WO2016188348A1 - 一种对盒设备、对位方法 - Google Patents

一种对盒设备、对位方法 Download PDF

Info

Publication number
WO2016188348A1
WO2016188348A1 PCT/CN2016/082378 CN2016082378W WO2016188348A1 WO 2016188348 A1 WO2016188348 A1 WO 2016188348A1 CN 2016082378 W CN2016082378 W CN 2016082378W WO 2016188348 A1 WO2016188348 A1 WO 2016188348A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
driving
mark
substructure
base station
Prior art date
Application number
PCT/CN2016/082378
Other languages
English (en)
French (fr)
Inventor
井杨坤
孙健
夏俊伟
薛旭玲
翟冬东
李忠庆
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/511,102 priority Critical patent/US10684512B2/en
Publication of WO2016188348A1 publication Critical patent/WO2016188348A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/241Manufacture or joining of vessels, leading-in conductors or bases the vessel being for a flat panel display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133394Piezoelectric elements associated with the cells

Definitions

  • the present disclosure relates to the field of liquid crystal fabrication technology, and in particular, to a box device and a registration method.
  • the liquid crystal display device includes a liquid crystal display panel and a backlight module, wherein the liquid crystal display panel is composed of two substrates and a liquid crystal layer between the two substrates. At this time, the two substrates need to be opposed to each other to form a liquid crystal cell to accommodate liquid crystal molecules. In the process of the box, it is necessary to turn one of the substrates by the turning device, and then oppose the other substrate.
  • the flipping platform of the flipping device first flips the substrate in a predetermined direction, and after the substrate is removed by the robot arm, the flipping platform needs to be flipped 180 degrees in the opposite direction of the predetermined direction to return the adsorption surface of the flipping platform to continue. Adsorb and flip other substrates.
  • the workflow of the flipping device extends the time the substrate is in the entire process of the cartridge, reducing production efficiency.
  • the present disclosure provides a box device and a aligning method, which improves work efficiency and ensures high efficiency of alignment between the first substrate and the second substrate.
  • a pair of box devices including a first base station for carrying a first substrate and a second base station for carrying a second substrate,
  • the first base has oppositely disposed first adsorption surfaces and second adsorption surfaces for adsorbing the first substrate;
  • the pair of cassette devices further includes: an inverting device that flips the first substrate by flipping the first substrate;
  • a aligning device for adjusting a position of the second base such that the inverted first substrate and the second substrate are aligned
  • a box device for controlling movement of the first substrate to cause the first substrate and the second substrate to be a cartridge.
  • the pre-alignment device includes:
  • a first driving structure for controlling rotation of the first base station, the first driving structure being coupled to the first base station;
  • a second driving structure for controlling movement of the first base station along a first direction on a horizontal plane, the second driving structure being coupled to the first base station;
  • a third driving structure for controlling movement of the first base station along a horizontal direction on a horizontal direction perpendicular to the first direction, the third driving structure being coupled to the first base station;
  • a fourth driving structure for controlling movement of the first base in a vertical direction, the fourth driving structure being coupled to the first base.
  • the first driving structure includes:
  • a first transmission structure for driving the rotation of the first central rotating shaft under the driving of the first driving motor.
  • the second driving structure includes:
  • the second moving platform is movably disposed on the first rail
  • a second transmission structure for driving the second moving platform to move along the first rail under the driving of the second driving motor.
  • the third driving structure includes:
  • the third moving platform is movably disposed on the second rail;
  • a third transmission structure for driving the third moving platform to move along the second rail under the driving of the third driving motor
  • the third mobile platform and the second mobile platform are the same mobile platform, and the second rail is disposed to intersect with the first rail.
  • the fourth driving structure includes:
  • the fourth moving platform is movably disposed on the third rail;
  • a fourth transmission structure for driving the fourth moving platform to move along the third rail under the driving of the fourth driving motor.
  • the structure of the alignment device is the same as that of the pre-alignment device.
  • a buffer limit structure connected to the inverting device is further included.
  • a dynamic sensing adjustment structure and a control circuit are further included;
  • the dynamic sensing adjustment structure is fixed on the first base, and has a plurality of substructures, each substructure corresponding to a sub-region position of the first substrate; each sub-structure includes a flattening from top to bottom Degree adjusting layer, piezoelectric sensing layer and surface adsorption layer;
  • the piezoelectric sensing layer of each substructure When the first substrate and the second substrate are paired with the cartridge, the piezoelectric sensing layer of each substructure, the pressure applied according to the first substrate subregion corresponding to the substructure, generates a pressure induced current corresponding to the magnitude of the pressure, And transmitting to the control circuit; the control circuit applies an electric field corresponding to the pressure induced current to the flatness adjustment layer of the substructure, so that the flatness adjustment layer of the substructure is generated and the corresponding upper substrate subregion Consistent deformation; and
  • the piezoelectric sensing layer of each substructure generates a suction induced current corresponding to the suction according to a suction force received by the first substrate sub-region corresponding to the substructure, and transmits the current to the control power
  • the control circuit controls the falling speed of the first base and the voltage applied to the surface adsorption layer of the substructure according to the suction induced current, so that the surface adsorption layer of each substructure corresponds to the magnitude of the voltage value. deformation.
  • the surface adsorption layer is deformed under energization to form a plurality of suction cups for adsorbing the upper substrate.
  • the piezoelectric sensing layer includes: a first substrate, a first sub-electrode disposed on the first substrate, disposed in the middle of the first sub-electrode a dielectric layer, a second sub-electrode disposed above the intermediate dielectric layer, and a second substrate disposed over the second sub-electrode;
  • the first sub-electrode and the second sub-electrode form a capacitance.
  • the flatness adjustment layer When the first substrate and the second substrate are opposite to each other, the flatness adjustment layer generates a charge after being subjected to pressure, so that the electric quantity of the capacitor changes. And generating a pressure-induced current corresponding to the pressure; when the suction force of the first substrate changes, the pressure of the surface adsorption layer changes, and the resistivity of the surface adsorption layer of the sub-structure changes, the resistance A change in the rate causes a suction induced current corresponding to the suction force to be generated in the capacitor.
  • the present disclosure also provides a method for aligning the box device, including the following steps:
  • the position of the first substrate and/or the second substrate is first adjusted according to the first positional shift amount.
  • the position of the first substrate and/or the second substrate is adjusted a second time according to the second positional shift amount.
  • the manner of obtaining the first position offset of the first substrate relative to the second substrate according to the positional deviation of the corresponding preset mark on the first substrate and the second substrate is:
  • the substrate is offset to obtain a first positional offset of the first substrate relative to the second substrate.
  • the mark is identified by binarizing the area image of the first substrate or the second substrate, and the center of gravity of the mark is recorded as the position of the mark.
  • the average coordinates of all the pixels that are identified as making up the mark are taken as the center of gravity of the mark.
  • the first substrate or the second substrate includes two or more preset marks, and the first position offset of the first substrate relative to the second substrate includes a rotation angle offset and a coordinate offset.
  • the integrated arrangement of the pre-alignment device, the inversion device, the alignment device, and the box device shortens the substrate transportation process; the arrangement of the first adsorption surface and the second adsorption surface is such that the first abutment After the substrate is placed on the box, the substrate of the next box to be placed can be carried without flipping, thereby saving power and shortening the time of the basic box; the arrangement of the pre-alignment device and the alignment device ensures the efficiency of the alignment between the first substrate and the second substrate. Sex.
  • FIG. 1 is a schematic structural view of a box device in an embodiment of the present disclosure
  • FIG. 2 is a flow chart showing a method of aligning an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of detecting a first substrate preset mark according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing detection of a second substrate preset mark according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram showing the position of a first substrate preset mark and a first base station according to an embodiment of the present disclosure
