WO2016189568A1 - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
WO2016189568A1
WO2016189568A1 PCT/JP2015/002627 JP2015002627W WO2016189568A1 WO 2016189568 A1 WO2016189568 A1 WO 2016189568A1 JP 2015002627 W JP2015002627 W JP 2015002627W WO 2016189568 A1 WO2016189568 A1 WO 2016189568A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
cylinder
exhaust
cylinder head
combustion chamber
Prior art date
Application number
PCT/JP2015/002627
Other languages
English (en)
French (fr)
Inventor
容康 木村
高生 伊藤
佐藤 信彦
忠俊 宮野
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2015/002627 priority Critical patent/WO2016189568A1/ja
Publication of WO2016189568A1 publication Critical patent/WO2016189568A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads

Definitions

  • the present invention relates to a structure of an internal combustion engine, and more particularly to a structure in which a knock sensor for detecting knocking is attached to the internal combustion engine.
  • the present invention has been made paying attention to the above-described problems, and an object of the present invention is to provide an internal combustion engine capable of suppressing a decrease in knocking detection accuracy by a knock sensor.
  • a cylinder block portion that forms a cylinder and a cylinder head portion that forms a combustion chamber together with the cylinder block portion are integrally formed.
  • a sensor insertion portion which is a recess for inserting a knock sensor, is opened on the upper surface of the cylinder head portion.
  • the configuration of the internal combustion engine can be easily configured such that the water jacket and the coolant do not exist between the cylinder and the knock sensor. Become. As a result, it is possible to provide an internal combustion engine that can suppress a decrease in detection accuracy of knocking by the knock sensor as compared with a configuration in which a knock sensor is attached to the cylinder block portion.
  • 1 is a block diagram illustrating a schematic configuration of a vehicle including an internal combustion engine according to a first embodiment of the present invention.
  • 1 is a plan view showing a schematic configuration of an internal combustion engine according to a first embodiment of the present invention. It is the III-III sectional view taken on the line of FIG.
  • It is a conceptual diagram which shows each positional relationship of the sensor insertion part, the exhaust valve hole, the intake valve hole, and the plug attachment hole which were provided with respect to the same combustion chamber.
  • It is a conceptual diagram which shows each positional relationship of the fuel injection nozzle attachment hole, exhaust valve hole, intake valve hole, and plug attachment hole provided with respect to the same combustion chamber.
  • FIG. 1 A schematic configuration of a vehicle including the internal combustion engine (engine) 1 according to the first embodiment will be described with reference to FIG.
  • the internal combustion engine 1 includes an air-fuel mixture obtained by mixing air sucked from an intake pipe 2 connected to a supercharger CH and fuel supplied from within a fuel tank 4 into a combustion chamber. Burn in (not shown). Then, the energy generated by the combustion of the air-fuel mixture is transmitted to the drive device 6 including a transmission and the like. Further, the burned gas is discharged from the combustion chamber to the outside air through the exhaust pipe 8.
  • the supercharger CH pressurizes or accelerates the air sucked from outside air and supplies the air to the intake pipe 2. Further, the supercharger CH includes an exhaust turbine drive supercharger (turbocharger) or a machine drive supercharger (supercharger).
  • the internal combustion engine 1 has a water jacket (not shown). Then, the internal combustion engine 1 is cooled and warmed up by circulating a coolant (not shown) between the water jacket and the radiator RA. The water jacket is formed in the internal space of the internal combustion engine 1.
  • the cooling liquid for example, an LLC (Long Life Coolant) including an antifreeze liquid (Engine Antifreeze Coolants) is used.
  • the internal combustion engine 1 includes a cylinder block portion 10 and a cylinder head portion 20.
  • the cylinder block portion 10 and the cylinder head portion 20 are made of a metal material such as an aluminum alloy, and are integrally formed by casting, for example. That is, the internal combustion engine 1 of the first embodiment has a structure (head block integrated structure) formed by integrally casting the cylinder head portion 20 and the cylinder block portion 10. Therefore, in the internal combustion engine 1 of the first embodiment, the cylinder block portion 10 forms a lower portion of the internal combustion engine 1. Further, in the internal combustion engine 1 of the first embodiment, the cylinder head portion 20 forms an upper portion of the internal combustion engine 1.
  • a plurality of cylinders 12 and a first water jacket portion WJ1 are formed in the cylinder block portion 10.
  • Each cylinder 12 is arranged with the stroke direction of the piston 14 in each cylinder 12 oriented in parallel. 3 and 4, the piston 14 is not shown in cross section for the sake of explanation.
  • the piston 14 reciprocates in the axial direction of the cylinder 12 in the cylinder 12 in accordance with the combustion of the air-fuel mixture in the combustion chamber 22.
  • Each cylinder 12 forms a stroke of the piston 14 with a bore diameter of the cylinder 12 or more together with a connecting rod (not shown) and a crankshaft (not shown).
  • the stroke of the piston 14 is indicated by “St”
  • the bore diameter of the cylinder 12 is indicated by “BID”. Accordingly, each cylinder 12 is formed in a shape that satisfies the following conditional expression (1). St ⁇ BID (1)
  • each cylinder 12 is formed in a shape that satisfies the following conditional expression (2). St> (BID ⁇ 1.2) (2) That is, in the first embodiment, the stroke St of the piston 14 exceeds 1.2 times the bore diameter BID of the cylinder 12.
  • the first water jacket portion WJ1 is formed in the internal space of the cylinder block portion 10. In FIG. 2, the illustration of the first water jacket portion WJ1 is omitted for the sake of explanation.
  • the first water jacket portion WJ1 is formed at a position that covers each cylinder 12 from the outer diameter side.
  • the shape of the cylinder head portion 20 is a shape that covers the upper end of each cylinder 12.
  • the cylinder head portion 20 forms a plurality of combustion chambers 22 together with the cylinder block portion 10.
  • the plurality of combustion chambers 22 are arranged with the stroke direction of the piston 14 in each cylinder 12 parallel.
  • the three cylinders 12 are formed in the cylinder block portion 10. For this reason, the case where the cylinder head part 20 forms the three combustion chambers 22 with the cylinder block part 10 is demonstrated.
  • the internal combustion engine 1 is an in-line 3-cylinder internal combustion engine (in-line 3-cylinder engine).
  • the cylinder head portion 20 includes an intake passage 30, an exhaust passage 40, a nozzle attachment hole 24, a plug attachment hole 26, and a sensor insertion portion 28.
  • an out frame portion 50, an intake side cam frame portion 52, an exhaust side cam frame portion 54, and a second water jacket portion WJ2 are formed in the cylinder head portion 20.
  • a coolant introduction port WJin and a coolant discharge port WJout are formed in the cylinder head portion 20.
  • the intake passage 30 is a passage that allows the intake pipe 2 and the combustion chamber 22 to communicate with each other.
  • the intake passage 30 is formed in the internal space of the cylinder head portion 20.
  • the cylinder head portion 20 has six intake passages 30.
  • the two intake passages 30 for communicating one combustion chamber 22 with the intake pipe 2 are arranged along the direction in which the three cylinders 12 are arranged (the vertical direction in FIG. 2). Further, the two intake passages 30 for communicating one combustion chamber 22 and the intake pipe 2 are formed with the length direction parallel to the radial direction of the cylinder 12 when viewed from the axial direction of the cylinder 12.
  • One opening end of the intake passage 30 opens to the outer surface of the internal combustion engine 1 and communicates with the intake pipe 2. Specifically, one open end of the intake passage 30 forms an intake pipe connection portion 30a.
  • the intake pipe connecting portion 30 a is an opening that opens to the side surface of the cylinder head portion 20 and connects to the intake pipe 2. Therefore, the opening portion of the intake passage 30 opened on the side surface of the cylinder head portion 20 forms an intake pipe connection portion 30 a connected to the intake pipe 2. 2 to 4 and 7, the region closer to the intake pipe 2 than the internal combustion engine 1 is indicated as “intake side”.
  • the other opening end of the intake passage 30 opens into the combustion chamber 22 and communicates with the combustion chamber 22.
  • An intake valve 34 contacts the opening of the intake passage 30 that opens to the combustion chamber 22. Accordingly, the opening of the intake passage 30 that opens to the combustion chamber 22 forms an intake valve hole 32 that is opened and closed by the intake valve 34.
  • the intake valve hole 32 opens in a portion of the intake passage 30 that forms the upper surface of the combustion chamber 22
  • one combustion chamber 22 and the intake pipe 2 are communicated with each other through two intake passages 30.
  • two intake valve holes 32 are opened in a portion of the intake passage 30 that forms the upper surface of the combustion chamber 22. Therefore, in the first embodiment, the cylinder head portion 20 has six intake valve holes 32. In the first embodiment, all the intake valve holes 32 are formed in the same shape.
  • Two intake valve holes 32 opened to one combustion chamber 22 are arranged along the direction in which the three cylinders 12 are arranged.
  • the intake valve 34 includes an intake valve stem 34a and an intake valve head 34b. In FIG. 3, the intake valve stem 34a and the intake valve head 34b are not shown in cross section for the sake of explanation.
  • the intake valve stem 34a is formed in a rod shape. Further, the intake valve stem 34 a projects one end from the intake valve guide hole 36.
  • the intake valve stem 34a is supported by the cylinder head portion 20 via an intake valve spring 34c.
  • the intake valve spring 34 c is not shown in cross section for explanation.
  • the intake valve spring 34c can be expanded and contracted in the axial direction of the intake valve stem 34a in accordance with the rotation of an intake side camshaft 38 to be described later. Further, the intake valve spring 34c is extended by an elastic force to bring the intake valve head 34b into contact with the intake valve hole 32 from the combustion chamber 22 side.
  • the intake valve guide hole 36 is a through hole formed in the upper surface (upper deck) 20 a of the cylinder head portion 20.
  • the intake valve head 34b is formed in a shape (circular shape) capable of closing the intake valve hole 32.
  • the intake valve head 34 b is attached to the other end of the intake valve stem 34 a and disposed in the combustion chamber 22.
  • the intake side camshaft 38 includes an intake side shaft portion 38a and a plurality of intake side cams 38b.
  • the intake side shaft portion 38a is a columnar member.
  • the intake-side shaft portion 38a is disposed at a position where the axial direction is orthogonal to the direction in which the three cylinders 12 are arranged and overlaps with all the intake valve holes 32 in plan view. Further, both end portions of the intake side shaft portion 38 a are inserted into through holes (not shown) formed in the out frame portion 50.
  • Each intake side cam 38b is disposed on the outer peripheral surface of the intake side shaft portion 38a. Each intake side cam 38b is disposed at a position overlapping the intake valve hole 32 in plan view. Each intake side cam 38b is formed in an egg shape having a major axis and a minor axis as seen from the axial direction of the intake side shaft portion 38a.
  • the cylinder block portion 10 and the cylinder head portion 20 form three combustion chambers 22, and each combustion chamber 22 and the intake pipe 2 are communicated with each other through two intake passages 30.
  • the intake side camshaft 38 includes six intake side cams 38b.
  • the intake valve spring 34c contracts.
  • the intake valve head 34 b moves away from the intake valve hole 32 and opens the intake passage 30.
  • the intake valve 34 is displaced according to the rotation of the intake side camshaft 38 to open and close the intake passage 30.
  • one combustion chamber 22 and the intake pipe 2 are communicated with each other through two intake passages 30.
  • two intake valve holes 32 are provided for one combustion chamber 22. Therefore, in the first embodiment, two intake valve guide holes 36 are provided for one combustion chamber 22.
  • the two intake valve guide holes 36 are arranged along the direction in which the three cylinders 12 are arranged.
  • the exhaust passage 40 is a passage that allows the exhaust pipe 8 and the combustion chamber 22 to communicate with each other.
  • Each exhaust passage 40 is formed in a space different from the intake passage 30 in the internal space of the cylinder head portion 20.
  • the cylinder head portion 20 has six exhaust passages 40.
  • Two exhaust passages 40 for communicating one combustion chamber 22 and the exhaust pipe 8 are arranged along the direction in which the three cylinders 12 are arranged. Further, the two exhaust passages 40 for communicating one combustion chamber 22 and the exhaust pipe 8 are formed such that the length direction is parallel to the radial direction of the cylinder 12 when viewed from the axial direction of the cylinder 12.
  • One open end of the exhaust passage 40 opens to the outer surface of the internal combustion engine 1 and communicates with the exhaust pipe 8. 2 to 4 and 7, the region closer to the exhaust pipe 8 than the internal combustion engine 1 is indicated as “exhaust side”.
  • the other opening end of the exhaust passage 40 opens to the combustion chamber 22 and communicates with the combustion chamber 22.
  • An exhaust valve 44 contacts the opening of the exhaust passage 40 that opens to the combustion chamber 22. Accordingly, the opening of the exhaust passage 40 opened to the combustion chamber 22 forms an exhaust valve hole 42 that is opened and closed by the exhaust valve 44.
  • the exhaust valve hole 42 opens in a portion of the exhaust passage 40 that is different from each intake valve hole 32 in a portion that forms the upper surface of the combustion chamber 22.
  • one combustion chamber 22 and the exhaust pipe 8 are communicated with each other through two exhaust passages 40.
  • two exhaust valve holes 42 are opened in a portion of the exhaust passage 40 that forms the upper surface of the combustion chamber 22. Therefore, in the first embodiment, the cylinder head portion 20 has six exhaust valve holes 42.
  • all the exhaust valve holes 42 are formed in the same shape.
  • the exhaust valve hole 42 and the intake valve hole 32 are formed in a shape that satisfies the following conditional expression (3).
  • “EXHvdi” is the inner diameter of the exhaust valve hole 42
  • “INTvdi” is the inner diameter of the intake valve hole 32. Therefore, in the first embodiment, the opening area of the exhaust valve hole 42 is made larger than the opening area of the intake valve hole 32.
  • only four holes (exhaust valve hole 42, intake valve hole 32, nozzle mounting hole 24, plug mounting hole 26) provided for one combustion chamber 22 are shown for explanation. To do.
  • the cylinder head portion 20 has the six intake valve holes 32 and the six exhaust valve holes 42. Furthermore, in the first embodiment, all intake valve holes 32 are formed in the same shape. In addition, in the first embodiment, all the exhaust valve holes 42 are formed in the same shape. Therefore, in the first embodiment, the total value of the opening areas of the two exhaust valve holes 42 opened to one combustion chamber 22 is the total value of the opening areas of the two intake valve holes 32 opened to one combustion chamber 22. Is bigger than.
  • the exhaust valve stem 44a is formed in a rod shape. Further, the exhaust valve stem 44 a projects one end from the exhaust valve guide hole 46.
  • the exhaust valve stem 44a is supported on the cylinder head portion 20 via an exhaust valve spring 44c.
  • the exhaust valve spring 44 c is not shown in cross section for explanation.
  • the exhaust valve spring 44c can be expanded and contracted in the axial direction of the exhaust valve stem 44a in accordance with the rotation of an exhaust camshaft 48 described later. Further, the exhaust valve spring 44c is extended by an elastic force to bring the exhaust valve head 44b into contact with the exhaust valve hole 42 from the combustion chamber 22 side.
  • the exhaust valve guide hole 46 is a through hole formed in the upper surface 20 a of the cylinder head portion 20.
  • the exhaust valve head 44b is formed in a shape (circular shape) capable of closing the exhaust valve hole 42. Further, the exhaust valve head 44 b is attached to the other end of the exhaust valve stem 44 a and disposed in the combustion chamber 22. Thereby, when the exhaust valve spring 44c is extended and the exhaust valve head 44b is brought into contact with the exhaust valve hole 42 from the combustion chamber 22 side, the exhaust valve head 44b closes the exhaust passage 40. As described above, in the first embodiment, the inner diameter EXHvdi of the exhaust valve hole 42 is made larger than the inner diameter INTvdi of the intake valve hole 32.
  • the outer diameter of the exhaust valve head 44b (the outer diameter of the portion in contact with the exhaust valve hole 42) is the outer diameter of the intake valve head 34b (the outer diameter of the portion in contact with the intake valve hole 32). Larger than. That is, the mass of the exhaust valve head 44b is made larger than the mass of the intake valve head 34b.
  • the exhaust side camshaft 48 includes an exhaust side shaft portion 48a and a plurality of exhaust side cams 48b.
  • the exhaust-side shaft portion 48a is a columnar member.
  • the exhaust-side shaft portion 48a is disposed at a position where the axial direction is orthogonal to the direction in which the three cylinders 12 are arranged and overlaps with all the exhaust valve holes 42 in plan view. Further, both end portions of the exhaust side shaft portion 48 a are inserted into through holes (not shown) formed in the out frame portion 50.
  • Each exhaust side cam 48b is disposed on the outer peripheral surface of the exhaust side shaft portion 48a. Further, each exhaust side cam 48b is arranged at a position overlapping the exhaust valve hole 42 in plan view.
  • Each exhaust side cam 48b is formed in an egg shape having a major axis and a minor axis when viewed from the axial direction of the exhaust side shaft portion 48a.
  • the exhaust side camshaft 48 includes six exhaust side cams 48b.
  • the exhaust valve spring 44c contracts.
  • the exhaust valve head 44 b moves away from the exhaust valve hole 42 and opens the exhaust passage 40.
  • the exhaust valve 44 is displaced according to the rotation of the exhaust camshaft 48 to open and close the exhaust passage 40.
  • two exhaust valve holes 42 are provided for one combustion chamber 22 in order to allow one combustion chamber 22 and the exhaust pipe 8 to communicate with each other through two exhaust passages 40. Therefore, in the first embodiment, two exhaust valve guide holes 46 are provided for one combustion chamber 22.
  • the two exhaust valve guide holes 46 are arranged along the direction in which the three cylinders 12 are arranged.
  • the nozzle mounting hole 24 is a hole for inserting the fuel injection nozzle 16 into the combustion chamber 22.
