure is formed of a wire having a quadrangular cross section and a line diameter of 0.7 to 1.3 mm, the surface is flattened, the bulk specific gravity is 50 kg / m 3 , the thickness is 43 mm, and the width is 400 mm. , 90 ° C, 30 minutes dry hot air test before and after the thermal elongation rate of 2.06% in the vertical direction, 1.22% in the horizontal direction, 30.0% of hysteresis loss, rebound resilience of 32 cm, rebound after constant-gravity test The elastic change rate was 12.5%. The temperature was 21 ° C. and the humidity was 48%.
  • Extruder screw diameter is 40mm
  • die temperature is 205 ° C
  • die width direction is 500mm
  • thickness direction is 60mm
  • hole pitch is 10mm
  • nozzle hole diameter is 1mm
  • air gap distance from nozzle bottom surface to water surface 38mm
  • metallocene Hexane, hexene, and ethylene are polymerized by a known method using the compound as a catalyst, and the resulting ethylene / ⁇ -olefin copolymer (same material as in Example 1) and olefin block copolymer (polyethylene thermoplastic elastomer) are in a weight ratio.
  • the wire is discharged under the nozzle at an extrusion rate of 22Kg / h, the lower end of the chute is placed 39mm below the nozzle surface, and a stainless steel conveyor with a width of 55cm is opened in parallel.
  • a pair of take-up conveyors are arranged so as to partially come out on the water surface at intervals of 40 mm, and the solidified treatment is performed by supplying the molten discharge line on the chute and supplying warm water of 29 ° C on the chute.
  • the structure is formed while the contact is entangled to form a loop and the contact part is fused, and the take-up speed is 29 ° at 4.5 mm / sec while sandwiching both sides of the melted structure with a take-up conveyor. After drawing into C hot water and solidifying to flatten both sides, it was cut to a predetermined size and dried and heat treated with hot air at 60 ° C. for 5 minutes to obtain a structure with a bulk density of 65 kg / m 3 .
  • the obtained structure is formed by a strip having a square cross section and a line diameter of 0.8 to 1.5 mm, the surface is flattened, the bulk specific gravity is 65 kg / m 3 , the thickness is 50 mm, the width 405mm, 90 ° C, 30 minutes before and after drying hot air test, the thermal elongation rate is 3.04% in the longitudinal direction, 2.72% in the transverse direction, the hysteresis loss is 29.1%, the resilience is 16cm, the rate of change in the resilience after the constant-gravity test is 5.5 %Met. The temperature was 12 ° C and the humidity was 45%.
  • the present invention since it has a thermal expansion property that thermally expands in the vertical direction and the horizontal direction, for example, when used in a mattress, even when disinfected at a high temperature, the mattress shrinks and the cover becomes wrinkled. The pressure ulcer caused by wrinkles is less likely to occur and is suitable.
  • it since it has anisotropic thermal expansion characteristics with different thermal expansion rates in the vertical and horizontal directions, it can be adapted to the use of the structure and the characteristics of the human body in that application.
  • the hysteresis loss is small and it has a soft and high resilience characteristic, it can provide elastic characteristics that match the characteristics of the human body, and it can respond to diversification of demands for the elastic characteristics of products and the advancement of quality requirements for products.
  • the present invention has a small hysteresis loss, has a soft high resilience characteristic, has a thermal elongation characteristic that is thermally elongated by a dry hot air test in the longitudinal direction and the transverse direction, and has different thermal elongation characteristics in the longitudinal direction and the transverse direction.
  • We can provide vehicle seats, cushions, mattresses, covers, etc. with elastic properties that fit the health consciousness.
  • soft and easy-to-extend cushions such as pressure ulcers and nursing care can be provided. It can also be used for cushions used for vehicle seats, beds, mats, etc., and seats used for covers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Robotics (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Pulmonology (AREA)
  • Mattresses And Other Support Structures For Chairs And Beds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)

Abstract

連続線条が部分的にランダムに溶着することによりループを形成し、押出方向に対応する縦方向、前記押出方向と直交する横方向と厚み方向を有する、ポリエチレン系熱可塑性樹脂、ポリエステル系熱可塑性エラストマー、又はポリエチレン系熱可塑性樹脂とポリエチレン系熱可塑エラストマーの混合物からなる三次元桟構造体であり、三次元桟構造体の反発弾性が13cm以上であり、ヒステリシスロスが34%を超えず、13%を下回らず、前記縦方向において乾燥熱風試験前後の熱伸長率が0~8%である。人体の特性に適合するヒステリシスロスと弾性特性を有し、高温消毒等によって収縮しない三次元桟構造体を提供する。

