WO2016186207A1 - Cnt分散剤、その製造方法、及びcnt分散液 - Google Patents

Cnt分散剤、その製造方法、及びcnt分散液 Download PDF

Info

Publication number
WO2016186207A1
WO2016186207A1 PCT/JP2016/065073 JP2016065073W WO2016186207A1 WO 2016186207 A1 WO2016186207 A1 WO 2016186207A1 JP 2016065073 W JP2016065073 W JP 2016065073W WO 2016186207 A1 WO2016186207 A1 WO 2016186207A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnt
dispersant
dispersion
cnt dispersant
metal
Prior art date
Application number
PCT/JP2016/065073
Other languages
English (en)
French (fr)
Inventor
貴文 松田
基男 須永
浩 小野寺
金子 克美
Original Assignee
富士化学株式会社
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士化学株式会社, 国立大学法人信州大学 filed Critical 富士化学株式会社
Priority to CN201680028611.4A priority Critical patent/CN107614428B/zh
Priority to KR1020177035522A priority patent/KR102041030B1/ko
Publication of WO2016186207A1 publication Critical patent/WO2016186207A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the present disclosure relates to a CNT (carbon nanotube) dispersant, a manufacturing method thereof, and a CNT dispersion.
  • CNT has excellent characteristics in field emission characteristics, mechanical strength, electrical conductivity, thermal conductivity, chemical stability, and the like. Therefore, a material containing CNT is expected in various applications such as a field emission display (FED), a transparent electrode, a fuel cell, a conductive resin, a heat sink, a space elevator, and a chemical sensor.
  • FED field emission display
  • a transparent electrode a fuel cell
  • a conductive resin a heat sink
  • space elevator a chemical sensor
  • CNT dispersion In order to stably disperse CNTs in a dispersion medium, a CNT dispersant has been proposed (see Patent Document 1).
  • a method for producing a CNT dispersant according to one aspect of the present disclosure includes: (a) an acetate of a first metal; and (b) a nitrate or chloride salt of a second metal different from the first metal. A step of heating the containing solution. According to the method for producing a CNT dispersant of one aspect of the present disclosure, a CNT dispersant excellent in CNT dispersibility can be produced.
  • the CNT dispersant according to another aspect of the present disclosure is a product manufactured by the above-described method for manufacturing a CNT dispersant, or the same product.
  • the CNT dispersant according to another aspect of the present disclosure is excellent in CNT dispersibility.
  • a CNT dispersion according to a further aspect of the present disclosure includes the above-described CNT dispersant and CNT.
  • the CNT dispersion according to a further aspect of the present disclosure is excellent in CNT dispersibility.
  • a CNT dispersant according to an embodiment of the present disclosure includes (a) a first metal acetate and (b) a second metal nitrate or chloride salt different from the first metal. It can manufacture by heating the solution containing these.
  • Examples of the first metal include one or more selected from the group consisting of Zn, Ni, Cu, Ag, Mg, and Pd.
  • the second metal is a metal different from the first metal.
  • Examples of the second metal include one or more selected from the group consisting of Al, Fe, Co, Ag, Gd, Cu, Ni, Mg, Li, K, and Ca. Since the first metal and the second metal are as described above, the effect of the CNT dispersant dispersing CNTs is further enhanced.
  • Examples of (a) include zinc acetate (Zn (CH 3 COO) 2 .2H 2 O), nickel acetate (Ni (CH 3 COO) 2 .4H 2 O), and copper acetate (Cu (CH 3 COO). 2 ⁇ H 2 O), silver acetate (Ag (CH 3 COO) 2 ), magnesium acetate (Mg (CH 3 COO) 2 ⁇ 4H 2 O), and palladium acetate (Pd (CH 3 COO) 2 ) 1 or more selected from the above.
  • Zn (CH 3 COO) 2 .2H 2 O zinc acetate
  • Ni (CH 3 COO) 2 .4H 2 O nickel acetate
  • Cu copper acetate
  • Examples of (b) include aluminum nitrate (Al (NO 3 ) 3 ⁇ 9H 2 O), iron nitrate (Fe (NO 3 ) 3 ⁇ 9H 2 O), and cobalt nitrate (Co (NO 3 ) 2 ⁇ 6H). 2 O), silver nitrate (AgNO 3 ), gadolinium nitrate (Gd (NO 3 ) 2 .6H 2 O), copper nitrate (Cu (NO 3 ) 2 .3H 2 O), nickel nitrate (Ni (NO 3 ) 2.
  • the total number of moles of the first metal and the second metal is 1.
  • the number of moles of the first metal contained in the solution is preferably in the range of 0.4 to 0.9. By being in this range, the effect of the CNT dispersant dispersing CNTs is further enhanced.
  • the solvent in the solution can be appropriately set, and for example, water, alcohol (for example, ethanol) or the like can be used.
  • the solution may contain only (a) and (b), or may contain other components.
  • the concentration of the (a) in the solution is preferably 0.1 to 5% by mass. When it is within this range, the effect of the CNT dispersant dispersing CNTs is even higher.
  • the concentration of (b) in the solution is preferably 0.1 to 5% by mass. When it is within this range, the effect of the CNT dispersant dispersing CNTs is even higher.
  • the method of heating the solution can be selected as appropriate, and for example, methods such as reflux and hydrothermal synthesis can be used.
  • methods such as reflux and hydrothermal synthesis
  • water, alcohol (for example, ethanol) or the like can be used as a solvent.
  • hydrothermal synthesis water, alcohol (for example, ethanol) or the like can be used as a solvent.
  • the temperature in the hydrothermal synthesis can be, for example, 80 to 180 ° C.
  • the pressure can be, for example, 0.1 to 1 MPa.
  • the reflux time can be, for example, 0.5 hours or longer.
  • the hydrothermal synthesis time can be, for example, 0.5 hours or longer.
  • the CNT dispersant can be used for the purpose of dispersing CNTs.
  • the dosage form of the CNT dispersant may be solid, or may be dissolved or dispersed in a liquid.
  • the CNT dispersant may be manufactured by the above-described manufacturing method, or the same product as the above-described manufacturing method may be obtained by another manufacturing method.
  • Examples of the method of using the CNT dispersant include a method of introducing the CNT dispersant into a liquid containing CNTs. Further, as another usage method, there is a method in which a CNT dispersant is introduced into a liquid and then CNT is introduced. Another method of use is a method of simultaneously adding CNT and a CNT dispersant to a liquid.