  • the nozzle mounting hole 24 is formed as a through hole that penetrates the upper surface 20 a of the cylinder head portion 20. In FIG. 4, the fuel injection nozzle 16 is not shown in cross section for the sake of explanation.
  • the cylinder head portion 20 forms three combustion chambers 22 together with the cylinder block portion 10. For this reason, the cylinder head portion 20 has three nozzle mounting holes 24.
  • the nozzle mounting hole 24 is formed at a position where the following conditional expression (5) is satisfied. INJ-EXTr> INJ-INTr (5)
  • conditional expression (5) “INJ-EXTr” is the distance between the center of the nozzle mounting hole 24 and the center of the exhaust valve hole 42 provided for the same combustion chamber 22.
  • “INJ-INTr” is the distance between the center of the nozzle mounting hole 24 and the center of the intake valve hole 32 provided for the same combustion chamber 22. Therefore, in the first embodiment, the distance between the nozzle mounting hole 24 and the exhaust valve hole 42 is longer than the distance between the nozzle mounting hole 24 and the intake valve hole 32.
  • the fuel injection nozzle 16 is connected to the fuel tank 4.
  • the fuel injection nozzle 16 injects fuel (gasoline etc.) in the fuel tank 4 into the combustion chamber 22 by control using an ECU (Engine Control Unit) or the like.
  • the plug attachment hole 26 is a hole for inserting the spark plug 18 into the combustion chamber 22.
  • the plug attachment hole 26 is formed so as to penetrate the upper surface 20a of the cylinder head portion 20.
  • the spark plug 18 is not shown in cross section for the sake of explanation.
  • the cylinder head portion 20 forms three combustion chambers 22 together with the cylinder block portion 10. For this reason, the cylinder head portion 20 has three plug attachment holes 26.
  • the plug attachment hole 26 is formed at a position where the following conditional expression (6) is satisfied.
  • SP-EXTr is the distance between the center of the plug mounting hole 26 and the center of the exhaust valve hole 42 provided for the same combustion chamber 22.
  • SP-INTr is a distance between the center of the plug attachment hole 26 and the center of the intake valve hole 32 provided for the same combustion chamber 22. Therefore, in the first embodiment, the distance between the plug attachment hole 26 and the exhaust valve hole 42 is set to a length equal to or longer than the distance between the plug attachment hole 26 and the intake valve hole 32.
  • the plug mounting hole 26 is disposed at the center of the combustion chamber 22 into which the ignition plug 18 is inserted as viewed from the axial direction of the cylinder 12.
  • the spark plug 18 generates a spark in the combustion chamber 22 by control using an ECU or the like.
  • the sensor insertion part 28 is a recessed part into which the knock sensor KnS is inserted.
  • the opening 28 a of the sensor insertion portion 28 opens on the upper surface 20 a of the cylinder head portion 20.
  • 1st embodiment demonstrates the case where the opening part 28a of the sensor insertion part 28 opens to the 1st area
  • the opening 28a of the sensor insertion portion 28 opens to the first region E1 on the intake side across the center of the cylinder 12 when viewed from the axial direction of the cylinder 12.
  • the intake side cam journal portion 56 will be described later.
  • the opening 28a of the sensor insertion portion 28 is disposed in the second region E2 between the intake side and the exhaust side with the center of the cylinder 12 sandwiched from the axial direction of the cylinder 12. Open to the first region E1 on the side having the intake-side cam journal portion 56.
  • the bottom surface 28 b of the sensor insertion portion 28 is disposed at a position overlapping the combustion chamber 22 when viewed from the axial direction of the cylinder 12.
  • the bottom surface 28b of the sensor insertion portion 28 is formed at a position where the following conditional expression (7) is satisfied.
  • SPC-IOPr is the shortest distance between the intake pipe connecting portion 30 a and the center of the combustion chamber 22 as viewed from the axial direction of the cylinder 12.
  • KnB-IOPr is the shortest distance between the intake pipe connection portion 30 a and the bottom surface 28 b of the sensor insertion portion 28 as viewed from the axial direction of the cylinder 12.
  • the distance between the intake pipe connection portion 30 a and the bottom surface 28 b of the sensor insertion portion 28 is set to the distance between the intake pipe connection portion 30 a and the center of the combustion chamber 22. Shorter than the distance between. That is, in the first embodiment, the bottom surface 28 b of the sensor insertion portion 28 is disposed between the intake pipe connection portion 30 a and the center of the combustion chamber 22 when viewed from the axial direction of the cylinder 12. Furthermore, the bottom surface 28b of the sensor insertion portion 28 is formed at a position where the following conditional expression (8) is satisfied. INT-IOPr> KnB-IOPr (8)
  • INT-IOPr is the shortest distance between the intake valve hole 32 and the intake pipe connecting portion 30 a when viewed from the axial direction of the cylinder 12.
  • KnB-IOPr is the shortest distance between the intake pipe connection portion 30 a and the bottom surface 28 b of the sensor insertion portion 28 as viewed from the axial direction of the cylinder 12.
  • a line connecting two intake pipe connecting portions 30 a provided for the same combustion chamber 22 and an intake valve hole 32 are provided. Indicates the shortest distance between. This is the same when only one intake passage 30 is provided for one combustion chamber 22 and when three or more intake passages 30 are provided.
  • the distance between the intake pipe connecting portion 30a and the bottom surface 28b of the sensor insertion portion 28 is set between the intake valve hole 32 and the intake pipe connecting portion 30a. Shorter than the distance. That is, in the first embodiment, the bottom surface 28b of the sensor insertion portion 28 is disposed between the intake valve hole 32 and the intake pipe connection portion 30a. Further, the bottom surface 28b of the sensor insertion portion 28 is disposed on a straight line CL-P when viewed from the axial direction of the cylinder 12, as shown in FIG.
  • the straight line CL-P is a straight line that passes through the center of the combustion chamber 22 as viewed from the axial direction of the cylinder 12 and is orthogonal to the direction in which the three cylinders 12 are arranged.
  • the bottom surface 28b of the sensor insertion portion 28 is formed at a position where the following conditional expression (9) is satisfied.
  • “KnB-SPr” is the shortest distance between the bottom surface 28 b of the sensor insertion portion 28 and the plug mounting hole 26 as viewed from the axial direction of the cylinder 12.
  • “KnB-INTr” is the shortest distance between the intake valve hole 32 and the bottom surface 28 b of the sensor insertion portion 28 as viewed from the axial direction of the cylinder 12.
  • the distance between the bottom surface 28 b of the sensor insertion portion 28 and the plug attachment hole 26 is set to the distance between the intake valve hole 32 and the bottom surface 28 b of the sensor insertion portion 28. Make it longer than the distance between.
  • the knock sensor KnS is a device that detects high-frequency vibration generated by knocking. When knocking is detected, the knocking sensor KnS transmits information on the detection of knocking to an ECU or the like.
  • the knock sensor KnS is not shown for the sake of explanation.
  • the knock sensor KnS is not shown in cross section for the sake of explanation.
  • the out frame part 50 is formed by combining four plate-like members into a frame shape, and is arranged on the upper surface 20 a of the cylinder head part 20. Further, the out frame part 50 is formed in a shape surrounding the periphery of the cylinder head part 20 in plan view, and forms an outer frame of the cylinder head part 20.
  • the upper surface 20a of the cylinder head portion 20 is divided into a first region E1 and a second region E2, as shown in FIG.
  • the first region E1 is a region that overlaps with the combustion chamber 22 when viewed from the axial direction of the cylinder 12 along the direction in which the plurality of cylinders 12 are arranged.
  • the second region E2 is a region between two adjacent first regions E1.
  • the cylinder head portion 20 forms three combustion chambers 22 together with the cylinder block portion 10.
  • the upper surface 20a of the cylinder head part 20 is divided into three first regions E1 and two second regions E2.
  • the intake side cam frame portion 52 is formed of a plate-like member, and the side surface thereof is opposed to the upper surface 20 a of the cylinder head portion 20 and the inner side surface of the out frame portion 50.
  • an intake side frame through hole 52 a is formed in the intake side cam frame portion 52.
  • the intake side frame through hole 52a is a through hole that penetrates the intake side cam frame portion 52 in the thickness direction.
  • the intake side frame through hole 52a is formed in a shape in which a portion of the intake side shaft portion 38a where the intake side cam 38b is not disposed can be inserted rotatably.
  • the inner wall surface of the intake side frame through hole 52a forms an intake side cam journal portion 56 that rotatably supports the intake side camshaft 38.
  • the cylinder head portion 20 has the two intake side cam journal portions 56.
  • the two intake side cam frame portions 52 are respectively arranged in the second region E2 of the upper surface 20a of the cylinder head portion 20. Therefore, in the first embodiment, the two intake side cam journal portions 56 are arranged in the second region E2 on the upper surface 20a of the cylinder head portion 20, respectively.
  • the exhaust side cam frame portion 54 is formed of a plate-like member, and the side surface is opposed to the upper surface 20 a of the cylinder head portion 20 and the inner side surface of the out frame portion 50.
  • the exhaust side cam frame portion 54 is formed in the same shape as the intake side cam frame portion 52. In the first embodiment, a case where three exhaust side cam frame portions 54 are formed on the upper surface 20a of the cylinder head portion 20 will be described. Further, an exhaust side frame through hole 54 a is formed in the exhaust side cam frame portion 54.
  • the exhaust side frame through hole 54a is a through hole that penetrates the exhaust side cam frame portion 54 in the thickness direction. Further, the exhaust side frame through hole 54a is formed in a shape in which a portion of the exhaust side shaft portion 48a where the exhaust side cam 48b is not disposed can be rotatably inserted. Thereby, the inner wall surface of the exhaust-side frame through hole 54a forms an exhaust-side cam journal portion 58 that rotatably supports the exhaust-side camshaft 48.
  • the cylinder head portion 20 has three exhaust side cam journal portions 58. Therefore, in the first embodiment, the intake-side cam frame portion 52 and the exhaust-side cam frame portion 54 are formed in the same shape, and the exhaust-side cam frame portion 54 is further provided on the upper surface 20a of the cylinder head portion 20. One more than the frame part 52 is formed.
  • the three exhaust-side cam frame portions 54 are arranged in the first region E1 on the upper surface 20a of the cylinder head portion 20, respectively. Therefore, in the first embodiment, the three exhaust side cam journal portions 58 are arranged in the first region E1 on the upper surface 20a of the cylinder head portion 20, respectively.
  • the second water jacket portion WJ2 is formed in the internal space of the cylinder head portion 20.
  • illustration of the second water jacket portion WJ2 is omitted for the sake of explanation.
  • the second water jacket portion WJ2 communicates with the first water jacket portion WJ1.
  • the 1st water jacket part WJ1 and the 2nd water jacket part WJ2 respond
  • the second water jacket portion WJ2 is formed at a position that covers each combustion chamber 22, each intake passage 30, and each exhaust passage 40. Accordingly, the water jacket covers each cylinder 12, each combustion chamber 22, each intake passage 30, and each exhaust passage 40.
  • the coolant introduction port WJin opens on the side surface 20b of the cylinder head portion 20, and allows the second water jacket portion WJ2 and the radiator RA to communicate with each other.
  • the coolant introduction port WJin is a surface on one end side (the upper end side in FIG. 2) along the arrangement direction of the cylinders 12 in the side surface 20 b of the cylinder head portion 20. A case of opening in the case will be described. Therefore, the coolant introduction port WJin opens at a position closest to the combustion chamber 22a among the three combustion chambers 22a to 22c. Further, the coolant LLC cooled by the radiator RA is introduced into the second water jacket portion WJ2 from the coolant introduction port WJin.
  • the coolant discharge port WJout opens at a position different from the coolant introduction port WJin on the side surface 20b of the cylinder head portion 20, and allows the second water jacket portion WJ2 and the radiator RA to communicate with each other.
  • the coolant discharge port WJout is the surface on the other end side (the lower end side in FIG. 2) along the arrangement direction of the cylinders 12 in the side surface 20 b of the cylinder head 20. A case of opening in the case will be described. Therefore, the coolant discharge port WJout opens at a position closest to the combustion chamber 22c among the three combustion chambers 22a to 22c. Further, from the coolant discharge port WJout, the heated coolant LLC that has been circulated through the water jacket and heated up is discharged to the radiator RA.
  • the intake-side cam frame portion 52 has two upper surfaces 20 a of the cylinder head portion 20 that are provided for one combustion chamber 22 when viewed from the axial direction of the cylinder 12. Arranged between the intake valve holes 32. That is, in the internal combustion engine having a separate head block structure, the intake side cam frame portion 52 is disposed in the first region E1 in the upper surface 20a of the cylinder head portion 20.
  • the cylinder head part 20 and the cylinder block part 10 are individually cast. And it is the structure which mutually fastened the cylinder head part 20 and the cylinder block part 10 with the cylinder head bolt.
  • a virtual attachment position of a cylinder head bolt in an internal combustion engine having a separate head block structure is indicated by a reference numeral “VSP”.
  • VSP a virtual attachment position of a cylinder head bolt in an internal combustion engine having a separate head block structure.
  • the cylinder head bolt is attached to the adjacent combustion chambers 22 on the upper surface 20a of the cylinder head 20 according to the strength required for the internal combustion engine. Between the provided intake valve holes 32.
  • the internal combustion engine 1 of the first embodiment has a head block integrated structure and does not require a cylinder head bolt. Therefore, in 1st embodiment, the opening part and space which insert a cylinder head bolt in the cylinder head part 20 and the cylinder block part 10 are not formed. For this reason, in the first embodiment, the intake-side cam frame portion 52 can be disposed at a position where the cylinder head bolt is disposed in the internal combustion engine having a separate head block structure.
  • the intake side cam frame portion 52 is located on the upper surface 20a of the cylinder head portion 20 with respect to one combustion chamber 22 when viewed from the axial direction of the cylinder 12. Between the two intake valve holes 32 provided. For this reason, in the internal combustion engine having a separate head block structure, the nozzle mounting hole 24 is formed immediately above the combustion chamber 22 (direct injection structure).
  • the intake-side cam frame portion 52 is disposed closer to the intake pipe 2 than the combustion chamber 22, and it is difficult to secure a space in which the fuel injection nozzle 16 is disposed.
  • the exhaust side cam frame portion 54 is disposed closer to the exhaust pipe 8 than the combustion chamber 22, and it is difficult to secure a space in which the fuel injection nozzle 16 is disposed.
  • the intake-side cam frame portion 52 in the internal combustion engine having a separate head block structure, can be disposed at a position where the cylinder head bolt is disposed. Thereby, the internal combustion engine 1 of the first embodiment can secure a space for disposing the fuel injection nozzle 16 on the intake pipe 2 side of the combustion chamber 22. Therefore, in the first embodiment, the nozzle mounting hole 24 can be formed at a position where the conditional expression (5) is satisfied.
  • the plug attachment hole 26 is formed at a position where the conditional expression (6) is satisfied.
  • the nozzle mounting hole 24 is formed immediately above the combustion chamber 22.
  • the plug mounting hole 26 is formed closer to the exhaust pipe 8 than the combustion chamber 22. This is to avoid interference between the spark plug 18 and the fuel injection nozzle 16.
  • the internal combustion engine 1 according to the first embodiment can secure a space for disposing the fuel injection nozzle 16 on the intake pipe 2 side of the combustion chamber 22. Therefore, in the first embodiment, the plug attachment hole 26 can be formed at a position where the conditional expression (6) is satisfied.
  • the intake side cam frame portion 52 is located on the upper surface 20a of the cylinder head portion 20 with respect to one combustion chamber 22 when viewed from the axial direction of the cylinder 12. Between the two intake valve holes 32 provided.
  • the exhaust-side cam frame portion 54 is located on the upper surface 20 a of the cylinder head portion 20 with respect to one combustion chamber 22 when viewed from the axial direction of the cylinder 12. Arranged between the two exhaust valve holes 42 provided.
  • the internal combustion engine 1 according to the first embodiment can secure a space for disposing the fuel injection nozzle 16 on the intake pipe 2 side of the combustion chamber 22.
  • the plug attachment hole 26 can be formed at a position where the conditional expression (5) is satisfied.
  • the opening area of the exhaust valve hole 42 can be made larger than the opening area of the intake valve hole 32.
  • the arrangement of the sensor insertion portion 28 (opening 28a) will be described with reference to FIGS.
  • the position where the cylinder head bolt is attached to the single combustion chamber 22 on the upper surface 20a of the cylinder head portion 20 according to the required strength or the like. Between the two exhaust valve holes 42.
  • the intake-side cam frame portion 52 can be disposed at a position where the cylinder head bolt is disposed. Therefore, in the first embodiment, the opening 28a of the sensor insertion portion 28 can be disposed at a position where the intake side cam frame portion 52 is disposed in the internal combustion engine having a separate head block structure.
  • the supercharger CH is connected to the intake pipe 2. For this reason, when the amount of air (intake amount) sucked into the combustion chamber 22 from the intake pipe 2 is increased when the vehicle is accelerated, the intake amount is forcibly increased by the supercharger CH. Thereby, the charging efficiency of the air supplied into the combustion chamber 22 is increased.
  • the sensor insertion portion 28 that is a recess for inserting the knock sensor KnS is opened in the upper surface 20 a of the cylinder head portion 20. For this reason, it becomes easy to make the configuration of the internal combustion engine 1 a configuration in which the water jacket and the coolant LLC do not exist between the cylinder 12 and the knock sensor KnS.