  • FIG. 6 is a schematic view showing the position of a second substrate preset mark and a second base station according to an embodiment of the present disclosure
  • FIG. 7 is a schematic view showing corresponding marks of a first substrate and a second substrate in an embodiment of the present disclosure.
  • the embodiment provides a box device including a first base 40 for carrying a first substrate, a second base 50 for carrying a second substrate, and a pre-alignment device.
  • the first base 40 has a first adsorption surface and a second adsorption surface disposed opposite to each other for adsorbing the first substrate.
  • the pre-alignment device is configured to adjust a position of the first base 40 to pre-align the first substrate and the second substrate.
  • the pair of cassette devices also includes a flipping device, a registration device, and a pair of cartridge devices.
  • the inverting device flips the first substrate by flipping the first base 40.
  • the alignment device is configured to adjust the position of the second base 50 to align the inverted first substrate and the second substrate.
  • a pair of cassette devices are used to control movement of the first substrate such that the first substrate and the second substrate are opposite the cassette.
  • the pre-alignment device, the inversion device, the alignment device, and the setting of the box device improve the working efficiency, ensure the efficiency of the alignment between the first substrate and the second substrate, and shorten the transportation process of the substrate; the first adsorption surface and the first
  • the arrangement of the two adsorption surfaces is such that the substrate on the first base 40 can carry the substrate of the next box to be replaced without flipping, saves the electric energy, shortens the time of the basic box, and sets the pre-alignment device and the alignment device. The efficiency of alignment between the first substrate and the second substrate is ensured.
  • FIG. 1 is a schematic structural diagram of a box device according to a specific embodiment of the present disclosure.
  • the pair of cassette devices includes a base 10, a top plate 20, and four support columns 30 disposed between the base 10 and the top plate 20; in addition, a first parallel base 40 is disposed between the base 10 and the top plate 20 And a second base 50.
  • the pre-alignment device includes:
  • a first driving structure 60 for controlling rotation of the second base 50, the first driving structure being coupled to the second base 50;
  • a second driving structure 70 for controlling movement of the second base 50 along a first direction on a horizontal plane, the second driving structure being coupled to the second base 50;
  • a third driving structure 80 for controlling movement of the second base 50 along a second direction perpendicular to the first direction on a horizontal surface, the third driving structure being coupled to the second base 50;
  • the arrangement of the first driving structure 60 realizes the rotation of the second base 50; the arrangement of the second driving structure 70 realizes the movement of the second base 50 in the first direction on the horizontal plane; the arrangement of the third driving structure 80 realizes the second base Movement of the table 50 along the second direction on the horizontal plane; implementation of the fourth drive structure
  • the movement of the second base 50 in the vertical direction; the movement of the second base 50 in multiple directions is realized, so that the alignment of the first substrate and the second substrate is more precise.
  • the arrangement is such that when the substrate adsorbed to one of the first adsorption surface and the second adsorption surface is pre-aligned with the substrate of the cassette to be reversed before being turned over, the inverted substrate and the substrate with which the cassette is placed are caused.
  • the main reason for the positional deviation between the two is that the substrate is reversed.
  • the position difference between the substrate and the substrate of the pair is not large, which effectively reduces the distance that the substrate needs to be moved when the alignment is performed, thereby saving the substrate from being flipped. After the alignment time, the alignment accuracy is improved.
  • the structure of the alignment device is the same as the structure of the pre-alignment device, which saves cost and saves space.
  • the first driving structure 60 includes:
  • a first transmission structure for driving the rotation of the first central rotating shaft under the driving of the first driving motor.
  • the second driving structure 70 includes:
  • the second moving platform is movably disposed on the first rail
  • a second transmission structure for driving the second moving platform to move along the first rail under the driving of the second driving motor.
  • the third driving structure 80 includes:
  • the third moving platform is movably disposed on the second rail;
  • a third transmission structure for driving the third moving platform to move along the second rail under the driving of the third driving motor
  • the third mobile platform and the second mobile platform are the same mobile platform, and the second rail is disposed to intersect with the first rail.
  • the fourth driving structure includes:
  • the fourth moving platform is movably disposed on the third rail;
  • a fourth transmission structure for driving the fourth moving platform to move along the third rail under the driving of the fourth driving motor.
  • first mobile platform, the second mobile platform, the third mobile platform, and the fourth mobile platform are sequentially stacked from top to bottom (upper and lower here are referred to as references).
  • the first rotating central axis is installed at the center of the first mobile platform, the first rotating central axis is in transitional engagement with the rotating bearing, and the rotating bearing is in transitional engagement with the second moving platform, and the first moving platform is first with respect to the second moving platform.
  • the first moving platform is mounted with a steel ball roller at four corners, and the steel ball roller slides over the stainless steel sliding table above the second moving platform, the first movement
  • the platform is driven by a stepping motor, the coupling and the ball screw transmit power, the ball screw nut is provided with a bearing seat, the stainless steel shaft mounted on the bearing seat is connected to the connecting rod, and the other end of the connecting rod is connected with stainless steel.
  • the shaft mounting bearing is fixed to the first moving platform, and the fixed ends of the connecting rod respectively form a moving hinge point and a rotating hinge point, and the second moving platform and the third moving platform share a moving platform, a stepping motor and a coupling shaft a ball screw, and a linear slide of the second and third directions of the moving platform, wherein the linear slide provides a guiding direction of the moving platform.
  • the fourth moving platform comprises a lifting bottom plate and a lifting lower platform, and has a power mechanism and a driven mechanism between the lifting bottom plate and the lifting lower platform, wherein the power mechanism is manually adjusted by the ball screw and the linear sliding rail, the The linear slide rail is mounted on the lower lifting platform, the slider is connected to the moving mechanism, and the moving mechanism simultaneously connects the ball screw nut, the moving mechanism further comprises two sets of rotating shafts, and the rotating shaft ends Installing a rotating steel wheel, the rotating steel wheel and the lifting mechanism of the driven mechanism
  • the inclined slanting plate is mounted on the lifting bottom plate, the lifting bottom plate is further mounted with four guiding columns, and the four guiding columns are matched with the four guiding sleeves to be mounted on the lifting platform.
  • the guide post guide bushing guides during its operation.
  • the inverting device includes a tilting shaft, a driven gear that drives the turning shaft, a driving gear, and a geared motor that drives the driving gear to rotate.
  • the buffer limit structure connected to the inverting device is further configured to provide effective buffer protection when the first base 40 is turned over.
  • a dynamic sensing adjustment structure and a control circuit are also included;
  • the dynamic sensing adjustment structure is fixed on the first base 40 and has a plurality of substructures, each substructure corresponding to a sub-region position of the first substrate; each sub-structure includes from top to bottom in order The flatness adjustment layer, the piezoelectric sensing layer, and the surface adsorption layer.
  • the piezoelectric sensing layer of each substructure When the first substrate and the second substrate are opposite to each other, the piezoelectric sensing layer of each substructure generates a pressure induced current corresponding to the magnitude of the pressure according to a pressure applied by the first substrate sub-region corresponding to the substructure, and Transmitting to the control circuit; the control circuit applies an electric field corresponding to the pressure induced current to the flatness adjustment layer of the substructure, so that the flatness adjustment layer of the substructure is generated corresponding to the corresponding upper substrate subregion The deformation of the anastomosis.
  • the piezoelectric sensing layer of each substructure generates a suction induced current corresponding to the suction according to a suction force received by the first substrate sub-region corresponding to the substructure, and is transmitted to the control circuit; the control circuit According to the suction induced current, the falling speed of the first base 40 and the voltage applied to the surface adsorption layer of the substructure are controlled such that the surface adsorption layer of each substructure undergoes deformation corresponding to the magnitude of the voltage value.