  • the amount of the CNT dispersant used can be, for example, an amount such that the concentration of the CNT dispersant in the CNT dispersion is in the range of 0.001 to 1% by weight, and in the range of 0.01 to 0.5% by weight. An amount that is within is preferred. When it is within the above range, CNTs are more easily dispersed.
  • CNT dispersion contains a CNT dispersant and CNTs.
  • the CNT dispersion may further contain other components.
  • the concentration of the CNT dispersant in the CNT dispersion can be, for example, in the range of 0.001 to 1% by weight, and preferably in the range of 0.01 to 0.5% by weight.
  • the method for producing the CNT dispersion may be, for example, a method in which a CNT dispersant is introduced into a liquid containing CNT, or a method in which the CNT dispersant is first introduced into the liquid and then CNT is introduced. There may be a method in which CNT and a CNT dispersant are simultaneously added to a liquid.
  • CNT can be further dispersed by performing a stirring process on the CNT dispersion.
  • the stirring process include a process of irradiating ultrasonic waves, a process of performing mechanical stirring, and the like.
  • Example 1 Production of CNT dispersant First, 1 g of zinc acetate and 1 g of aluminum nitrate were added to 100 g of ethanol. Next, it was refluxed for 2 hours. Next, ethanol was removed using a rotary evaporator, and vacuum drying was performed to obtain a CNT dispersant.
  • the ratio of the number of moles of zinc contained in ethanol (hereinafter referred to as the first metal ratio) is 0.7.
  • CNT dispersion liquid 1 mg of CNT and 50 mg of the CNT dispersant produced in the above (1) were added to 50 g of water.
  • CNT single-walled CNT (product number: SO) manufactured by Meijo Nanocarbon Co., Ltd. was used.
  • CNT was dispersed in the liquid by ultrasonic irradiation to produce a CNT dispersion.
  • the conditions for ultrasonic irradiation were as follows.
  • the CNT dispersion liquid of the present Example after standing still is shown in the center in FIG. 1 (what is displayed as “2” on the lid). As is apparent from FIG. 1, the CNTs are uniformly dispersed in the CNT dispersion without aggregation or precipitation.
  • Example 2 (1) Production of CNT dispersant First, 1 g of nickel acetate and 0.8 g of aluminum nitrate were added to 100 g of ethanol. Next, it was refluxed for 2 hours. Next, ethanol was removed using a rotary evaporator, and vacuum drying was performed to obtain a CNT dispersant.
  • Example 3 (1) Production of CNT dispersant First, 0.8 g of copper acetate and 1 g of aluminum nitrate were added to 100 g of ethanol. Next, it was refluxed for 2 hours. Next, ethanol was removed using a rotary evaporator, and vacuum drying was performed to obtain a CNT dispersant.
  • Example 4 (1) Production of CNT dispersant First, 0.6 g of silver acetate and 1 g of aluminum nitrate were added to 100 g of ethanol. Next, it was refluxed for 2 hours. Next, ethanol was removed using a rotary evaporator, and vacuum drying was performed to obtain a CNT dispersant.
  • Example 5 (1) Production of CNT dispersant First, 1 g of palladium acetate and 1 g of aluminum nitrate were added to 100 g of ethanol. Next, it was refluxed for 2 hours. Next, ethanol was removed using a rotary evaporator, and vacuum drying was performed to obtain a CNT dispersant.
  • Example 6 (1) Production of CNT dispersant First, 1 g of zinc acetate and 1 g of iron nitrate were added to 100 g of ethanol. Next, it was refluxed for 2 hours. Next, ethanol was removed using a rotary evaporator, and vacuum drying was performed to obtain a CNT dispersant.
  • Example 7 (1) Production of CNT dispersant First, 1 g of zinc acetate and 1 g of copper nitrate were added to 100 g of ethanol. Next, it was refluxed for 2 hours. Next, ethanol was removed using a rotary evaporator, and vacuum drying was performed to obtain a CNT dispersant.
  • Example 8 (1) Production of CNT dispersant First, 0.4 g of zinc acetate and 1 g of aluminum nitrate were added to 100 g of ethanol. Next, it was refluxed for 2 hours. Next, ethanol was removed using a rotary evaporator, and vacuum drying was performed to obtain a CNT dispersant. In this CNT dispersion manufacturing method, the first metal ratio is 0.5.
  • Example 9 (1) Production of CNT dispersant First, 0.6 g of zinc acetate and 1 g of aluminum nitrate were added to 100 g of ethanol. Next, it was refluxed for 2 hours. Next, ethanol was removed using a rotary evaporator, and vacuum drying was performed to obtain a CNT dispersant. In this CNT dispersion manufacturing method, the first metal ratio is 0.6.
  • Example 10 (1) Production of CNT dispersant First, 1 g of zinc acetate and 0.5 g of aluminum nitrate were added to 100 g of ethanol. Next, it was refluxed for 2 hours. Next, ethanol was removed using a rotary evaporator, and vacuum drying was performed to obtain a CNT dispersant. In this CNT dispersion manufacturing method, the first metal ratio is 0.85.
  • Example 11 (1) Production of CNT dispersant First, 100 g of water, 1 g of zinc acetate, and 1 g of aluminum nitrate were added to a pressure-resistant airtight container. Next, hydrothermal synthesis was performed. The temperature at this time was 170 ° C., and the pressure was 0.78 MPa (saturated water vapor pressure at 170 ° C.). The hydrothermal synthesis time was 15 hours.
  • CNT dispersant 1 mg of CNT and 50 mg of the CNT dispersant produced in the above (1) were added to 50 g of water.
  • the CNT the same one as in Example 1 was used.
  • CNT was dispersed in the liquid by ultrasonic irradiation to produce a CNT dispersion.
  • the conditions for ultrasonic irradiation were the same as in Example 1.
  • Example 12 (1) Production of CNT dispersant A CNT dispersant was produced basically in the same manner as in Example 1. However, in this embodiment, the first metal ratio is set to 0, 0.1, 0.35, 0.5, 0.6, 0.65, 0.7, 0.75, 0.85, 0. The CNT dispersant was manufactured under the respective conditions. The number of moles of zinc and the number of moles of aluminum contained in the solution were the same as those in Example 1.
  • this indication can take various forms, without being limited to the above-mentioned embodiment.
  • a second metal chloride salt may be used as component (b). Even in this case, the CNT dispersant can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Conductive Materials (AREA)
  • Catalysts (AREA)