Description

三次元桟構造体
 本発明は、マットレス、クッション等に使用する三次元桟構造を有する三次元桟構造体に関するものである。
 従来の押出形成による線条が部分的に絡合しループを備えた立体網状構造体、あるいは、立体網状構造体の2面ないし4面成形方法は、種々のものが提案されている。一例を挙げると、特許文献1に示すものであり、立体網状構造体を成形することを目的とし、熱可塑性合成樹脂を原料又は主原料とする溶融した線条を複数の孔を有する口金を先端部に有するダイスから下方へ押し出し、一部水没した、引取機の間に自然降下させ、前記降下速度より前記線条を遅く引き込むことにより立体網状構造体を製造する際、前記引取機は互いに対向し、この引取機によって押し出し方向と垂直な方向に所定形状(例えば四辺形等)が形成され、押出された線条の集合体の幅より前記互いに対向する引取機の間隔が狭く設定され、前記引取機が水没する前後に前記線条の集合体の外周の2面ないし4面が前記引取機に接触することにより成形された立体網状構造体の成形方法である。
特開2001-328153号公報
 従来の通気性の良い立体網状構造体では、ループがランダムに形成され、熱を加えると収縮する性質があった。そのため、例えばマットレスに用いられた場合、高温での消毒を繰り返すと立体網状構造体が収縮するためカバーがしわになりやすく、使用者が不快に感じ、長期使用によって褥瘡が起こってしまうおそれがあった。特に、長さのある縦方向においては、立体網状構造体が収縮するとその影響が大きく、しわになりやすく問題になっていた。
 また、従来の立体網状構造体では、人体の特性に合わせた機能を発揮できないおそれがあった。例えば、マットレスに用いられた場合、人体は寝ながら姿勢制御を行い、身体をストレッチし体位変換をし、筋肉や身体をほぐすことにより、身体の負担を満遍なく均して、身体の歪みをリセットする自然調整機能があるが、それに対応する立体網状構造体の構造的な特性が不十分であった。立体網状構造体を用いる製品への要求は多様化し、製品への品質要求が高くなっているが、このような人体の特性に適合する多様な要求に対する製品品質を確保しづらくなるという問題が存在していた。
 そこで、本発明は、縦方向で熱により伸長する性質の構造を実現し、高温での洗浄を可能にし、さらに人体の特性に適合するヒステリシスロスと弾性特性を有することより、多様な品質要求を確保することを課題とする。
 本発明は、連続線条が部分的にランダムに溶着することによりループを形成し、押出方向に対応する縦方向、前記押出方向と直交する横方向と厚み方向を有する、ポリエチレン系熱可塑性樹脂、ポリエステル系熱可塑性エラストマー、又はポリエチレン系熱可塑性樹脂とポリエチレン系熱可塑エラストマーの混合物からなる三次元桟構造体であり、三次元桟構造体の反発弾性が13cm以上であり、ヒステリシスロスが34%を超えず、13%を下回らず、ポリエチレン系熱可塑性樹脂の場合に温度90℃で30分間、ポリエステル系熱可塑性エラストマーの場合に130℃で30分間、ポリエチレン系熱可塑性樹脂とポリエチレン系熱可塑性エラストマーの混合物の場合90℃で30分間の乾燥熱風試験後、前記縦方向において乾燥熱風試験前後の熱伸長率が0~8%である三次元桟構造体である。
 ポリエチレン系熱可塑性樹脂の場合に温度90℃で30分間、ポリエステル系熱可塑性エラストマーの場合に130℃で30分間、又はポリエチレン系熱可塑性樹脂とポリエチレン系熱可塑性エラストマーの混合物の場合90℃で30分間の乾燥熱風試験後、前記横方向において、乾燥熱風試験前後の熱伸長率が0~8%であることが好ましい。
 前記三次元桟構造体は、前記縦方向と前記横方向の熱伸長率が異なる非等方性の熱伸長特性を有することが好ましい。
 ポリエチレン系熱可塑性樹脂の場合は、定荷重繰返し試験後の反発弾性変化率が25%以下、ポリエステル系熱可塑性エラストマーの場合は、定荷重繰返し試験後の反発弾性変化率が20%以下であることが好ましい。
 前記三次元桟構造体の見掛け密度が、0.025g/cm3~0.2g/cm3であり、厚みが単層及び複層において5mm~500mmで、線径が直径0.1mm~1.5mmであることが好ましい。
 前記ポリエチレン系熱可塑性樹脂が、ポリエチレン、または、主としてエチレンと炭素数3以上のαオレフィンからなるエチレン・α-オレフィン共重合体樹脂であることが好ましい。
 前記ポリエチレン系熱可塑性樹脂とポリエチレン系熱可塑性エラストマーの混合物は、主としてエチレンと炭素数3以上のαオレフィンからなるエチレン・α-オレフィン共重合体樹脂とポリエチレン系熱可塑性エラストマーの混合物であり、前記混合物中の前記ポリエチレン系熱可塑性エラストマーの含有量は重量比率で45%以下であることが好ましい。
 前記三次元桟構造体は、クッション、クッションシート、座布団、枕、介護用品、ベッド用クッションまたはマットレス用であることが好ましい。
 三次元桟構造体は複数の面を備え、そのうちの2面、3面、または、4面が成形されることが好ましく、必要に応じて、曲面形状、異形形状に成形されることが好ましい。三次元桟構造体はポリエチレン系熱可塑性樹脂からなる三次元網状構造と、ポリエチレン系熱可塑性エラストマーからなる三次元網状構造を積層したものであることが好ましい。
 本発明による三次元桟構造体は、ヒステリシスロスが小さく柔らかな高反発特性を有し、人体の特性に適合する弾性特性を提供できる優れた三次元桟構造体である。この優れた性質により、人体の特性に適合することで、製品への弾性特性の要求の多様化、製品への品質要求の高度化に対応でき、医療介護品、寝具、家具、若しくは、乗物の座席等に用いられるクッション材または表皮材に好適な三次元桟構造体を提供することが可能となった。例えば、医療・介護用マットレスの応用例では、適切な三次元桟構造体の弾性特性を実現し、睡眠中の人体の自然調整機能等に対応できるので、褥瘡等に適切に対応でき、患者は起き上がりがしやすい。また、介護者も患者の体位変換をする場合、マットレスの反発力を借りて少ない力で目的を遂げることが出来る。
 さらに、縦方向、横方向に熱伸長する熱伸縮特性を有するので、例えばマットレスに用いられた場合、高温で消毒した場合等でも、マットレスが収縮してカバーがしわになることがなく、しわが原因となる褥瘡も起こりにくく好適である。そのため熱消毒が容易にでき乾燥も簡単なので院内感染にも対応し、医療用、又は、介護で要求されるクッション材に好適な三次元桟構造体を提供できる。また、縦方向、横方向に熱伸長率が異なる非等方性の熱伸長特性を有するので、三次元桟構造体の用途や、その用途における人体の特性に適合させることが可能である。使用方法により形態を2面、3面、4面、異形形状に成形できるので、医療用の補助器具としても様々な用途が考えられる。
 本実施形態の三次元桟構造体(以下、単に構造体と略す。)について説明する。この三次元桟構造は、複数本の線条がループ状にランダムに絡まり合い、熱溶着されたことにより構成される。構造体は製造中における押出方向において、嵩密度が粗部分と密部分とが交互に表われる桟状の疎密構造を備えた立体網状構造体である。
 構造体は、端部の硬いもの、表と裏で表面層の厚みが違うもの、表と裏で柔らかさの違うもの、内部に穴の開いているものなどが様々な形態が可能である。また、使用目的に応じて、部位によって硬さを変えることもできる。
 本発明の構造体はヒステリシスロスが34%以下であることが好ましい。ヒステリシスロスが小さいということは解放後の戻りの力が早く大きいということである。ヒステリシスロスが34%以下であれば回復力が大きく、本発明の目的とする柔らかく高反発性であるため好ましい。34%を越えると、弾性反発力が遅く弱くなるので好ましくない。より好ましくは15~34%、さらには20%~34%が一層好ましい。
 本発明の構造体の見掛け密度(嵩密度)は、柔らかな高反発性を決める重要な要素であり、必要に応じて設計されるものであるが、好ましくは0.025g/cm~0.2g/cm、さらに好ましくは0.04g/cm~0.09g/cmである。見掛け密度が0.025g/cmより小さいと形状が保てなくなり、0.20g/cmを越えるとマットレスとしては適さなくなる。構造体が押出方向に粗密の帯状部分が繰り返され、疎の帯状部分を基準とする密の帯状部分の単位重さあたりの接合点数の比率が0.96~1.33であり、疎の帯状部分を基準とする密の帯状部分の見掛け密度が0.005g/cm以上の差のあることが好ましい。単位重量当たりの接合点数は、試料を押出方向に直交する方向に2cmの幅で切断し、押出方向における密の帯状部分と疎の帯状部分がそれぞれ2つ分含まれるように、直方体形状に切断して個片を作成した。個片の4角の高さを測定した後、体積(cm)を求め、試料の重さ(g)を体積で徐することによって見掛け密度を(g/cm)を算出した。個片の接合点の数を数え、この数を個片の体積で除することによって単位体積あたりの接合点数(個/cm)を算出し、単位体積あたりの接合点数を見掛け密度で除することによって単位重さあたりの接合点数(個/g)を算出した。接合点は2本の線条間の融着部分とし、線条を引張って1本の線条になるまで融着部分を剥離する方法で接合点数を計測した。単位重さ当たりの接合点数はn=2の平均値とした。
 本発明の構造体は、線条の線径(直径)が0.3mm~1.5mmの熱可塑性樹脂または熱可塑性エラストマーまたは熱可塑性樹脂と熱可塑性エラストマーの混合物からなる連続線条なランダムなループを互いに溶融状態で溶着させた立体スプリング構造体である。線径は異形、中空形状でもよいがソフトな触感を得るためには重要な要素であり、線径が小さいとクッション性に必要な硬度が保てなくなり、逆に線径が大きすぎると硬くなり過ぎてしまうため、適正な範囲に設定する必要がある。
 ループのループ長は5~50mm、特に8~15mmであることが好ましい。目的に合わせ、表面のループを寝かせ、密度の高い表面層を形成してもよいし、密度の高い表面層を形成しなくてもよい。
 本発明の構造体の厚みは柔らかさや高反発性に大きく関わってくるため、5mm~500mm、より好ましくは、10~150mm、さらには30~110mmが一層好ましい。5mm未満では高反発性が低くなるため好ましくなく、500mmを超えると反発性が高くなりすぎるため好ましくない。
 この構造体の縦横寸法は、例えば、マットレス、クッション等の場合、幅600~2000mm、長さ1300~2500mm、高さ30~120mm、枕の場合、幅250~500mm、長さ300~800mm、高さ40~120mmが例示できる。また、それらの表皮材などに単体、複合、複層して利用することができる。寸法は、代表的な寸法を例示したが、その寸法に限られるわけでない。
 この構造体の材料は、ポリエチレン系樹脂、ポリエステル系熱可塑性エラストマー、またはポリエチレン系樹脂とポリエチレン系熱可塑性エラストマーの混合物が好ましい。
 本発明の構造体は、ポリエチレン系熱可塑性樹脂で構成される場合、90℃乾燥熱風試験前後の縦方向、横方向の熱伸長率は、0%以上で8%以下が好ましく、3%以下がさらに好ましい。90℃乾燥熱風試験前後の熱伸長率が8%を超えるとカバーに入りにくくなるため好ましくない。90℃乾燥熱風試験前後の熱伸長率が0%を下回ると、高温で消毒した場合等に製品の長さが短くなり、カバーがしわになるので、好ましくない。