  • the surface adsorption layer is deformed under energization to form a plurality of suction cups for adsorbing the upper substrate.
  • the piezoelectric sensing layer includes: a first substrate, a first sub-electrode disposed on the first substrate, disposed above the first sub-electrode An intermediate dielectric layer, a second sub-electrode disposed above the intermediate dielectric layer, and a second substrate disposed over the second sub-electrode.
  • the first sub-electrode and the second sub-electrode form a capacitance, and when the first substrate and the second substrate are paired with the box, the flatness adjustment layer is subjected to pressure to generate an electric charge, so that the electric quantity of the capacitor a change occurs to generate a pressure induced current corresponding to the pressure; when the suction force of the first substrate changes, the pressure of the surface adsorption layer changes, and the resistivity of the surface adsorption layer of the substructure changes. A change in resistivity causes a suction induced current corresponding to the suction force to be generated in the capacitor.
  • the piezoelectric sensing layer of each sub-structure is generated according to the pressure applied by the first substrate sub-region corresponding to the sub-structure.
  • a pressure induced current corresponding to the magnitude of the pressure is transmitted to the control circuit;
  • the control circuit applies an electric field corresponding to the pressure induced current to the flatness adjusting layer of the substructure, so that the flatness adjustment layer of the substructure Producing a deformation that coincides with the corresponding upper substrate sub-region, achieving compensation for the flatness of the first substrate, eliminating uneven force caused by the difference in height of the surface of the first substrate; and, at the same time, said
  • the piezoelectric sensing layer generates a suction induced current corresponding to the suction according to the suction force received by the first substrate sub-region corresponding to the substructure, and transmits the current to the control circuit; and the control circuit induces a current according to the suction , controlling the falling speed of the upper machine and the voltage
  • the box device further comprises an electrical component box, a vacuum pump and a pneumatic control component and an upper bracket.
  • the upper bracket is mounted on the matching chamber, and a three primary color warning light is arranged on the upper bracket, and the side pillar is mounted thereon.
  • the safety grating also has a man-machine interface fixed on the upper bracket and an air purifying device placed at the top of the upper bracket.
  • the present disclosure further provides a method for aligning the box device, including the following steps:
  • the position of the first substrate and/or the second substrate is first adjusted according to the first positional shift amount.
  • the offset of the first substrate relative to the second substrate is detected by the above steps, and the alignment accuracy is improved by adjustment.
  • the position of the first substrate and/or the second substrate is adjusted a second time according to the second positional shift amount.
  • the first adjustment is a coarse adjustment
  • the second adjustment is a fine adjustment
  • the adjustment of the two adjustments further improves the alignment accuracy
  • the manner of obtaining the first position offset of the first substrate relative to the second substrate according to the positional deviation of the corresponding preset mark on the first substrate and the second substrate is:
  • the substrate is offset to obtain a first positional offset of the first substrate relative to the second substrate.
  • a CCD (Charge Coupled Device) lens is disposed above the first base 40 or the second base 50, and the image can be taken in one time according to the size of the area covered by the selected CCD lens.
  • the CCD lens of the entire detection screen of the substrate to be inspected (the corresponding first substrate or the second substrate) or the scanning CCD lens generally has four CCD lenses at positions where the four corners of the substrate are to be detected.
  • the CCD lens captures an image of the substrate and is connected to the image acquisition unit and the image processing unit.
  • the image processing unit is, for example, a computer for recognizing the image captured by the CCD lens, and identifying the mark on the captured image according to the pre-stored mark image.
  • the PLC Process Control Controller
  • the PLC Process Control Circuit
  • the alignment device is controlled to operate according to this amount to adjust the first substrate or the second substrate to a suitable position.
  • the first submount 40 or the second submount 50 is provided with an alignment LED light source under the substrate to facilitate the CCD lens to capture an image.
  • the alignment method further includes:
  • the mark is identified by binarizing the area image of the first substrate or the second substrate, and the center of gravity of the mark is recorded as the position of the mark.
  • the average coordinates of all the pixels that are identified as making up the mark are taken as the center of gravity of the mark.
  • the first substrate or the second substrate includes two or more preset marks, and the first position offset of the first substrate relative to the second substrate includes a rotation angle offset and a coordinate offset.
  • the following focuses on the method of detecting the offset of the first position.
  • the identification mark is realized by binarizing the area image of the first substrate or the second substrate. Firstly, the image of the substrate area intercepted by the camera is binarized to obtain a binarized image.
  • the binarized image is that the gray value of the pixel on the image is only 0 or 255, and a gray threshold is first set during processing.
  • the pixels are determined as the marked pixel, and the gray value is represented by 255; when the pixel in the captured mark is When the gray value is smaller than the gray threshold, these pixels are determined as pixels other than the mark, and the gray value is represented by 0, so that all the pixels constituting one contour can be obtained, and the shape and size of the stored reference mark are performed. By comparison, it can be determined whether the contour is a mark.
  • the stored fiducial mark can be obtained by taking an image of the substrate containing the mark, and extracting the shape and size of the fiducial mark by the gradation threshold to facilitate comparison. If size is used as the comparison standard, the shooting parameters should be consistent with the shooting parameters when aligning in the box.
  • the position of the mark can locate the center of gravity of the mark, and the average coordinate of all the pixels constituting one mark can generally be taken as the center of gravity of the mark.
  • the first substrate or the second substrate is scanned separately, and the first substrate offset and the second substrate offset are obtained according to the positional deviation between the stored reference mark and the corresponding actual mark, thereby obtaining the first substrate relative The first positional offset of the second substrate.
  • the first substrate or the second substrate includes two or more corresponding marks
  • the first position offset of the first substrate relative to the second substrate includes both a rotation angle and a coordinate offset
  • the camera In the case where the upper substrate mark is not recognized in the initial position, the camera (Camera) automatically moves to find the mark.
  • the difference between the coordinates recognized by the first substrate preset mark and the initial position is as follows:
  • the coordinates of the identified first substrate preset mark are:
  • the preset reference coordinates of the first substrate related to Camera 2 to 4 are:
  • the table on which the second substrate is placed is moved and the lower mark is found.
  • the first substrate preset mark identified in the front, and the corresponding Camra position is (csx1+cx1, csy1+cy1)
  • the coordinates of the second substrate preset mark are:
  • the first substrate preset mark coordinates of (4) to (7) are respectively expressed as:
  • the second substrate preset mark coordinates of (10) to (13) are respectively expressed as
  • FIGS. 5 and 6 show a preset mark of the first substrate, and FIG. 6 shows a preset of the second substrate. Set the tag.
  • the center of gravity of the triangles 1, 2, 3 is:
  • the center of gravity of the triangles 1, 2, 4 is:
  • the slope of the straight line l2 obtained by finding the triangles connected by the markers 1, 3, and 4 and the center of gravity of the triangles connected by the markers 2, 3, and 4 is:
  • the center of gravity of the first substrate is the intersection of the straight lines l1 and l2, so the coordinates of the center of gravity are:
  • the portion of the second substrate is calculated similarly to the above (24) to (33).
  • the second substrate preset mark coordinates perform coordinate system conversion.
  • the position of the second base when the preset mark on the second substrate is detected is obtained according to the formula (8) (tx1, ty1), and thus:
  • rotation angle
  • x rotation angle
  • y coordinates before rotation
  • TmpX coordinates after rotation
  • TmpX1 cos(Rdat) ⁇ Lmx1+sin(Rdat) ⁇ Lmy1 (48)
  • TmpY1 -sin(Rdat) ⁇ Lmx1+cos(Rdat) ⁇ Lmy1 (49)
  • TmpX1 TmpX1+tx1 (50)
  • TmpX2 cos(Rdat) ⁇ Lmx2+sin(Rdat) ⁇ Lmy2 (56)
  • TmpY2 -sin(Rdat) ⁇ Lmx2+cos(Rdat) ⁇ Lmy2 (57)
  • TmpX3 cos(Rdat) ⁇ Lmx3+sin(Rdat) ⁇ Lmy3 (64)
  • TmpY3 -sin(Rdat) ⁇ Lmx3+cos(Rdat) ⁇ Lmy3 (65)
  • TmpX4 cos(Rdat) ⁇ Lmx4+sin(Rdat) ⁇ Lmy4 (72)
  • TmpY4 -sin(Rdat) ⁇ Lmx4+cos(Rdat) ⁇ Lmy4 (73)
  • the offset of each mark is averaged and the coordinate correction amount of the XY axis is obtained.
  • the identification is also performed by binarization, and the center of gravity is used as the position of the mark, thereby obtaining the positional shift. , will not repeat them here.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