  • the sensor insertion portion 28 can be formed by a recess formed in the upper surface 20a of the cylinder head portion 20 in the direction toward the cylinder 12 (downward). It becomes. For this reason, it becomes easy to make the configuration of the internal combustion engine 1 a configuration in which the water jacket and the coolant LLC do not exist between the cylinder 12 and the detection unit of the knock sensor KnS. Thereby, compared with the structure which attaches the knock sensor KnS to the cylinder block part 10, it becomes possible to suppress the fall of the detection accuracy of the knock by the knock sensor KnS. Therefore, in the first embodiment, it is possible to reduce the occurrence frequency of knocking with respect to the internal combustion engine 1.
  • the internal combustion engine 1 of the first embodiment connects the supercharger CH to the intake pipe 2, knocking is likely to occur during supercharging.
  • the internal combustion engine 1 of the first embodiment even when the intake air amount is forcibly increased by the supercharger CH, a decrease in knocking detection accuracy is suppressed and the occurrence frequency of knocking is reduced. It can be reduced.
  • the above-described first embodiment is an example of the present invention, and the present invention is not limited to the above-described first embodiment, and the present invention may be applied to other forms than this embodiment. Various modifications can be made according to the design or the like as long as they do not depart from the technical idea.
  • the knock sensor KnS is attached to the cylinder block portion 10
  • the knock sensor KnS is disposed between the intake manifold and the cylinder block 10.
  • opening the sensor insertion portion 28 in the upper surface 20a of the cylinder head portion 20 makes it easy to attach and detach the knock sensor KnS, so that the maintainability of the internal combustion engine 1 can be improved.
  • the bottom surface 28 b of the sensor insertion portion 28 is disposed at a position overlapping the combustion chamber 22 when viewed from the axial direction of the cylinder 12. For this reason, it is possible to bring the bottom surface 28b of the sensor insertion portion 28 closer to a position where the vibration of the piston 14 due to the occurrence of knocking can be easily detected when viewed from the axial direction of the cylinder 12. Thereby, compared with the case where it arrange
  • the intake side cam journal part 56 is arranged in the second area E2, and the exhaust side cam journal part 58 is arranged in the first area E1.
  • the opening 28a of the sensor insertion portion 28 is opened to the first region E1 on the intake side across the center of the cylinder 12 when viewed from the axial direction of the cylinder 12. For this reason, knocking is more likely to occur in the cylinder head portion 20 than the position near the exhaust pipe 8, and the detection portion of the knock sensor KnS is disposed at a position near the intake pipe 2 where the temperature is low. Is possible.
  • the distance between the intake pipe connection portion 30 a and the bottom surface 28 b of the sensor insertion portion 28 is greater than the distance between the intake pipe connection portion 30 a and the center of the combustion chamber 22. shorten.
  • the bottom surface 28 b of the sensor insertion portion 28 is disposed between the intake pipe connection portion 30 a and the center of the combustion chamber 22 when viewed from the axial direction of the cylinder 12. For this reason, knocking is more likely to occur in the cylinder head portion 20 than the position near the exhaust pipe 8, and the detection portion of the knock sensor KnS is disposed at a position near the intake pipe 2 where the temperature is low. Is possible.
  • the distance between the bottom surface 28b of the sensor insertion portion 28 and the intake pipe connecting portion 30a is greater than the distance between the center of the combustion chamber 22 and the intake pipe connecting portion 30a. Compared with the case where it does, it becomes possible to suppress the fall of the detection accuracy of knocking. In addition, since it is possible to suppress the detection accuracy of the knock sensor KnS from being lowered due to the influence of temperature, it is possible to suppress a decrease in the detection accuracy of knocking by the knock sensor KnS.
  • the distance between the intake pipe connecting portion 30a and the bottom surface 28b of the sensor insertion portion 28 is shorter than the distance between the intake valve hole 32 and the intake pipe connecting portion 30a. To do. Accordingly, the bottom surface 28b of the sensor insertion portion 28 is disposed between the intake valve hole 32 and the intake pipe connection portion 30a. For this reason, it is possible to suppress a decrease in detection accuracy of the knock sensor KnS due to the influence of vibration (noise) generated when the intake valve 34 contacts (sits) with the intake valve hole 32. As a result, it is possible to suppress a decrease in the detection accuracy of knocking by the knock sensor KnS.
  • the bottom surface 28b of the sensor insertion portion 28 is disposed on a straight line CL-P passing through the center of the combustion chamber 22 and orthogonal to the direction in which the three cylinders 12 are arranged as viewed from the axial direction of the cylinder 12. For this reason, the distance between each intake valve 34 and the detection part of knock sensor KnS can be made equal. As a result, it is possible to average the time lag that occurs until the knock sensor KnS detects vibration (noise) that occurs when each intake valve 34 contacts (sits) the intake valve hole 32. Thereby, since it becomes possible to suppress that the detection accuracy of knock sensor KnS falls, it becomes possible to suppress the fall of the detection accuracy of knocking by knock sensor KnS.
  • the bottom surface 28b of the sensor insertion portion 28 is disposed at a position overlapping with the combustion chamber 22c closest to the coolant discharge port WJout among the combustion chambers 22a to 22c when viewed from the axial direction of the cylinder 12. For this reason, it becomes possible to arrange
  • the opening area of the exhaust valve hole 42 is made larger than the opening area of the intake valve hole 32. For this reason, it is possible to make the exhaust amount per unit time larger than the intake amount per unit time. As a result, even when the intake air amount is increased by the supercharger CH, the increase in the intake air amount by the supercharger CH is absorbed by suppressing a decrease in the ratio of the exhaust amount to the intake air amount. Is possible. Thereby, with respect to the internal combustion engine 1, it is possible to suppress a decrease in exhaust efficiency and suppress a decrease in combustion efficiency. For this reason, it is possible to improve the torque and output generated by the internal combustion engine 1.
  • the stroke St of the piston 14 is not less than the bore diameter BID of the cylinder 12.
  • the piston 14 can be kept at a higher speed and the exhaust efficiency can be improved as compared with the internal combustion engine 1 having the cylinder 12 having the same displacement and the stroke St less than the bore diameter BID. It becomes possible to make it.
  • (11) The distance INJ-EXTr between the nozzle attachment hole 24 and the exhaust valve hole 42 is made longer than the distance INJ-INTr between the nozzle attachment hole 24 and the intake valve hole 32. For this reason, the position of the nozzle mounting hole 24 can be moved closer to the intake side than to the exhaust side of the internal combustion engine 1.
  • the fuel injection nozzle 16 can be disposed on the intake side having a lower temperature than the exhaust side. As a result, the deposit (carbon deposit) generated in the fuel injection nozzle 16 can be reduced.
  • the distance SP-EXTr between the plug attachment hole 26 and the exhaust valve hole 42 is set to be longer than the distance SP-INTr between the plug attachment hole 26 and the intake valve hole 32.
  • the position of the plug mounting hole 26 can be set close to the intake side between the exhaust side and the intake side of the internal combustion engine 1. That is, the degree of freedom in designing the position where the spark plug 18 is disposed is improved.
  • the plug mounting hole 26 is disposed at the center of the combustion chamber 22. For this reason, the spark generated by the spark plug 18 can be generated at the center of the combustion chamber 22. Thereby, the combustion performance of the air-fuel mixture in the combustion chamber 22 can be improved. As a result, the torque and output generated by the internal combustion engine 1 can be improved.
  • the total value of the opening areas of the plurality of exhaust valve holes 42 opened in one combustion chamber 22 is made larger than the total value of the opening areas of the plurality of intake valve holes 32 opened in one combustion chamber 22. For this reason, even when the intake air amount is increased by the supercharger CH, the decrease in the ratio of the exhaust amount to the intake air amount is suppressed, and the increase in the intake air amount by the supercharger CH is absorbed. Is possible. As a result, it is possible to suppress a decrease in combustion efficiency by suppressing a decrease in exhaust efficiency with respect to the internal combustion engine 1. For this reason, it is possible to improve the torque and output generated by the internal combustion engine 1.
  • a plurality of cylinders 12 in which the stroke directions of the pistons 14 are arranged in parallel are formed in the cylinder block portion 10. Further, the cylinder head portion 20 and the cylinder block portion 10 that are integrally cast together form a plurality of combustion chambers 22 that are arranged with the stroke direction of the piston 14 parallel. Further, the upper surface 20a of the cylinder head portion 20 is formed along the direction in which the plurality of cylinders 12 are arranged, and the first region E1 that overlaps the combustion chamber 22 when viewed from the axial direction of the cylinder 12 and two adjacent first regions E1. To the second region E2. In addition, the intake side cam journal portion 56 is disposed in the second region E2 of the upper surface 20a of the cylinder head portion 20.
  • the position of the intake-side cam journal portion 56 is viewed from the axial direction of the cylinder 12. It becomes possible to displace from between the intake valve holes 32. As a result, it is possible to improve the design freedom of the cylinder head portion 20 such as the layout of the nozzle mounting hole 24 and the plug mounting hole 26 and the shape and dimensions of the exhaust valve hole 42 and the intake valve hole 32. Further, the position where the intake side cam journal portion 56 is arranged is not affected by the position where the cylinder head bolt is attached in the internal combustion engine having a separate head block structure. Thereby, since it becomes possible to improve the design freedom of the cylinder head part 20 and the cylinder block part 10, the design freedom of the internal combustion engine 1 can be improved.
  • the intake-side cam journal portion 56 is disposed in the second region E2 in the upper surface 20a of the cylinder head portion 20. For this reason, without increasing the distance between the intake-side cam frame portions 52, the position of the intake-side cam journal portion 56 is viewed from the axial direction of the cylinder 12. It becomes possible to displace from between the intake valve holes 32. As a result, the internal combustion engine 1 is increased in size and weight compared to the internal combustion engine 1 having a configuration in which the position of the intake side cam journal portion 56 is displaced by increasing the distance between the intake side cam frame portions 52. Can be suppressed.
  • the intake side cam journal portion 56 is disposed in the second region E2 in the upper surface 20a of the cylinder head portion 20. For this reason, compared with the case where the intake side cam journal part 56 is disposed between two intake valve holes 32 provided for one combustion chamber 22, the intake side cam frame part 52 and the plug attachment hole 26. The distance between can be increased. As a result, the intake-side cam journal portion 56 is inhaled by the influence of heat generated by the spark plug 18 as compared with the case where the intake-side cam journal portion 56 is disposed between the two intake valve holes 32 provided for one combustion chamber 22. The deformation of the side cam journal portion 56 can be suppressed.
  • the mass of the exhaust valve head 44b is made larger than the mass of the intake valve head 34b. Further, the intake side cam frame portion 52 and the exhaust side cam frame portion 54 are formed in the same shape. In addition, the exhaust side camshaft 48 is rotatably supported by more exhaust side cam journals 58 than the intake side cam journals 56. For this reason, the exhaust side camshaft 48 that displaces the exhaust valve 44 having a mass larger than that of the intake valve 34 according to the rotation is replaced with the exhaust side cam journal portion 58 that is larger than the intake side cam journal portion 56, and the exhaust side camshaft 58. 48 can be rotatably supported.
  • the exhaust side camshaft 48 which is required to be stronger than the intake side camshaft 38, is supported by more exhaust side cam journals 58 than the intake side cam journals 56. It is possible to distribute the applied load. Thereby, the durability of the exhaust side cam frame portion 54 can be increased. Further, it is possible to improve the stability of supporting the exhaust side camshaft 48.
  • the opening 28a of the sensor insertion portion 28 is opened in the first region E1 on the intake side across the center of the cylinder 12 when viewed from the axial direction of the cylinder 12, It is not limited. That is, as shown in FIG. 8, the opening 28 a of the sensor insertion portion 28 and the opening 28 a of the sensor insertion portion 28 are viewed from the axial direction of the cylinder 12. You may make it open to the 2 area
  • the intake-side cam journal portion 56 is disposed in the second region E2, and the exhaust-side cam journal portion 58 is disposed in the first region E1.
  • the opening 28a of the sensor insertion portion 28 is opened in the first region E1 on the intake side across the center of the cylinder 12 when viewed from the axial direction of the cylinder 12.
  • the present invention is not limited to this. . That is, as shown in FIG. 9, the intake side cam journal portion 56 is arranged in the first region E1, and the exhaust side cam journal portion 58 is arranged in the second region E2.
  • the opening 28a of the sensor insertion portion 28 may be opened in the first region E1 on the exhaust side across the center of the cylinder 12 when viewed from the axial direction of the cylinder 12. In this case, it becomes possible to improve the design freedom of the cylinder head portion 20 such as a layout that avoids interference between the knock sensor KnS and a camshaft drive device (timing chain type) (not shown).
  • the design freedom of the internal combustion engine 1 can be improved.
  • the inner diameter EXHvdi of the exhaust valve hole 42 may be less than the inner diameter INTvdi of the intake valve hole 32. That is, in the present invention, at least one of the intake side cam journal portion 56 and the exhaust side cam journal portion 58 is disposed in the second region E2.
  • the intake side cam journal portion 56 is disposed in the second region E2 in the upper surface 20a of the cylinder head portion 20, but this is not a limitation. That is, as shown in FIG. 10, the intake-side cam journal portion 56 and the exhaust-side cam journal portion 58 may be arranged in the second region E2 on the upper surface 20a of the cylinder head portion 20. In this case, without increasing the distance between the intake side cam frame portions 52, the position of the intake side cam journal portion 56 is viewed from the axial direction of the cylinder 12. It becomes possible to displace from between the intake valve holes 32.
  • the position of the exhaust side cam journal portion 58 is not limited to the distance between the exhaust side cam frame portions 54, and the position of the exhaust side cam journal portion 58 is provided for one combustion chamber 22 when viewed from the axial direction of the cylinder 12. It is possible to displace from between the two exhaust valve holes 42.
  • the design freedom of the cylinder head portion 20 such as the layout of the nozzle mounting holes 24 and the plug mounting holes 26 and the shapes and dimensions of the exhaust valve holes 42 and the intake valve holes 32. Therefore, in the present invention, the positions at which the intake side cam journal part 56 and the exhaust side cam journal part 58 are arranged are not affected by the position at which the cylinder head bolt is attached in the internal combustion engine having a separate head block structure. Thereby, since it becomes possible to improve the design freedom of the cylinder head part 20 and the cylinder block part 10, the design freedom of the internal combustion engine 1 can be improved.
  • the inner diameter EXHvdi of the exhaust valve hole 42 and the inner diameter INTvdi of the intake valve hole 32 may be set to the same value.
  • the configuration of the internal combustion engine 1 is a configuration (gasoline engine) in which the spark generated by the spark plug 18 is ignited to the air-fuel mixture in the combustion chamber 22, but is not limited thereto. . That is, the internal combustion engine 1 may be configured to ignite the air-fuel mixture in the combustion chamber 22 without using the spark plug 18 (diesel engine). In this case, for example, as shown in FIG. 11, the cylinder head portion 20 is configured not to have a plug mounting hole.
  • the configuration of the internal combustion engine 1 is an in-line three-cylinder internal combustion engine (in-line three-cylinder engine), but is not limited thereto. That is, the internal combustion engine 1 may be a V-type internal combustion engine (V-type engine) or a horizontally opposed internal combustion engine (horizontal opposed engine).
  • the internal combustion engine 1 is configured such that a plurality of cylinders 12 are formed in the cylinder block portion 10 and a plurality of combustion chambers 22 are formed by the cylinder head portion 20 and the cylinder block portion 10.
  • the present invention is not limited to this. That is, for example, as shown in FIG. 12, the internal combustion engine 1 is configured such that only one cylinder 12 is formed in the cylinder block portion 10 and only one combustion chamber 22 is formed by the cylinder head portion 20 and the cylinder block portion 10. It is good also as a structure to form (single cylinder engine).
  • the structure of the intake pipe 2 was set as the structure which connected the supercharger CH, it is not limited to this. In other words, the configuration of the intake pipe 2 may be a configuration in which a supercharger is not connected (natural intake: Normal Aspiration).
  • SYMBOLS 1 Internal combustion engine, 2 ... Intake device, 4 ... Fuel tank, 6 ... Drive device, 8 ... Exhaust device, 10 ... Cylinder block part, 12 ... Cylinder, 14 ... Piston, 16 ... Fuel injection nozzle, 18 ... Spark plug, DESCRIPTION OF SYMBOLS 20 ... Cylinder head part, 20a ... Upper surface of cylinder head part, 20b ... Side surface of cylinder head part, 22 ... Combustion chamber, 24 ... Nozzle attachment hole, 26 ... Plug attachment hole, 28 ... Sensor insertion part, 28a ... Sensor insertion part Of the sensor insertion portion, 30 ... intake passage, 30a ... intake pipe connection portion, 32 ...
  • Cam journal section, 58 Exhaust side cam journal section, CH ... Supercharger, RA ... Radiator, WJ1 ... First water jacket section, WJ2 ... Second water jacket section, WJin ... Coolant inlet, WJout ... Coolant drain Outlet, St ... piston stroke, BID ... cylinder bore diameter, EXHvdi ...