Abstract

CNT分散剤の製造方法は、(a)第1の金属の酢酸塩と、(b)前記第1の金属とは異なる第2の金属の硝酸塩又は塩化物塩と、を含む溶液を加熱する工程を備える。

Description

CNT分散剤、その製造方法、及びCNT分散液 関連出願の相互参照
 本国際出願は、2015年 5月20日に日本国特許庁に出願された日本国特許出願第2015-102701号に基づく優先権を主張するものであり、日本国特許出願第2015-102701号の全内容を本国際出願に参照により援用する。
 本開示は、CNT(カーボンナノチューブ)分散剤、その製造方法、及びCNT分散液に関する。
 CNTは、電界放出特性、機械的強度、電気伝導性、熱伝導性、化学的安定性等において優れた特性を有する。そのため、CNTを含む材料は、電界放出型ディスプレイ(FED)、透明電極、燃料電池、導電性樹脂、ヒートシンク、宇宙エレベータ、化学センサ等、様々な用途において期待されている。
 CNTを含む材料を製造するとき、CNTが分散媒中で安定に分散している分散液(CNT分散液)を調製する必要がある。CNTを分散媒中で安定に分散させるために、CNT分散剤が提案されている(特許文献1参照)。
特開2012-224521号公報
 本開示の一局面では、CNTの分散性を向上させることができるCNT分散剤、その製造方法、及びCNT分散液を提供することが望ましい。
 本開示の一局面のCNT分散剤の製造方法は、(a)第1の金属の酢酸塩と、(b)前記第1の金属とは異なる第2の金属の硝酸塩又は塩化物塩と、を含む溶液を加熱する工程を備える。本開示の一局面のCNT分散剤の製造方法によれば、CNTの分散性において優れたCNT分散剤を製造することができる。
 本開示の別の局面のCNT分散剤は、上述したCNT分散剤の製造方法により製造される物、又はそれと同一の物である。本開示の別の局面のCNT分散剤は、CNTの分散性において優れる。
 本開示の更なる局面のCNT分散液は、上述したCNT分散剤と、CNTとを含む。本開示更なる局面のCNT分散液は、CNTの分散性において優れる。
静置後のCNT分散液(実施例1、比較例4、比較例5)を撮影した写真である。 静置後のCNT分散液(実施例1~5)を撮影した写真である。 第1の金属比率(横軸)と、静置後に分散しているCNTの比率(縦軸)との関係を表すグラフである。 静置後のCNT分散液(比較例1~3)を撮影した写真である。 静置後のCNT分散液(比較例6)を撮影した写真である。
 本開示の実施形態を説明する。
 1.CNT分散剤の製造方法
 本開示の一実施形態のCNT分散剤は、(a)第1の金属の酢酸塩と、(b)第1の金属とは異なる第2の金属の硝酸塩又は塩化物塩とを含む溶液を加熱することで製造できる。
 第1の金属としては、例えば、Zn、Ni、Cu、Ag、Mg、及びPdから成る群から選択される1以上が挙げられる。第2の金属は第1の金属とは異なる金属である。第2の金属としては、例えば、Al、Fe、Co、Ag、Gd、Cu、Ni、Mg、Li、K、及びCaから成る群から選択される1以上が挙げられる。第1の金属及び第2の金属が上記のものであることにより、CNT分散剤がCNTを分散する効果が一層高い。
[規則91に基づく訂正 30.05.2016] 
 前記(a)としては、例えば、酢酸亜鉛(Zn(CHCOO)・2HO)、酢酸ニッケル(Ni(CHCOO)・4HO)、酢酸銅(Cu(CHCOO)・HO)、酢酸銀(Ag(CHCOO))、酢酸マグネシウム(Mg(CHCOO)・4HO)、及び酢酸パラジウム(Pd(CHCOO))から成る群から選択される1以上が挙げられる。前記(a)が上記のものであることにより、CNT分散剤がCNTを分散する効果が一層高い。
[規則91に基づく訂正 30.05.2016] 
 前記(b)としては、例えば、硝酸アルミニウム(Al(NO・9HO)、硝酸鉄(Fe(NO・9HO)、硝酸コバルト(Co(NO・6HO)、硝酸銀(AgNO)、硝酸ガドリニウム(Gd(NO・6HO)、硝酸銅(Cu(NO・3HO)、硝酸ニッケル(Ni(NO・6HO)、硝酸マグネシウム(Mg(NO・6HO)、硝酸リチウム(LiNO)、硝酸カリウム(KNO)、硝酸カルシウム(Ca(NO・4HO)、塩化アルミニウム(AlCl・6HO)、塩化鉄(FeCl・6HO)、塩化コバルト(CoCl・6HO)、塩化銀(AgCl)、塩化ガドリニウム(GdCl・6HO)、塩化銅(CuCl・2HO)、塩化マグネシウム(MgCl・6HO)、塩化リチウム(LiCl)、塩化カリウム(KCl)、塩化カルシウム(CaCl・2HO)、及び塩化ニッケル(NiCl・6HO)から成る群から選択される1以上が挙げられる。前記(b)が上記のものであることにより、CNT分散剤がCNTを分散する効果が一層高い。
 前記(a)及び(b)を含む溶液において、第1の金属及び第2の金属の合計モル数を1とする。溶液に含まれる第1の金属のモル数は0.4~0.9の範囲内であることが好ましい。この範囲内であることにより、CNT分散剤がCNTを分散する効果が一層高い。
 溶液における溶媒は適宜設定でき、例えば、水、アルコール(例えばエタノール)等を用いることができる。溶液は前記(a)及び(b)のみを含んでいてもよいし、さらの他の成分を含んでいてもよい。溶液における前記(a)の濃度は0.1~5質量%とすることが好ましい。この範囲内である場合、CNT分散剤がCNTを分散する効果が一層高い。溶液における前記(b)の濃度は0.1~5質量%とすることが好ましい。この範囲内である場合、CNT分散剤がCNTを分散する効果が一層高い。
 溶液を加熱する方法は適宜選択することができ、例えば、還流、水熱合成等の方法を用いることができる。還流の場合、溶媒として、水、アルコール(例えばエタノール)等を用いることができる。また、水熱合成の場合も、溶媒として、水、アルコール(例えばエタノール)等を用いることができる。水熱合成における温度は例えば、80~180℃とすることができ、圧力は、例えば、0.1~1MPaとすることができる。
 還流の時間は、例えば、0.5時間以上とすることができる。水熱合成の時間は、例えば、0.5時間以上とすることができる。
 2.CNT分散剤
 CNT分散剤はCNTを分散する用途に用いることができる。CNT分散剤の剤型は、固形であってもよいし、液体に溶解又は分散した状態であってもよい。CNT分散剤は、上述した製造方法で製造してもよいし、他の製造方法により、上述した製造方法の結果物と同一ものを得てもよい。