一种对盒设备,包括用于承载第一基板的第一基台(40)、用于承载第二基板的第二基台(50),以及预对位装置。第一基台(40)具有相对设置的、用于吸附第一基板的第一吸附面和第二吸附面。预对位装置用于调整第一基台(40)的位置以使得第一基板与第二基板进行预对位。对盒设备还包括:通过翻转第一基台(40)以翻转第一基板的翻转装置;用于调整第二基台(50)的位置以使得翻转后的第一基板和第二基板进行对位的对位装置;用于控制第一基板移动以使得第一基板和第二基板对盒的对盒装置。

Description

一种对盒设备、对位方法
相关申请的交叉引用
本申请主张在2015年5月22日在中国提交的中国专利申请号No.201510268313.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及液晶制作工艺技术领域,尤其涉及一种对盒设备、对位方法。
背景技术
随着液晶显示技术的进步,以及液晶显示装置具有重量轻且体积小等优点,液晶显示装置已广泛地应用于多种电子产品中。液晶显示装置包括液晶显示面板与背光模组,其中液晶显示面板是由两个基板以及位于两个基板之间的液晶层所构成。此时需要将两个基板相互对盒,形成液晶盒以容纳液晶分子。在对盒过程中需要通过翻转装置将其中一个基板翻面,之后与另一基板相对盒。
翻转装置的翻转平台先按照预定方向将基板翻转,并在基板被机械手臂取走后,需要将翻转平台沿着预定方向的反方向翻转180度,以将翻转平台的吸附面归位,来继续吸附并翻转其它基板。然而,翻转装置的工作流程延长了基板在对盒的整个流程中的时间,降低了生产效率。
发明内容
为了解决上述技术问题,本公开提供一种对盒设备、对位方法,提高了工作效率、保证了第一基板和第二基板对位的高效性。
为了达到上述目的,本公开采用的技术方案是:一种对盒设备,包括用于承载第一基板的第一基台和用于承载第二基板的第二基台,
所述第一基台具有相对设置的、用于吸附所述第一基板的第一吸附面和第二吸附面;
用于调整所述第一基台的位置、以使得所述第一基板与第二基板进行预 对位的预对位装置;
所述对盒设备还包括:通过翻转所述第一基台以翻转所述第一基板的翻转装置;
用于调整所述第二基台的位置以使得翻转后的第一基板和所述第二基板进行对位的对位装置;
用于控制所述第一基板移动以使得所述第一基板和所述第二基板对盒的对盒装置。
进一步的,所述预对位装置包括:
用于控制所述第一基台旋转的第一驱动结构,所述第一驱动结构与所述第一基台连接;
用于控制所述第一基台沿着水平面上的第一方向移动的第二驱动结构,所述第二驱动结构与所述第一基台连接;
用于控制所述第一基台沿着水平面上的与所述第一方向垂直的第二方向移动的第三驱动结构,所述第三驱动结构与所述第一基台连接;
用于控制所述第一基台在竖直方向移动的第四驱动结构,所述第四驱动结构与所述第一基台连接。
进一步的,所述第一驱动结构包括:
第一移动平台,与所述第一基台连接;
第一旋转中心轴,通过轴承与所述第一移动平台连接;
第一驱动电机;
用于在所述第一驱动电机的驱动下、带动所述第一旋转中心轴旋转的第一传动结构。
进一步的,所述第二驱动结构包括:
第二移动平台,与所述第一基台连接;
沿所述第一方向设置的第一导轨,所述第二移动平台可移动的设置于所述第一导轨上;
第二驱动电机;
用于在所述第二驱动电机的驱动下、带动所述第二移动平台沿着所述第一导轨移动的第二传动结构。
进一步的,所述第三驱动结构包括:
第三移动平台,与所述第一基台连接;
沿所述第二方向设置的第二导轨,所述第三移动平台可移动的设置于所述第二导轨上;
第三驱动电机;
用于在所述第三驱动电机的驱动下、带动所述第三移动平台沿着所述第二导轨移动的第三传动结构;
其中,所述第三移动平台与所述第二移动平台为同一移动平台,所述第二导轨与所述第一导轨交叉设置。
进一步的,所述第四驱动结构包括:
第四移动平台,与所述第一基台连接;
沿竖直方向设置的第三导轨,所述第四移动平台可移动的设置于所述第三导轨上;
第四驱动电机;
用于在所述第四驱动电机的驱动下、带动所述第四移动平台沿着所述第三导轨移动的第四传动结构。
进一步的,所述对位装置的结构与所述预对位装置的结构相同。
进一步的,还包括与所述翻转装置连接的缓冲限位结构。
进一步的,还包括动态感知调节结构和控制电路;
所述动态感知调节结构固定于所述第一基台上,具有若干个子结构,每一个子结构与所述第一基板的一个子区域位置相对应;每一个子结构从上至下依次包括平整度调节层、压电感应层和表面吸附层;
在第一基板和第二基板对盒时,每一个子结构的所述压电感应层、根据本子结构对应的第一基板子区域施加的压力、产生与所述压力大小相应的压力感应电流,并传送给所述控制电路;所述控制电路通过对该子结构的平整度调节层施加与所述压力感应电流相应的电场,使得该子结构的平整度调节层产生与对应的上基板子区域相吻合的形变;以及
每一个子结构的所述压电感应层,根据本子结构对应的第一基板子区域所受到的吸力,产生与所述吸力相应的吸力感应电流,并传送给所述控制电 路;所述控制电路根据所述吸力感应电流,控制第一基台的下降速度和施加到该子结构的表面吸附层的电压,使得每一子结构的表面吸附层发生与电压值大小相应的形变。
进一步的,所述表面吸附层在通电情况下产生形变,形成多个吸附上基板的吸盘。
进一步的,对于每一子结构,所述压电感应层包括:第一衬底基板,设置在所述第一衬底基板上的第一子电极,设置在所述第一子电极上方的中间介质层,设置在所述中间介质层上方的第二子电极,以及设置在所述第二子电极上方的第二衬底基板;
其中,所述第一子电极与所述第二子电极形成电容,在第一基板和第二基板对盒时,所述平整度调节层受到压力后产生电荷,使得所述电容的电量发生变化,从而产生与所述压力相应的压力感应电流;所述第一基板受到的吸力发生变化时,表面吸附层受到的压力发生变化,此时该子结构的表面吸附层的电阻率发生变化,电阻率的变化会使所述电容中产生与所述吸力相应的吸力感应电流。
本公开还提供一种采用所述的对盒设备进行对位的方法,包括以下步骤:
分别对第一基板和第二基板进行预设标记的检测;
根据所述第一基板和第二基板上对应的预设标记的位置偏差得到第一基板相对第二基板的第一位置偏移量;
根据所述第一位置偏移量对第一基板和/或第二基板的位置进行第一次调节。
进一步的,还包括:
分别对第一基板和第二基板进行预设标记检测;
根据所述第一基板和第二基板上对应的预设标记的位置偏差得到第一基板相对第二基板的第二位置偏移量;
根据所述第二位置偏移量对所述第一基板和/或第二基板的位置进行第二次调节。
进一步的,根据所述第一基板和第二基板上对应的预设标记的位置偏差得到第一基板相对第二基板的第一位置偏移量的方式为:
分别扫描第一基板或第二基板,根据存储的基准标记与对应的、所述第一基板或第二基板上的预设标记之间的位置偏差,求得第一基板偏移量和第二基板偏移量,从而得到第一基板相对第二基板的第一位置偏移量。
进一步的,还包括:
通过对第一基板或第二基板的区域图像进行二值化处理来识别标记,并将该标记的重心记为该标记的位置。
进一步的,还包括:
将识别为组成该标记的所有像素的平均坐标作为该标记的重心。
进一步的,还包括:
所述第一基板或第二基板包括两个以上的预设标记,第一基板相对第二基板的第一位置偏移量包括旋转角度偏移量和坐标偏移量。
本公开的有益效果是:预对位装置、翻转装置、对位装置、对盒装置的集成设置,缩短了基板运输流程;第一吸附面和第二吸附面的设置使得第一基台上的基板对盒后无需翻转即可承载下一个待对盒的基板,节省电能,缩短基本对盒的时间;预对位装置和对位装置的设置保证了第一基板和第二基板对位的高效性。
附图说明
图1表示本公开实施例中对盒设备的结构示意图;
图2表示本公开实施例对位方法流程图;
图3表示本公开实施例第一基板预设标记检测示意图;
图4表示本公开实施例第二基板预设标记检测示意图;
图5表示本公开实施例第一基板预设标记与第一基台的位置示意图;
图6表示本公开实施例第二基板预设标记与第二基台的位置示意图;
图7表示本公开实施例的第一基板与第二基板对应标记的示意图。
具体实施方式
以下结合附图对本公开的特征和原理进行详细说明,所举实施例仅用于保护本公开,并非以此限定本公开的保护范围。
如图1所示,本实施例提供一种对盒设备,包括用于承载第一基板的第一基台40、用于承载第二基板的第二基台50和预对位装置。所述第一基台40具有相对设置的、用于吸附所述第一基板的第一吸附面和第二吸附面。预对位装置用于调整所述第一基台40的位置,以使得所述第一基板与第二基板进行预对位。
所述对盒设备还包括翻转装置、对位装置和对盒装置。翻转装置通过翻转所述第一基台40以翻转所述第一基板。对位装置用于调整所述第二基台50的位置以使得翻转后的第一基板和所述第二基板进行对位。对盒装置用于控制所述第一基板移动以使得所述第一基板和所述第二基板对盒。
预对位装置、翻转装置、对位装置、对盒装置的设置,提高了工作效率、保证了第一基板和第二基板对位的高效性,缩短了基板运输流程;第一吸附面和第二吸附面的设置使得第一基台40上的基板对盒后无需翻转即可承载下一个待对盒的基板,节省电能,缩短基本对盒的时间;预对位装置和对位装置的设置保证了第一基板和第二基板对位的高效性。
图1为本公开具体实施例对盒设备的结构示意图。所述对盒设备包括底座10、顶板20以及设置于底座10与顶板20之间的四个支撑柱30;另外,在底座10与顶板20之间还设置有相对且平行的第一基台40和第二基台50。
可选的,所述预对位装置包括:
用于控制所述第二基台50旋转的第一驱动结构60,所述第一驱动结构与所述第二基台50连接;
用于控制所述第二基台50沿着水平面上的第一方向移动的第二驱动结构70,所述第二驱动结构与所述第二基台50连接;
用于控制所述第二基台50沿着水平面上的与所述第一方向垂直的第二方向移动的第三驱动结构80,所述第三驱动结构与所述第二基台50连接;
用于控制所述第二基台50在竖直方向移动的第四驱动结构90,所述第四驱动结构与所述第二基台50连接。