 本発明の構造体は、ポリエステル系熱可塑性エラストマーで構成される場合、130℃乾燥熱風試験前後の縦方向、横方向の熱伸長率は、0%以上で8%以下が好ましく、3%以下がさらに好ましい。130℃乾燥熱風試験前後の熱伸長率が8%を超えるとカバーに入りにくくなるため好ましくない。130℃乾燥熱風試験前後の熱伸長率が0%を下回ると高温で消毒した場合等に製品の長さが短くなり、カバーがしわになるので、好ましくない。
 本発明の構造体は、ポリエチレン系熱可塑性樹脂とポリエチレン系熱可塑性エラストマーの混合物で構成される場合、90℃乾燥熱風試験前後の縦方向、横方向の熱伸長率は、0%以上で8%以下が好ましく、3%以下がさらに好ましい。90℃乾燥熱風試験前後の熱伸長率8%を超えるとカバーに入りにくくなるため好ましくない。90℃乾燥熱風試験前後の熱伸長率が0%を下回ると高温で消毒した場合等に製品の長さが短くなり、カバーがしわになるので、好ましくない。
 本発明の構造体をクッション材に用いる場合、その使用目的、使用部位により使用する樹脂、線径、ループ径、表面層、嵩密度、形状を適宜選択する必要がある。例えば、使用する国における硬さの好みに合わせて適時、素材の原料を選ぶ。レイヤーとして使用する場合、表面層か中間層かにより適切な嵩密度を選択する。また、立体構造を損なわない程度に成形型等を用いて使用目的にあった形状に成形し車両用座席、航空機用座席、船舶用座席、椅子、家具等に用いることが出来る。もちろん、要求性能にあわせるため、同構造同素材での複層、同構造異素材での複層、硬わたクッション材、ウレタン、ラテックス、不織布と組み合わせて用いることも可能である。素材を難燃化、不燃化、抗菌化、着色の機能をもたせるように処理加工することもできる。通気性、防水性能などそれぞれに適した素材で1層、2層の取り外し可能なカバーを適時設計してもよい。
 本発明の構造体に用いられるポリエチレン系熱可塑性樹脂は、嵩密度が0.94g/cm3以下の低密度ポリエチレン樹脂であることが好ましく、特にはエチレンと炭素数3以上のαオレフィンからなるエチレン・α-オレフィン共重合体樹脂からなることが好ましい。0.94g/cm3を越える原料を用いると、クッション材が硬くなりやすく好ましくない。より好ましくは0.935g/cm3以下であり、さらには0.91g/cm3以下が一層好ましい。下限としては強度保持の観点から0.8g/cm3以上、より好ましくは0.85g/cm3以上が好ましい。
 エチレン・α-オレフィン共重合体は、特開平6-293813号公報に記載されている共重合であることが好ましく、エチレンと炭素数3以上のα-オレフィンを共重合してなるものである。ここで、炭素数3以上のα-オレフィンとしては、例えばプロピレン、ブテン-1、ペンテン-1、ヘキセン-1、4-メチル-1-ペンテン、ヘプテン-1、オクテン-1、ノネン-1、デセン-1、ウンデセン-1、ドデセン-1、トリデセン-1、テトラデセン-1、ペンタデセン-1、ヘキサデセン-1、ヘプタデセン-1、オクタデセン-1、ノナデセン-1、エイコセン-1などが挙げられ、好ましくはブテン-1、ペンテン-1、ヘキセン-1、4-メチル-1-ペンテン、ヘプテン-1、オクテン-1、ノネン-1、デセン-1、ウンデセン-1、ドデセン-1、トリデセン-1、テトラデセン-1、ペンタデセン-1、ヘキサデセン-1、ヘプタデセン-1、オクタデセン-1、ノナデセン-1、エイコセン-1である。また、これら2種類以上を用いることもでき、これらα-オレフィンは通常1~40重量%共重合される。
 この共重合体は、特定のメタロセン化合物と有機金属化合物を基本構成とする触媒系を用いてエチレンとα-オレフィンを共重合することによって得ることができる。
 本発明の構造体に用いられるポリエステル系熱可塑性エラストマーは、主として、結晶性芳香族熱可塑性ポリエステル・エラストマー単位からなる高融点結晶性重合体セグメント(a)と、主として脂肪族ポリエーテル単位および/または脂肪族熱可塑性ポリエステル・エラストマー単位からなる低融点重合体セグメント(b)とを主たる構成成分とする熱可塑性ポリエステル・エラストマーブロック共重合体(A)であることが好ましい。
 熱可塑性エラストマーの中でも、結晶性芳香族ポリエステル単位をハードセグメントとし、ポリ(アルキレンオキシド)グリコールのような脂肪族ポリエーテル単位及び/又はポリラクトンのような脂肪族ポリエステル単位をソフトセグメントとするポリエステルブロック共重合体(ポリエステルエラストマー)は、低温、高温特性に優れる特徴を有し、剛性の温度依存性が比較的小さいことが特徴である。
 ポリエステル系熱可塑性エラストマーの嵩密度は1.01~1.60g/cmであることが好ましく、1.05~1.20g/cmであることがより好ましい。
 ポリエステル系熱可塑性エラストマーは、幅広い温度領域で温度依存性を小さくすることができる点で、好適に用いられる。ポリエステル系熱可塑性エラストマーは、結晶性芳香族ポリエステル単位からなる高融点結晶性重合体セグメント(a1)と、脂肪族ポリエーテル単位及び/又は脂肪族ポリエステル単位からなる低融点重合体セグメント(a2)とを主たる構成成分とするポリエステル系熱可塑性エラストマーであり、高融点結晶性重合体セグメント(a1)は、主として芳香族ジカルボン酸またはそのエステル形成性誘導体と、ジオールまたはそのエステル形成性誘導体から形成されるポリエステルであり、芳香族ジカルボン酸の具体例としては、テレフタル酸、イソフタル酸、フタル酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、アントラセンジカルボン酸、ジフェニル-4,4′; -ジカルボン酸、ジフェノキシエタンジカルボン酸、4,4′; -ジフェニルエーテルジカルボン酸、5-スルホイソフタル酸、および3-スルホイソフタル酸ナトリウムなどが挙げられる。主として芳香族ジカルボン酸を用いるが、必要によっては、芳香族ジカルボン酸の一部を、1,4-シクロヘキサンジカルボン酸、シクロペンタンジカルボン酸、4,4′; -ジシクロヘキシルジカルボン酸などの脂環族ジカルボン酸や、アジピン酸、コハク酸、シュウ酸、セバシン酸、ドデカンジオン酸、およびダイマー酸などの脂肪族ジカルボン酸に置換してもよい。ジカルボン酸のエステル形成性誘導体、たとえば低級アルキルエステル、アリールエステル、炭酸エステル、および酸ハロゲン化物などももちろん同等に用い得る。ジオールの具体例としては、分子量400以下のジオール、例えば1,4-ブタンジオール、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコールなどの脂肪族ジオール、1,1-シクロヘキサンジメタノール、1,4-ジシクロヘキサンジメタノール、トリシクロデカンジメタノールなどの脂環族ジオール、およびキシリレングリコール、ビス(p-ヒドロキシ)ジフェニル、ビス(p-ヒドロキシ)ジフェニルプロパン、2,2′; -ビス[4-(2-ヒドロキシエトキシ)フェニル]プロパン、ビス[4-(2-ヒドロキシエトキシ)フェニル]スルホン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、4,4′; -ジヒドロキシ-p-ターフェニル、および4,4′; -ジヒドロキシ-p-クオーターフェニルなどの芳香族ジオールが好ましく、かかるジオールは、エステル形成性誘導体、例えばアセチル体、アルカリ金属塩などの形でも用い得る。これらのジカルボン酸、その誘導体、ジオール成分およびその誘導体は、2種以上併用してもよい。そして、好ましい高融点結晶性重合体セグメント(a1)の例は、テレフタル酸および/またはジメチルテレフタレートと1,4-ブタンジオールから誘導されるポリブチレンテレフタレート単位である。また、テレフタル酸および/またはジメチルテレフタレートから誘導されるポリブチレンテレフタレート単位と、イソフタル酸および/またはジメチルイソフタレートと1,4-ブタンジオールから誘導されるポリブチレンイソフタレート単位からなるものも好ましく用いられる。
 本発明に用いられるポリエステル系熱可塑性エラストマーの低融点重合体セグメント(a2)は、脂肪族ポリエーテル及び/又は脂肪族ポリエステル である。脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、エチレンオキシドとテトラヒドロフランの共重合体グリコールなどが挙げられる。また、脂肪族ポリエステル としては、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペートなどが挙げられる。これらの脂肪族ポリエーテル及び/又は脂肪族ポリエステル のなかで得られるポリエステルブロック共重合体の弾性特性からは、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、エチレンオキシドとテトラヒドロフランの共重合体グリコール、ポリ(ε-カプロラクトン)、ポリブチレンアジペート、及びポリエチレンアジペートなどの使用が好ましく、これらの中でも特にポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、及びエチレンオキシドとテトラヒドロフランの共重合体グリコールの使用が好ましい。また、これらの低融点重合体セグメントの数平均分子量としては共重合された状態において300~6000程度であることが好ましい。本発明に用いられるポリエステル系熱可塑性エラストマーにおける低融点重合体セグメント(a2)の共重合量としては特に制限がないが、10~90重量%程度が好ましく、30~85重量%程度がより好ましく、50~80重量%程度が特に好ましい。低融点重合体セグメント(a2)の共重合量が10重量%未満であると、柔軟性、屈曲疲労性が悪くなる。一方、低融点重合体セグメント(a2)の共重合量が90重量%を超えると、機械的物性、高温特性、耐油性、耐薬品性が十分に発現しない。
 本発明に用いられるポリエステル系熱可塑性エラストマーは、公知の方法で製造することができる。その具体例としては、例えば、ジカルボン酸の低級アルコールジエステル、過剰量の低分子量グリコールおよび低融点重合体セグメント成分を触媒の存在下エステル交換反応せしめ、得られる反応生成物を重縮合する方法、およびジカルボン酸と過剰量のグリコールおよび低融点重合体セグメント成分を触媒の存在下エステル化反応せしめ、得られる反応生成物を重縮合する方法などのいずれの方法をとってもよい。
 上記のブロック共重合体を単独または2種類以上混合して用いてもよい。
 更には、非エラストマー成分をブレンドしたもの、共重合したもの等も本発明に使用できる。
 本発明の構造体に用いられるポリエチレン系熱可塑性樹脂とポリエチレン系熱可塑性エラストマーの混合物は、主としてエチレンと炭素数3以上のαオレフィンからなるエチレン・α-オレフィン共重合体樹脂とポリエチレン系熱可塑性エラストマーの混合物であることが好ましく、混合物中のポリエチレン系熱可塑性エラストマーの含有量は重量比率で45%以下であることが好ましい。混合物中のポリエチレン系熱可塑性エラストマーの含有量が重量比率で45%を超えると、ヒステリスロスが大きくなり寝返りがしにくくなり、好ましくない。