 CNT分散剤の使用方法としては、例えば、CNTを含む液に、CNT分散剤を投入する方法が挙げられる。また、別の使用方法として、液体にCNT分散剤を投入し、次に、CNTを投入する方法が挙げられる。また、別の使用方法として、液体にCNT及びCNT分散剤を同時に投入する方法が挙げられる。
 CNT分散剤の使用量は、例えば、CNT分散液におけるCNT分散剤の濃度が0.001~1重量%の範囲内となる量とすることができ、0.01~0.5重量%の範囲内となる量が好ましい。上記の範囲内である場合、CNTが一層分散しやすくなる。
 3.CNT分散液
 CNT分散液は、CNT分散剤と、CNTとを含む。CNT分散液は、さらに他の成分を含んでいてもよい。
 CNT分散液におけるCNT分散剤の濃度は、例えば、0.001~1重量%の範囲内とすることができ、0.01~0.5重量%の範囲内が好ましい。
 CNT分散液の製造方法は、例えば、CNTを含む液に、CNT分散剤を投入する方法であってもよいし、液体に最初にCNT分散剤を投入し、次に、CNTを投入する方法であってもよいし、液体にCNT及びCNT分散剤を同時に投入する方法であってもよい。
 CNT分散液に対し、攪拌処理を行うことで、CNTを一層分散させることができる。攪拌処理としては、例えば、超音波を照射する処理や、機械的な攪拌を行う処理等が挙げられる。
 (実施例1)
 (1)CNT分散剤の製造
 まず、100gのエタノールに、1gの酢酸亜鉛と、1gの硝酸アルミニウムとを加えた。次に、2時間還流した。次に、ロータリーエバポレーターを用いてエタノールを除去し、さらに、真空乾燥を行ってCNT分散剤を得た。
 なお、このCNT分散液の製造方法において、エタノールに含まれる亜鉛及びアルミニウムの合計モル数を1としたとき、エタノールに含まれる亜鉛のモル数の比率(以下では第1の金属比率とする)は0.7である。
 (2)CNT分散液の製造
 50gの水に、CNT1mgと、前記(1)で製造したCNT分散剤50mgとを加えた。CNTとしては、名城ナノカーボン社製の単層CNT(品番:SO)を用いた。次に、超音波照射により、液中でCNTを分散させ、CNT分散液を製造した。超音波照射の条件は以下のとおりとした。
 出力:150W
 周波数:20kHz
 照射時間:20分間
 (3)分散性の評価 
 CNT分散液を24時間静置した。その後、CNT分散液を目視観察し、分散性を評価した。分散性の評価基準は以下のとおりとした。
 ○:凝集及び沈殿が生じていない。
 ×:凝集又は沈殿が生じている。
 本実施例のCNT分散剤、CNT分散液において、分散性の評価結果は○であった。その結果を表1に示す。なお、表1には、本実施例及び後述する各実施例及び比較例におけるCNT分散剤の原料、加熱処理の種類、分散性の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 
 また、静置後における本実施例のCNT分散液を、図1における中央(蓋に「2」と表示されているもの)に示す。図1から明らかなように、CNT分散液においてCNTは凝集又は沈殿することなく、均一に分散している。
 (実施例2)
 (1)CNT分散剤の製造
 まず、100gのエタノールに、1gの酢酸ニッケルと、0.8gの硝酸アルミニウムとを加えた。次に、2時間還流した。次に、ロータリーエバポレーターを用いてエタノールを除去し、さらに、真空乾燥を行ってCNT分散剤を得た。
 (2)CNT分散液の製造
 50gの水に、CNT1mgと、前記(1)で製造したCNT分散剤50mgとを加えた。CNTとしては、前記実施例1と同様のものを用いた。次に、超音波照射により、液中でCNTを分散させ、CNT分散液を製造した。超音波照射の条件は前記実施例1と同様とした。
 (3)分散性の評価 
 CNT分散剤、CNT分散液の分散性を前記実施例1と同様に評価した。その結果を上記表1に示す。評価結果は○であった。また、静置後における本実施例のCNT分散液を、図2における左から2番目(蓋に「2」と表示されているもの)に示す。図2から明らかなように、CNT分散液においてCNTは凝集又は沈殿することなく、均一に分散している。なお、図2における左端は、静置後における実施例1のCNT分散液である。
 (実施例3)
 (1)CNT分散剤の製造
 まず、100gのエタノールに、0.8gの酢酸銅と、1gの硝酸アルミニウムとを加えた。次に、2時間還流した。次に、ロータリーエバポレーターを用いてエタノールを除去し、さらに、真空乾燥を行ってCNT分散剤を得た。
 (2)CNT分散液の製造
 50gの水に、CNT1mgと、前記(1)で製造したCNT分散剤50mgとを加えた。CNTとしては、前記実施例1と同様のものを用いた。次に、超音波照射により、液中でCNTを分散させ、CNT分散液を製造した。超音波照射の条件は前記実施例1と同様とした。
 (3)分散性の評価 
 CNT分散剤、CNT分散液の分散性を前記実施例1と同様に評価した。その結果を上記表1に示す。評価結果は○であった。また、静置後における本実施例のCNT分散液を、図2における中央(蓋に「3」と表示されているもの)に示す。図2から明らかなように、CNT分散液においてCNTは凝集又は沈殿することなく、均一に分散している。
 (実施例4)
 (1)CNT分散剤の製造
 まず、100gのエタノールに、0.6gの酢酸銀と、1gの硝酸アルミニウムとを加えた。次に、2時間還流した。次に、ロータリーエバポレーターを用いてエタノールを除去し、さらに、真空乾燥を行ってCNT分散剤を得た。
 (2)CNT分散液の製造
 50gの水に、CNT1mgと、前記(1)で製造したCNT分散剤50mgとを加えた。CNTとしては、前記実施例1と同様のものを用いた。次に、超音波照射により、液中でCNTを分散させ、CNT分散液を製造した。超音波照射の条件は前記実施例1と同様とした。
 (3)分散性の評価 
 CNT分散剤、CNT分散液の分散性を前記実施例1と同様に評価した。その結果を上記表1に示す。評価結果は○であった。また、静置後における本実施例のCNT分散液を、図2における右から2番目(蓋に「4」と表示されているもの)に示す。図2から明らかなように、CNT分散液においてCNTは凝集又は沈殿することなく、均一に分散している。
 (実施例5)
 (1)CNT分散剤の製造
 まず、100gのエタノールに、1gの酢酸パラジウムと、1gの硝酸アルミニウムとを加えた。次に、2時間還流した。次に、ロータリーエバポレーターを用いてエタノールを除去し、さらに、真空乾燥を行ってCNT分散剤を得た。