第一驱动结构60的设置实现第二基台50的旋转;第二驱动结构70的设置实现第二基台50沿着水平面上的第一方向移动;第三驱动结构80的设置实现第二基台50沿着水平面上的第二方向的移动;第四驱动结构的设置实现 第二基台50在竖直方向的移动;实现第二基台50多方向的移动,使得第一基板和第二基板的对位更加精确。
如此设置可以使得当吸附于第一吸附面和第二吸附面中一个吸附面的基板在翻转前与其将要对盒的对盒基板预对位,这样造成翻转后的基板和与其进行对盒的基板之间的位置偏差的主要原因为基板翻转形成的,此时基板和与其对盒的基板之间的位置偏差不大,有效的减少了基板进行对位时需要移动的距离,节省了基板在翻转后进行对位的时间,且提高了对位精确性。且由于基板位置与对盒基板的位置均是相同,对之后的基板进行对盒时,无需在对之后的基板与其对盒基板进行预对位,从而大大提高了基板的对位效率,进而提高产能。
本实施例中,所述对位装置的结构与所述预对位装置的结构相同,节省成本、节省空间。
可选的,所述第一驱动结构60包括:
第一移动平台,与所述第二基台50连接;
第一旋转中心轴,通过轴承与所述第二基台50连接;
第一驱动电机;
用于在所述第一驱动电机的驱动下、带动所述第一旋转中心轴旋转的第一传动结构。
可选的,所述第二驱动结构70包括:
第二移动平台,与所述第二基台50连接;
沿所述第一方向设置的第一导轨,所述第二移动平台可移动的设置于所述第一导轨上;
第二驱动电机;
用于在所述第二驱动电机的驱动下、带动所述第二移动平台沿着所述第一导轨移动的第二传动结构。
可选的,所述第三驱动结构80包括:
第三移动平台,与所述第二基台50连接;
沿所述第二方向设置的第二导轨,所述第三移动平台可移动的设置于所述第二导轨上;
第三驱动电机;
用于在所述第三驱动电机的驱动下、带动所述第三移动平台沿着所述第二导轨移动的第三传动结构;
其中,所述第三移动平台与所述第二移动平台为同一移动平台,所述第二导轨与所述第一导轨交叉设置。
可选的,所述第四驱动结构包括:
第四移动平台,与所述第二基台50连接;
沿竖直方向设置的第三导轨,所述第四移动平台可移动的设置于所述第三导轨上;
第四驱动电机;
用于在所述第四驱动电机的驱动下、带动所述第四移动平台沿着所述第三导轨移动的第四传动结构。
具体的,第一移动平台、第二移动平台、第三移动平台和第四移动平台从上到下(此处的上、下以图示为参考)依次层叠布置。
其中在所述第一移动平台中心安装第一旋转中心轴,第一旋转中心轴与旋转轴承过渡配合,旋转轴承与第二移动平台过渡配合,第一移动平台相对于第二移动平台在第一方向运动,同时为保证第一移动平台的平稳性,所述的第一移动平台四角安装有钢珠滚轮,所述的钢珠滚轮在第二移动平台上面不锈钢滑台上面滑动,所述的第一移动平台由步进电机驱动,联轴器、滚珠丝杆传递动力,滚珠丝杆螺帽装有轴承座,安装于所述轴承座的不锈钢轴连接于连杆,所述连杆另一端连接的不锈钢轴安装轴承固定于第一移动平台,所述的连杆两固定端分别形成移动铰点和旋转铰点,所述第二移动平台和第三移动平台共用一个移动平台、步进电机、联轴器、滚珠丝杆,和移动平台的第二方向和第三方向的线性滑轨,其中线性滑轨提供移动平台导向方向。
所述第四移动平台包括升降底板和升降下平台,在升降底板和升降下平台之间具有动力机构和从动机构,所述的动力机构由人工调节滚珠丝杆,线性滑轨导向,所述的线性滑轨安装于升降下平台,滑块连接于移动机构,此移动机构同时连接所述的滚珠丝杆螺帽,所述的移动机构还包含两组转动轴,所述的转动轴两端安装转动钢轮,所述的转动钢轮与从动机构的升降斜板的 斜边接触,所述的升降斜板安装于所述的升降底板,所述的升降底板还安装有四根导柱,另有与四根导柱配合四件导套安装在升降下平台,所述的导柱导套在其动作过程中起导向作用。
本实施例中,所述翻转装置包括翻转轴,驱动翻转轴转动的从动齿轮、主动齿轮和驱动主动齿轮转动的齿轮减速电机。
可选的,还包括与所述翻转装置连接的缓冲限位结构,在第一基台40进行翻转时起到有效的缓冲保护作用。
可选的,还包括动态感知调节结构和控制电路;
所述动态感知调节结构固定于所述第一基台40上,具有若干个子结构,每一个子结构与所述第一基板的一个子区域位置相对应;每一个子结构从上至下依次包括平整度调节层、压电感应层和表面吸附层。
在第一基板和第二基板对盒时,每一个子结构的所述压电感应层根据本子结构对应的第一基板子区域施加的压力、产生与所述压力大小相应的压力感应电流,并传送给所述控制电路;所述控制电路通过对该子结构的平整度调节层施加与所述压力感应电流相应的电场,使得该子结构的平整度调节层产生与对应的上基板子区域相吻合的形变。
每一个子结构的所述压电感应层,根据本子结构对应的第一基板子区域所受到的吸力,产生与所述吸力相应的吸力感应电流,并传送给所述控制电路;所述控制电路根据所述吸力感应电流,控制第一基台40的下降速度和施加到该子结构的表面吸附层的电压,使得每一子结构的表面吸附层发生与电压值大小相应的形变。
可选的,所述表面吸附层在通电情况下产生形变,形成多个吸附上基板的吸盘。
可选的,对于每一子结构,所述压电感应层包括:第一衬底基板,设置在所述第一衬底基板上的第一子电极,设置在所述第一子电极上方的中间介质层,设置在所述中间介质层上方的第二子电极,以及设置在所述第二子电极上方的第二衬底基板。
其中,所述第一子电极与所述第二子电极形成电容,在第一基板和第二基板对盒时,所述平整度调节层受到压力后产生电荷,使得所述电容的电量 发生变化,从而产生与所述压力相应的压力感应电流;所述第一基板受到的吸力发生变化时,表面吸附层受到的压力发生变化,此时该子结构的表面吸附层的电阻率发生变化,电阻率的变化会使所述电容中产生与所述吸力相应的吸力感应电流。
所述真空对盒装置中,在第一基板和第二基板对盒时,每一个子结构的所述压电感应层,根据本子结构对应的第一基板子区域施加的压力,产生与所述压力大小相应的压力感应电流,并传送给所述控制电路;所述控制电路通过对该子结构的平整度调节层施加与所述压力感应电流相应的电场,使得该子结构的平整度调节层产生与对应的上基板子区域相吻合的形变,实现对第一基板平整度的补偿,消除了由第一基板表面的高度差所引起的受力不均;同时,每一个子结构的所述压电感应层,根据本子结构对应的第一基板子区域所受到的吸力,产生与所述吸力相应的吸力感应电流,并传送给所述控制电路;所述控制电路根据与所述吸力感应电流,控制上机台的下降速度和施加到该子结构的表面吸附层的电压,使得每一子结构的表面吸附层发生与电压值大小相应的形变,使得上基板受力均匀,进一步提高对盒的精确度和对盒质量。
如图1所示,对盒设备还包括电器元件箱、真空泵及气动控制元件及上支架,上支架安装于对合腔室上,在上支架上设有三基色报警灯,其边柱上安装有安全光栅,上支架上还固定有人机界面以及置于上支架顶端的空气净化装置。
如图2所示,本公开还提供一种采用所述的对盒设备进行对位的方法,包括以下步骤:
分别对第一基板和第二基板进行预设标记的检测;
根据所述第一基板和第二基板上对应的预设标记的位置偏差得到第一基板相对第二基板的第一位置偏移量;
根据所述第一位置偏移量对第一基板和/或第二基板的位置进行第一次调节。
通过上述步骤检测第一基板相对于第二基板的偏移量,并通过调节提高对位精度。
进一步的,还包括:
分别对第一基板和第二基板进行预设标记检测;
根据所述第一基板和第二基板上对应的预设标记的位置偏差得到第一基板相对第二基板的第二位置偏移量;
根据所述第二位置偏移量对所述第一基板和/或第二基板的位置进行第二次调节。
本实施例中,所述第一次调节为粗调,第二次调节为微调,两次调节的配合进一步提高对位精度。
进一步的,根据所述第一基板和第二基板上对应的预设标记的位置偏差得到第一基板相对第二基板的第一位置偏移量的方式为:
分别扫描第一基板或第二基板,根据存储的基准标记与对应的、所述第一基板或第二基板上的预设标记之间的位置偏差,求得第一基板偏移量和第二基板偏移量,从而得到第一基板相对第二基板的第一位置偏移量。
在进行对位时,第一基台40或第二基台50的上方均设有CCD(电荷耦合元件)镜头,根据选择的CCD镜头所覆盖的面积的大小,可以采用一次性就可以拍摄出待检测基板(相应的第一基板或第二基板)的整个检测画面的CCD镜头,或者采用扫描式的CCD镜头,一般会在正对待检测基板四个角的位置设置四个CCD镜头。CCD镜头拍摄基板的图像,并连接到图像采集单元和图像处理单元,图像处理单元例如为计算机,用于对CCD镜头拍摄的图像进行识别处理,根据预先存储的标记图像识别采集的图像上的标记,从而得到标记在图像上的位置,PLC(可编程逻辑控制器)将标记的位置与基准位置进行比较,得到第一基板或第二基板需要移动的量并发送给运动控制器,运动控制器根据这个量控制对位装置工作,从而将第一基板或第二基板调整到合适的位置。第一基台40或第二基台50在基板之下均设置有对位LED光源,以便于CCD镜头拍摄图像。
进一步的,对位方法还包括:
通过对第一基板或第二基板的区域图像进行二值化处理来识别标记,并将该标记的重心记为该标记的位置。
进一步的,还包括:
将识别为组成该标记的所有像素的平均坐标作为该标记的重心。
进一步的,还包括:
所述第一基板或第二基板包括两个以上的预设标记,第一基板相对第二基板的第一位置偏移量包括旋转角度偏移量和坐标偏移量。
下面着重介绍检测第一位置偏移量的方法。
识别标记是通过对第一基板或第二基板的区域图像进行二值化处理来实现的。首先对摄像头截取的基板区域图像进行二值化处理,得到二值化图像,二值化图像就是图像上的像素点的灰度值只为0或255,处理时首先设置一个灰度阀值,当截取的标记图像中的像素点的灰度值大于或等于灰度阀值时,这些像素点被判定为标记像素点,其灰度值用255表示;当截取的标记图像中的像素点的灰度值小于灰度阀值时,这些像素点被判定为标记以外的像素点,灰度值用0表示,这样就可以得到组成一个轮廓的所有像素,与存储的基准标记的形状和大小进行比对,就可以判定该轮廓是否为标记。
存储的基准标记可以这样获得:拍摄含有标记的基板图像,通过灰度阈值提取基准标记的形状和大小,以便于作为比较基准。如使用大小作为比较标准,那么拍摄参数应当与在对盒机内对位时的拍摄参数一致。