 本発明の構造体に用いられるポリエチレン系熱可塑性エラストマーは、エチレン‐プロピレンゴム(EPDM,EPM)を微分散させた熱可塑性エラストマーや、2種類の触媒からなる2種類のポリオレフィンが一本の分子内に交互にブロック状に形成された物であることが好ましい。
 ポリエチレン系熱可塑性エラストマーの嵩密度は0.92~0.85g/cmであることが好ましく、0.95~0.81g/cmであることがより好ましい。高温での構造体の洗浄時に端部がダメージを受けるので必要な部分の嵩密度を上げて補強した製品が好ましい。
 ポリエチレンの融点は60℃~120℃が好ましい。また、熱可塑性エラストマーの融点は、ポリエステル系エラストマーの場合は140℃以上であれば耐熱耐久性が保持できるため好ましく、160℃以上のものを用いると耐熱耐久性が向上するのでより好ましい。なお、必要に応じ、酸化防止剤や耐光剤等を添加して耐久性を向上させることができる。また、耐熱耐久性や耐へたり性を向上させるために、熱可塑性樹脂の分子量を上げることも効果的である。
 本発明の構造体に用いられるポリエチレン系樹脂のメルトフローレート(以下、MFRと略す)は3.0~35g/10minであり、ポリエステル系熱可塑性エラストマーのMFRは3.0~45g/10minであり、ポリエチレン系樹脂とポリエチレン系熱可塑性エラストマーの混合物のMFRは6~35g/10minである。
 ポリエチレン系樹脂の線径減少率の測定方法、測定装置について説明する。線径減少率の測定装置は、キャピログラフ1D(東洋精機製)を使用した。温度190℃、管内径Dがφ1.0mm、長さ10mmのキャピラリーの上から圧力をかけ、押出量3g/10minで原料樹脂を押し出す。押し出された原料樹脂の線条をアルコールで冷却し、横断面で切断した線条の直径をDとする。線径減少率=D/Dで計算する。原料樹脂のせん断速度別に線径減少率を測定した。
 ポリエステル系熱可塑性エラストマーの線径減少率の測定方法、測定装置については、温度が温度210℃となる点が相違するだけで、他は上記と同様である。
 ポリエチレン系樹脂とポリエチレン系熱可塑性エラストマーの混合樹脂の線形減少率の測定方法、測定装置については、温度190℃となる点が相違するだけで、他は上記と同様である。
 本発明に用いられるポリエチレン系樹脂の線径減少率は、せん断速度24.3sec-1に対する線径減少率が0.93~1.16であり、せん断速度60.8sec-1に対する線径減少率が1.00~1.20であり、せん断速度121.6sec-1に対する線径減少率が1.06~1.23であり、せん断速度が243.2sec-1に対する線径減少率が1.11~1.30であり、せん断速度608.0sec-1に対する線径減少率が1.15~1.34であり、せん断速度が1216sec-1に対する線径減少率が1.16~1.38であることが好ましい。
 本発明に用いられるポリエステル系熱可塑性エラストマー樹脂の線径減少率は、せん断速度60.8sec-1に対する線径減少率が1.10~1.38であり、せん断速度121.6sec-1に対する線径減少率が1.12~1.39であり、せん断速度243.2sec-1に対する線径減少率が1.15~1.42であり、せん断速度608sec-1に対する線径減少率が1.17~1.43であり、せん断速度1216sec-1に対する線径減少率が1.19~1.47であることが好ましい。
 本発明に用いられるポリエチレン系熱可塑性樹脂とポリエチレン系熱可塑エラストマー樹脂の混合物の線径減少率は、せん断速度60.8sec-1に対する線径減少率が1.02~1.25であり、せん断速度121.6sec-1に対する線径減少率が1.11~1.30であり、せん断速度243.2sec-1に対する線径減少率が1.15~1.35であり、せん断速度608sec-1に対する線径減少率が1.20~1.40であり、せん断速度1216sec-1に対する線径減少率が1.23~1.45であることが好ましい。
 本発明の構造体を形成する熱可塑性樹脂よりなる連続線条は、本発明の目的を損なわない範囲で、他の熱可塑性樹脂と組み合わせた複合形態としてもよい。複合形態としては、線条自身を複合化してもよい。
 構造体層を複合化したものとして、エラストマー層/非エラストマー層/エラストマー層のサンドウィッチ構造、エラストマー層/非エラストマー層の2層構造、マトリックスのエラストマー層の内部の中心部に部分的に非エラストマー層を配した複合化構造が挙げられる。例えば、ポリエチレンの構造体と、ポリエステル・エラストマーの構造体と積層したもの、ポリエステル・エラストマーの構造体同士を積層したもの、これらの積層体をカバー(通気性の有無はいずれでもよい)で被覆したものが挙げられる。
 本発明の構造体は、要求性能との関係で、ループの大きさの異なるもの、線径の異なるもの、組成の異なるもの、密度の異なるもの等の夫々の構造体を適宜選択し、複層化できる。クッションを接着するか、非接着とするかは用途やカバーとの関係で設計する。複層化する場合は、エラストマー成分を含む樹脂から成る構造体を表面層に配置すれば、表面層の耐熱性能が高くなり、また内層の構造体には熱が伝わりにくくなり、その結果、複層体全体として耐熱性能が高くなるので好適である。複合、複層化構造体は、数台の押し出し機を使用して製造することもできる。
 本発明の構造体は、複層化すると共に、熱や超音波によって、側地、綿、ウレタン、不織布からなるワディング層と接着一体化してもよい。接着一体化したものは、例えば座席用クッションとして用いられる。ここで、綿や不織布は、耐久性が高いので好ましく、不織布は繊維と繊維がバインダー繊維で融着されたものや支柱構造のストレート形状のものが好ましい。
 本実施形態の三次元桟構造の製法の一例を述べるが、この製法に限定されるわけではない。特開2001-328153号公報等に記載された通り、ポリエチレン、ポリエステル系熱可塑性エラストマー、またはポリエチレン樹脂とポリエチレン系熱可塑製エラストマーの混合物を主原料とした原料をそれらの融点より10℃~20℃高い溶融温度で溶融し、溶融された原料は、ダイス内部へと送られ、圧力を加えられて、下部の口金の押出口から吐出されたそれぞれの線条は、押出孔の複数個の配列により、複数本の線条からなる線条集合体となり、自然降下する。 
 ダイス内部の温度範囲は100~400℃、押出量は20~200Kg/HR等に設定可能である。ダイス内部における圧力は、例えば75mmスクリューの吐出圧によるものが挙げられ、その圧力範囲は0.2~25MPa程度である。
 ダイス内部の口金の径は、三次元桟構造の線条の線径に対応し、0.2~4.0mmが好ましく、0.4~1.8mmがより好ましい。
 つぎに、水または湯を供給した、少なくとも左右一対のシューター(国際公開番号WO2012/157289の公開公報参照)で受け止めて、線条を溶融状態で互いに接触させて融着させ、三次元構造を形成しつつ、水面に着水させる。このとき、シューターの角度、供給される水の量、押出口の口径、口金面とシューターと引取コンベアとの距離、樹脂の溶融粘度、押出口の孔径と吐出量などにより、ループ径と線条の線径が決まる。線径(直径)は0.1~1.8mm、ランダムループの平均直径(長さ)は5mm~50mmである。
 つぎに、線条集合体のうち、外周の長手側面に位置する線条は、一対の長手シューターの水が流れている傾斜面の上に接触し、これにより垂直降下軌道が乱され、隣り合う線条とループ状に絡まり合いつつ、供給パイプから供給される水または加温水で流されながら、傾斜面を滑り降りる。この際、線条は重力の影響を直接的に受け、傾斜面に沿って絡合し、ループが形成される。一対の短手シューターを設けてもよい。また、一体物のシューターを設けてもよい。
 水供給口は、長手シューターのそれぞれの上方において、長手方向に供給パイプが設けられ、傾斜面のそれぞれに、水、又は、10~90℃、好ましくは、40~60℃の範囲内で加温された水を供給している。供給パイプには上流において水供給源に接続される。短手シューターへの加温水の供給は、供給パイプからの水流を調節して流用してもよいし、別途、短手シューターの上方に同様な供給パイプを設けてもよい。
 線条集合体のうち、シューターの傾斜面のいずれにも接触せずに降下した線条は、成形開口部を通過する。このとき、成形開口部を通過する線条のうち、傾斜面の下辺近くを通過するものは、傾斜面を滑り降りてくる線条と接触し、ループ状に絡まり合い、その接触絡合による降下軌道の撹乱が隣り合う中心方向の線条に若干の範囲で伝播しつつ降下する。成形開口部を通過する線条のうち、成形開口部の中央付近を通過するものは、水面に着水し、引取機による引取速度は線条集合体の降下速度よりも遅いため、着水したそれぞれの線条は撓み、水面付近で略ループ状に絡まり合う。引取機の速度は5~40m/時間が好ましい。なお、引取機はキャタピラー構造の無端ベルトを用いて線条集合体を引き取るが、これに限らず、ローラー等を用いることも可能であり、また、シューターを用いなくても引取機により線条のループを形成してもよい。
 つぎに、三次元桟構造は、水槽にて冷却されつつ、一対の引取機により、集合体の降下より遅い速度で引き取られて降下し、成形開口部の短手方向の間隔よりも小さな間隔で挟持され補助的な圧縮作用を受ける。無端ベルトの位置まで降下した時点では、水没による線条集合体の冷却固化がまだ完全に終わっていないので、引取機での挟持により圧縮成形効果を得る。引取機により線条集合体を引き取り、送り出せば、溶融状態にある線条集合体が水により、冷却固化され、最終的に形状が固定され、ローラーで挟み込むことで、冷却槽から引き出される。
 水槽の水位は、シューターの傾斜面の下端部の高さ以上とすることが望ましい。シューターの配置高さによらず、傾斜面の下端部を基準に設定され、引取機の一部が水上に露出することは支障とならない。水位は、傾斜面の下端部からの高さが、0~45mmに設定することが好ましく、1~30mmの高さに設定することがより好ましく、3mm~22mmの高さに設定することがさらに好ましい。水位は傾斜面の下端部の高さと同一の高さを含み、これ以上の水位であれば本発明を実施できる。製造時の水位のばらつきや機械の水平度などを考慮して水位高さを設定することが好ましい。製造条件にも影響されるが、水位を3mm以上の高さに設定すれば、水圧などの影響により水位が傾斜面の下端部より低くなることを防止できる。一方、水位が傾斜面の下端部から30mmを越すと、条件によっては樹脂の固化が始まり繊維同士の融着が悪くなり、また表面の粗さが増して不適当となる。
 つぎに、成形開口部と同様の形状を断面に有する構造体は、水切り後、ローラーによって乾燥熱処理槽に送られ、熱風による乾燥熱処理によってアニーリング行う。この時、乾燥熱処理槽の前後のローラーの引取速度を異なるように設定することが好ましい。例えば、乾燥熱処理槽の入口付近のローラーの引取速度よりも、乾燥熱処理槽の出口付近のローラーの引取速度を低く設定する。乾燥熱処理後、所望の長さに切断して、構造体を得る。乾燥熱処理前に所望の長さに切断してもよい。
 この乾燥熱処理によるアニーリングは、水槽から取り出し、水切りを行った構造体を乾燥温度で所定時間行う。乾燥温度は、低密度ポリエチレンの場合、その融点以下であることが好ましく、融点より10~70℃低いことが好ましい。また、ポリエステル系熱可塑性エラストマーの場合、ポリエステル系熱可塑性エラストマーの融点以下であることが好ましく、融点より10~70℃低いことが好ましい。また、ポリエチレン系熱可塑性樹脂とポリエチレン系熱可塑性エラストマーの混合物の場合、混合物の融点以下であることが好ましく、融点より10℃~30℃低いことが好ましい。