 (2)CNT分散液の製造
 50gの水に、CNT1mgと、前記(1)で製造したCNT分散剤50mgとを加えた。CNTとしては、前記実施例1と同様のものを用いた。次に、超音波照射により、液中でCNTを分散させ、CNT分散液を製造した。超音波照射の条件は前記実施例1と同様とした。
 (3)分散性の評価 
 CNT分散剤、CNT分散液の分散性を前記実施例1と同様に評価した。その結果を上記表1に示す。評価結果は○であった。また、静置後における本実施例のCNT分散液を、図2における右端(蓋に「5」と表示されているもの)に示す。図2から明らかなように、CNT分散液においてCNTは凝集又は沈殿することなく、均一に分散している。
 (実施例6)
 (1)CNT分散剤の製造
 まず、100gのエタノールに、1gの酢酸亜鉛と、1gの硝酸鉄とを加えた。次に、2時間還流した。次に、ロータリーエバポレーターを用いてエタノールを除去し、さらに、真空乾燥を行ってCNT分散剤を得た。
 (2)CNT分散液の製造
 50gの水に、CNT1mgと、前記(1)で製造したCNT分散剤50mgとを加えた。CNTとしては、前記実施例1と同様のものを用いた。次に、超音波照射により、液中でCNTを分散させ、CNT分散液を製造した。超音波照射の条件は前記実施例1と同様とした。
 (3)分散性の評価 
 CNT分散剤、CNT分散液の分散性を前記実施例1と同様に評価した。その結果を上記表1に示す。評価結果は○であった。
 (実施例7)
 (1)CNT分散剤の製造
 まず、100gのエタノールに、1gの酢酸亜鉛と、1gの硝酸銅とを加えた。次に、2時間還流した。次に、ロータリーエバポレーターを用いてエタノールを除去し、さらに、真空乾燥を行ってCNT分散剤を得た。
 (2)CNT分散液の製造
 50gの水に、CNT1mgと、前記(1)で製造したCNT分散剤50mgとを加えた。CNTとしては、前記実施例1と同様のものを用いた。次に、超音波照射により、液中でCNTを分散させ、CNT分散液を製造した。超音波照射の条件は前記実施例1と同様とした。
 (3)分散性の評価 
 CNT分散剤、CNT分散液の分散性を前記実施例1と同様に評価した。その結果を上記表1に示す。評価結果は○であった。
 (実施例8)
 (1)CNT分散剤の製造
 まず、100gのエタノールに、0.4gの酢酸亜鉛と、1gの硝酸アルミニウムとを加えた。次に、2時間還流した。次に、ロータリーエバポレーターを用いてエタノールを除去し、さらに、真空乾燥を行ってCNT分散剤を得た。なお、このCNT分散液の製造方法において、第1の金属比率は0.5である。
 (2)CNT分散液の製造
 50gの水に、CNT1mgと、前記(1)で製造したCNT分散剤50mgとを加えた。CNTとしては、前記実施例1と同様のものを用いた。次に、超音波照射により、液中でCNTを分散させ、CNT分散液を製造した。超音波照射の条件は前記実施例1と同様とした。
 (3)分散性の評価 
 CNT分散剤、CNT分散液の分散性を前記実施例1と同様に評価した。その結果を上記表1に示す。評価結果は○であった。
 (実施例9)
 (1)CNT分散剤の製造
 まず、100gのエタノールに、0.6gの酢酸亜鉛と、1gの硝酸アルミニウムとを加えた。次に、2時間還流した。次に、ロータリーエバポレーターを用いてエタノールを除去し、さらに、真空乾燥を行ってCNT分散剤を得た。なお、このCNT分散液の製造方法において、第1の金属比率は0.6である。
 (2)CNT分散液の製造
 50gの水に、CNT1mgと、前記(1)で製造したCNT分散剤50mgとを加えた。CNTとしては、前記実施例1と同様のものを用いた。次に、超音波照射により、液中でCNTを分散させ、CNT分散液を製造した。超音波照射の条件は前記実施例1と同様とした。
 (3)分散性の評価 
 CNT分散剤、CNT分散液の分散性を前記実施例1と同様に評価した。その結果を上記表1に示す。評価結果は○であった。
 (実施例10)
 (1)CNT分散剤の製造
 まず、100gのエタノールに、1gの酢酸亜鉛と、0.5gの硝酸アルミニウムとを加えた。次に、2時間還流した。次に、ロータリーエバポレーターを用いてエタノールを除去し、さらに、真空乾燥を行ってCNT分散剤を得た。なお、このCNT分散液の製造方法において、第1の金属比率は0.85である。
 (2)CNT分散液の製造
 50gの水に、CNT1mgと、前記(1)で製造したCNT分散剤50mgとを加えた。CNTとしては、前記実施例1と同様のものを用いた。次に、超音波照射により、液中でCNTを分散させ、CNT分散液を製造した。超音波照射の条件は前記実施例1と同様とした。
 (3)分散性の評価 
 CNT分散剤、CNT分散液の分散性を前記実施例1と同様に評価した。その結果を上記表1に示す。評価結果は○であった。
 (実施例11)
 (1)CNT分散剤の製造
 まず、耐圧性のある密閉容器に、100gの水と、1gの酢酸亜鉛と、1gの硝酸アルミニウムとを加えた。次に、水熱合成を行った。このときの温度は170℃であり、圧力は0.78MPa(170℃における飽和水蒸気圧)であった。また、水熱合成の時間は15時間とした。
 次に、ロータリーエバポレーターを用いて水を除去し、さらに、真空乾燥を行ってCNT分散剤を得た。
 (2)CNT分散液の製造
 50gの水に、CNT1mgと、前記(1)で製造したCNT分散剤50mgとを加えた。CNTとしては、前記実施例1と同様のものを用いた。次に、超音波照射により、液中でCNTを分散させ、CNT分散液を製造した。超音波照射の条件は前記実施例1と同様とした。
 (3)分散性の評価 
 CNT分散剤、CNT分散液の分散性を前記実施例1と同様に評価した。その結果を上記表1に示す。評価結果は○であった。
 (実施例12)
 (1)CNT分散剤の製造
 基本的には前記実施例1と同様に、CNT分散剤を製造した。ただし、本実施例では、第1の金属比率を、0、0.1、0.35、0.5、0.6、0.65、0.7、0.75、0.85、0.9、1とし、それぞれの条件でCNT分散剤を製造した。なお、溶液に含まれる亜鉛のモル数とアルミニウムのモル数と合計は、全て前記実施例1と同様とした。
 (2)CNT分散液の製造
 50gの水に、CNT1mgと、前記(1)で製造したCNT分散剤50mgとを加えた。CNTとしては、前記実施例1と同様のものを用いた。次に、超音波照射により、液中でCNTを分散させ、CNT分散液を製造した。超音波照射の条件は前記実施例1と同様とした。