Abstract

シリンダ(12)を形成したシリンダブロック部(10)と、シリンダブロック部(10)と共に燃焼室(22)を形成するシリンダヘッド部(20)とを備える内燃機関(1)において、シリンダブロック部(10)とシリンダヘッド部(20)とを一体に成形し、シリンダヘッド部(20)が、ノックセンサ(KnS)を挿入する凹部であるセンサ挿入部(28)を有し、センサ挿入部(28)を、シリンダヘッド部(20)の上面(20a)に開口させる。

Description

内燃機関
 本発明は、内燃機関の構造、特に、ノッキングを検出するノックセンサを内燃機関に取り付ける構造に関する。
 ノッキングを検出するノックセンサを内燃機関に取り付ける構造としては、例えば、特許文献1に記載されているように、シリンダを形成したシリンダブロック部の壁部に、ノックセンサを取り付ける構成のものがある。
特開2003‐322054号公報
 しかしながら、上述した特許文献1のように、シリンダブロック部の壁部にノックセンサを取り付ける構成では、シリンダとノックセンサとの間に、シリンダブロック部の壁部と、ウォータジャケットが存在する構成となる。このため、シリンダとノックセンサとの間で、ウォータジャケット内の冷却液が有する弾性でダンパー効果が発生し、ノックセンサによるノッキングの検出精度が低下するという問題が発生するおそれがある。
 本発明は、上記のような問題点に着目してなされたもので、ノックセンサによるノッキングの検出精度の低下を抑制することが可能な、内燃機関を提供することを目的とする。
 上記課題を解決するために、本発明の一態様は、シリンダを形成したシリンダブロック部と、シリンダブロック部と共に燃焼室を形成するシリンダヘッド部とを一体に成形する。これに加え、ノックセンサを挿入する凹部であるセンサ挿入部を、シリンダヘッド部の上面に開口させる。
 本発明の一態様によれば、シリンダヘッド部がセンサ挿入部を有するため、内燃機関の構成を、シリンダとノックセンサとの間に、ウォータジャケット及び冷却液が存在しない構成とすることが容易となる。
 これにより、シリンダブロック部にノックセンサを取り付ける構成と比較して、ノックセンサによるノッキングの検出精度の低下を抑制することが可能な、内燃機関を提供することが可能となる。
本発明の第一実施形態の内燃機関を備える車両の概略構成を示すブロック図である。 本発明の第一実施形態の内燃機関の概略構成を示す平面図である。 図2のIII‐III線断面図である。 同一の燃焼室に対して設けた、センサ挿入部、排気バルブ孔、吸気バルブ孔、プラグ取り付け孔の、それぞれの位置関係を示す概念図である。 同一の燃焼室に対して設けた、燃料噴射ノズル取り付け孔、排気バルブ孔、吸気バルブ孔、プラグ取り付け孔の、それぞれの位置関係を示す概念図である。 同一の燃焼室に対して設けた、排気バルブ孔、吸気バルブ孔、プラグ取り付け孔、センサ挿入部の、それぞれの位置関係を示す概念図である。 シリンダヘッド部の上面を第一領域と第二領域に区分した状態を示す概念図である。 本発明の第一実施形態の変形例を示す図である。 本発明の第一実施形態の変形例を示す図である。 本発明の第一実施形態の変形例を示す図である。 本発明の第一実施形態の変形例を示す図である。 本発明の第一実施形態の変形例を示す図である。
 以下の詳細な説明では、本発明の実施形態について、完全な理解を提供するように、特定の細部について記載する。しかしながら、かかる特定の細部が無くとも、一つ以上の実施形態が実施可能であることは明確である。また、図面を簡潔なものとするために、周知の構造及び装置を、略図で示す場合がある。
(第一実施形態)
 以下、本発明の第一実施形態について、図面を参照しつつ説明する。
(車両の概略構成)
 図1を用いて、第一実施形態の内燃機関(エンジン)1を備える車両の概略構成を説明する。
 図1中に示すように、内燃機関1は、過給機CHを接続した吸気管2から吸気した空気と、燃料タンク4内から供給を受けた燃料と、を混合した混合気を、燃焼室(図示せず)内で燃焼させる。そして、混合気の燃焼で発生したエネルギーを、トランスミッション等を含む駆動装置6へ伝達する。さらに、燃焼後の気体を、燃焼室から排気管8を介して外気へ排出する。
 過給機CHは、外気から吸入した空気を加圧または加速して、吸気管2へ供給する。
 また、過給機CHは、排気タービン駆動式過給機(ターボチャージャー)、または、機械駆動式過給機(スーパーチャージャー)を含む。
 また、内燃機関1は、ウォータジャケット(図示せず)を有する。そして、ウォータジャケットとラジエータRAとの間で、冷却液(図示せず)を循環させることにより、内燃機関1の冷却及び暖機を行う。ウォータジャケットは、内燃機関1の内部空間に形成する。
 冷却液は、例えば、不凍液(Engine antifreeze coolants)を含むLLC(Long Life Coolant)を用いる。
(内燃機関1の構成)
 図1を参照しつつ、図2から図7を用いて、第一実施形態の内燃機関1の構成を説明する。
 図2から図4中に示すように、内燃機関1は、シリンダブロック部10と、シリンダヘッド部20を備える。
 シリンダブロック部10とシリンダヘッド部20は、アルミニウム合金等の金属材料を用い、例えば、鋳造により一体に成形する。すなわち、第一実施形態の内燃機関1は、シリンダヘッド部20とシリンダブロック部10とを一体に鋳造して形成した構造(ヘッドブロック一体化構造)である。
 したがって、第一実施形態の内燃機関1は、シリンダブロック部10が、内燃機関1の下側の部分を形成する。また、第一実施形態の内燃機関1は、シリンダヘッド部20が、内燃機関1の上側の部分を形成する。
 シリンダブロック部10には、複数のシリンダ12と、第一ウォータジャケット部WJ1を形成する。
 第一実施形態では、シリンダブロック部10に、三つのシリンダ12を形成した場合について説明する。
 各シリンダ12は、各シリンダ12内におけるピストン14のストローク方向を平行に向けて配列する。なお、図3及び図4中では、説明のために、ピストン14を、断面で図示していない。
 ピストン14は、燃焼室22内における混合気の燃焼に応じて、シリンダ12内でシリンダ12の軸方向へ往復運動する。
 また、各シリンダ12は、コンロッド(図示せず)及びクランクシャフト(図示せず)と共に、ピストン14のストロークを、シリンダ12のボア径以上として形成する。なお、図4中には、ピストン14のストロークを符号「St」で示し、シリンダ12のボア径を符号「BID」で示す。したがって、各シリンダ12は、以下の条件式(1)が成立する形状に形成する。
 St≧BID … (1)
 特に、第一実施形態では、各シリンダ12を、以下の条件式(2)が成立する形状に形成する。
 St>(BID×1.2) … (2)
 すなわち、第一実施形態では、ピストン14のストロークStが、シリンダ12のボア径BIDの1.2倍を超える。
 第一ウォータジャケット部WJ1は、シリンダブロック部10の内部空間に形成する。なお、図2中では、説明のために、第一ウォータジャケット部WJ1の図示を省略している。
 また、第一ウォータジャケット部WJ1は、各シリンダ12を外径側から覆う位置に形成する。
 シリンダヘッド部20の形状は、各シリンダ12の上端を覆う形状とする。これにより、シリンダヘッド部20は、シリンダブロック部10と共に、複数の燃焼室22を形成する。
 複数の燃焼室22は、各シリンダ12内におけるピストン14のストローク方向を平行に向けて配列する。
 第一実施形態では、上述したように、シリンダブロック部10に三つのシリンダ12を形成する。このため、シリンダヘッド部20が、シリンダブロック部10と共に三つの燃焼室22を形成する場合について説明する。
 すなわち、第一実施形態では、内燃機関1を、直列3気筒の内燃機関(直列3気筒エンジン)とした場合について説明する。
 また、シリンダヘッド部20は、吸気通路30と、排気通路40と、ノズル取り付け孔24と、プラグ取り付け孔26と、センサ挿入部28を有する。
 これに加え、シリンダヘッド部20には、アウトフレーム部50と、吸気側カムフレーム部52と、排気側カムフレーム部54と、第二ウォータジャケット部WJ2を形成する。さらに、シリンダヘッド部20には、冷却液導入口WJinと、冷却液排出口WJoutを形成する。
 吸気通路30は、吸気管2と燃焼室22とを連通させる通路である。また、吸気通路30は、シリンダヘッド部20の内部空間に形成する。
 第一実施形態では、一つの燃焼室22と吸気管2とを、二つの吸気通路30で連通させる場合について説明する。したがって、第一実施形態では、シリンダヘッド部20が、六つの吸気通路30を有する。
 一つの燃焼室22と吸気管2とを連通させる二つの吸気通路30は、三つのシリンダ12を配列した方向(図2中では紙面の上下方向)に沿って配列する。また、一つの燃焼室22と吸気管2とを連通させる二つの吸気通路30は、長さ方向を、シリンダ12の軸方向から見て、シリンダ12の径方向と平行に向けて形成する。
 吸気通路30の一方の開口端は、内燃機関1の外面に開口して、吸気管2と連通する。具体的には、吸気通路30の一方の開口端は、吸気管接続部30aを形成する。
 吸気管接続部30aは、シリンダヘッド部20の側面に開口して吸気管2と接続する開口部である。したがって、シリンダヘッド部20の側面に開口した吸気通路30の開口部は、吸気管2と接続する吸気管接続部30aを形成する。なお、図2~4、7中には、内燃機関1よりも吸気管2側の領域を、「吸気側」と示す。
 吸気通路30の他方の開口端は、燃焼室22に開口して、燃焼室22と連通する。
 燃焼室22に開口した吸気通路30の開口部には、吸気バルブ34が接触する。したがって、燃焼室22に開口した吸気通路30の開口部は、吸気バルブ34によって開閉する吸気バルブ孔32を形成する。
 吸気バルブ孔32は、吸気通路30のうち、燃焼室22の上面を形成する部分に開口する。
 第一実施形態では、一つの燃焼室22と吸気管2とを、二つの吸気通路30で連通させる。このため、第一実施形態では、吸気通路30のうち燃焼室22の上面を形成する部分に、二つの吸気バルブ孔32を開口させる。したがって、第一実施形態では、シリンダヘッド部20が、六つの吸気バルブ孔32を有する。
 また、第一実施形態では、全ての吸気バルブ孔32を、同形状に形成する。
 一つの燃焼室22に開口する二つの吸気バルブ孔32は、三つのシリンダ12を配列した方向に沿って配列する。
 吸気バルブ34は、吸気バルブステム34aと、吸気バルブヘッド34bを備える。なお、図3中では、説明のために、吸気バルブステム34aと、吸気バルブヘッド34bを、断面で図示していない。
 吸気バルブステム34aは、棒状に形成する。また、吸気バルブステム34aは、一方の端部を吸気バルブガイド孔36から突出させる。
 また、吸気バルブステム34aは、吸気バルブスプリング34cを介して、シリンダヘッド部20に支持する。なお、図3中では、説明のために、吸気バルブスプリング34cを、断面で図示していない。
 吸気バルブスプリング34cは、後述する吸気側カムシャフト38の回転に応じて、吸気バルブステム34aの軸方向へ伸縮可能である。また、吸気バルブスプリング34cは、弾性力で伸長して、吸気バルブヘッド34bを、燃焼室22側から吸気バルブ孔32に接触させる。
 吸気バルブガイド孔36は、シリンダヘッド部20の上面(アッパーデッキ)20aに形成した貫通孔である。
 吸気バルブヘッド34bは、吸気バルブ孔32を閉鎖可能な形状(円形)に形成する。また、吸気バルブヘッド34bは、吸気バルブステム34aの他方の端部に取り付けて、燃焼室22内に配置する。
 これにより、吸気バルブスプリング34cを伸長させて、吸気バルブヘッド34bを燃焼室22側から吸気バルブ孔32に接触させると、吸気バルブヘッド34bが、吸気通路30を閉鎖する。
 吸気側カムシャフト38は、吸気側シャフト部38aと、複数の吸気側カム38bを備える。
 吸気側シャフト部38aは、円柱状の部材である。また、吸気側シャフト部38aは、軸方向を三つのシリンダ12を配列した方向と直交させるとともに、平面視で全吸気バルブ孔32と重なる位置に配置する。また、吸気側シャフト部38aの両端部は、アウトフレーム部50に形成した貫通孔(図示せず)内に挿通する。
 各吸気側カム38bは、吸気側シャフト部38aの外周面に配置する。また、各吸気側カム38bは、それぞれ、平面視で吸気バルブ孔32と重なる位置に配置する。また、各吸気側カム38bは、吸気側シャフト部38aの軸方向から見て、長径及び短径を有する卵形状に形成する。
 第一実施形態では、シリンダブロック部10とシリンダヘッド部20とで三つの燃焼室22を形成し、各燃焼室22と吸気管2とを二つの吸気通路30で連通させる。このため、第一実施形態では、吸気側カムシャフト38が、六つの吸気側カム38bを備える。
 吸気バルブステム34aの一方の端部を吸気側カム38bの長径部分により押圧すると、吸気バルブスプリング34cが収縮する。吸気バルブスプリング34cが収縮すると、吸気バルブヘッド34bは、吸気バルブ孔32から離れ、吸気通路30を開放する。
 以上により、吸気バルブ34は、吸気側カムシャフト38の回転に応じて変位し、吸気通路30を開閉する。
 第一実施形態では、一つの燃焼室22と吸気管2とを二つの吸気通路30で連通させる。このため、一つの燃焼室22に対し、二つの吸気バルブ孔32を設ける。したがって、第一実施形態では、一つの燃焼室22に対し、二つの吸気バルブガイド孔36を設ける。また、二つの吸気バルブガイド孔36は、三つのシリンダ12を配列した方向に沿って配列する。
 排気通路40は、排気管8と燃焼室22とを連通させる通路である。また、各排気通路40は、シリンダヘッド部20の内部空間のうち、吸気通路30と異なる空間に形成する。
 第一実施形態では、一つの燃焼室22と排気管8とを、二つの排気通路40で連通させる場合について説明する。したがって、第一実施形態では、シリンダヘッド部20が、六つの排気通路40を有する。
 一つの燃焼室22と排気管8とを連通させる二つの排気通路40は、三つのシリンダ12を配列した方向に沿って配列する。また、一つの燃焼室22と排気管8とを連通させる二つの排気通路40は、長さ方向を、シリンダ12の軸方向から見て、シリンダ12の径方向と平行に向けて形成する。
 排気通路40の一方の開口端は、内燃機関1の外面に開口して、排気管8と連通する。なお、図2~4、7中には、内燃機関1よりも排気管8側の領域を、「排気側」と示す。排気通路40の他方の開口端は、燃焼室22に開口して、燃焼室22と連通する。
 燃焼室22に開口した排気通路40の開口部には、排気バルブ44が接触する。したがって、燃焼室22に開口した排気通路40の開口部は、排気バルブ44によって開閉する排気バルブ孔42を形成する。
 排気バルブ孔42は、排気通路40のうち、燃焼室22の上面を形成する部分において、各吸気バルブ孔32と異なる部分に開口する。
 第一実施形態では、一つの燃焼室22と排気管8とを二つの排気通路40で連通させる。このため、排気通路40のうち燃焼室22の上面を形成する部分に、二つの排気バルブ孔42を開口させる。したがって、第一実施形態では、シリンダヘッド部20が、六つの排気バルブ孔42を有する。
 また、第一実施形態では、全ての排気バルブ孔42を、同形状に形成する。
 また、第一実施形態では、排気バルブ孔42及び吸気バルブ孔32を、以下の条件式(3)が成立する形状に形成する。
 EXHvdi>INTvdi … (3)
 条件式(3)において、「EXHvdi」は、排気バルブ孔42の内径であり、「INTvdi」は、吸気バルブ孔32の内径である。したがって、第一実施形態では、排気バルブ孔42の開口面積を、吸気バルブ孔32の開口面積よりも大きくする。
 なお、図5中には、説明のために、一つの燃焼室22に対して設けた四つの孔(排気バルブ孔42、吸気バルブ孔32、ノズル取り付け孔24、プラグ取り付け孔26)のみを図示する。
 上述したように、第一実施形態では、シリンダヘッド部20が、六つの吸気バルブ孔32と、六つの排気バルブ孔42を有する。さらに、第一実施形態では、全ての吸気バルブ孔32を、同形状に形成する。これに加え、第一実施形態では、全ての排気バルブ孔42を、同形状に形成する。