 アニーリングは、水槽から取り出し水切りを行った後、枠に三次元桟構造を圧縮状態で収容し、熱風で熱処理し、型を外したものでもよい。この場合の乾燥温度は低密度ポリエチレンの場合、その融点以下であることが好ましく、融点より10~70℃低いことが好ましい。また、熱可塑性エラストマーの場合、熱可塑性エラストマーの融点以下であることが好ましく、融点より10~70℃低いことが好ましい。また、ポリエチレン系熱可塑性樹脂とポリエチレン系熱可塑性エラストマーの混合物の場合、混合物の融点以下であることが好ましく、融点より10℃~70℃低いことが好ましい。
 上記のように水槽で構造体を成形した後、後工程でアニーリング(以下、追加アニーリングという。)しても良いし、水槽に加温した水を供給することによって、生産時に追加的にアニーリング(以下、生産時アニーリングという。)しても良い。
 生産時アニーリングは、ポリエチレン系熱可塑性樹脂、または、ポリエステル系熱可塑性エラストマーの融点より少なくとも10℃~70℃以上低い温度で処理することが好ましい。ポリエチレン系樹脂とポリエチレン系熱可塑エラストマーの混合物の場合は、融点より10~70℃以上低いことが好ましい。
 生産時アニーリングの場合、少なくとも一対のシューターに常温の水を供給する代わりに、シューターに供給する加温水を20~90℃の範囲(20~80℃以上が好ましく、25~50℃がさらに好ましい。)で供給し、線条をランダムに熱溶着させランダムループを形成しながらアニーリングを行ってもよい。加温水の場合、低密度ポリエチレンの場合には、25~50℃、熱可塑性エラストマーの場合には、25~70℃、ポリエチレン系樹脂とポリエチレン系熱可塑エラストマーの混合物の場合は、25~60℃が好ましい。加温水としては、(A)シューターに流す水を加温する、(B)水槽自体を温める、(C)シューターをタンクのような形状として内部温度を上げる、などがある。またそれら複合としても良い。シューターへ供給する加温水の温度を上げすぎると、樹脂がシューターにくっつくおそれがあるので、温度は適宜の温度、例えば、10~60℃が望ましい。追加アニーリングは三次元桟構造を水槽から引き揚げた後、湯、または熱風に浸漬、通過して行う。
 アニーリングは、乾燥熱処理等による追加アニーリングと、水槽等の温水による生産アニーリングどちらかを1回だけ行ってもよいし、生産アニーリングの後に追加アニーリングを行い、二段階でアニーリングを行ってもよい。また、追加アニーリングを二段階で行ってもよい。この場合、一回目の追加アニーリング温度よりも二回目の追加アニーリング温度を高く設定する。
 本発明の構造体は、上記製法により、柔らかで高反発な特性、縦方向および横方向の熱伸長特性を実現する。また、縦方向と横方向で異なる熱伸長特性を実現する。本発明者の分析によれば、弾性特性や熱伸長特性、さらに非等方性の熱伸長率になるメカニズムは複雑であり、すべてが明らかになっているわけではないが、原料の適切な範囲の線径減少率と溶融粘度とMFR、口金の穴径からの押出成形処理、線条のループ形成処理、線条の冷却処理、及び、乾燥熱処理による追加アニーリングや生産時アニーリングを適切に行うことにより、線条が自然降下し、絡合し、冷却されるときに、基本的には、線条の太さの特徴的な変動現象・揺動現象により、縦方向と横方向で絡合の形態が相違するものと考えている。
 横方向、縦方向に熱伸長するのは、原料の線径減少率、口金の径、コンベアの引取速度、アニーリング等が要素となるからである。
 なお、本発明の構造体は、性能を低下させない範囲で樹脂製造過程から成形体に加工し、製品化する任意の段階で防臭抗菌、消臭、防黴、着色、芳香、難燃、不燃、吸放湿等の機能付与を薬剤添加等の処理加工により付与することができる。
 以下に、実施例を例示し、本発明を具体的に説明するが、本発明はこれらによって限定されるものではない。なお、実施例中における特性値の測定及び評価は下記のように行った。
(1) 線径 (mm)
 試料の中心部分から樹脂糸を切り出し、ノギスで樹脂糸の厚みを5回測定した。5回の測定値の平均値を線径とした。S1とS2に対して測定した。エラストマー試料の線径は、ポリエステルの測定結果から推測した。アニーリング有りの温度は60℃、アニーリングなしは23℃とした。
(2) 試料厚み及び嵩密度 (g/cm
 試料を30cm×30cmの大きさに切断し、無荷重で24時間放置した後、4か所の高さを測定して平均値を試料厚みとした。試料厚みから体積を求め、試料の重さを体積で除した値を試料の嵩密度とした。
(3) ランダムループの平均直径 (mm)
 試料を20cm×20cmの大きさに切断し、押し出し方向表面に形成された不規則な形状のランダムループのループ円の直径が大きいほうを10か所測定を行い、平均値をミリ以下、切り捨て、ランダムループの平均直径とした。
(4) 硬さ  (N)
 試料を30cm(縦)×30cm(横)の大きさに切断し、この試験片をJIS K 6400-2:2012 A法を準用して計測した。試験温度20℃、湿度65%である。 
(5) 反発弾性(cm)
 試料を30cm(縦)×30cm(横)の大きさに切断し、この試験片をJIS K 6400-3:2011を準用して測定を行った。鋼球は直径が41.5mm、重さ290gのものを使用した。落下高さ500mmとした。試験温度23℃、湿度50%である。
(6) 定重繰返し試験後の反発弾性変化率(%)
 試料を30cm(縦)×30cm(横)の大きさに切断し、(5)に記載の方法で定重繰返し試験前の反発弾性(a)を測定する。反発弾性を測定したサンプルに対して定重繰返し圧縮試験を実施する。定重繰り返し圧縮試験はJISK6400-4の繰返し圧縮残留ひずみ試験A法(定荷重法)に準拠して実施する。繰り返し圧縮試験は温度23±2℃、相対湿度50±5%で実施する。A法(定荷重法)は直径25cmの加圧板を用いてサンプルに750N±20Nの力で、毎分70±5回の早さで80000万回の繰返し圧縮を行う。最大の力750±20Nを加圧している時間は、繰り返し圧縮に要する時間の25%以下とする。試験終了後、サンプルに力のかからない状態で100±0.5分放置する。定重繰返し試験後の反発弾性(b)を(5)に記載の方法で測定する。定重繰返し試験後の反発弾性変化率(%)は、定重繰返し試験後の反発弾性を定重繰返し試験前の反発弾性で除す下記式にて算出される。
(定重繰返し試験後の反発弾性変化率(%))=(1-(b)/(a))×100
(7) 圧縮たわみ係数(%)
 試料を30cm(縦)×30cm(横)の大きさに切断し、この試験片をJIS K 6400-2:2012 E法を準用して測定した。試験温度23℃、湿度50%である。
(8) ヒステリシスロス (%)
 試料を30cm(縦)×30cm(横)の大きさに切断し、この試験片をJIS K 6400-2:2012 E法を準用して測定した。
(9) 乾燥熱風試験前後の熱伸長率  (%)
 試料を30cm(縦)×30cm(横)の大きさに切断し、試験片の縦方向と横方向の各2箇所に25cmとなるようにマーキングを行った。乾燥熱風試験後でも容易に識別できるペンでマーキングした。マーキングを行った試験片を熱風乾燥炉に30分間入れた。その後、熱風循環乾燥炉から試料を取り出し、22℃の室温で30分間冷却した。冷却後に縦方向と横方向のマーキング距離を各2箇所計測し、各2箇所の平均値を、試験後の縦長さ、試験後の横長さとした。全ての長さの測定は、0.01cmまで読み取れる計測器を用いた。乾燥熱風試験前後の熱伸長率は、(25-得られた長さ)/25×100で計算した。ポリエチレン系樹脂の乾燥熱風試験温度は90℃、ポリエステル系熱可塑性エラストマーの乾燥熱風試験温度は130℃、ポリエチレン樹脂とポリエチレン系熱可塑性エラストマーの乾燥熱風試験温度は90℃とした。
(10)引張強度 (N)
 試料を20cm(縦)×5cm(横)の大きさに切断し、この試験片を固定金具間が10cmになるように治具に固定した。引張速度は10cm/minとした。測定時の室温は20℃、湿度は65%である。熱可塑性エラストマーは厚みがあるため固定するための治具を用いた。同一試料に対して縦横それぞれ2回の測定を行い、最大点荷重を測定値とした。
[実施例1]
 押出機のスクリュー径が65mm、ダイス温度が205℃、ダイスの幅方向890mm、厚み方向75mm、孔間ピッチ10mm、ノズル穴径が1.6mm、エヤーギャップ(ノズル下面から水面までの距離)67mm、主原料はメタロセン化合物を触媒としてヘキサン、ヘキセン、エチレンを公知の方法で重合し、得られたエチレン・α-オレフィン共重合体、せん断速度24.3sec-1に対する線径減少率が1.05、せん断速度60.8sec-1に対する線径減少率が1.12、せん断速度121.6sec-1に対する線径減少率が1.15、せん断速度243.2sec-1に対する線径減少率が1.18、せん断速度608sec-1に対する線径減少率が1.23、せん断速度1216sec-1に対する線径減少率が1.26、MFRが12g/10min、密度0.90g/cmを溶融温度180℃にて、ノズル下方に押出量が86Kg/hにて線条を吐出させ、ノズル面36mm下にシューター下端を配し下端を水没させ、幅105cmのステンレス製コンベアを平行に開口幅71mm間隔で一対の引取りコンベアを水面上に一部出るように配して、溶融状態の吐出線条をシューターの上で36℃の加温水をシューター上に供給することにより固化処理を行うとともに、線条を接触絡合させてループを形成して接触部分を融着させつつ三次元桟構造を形成し、溶融状態の構造体の両面を引取コンベアで挟み込みつつ引取速度が6.7mm/secで36℃の温水へ引込み固化させ両面をフラット化した後、所定の大きさに切断して、60℃の熱風にて5分間乾燥熱処理によるアニーリングを行い、構造体を得た。得られた構造体は、断面形状が四角形、線経が0.6~1.1mmの線条で形成されており、表面は平坦化されており、嵩比重が53kg/m3、厚みが75mm、幅890mm、90℃、30分間乾燥熱風試験前後の伸長率が縦方向で2.31%、横方向で1.52%、ヒステリスロスが28.7%、反発弾性31cm、定重繰返し試験後の反発弾性変化率0%であった。なお、気温19℃、湿度42%であった。
 [実施例2]
 押出機のスクリュー径が40mm、ダイス温度が190℃、ダイスの幅方向500mm、厚み方向25mm、孔間ピッチ10mm、ノズル穴径が1.6mm、エヤーギャップ(ノズル下面から水面までの距離)38mm、エチレン・α-オレフィン共重合体(原料は実施例1と同一)のポリエチレンを溶融温度160℃にて、ノズル下方に押出量が13Kg/hにて線条を吐出させ、ノズル面36mm下にシューター下端を配し下端を水没させ、幅55cmのステンレス製コンベアを平行に開口幅23mm間隔で一対の引取りコンベアを水面上に一部出るように配して、溶融状態の吐出線条をシューターの上で36℃の加温水をシューター上に供給することにより固化処理を行うとともに、線条を接触絡合させてループを形成して接触部分を融着させつつ三次元桟構造を形成し、溶融状態の構造体の両面を引取コンベアで挟み込みつつ引取速度が4.1mm/secで36℃の温水へ引込み固化させ両面をフラット化した後、所定の大きさに切断して60℃の熱風にて5分間乾燥熱処理によるアニーリングを行い、構造体を得た。得られた構造体は、断面形状が四角形、線経が0.6~1.1mmの線条で形成されており、表面は平坦化されており、嵩比重が70kg/m3、厚みが25mm、幅500mm、90℃、30分間の乾燥熱風試験前後の熱伸長率が縦方向で1.87%、横方向で1.39%、ヒステリスロスが28.6%、反発弾性33cm、定重繰返し試験後の反発弾性変化率6.1%であった。気温21℃、湿度48%であった。