 (3)分散性の評価 
 CNT分散液を24時間静置した。その後、CNTの全量に対し、分散している(凝集、沈殿していない)CNTの比率(単位は重量%)を算出した。その結果を図3に示す。図3に示されているように、第1の金属比率が0.4~0.9の範囲内であるとき、分散しているCNTの比率が高く、0.6~0.8の範囲内であるとき、分散しているCNTの比率が一層高かった。 
 (比較例1)
 (1)CNT分散剤の製造
 まず、100gのエタノールに、0.5gの酢酸亜鉛を加えた。次に、ロータリーエバポレーターを用いてエタノールを除去し、さらに、真空乾燥を行ってCNT分散剤を得た。
 (2)CNT分散液の製造
 50gの水に、CNT1mgと、前記(1)で製造したCNT分散剤50mgとを加えた。CNTとしては、前記実施例1と同様のものを用いた。次に、超音波照射により、液中でCNTを分散させ、CNT分散液を製造した。超音波照射の条件は前記実施例1と同様とした。
 (3)分散性の評価 
 CNT分散剤、CNT分散液の分散性を前記実施例1と同様に評価した。その結果を上記表1に示す。評価結果は×であった。また、静置後における本比較例のCNT分散液を、図4における左端(蓋に「1」と表示されているもの)に示す。図4から明らかなように、CNT分散液においてCNTは凝集し、沈殿していた。
 (比較例2)
 (1)CNT分散剤の製造
 まず、100gのエタノールに、0.25gの酢酸亜鉛と、0.25gの硝酸アルミニウムとを加えた。次に、ロータリーエバポレーターを用いてエタノールを除去し、さらに、真空乾燥を行ってCNT分散剤を得た。
 (2)CNT分散液の製造
 50gの水に、CNT1mgと、前記(1)で製造したCNT分散剤50mgとを加えた。CNTとしては、前記実施例1と同様のものを用いた。次に、超音波照射により、液中でCNTを分散させ、CNT分散液を製造した。超音波照射の条件は前記実施例1と同様とした。
 (3)分散性の評価 
 CNT分散剤、CNT分散液の分散性を前記実施例1と同様に評価した。その結果を上記表1に示す。評価結果は×であった。また、静置後における本比較例のCNT分散液を、図4における中央(蓋に「2」と表示されているもの)に示す。図4から明らかなように、CNT分散液においてCNTは凝集し、沈殿していた。
 (比較例3)
 (1)CNT分散剤の製造
 まず、100gのエタノールに、0.5gの硝酸アルミニウムを加えた。次に、ロータリーエバポレーターを用いてエタノールを除去し、さらに、真空乾燥を行ってCNT分散剤を得た。
 (2)CNT分散液の製造
 50gの水に、CNT1mgと、前記(1)で製造したCNT分散剤50mgとを加えた。CNTとしては、前記実施例1と同様のものを用いた。次に、超音波照射により、液中でCNTを分散させ、CNT分散液を製造した。超音波照射の条件は前記実施例1と同様とした。
 (3)分散性の評価 
 CNT分散剤、CNT分散液の分散性を前記実施例1と同様に評価した。その結果を上記表1に示す。評価結果は×であった。また、静置後における本比較例のCNT分散液を、図4における右端(蓋に「3」と表示されているもの)に示す。図4から明らかなように、CNT分散液においてCNTは凝集し、沈殿していた。
 (比較例4)
 (1)CNT分散剤の製造
 まず、100gのエタノールに、1gの酢酸亜鉛を加えた。次に、2時間還流した。次に、ロータリーエバポレーターを用いてエタノールを除去し、さらに、真空乾燥を行ってCNT分散剤を得た。
 (2)CNT分散液の製造
 50gの水に、CNT1mgと、前記(1)で製造したCNT分散剤50mgとを加えた。CNTとしては、前記実施例1と同様のものを用いた。次に、超音波照射により、液中でCNTを分散させ、CNT分散液を製造した。超音波照射の条件は前記実施例1と同様とした。
 (3)分散性の評価 
 CNT分散剤、CNT分散液の分散性を前記実施例1と同様に評価した。その結果を上記表1に示す。評価結果は×であった。また、静置後における本比較例のCNT分散液を、図1における左端(蓋に「1」と表示されているもの)に示す。図1から明らかなように、CNT分散液においてCNTは凝集し、沈殿していた。
 (比較例5)
 (1)CNT分散剤の製造
 まず、100gのエタノールに、1gの硝酸アルミニウムを加えた。次に、2時間還流した。次に、ロータリーエバポレーターを用いてエタノールを除去し、さらに、真空乾燥を行ってCNT分散剤を得た。
 (2)CNT分散液の製造
 50gの水に、CNT1mgと、前記(1)で製造したCNT分散剤50mgとを加えた。CNTとしては、前記実施例1と同様のものを用いた。次に、超音波照射により、液中でCNTを分散させ、CNT分散液を製造した。超音波照射の条件は前記実施例1と同様とした。
 (3)分散性の評価 
 CNT分散剤、CNT分散液の分散性を前記実施例1と同様に評価した。その結果を上記表1に示す。評価結果は×であった。また、静置後における本比較例のCNT分散液を、図1における右端(蓋に「3」と表示されているもの)に示す。図1から明らかなように、CNT分散液においてCNTは凝集し、沈殿していた。
 (比較例6)
 (1)CNT分散剤の製造
 まず、100gのエタノールに、1gの酢酸亜鉛と、1gの硝酸亜鉛とを加えた。次に、2時間還流した。次に、ロータリーエバポレーターを用いてエタノールを除去し、さらに、真空乾燥を行ってCNT分散剤を得た。
 (2)CNT分散液の製造
 50gの水に、CNT1mgと、前記(1)で製造したCNT分散剤50mgとを加えた。CNTとしては、前記実施例1と同様のものを用いた。次に、超音波照射により、液中でCNTを分散させ、CNT分散液を製造した。超音波照射の条件は前記実施例1と同様とした。
 (3)分散性の評価 
 CNT分散剤、CNT分散液の分散性を前記実施例1と同様に評価した。その結果を上記表1に示す。評価結果は×であった。また、静置後における本比較例のCNT分散液を、図5に示す。図5から明らかなように、CNT分散液においてCNTは凝集し、沈殿していた。
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されることなく、種々の形態を採り得る。
 例えば、前記実施例1~12において、(b)成分として、第2の金属の塩化物塩を用いてもよい。この場合でも、CNT分散剤を製造することができる。