 したがって、第一実施形態では、一つの燃焼室22に開口する二つの排気バルブ孔42の開口面積の合計値が、一つの燃焼室22に開口する二つの吸気バルブ孔32の開口面積の合計値よりも大きくなっている。
 また、第一実施形態では、全排気バルブ孔42の開口面積の合計値が、全吸気バルブ孔32の開口面積の合計値よりも大きくなっているため、以下の条件式(4)が成立している。
 (EXHvdi×6)>(INTvdi×6) … (4)
 排気通路40のうち燃焼室22の屋根を形成する部分に開口する二つの排気バルブ孔42は、三つのシリンダ12を配列した方向に沿って配列する。
 排気バルブ44は、排気バルブステム44aと、排気バルブヘッド44bを備える。なお、図3中では、説明のために、排気バルブステム44aと、排気バルブヘッド44bを、断面で図示していない。
 排気バルブステム44aは、棒状に形成する。また、排気バルブステム44aは、一方の端部を排気バルブガイド孔46から突出させる。
 また、排気バルブステム44aは、排気バルブスプリング44cを介してシリンダヘッド部20に支持する。なお、図3中では、説明のために、排気バルブスプリング44cを、断面で図示していない。
 排気バルブスプリング44cは、後述する排気側カムシャフト48の回転に応じて、排気バルブステム44aの軸方向へ伸縮可能である。また、排気バルブスプリング44cは、弾性力で伸長して、排気バルブヘッド44bを、燃焼室22側から排気バルブ孔42に接触させる。
 排気バルブガイド孔46は、シリンダヘッド部20の上面20aに形成した貫通孔である。
 排気バルブヘッド44bは、排気バルブ孔42を閉鎖可能な形状(円形)に形成する。また、排気バルブヘッド44bは、排気バルブステム44aの他方の端部に取り付けて、燃焼室22内に配置する。これにより、排気バルブスプリング44cを伸長させて、排気バルブヘッド44bを燃焼室22側から排気バルブ孔42に接触させると、排気バルブヘッド44bが排気通路40を閉鎖する。
 上述したように、第一実施形態では、排気バルブ孔42の内径EXHvdiを、吸気バルブ孔32の内径INTvdiよりも大きくする。したがって、第一実施形態では、排気バルブヘッド44bの外径(排気バルブ孔42と接触する部分の外径)を、吸気バルブヘッド34bの外径(吸気バルブ孔32と接触する部分の外径)よりも大きくする。すなわち、排気バルブヘッド44bの質量を、吸気バルブヘッド34bの質量よりも大きくする。
 排気側カムシャフト48は、排気側シャフト部48aと、複数の排気側カム48bを備える。
 排気側シャフト部48aは、円柱状の部材である。また、排気側シャフト部48aは、軸方向を三つのシリンダ12を配列した方向と直交させるとともに、平面視で全排気バルブ孔42と重なる位置に配置する。また、排気側シャフト部48aの両端部は、アウトフレーム部50に形成した貫通孔(図示せず)内に挿通する。
 各排気側カム48bは、排気側シャフト部48aの外周面に配置する。また、各排気側カム48bは、それぞれ、平面視で排気バルブ孔42と重なる位置に配置する。また、各排気側カム48bは、排気側シャフト部48aの軸方向から見て、長径及び短径を有する卵形状に形成する。
 第一実施形態では、シリンダブロック部10とシリンダヘッド部20で三つの燃焼室22を形成し、各燃焼室22と排気管8とを二つの排気通路40で連通させる。このため、第一実施形態では、排気側カムシャフト48が、六つの排気側カム48bを備える。
 排気バルブステム44aの一方の端部を排気側カム48bの長径部分により押圧すると、排気バルブスプリング44cが収縮する。排気バルブスプリング44cが収縮すると、排気バルブヘッド44bは、排気バルブ孔42から離れ、排気通路40を開放する。
 以上により、排気バルブ44は、排気側カムシャフト48の回転に応じて変位し、排気通路40を開閉する。
 第一実施形態では、一つの燃焼室22と排気管8とを二つの排気通路40で連通させるため、一つの燃焼室22に対し、二つの排気バルブ孔42を設ける。したがって、第一実施形態では、一つの燃焼室22に対し、二つの排気バルブガイド孔46を設ける。また、二つの排気バルブガイド孔46は、三つのシリンダ12を配列した方向に沿って配列する。
 ノズル取り付け孔24は、燃焼室22内に燃料噴射ノズル16を挿入する孔である。また、ノズル取り付け孔24は、シリンダヘッド部20の上面20aを貫通する貫通孔で形成する。なお、図4中では、説明のために、燃料噴射ノズル16を、断面で図示していない。
 第一実施形態では、シリンダヘッド部20が、シリンダブロック部10と共に三つの燃焼室22を形成する。このため、シリンダヘッド部20は、三つのノズル取り付け孔24を有する。
 また、ノズル取り付け孔24は、以下の条件式(5)が成立する位置に形成する。
 INJ‐EXTr>INJ‐INTr … (5)
 条件式(5)において、「INJ‐EXTr」は、同一の燃焼室22に対して設けた、ノズル取り付け孔24の中心と排気バルブ孔42の中心との間の距離である。また、条件式(5)において、「INJ‐INTr」は、同一の燃焼室22に対して設けた、ノズル取り付け孔24の中心と吸気バルブ孔32の中心との間の距離である。
 したがって、第一実施形態では、ノズル取り付け孔24と排気バルブ孔42との間の距離を、ノズル取り付け孔24と吸気バルブ孔32との間の距離よりも長くする。
 燃料噴射ノズル16は、燃料タンク4と連結する。
 また、燃料噴射ノズル16は、ECU(Engine Control Unit)等を用いた制御により、燃料タンク4内の燃料(ガソリン等)を、燃焼室22内へ噴射する。
 プラグ取り付け孔26は、燃焼室22内に点火プラグ18を挿入する孔である。また、プラグ取り付け孔26は、シリンダヘッド部20の上面20aを貫通して形成する。なお、図4中では、説明のために、点火プラグ18を、断面で図示していない。
 第一実施形態では、シリンダヘッド部20が、シリンダブロック部10と共に三つの燃焼室22を形成する。このため、シリンダヘッド部20は、三つのプラグ取り付け孔26を有する。
 また、プラグ取り付け孔26は、以下の条件式(6)が成立する位置に形成する。
 SP‐EXTr≧SP‐INTr … (6)
 条件式(6)において、「SP‐EXTr」は、同一の燃焼室22に対して設けた、プラグ取り付け孔26の中心と排気バルブ孔42の中心との間の距離である。また、条件式(6)において、「SP‐INTr」は、同一の燃焼室22に対して設けた、プラグ取り付け孔26の中心と吸気バルブ孔32の中心との間の距離である。
 したがって、第一実施形態では、プラグ取り付け孔26と排気バルブ孔42との間の距離を、プラグ取り付け孔26と吸気バルブ孔32との間の距離以上の長さとする。
 また、プラグ取り付け孔26は、シリンダ12の軸方向から見て、点火プラグ18を挿入する燃焼室22の中央に配置する。
 点火プラグ18は、ECU等を用いた制御により、燃焼室22内で火花を発生させる。
 センサ挿入部28は、ノックセンサKnSを挿入する凹部である。
 センサ挿入部28の開口部28aは、シリンダヘッド部20の上面20aに開口する。
 第一実施形態では、センサ挿入部28の開口部28aが、シリンダヘッド部20の上面20aのうち、後述する第一領域E1に開口する場合について説明する。
 また、第一実施形態では、センサ挿入部28の開口部28aが、シリンダ12の軸方向から見て、シリンダ12の中心を挟んだ吸気側の第一領域E1に開口する場合について説明する。なお、吸気側カムジャーナル部56については、後述する。すなわち、第一実施形態では、センサ挿入部28の開口部28aが、シリンダ12の軸方向から見て、シリンダ12の中心を挟んで、吸気側と排気側とのうち、第二領域E2に配置した吸気側カムジャーナル部56を有する側の第一領域E1に開口する。
 センサ挿入部28の底面28bは、シリンダ12の軸方向から見て、燃焼室22と重なる位置に配置する。
 これに加え、センサ挿入部28の底面28bは、以下の条件式(7)が成立する位置に形成する。
 SPC‐IOPr>KnB‐IOPr … (7)
 条件式(7)において、「SPC‐IOPr」は、シリンダ12の軸方向から見た、吸気管接続部30aと燃焼室22の中央との間の最短距離である。また、「KnB‐IOPr」は、シリンダ12の軸方向から見た、吸気管接続部30aとセンサ挿入部28の底面28bとの間の最短距離である。
 したがって、第一実施形態では、シリンダ12の軸方向から見て、吸気管接続部30aとセンサ挿入部28の底面28bとの間の距離を、吸気管接続部30aと燃焼室22の中央との間の距離よりも短くする。すなわち、第一実施形態では、センサ挿入部28の底面28bを、シリンダ12の軸方向から見て、吸気管接続部30aと燃焼室22の中央との間に配置する。
 さらに、センサ挿入部28の底面28bは、以下の条件式(8)が成立する位置に形成する。
 INT‐IOPr>KnB‐IOPr … (8)
 条件式(8)において、「INT‐IOPr」は、シリンダ12の軸方向から見た、吸気バルブ孔32と吸気管接続部30aとの間の最短距離である。また、「KnB‐IOPr」は、シリンダ12の軸方向から見た、吸気管接続部30aとセンサ挿入部28の底面28bとの間の最短距離である。また、図6中では、シリンダ12の軸方向から見た、最短距離INT‐IOPrとして、同一の燃焼室22に対して設けた二つの吸気管接続部30aを連続する線と、吸気バルブ孔32との間の最短距離を示す。これは、一つの燃焼室22に対して一つのみの吸気通路30を設ける場合と、三つ以上の吸気通路30を設ける場合にも同様である。
 したがって、第一実施形態では、シリンダ12の軸方向から見て、吸気管接続部30aとセンサ挿入部28の底面28bとの間の距離を、吸気バルブ孔32と吸気管接続部30aとの間の距離よりも短くする。すなわち、第一実施形態では、センサ挿入部28の底面28bを、吸気バルブ孔32と吸気管接続部30aとの間に配置する。
 また、センサ挿入部28の底面28bは、図6中に示すように、シリンダ12の軸方向から見て、直線CL-P上に配置する。
 直線CL-Pは、シリンダ12の軸方向から見て、燃焼室22の中央を通過するとともに、三つのシリンダ12を配列した方向と直交する直線である。
 また、センサ挿入部28の底面28bは、以下の条件式(9)が成立する位置に形成する。
 KnB‐SPr>KnB‐INTr … (9)
 条件式(9)において、「KnB‐SPr」は、シリンダ12の軸方向から見た、センサ挿入部28の底面28bとプラグ取り付け孔26との間の最短距離である。また、条件式(7)において、「KnB‐INTr」は、シリンダ12の軸方向から見た、吸気バルブ孔32とセンサ挿入部28の底面28bとの間の最短距離である。
 したがって、第一実施形態では、シリンダ12の軸方向から見て、センサ挿入部28の底面28bとプラグ取り付け孔26との間の距離を、吸気バルブ孔32とセンサ挿入部28の底面28bとの間の距離よりも長くする。
 また、第一実施形態では、センサ挿入部28の底面28bを、シリンダ12の軸方向から見て、各燃焼室22のうち、冷却液排出口WJoutに最も近い燃焼室22(図2中では、「22c」と示す)と重なる位置に配置した場合について説明する。
 ノックセンサKnSは、ノッキングにより発生する高周波振動を検知する装置であり、ノッキングを検知すると、ノッキングを検知した情報をECU等に送信する。なお、図2中では、説明のために、ノックセンサKnSの図示を省略している。また、図4中では、説明のために、ノックセンサKnSを、断面で図示していない。
 また、ノックセンサKnSの先端は、センサ挿入部28内で、センサ挿入部28の底面28bと対向する。
 アウトフレーム部50は、四枚の板状部材を枠状に組み合わせて形成し、シリンダヘッド部20の上面20aに配置する。また、アウトフレーム部50は、平面視で、シリンダヘッド部20の周囲を取り囲む形状に形成して、シリンダヘッド部20の外枠を形成する。
 ここで、シリンダヘッド部20の上面20aは、図7中に示すように、第一領域E1と、第二領域E2に区分する。
 第一領域E1は、複数のシリンダ12を配列した方向に沿って、シリンダ12の軸方向から見て燃焼室22と重なる領域である。
 第二領域E2は、隣り合う二つの第一領域E1の間の領域である。
 第一実施形態では、シリンダヘッド部20が、シリンダブロック部10と共に三つの燃焼室22を形成する。このため、シリンダヘッド部20の上面20aは、三つの第一領域E1と、二つの第二領域E2に区分する。
 吸気側カムフレーム部52は、板状の部材で形成し、側面をシリンダヘッド部20の上面20a及びアウトフレーム部50の内側面と対向させる。
 第一実施形態では、シリンダヘッド部20の上面20aに、二つの吸気側カムフレーム部52を形成した場合について説明する。
 また、吸気側カムフレーム部52には、吸気側フレーム貫通孔52aを形成する。
 吸気側フレーム貫通孔52aは、吸気側カムフレーム部52を厚さ方向に貫通する貫通孔である。
 また、吸気側フレーム貫通孔52aは、吸気側シャフト部38aのうち吸気側カム38bを配置していない部分を、回転自在に挿通可能な形状に形成する。これにより、吸気側フレーム貫通孔52aの内壁面は、吸気側カムシャフト38を回転可能に支持する吸気側カムジャーナル部56を形成する。
 第一実施形態では、シリンダヘッド部20の上面20aに、二つの吸気側カムフレーム部52を形成した場合について説明する。したがって、第一実施形態では、シリンダヘッド部20が、二つの吸気側カムジャーナル部56を有する。
 また、第一実施形態では、二つの吸気側カムフレーム部52を、それぞれ、シリンダヘッド部20の上面20aのうち、第二領域E2に配置する。
 したがって、第一実施形態では、二つの吸気側カムジャーナル部56を、それぞれ、シリンダヘッド部20の上面20aのうち、第二領域E2に配置する。
 排気側カムフレーム部54は、板状の部材で形成し、側面をシリンダヘッド部20の上面20a及びアウトフレーム部50の内側面と対向させる。
 また、排気側カムフレーム部54は、吸気側カムフレーム部52と同じ形状に形成する。
 第一実施形態では、シリンダヘッド部20の上面20aに、三つの排気側カムフレーム部54を形成した場合について説明する。
 また、排気側カムフレーム部54には、排気側フレーム貫通孔54aを形成する。
 排気側フレーム貫通孔54aは、排気側カムフレーム部54を厚さ方向に貫通する貫通孔である。
 また、排気側フレーム貫通孔54aは、排気側シャフト部48aのうち、排気側カム48bを配置していない部分を、回転自在に挿通可能な形状に形成する。これにより、排気側フレーム貫通孔54aの内壁面は、排気側カムシャフト48を回転可能に支持する排気側カムジャーナル部58を形成する。
 第一実施形態では、シリンダヘッド部20の上面20aに、三つの排気側カムフレーム部54を形成した場合について説明する。すなわち、第一実施形態では、シリンダヘッド部20が、三つの排気側カムジャーナル部58を有する。
 したがって、第一実施形態では、吸気側カムフレーム部52と排気側カムフレーム部54を同じ形状に形成し、さらに、シリンダヘッド部20の上面20aに、排気側カムフレーム部54を、吸気側カムフレーム部52よりも一つ多く形成する。
 また、第一実施形態では、三つの排気側カムフレーム部54を、それぞれ、シリンダヘッド部20の上面20aのうち、第一領域E1に配置する。
 したがって、第一実施形態では、三つの排気側カムジャーナル部58を、それぞれ、シリンダヘッド部20の上面20aのうち、第一領域E1に配置する。
 第二ウォータジャケット部WJ2は、シリンダヘッド部20の内部空間に形成する。なお、図2中では、説明のために、第二ウォータジャケット部WJ2の図示を省略している。
 また、第二ウォータジャケット部WJ2は、第一ウォータジャケット部WJ1と連通する。これにより、第一ウォータジャケット部WJ1と第二ウォータジャケット部WJ2は、冷却液LLCが内部を循環するウォータジャケットに対応する。