 [実施例3]
 押出機のスクリュー径が65mm、ダイス温度が217℃、ダイスの幅方向900mm、厚み方向30mm、孔間ピッチ10mm、ノズル穴径が1mm、エヤーギャップ(ノズル下面から水面までの距離)69mm、主原料として熱可塑性エラストマー(登録商標「ハイトレル」)、せん断速度60.8sec-1に対する線径減少率が1.26、せん断速度121.6sec-1に対する線径減少率が1.28、せん断速度243.2sec-1に対する線径減 少率が1.30、せん断速度608sec-1に対する線径減少率が1.30、せん断速度1216sec-1に対する線径減少率が1.33、MFRが14g/10min、密度1.08g/cm、を溶融温度195℃にて、ノズル下方に押出量が27.5Kg/hにて線条を吐出させ、ノズル面69mm下にシューター下端を配し下端を水没させ、幅105cmのステンレス製コンベアを平行に開口幅70mm間隔で一対の引取りコンベアを水面上に一部出るように配して、溶融状態の吐出線条をシューターの上で63℃の温水をシューター上に供給することにより固化処理を行うとともに、線条を接触絡合させてループを形成して接触部分を融着させつつ三次元桟構造を形成し、溶融状態の構造体の両面を引取コンベアで挟み込みつつ引取速度が3.9mm/secで引込み固化させ両面をフラット化した後、80℃の湯でアニーリングし、その後、所定の大きさに切断して130℃の熱風にて5分間乾燥熱処理によるアニーリングを行い、構造体を得た。得られた構造体は、断面形状が四角形、線経が0.5~1.0mmの線条で形成されており、表面は平坦化されており、嵩比重が71kg/m3、厚みが30mm、幅900mm、130℃、30分間乾燥熱風試験前後の熱伸長率が縦方向で0.78%、横方向で1.70%、ヒステリスロスが17.1%、反発弾性33cm、定重繰返し試験後の反発弾性変化率0%であった。気温33℃、湿度48%であった。
 [実施例4]
 押出機のスクリュー径が65mm、ダイス温度が225℃、ダイスの幅方向900mm、厚み方向73mm、孔間ピッチ10mm、ノズル穴径が1.6mm、エヤーギャップ69mm(ノズル下面から水面までの距離)、熱可塑性エラストマー(登録商標「ハイトレル」)(実施例3と同一原料)を溶融温度202℃にて、ノズル下方に押出量が40Kg/hにて線条を吐出させ、ノズル面69mm下にシューター下端を配し下端を水没させ、幅105cmのステンレス製コンベアを平行に開口幅72mm間隔で一対の引取りコンベアを水面上に一部出るように配して、溶融状態の吐出線条をシューターの上で63℃の加温水をシューター上に供給することにより固化させ、線条を接触絡合させてループを形成して接触部分を融着させつつ構造体を形成し、溶融状態の構造体の両面を引取コンベアで挟み込みつつ引取速度が2.7mm/secで引込み固化させ両面をフラット化した後、80℃の湯でアニーリングし、所定の大きさに切断して130℃の熱風にて5分間乾燥熱処理によるアニーリングを行い、構造体を得た。得られた構造体は、断面形状が四角形、線経が0.5~1.2mmの線条で形成され、表面は平坦化されており、嵩比重が63kg/m3、厚みが73mm、乾燥熱風試験前後の熱伸長率が縦方向で1.22%、横方向で3.08%、ヒステリスロスが16.7%、反発弾性34cm、定重繰返し試験後の反発弾性変化率5.9%であった。気温30℃、湿度44%であった。
[実施例5]
 押出機のスクリュー径が40mm、ダイス温度が195℃、ダイスの幅方向500mm、厚み方向51mm、孔間ピッチ10mm、ノズル穴径が1mm、エヤーギャップ(ノズル下面から水面までの距離)38mm、エチレン・α-オレフィン共重合体(実施例1と同一材料)主成分と不燃材を混合したものを溶融温度160℃にて、ノズル下方に押出量が23Kg/hにて線条を吐出させ、ノズル面38mm下にシューター下端を配し下端を水没させ、幅55cmのステンレス製コンベアを平行に開口幅40mm間隔で一対の引取りコンベアを水面上に一部出るように配して、溶融状態の吐出線条をシューターの上で36℃の加温水をシューター上に供給することにより固化処理を行うとともに、線条を接触絡合させてループを形成して接触部分を融着させつつ三次元桟構造を形成し、溶融状態の構造体の両面を引取コンベアで挟み込みつつ引取速度が6.8mm/secで36℃の温水へ引込み固化させ両面をフラット化した後、所定の大きさに切断して60℃の熱風にて5分間乾燥熱処理して、嵩密度45kg/mの構造体を得た。得られた構造体は、断面形状が四角形、線経が0.7~1.3mmの線条で形成されており、表面は平坦化されており、嵩比重が50kg/m3、厚みが51mm、幅400mm、90℃、30分間乾燥熱風試験前後の伸長率が縦方向で2.68%、横方向で1.28%、ヒステリスロスが27.0%、反発弾性24cm、定重繰返し試験後の反発弾性変化率16.7%であった。気温15℃、湿度52%であった。
 [実施例6]
 押出機のスクリュー径が40mm、ダイス温度が195℃、ダイスの幅方向500mm、厚み方向25mm、孔間ピッチ10mm、ノズル穴径が1mm、エヤーギャップ(ノズル下面から水面までの距離)38mm、メタロセン化合物を触媒としてヘキサン、ヘキセン、エチレンを公知の方法で重合し、得られたエチレン・α-オレフィン共重合体(実施例1と同一材料)主成分とし不燃材を混合した原料を溶融温度160℃にて、ノズル下方に押出量が17Kg/hにて線条を吐出させ、ノズル面36mm下にシューター下端を配し下端を水没させ、幅55cmのステンレス製コンベアを平行に開口幅40mm間隔で一対の引取りコンベアを水面上に一部出るように配して、溶融状態の吐出線条をシューターの上で36℃の加温水をシューター上に供給することにより固化処理を行うとともに、線条を接触絡合させてループを形成して接触部分を融着させつつ三次元桟構造を形成し、溶融状態の構造体の両面を引取コンベアで挟み込みつつ引取速度が4.5mm/secで36℃の温水へ引込み固化させ両面をフラット化した後、所定の大きさに切断して60℃の熱風にて5分間乾燥熱処理して、嵩密度65kg/mの構造体を得た。得られた構造体は、断面形状が四角形、線経が0.7~1.3mmの線条で形成されており、表面は平坦化されており、嵩比重が50kg/m3、厚みが43mm、幅400mm、90℃、30分間の乾燥熱風試験前後の熱伸長率が縦方向で2.06%、横方向で1.22%、ヒステリスロスが30.0%、反発弾性32cm、定重繰返し試験後の反発弾性変化率12.5%であった。気温21℃、湿度48%であった。
[実施例7]
 押出機のスクリュー径が40mm、ダイス温度が205°C、ダイスの幅方向500mm、厚み方向60mm、孔間ピッチ10mm、ノズル穴径が1mm、エヤーギャップ(ノズル下面から水面までの距離)38mm、メタロセン化合物を触媒としてヘキサン、ヘキセン、エチレンを公知の方法で重合し、得られたエチレン・α-オレフィン共重合体(実施例1と同一材料)とオレフィン ブロック コポリマー(ポリエチレン系熱可塑性エラストマー)を重量比20%混ぜ溶融温度200°Cにて、ノズル下方に押出量が22Kg/hにて線条を吐出させ、ノズル面39mm下にシュート下端を配し、幅55cmのステンレス製コンベアを平行に開口幅40mm間隔で一対の引取りコンベアを水面上に一部出るように配して、溶融状態の吐出線条をシュートの上で29°Cの加温水をシュート上に供給することにより固化処理を行うとともに、線条を接触絡合させてループを形成して接触部分を融着させつつ構造体を形成し、溶融状態の構造体の両面を引取コンベアで挟み込みつつ引取速度が4.5mm/secで29°Cの温水へ引込み固化させ両面をフラット化した後、所定の大きさに切断して60°Cの熱風にて5分間乾燥熱処理して、嵩密度65kg/m3の構造体を得た。得られた構造体は、断面形状が四角形、線経が0.8~1.5mmの線条で形成されており、表面は平坦化されており、嵩比重が65kg/m3、厚みが50 mm、幅405mm、90°C、30分間の乾燥熱風試験前後の熱伸長率が縦方向で3.04%、横方向で2.72%、ヒステリスロスが29.1%、反発弾性16cm、定重繰返し試験後の反発弾性変化率5.5%であった。気温12°C、湿度45%であった。
[比較例1]  
 他社製マットレスのポリエステル系熱可塑性エラストマー製の網状構造体(厚みが45mm、幅400mm)について各試験を行った結果、嵩比重が40kg/m3、130℃、30分間の乾燥熱風試験前後の熱伸長率が縦方向で-0.32(収縮)、横方向で-0.12%(収縮)、ヒステリスロスが70.4%、反発弾性22cm、定重繰返し試験後の反発弾性変化率68.2%であった。
[比較例2]
 比較例1とは別の他社製マットレスのポリエステル系熱可塑性エラストマー製の網状構造体(厚みが25mm、幅400mm)について各試験を行った結果、嵩比重が50kg/m3、130℃、30分間の乾燥熱風試験前後の熱伸長率が縦方向で-0.28(収縮)、横方向で-0.20%(収縮)、ヒステリスロスが81.0%、反発弾性21cm、定重繰返し試験後の反発弾性変化率4.8%であった。
 以上、本発明によれば、縦方向、横方向に熱伸長する熱伸長特性を有するので、例えばマットレスに用いられた場合、高温で消毒した場合等でも、マットレスが収縮してカバーがしわになることがなく、しわが原因となる褥瘡も起こりにくく好適である。また、縦方向、横方向に熱伸長率が異なる非等方性の熱伸長特性を有するので、構造体の用途や、その用途における人体の特性に適合させることが可能である。
 さらに、ヒステリシスロスが小さく柔らかな高反発特性を有するので、人体の特性に適合する弾性特性を提供でき、製品への弾性特性の要求の多様化、製品への品質要求の高度化に対応できる。
 用途としては、マットレスの中材やマットレスとしてだけでなく、クッション、座布団、身障者用クッションなどの用途がある。ポリエチレンと熱可塑性ポリエステル・エラストマーを積層させることもある。
 なお、本発明は、上述の実施の形態に限定されず、本発明の技術的思想を逸脱しない範囲で、様々な改変、置換、欠失等を行うことが出来、改変、均等、置換、欠失等も本発明の技術的範囲に含まれる。
Figure JPOXMLDOC01-appb-T000001
 本発明はヒステリシスロスが小さく、柔らかな高反発特性を有し、縦方向と横方向の乾燥熱風試験によって熱伸長する熱伸長特性を有し、縦方向と横方向の熱伸長特性が異なるので、健康志向にフィットした弾性特性を備えた乗物座席、クッション、マットレス、カバー等を提供できる。特に、褥瘡、介護など、ソフトで、縦方向に伸びやすいクッションを提供できる。また、乗物の座席、ベッド、マット等に利用されるクッションやカバーに利用されるシート等に利用できる。