Claims (7)

  1.  (a)第1の金属の酢酸塩と、(b)前記第1の金属とは異なる第2の金属の硝酸塩又は塩化物塩と、を含む溶液を加熱する工程を備えるCNT分散剤の製造方法。
  2.  前記第1の金属が、Zn、Ni、Cu、Ag、Mg、及びPdから成る群から選択される1以上であり、前記第2の金属が、Al、Fe、Co、Ag、Gd、Cu、Ni、Mg、Li、K、及びCaから成る群から選択される1以上である請求項1に記載のCNT分散剤の製造方法。
  3.  前記(a)は、酢酸亜鉛、酢酸ニッケル、酢酸銅、酢酸銀、及び酢酸パラジウムから成る群から選択される1以上であり、前記(b)は、硝酸アルミニウム、硝酸鉄、硝酸銅、及び硝酸亜鉛から成る群から選択される1以上である請求項1又は2に記載のCNT分散剤の製造方法。
  4.  前記溶液に含まれる前記第1の金属及び前記第2の金属の合計モル数を1としたとき、前記溶液に含まれる前記第1の金属のモル数は0.4~0.9の範囲内である請求項1~3のいずれか1項に記載のCNT分散剤の製造方法。
  5.  前記加熱の工程は、還流又は水熱合成である請求項1~4のいずれか1項に記載のCNT分散剤の製造方法。
  6.  請求項1~5のいずれか1項に記載のCNT分散剤の製造方法により製造されたCNT分散剤。
  7.  請求項6に記載のCNT分散剤と、CNTとを含むCNT分散液。
PCT/JP2016/065073 2015-05-20 2016-05-20 Cnt分散剤、その製造方法、及びcnt分散液 WO2016186207A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680028611.4A CN107614428B (zh) 2015-05-20 2016-05-20 Cnt分散剂、其制备方法以及cnt分散液
KR1020177035522A KR102041030B1 (ko) 2015-05-20 2016-05-20 Cnt 분산제, 그 제조 방법 및 cnt 분산액