 また、第二ウォータジャケット部WJ2は、各燃焼室22、各吸気通路30、各排気通路40を覆う位置に形成する。
 したがって、ウォータジャケットは、各シリンダ12、各燃焼室22、各吸気通路30、各排気通路40を覆う。
 冷却液導入口WJinは、シリンダヘッド部20の側面20bに開口し、第二ウォータジャケット部WJ2とラジエータRAとを連通させる。
 第一実施形態では、冷却液導入口WJinが、シリンダヘッド部20の側面20bのうち、シリンダ12の配列方向に沿った一方の端部側(図2中では、上方の端部側)の面に開口する場合について説明する。
 したがって、冷却液導入口WJinは、三つの燃焼室22a~22cのうち、燃焼室22aに最も近い位置に開口する。
 また、冷却液導入口WJinからは、ラジエータRAが冷却した冷却液LLCを、第二ウォータジャケット部WJ2へ導入する。
 冷却液排出口WJoutは、シリンダヘッド部20の側面20bのうち、冷却液導入口WJinと異なる位置に開口し、第二ウォータジャケット部WJ2とラジエータRAとを連通させる。
 第一実施形態では、冷却液排出口WJoutが、シリンダヘッド部20の側面20bのうち、シリンダ12の配列方向に沿った他方の端部側(図2中では、下方の端部側)の面に開口する場合について説明する。
 したがって、冷却液排出口WJoutは、三つの燃焼室22a~22cのうち、燃焼室22cに最も近い位置に開口する。
 また、冷却液排出口WJoutからは、ウォータジャケット内を循環して昇温した加熱された冷却液LLCを、ラジエータRAへ排出する。
(吸気側カムフレーム部52の位置について)
 図1から図7を参照して、吸気側カムフレーム部52を、シリンダヘッド部20の上面20aのうち、第二領域E2に配置した理由について説明する。
 ヘッドブロック別体化構造の内燃機関では、吸気側カムフレーム部52を、シリンダヘッド部20の上面20aのうち、シリンダ12の軸方向から見て、一つの燃焼室22に対して設けた二つの吸気バルブ孔32の間に配置する。すなわち、ヘッドブロック別体化構造の内燃機関では、吸気側カムフレーム部52を、シリンダヘッド部20の上面20aのうち、第一領域E1に配置する。
 なお、ヘッドブロック別体化構造は、シリンダヘッド部20とシリンダブロック部10とを個々に鋳造する。そして、シリンダヘッド部20とシリンダブロック部10とを、シリンダヘッドボルトによって互いに締結した構造である。また、図2中には、説明のために、ヘッドブロック別体化構造の内燃機関でシリンダヘッドボルトの仮想的な取り付け位置を、符号「VSP」を付して示す。
 ヘッドブロック別体化構造の内燃機関で、吸気側カムフレーム部52を、シリンダヘッド部20の上面20aのうち、第一領域E1に配置する理由は、以下の理由である。
 ヘッドブロック別体化構造の内燃機関では、シリンダヘッドボルトを取り付ける位置が、内燃機関に要求される強度等に応じて、シリンダヘッド部20の上面20aのうち、隣り合う燃焼室22に対してそれぞれ設けた吸気バルブ孔32の間となる。
 第一実施形態の内燃機関1は、ヘッドブロック一体化構造であり、シリンダヘッドボルトを必要としない。したがって、第一実施形態では、シリンダヘッド部20及びシリンダブロック部10に、シリンダヘッドボルトを挿通する開口部や空間を形成しない。
 このため、第一実施形態では、ヘッドブロック別体化構造の内燃機関でシリンダヘッドボルトを配置する位置に、吸気側カムフレーム部52を配置することが可能である。
(ノズル取り付け孔24の位置について)
 図1から図5を参照して、ノズル取り付け孔24を、条件式(5)が成立する位置に形成した理由について説明する。
 上述したように、ヘッドブロック別体化構造の内燃機関では、吸気側カムフレーム部52を、シリンダヘッド部20の上面20aのうち、シリンダ12の軸方向から見て、一つの燃焼室22に対して設けた二つの吸気バルブ孔32の間に配置する。このため、ヘッドブロック別体化構造の内燃機関では、ノズル取り付け孔24を、燃焼室22の直上に形成することとなる(直上インジェクション構造)。
 これは、燃焼室22よりも吸気管2側には吸気側カムフレーム部52が配置されており、燃料噴射ノズル16を配置する空間を、確保することが困難なためである。同様に、燃焼室22よりも排気管8側には、排気側カムフレーム部54が配置されており、燃料噴射ノズル16を配置する空間を、確保することが困難なためである。
 第一実施形態の内燃機関1は、上述したように、ヘッドブロック別体化構造の内燃機関ではシリンダヘッドボルトを配置する位置に、吸気側カムフレーム部52を配置することが可能である。
 これにより、第一実施形態の内燃機関1は、燃焼室22よりも吸気管2側に、燃料噴射ノズル16を配置する空間を確保することが可能となる。したがって、第一実施形態では、ノズル取り付け孔24を、条件式(5)が成立する位置に形成することが可能となる。
(プラグ取り付け孔26の位置について)
 図1から図7を参照して、プラグ取り付け孔26を、条件式(6)が成立する位置に形成した理由について説明する。
 上述したように、ヘッドブロック別体化構造の内燃機関では、ノズル取り付け孔24を、燃焼室22の直上に形成する。このため、ヘッドブロック別体化構造の内燃機関では、プラグ取り付け孔26を、燃焼室22よりも排気管8側に形成する。これは、点火プラグ18と燃料噴射ノズル16との干渉を回避するためである。
 第一実施形態の内燃機関1は、上述したように、燃焼室22よりも吸気管2側に、燃料噴射ノズル16を配置する空間を確保することが可能となる。したがって、第一実施形態では、プラグ取り付け孔26を、条件式(6)が成立する位置に形成することが可能となる。
(排気バルブ孔42の開口面積、吸気バルブ孔32の開口面積について)
 図1から図7を参照して、排気バルブ孔42の開口面積を、吸気バルブ孔32の開口面積よりも大きくした理由について説明する。
 上述したように、ヘッドブロック別体化構造の内燃機関では、吸気側カムフレーム部52を、シリンダヘッド部20の上面20aのうち、シリンダ12の軸方向から見て、一つの燃焼室22に対して設けた二つの吸気バルブ孔32の間に配置する。これに加え、ヘッドブロック別体化構造の内燃機関では、排気側カムフレーム部54を、シリンダヘッド部20の上面20aのうち、シリンダ12の軸方向から見て、一つの燃焼室22に対して設けた二つの排気バルブ孔42の間に配置する。
 これは、要求される強度等に応じて、シリンダヘッド部20の上面20aのうち、シリンダヘッドボルトを取り付ける位置が、一つの燃焼室22に対して設けた二つ一組の排気バルブ孔42の間となるためである。
 第一実施形態の内燃機関1は、上述したように、燃焼室22よりも吸気管2側に、燃料噴射ノズル16を配置する空間を確保することが可能となる。これに加え、プラグ取り付け孔26を、条件式(5)が成立する位置に形成することが可能となる。これにより、第一実施形態では、燃焼室22の排気管8側において、燃焼室22の吸気管2側よりも、空間の余裕を確保することが可能となる。
 したがって、第一実施形態では、排気バルブ孔42の開口面積を、吸気バルブ孔32の開口面積よりも大きくすることが可能となる。
(センサ挿入部28の配置について)
 図1から図7を参照して、センサ挿入部28(開口部28a)の配置について説明する。
 上述したように、ヘッドブロック別体化構造の内燃機関では、要求される強度等に応じて、シリンダヘッド部20の上面20aのうち、シリンダヘッドボルトを取り付ける位置が、一つの燃焼室22に対して設けた二つ一組の排気バルブ孔42の間となる。
 第一実施形態の内燃機関1は、上述したように、ヘッドブロック別体化構造の内燃機関ではシリンダヘッドボルトを配置する位置に、吸気側カムフレーム部52を配置することが可能である。
 したがって、第一実施形態では、ヘッドブロック別体化構造の内燃機関で吸気側カムフレーム部52を配置する位置に、センサ挿入部28の開口部28aを配置することが可能となる。
(動作)
 図1から図7を参照して、第一実施形態の内燃機関1を用いて行なう動作の一例を説明する。
 車両の使用時等、内燃機関1の作動時には、吸気管2から吸入した空気と、ノズル取り付け孔24から燃焼室22内へ噴射した燃料とを、燃焼室22内で混合する。そして、燃焼室22内で混合した空気と燃料との混合気に、点火プラグ18が発生させた火花を着火させ、燃焼室22内で混合気を燃焼させる。これにより、混合気の燃焼で発生したエネルギーを駆動装置6へ伝達し、燃焼後の気体を、排気管8を介して外気へ排出する。
 第一実施形態では、吸気管2に過給機CHを接続する。このため、車両の加速時等、吸気管2から燃焼室22内へ吸入する空気の量(吸気量)を増加させる場合には、過給機CHにより吸気量を強制的に増加させる。これにより、燃焼室22内へ供給する空気の充填効率を増加させる。
 そして、第一実施形態の内燃機関1では、ノックセンサKnSを挿入する凹部であるセンサ挿入部28を、シリンダヘッド部20の上面20aに開口させている。
 このため、内燃機関1の構成を、シリンダ12とノックセンサKnSとの間に、ウォータジャケット及び冷却液LLCが存在しない構成とすることが容易となる。
 すなわち、シリンダブロック部10にセンサ挿入部を開口させる場合、ノックセンサの検出部を、ウォータジャケット及び冷却液を回避してシリンダ12の近傍へ配置するためには、シリンダブロック部10に独立した空間を形成する必要がある。
 これに対し、第一実施形態の内燃機関1では、シリンダヘッド部20の上面20aに、シリンダ12へ向かう方向(下方)へ底面28bを形成した凹部により、センサ挿入部28を形成することが可能となる。このため、内燃機関1の構成を、シリンダ12とノックセンサKnSの検出部との間に、ウォータジャケット及び冷却液LLCが存在しない構成とすることが容易となる。
 これにより、シリンダブロック部10にノックセンサKnSを取り付ける構成と比較して、ノックセンサKnSによるノッキングの検出精度の低下を抑制することが可能となる。
 したがって、第一実施形態では、内燃機関1に対し、ノッキングの発生頻度を低減させることが可能となる。
 さらに、第一実施形態の内燃機関1は、吸気管2に過給機CHを接続するため、過給時にノッキングが発生しやすくなる。
 これに対し、第一実施形態の内燃機関1では、過給機CHにより吸気量を強制的に増加させた場合であっても、ノッキングの検出精度の低下を抑制して、ノッキングの発生頻度を低減させることが可能となる。
 なお、上述した第一実施形態は、本発明の一例であり、本発明は、上述した第一実施形態に限定されることはなく、この実施形態以外の形態であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。
(第一実施形態の効果)
 第一実施形態の内燃機関1であれば、以下に記載する効果を奏することが可能となる。
(1)シリンダブロック部10とシリンダヘッド部20とを一体に成形する。そして、シリンダヘッド部20が有するセンサ挿入部28を、シリンダヘッド部20の上面20aに開口させる。
 このため、内燃機関1の構成を、シリンダ12とノックセンサKnSとの間に、ウォータジャケット及び冷却液LLCが存在しない構成とすることが容易となる。
 その結果、シリンダブロック部10にノックセンサKnSを取り付ける構成と比較して、ノックセンサKnSによるノッキングの検出精度の低下を抑制することが可能となる。これにより、ノッキングの発生頻度を低減させることが可能となる。
 また、ヘッドブロック別体化構造の内燃機関では、シリンダブロック部10にノックセンサKnSを取り付けるため、ノックセンサKnSが、インテークマニホールドとシリンダブロック部10との間に配置されることとなる。
 これに対し、センサ挿入部28をシリンダヘッド部20の上面20aに開口させることにより、ノックセンサKnSの着脱作業が容易となるため、内燃機関1の整備性を向上させることが可能となる。
(2)センサ挿入部28の底面28bを、シリンダ12の軸方向から見て、燃焼室22と重なる位置に配置する。
 このため、センサ挿入部28の底面28bを、シリンダ12の軸方向から見て、ノッキングの発生によるピストン14の振動を検出しやすい位置へ近づけることが可能となる。これにより、燃焼室22と重ならない位置に配置した場合と比較して、ノックセンサKnSの検出部を、ノッキングの発生によるピストン14の振動を検出しやすい位置へ近づけることが可能となる。
 その結果、センサ挿入部28の底面28bを、シリンダ12の軸方向から見て、燃焼室22と重ならない位置に配置した場合と比較して、ノックセンサKnSによるノッキングの検出精度の低下を抑制することが可能となる。
(3)吸気側カムジャーナル部56を第二領域E2に配置し、排気側カムジャーナル部58を第一領域E1に配置する。これに加え、センサ挿入部28の開口部28aを、シリンダ12の軸方向から見て、シリンダ12の中心を挟んで吸気側の第一領域E1に開口させる。
 このため、シリンダヘッド部20のうち、排気管8に近い位置よりもノッキングが発生しやすく、さらに、温度が低い位置である吸気管2に近い位置に、ノックセンサKnSの検出部を配置することが可能となる。
 その結果、センサ挿入部28の開口部28aを、第一領域E1のうち、各シリンダ12を配列した方向に沿って、排気側カムジャーナル部58を配置した部分と連続する部分に開口させた場合と比較して、ノッキングの検出精度の低下を抑制することが可能となる。
 これに加え、ノックセンサKnSの検出精度が、温度による影響で低下することを抑制することが可能となるため、ノックセンサKnSによるノッキングの検出精度の低下を抑制することが可能となる。
(4)シリンダ12の軸方向から見て、吸気管接続部30aとセンサ挿入部28の底面28bとの間の距離を、吸気管接続部30aと燃焼室22の中央との間の距離よりも短くする。これにより、センサ挿入部28の底面28bを、シリンダ12の軸方向から見て、吸気管接続部30aと燃焼室22の中央との間に配置する。
 このため、シリンダヘッド部20のうち、排気管8に近い位置よりもノッキングが発生しやすく、さらに、温度が低い位置である吸気管2に近い位置に、ノックセンサKnSの検出部を配置することが可能となる。
 その結果、シリンダ12の軸方向から見て、センサ挿入部28の底面28bと吸気管接続部30aとの間の距離を、燃焼室22の中央と吸気管接続部30aとの間の距離以上とした場合と比較して、ノッキングの検出精度の低下を抑制することが可能となる。
 これに加え、ノックセンサKnSの検出精度が、温度による影響で低下することを抑制することが可能となるため、ノックセンサKnSによるノッキングの検出精度の低下を抑制することが可能となる。
(5)シリンダ12の軸方向から見て、吸気管接続部30aとセンサ挿入部28の底面28bとの間の距離を、吸気バルブ孔32と吸気管接続部30aとの間の距離よりも短くする。これにより、センサ挿入部28の底面28bを、吸気バルブ孔32と吸気管接続部30aとの間に配置する。
 このため、吸気バルブ34が吸気バルブ孔32と接触(着座)して発生する振動(ノイズ)の影響により、ノックセンサKnSの検出精度が低下することを抑制することが可能となる。
 その結果、ノックセンサKnSによるノッキングの検出精度の低下を抑制することが可能となる。
(6)センサ挿入部28の底面28bを、シリンダ12の軸方向から見て、燃焼室22の中央を通過し且つ三つのシリンダ12を配列した方向と直交する直線CL-P上に配置する。
 このため、各吸気バルブ34とノックセンサKnSの検出部との距離を、等間隔とすることが可能となる。
 その結果、各吸気バルブ34が吸気バルブ孔32と接触(着座)して発生する振動(ノイズ)を、ノックセンサKnSが検出するまでに発生するタイムラグを平均化することが可能となる。これにより、ノックセンサKnSの検出精度が低下することを抑制することが可能となるため、ノックセンサKnSによるノッキングの検出精度の低下を抑制することが可能となる。