Claims (11)

  1.  連続線条が部分的にランダムに溶着することによりループを形成し、押出方向に対応する縦方向、前記押出方向と直交する横方向と厚み方向を有する、ポリエチレン系熱可塑性樹脂、ポリエステル系熱可塑性エラストマー、又はポリエチレン系熱可塑性樹脂とポリエチレン系熱可塑エラストマーの混合物からなる、三次元桟構造体であり、
     前記三次元桟構造体の反発弾性が13cm以上であり、
     ヒステリシスロスが34%を超えず、13%を下回らず、
     ポリエチレン系熱可塑性樹脂の場合に温度90℃で30分間、ポリエステル系熱可塑性エラストマーの場合に130℃で30分間、又はポリエチレン系熱可塑性樹脂とポリエチレン系熱可塑エラストマーの混合物の場合に90℃で30分間の乾燥熱風試験後、前記縦方向において乾燥熱風試験前後の熱伸長率が0~8%である三次元桟構造体。
  2.  ポリエチレン系熱可塑性樹脂の場合に温度90℃で30分間、ポリエステル系熱可塑性エラストマーの場合に130℃で30分間、又はポリエチレン系熱可塑性樹脂とポリエチレン系熱可塑エラストマーの混合物の場合に90℃で30分間の乾燥熱風試験後、前記横方向において、乾燥熱風試験前後の熱伸長率が0~8%である請求項1の三次元桟構造体。
  3.  前記縦方向と前記横方向の熱伸長率が異なる非等方性の熱伸長特性を有する請求項1または請求項2の三次元桟構造体。
  4.  ポリエチレン系熱可塑性樹脂の場合は、定荷重繰返し試験後の反発弾性変化率が25%以下、ポリエステル系熱可塑性エラストマーの場合は、定荷重繰返し試験後の反発弾性変化率が20%以下、である請求項1から3までのいずれかに記載の三次元桟構造体。
  5.  前記三次元桟構造体の見掛け密度が、0.025g/cm3~0.2g/cm3であり、厚みが単層及び複層において5mm~500mmで、線径が直径0.1mm~1.5mmである請求項1から4までのいずれかに記載の三次元桟構造体。
  6.  前記ポリエチレン系熱可塑性樹脂が、ポリエチレン、または、主としてエチレンと炭素数3以上のαオレフィンからなるエチレン・α-オレフィン共重合体樹脂である請求項1から5までのいずれかに記載の三次元桟構造体。
  7.  前記ポリエチレン系熱可塑性樹脂とポリエチレン系熱可塑性エラストマーの混合物は、主としてエチレンと炭素数3以上のαオレフィンからなるエチレン・α-オレフィン共重合体樹脂とポリエチレン系熱可塑性エラストマーの混合物であり、前記混合物中の前記ポリエチレン系熱可塑性エラストマーの含有量は重量比率で45%以下である、請求項1から5までのいずれかに記載の三次元桟構造体。
  8.  クッション、クッションシート、座布団、枕、介護用品、ベッド用クッションまたはマットレス用であることを特徴とする請求項1から7までのいずれかに記載の三次元桟構造体。
  9.  複数の面を備え、そのうちの2面、3面、または、4面が成形され、又は曲面が形成された請求項1から8までのいずれかに記載の三次元桟構造体。
  10.  ポリエチレン系熱可塑性樹脂からなる三次元網状構造と、ポリエチレン系熱可塑性エラストマーからなる三次元網状構造を積層したものである請求項1ないし9いずれかに記載の三次元桟構造体。
  11.  前記三次元網状構造が押出方向に粗密の帯状部分が繰り返され、疎の帯状部分を基準とする密の帯状部分の単位重さあたりの接合点数の比率が0.96~1.33であり、前記疎の帯状部分の見掛け密度に対して、密の帯状部分の見掛け密度が0.005g/cm以上の差のある請求項1ないし10いずれかに記載の三次元桟構造体。
PCT/JP2016/002565 2015-05-28 2016-05-27 三次元桟構造体 WO2016189879A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/573,488 US10233073B2 (en) 2015-05-28 2016-05-27 Three-dimensional striped structure
CN201680030618.XA CN107614238B (zh) 2015-05-28 2016-05-27 三维条形结构
JP2017520248A JPWO2016189879A1 (ja) 2015-05-28 2016-05-27 三次元桟構造体
EP16799590.1A EP3305500A4 (en) 2015-05-28 2016-05-27 Three-dimensional crosspiece structure
PH12017502111A PH12017502111A1 (en) 2015-05-28 2017-11-21 Three-dimensional striped structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015108450A JP5909581B1 (ja) 2015-05-28 2015-05-28 三次元桟構造体
JP2015-108450 2015-05-28