标记的位置可定位标记的重心所在位置,一般可将组成一个标记的所有像素的平均坐标作为该标记的重心。
一般,分别扫描第一基板或第二基板,根据存储的基准标记与对应的实际标记之间的位置偏差,求得第一基板偏移量和第二基板偏移量,从而得到第一基板相对第二基板的第一位置偏移量。
可选的,第一基板或第二基板包括两个以上的对应标记,第一基板相对第二基板的第一位置偏移量既包括旋转角度,也包括坐标偏移量。
下面举例介绍一种求第一位置偏移量的方法:
初期位置时上基板标记未能识别出的情况下,摄像头(Camera)会自动移动寻找标记。
这时,如图3所示,第一基板预设标记识别出的坐标与初期位置的差以:
(cx1,cy1)      (1)
来表示。并且画像处理识别出的第一基板预设标记坐标与视野中心的差 以:
(Ugx1,Ugy1)      (2)
来表示。
Camera的初期位置以(csx1,csy1)       (3)
来表示的话,识别出的第一基板预设标记的坐标即为:
(csx1+cx1+Ugx1,csy1+cy1-Ugy1)       (4)
以上为第一摄像头Cameral相关坐标,同样的,Camera2~4相关的第一基板预设标记坐标分别为:
(csx2+cx2+Ugx2,csy2+cy2-Ugy2)      (5)
(csx3+cx3+Ugx3,csy3+cy3-Ugy3)       (6)
(csx4+cx4+Ugx4,csy4+cy4-Ugy4)       (7)
来表示。
初期位置时第二基板标记未检知出的情况下,安置第二基板的平台(Table)移动并找寻下标记。
此时,如图4所示,第二基板预设标记识别出的坐标与初期位置的差以
(tx1,ty1)         (8)
来表示。另外,画像处理识别出的第二基板预设标记坐标与视野中心的实际差值以
(Lgx1,Lgy1)        (9)
来表示。
前面识别出的第一基板预设标记,所对应的Camra位置为(csx1+cx1,csy1+cy1)
根据这个坐标,第二基板预设标记的坐标为:
(csx1+cx1-tx1+Lgx1,csy1+cy1-ty1-Lgy1)       (10)
上述为Camera1的相关坐标,以此类推Camera2~4相关的下基板标记坐标为:
(csx2+cx2-tx2+Lgx2,csy2+cy2-ty2-Lgy2)        (11)
(csx3+cx3-tx3+Lgx3,csy3+cy3-ty3-Lgy3)        (12)
(csx4+cx4-tx4+Lgx4,csy4+cy4-ty4-Lgy4)        (13)
来表示。
(4)~(7)的第一基板预设标记坐标分别表示为:
(Umx1,Umy1)             (14)
(Umx2,Umy2)             (15)
(Umx3,Umy3)             (16)
(Umx4,Umy4)             (17)
(10)~(13)的第二基板预设标记坐标分别表示为
(Lmx1,Lmy1)               (18)
(Lmx2,Lmy2)               (19)
(Lmx3,Lmy3)             (20)
(Lmx4,Lmy4)               (21)
如此,第一基台或第二基台中心到相应的各个预设标记的位置关系如图5、6所示,其中图5表示第一基板的预设标记,图6表示第二基板的预设标记。
三角形1,2,3的重心为:
Figure PCTCN2016082378-appb-000001
三角形1,2,4的重心为:
Figure PCTCN2016082378-appb-000002
通过上述两式(22)、(23)求得,2个三角形的重心所连成的直线A1的斜率为:
Figure PCTCN2016082378-appb-000003
同样的,求得直线l1的Y切片为:
Figure PCTCN2016082378-appb-000004
求得标记1,3,4连起来所得的三角形和标记2,3,4连起来所得的三角形的重心连成的直线l2的斜率为:
Figure PCTCN2016082378-appb-000005
再求得上述直线l2的Y切片为:
Figure PCTCN2016082378-appb-000006
第一基板的重心是直线l1和l2的交点,因此重心的坐标为:
Figure PCTCN2016082378-appb-000007
Ugy=Ugx×Ulineagn1+Useppen1            (29)
重心与各标记连成的直线的斜率为:
Figure PCTCN2016082378-appb-000008
Figure PCTCN2016082378-appb-000009
Figure PCTCN2016082378-appb-000010
Figure PCTCN2016082378-appb-000011
与上述(24)~(33)类似对第二基板的部分进行计算。
Figure PCTCN2016082378-appb-000012
Figure PCTCN2016082378-appb-000013
Figure PCTCN2016082378-appb-000014
Figure PCTCN2016082378-appb-000015
Figure PCTCN2016082378-appb-000016
Lgy=Lgx×Llineagn1+Lseppen1             (39)
Figure PCTCN2016082378-appb-000017
Figure PCTCN2016082378-appb-000018
Figure PCTCN2016082378-appb-000019
Figure PCTCN2016082378-appb-000020
此时第一基板和第二基板的预设标记的状态如图7所示,可以求得旋 转角度的偏移量。
Figure PCTCN2016082378-appb-000021
然后可以求得旋转补正后第二基板预设标记1的坐标。
首先,第二基板预设标记坐标进行坐标系转换。第二基板上的预设标记检出时的第二基台的位置根据(8)式得(tx1,ty1),因此有:
Lmx1=Lmx1-tx1        (45)
Lmy1=Lmy1-ty1        (46)
回转后的坐标系行列为:
Figure PCTCN2016082378-appb-000022
其中,Θ:回转角度,x,y:回转前的坐标,TmpX,TmpY:回转后的坐标,据此得到:
TmpX1=cos(Rdat)×Lmx1+sin(Rdat)×Lmy1     (48)
TmpY1=-sin(Rdat)×Lmx1+cos(Rdat)×Lmy1        (49)
将(45)、(46)的补正恢复到之前
TmpX1=TmpX1+tx1       (50)
TmpY1=TmpY1+ty1       (51)
求得第一旋转中心轴回转后的与第一基板预设标记1的Offset(偏移)量。
SAX1=Umx1-Tmpx1      (52)
SAY1=Umy1-Tmpy1      (53)
同样的,求得(45)~(53)关于标记2、3、4的相关坐标。
预设标记2:
Lmx2=Lmx2-tx1       (54)
Lmy2=Lmy2-ty1      (55)
TmpX2=cos(Rdat)×Lmx2+sin(Rdat)×Lmy2       (56)
TmpY2=-sin(Rdat)×Lmx2+cos(Rdat)×Lmy2       (57)
TmpX2=TmpX2+tx1      (58)
TmpY2=TmpY2+ty1         (59)
SAX2=Umx2-Tmpx2      (60)
SAY2=Umy2-Tmpy2      (61)
预设标记3:
Lmx3=Lmx3-tx1     (62)
Lmy3=Lmy3-ty1     (63)
TmpX3=cos(Rdat)×Lmx3+sin(Rdat)×Lmy3     (64)
TmpY3=-sin(Rdat)×Lmx3+cos(Rdat)×Lmy3     (65)
TmpX3=TmpX3+tx1     (66)
TmpY3=TmpY3+ty1      (67)
SAX3=Umx3-Tmpx3      (68)
SAY3=Umy3-Tmpy3      (69)
预设标记4:
Lmx4=Lmx4-tx1         (70)
Lmy4=Lmy4-ty1         (71)
TmpX4=cos(Rdat)×Lmx4+sin(Rdat)×Lmy4     (72)
TmpY4=-sin(Rdat)×Lmx4+cos(Rdat)×Lmy4     (73)
TmpX4=TmpX4+tx1       (74)
TmpY4=TmpY4+ty1       (75)
SAX4=Umx4-Tmpx4       (76)
SAY4=Umy4-Tmpy4       (77)
把各标记的偏移量求平均化并求得XY轴的坐标补正量。
Figure PCTCN2016082378-appb-000023
Figure PCTCN2016082378-appb-000024
上面以4个预设标记为例对求旋转角度偏移量和坐标偏移量进行了说明,本领域技术人员很容易知道其他个数的标记也是能够以类似方法进行计算。应该理解的是,在真空对盒设备中,对于第一基板和第二基板采用同一个摄像头对对应的预设标记进行识别,可以通过调节镜头焦距来避免第一基板和第二基板成像之间的干扰。
在求第二位置偏移量时,也可以采用与求第一位位置偏移量相同或相似的方法,例如也采用二值化进行识别,采用重心作为标记的位置,从而求得位置偏移,在此不再赘述。
以上为本公开可选实施例,需要说明的是,对于本领域普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若该改进和润饰,这些改进和润饰也应视为本公开保护范围。