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015102701A JP6722898B2 (ja) 2015-05-20 2015-05-20 Cnt分散剤、その製造方法、及びcnt分散液
JP2015-102701 2015-05-20

Publications (1)

Publication Number Publication Date
WO2016186207A1 true WO2016186207A1 (ja) 2016-11-24

Family

ID=57320343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065073 WO2016186207A1 (ja) 2015-05-20 2016-05-20 Cnt分散剤、その製造方法、及びcnt分散液

Country Status (4)

Country Link
JP (1) JP6722898B2 (ja)
KR (1) KR102041030B1 (ja)
CN (1) CN107614428B (ja)
WO (1) WO2016186207A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019151731A (ja) * 2018-03-02 2019-09-12 富士化学株式会社 Cntインク、スクリーン印刷用インク、及びcnt膜の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253317A (ja) * 1994-12-13 1996-10-01 Nippon Shokubai Co Ltd 酸化亜鉛系微粒子、その製造方法及び用途
US20090304923A1 (en) * 2005-03-11 2009-12-10 New Jersey Institute Of Technology Microwave Synthesis of Metal-Carbon Nanotube Composites
WO2013137228A1 (ja) * 2012-03-13 2013-09-19 国立大学法人名古屋工業大学 酸化亜鉛微細粒子及び/又は酸化亜鉛膜の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253317A (ja) * 1994-12-13 1996-10-01 Nippon Shokubai Co Ltd 酸化亜鉛系微粒子、その製造方法及び用途
US20090304923A1 (en) * 2005-03-11 2009-12-10 New Jersey Institute Of Technology Microwave Synthesis of Metal-Carbon Nanotube Composites
WO2013137228A1 (ja) * 2012-03-13 2013-09-19 国立大学法人名古屋工業大学 酸化亜鉛微細粒子及び/又は酸化亜鉛膜の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUKOBAT, RADOVAN ET AL.: "Development of Zn/Al complex for intensive dispersion of SWCNTs in water", DAI 95 ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING KOEN YOKOSHU III, pages 2C2 - 53 *

Also Published As

Publication number Publication date
KR102041030B1 (ko) 2019-11-05
CN107614428B (zh) 2020-10-23
KR20180006414A (ko) 2018-01-17
CN107614428A (zh) 2018-01-19
JP6722898B2 (ja) 2020-07-15
JP2016216301A (ja) 2016-12-22

Similar Documents

Publication Publication Date Title
Portehault et al. A general solution route toward metal boride nanocrystals
JP6274444B2 (ja) 銅粉末の製造方法
JP2018088400A5 (ja) 正極活物質の作製方法
US9067793B2 (en) Method for production of carbon nanotube and method for purification of the same
CN113924269A (zh) 从co2简易的电合成石墨烯的方法
CN103072968A (zh) 碳纳米复合材料及其制备方法
JP2012193409A (ja) 鉄微粒子、及びその製造方法
JP2020100895A (ja) 鉄ニッケルナノワイヤーの製造方法
Yang et al. Hydrogen storage performance of Mg/MgH2 and its improvement measures: research progress and trends
Li et al. Hematite: a good catalyst for the thermal decomposition of energetic materials and the application in nano-thermite
CN105964260A (zh) 一种金属催化剂制备方法及其碳纳米管的制备方法
WO2016186207A1 (ja) Cnt分散剤、その製造方法、及びcnt分散液
Ko et al. Catalytic activity for reduction of 4-nitrophenol with [C60] fullerene nanowhisker-silver nanoparticle composites
JP2017039990A (ja) 銅粉とその製造方法、及びそれを用いた導電性ペースト
JP2008223096A (ja) フレーク状銀粉の製造方法
Lee et al. Facile synthesis of iron oxide/graphene nanocomposites using liquid phase plasma method
JP6668669B2 (ja) ナノ銀粒子製造方法及びナノ銀粒子
Azhar et al. Cyano-bridged Cu-Ni coordination polymer nanoflakes and their thermal conversion to mixed Cu-Ni oxides
JP6494338B2 (ja) ニッケル粒子の製造方法
Pan et al. Synthesis of Sn-3.5 Ag alloy nanosolder by chemical reduction method
Hong et al. Metal Borides: From Industrial Classics to Versatile Colloidal Nanocrystals for Energy, Catalysis, and Hard Coatings Applications
JP6608378B2 (ja) ニッケル粒子の製造方法
JP2016186102A (ja) ニッケル粒子及びその製造方法
JP2015209555A (ja) 銀ナノワイヤおよびその製造方法
JP2016004816A (ja) 熱電変換材料の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177035522

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16796600

Country of ref document: EP

Kind code of ref document: A1