Publications (1)

Publication Number Publication Date
WO2016189879A1 true WO2016189879A1 (ja) 2016-12-01

Family

ID=55793201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002565 WO2016189879A1 (ja) 2015-05-28 2016-05-27 三次元桟構造体

Country Status (6)

Country Link
US (1) US10233073B2 (ja)
EP (1) EP3305500A4 (ja)
JP (2) JP5909581B1 (ja)
CN (1) CN107614238B (ja)
PH (1) PH12017502111A1 (ja)
WO (1) WO2016189879A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5909581B1 (ja) * 2015-05-28 2016-04-26 株式会社シーエンジ 三次元桟構造体
JP6912471B2 (ja) * 2016-06-30 2021-08-04 株式会社エアウィーヴ マットレス用芯材およびベッド用マットレス
JP6067914B1 (ja) * 2016-07-01 2017-01-25 東京化セン株式会社 マットレス構造体
WO2018021292A1 (ja) * 2016-07-28 2018-02-01 株式会社エアウィーヴ 寝具および寝具用カバーシート
EP3512379B1 (en) 2016-09-13 2020-10-21 Covestro Deutschland AG Porous body, additive manufacturing method for the body and apparatus for supporting and/or bearing a person
PL3292795T3 (pl) 2016-09-13 2020-06-01 Covestro Deutschland Ag Zastosowanie elastycznego polimeru do wytwarzania porowatego korpusu w sposobie wytwarzania addytywnego
CN111719247B (zh) * 2020-07-17 2021-05-25 无锡科逸新材料有限公司 耐疲劳的层状弹性体
US11807143B2 (en) 2021-12-02 2023-11-07 Lear Corporation Vehicle seating system and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328153A (ja) * 2000-03-15 2001-11-27 Shiienji:Kk 立体網状構造体の製造方法及び立体網状構造体の製造装置
JP2015067935A (ja) * 2013-10-01 2015-04-13 東洋紡株式会社 圧縮耐久性に優れた網状構造体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625629B2 (en) * 2000-03-15 2009-12-01 C-Eng Co., Ltd. Three-dimensional net-like structure, and method and device for producing three dimensional net-like structure
JP2004149959A (ja) * 2002-10-30 2004-05-27 Toyobo Co Ltd 装着用衝撃吸収パッド及びそれを用いた製品
WO2006068120A1 (ja) 2004-12-21 2006-06-29 Toyo Boseki Kabushiki Kaisha 弾性網状構造体
JP5399907B2 (ja) * 2007-08-31 2014-01-29 株式会社クラレ 緩衝材用基材及びその用途
JP5339107B1 (ja) 2013-02-27 2013-11-13 東洋紡株式会社 圧縮耐久性に優れた網状構造体
KR102083055B1 (ko) 2013-10-01 2020-02-28 도요보 가부시키가이샤 압축 내구성이 우수한 망상 구조체
JP5569641B1 (ja) * 2013-10-28 2014-08-13 東洋紡株式会社 静粛性と軽量性に優れた弾性網状構造体
JP5855736B2 (ja) * 2013-12-24 2016-02-09 株式会社シーエンジ 立体網状構造体製造装置及び立体網状構造体製造方法
BR112016019126B1 (pt) * 2014-02-23 2022-01-04 C-Eng Co., Ltd Material central para almofada, e almofada
JP5909581B1 (ja) * 2015-05-28 2016-04-26 株式会社シーエンジ 三次元桟構造体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328153A (ja) * 2000-03-15 2001-11-27 Shiienji:Kk 立体網状構造体の製造方法及び立体網状構造体の製造装置
JP2015067935A (ja) * 2013-10-01 2015-04-13 東洋紡株式会社 圧縮耐久性に優れた網状構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3305500A4 *

Also Published As

Publication number Publication date
EP3305500A4 (en) 2018-05-16
JP5909581B1 (ja) 2016-04-26
PH12017502111A1 (en) 2018-05-07
US10233073B2 (en) 2019-03-19
JP2016221749A (ja) 2016-12-28
JPWO2016189879A1 (ja) 2018-03-15
US20180086623A1 (en) 2018-03-29
EP3305500A1 (en) 2018-04-11
CN107614238A (zh) 2018-01-19
CN107614238B (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
JP6544777B2 (ja) クッション用中材及びクッション
JP5909581B1 (ja) 三次元桟構造体
ES2534820T3 (es) Estructura de red fibrosa con excelente resistencia a la compresión
JP6228278B2 (ja) 三次元網状構造体
JP5459436B1 (ja) 熱寸法安定性に優れた網状構造体
JP6566900B2 (ja) 三次元桟構造体
JP7300188B2 (ja) 立体網状構造体
TWI720710B (zh) 網狀結構體
JP3541969B2 (ja) ベットマット
JP3585003B2 (ja) ベットマット及びその製法
JP3627827B2 (ja) マット及びその製造法
JP3346506B2 (ja) 難燃性複合網状構造体と製法及びそれを用いた製品
JPH119399A (ja) 寝具用マット
JP3690532B2 (ja) マット及びその製法
JP3637929B2 (ja) マット及びその製法
JPH04309398A (ja) クツシヨン材用ポリエステル固綿

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520248

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15573488

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12017502111

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016799590

Country of ref document: EP