(7)シリンダ12の軸方向から見て、センサ挿入部28の底面28bとプラグ取り付け孔26との間の距離を、吸気バルブ孔32とセンサ挿入部28の底面28bとの間の距離よりも長くする。
 このため、ノッキングの発生しやすい位置である、点火プラグ18から遠い位置へ、ノックセンサKnSの検出部を配置することが可能となる。
 その結果、ノックセンサKnSの検出精度が低下することを抑制することが可能となり、ノックセンサKnSによるノッキングの検出精度の低下を抑制することが可能となる。
(8)センサ挿入部28の底面28bを、シリンダ12の軸方向から見て、各燃焼室22a~22cのうち、冷却液排出口WJoutに最も近い燃焼室22cと重なる位置に配置する。
 このため、ノッキングの発生しやすい位置である、冷却液の温度が高い位置へ、ノックセンサKnSの検出部を配置することが可能となる。
 その結果、センサ挿入部28の底面28bを、燃焼室22cよりも冷却液導入口WJinに近い燃焼室22a,22bに配置した場合と比較して、ノックセンサKnSの検出精度が低下することを抑制することが可能となる。これにより、ノックセンサKnSによるノッキングの検出精度の低下を抑制することが可能となる。
(9)排気バルブ孔42の開口面積を、吸気バルブ孔32の開口面積よりも大きくする。
 このため、単位時間あたりの排気量を、単位時間あたりの吸気量よりも多くすることが可能である。
 その結果、過給機CHにより吸気量を増加させた場合であっても、吸気量に対する排気量の比率が低下することを抑制して、過給機CHによる吸気量の増加分を吸収することが可能となる。
 これにより、内燃機関1に対し、排気効率の低下を抑制して、燃焼効率の低下を抑制することが可能となる。このため、内燃機関1が発生させるトルクと出力を向上させることが可能となる。
(10)ピストン14のストロークStを、シリンダ12のボア径BID以上とする。
 その結果、排気量が同一であり、ストロークStがボア径BID未満であるシリンダ12を備える内燃機関1と比較して、ピストン14の高速化を保持することが可能となるとともに、排気効率を向上させることが可能となる。
(11)ノズル取り付け孔24と排気バルブ孔42との間の距離INJ‐EXTrを、ノズル取り付け孔24と吸気バルブ孔32との間の距離INJ‐INTrよりも長くする。
 このため、ノズル取り付け孔24の位置を、内燃機関1の排気側よりも吸気側に寄せることが可能となる。これにより、燃料噴射ノズル16を、排気側よりも温度の低い吸気側に配置することが可能となる。
 その結果、燃料噴射ノズル16に発生するデポジット(カーボンデポジット)を低減させることが可能となる。
(12)プラグ取り付け孔26と排気バルブ孔42との間の距離SP‐EXTrを、プラグ取り付け孔26と吸気バルブ孔32との間の距離SP‐INTr以上の長さとする。
 その結果、プラグ取り付け孔26の位置を、内燃機関1の排気側と吸気側との間で、吸気側に寄せた位置とすることが可能となる。すなわち、点火プラグ18を配置する位置の設計自由度が向上している。
(13)プラグ取り付け孔26を、燃焼室22の中央に配置する。
 このため、点火プラグ18が発生させる火花を、燃焼室22の中央で発生させることが可能となる。これにより、燃焼室22内における混合気の燃焼性能を向上させることが可能となる。
 その結果、内燃機関1が発生させるトルクと出力を向上させることが可能となる。
(14)一つの燃焼室22に開口した複数の排気バルブ孔42の開口面積の合計値を、一つの燃焼室22に開口した複数の吸気バルブ孔32の開口面積の合計値よりも大きくする。
 このため、過給機CHにより吸気量を増加させた場合であっても、吸気量に対する排気量の比率が低下することを抑制して、過給機CHによる吸気量の増加分を吸収することが可能となる。
 その結果、内燃機関1に対し、排気効率の低下を抑制して、燃焼効率の低下を抑制することが可能となる。このため、内燃機関1が発生させるトルクと出力を向上させることが可能となる。
(15)シリンダブロック部10に、ピストン14のストローク方向を平行に配列した複数のシリンダ12を形成する。また、一体に鋳造したシリンダヘッド部20とシリンダブロック部10で、ピストン14のストローク方向を平行に向けて配列した複数の燃焼室22を形成する。
 さらに、シリンダヘッド部20の上面20aを、複数のシリンダ12を配列した方向に沿って、シリンダ12の軸方向から見て燃焼室22と重なる第一領域E1と、隣り合う二つの第一領域E1の間の第二領域E2に区分する。これに加え、吸気側カムジャーナル部56を、シリンダヘッド部20の上面20aのうち、第二領域E2に配置する。
 このため、吸気側カムフレーム部52の間の距離を増加させずに、吸気側カムジャーナル部56の位置を、シリンダ12の軸方向から見て、一つの燃焼室22に対して設けた二つの吸気バルブ孔32の間から変位させることが可能となる。
 その結果、例えば、ノズル取り付け孔24やプラグ取り付け孔26のレイアウト、排気バルブ孔42や吸気バルブ孔32の形状・寸法等、シリンダヘッド部20の設計自由度を向上させることが可能となる。
 また、吸気側カムジャーナル部56を配置する位置が、ヘッドブロック別体化構造の内燃機関でシリンダヘッドボルトを取り付ける位置による影響を受けない。
 これにより、シリンダヘッド部20及びシリンダブロック部10の設計自由度を向上させることが可能となるため、内燃機関1の設計自由度を向上させることが可能となる。
(16)吸気側カムジャーナル部56を、シリンダヘッド部20の上面20aのうち、第二領域E2に配置する。
 このため、吸気側カムフレーム部52の間の距離を増加させずに、吸気側カムジャーナル部56の位置を、シリンダ12の軸方向から見て、一つの燃焼室22に対して設けた二つの吸気バルブ孔32の間から変位させることが可能となる。
 その結果、吸気側カムフレーム部52の間の距離を増加させることにより、吸気側カムジャーナル部56の位置を変位させた構成の内燃機関1と比較して、内燃機関1の大型化及び重量増加を抑制することが可能となる。
(17)吸気側カムジャーナル部56を、シリンダヘッド部20の上面20aのうち、第二領域E2に配置する。
 このため、吸気側カムジャーナル部56を、一つの燃焼室22に対して設けた二つの吸気バルブ孔32の間に配置した場合と比較して、吸気側カムフレーム部52とプラグ取り付け孔26との間の距離を増加させることが可能となる。
 その結果、吸気側カムジャーナル部56を、一つの燃焼室22に対して設けた二つの吸気バルブ孔32の間に配置した場合と比較して、点火プラグ18が発生させる熱の影響による、吸気側カムジャーナル部56の変形を抑制することが可能となる。
(18)排気バルブヘッド44bの質量を、吸気バルブヘッド34bの質量よりも大きくする。また、吸気側カムフレーム部52と排気側カムフレーム部54を同じ形状に形成する。これに加え、吸気側カムジャーナル部56よりも多くの排気側カムジャーナル部58で、排気側カムシャフト48を回転可能に支持する。
 このため、吸気バルブ34よりも質量の大きい排気バルブ44を回転に応じて変位させる排気側カムシャフト48を、吸気側カムジャーナル部56よりも多くの排気側カムジャーナル部58で、排気側カムシャフト48を回転可能に支持することが可能となる。
 その結果、吸気側カムシャフト38よりも強度が要求される排気側カムシャフト48を、吸気側カムジャーナル部56よりも多くの排気側カムジャーナル部58で支持するため、排気側カムジャーナル部58に加わる負荷を分散させることが可能となる。これにより、排気側カムフレーム部54の耐久性を増加させることが可能となる。また、排気側カムシャフト48を支持する安定性を向上させることが可能となる。
(変形例)
(1)第一実施形態では、センサ挿入部28の開口部28aを、シリンダ12の軸方向から見て、シリンダ12の中心を挟んで吸気側の第一領域E1に開口させたが、これに限定するものではない。
 すなわち、図8中に示すように、センサ挿入部28の開口部28aを、センサ挿入部28の開口部28aを、シリンダ12の軸方向から見て、シリンダ12の中心を挟んで排気側の第二領域E2に開口させてもよい。
 この場合、ノックセンサKnSと、例えば、図外のカムシャフト駆動装置(タイミング・チェーン式)との干渉を回避するレイアウト等、シリンダヘッド部20の設計自由度を向上させることが可能となる。
(2)第一実施形態では、吸気側カムジャーナル部56を第二領域E2に配置し、排気側カムジャーナル部58を第一領域E1に配置する。これに加え、センサ挿入部28の開口部28aを、シリンダ12の軸方向から見て、シリンダ12の中心を挟んで吸気側の第一領域E1に開口させたが、これに限定するものではない。
 すなわち、図9中に示すように、吸気側カムジャーナル部56を第一領域E1に配置し、排気側カムジャーナル部58を第二領域E2に配置する。これに加え、センサ挿入部28の開口部28aを、シリンダ12の軸方向から見て、シリンダ12の中心を挟んで排気側の第一領域E1に開口させてもよい。
 この場合、ノックセンサKnSと、例えば、図外のカムシャフト駆動装置(タイミング・チェーン式)との干渉を回避するレイアウト等、シリンダヘッド部20の設計自由度を向上させることが可能となる。
 また、排気側カムフレーム部54の間の距離を増加させずに、排気側カムジャーナル部58の位置を、シリンダ12の軸方向から見て、一つの燃焼室22に対して設けた二つの排気バルブ孔42の間から変位させることが可能となる。
 これにより、例えば、ノズル取り付け孔24やプラグ取り付け孔26のレイアウト、排気バルブ孔42や吸気バルブ孔32の形状・寸法等、シリンダヘッド部20の設計自由度を向上させることが可能となる。
 したがって、本発明では、排気側カムジャーナル部58を配置する位置が、ヘッドブロック別体化構造の内燃機関でシリンダヘッドボルトを取り付ける位置による影響を受けない。
 これにより、シリンダヘッド部20及びシリンダブロック部10の設計自由度を向上させることが可能となるため、内燃機関1の設計自由度を向上させることが可能となる。
 なお、内燃機関1の構成を、図9中に示す構成とした場合、第一実施形態と異なり、排気バルブ孔42の内径EXHvdiを、吸気バルブ孔32の内径INTvdi未満としてもよい。
 すなわち、本発明では、吸気側カムジャーナル部56及び排気側カムジャーナル部58のうち少なくとも一方を第二領域E2に配置する。そして、開口部28aを、シリンダ12の軸方向から見て、シリンダ12の中心を挟んで吸気側と排気側とのうち、第二領域E2に配置した吸気側カムジャーナル部56、または、排気側カムジャーナル部58を有する側の第一領域E1に開口させればよい。
(3)第一実施形態では、吸気側カムジャーナル部56を、シリンダヘッド部20の上面20aのうち、第二領域E2に配置したが、これに限定するものではない。
 すなわち、図10中に示すように、吸気側カムジャーナル部56及び排気側カムジャーナル部58を、シリンダヘッド部20の上面20aのうち、第二領域E2に配置してもよい。
 この場合、吸気側カムフレーム部52の間の距離を増加させずに、吸気側カムジャーナル部56の位置を、シリンダ12の軸方向から見て、一つの燃焼室22に対して設けた二つの吸気バルブ孔32の間から変位させることが可能となる。これに加え、排気側カムフレーム部54の間の距離を増加させずに、排気側カムジャーナル部58の位置を、シリンダ12の軸方向から見て、一つの燃焼室22に対して設けた二つの排気バルブ孔42の間から変位させることが可能となる。
 これにより、例えば、ノズル取り付け孔24やプラグ取り付け孔26のレイアウト、排気バルブ孔42や吸気バルブ孔32の形状・寸法等、シリンダヘッド部20の設計自由度を向上させることが可能となる。
 したがって、本発明では、吸気側カムジャーナル部56及び排気側カムジャーナル部58を配置する位置が、ヘッドブロック別体化構造の内燃機関でシリンダヘッドボルトを取り付ける位置による影響を受けない。
 これにより、シリンダヘッド部20及びシリンダブロック部10の設計自由度を向上させることが可能となるため、内燃機関1の設計自由度を向上させることが可能となる。
 なお、内燃機関1の構成を、図10中に示す構成とした場合、第一実施形態と異なり、排気バルブ孔42の内径EXHvdiと、吸気バルブ孔32の内径INTvdiを、同じ値としてもよい。
(4)第一実施形態では、内燃機関1の構成を、点火プラグ18が発生させる火花を燃焼室22内の混合気に着火させる構成(ガソリンエンジン)としたが、これに限定するものではない。
 すなわち、内燃機関1の構成を、点火プラグ18を用いずに、燃焼室22内の混合気に着火させる構成(ディーゼルエンジン)としてもよい。この場合、例えば、図11中に示すように、シリンダヘッド部20がプラグ取り付け孔を有していない構成とする。
(5)第一実施形態では、内燃機関1の構成を、直列3気筒の内燃機関(直列3気筒エンジン)としたが、これに限定するものではない。
 すなわち、内燃機関1を、V型の内燃機関(V型エンジン)や、水平対向型の内燃機関(水平対向エンジン)としてもよい。
(6)第一実施形態では、内燃機関1の構成を、シリンダブロック部10に複数のシリンダ12を形成し、シリンダヘッド部20とシリンダブロック部10で複数の燃焼室22を形成する構成としたが、これに限定するものではない。
 すなわち、内燃機関1の構成を、例えば、図12中に示すように、シリンダブロック部10にシリンダ12を一つのみ形成し、シリンダヘッド部20とシリンダブロック部10で燃焼室22を一つのみ形成する構成(単気筒エンジン)としてもよい。
(7)第一実施形態では、吸気管2の構成を、過給機CHを接続した構成としたが、これに限定するものではない。
 すなわち、吸気管2の構成を、過給機を接続しない構成(自然吸気:Natural Aspiration、Normal Aspiration)としてもよい。
 1…内燃機関、2…吸気装置、4…燃料タンク、6…駆動装置、8…排気装置、10…シリンダブロック部、12…シリンダ、14…ピストン、16…燃料噴射ノズル、18…点火プラグ、20…シリンダヘッド部、20a…シリンダヘッド部の上面、20b…シリンダヘッド部の側面、22…燃焼室、24…ノズル取り付け孔、26…プラグ取り付け孔、28…センサ挿入部、28a…センサ挿入部の開口部、28b…センサ挿入部の底面、30…吸気通路、30a…吸気管接続部、32…吸気バルブ孔、34…吸気バルブ、34a…吸気バルブステム、34b…吸気バルブヘッド、34c…吸気バルブスプリング、36…吸気バルブガイド孔、38…吸気側カムシャフト、38a…吸気側シャフト部、38b…吸気側カム、40…排気通路、42…排気バルブ孔、44…排気バルブ、44a…排気バルブステム、44b…排気バルブヘッド、44c…排気バルブスプリング、46…排気バルブガイド孔、48…排気側カムシャフト、48a…排気側シャフト部、48b…排気側カム、50…アウトフレーム部、52…吸気側カムフレーム部、52a…吸気側フレーム貫通孔、54…排気側カムフレーム部、54a…排気側フレーム貫通孔、56…吸気側カムジャーナル部、58…排気側カムジャーナル部、CH…過給機、RA…ラジエータ、WJ1…第一ウォータジャケット部、WJ2…第二ウォータジャケット部、WJin…冷却液導入口、WJout…冷却液排出口、St…ピストンのストローク、BID…シリンダのボア径、EXHvdi…排気バルブ孔の内径、INTvdi…吸気バルブ孔の内径、INJ‐EXTr…ノズル取り付け孔の中心と排気バルブ孔の中心との間の距離、INJ‐INTr…ノズル取り付け孔の中心と吸気バルブ孔の中心との間の距離、SP‐EXTr…プラグ取り付け孔の中心と排気バルブ孔の中心との間の距離、SP‐INTr…プラグ取り付け孔の中心と吸気バルブ孔の中心との間の距離、SPC‐IOPr…シリンダの軸方向から見た吸気管接続部と燃焼室の中央との間の最短距離、KnB‐IOPr…シリンダの軸方向から見た吸気管接続部とセンサ挿入部の底面との間の最短距離、INT‐IOPr…シリンダの軸方向から見た吸気バルブ孔と吸気管接続部との間の最短距離、KnS…ノックセンサ、E1…第一領域、E2…第二領域、VSP…シリンダヘッドボルトの仮想的な取り付け位置、LLC…冷却液