Claims (17)

  1. 一种对盒设备,包括用于承载第一基板的第一基台、用于承载第二基板的第二基台,以及预对位装置;其中,所述第一基台具有相对设置的、用于吸附所述第一基板的第一吸附面和第二吸附面;所述预对位装置用于调整所述第一基台的位置以使得所述第一基板与第二基板进行预对位;
    所述对盒设备还包括:通过翻转所述第一基台以翻转所述第一基板的翻转装置;
    用于调整所述第二基台的位置以使得翻转后的第一基板和所述第二基板进行对位的对位装置;
    用于控制所述第一基板移动以使得所述第一基板和所述第二基板对盒的对盒装置。
  2. 根据权利要求1所述的对盒设备,其中,所述预对位装置包括:
    用于控制所述第一基台旋转的第一驱动结构,所述第一驱动结构与所述第一基台连接;
    用于控制所述第一基台沿着水平面上的第一方向移动的第二驱动结构,所述第二驱动结构与所述第一基台连接;
    用于控制所述第一基台沿着水平面上的与所述第一方向垂直的第二方向移动的第三驱动结构,所述第三驱动结构与所述第一基台连接;
    用于控制所述第一基台在竖直方向移动的第四驱动结构,所述第四驱动结构与所述第一基台连接。
  3. 根据权利要求2所述的对盒设备,其中,所述第一驱动结构包括:
    第一移动平台,与所述第一基台连接;
    第一旋转中心轴,通过轴承与所述第一移动平台连接;
    第一驱动电机;
    用于在所述第一驱动电机的驱动下、带动所述第一旋转中心轴旋转的第一传动结构。
  4. 根据权利要求2所述的对盒设备,其中,所述第二驱动结构包括:
    第二移动平台,与所述第一基台连接;
    沿所述第一方向设置的第一导轨,所述第二移动平台可移动的设置于所述第一导轨上;
    第二驱动电机;
    用于在所述第二驱动电机的驱动下、带动所述第二移动平台沿着所述第一导轨移动的第二传动结构。
  5. 根据权利要求4所述的对盒设备,其中,所述第三驱动结构包括:
    第三移动平台,与所述第一基台连接;
    沿所述第二方向设置的第二导轨,所述第三移动平台可移动的设置于所述第二导轨上;
    第三驱动电机;
    用于在所述第三驱动电机的驱动下、带动所述第三移动平台沿着所述第二导轨移动的第三传动结构;
    其中,所述第三移动平台与所述第二移动平台为同一移动平台,所述第二导轨与所述第一导轨交叉设置。
  6. 根据权利要求2所述的对盒设备,其中,所述第四驱动结构包括:
    第四移动平台,与所述第一基台连接;
    沿竖直方向设置的第三导轨,所述第四移动平台可移动的设置于所述第三导轨上;
    第四驱动电机;
    用于在所述第四驱动电机的驱动下、带动所述第四移动平台沿着所述第三导轨移动的第四传动结构。
  7. 根据权利要求2所述的对盒设备,其中,所述对位装置的结构与所述预对位装置的结构相同。
  8. 根据权利要求1所述的对盒设备,其中,还包括与所述翻转装置连接的缓冲限位结构。
  9. 根据权利要求1所述的对盒设备,其中,还包括动态感知调节结构和控制电路;
    所述动态感知调节结构固定于所述第一基台上,具有若干个子结构,每一个子结构与所述第一基板的一个子区域位置相对应;每一个子结构从上至 下依次包括平整度调节层、压电感应层和表面吸附层;
    在第一基板和第二基板对盒时,每一个子结构的所述压电感应层、根据本子结构对应的第一基板子区域施加的压力、产生与所述压力大小相应的压力感应电流,并传送给所述控制电路;所述控制电路通过对该子结构的平整度调节层施加与所述压力感应电流相应的电场,使得该子结构的平整度调节层产生与对应的上基板子区域相吻合的形变;以及
    每一个子结构的所述压电感应层,根据本子结构对应的第一基板子区域所受到的吸力,产生与所述吸力相应的吸力感应电流,并传送给所述控制电路;所述控制电路根据所述吸力感应电流,控制第一基台的下降速度和施加到该子结构的表面吸附层的电压,使得每一子结构的表面吸附层发生与电压值大小相应的形变。
  10. 根据权利要求9所述的对盒设备,其中,所述表面吸附层在通电情况下产生形变,形成多个吸附上基板的吸盘。
  11. 根据权利要求9所述的对盒设备,其中,对于每一子结构,所述压电感应层包括:第一衬底基板,设置在所述第一衬底基板上的第一子电极,设置在所述第一子电极上方的中间介质层,设置在所述中间介质层上方的第二子电极,以及设置在所述第二子电极上方的第二衬底基板;
    其中,所述第一子电极与所述第二子电极形成电容,在第一基板和第二基板对盒时,所述平整度调节层受到压力后产生电荷,使得所述电容的电量发生变化,从而产生与所述压力相应的压力感应电流;所述第一基板受到的吸力发生变化时,表面吸附层受到的压力发生变化,此时该子结构的表面吸附层的电阻率发生变化,电阻率的变化会使所述电容中产生与所述吸力相应的吸力感应电流。
  12. 一种通过权利要求1-11任一项所述的对盒设备进行对位的方法,包括以下步骤:
    分别对第一基板和第二基板进行预设标记的检测;
    根据所述第一基板和第二基板上对应的预设标记的位置偏差得到第一基板相对第二基板的第一位置偏移量;
    根据所述第一位置偏移量对第一基板和/或第二基板的位置进行第一次 调节。
  13. 根据权利要求12所述的对位方法,还包括:
    分别对第一基板和第二基板进行预设标记检测;
    根据所述第一基板和第二基板上对应的预设标记的位置偏差得到第一基板相对第二基板的第二位置偏移量;
    根据所述第二位置偏移量对所述第一基板和/或第二基板的位置进行第二次调节。
  14. 根据权利要求12所述的对位方法,其中,根据所述第一基板和第二基板上对应的预设标记的位置偏差得到第一基板相对第二基板的第一位置偏移量的方式为:
    分别扫描第一基板或第二基板,根据存储的基准标记与对应的、所述第一基板或第二基板上的预设标记之间的位置偏差,求得第一基板偏移量和第二基板偏移量,从而得到第一基板相对第二基板的第一位置偏移量。
  15. 根据权利要求12所述的对位方法,还包括:
    通过对第一基板或第二基板的区域图像进行二值化处理来识别标记,并将该标记的重心记为该标记的位置。
  16. 权利要求15所述的成盒对位方法,还包括:
    将识别为组成该标记的所有像素的平均坐标作为该标记的重心。
  17. 权利要求12所述的成盒对位方法,其中,还包括:
    所述第一基板或第二基板包括两个以上的预设标记,第一基板相对第二基板的第一位置偏移量包括旋转角度偏移量和坐标偏移量。
PCT/CN2016/082378 2015-05-22 2016-05-17 一种对盒设备、对位方法 WO2016188348A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/511,102 US10684512B2 (en) 2015-05-22 2016-05-17 Cell forming device and alignment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510268313.X 2015-05-22
CN201510268313.XA CN104808370B (zh) 2015-05-22 2015-05-22 一种对盒设备、对位方法

Publications (1)

Publication Number Publication Date
WO2016188348A1 true WO2016188348A1 (zh) 2016-12-01

Family

ID=53693333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082378 WO2016188348A1 (zh) 2015-05-22 2016-05-17 一种对盒设备、对位方法

Country Status (3)

Country Link
US (1) US10684512B2 (zh)
CN (1) CN104808370B (zh)
WO (1) WO2016188348A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110571308A (zh) * 2019-10-16 2019-12-13 苏州德睿联自动化科技有限公司 太阳能电池串校正设备及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808370B (zh) 2015-05-22 2017-10-31 合肥京东方光电科技有限公司 一种对盒设备、对位方法
JP6737575B2 (ja) * 2015-09-30 2020-08-12 Aiメカテック株式会社 基板組立システム、そのシステムに用いる基板組立装置、及び、そのシステムを用いた基板組立方法
CN105866987B (zh) * 2016-06-12 2020-01-07 京东方科技集团股份有限公司 移动装置及检测设备
CN107685007A (zh) * 2016-08-04 2018-02-13 盟立自动化股份有限公司 双摄像镜头对位方法、对位上胶方法和基板的对位方法
CN107168110A (zh) * 2016-12-09 2017-09-15 陈胜辉 一种物料抓取方法与系统
CN109283708B (zh) * 2017-07-20 2021-12-21 合肥欣奕华智能机器有限公司 基准校正器、检测设备及检测设备的坐标转换方法
CN110632775A (zh) * 2019-09-05 2019-12-31 东莞通华液晶有限公司 一种叠合玻璃基板的对版方法
CN111708190B (zh) * 2020-06-08 2023-02-28 苏州精濑光电有限公司 对组贴合参数的调整方法、装置、对组贴合系统及介质
CN115343876B (zh) * 2022-08-26 2023-08-25 惠科股份有限公司 显示面板的对位方法、显示面板的对位系统及显示面板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1568493A (zh) * 2002-04-24 2005-01-19 信越工程株式会社 平面板用基板的粘合装置
KR20080009543A (ko) * 2006-07-24 2008-01-29 주식회사 에이디피엔지니어링 정렬유닛을 가진 기판 합착장치
CN101144926A (zh) * 2006-08-25 2008-03-19 爱德牌工程有限公司 具有对准单元的基板接合装置以及使用该装置对准基板的方法
CN103454799A (zh) * 2013-08-30 2013-12-18 合肥京东方光电科技有限公司 真空对盒装置及对盒方法和生产设备
KR101371370B1 (ko) * 2013-12-13 2014-03-07 한동희 패널 부착유닛과 이를 갖는 패널 부착장치 및 패널 부착방법
CN103676284A (zh) * 2013-12-27 2014-03-26 合肥京东方光电科技有限公司 一种成盒对位方法
CN104360507A (zh) * 2014-11-17 2015-02-18 合肥京东方光电科技有限公司 翻转装置、基板对盒系统及基板对盒方法
CN104808370A (zh) * 2015-05-22 2015-07-29 合肥京东方光电科技有限公司 一种对盒设备、对位方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5343064A (en) * 1988-03-18 1994-08-30 Spangler Leland J Fully integrated single-crystal silicon-on-insulator process, sensors and circuits
US7295279B2 (en) * 2002-06-28 2007-11-13 Lg.Philips Lcd Co., Ltd. System and method for manufacturing liquid crystal display devices
US20060113192A1 (en) * 2003-01-23 2006-06-01 Keiichi Kurashina Plating device and planting method
JP4131853B2 (ja) * 2003-04-28 2008-08-13 株式会社 日立ディスプレイズ 表示装置の製造方法及び製造装置
JP2005158860A (ja) * 2003-11-21 2005-06-16 Seiko Epson Corp 電気光学装置の製造方法及び透明基板用アニール装置
CN1890074B (zh) * 2003-12-04 2011-03-30 三星钻石工业股份有限公司 基板加工方法、基板加工装置、基板输送方法、基板输送机构
JP3982502B2 (ja) * 2004-01-15 2007-09-26 セイコーエプソン株式会社 描画装置
CN101281912B (zh) * 2007-04-03 2013-01-23 株式会社半导体能源研究所 Soi衬底及其制造方法以及半导体装置
WO2008132895A1 (en) * 2007-04-20 2008-11-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing soi substrate and semiconductor device
US7635617B2 (en) * 2007-04-27 2009-12-22 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor substrate and manufacturing method of semiconductor device
CN101981512A (zh) * 2008-03-31 2011-02-23 富士通株式会社 面状体对准装置、制造装置、面状体对准方法及制造方法
US8541163B2 (en) * 2009-06-05 2013-09-24 Nikon Corporation Transporting method, transporting apparatus, exposure method, and exposure apparatus
US20130201316A1 (en) * 2012-01-09 2013-08-08 May Patents Ltd. System and method for server based control
NL2010527A (en) * 2013-03-27 2014-09-30 Asml Netherlands Bv Object holder, lithographic apparatus, device manufacturing method, and method of manufacturing an object holder.
JP6333250B2 (ja) * 2013-07-08 2018-05-30 株式会社Fuji 部品保持状態検出方法および部品実装装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1568493A (zh) * 2002-04-24 2005-01-19 信越工程株式会社 平面板用基板的粘合装置
KR20080009543A (ko) * 2006-07-24 2008-01-29 주식회사 에이디피엔지니어링 정렬유닛을 가진 기판 합착장치
CN101144926A (zh) * 2006-08-25 2008-03-19 爱德牌工程有限公司 具有对准单元的基板接合装置以及使用该装置对准基板的方法
CN103454799A (zh) * 2013-08-30 2013-12-18 合肥京东方光电科技有限公司 真空对盒装置及对盒方法和生产设备
KR101371370B1 (ko) * 2013-12-13 2014-03-07 한동희 패널 부착유닛과 이를 갖는 패널 부착장치 및 패널 부착방법
CN103676284A (zh) * 2013-12-27 2014-03-26 合肥京东方光电科技有限公司 一种成盒对位方法
CN104360507A (zh) * 2014-11-17 2015-02-18 合肥京东方光电科技有限公司 翻转装置、基板对盒系统及基板对盒方法
CN104808370A (zh) * 2015-05-22 2015-07-29 合肥京东方光电科技有限公司 一种对盒设备、对位方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110571308A (zh) * 2019-10-16 2019-12-13 苏州德睿联自动化科技有限公司 太阳能电池串校正设备及方法
CN110571308B (zh) * 2019-10-16 2024-02-06 苏州德睿联自动化科技有限公司 太阳能电池串校正设备及方法

Also Published As

Publication number Publication date
US10684512B2 (en) 2020-06-16
CN104808370B (zh) 2017-10-31
CN104808370A (zh) 2015-07-29
US20180224681A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2016188348A1 (zh) 一种对盒设备、对位方法
US9568753B2 (en) Turnover device, substrate cell-assembling apparatus and substrate cell-assembling method
US9327488B2 (en) Alignment method, transfer method and transfer apparatus
US20080047651A1 (en) Substrate bonding apparatus having alignment unit and method of aligning substrates using the same
JP2015229231A (ja) 板材の周縁加工装置及び曲面板の周縁加工方法
US20140290047A1 (en) Workpiece mounting apparatus
CN104460060A (zh) 液晶显示模组光学检测设备及方法
CN102700237A (zh) 一种具有双平台的全自动视觉硅片印刷装置
CN108136764A (zh) 电子设备用的转印装置以及电子设备用的转印方法
CN105150658B (zh) 一种双对位翻板贴合机自动贴合转运机构及其控制方法
CN101762897B (zh) 衬底处理装置和平板显示器的制造装置
CN104582305B (zh) 基于玻璃电路板的柔性线路板热压装置、加工系统及方法
KR20080016449A (ko) 접합방법 및 접합기판 제조장치
WO2018019263A1 (zh) 一种键合对准设备和方法
CN112365502B (zh) 一种基于视觉图像缺陷检测的标对方法
KR102037384B1 (ko) 패널 검사 장치 및 방법
JP5301363B2 (ja) 貼合装置及び貼合方法
TWM443850U (en) Automated optical inspection mechanism
CN103293867A (zh) 一种方形基板预对准装置及方法
CN204287670U (zh) 偏光片视觉对位装置
US9636824B2 (en) Transfer system
KR20190121556A (ko) 디스플레이 패널 상에 필름을 부착하기 위한 장치
KR20190124558A (ko) 무한 트랙 모듈 및 이를 갖는 장치
KR101438914B1 (ko) 전사방법 및 전사장치
TWI661190B (zh) 面板點燈檢查裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799237

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15511102

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799237

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/04/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16799237

Country of ref document: EP

Kind code of ref document: A1