Claims (10)

  1.  シリンダを形成したシリンダブロック部と、前記シリンダブロック部と共に燃焼室を形成するシリンダヘッド部と、を備え、
     前記シリンダブロック部と前記シリンダヘッド部とを一体に成形し、
     前記シリンダヘッド部は、ノックセンサを挿入する凹部であるセンサ挿入部を有し、
     前記センサ挿入部は、前記シリンダヘッド部の上面に開口することを特徴とする内燃機関。
  2.  前記センサ挿入部の底面を、前記シリンダの軸方向から見て、前記燃焼室と重なる位置に配置したことを特徴とする請求項1に記載した内燃機関。
  3.  前記シリンダブロック部に複数の前記シリンダを形成し、
     前記シリンダブロック部と前記シリンダヘッド部とで複数の前記燃焼室を形成し、
     前記シリンダヘッド部は、さらに、吸気管と前記複数の燃焼室とを連通させる吸気通路と、排気管と前記複数の燃焼室とを連通させる排気通路と、前記吸気通路を開閉する吸気バルブを変位させる吸気側カムシャフトを回転可能に支持する吸気側カムジャーナル部と、前記排気通路を開閉する排気バルブを変位させる排気側カムシャフトを回転可能に支持する排気側カムジャーナル部と、を有し、
     前記シリンダヘッド部の上面を、前記複数のシリンダを配列した方向に沿って、前記シリンダの軸方向から見て、前記燃焼室と重なる領域である第一領域と、隣り合う二つの前記第一領域の間の領域である第二領域と、に区分し、
     前記吸気側カムジャーナル部及び前記排気側カムジャーナル部のうち少なくとも一方を、前記第二領域に配置し、
     前記センサ挿入部は、前記シリンダの軸方向から見て、前記シリンダの中心を挟んで吸気側と排気側とのうち前記第二領域に配置した前記吸気側カムジャーナル部または前記排気側カムジャーナル部を有する側の前記第一領域に開口することを特徴とする請求項1または請求項2に記載した内燃機関。
  4.  前記吸気側カムジャーナル部を、前記第二領域に配置し、
     前記排気側カムジャーナル部を、前記第一領域に配置し、
     前記センサ挿入部は、前記シリンダの軸方向から見て、前記シリンダの中心を挟んで前記吸気側の前記第一領域に開口することを特徴とする請求項3に記載した内燃機関。
  5.  前記シリンダブロック部に複数の前記シリンダを形成し、
     前記シリンダブロック部と前記シリンダヘッド部とで複数の前記燃焼室を形成し、
     前記シリンダヘッド部の上面を、前記複数のシリンダを配列した方向に沿って、前記シリンダの軸方向から見て、前記燃焼室と重なる領域である第一領域と、隣り合う二つの前記第一領域の間の領域である第二領域と、に区分し、
     前記センサ挿入部は、前記第二領域に開口することを特徴とする請求項1に記載した内燃機関。
  6.  前記シリンダヘッド部は、さらに、吸気管と前記燃焼室とを連通させる吸気通路を有し、
     前記シリンダの軸方向から見て、前記シリンダヘッド部の側面に開口し且つ前記吸気通路の前記吸気管を接続する開口部である吸気管接続部と前記センサ挿入部の底面との間の距離を、前記吸気管接続部と前記燃焼室の中央との間の距離よりも短くしたことを特徴とする請求項1から請求項5のうちいずれか1項に記載した内燃機関。
  7.  前記シリンダヘッド部は、さらに、吸気管と前記燃焼室とを連通させる吸気通路を有し、
     前記シリンダの軸方向から見て、前記シリンダヘッド部の側面に開口し且つ前記吸気通路の前記吸気管を接続する開口部である吸気管接続部と前記センサ挿入部の底面との間の距離を、前記燃焼室に開口した前記吸気通路の開口部である吸気バルブ孔と前記吸気管接続部との間の距離よりも短くしたことを特徴とする請求項1から請求項6のうちいずれか1項に記載した内燃機関。
  8.  前記シリンダブロック部に複数の前記シリンダを形成し、
     前記シリンダブロック部と前記シリンダヘッド部とで複数の前記燃焼室を形成し、
     前記センサ挿入部の底面を、前記シリンダの軸方向から見て、前記燃焼室の中央を通過し且つ前記複数のシリンダを配列した方向と直交する直線上に配置したことを特徴とする請求項7に記載した内燃機関。
  9.  前記シリンダヘッド部は、さらに、吸気管と前記燃焼室とを連通させる吸気通路と、前記燃焼室内に点火プラグを挿入するプラグ取り付け孔と、を有し、
     前記シリンダの軸方向から見て、前記センサ挿入部の底面と前記プラグ取り付け孔との間の距離を、前記燃焼室に開口した前記吸気通路の開口部である吸気バルブ孔と前記センサ挿入部の底面との間の距離よりも長くしたことを特徴とする請求項1または請求項8のうちいずれか1項に記載した内燃機関。
  10.  冷却液が内部を循環するウォータジャケットをさらに備え、
     前記シリンダブロック部に複数の前記シリンダを形成し、
     前記シリンダブロック部と前記シリンダヘッド部とで複数の前記燃焼室を形成し、
     前記シリンダヘッド部は、さらに、前記冷却液の排出口である冷却液排出口を有し、
     前記センサ挿入部の底面を、前記シリンダの軸方向から見て、前記各燃焼室のうち前記冷却液排出口に最も近い燃焼室と重なる位置に配置したことを特徴とする請求項1から請求項9のうちいずれか1項に記載した内燃機関。
PCT/JP2015/002627 2015-05-25 2015-05-25 内燃機関 WO2016189568A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/002627 WO2016189568A1 (ja) 2015-05-25 2015-05-25 内燃機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/002627 WO2016189568A1 (ja) 2015-05-25 2015-05-25 内燃機関

Publications (1)

Publication Number Publication Date
WO2016189568A1 true WO2016189568A1 (ja) 2016-12-01

Family

ID=57393791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002627 WO2016189568A1 (ja) 2015-05-25 2015-05-25 内燃機関

Country Status (1)

Country Link
WO (1) WO2016189568A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195869A (ja) * 1992-01-22 1993-08-03 Nissan Motor Co Ltd 内燃機関用ロッカーカバーの騒音低減装置
JP2009085025A (ja) * 2007-09-27 2009-04-23 Mitsubishi Motors Corp シリンダヘッド
JP2013024099A (ja) * 2011-07-20 2013-02-04 Yamaha Motor Co Ltd 内燃機関およびそれを備えた鞍乗型車両
JP2015094246A (ja) * 2013-11-11 2015-05-18 日産自動車株式会社 内燃機関のシリンダブロック

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195869A (ja) * 1992-01-22 1993-08-03 Nissan Motor Co Ltd 内燃機関用ロッカーカバーの騒音低減装置
JP2009085025A (ja) * 2007-09-27 2009-04-23 Mitsubishi Motors Corp シリンダヘッド
JP2013024099A (ja) * 2011-07-20 2013-02-04 Yamaha Motor Co Ltd 内燃機関およびそれを備えた鞍乗型車両
JP2015094246A (ja) * 2013-11-11 2015-05-18 日産自動車株式会社 内燃機関のシリンダブロック

Similar Documents

Publication Publication Date Title
EP2111499B1 (en) Piston for internal combustion engine, and internal combustion engine using the piston
US8474251B2 (en) Cylinder head cooling system
US9771862B2 (en) Assembly for a V-engine
JPH07197848A (ja) 多気筒エンジンのシリンダヘッド
US7219632B2 (en) Narrow angle V-type engine
JP2009215922A5 (ja)
WO2016189568A1 (ja) 内燃機関
JP6458864B2 (ja) 内燃機関
JP4860451B2 (ja) 内燃機関
JP4274112B2 (ja) 内燃機関
US7571708B2 (en) Spark ignited direct injection targeting for improved combustion
JP6561580B2 (ja) 内燃機関
JP2007187107A (ja) 内燃機関
WO2016189566A1 (ja) 内燃機関
JP4344647B2 (ja) オープンデッキ型シリンダブロックの冷却構造
JP4803225B2 (ja) 内燃機関
US7565893B2 (en) Spark ignited direct injection flow geometry for improved combustion
JP2010031687A (ja) 火花点火式内燃機関
JP2006161691A (ja) 内燃機関
JP2006161657A (ja) 内燃機関
JP6057667B2 (ja) 内燃機関のシリンダブロック
JP2006161580A (ja) 内燃機関
JP2012177309A (ja) 4ストロークエンジン
JP2010001831A (ja) 筒内直接噴射式火花点火内燃機関
JP2011157847A (ja) 多気筒エンジン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP